WO2019017576A1 - 대면적 기판 상의 미립자 배열 방법 및 이에 의해 배열된 미립자를 포함하는 고분자 복합체 - Google Patents

대면적 기판 상의 미립자 배열 방법 및 이에 의해 배열된 미립자를 포함하는 고분자 복합체 Download PDF

Info

Publication number
WO2019017576A1
WO2019017576A1 PCT/KR2018/005344 KR2018005344W WO2019017576A1 WO 2019017576 A1 WO2019017576 A1 WO 2019017576A1 KR 2018005344 W KR2018005344 W KR 2018005344W WO 2019017576 A1 WO2019017576 A1 WO 2019017576A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
coating layer
mask
substrate
microparticles
Prior art date
Application number
PCT/KR2018/005344
Other languages
English (en)
French (fr)
Inventor
정운룡
유인상
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2019017576A1 publication Critical patent/WO2019017576A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/70391Addressable array sources specially adapted to produce patterns, e.g. addressable LED arrays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection

Definitions

  • the present invention relates to a method for arranging and positioning fine particles of several to several hundreds micro-sized on a large area easily and quickly using a photocurable polymer, and a polymer composite comprising the fine particles arranged thereby.
  • Micro-sized particles are used in various industrial fields, from cosmetics to optical elements and electronic devices. Especially in the field of electronic devices, it is essential to effectively position microparticles at desired positions and control them to desired layers. Since a considerable number of microparticles are arranged, a separate control method is not effective and a technique for effectively controlling a large number of microparticles at once is necessary.
  • conductive particles are used because they are intended to restrict the conductive paths in the horizontal direction and to connect them only in the vertical direction. Therefore, it is necessary to arrange the particles separately without arranging the particles.
  • the present invention has been made to solve the above problems of the prior art and it is an object of the present invention to provide a method of arranging a large amount of microparticles (hereinafter referred to as " fine particles ") at a desired position on a large- .
  • Another object of the present invention is to provide a polymer composite comprising fine particles arranged by the above method.
  • a method of manufacturing a semiconductor device comprising: (a) providing a substrate; (b) coating a mixture containing a photocurable polymer precursor on the substrate to form a coating layer; (c) covering the coating layer with a mask having a patterned void space and a filled portion and irradiating light to light-cure the coating layer; (d) washing the photocured coating layer to produce a patterned polymeric film comprising pores formed by intaglio or relief and supports between the pores; And (e) arranging fine particles on a large-area substrate to produce a polymer composite in which the fine particles are located in the voids by placing fine particles in the voids of the patterned polymer film .
  • the light irradiation in the step (c) is controlled so that the photo-cured coating layer satisfies the following formula 1, and the cured coating layer beneath the filled part of the mask can contact the substrate.
  • the cured coating layer (A1) under the vacant space of the mask is free of the photocurable polymer precursor to be removed by washing of the hydrocarbon compound
  • the cured coating layer (A2) under the filled portion of the mask is formed of a hydrocarbon compound
  • the positioning of the fine particles in the voids of the patterned polymer film may be performed by rubbing or pressing against the substrate.
  • the positioning of the fine particles in the voids of the patterned polymer film results in adhesion between the fine particles and the void surface, As shown in FIG.
  • step (e) may further include a step of removing fine particles not located in the gap by air jet.
  • the pattern of the mask may be continuously arranged with a space of a circular shape being spaced apart at a predetermined interval.
  • the diameter of the empty space may be 1 to 1000 ⁇ .
  • the cavity may have a concave groove shape.
  • the thickness of the coating layer may become thicker as the size of the pattern increases.
  • the photocurable polymer precursor of step (b) may be in the form of a hydrogel.
  • the fine particles may have a size of 1 to 1000 ⁇ m.
  • the fine particles may be in the form of a completely dried powder.
  • the fine particles may be organic polymers, inorganic polymers, inorganic materials, metals, magnetic materials, or semiconductors.
  • the fine particles may be spherical, hemispherical, cubic, tetrahedron, hexahedron, hexahedron, octahedron, columnar, horny, symmetrical, asymmetric or amorphous.
  • Another aspect of the present invention is a semiconductor device comprising: a substrate; A patterned polymeric film comprising pores formed by depressions or embossments on the substrate and a support between the pores; And fine particles on the pores, wherein the fine particles have adhesiveness to the pore surface.
  • the fine particles may have a size of 1 to 1000 mu m.
  • the fine particles may be organic polymers, inorganic polymers, inorganic materials, metals, magnetic materials, or semiconductors.
  • the method of arranging fine particles on a large-area substrate according to the present invention is suitable for a large-scale process using photolithography, and can easily and quickly arrange fine particles at a desired location in a large area.
  • FIG. 1 is a view showing components used in a method of arranging fine particles on a large area substrate according to the present invention.
  • FIG. 1 is a view showing components used in a method of arranging fine particles on a large area substrate according to the present invention.
  • FIG. 2 is a view showing a process of arranging fine particles according to the present invention.
  • 3 is a view showing a change in thickness of a coating layer required depending on a pattern size.
  • OM optical microscopy
  • FIG. 5 is a view showing an arrangement process of 50 ⁇ m size fine particles on a patterned polymer film.
  • first, second, etc. can be used to describe various elements, but the constituent elements are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • One aspect of the present invention relates to a method for easily and quickly arranging and locating fine particles of several to several hundreds of micro-sizes on a large area using a photocurable polymer.
  • FIG. 1 is a view showing components used in a method of arranging fine particles on a large-area substrate according to the present invention
  • FIG. 2 is a diagram showing a process of arranging fine particles.
  • a method for arraying microparticles according to the present invention comprises the steps of: (a) providing a substrate 10; (b) depositing a mixture comprising a photocurable polymeric precursor on the substrate 10 (C) coating the coating layer (20) with a mask (30) having a patterned void space and a filled portion to light-cure the coating layer (20); and (d) washing the photocured coating layer to produce a patterned polymeric film comprising pores formed by intaglio or relief and supports between the pores; And (e) arranging fine particles on the large-area substrate to produce a polymer composite in which the fine particles are located in the pores by positioning the fine particles in the pores of the patterned polymer film.
  • any of known materials such as glass, silicon, and PET (polyethylene terephthalate) can be used as the substrate 10.
  • the photocurable polymer precursor has a small molecular weight and is in a liquid state at room temperature, and a solvent is separately added It is preferable that it is not in the state.
  • the photocurable polymer precursor is preferably brittle after curing.
  • the photocurable polymer precursor may be in the form of a hydrogel.
  • the photocurable polymer precursor examples include, but are not limited to, crosslinkable monomers having at least two ethylenic double bonds.
  • the photocurable polymer precursor may be mixed with a photopolymerization initiator without addition of a solvent.
  • a photopolymerization initiator at least one selected from the group consisting of an acetophenone-based compound, a benzophenone-based compound, a thioxanthone-based compound, a benzoin-based compound and a triazine-based compound may be used, but is not limited thereto.
  • additives such as a photosensitizer, a colorant, a thickener, a polymerization inhibitor and the like may be further added depending on the application.
  • the method of coating the mixture on the substrate 10 is not particularly limited and can be carried out by a known method such as spin coating.
  • a mask 30 having a patterned void space and a filled portion is covered on the coating layer 20 and light-irradiated to light-cure the coating layer 20.
  • the coating layer portion A1 under the empty space of the mask 30 is completely light cured and the coating layer portion A2 under the filled portion of the mask 30 is partially cured . That is, the light-receiving portion A1 is cured and the light-free portion A2 is not cured, and can be removed by a washing process later. In this case, if the light is excessively irradiated, (A2) is partially cured.
  • the completely photocured portion is in a cured state until the liquid polymer precursor completely turns into a solid phase and becomes hard and has no tackiness.
  • the partially photocured portion has a slight tackiness even after washing in a state in which a partially uncured liquid polymer precursor is contained in the cured hydrogel.
  • the coating layer containing the photo-curable polymer precursor When the coating layer containing the photo-curable polymer precursor is over-exposed to UV light, the area covered with the mask is cured. In order to have a height of 20% to 80% Can be adjusted.
  • the light irradiation can be controlled so that the photocured coating layer satisfies the following formula (1).
  • the hardened coating layer beneath the filled portion of the mask can contact the substrate 10.
  • t 1 means the thickness of the cured coating layer A1 below the empty space of the mask
  • t 2 means the thickness of the cured coating layer A2 below the filled portion of the mask.
  • the pattern of the mask 30 may be continuously arranged with a predetermined spacing of void spaces having a circular shape.
  • the diameter of the empty space may be 1 to 1000 mu m.
  • the coating layer 20 is photocured, the coating layer 20 is washed with a cleaning solution of a hydrocarbon compound such as toluene in order to remove the uncured polymer. Then, the remaining washing liquid is removed through heat treatment or the like.
  • a cleaning solution of a hydrocarbon compound such as toluene
  • the photocured polymer after cleaning shows that the portion (A1) not covered with the mask (30) is completely cured and has a brittle and is not viscous at all.
  • the portion (A2) covered with the mask (30) is excessively irradiated at the time of photo-curing and partially cured. Therefore, even after washing, the cured polymer and the uncured polymer remain a certain amount, and thus have a slight viscosity.
  • the portion (A1) not covered by the mask (30) forms a support portion, and the portion (A2) covered with the mask (30) forms a gap.
  • the thickness of the coating layer 20 coated on the first substrate 10 it is preferable to vary the thickness of the coating layer 20 coated on the first substrate 10 according to the size of the pattern. As shown in FIG. 3, if the pattern is large, a coating layer 20 coated over a predetermined thickness is required, and if the pattern size is small, a thin coating layer 20 thickness is sufficient.
  • the fine particles are completely dried. Then, the completely dried fine particles are put on the prepared polymer substrate and then rubbed on the polymer substrate through a rubbing process. According to the manufacturing method of the present invention, during such a rubbing process, the fine particles adhere to the portion having viscosity on the polymer substrate and are completely hardened, so that they do not adhere to the hard portion.
  • the fine particles may have a size ranging from 1 to 1000 mu m.
  • the fine particles may be composed of an organic polymer, an inorganic polymer, an inorganic material, a metal, a magnetic material, or a semiconductor material.
  • the shape of the fine particles may be spherical, hemispherical, cubic, tetrahedral, pentagonal, hexahedral, octahedral, columnar, horny, symmetrical, asymmetric or amorphous.
  • fine particles not adhered by an air gun or the like are removed to leave fine particles arranged only at desired positions as shown in FIG.
  • the method of arranging fine particles of the present invention as described above has the effect of easily and quickly arranging a large amount of fine particles at desired positions.
  • Another aspect of the present invention relates to a polymer composite comprising a substrate, a patterned polymer film comprising a void formed by embossing or embossing on the substrate and a support between the voids, and a fine particle on the void will be.
  • the fine particles are fine particles arranged in the voids by the above-described arrangement method according to the present invention. At this time, the fine particles have adhesiveness to the pore surface.
  • a film type UV mask (circular pattern diameter: 50 mu m) was placed thereon and UV was irradiated thereon. At this time, the portion covered with the UV mask was sufficiently irradiated with UV for 2.7 seconds at an intensity of 8 mW / cm 2 to partially cure the portion.
  • the mask was removed, and the remaining PEGDA layer was washed with toluene and then heat-treated at 80 for 30 minutes to remove remaining toluene.
  • the portion where the UV mask was opened was completely cured and the portion covered by the UV mask was partially cured to obtain a PEGDA layer having a slightly concave structure.
  • FIG. 5, 6 and 7 are optical microscopy (OM) image of the arrayed fine particles
  • FIG. 7 is an SEM (scanning) image of the arrayed fine particles.
  • the method of arranging fine particles on a large-area substrate according to the present invention is suitable for a large-scale process using photolithography, and can easily and quickly arrange fine particles at a desired location in a large area.

Abstract

본 발명은 (a)기판을 제공하는 단계; (b)상기 기판 상에 광경화성 고분자 전구체를 포함하는 혼합물을 코팅하여 코팅층을 형성하는 단계; (c)패턴화된 빈 공간과 채워진 부분을 갖는 마스크를 상기 코팅층에 덮고 광조사하여 상기 코팅층을 광경화시키는 단계; (d)상기 광경화된 코팅층을 세척하여 음각 또는 양각에 의해 형성된 공극(孔隙) 및 상기 공극 사이의 지지부를 포함하는 패턴화된 고분자 필름을 제조하는 단계; 및 (e)상기 패턴화된 고분자 필름의 공극에 미립자를 위치시켜 미립자가 공극에 위치하는 고분자 복합체를 제조하는 대면적 기판 상의 미립자 배열 단계;를 포함하는, 대면적 기판 상의 미립자 배열 방법 및 이에 의해 제조된 고분자 복합체에 관한 것으로, 본 발명에 따르면 대량의 미립자들을 간단하고 빠르게 대면적 기판의 원하는 위치에 배열할 수 있는 효과가 있다.

Description

대면적 기판 상의 미립자 배열 방법 및 이에 의해 배열된 미립자를 포함하는 고분자 복합체
본 발명은 광경화 고분자를 이용하여 수~수백 마이크로 사이즈의 미립자를 대면적에 쉽고 빠르게 단층으로 배열하고 위치시키는 방법 및 이에 의해 배열된 미립자를 포함하는 고분자 복합체에 관한 것이다.
마이크로사이즈의 파티클은 화장품부터 광학소자, 전자소자까지 다양한 산업적 부분에 사용되고 있다. 특히 전자소자 분야에서는 마이크로 파티클을 원하는 위치에 효과적으로 위치시키고 원하는 층으로 제어하는 기술이 필수적이다. 상당히 많은 수의 마이크로 파티클들이 배열되기 때문에 개별적으로 제어하는 방법은 효과적이지 못하고 많은 수의 마이크로 파티클을 한번에 효과적으로 제어하는 기술이 필요하다. 특히 전도성 파티클이 사용되는 이유는 수평 방향으로는 전도성 길을 제한하고 수직 방향으로만 연결하려는 목적이기 때문에 파티클끼리 붙어있지 않고 개별적으로 배열하는 방법이 필요하다.
한편, 기존의 파티클 배열 방법에서는 물리적인 위치 제어를 통하여 파티클을 위치시키거나 혹은 접착제를 부분적으로 위치시킨 후 그 위에 파티클을 위치시켰는데 이를 위해서는 물리적으로 위치를 제한시킬 수 있는 몰드(mold)가 파티클 크기별로 제작되어 있어야 하는 어려움이 있었다. 또한 수용액상에서 액체의 모세관 현상 등을 이용하여 배열하는 방법이 있으나 이는 시간이 많이 걸리며 결함(defect)이 생기는 확률을 줄이기 어려운 문제점이 있었다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 대량의 마이크로파티클(이하 '미립자'라 칭한다)을 간단하고 빠르게 대면적 기판 상의 원하는 위치에 배열할 수 있는 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 방법에 의해 배열된 미립자를 포함하는 고분자 복합체를 제공하는 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 하나의 양상은, (a)기판을 제공하는 단계; (b)상기 기판 상에 광경화성 고분자 전구체를 포함하는 혼합물을 코팅하여 코팅층을 형성하는 단계; (c)패턴화된 빈 공간과 채워진 부분을 갖는 마스크를 상기 코팅층에 덮고 광조사하여 상기 코팅층을 광경화시키는 단계; (d)상기 광경화된 코팅층을 세척하여 음각 또는 양각에 의해 형성된 공극(孔隙) 및 상기 공극 사이의 지지부를 포함하는 패턴화된 고분자 필름을 제조하는 단계; 및 (e)상기 패턴화된 고분자 필름의 공극에 미립자를 위치시켜 미립자가 공극에 위치하는 고분자 복합체를 제조하는 대면적 기판 상의 미립자 배열 단계;를 포함하는, 대면적 기판 상의 미립자 배열 방법에 관한 것이다.
본 발명에 따르면, 상기 단계 (c)에서 광조사를 조절하여 광경화된 코팅층이 아래 식 1을 만족하도록 제어하고, 상기 마스크의 채워진 부분 아래의 경화된 코팅층은 상기 기판과 접할 수 있다.
[식 1]
0.2t1≤ t2 ≤ 0.8 t1
t1: 마스크의 빈 공간 아래의 경화된 코팅층(A1)의 두께
t2: 마스크의 채워진 부분 아래의 경화된 코팅층(A2)의 두께
또한, 상기 마스크의 빈 공간 아래의 경화된 코팅층(A1)은 탄화수소화합물의 세척에 의해 제거되는 상기 광경화성 고분자 전구체가 존재하지 않고, 상기 마스크의 채워진 부분 아래의 경화된 코팅층(A2)은 탄화수소화합물의 세척에 의해 경화되지 않은 상기 광경화성 고분자 전구체가 제거되며, 상기 코팅층(A1)은 상기 지지부가 되고, 상기 코팅층(A2)은 공극이 될 수 있다.
또한, 상기 패턴화된 고분자 필름의 공극에 미립자를 위치시키는 것이 문지르기(rubbing) 또는 누르기(pressing against substrate)에 의해 수행될 수 있다.
본 발명의 일 구현예에 따른 대면적 기판 상의 미립자 배열 방법에 있어서, 상기 패턴화된 고분자 필름의 공극에 미립자를 위치시키는 것이 상기 미립자와 상기 공극 표면과의 점착성 및 상기 공극의 바닥과 지지부 표면과의 단차에 의한 것일 수 있다.
또한, 상기 단계 (e) 이후 공극에 위치하지 않는 미립자를 공기 분사에 의해 제거하는 단계를 추가로 포함할 수 있다.
본 발명의 일 구현예에 따른 대면적 기판 상의 미립자 배열 방법에 있어서, 상기 마스크의 패턴은 원형 형상인 빈 공간이 소정의 간격으로 이격되어 연속적으로 배열될 수 있다.
또한, 상기 빈 공간의 직경은 1 ~ 1000 ㎛일 수 있다.
또한, 상기 공극이 오목한 홈 형상일 수 있다.
또한, 상기 코팅층의 두께가 패턴의 크기가 클수록 두꺼워질 수 있다.
또한, 상기 단계 (b)의 광경화성 고분자 전구체가 하이드로겔(hydrogel) 형태일 수 있다.
본 발명의 일 구현예에 따른 대면적 기판 상의 미립자 배열 방법에 있어서, 상기 미립자는 크기가 1 ~ 1000 ㎛일 수 있다.
또한, 상기 미립자는 완전 건조된 분말 형태일 수 있다.
또한, 상기 미립자는 유기 고분자, 무기 고분자, 무기물, 금속, 자성체 또는 반도체일 수 있다.
또한, 상기 미립자는 구형, 반구형, 큐브형, 사면체, 오면체, 육면체, 팔면체, 기둥형, 뿔형, 대칭형, 비대칭형 또는 무정형일 수 있다.
본 발명의 또 하나의 양상은, 기판; 상기 기판 상에 음각 또는 양각에 의해 형성된 공극(孔隙) 및 상기 공극 사이의 지지부를 포함하는 패턴화된 고분자 필름; 및 상기 공극 상에 미립자;를 포함하고, 상기 상기 미립자는 상기 공극 표면과 점착성을 가지는 것인, 미립자를 포함하는 고분자 복합체에 관한 것이다.
또한, 상기 미립자는 크기가 1 ~ 1000 ㎛일 수 있다.
또한, 상기 미립자는 유기 고분자, 무기 고분자, 무기물, 금속, 자성체 또는 반도체일 수 있다.
본 발명에 따른 대면적 기판 상의 미립자 배열 방법은, 광경화(photolithography)를 이용하므로 대면적 공정에 적절하고, 넓은 면적에 쉽고 빠르게 미립자를 원하는 위치에 단층으로 배열할 수 있는 효과가 있다.
도 1은 본 발명에 따른 대면적 기판 상의 미립자 배열방법에 사용되는 구성요소들을 도시한 도면이다.
도 2는 본 발명에 따른 미립자의 배열 과정을 도시한 도면이다.
도 3은 패턴 크기에 따라 필요한 코팅층의 두께 변화를 도시한 도면이다.
도 4는 패턴화된 고분자 필름의 OM(optical microscopy) 이미지이다.
도 5는 패턴화된 고분자 필름 위에서 50 ㎛ 크기 미립자의 배열과정을 도시한도면이다.
도 6은 배열된 미립자들의 OM 이미지이다.
도 7은 배열된 미립자의 SEM(scanning electron microscope) 이미지와 모식도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
또한, 이하에서 사용될 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
또한, 어떤 구성요소가 "다른 구성요소 상에", " 다른 구성요소 상에 형성되어" 또는 " 다른 구성요소 상에 적층되어" 있다고 언급된 때에는, 그 다른 구성요소의 표면 상의 전면 또는 일면에 직접 부착되어 형성되어 있거나 적층되어 있을 수도 있지만, 중간에 다른 구성요소가 더 존재할 수도 있다고 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 발명의 하나의 양상은 광경화 고분자를 이용하여 수~수백 마이크로 사이즈의 미립자를 대면적에 쉽고 빠르게 단층으로 배열하고 위치시키는 방법에 관한 것이다.
도 1은 본 발명에 따른 대면적 기판 상의 미립자 배열방법에 사용되는 구성요소들을 도시한 도면이고, 도 2는 미립자의 배열 과정을 도시한 도면이다. 도 1 및 도 2를 참조하면, 본 발명에 따른 미립자 배열방법은 및 (a)기판(10)을 제공하는 단계와, (b)상기 기판(10) 상에 광경화성 고분자 전구체를 포함하는 혼합물을 코팅하여 코팅층(20)을 형성하는 단계와, (c)패턴화된 빈 공간과 채워진 부분을 갖는 마스크(30)를 상기 코팅층(20)에 덮고 광조사하여 상기 코팅층(20)을 광경화시키는 단계와 (d)상기 광경화된 코팅층을 세척하여 음각 또는 양각에 의해 형성된 공극(孔隙) 및 상기 공극 사이의 지지부를 포함하는 패턴화된 고분자 필름을 제조하는 단계; 및 (e)상기 패턴화된 고분자 필름의 공극에 미립자를 위치시켜 미립자가 공극에 위치하는 고분자 복합체를 제조하는 대면적 기판 상의 미립자 배열 단계를 포함한다.
본 발명에 있어서, 상기 기판(10)으로는 유리(glass), 실리콘(silicon), PET(polyethylene terephthalate) 등 어떤 공지된 물질도 사용이 가능하다.
기판(10) 상에 광경화성 고분자 전구체를 포함하는 혼합물을 코팅하여 코팅층(20)을 형성하는 단계에 있어서, 상기 광경화성 고분자 전구체는 분자량이 작아서 상온에서 액체 상태이고, 별도로 용매(solvent)가 첨가되지 않은 상태인 것이 바람직하다. 또한 상기 광경화성 고분자 전구체는 경화 후에 경성(brittle)인 것이 바람직하다. 이때 상기 광경화성 고분자 전구체는 하이드로겔 형태일 수 있다.
상기 광경화성 고분자 전구체의 예로는 적어도 2개 이상의 에틸렌계 이중결합을 가진 가교성 단량체를 들 수 있으나, 이에 한정되는 것은 아니다. 상기 광경화성 고분자 전구체는 용매의 첨가 없이 광중합 개시제와 혼합될 수 있다. 상기 광중합 개시제로는 아세토 페논계 화합물, 벤조페논계 화합물, 티오크산톤계 화합물, 벤조인계 화합물 및 트리아진계 화합물로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다. 이때 용도에 따라 광증감제, 착색제, 증점제, 중합 금지제 등이 첨가제가 추가로 첨가될 수도 있다.
상기 혼합물을 기판(10) 상에 코팅하는 방법은 특별히 제한되지 않으며, 스핀 코팅 등 공지의 방법에 의해 실시할 수 있다.
이어서, 패턴화된 빈 공간과 채워진 부분을 갖는 마스크(30)를 상기 코팅층(20)에 덮고 광조사하여 코팅층(20)을 광경화시킨다. 특히 본 발명에 따르면 상기 광경화시 마스크(30)의 빈 공간 아래의 코팅층 부분(A1)은 완전 광경화시키고 상기 마스크(30)의 채워진 부분 아래의 코팅층 부분(A2)은 부분적으로 광경화시키는 것을 특징으로 한다. 즉, 빛을 받은 부분(A1)은 경화되고 빛을 받지 않은 부분(A2)은 경화되지 않아서 나중에 세척(washing) 공정으로 제거할 수 있는데, 이때 중요한 것은 빛을 과하게 조사하여 주면 빛을 받지 않은 부분(A2)까지 부분적으로 경화가 이루어지는 점이다.
본 발명에 따르면, 상기 완전 광경화된 부분은 액상의 고분자 전구체가 완전히 고상으로 변하여 딱딱해지고 점착성을 가지지 않을 때까지 경화된 상태가 된다. 또한 부분 광경화된 부분은 경화된 하이드로젤 내에 일부 경화되지 않은 액상의 고분자 전구체가 포함된 상태로 세척 후에도 약간의 점착성을 가지게 된다.
상기 광경화성 고분자 전구체를 포함하는 코팅층에 UV를 과 조사 (over exposure) 시키면 마스크로 가려진 부분까지 경화가 진행되는데, 완전 광경화 된 부분 대비 20% 이상 80% 이하의 높이를 가지도록 UV의 과 조사 정도를 조절할 수 있다.
따라서 본 발명에 있어서, 상기 광조사는 광경화된 코팅층이 아래 식 1을 만족하도록 제어할 수 있다. 이때 마스크의 채워진 부분 아래의 경화된 코팅층은 기판(10)과 접할 수 있다.
[식 1]
0.2t1≤ t2 ≤ 0.8 t1
여기에서, t1은 마스크의 빈 공간 아래의 경화된 코팅층(A1)의 두께를 의미하며, t2는 마스크의 채워진 부분 아래의 경화된 코팅층(A2)의 두께를 의미한다.
본 발명에 있어서, 상기 마스크(30)의 패턴은 원형 형상인 빈 공간이 소정의 간격으로 이격되어 연속적으로 배열될 수 있다. 이때 상기 빈 공간의 직경은 1 ~ 1000 ㎛일 수 있다.
코팅층(20)을 광경화시킨 이후 마스크(30)를 제거한 후 경화되지 않은 고분자를 제거하기 위하여 톨루엔 등 탄화수소화합물의 세척액으로 코팅층(20)을 세척한다. 그리고 남아있는 세척액을 열처리 등을 통하여 제거한다.
본 발명에 있어서 세척 후 광경화가 된 고분자를 보면, 마스크(30)로 가려져 있지 않은 부분(A1)은 완전히 경화되어 경성(brittle)을 가져 전혀 점성이 없다. 그런데 마스크(30)로 가려져 있던 부분(A2)은 광경화시에 과하게 조사되어 부분적으로 경화가 되어 있다. 따라서, 세척 후에도 경화된 고분자와 경화되지 않은 고분자가 일정량 함께 남아있기 때문에 약간의 점성을 가지게 된다. 상기 마스크(30)로 가려져 있지 않은 부분(A1)은 지지부를 형성하고, 상기 마스크(30)로 가려져 있던 부분(A2)은 공극을 형성한다.
이때 패턴의 크기에 따라서 처음의 기판(10) 상에 코팅된 코팅층(20)의 두께를 달리하는 것이 바람직하다. 도 3에 도시된 바와 같이 만약 패턴이 크다면 일정 두께 이상으로 코팅된 코팅층(20)이 필요하고 패턴 크기가 작다면 얇은 두께의 코팅층(20) 두께이면 충분하다.
위와 같은 방식으로 부분적으로 광경화된 고분자 기판을 준비한 후, 미립자를 완전히 건조된 상태로 준비한다. 이어서 완전히 건조된 미립자들을 위와 같이 준비된 고분자 기판 상에 올린 후 문지르기(rubbing) 공정을 통하여 고분자 기판 위에 문질러준다. 본 발명의 제조방법에 따르면, 이와 같은 문지르기 공정 중에 미립자들은 고분자 기판 상에 점성을 가지고 있는 부분에 붙게 되고 완전히 경화되어 경성인 부분에는 붙지 않게 된다.
본 발명에 따른 미립자의 배열 방법에 있어서, 상기 미립자는 크기가 1 ~ 1000 ㎛ 범위일 수 있다. 또한, 상기 미립자는 유기 고분자, 무기 고분자, 무기물, 금속, 자성체 또는 반도체 물질로 이루어질 수 있다. 이때 상기 미립자의 형태는 구형, 반구형, 큐브형, 사면체, 오면체, 육면체, 팔면체, 기둥형, 뿔형, 대칭형, 비대칭형 또는 무정형일 수 있다.
본 발명에 따르면, 상기와 같은 문지르기 공정 후에 공기 분사기(air gun) 등으로 붙지 않은 미립자들을 제거하여 주면 도 2에 도시된 바와 같이 원하는 위치에만 배열된 미립자들이 남게 된다.
이상 설명한 바와 같은 본 발명의 미립자 배열방법은 특히 대량의 미립자들을 간단하고 빠르게 원하는 위치에 배열할 수 있는 효과가 있다.
본 발명의 또 하나의 양상은, 기판과, 상기 기판 상에 음각 또는 양각에 의해 형성된 공극 및 상기 공극 사이의 지지부를 포함하는 패턴화된 고분자 필름 및 상기 공극 상에 미립자를 포함하는 고분자 복합체에 관한 것이다. 본 발명에 있어서, 상기 미립자는 위에서 설명한 본 발명에 따른 배열 방법에 의해 공극에 배열된 미립자인 것을 특징으로 한다. 이때 상기 미립자는 공극 표면과 점착성을 가지게 된다.
이하에서는 본 발명을 실시예를 들어 더욱 상세하게 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
[실시예]
PEGDA 하이드로젤 (Poly(ethylene glycol) diacrylate hydrogel) (분자량: 575, 제조원: sigma aldrich)을 광개시제(2-Hydroxy-2-methylpropiohenone, 제조원: sigma aldrich)와 10:1 중량% 비율로 분산시킨 후 유리 기판 위에 30 ㎛ 두께로 스핀 코팅하였다.
이어서 그 위에 필름 타입의 UV 마스크(원형 패턴 지름: 50 ㎛)를 올리고 UV를 조사하였다. 이때 UV 마스크로 가려진 부분도 부분적으로 경화될 만큼 8 mW/㎠ 의 세기로 2.7초간 충분히 UV를 조사하였다.
UV 조사 후에 마스크를 제거하고 남은 PEGDA 층을 톨루엔(toluene)으로 씻어낸 후(washing), 잔존하는 톨루엔을 제거하기 위하여 80에서 30분간 열처리 하였다.
그 결과 도 4에 도시된 바와 같이 UV 마스크가 개방된 부분은 완전히 경화되고 UV 마스크로 가려진 부분은 부분적으로 경화되어 약간 오목한 구조를 가지는 PEGDA 층을 수득하였다.
이어서 상기 PEGDA 층 위에 완전히 건조시킨 미립자(size: 50 ㎛)를 올린 후 문지르기(rubbing) 공정을 거쳤다. 그 후 공기 분사기(air gun)로 PEGDA 층에 붙지 않은 파티클들을 제거하여 원하는 위치에만 위치된 마이크로 파티클의 패턴을 얻을 수 있었다(도 5, 6, 7). 여기에서, 도 5는 패턴화된 고분자 필름 위에서 50 ㎛ 크기 미립자의 배열과정을 도시한 도면이고, 도 6은 배열된 미립자들의 OM(optical microscopy) 이미지이고, 도 7은 배열된 미립자의 SEM(scanning electron microscope) 이미지와 모식도이다.
이상에서 본 발명의 바람직한 구현예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명에 따른 대면적 기판 상의 미립자 배열 방법은, 광경화(photolithography)를 이용하므로 대면적 공정에 적절하고, 넓은 면적에 쉽고 빠르게 미립자를 원하는 위치에 단층으로 배열할 수 있는 효과가 있다.

Claims (18)

  1. (a) 기판을 제공하는 단계;
    (b) 상기 기판 상에 광경화성 고분자 전구체를 포함하는 혼합물을 코팅하여 코팅층을 형성하는 단계;
    (c) 패턴화된 빈 공간과 채워진 부분을 갖는 마스크를 상기 코팅층에 덮고 광조사하여 상기 코팅층을 광경화시키는 단계;
    (d) 상기 광경화된 코팅층을 세척하여 음각 또는 양각에 의해 형성된 공극(孔隙) 및 상기 공극 사이의 지지부를 포함하는 패턴화된 고분자 필름을 제조하는 단계; 및
    (e) 상기 패턴화된 고분자 필름의 공극에 미립자를 위치시켜 미립자가 공극에 위치하는 고분자 복합체를 제조하는, 대면적 기판 상의 미립자 배열 단계;를 포함하는, 대면적 기판 상의 미립자 배열 방법.
  2. 제1항에 있어서,
    단계 (c)에서 광조사를 조절하여 광경화된 코팅층이 아래 식 1을 만족하도록 제어하고, 상기 마스크의 채워진 부분 아래의 경화된 코팅층은 상기 기판과 접하는 것을 특징으로 하는 대면적 기판 상의 미립자 배열 방법.
    [식 1]
    0.2t1≤ t2 ≤ 0.8 t1
    t1: 마스크의 빈 공간 아래의 경화된 코팅층(A1)의 두께
    t2: 마스크의 채워진 부분 아래의 경화된 코팅층(A2)의 두께
  3. 제2항에 있어서,
    상기 마스크의 빈 공간 아래의 경화된 코팅층(A1)은 탄화수소화합물의 세척에 의해 제거되는 상기 광경화성 고분자 전구체가 존재하지 않고,
    상기 마스크의 채워진 부분 아래의 경화된 코팅층(A2)은 탄화수소화합물의 세척에 의해 경화되지 않은 상기 광경화성 고분자 전구체가 제거되고,
    상기 코팅층(A1)은 상기 지지부가 되고, 상기 코팅층(A2)은 공극이 되는 것을 특징으로 하는 대면적 기판 상의 미립자 배열 방법.
  4. 제1항에 있어서,
    상기 패턴화된 고분자 필름의 공극에 미립자를 위치시키는 것이 문지르기(rubbing) 또는 누르기(pressing against substrate)에 의해 수행되는 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  5. 제1항에 있어서,
    상기 패턴화된 고분자 필름의 공극에 미립자를 위치시키는 것이 상기 미립자와 상기 공극 표면과의 점착성 및 상기 공극의 바닥과 지지부 표면과의 단차에 의한 것임을 특징으로 하는 대면적 기판 상의 미립자 배열 방법.
  6. 제1항에 있어서,
    상기 방법이 단계 (e) 이후 공극에 위치하지 않는 미립자를 공기 분사에 의해 제거하는 단계를 추가로 포함하는 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  7. 제1항에 있어서,
    상기 마스크의 패턴은 원형 형상인 빈 공간이 소정의 간격으로 이격되어 연속적으로 배열되는 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  8. 제7항에 있어서,
    상기 빈 공간의 직경이 1 ~ 100 ㎛인 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  9. 제1항에 있어서,
    상기 공극이 오목한 홈 형상인 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  10. 제1항에 있어서,
    상기 코팅층의 두께가 패턴의 크기가 클수록 두꺼워지는 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  11. 제1항에 있어서,
    상기 단계 (b)의 광경화성 고분자 전구체가 하이드로겔 형태인 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  12. 제1항에 있어서,
    상기 미립자의 크기가 1 ~ 1000 ㎛인 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  13. 제12항에 있어서,
    상기 미립자가 건조된 분말 형태인 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  14. 제12항에 있어서,
    상기 미립자가 유기 고분자, 무기 고분자, 무기물, 금속, 자성체 또는 반도체인 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  15. 제12항에 있어서,
    상기 미립자가 구형, 반구형, 큐브형, 사면체, 오면체, 육면체, 팔면체, 기둥형, 뿔형, 대칭형, 비대칭형 또는 무정형인 것을 특징으로 하는, 대면적 기판 상의 미립자 배열 방법.
  16. 기판;
    상기 기판 상에 음각 또는 양각에 의해 형성된 공극(孔隙) 및 상기 공극 사이의 지지부를 포함하는 패턴화된 고분자 필름; 및
    상기 공극 상에 미립자;를 포함하고,
    상기 상기 미립자는 상기 공극 표면과 점착성을 갖는 것인,
    미립자를 포함하는 고분자 복합체.
  17. 제16항에 있어서,
    상기 미립자의 크기가 1 ~ 1000 ㎛인 것을 특징으로 하는, 미립자를 포함하는 고분자 복합체.
  18. 제17항에 있어서,
    상기 미립자가 유기 고분자, 무기 고분자, 무기물, 금속, 자성체 또는 반도체인 것을 특징으로 하는, 미립자를 포함하는 고분자 복합체.
PCT/KR2018/005344 2017-07-20 2018-05-10 대면적 기판 상의 미립자 배열 방법 및 이에 의해 배열된 미립자를 포함하는 고분자 복합체 WO2019017576A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170091896A KR102005424B1 (ko) 2017-07-20 2017-07-20 대면적 기판 상의 미립자 배열 방법 및 이에 의해 배열된 미립자를 포함하는 고분자 복합체
KR10-2017-0091896 2017-07-20

Publications (1)

Publication Number Publication Date
WO2019017576A1 true WO2019017576A1 (ko) 2019-01-24

Family

ID=65016630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005344 WO2019017576A1 (ko) 2017-07-20 2018-05-10 대면적 기판 상의 미립자 배열 방법 및 이에 의해 배열된 미립자를 포함하는 고분자 복합체

Country Status (2)

Country Link
KR (1) KR102005424B1 (ko)
WO (1) WO2019017576A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084178A (ja) * 1996-09-09 1998-03-31 Ricoh Co Ltd 微小物体の配列方法及び該配列方法を用いた接続構造の形成方法
KR20120009484A (ko) * 2009-04-09 2012-01-31 서강대학교산학협력단 물리적 압력에 의해 미립자를 기재 상에 배치시키는 방법
KR101478604B1 (ko) * 2014-11-11 2015-01-02 연세대학교 산학협력단 충격 부재를 사용한 두드림 기법으로 나노 입자를 배열 방법 및 이러한 방법을 사용한 나노 전극의 제조 방법
US20160322560A1 (en) * 2015-04-30 2016-11-03 The Regents Of The University Of California 3d piezoelectric polymer materials and devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186801B1 (ko) * 2009-08-31 2012-09-28 전자부품연구원 고분자 조성물을 이용한 전기, 열 전도성 박막 후처리 공정 방법 및 그 조성물
KR101468496B1 (ko) * 2013-07-25 2014-12-04 전자부품연구원 전도성 나노 물질을 포함한 감광성 코팅액 조성물 및 그를 이용한 코팅 전도막
WO2014157856A1 (ko) 2013-03-25 2014-10-02 전자부품연구원 감광성 코팅 조성물, 그를 이용한 코팅 전도막 및 그의 제조 방법
KR20150054613A (ko) * 2013-11-11 2015-05-20 (주)티메이 한 장의 필름을 이용한 터치 센서를 구현하는 터치 패널 및 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084178A (ja) * 1996-09-09 1998-03-31 Ricoh Co Ltd 微小物体の配列方法及び該配列方法を用いた接続構造の形成方法
KR20120009484A (ko) * 2009-04-09 2012-01-31 서강대학교산학협력단 물리적 압력에 의해 미립자를 기재 상에 배치시키는 방법
KR101478604B1 (ko) * 2014-11-11 2015-01-02 연세대학교 산학협력단 충격 부재를 사용한 두드림 기법으로 나노 입자를 배열 방법 및 이러한 방법을 사용한 나노 전극의 제조 방법
US20160322560A1 (en) * 2015-04-30 2016-11-03 The Regents Of The University Of California 3d piezoelectric polymer materials and devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAE, M ET AL.: "Fabrication of Poly (Ethylene Glycol) Hydrogel Structures for Pharmaceutical Applications Using Electron Beam and Optical Lithography", JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, NANOTECHNOLOGY AND MICROELECTRONICS: MATERIALS, PROCESSING, MEASUREMENT, AND PHENOMENA, vol. 28, no. 6, 29 November 2010 (2010-11-29), pages C6P24 - C6P29, XP012144423, Retrieved from the Internet <URL:https://doi.org/10.1116/1.3517716> *

Also Published As

Publication number Publication date
KR20190009923A (ko) 2019-01-30
KR102005424B1 (ko) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2009088198A2 (ko) 발광 다이오드 코팅 방법
KR100568581B1 (ko) 미세패턴 형성 몰드용 조성물 및 이로부터 제작된 몰드
WO2010033002A2 (ko) 미세복합형상렌즈 및 그 제조방법
WO2015016686A1 (ko) 노광 장치
WO2014025164A1 (ko) 인쇄물 및 인쇄물의 제조방법
CN104617234A (zh) 隔垫物、有机电致发光显示面板、制作方法及显示装置
WO2015183008A1 (ko) 입자 정렬을 이용한 코팅 방법
WO2012074167A1 (ko) 도광판 및 그 제조방법 및 제조장비
WO2013119083A1 (ko) 관통홀을 가지는 프리스탠딩한 고분자 멤브레인 및 그 제조방법
CN111438859A (zh) 一种图案化纳米阵列模板及其制备方法和应用
WO2018009026A1 (ko) 나노 임프린트용 레플리카 몰드, 그 제조방법 및 나노 임프린트용 레플리카 몰드 제조장치
WO2019017576A1 (ko) 대면적 기판 상의 미립자 배열 방법 및 이에 의해 배열된 미립자를 포함하는 고분자 복합체
CN106783918A (zh) 一种像素bank结构及制作方法
CN101157520B (zh) 同时具有微米纳米结构的复合图形的构建方法
WO2019221319A1 (ko) 경피 투과형 약물 전달 패치 및 이의 제조 방법
WO2009113833A2 (ko) 웨이퍼 스케일 렌즈 어레이, 그 성형장치 및 그 제조방법
WO2019035661A1 (ko) 회절 격자 도광판용 몰드 기재의 제조방법 및 회절 격자 도광판의 제조방법
WO2012060620A2 (ko) 항생물부착성 ssq/peg 네트워크 및 그 제조방법
WO2016200227A1 (ko) 적층체
WO2012128467A2 (ko) 원통형 패턴 마스크를 이용한 원통형 스탬프 제작 장치 및 제작 방법
WO2012087075A2 (ko) 레이저간섭 노광을 이용한 대면적 미세패턴 제작 방법, 상기 방법을 이용하여 제작된 미세패턴의 비평면적 전사 방법 및 이를 이용하여 미세 패턴을 전사한 물품
WO2013094918A1 (en) Transparent substrate having nano pattern and method of manufacturing the same
WO2020197365A9 (ko) 미세입자 제조방법
WO2016117931A1 (ko) 백라이트 유닛을 위한 광학 시트 및 그 제조 방법
CN104076557A (zh) 显示基板及其制作方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834479

Country of ref document: EP

Kind code of ref document: A1