WO2019017488A1 - Tank, and chemical solution supply system - Google Patents

Tank, and chemical solution supply system Download PDF

Info

Publication number
WO2019017488A1
WO2019017488A1 PCT/JP2018/027359 JP2018027359W WO2019017488A1 WO 2019017488 A1 WO2019017488 A1 WO 2019017488A1 JP 2018027359 W JP2018027359 W JP 2018027359W WO 2019017488 A1 WO2019017488 A1 WO 2019017488A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
composite resin
resin material
tetrafluoroethylene
chemical solution
Prior art date
Application number
PCT/JP2018/027359
Other languages
French (fr)
Japanese (ja)
Inventor
弘和 山本
宏貴 伊丹
勇 野口
忠和 塚本
昌秀 加藤
川戸 進
Original Assignee
東邦化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦化成株式会社 filed Critical 東邦化成株式会社
Priority to KR1020207005070A priority Critical patent/KR102616116B1/en
Priority to JP2019522347A priority patent/JP6571304B2/en
Priority to CN201880048526.3A priority patent/CN110944920B/en
Publication of WO2019017488A1 publication Critical patent/WO2019017488A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/04Linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/22Safety features
    • B65D90/46Arrangements for carrying off, or preventing the formation of electrostatic charges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to a tank including a composite resin material including a fluorocarbon resin and a carbon nanotube in at least a part of a lining layer, and a chemical solution supply system using the tank.
  • the inner wall of a metal tank outer can for the purpose of preventing the corrosion of the inner wall of the tank due to the corrosiveness of the chemical solution or the contamination of the chemical solution due to the corrosion.
  • the lining material which consists of chemical-resistant materials, such as polyvinyl chloride, rubber
  • Patent Document 1 describes a fluororesin-lined tank lined with tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA).
  • Patent Document 2 describes a lining material including a sheet base made of a polyolefin base.
  • Patent Document 3 describes a lining sheet having a conductive tetrafluoroethylene resin layer formed of a tetrafluoroethylene resin and a conductive filler such as carbon black or graphite.
  • Chemical-resistant materials such as fluoroplastics, which are usually used as lining materials, have chargeability, so when friction occurs between the chemical-resistant material and the chemical solution that is the contents, static electricity is generated, and the content is There may be a problem of ignition of things.
  • Patent Document 3 when a conductive material such as carbon black is added to a chemical resistant material used as a lining material, a large amount of conductivity is achieved to achieve desired antistatic properties. It is necessary to add some sex material, and there is also the possibility of contamination of the tank contents. Further, the presence of the conductive material or the like on the bonding surface of the lining material and the inner wall of the tank causes a problem such as easy peeling of the lining material.
  • the present inventors diligently studied the lining layer provided on the inner surface of the tank in order to solve the above-mentioned problems. As a result, it has been found that the above object can be achieved by providing a lining layer containing a composite resin material containing a fluorocarbon resin and a carbon nanotube in at least a part thereof, thereby completing the present invention.
  • the present invention includes the following preferred embodiments.
  • a lining layer provided on the inner surface of the tank outer can;
  • the lining layer comprises, at least in part, a composite resin material comprising fluorocarbon resin A and carbon nanotubes,
  • Fluororesin A is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF)
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polyte
  • the chemical liquid pipe is a molded body of a composite resin material having a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of the pipe and / or containing fluorocarbon resin B and carbon nanotubes ,
  • Fluororesin B is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvin
  • fluorocarbon resin C is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF) Any one of the above [1] to [5] selected from the group consisting of polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) The tank described in.
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene /
  • fluorocarbon resin C is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE ), Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF) Selected from the group consisting of polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF), any of the above [1] to [6] Description tank.
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • PFA Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • FEP tetraflu
  • a stirring rod which at least partially contains a composite resin material containing fluorocarbon resin C and carbon nanotubes, wherein fluorocarbon resin C is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), poly It is selected from the group consisting of chlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF), according to any one of the above [1] to [7] tank.
  • fluorocarbon resin C is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (mod
  • the composite resin material is a compression-molded product of composite resin particles having an average particle diameter of 5 ⁇ m to 500 ⁇ m, which contains any of fluororesins A to C and a carbon nanotube, according to the above [1] to [14]
  • the tank according to any one of the above [1] to [15] which is a chemical solution supply tank, a chemical solution storage tank, and / or a chemical solution transport tank.
  • a chemical solution supply system including supplying a chemical solution using the tank according to any one of the above [1] to [16].
  • the compression-molded article according to the above [20] which is selected from a lining sheet, a chemical solution tube, a hollow shaped body, a rod-shaped compact, a rod-shaped compact holder, a stirring rod, a stirring blade, and a stirring rod adapter .
  • the present invention is a tank for handling various chemical solutions, which can prevent charging of the contents of the tank, and a tank in which the contamination of the tank contents is reduced, and a chemical solution supply using the tank A system is provided.
  • the tank of the present invention has at least an outer tank can and a lining layer provided on the inner surface of the outer tank can.
  • the material of the tank outer can is not particularly limited as long as it is a material having good corrosion resistance, heat resistance and mechanical strength, but is usually metal, and examples thereof include stainless steel, iron, carbon steel, titanium and the like.
  • the shape, size, thickness and the like of the tank outer can are not particularly limited, and may be appropriately selected according to the application of the tank of the present invention.
  • a lining layer is provided on the inner surface of the tank outer can.
  • the resin contained in the lining layer may, for example, be a fluorine resin, a vinyl chloride resin or a polyolefin resin. From the viewpoint of chemical resistance and heat resistance, the lining layer preferably contains a fluorine resin.
  • fluorine resin for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), polyvinyl fluoride ( PVF).
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • ETFE tetrafluoro
  • the thickness of the lining layer is preferably 1.3 to 8 mm, more preferably 1.8 to 4 mm, still more preferably 2 to 4 mm, from the viewpoint of easily suppressing metal elution.
  • the thickness of the lining layer is measured using a micrometer.
  • the lining layer is a laminate of glass cloth and a resin sheet, in which case the thickness of the glass cloth is preferably 0.3 to 3 mm, more preferably 0.3 to 1 mm, still more preferably The thickness is 0.5 to 1 mm, and the thickness of the resin sheet is preferably 1 to 5 mm, more preferably 1.5 to 3 mm.
  • the lining layer contains, at least in part, a composite resin material containing fluorocarbon resin A and carbon nanotubes.
  • the lining layer contains at least a part of the composite resin material
  • at least a part of the lining layer provided on the inner surface of the tank outer can may be made of the composite resin material, or the entire lining layer is a composite resin material May be composed of
  • the composite resin material may be contained in a part of the lining layer provided on the inner surface of the tank outer can, and the composite resin material is contained in the entire lining layer provided on the inner surface of the tank outer can. It is also good.
  • part of the lining layer provided on the inner surface of the tank outer can is made of a composite resin material, or It is preferable that a part contains a composite resin material.
  • the lining layer provided on the portion where the introduced chemical solution first contacts the inner surface of the outer tank is a composite resin material including fluororesin A and carbon nanotubes. It is preferable to contain, and it is more preferable that this lining layer is comprised with the composite resin material containing the fluororesin A and a carbon nanotube.
  • a composite resin material including a fluororesin A and a carbon nanotube wherein the lining layer provided at the bottom of the inner surface of the outer tank can is likely to generate static electricity due to friction with the supplied chemical solution. It is preferable that the lining layer is made of a composite resin material containing fluorocarbon resin A and carbon nanotubes.
  • the lining layer contains, at least in part, a composite resin material containing fluorocarbon resin A and carbon nanotubes.
  • the composite resin material containing fluorocarbon resin A and carbon nanotubes is a molded article of composite resin particles in which fluorocarbon resin A and carbon nanotubes are composited.
  • the composite resin particle is a material in which particles of fluorocarbon resin A and carbon nanotubes are complexed, and carbon nanotubes exist on at least the surface and / or surface layer of the particles of fluorocarbon resin A. For example, at least a part of carbon nanotubes is supported or buried on the particle surface of fluorocarbon resin A.
  • the carbon nanotubes may be attached to and supported on the particle surface of the fluorocarbon resin A, or a part may be buried and supported, and the carbon nanotubes may be completely buried in the surface layer of the particles of the fluorocarbon resin It is also good.
  • a composite resin material which is a molded product of such composite resin particles, at least a part of the composite resin particles may be contained while maintaining the particle shape, and the composite resin particles are integrated to form a composite resin material. It may be done.
  • the average particle diameter of the composite resin particles is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 200 ⁇ m or less, particularly preferably 100 ⁇ m or less, very preferably 50 ⁇ m or less, most preferably 30 ⁇ m or less.
  • the lower limit of the average particle size of the composite resin material is not particularly limited, but is usually 5 ⁇ m or more.
  • the average particle size of the composite resin particles giving the composite resin material contained in the lining layer may be the average particle size of the composite resin particles used for producing the composite resin material, and the average particle size is The median diameter (D 50 ) which means the particle diameter at 50% of the integrated value in the particle size distribution determined by the laser diffraction / scattering method, and is measured using a laser diffraction scattering type particle size distribution device.
  • the lining layer and the like preferably contain a composite resin material which is a molded body of the composite resin particles having the above average particle diameter, and the composite resin material in the lining layer and the like has the above-mentioned preferable range
  • Composite resin particles having a particle diameter of 1 may be used, or the composite resin particles may not be integrated to form a composite resin material and not maintain the particle shape.
  • the lining layer contains at least a part of the composite resin material in which the fluororesin A and the carbon nanotube are complexed, thereby effectively reducing the volume resistivity of the lining layer and charging the lining layer.
  • Prevention and / or conductivity can be imparted. For this reason, it is possible to prevent the content from being charged, and to prevent, for example, the ignition of a chemical solution such as an organic solvent.
  • the composite resin material the volume resistivity can be effectively reduced by a small amount of carbon nanotubes, and therefore, the conductive material contained in the lining layer is mixed with the contents, thereby making the tank such as a chemical solution Contamination of the contents is suppressed and the cleanliness is excellent.
  • the amount of the fluororesin A contained in the composite resin material is preferably 98.0% by mass or more, more preferably 99.0% by mass or more, still more preferably 99.8% by mass or more based on the total amount of the composite resin material It is.
  • the upper limit of the amount of the fluororesin A is not particularly limited, but is about 99.99% by mass or less.
  • the amount of fluorocarbon resin A contained in the composite resin material is measured by carbon component analysis.
  • the amount of carbon nanotubes contained in the composite resin material is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, still more preferably 0 based on the total amount of the composite resin material. It is .025 to 0.2% by mass. It is preferable for the amount of carbon nanotubes to be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity. It is preferable for the amount of carbon nanotubes to be equal to or less than the above upper limit because the volume resistivity is easily reduced efficiently.
  • the amount of carbon nanotubes contained in the composite resin material is measured by carbon component analysis.
  • the composite resin material is a molded article of composite resin particles, and the specific surface area of the composite resin particles is preferably 0.5 to 9.0 m 2 / g, more preferably 0.8, as measured in accordance with JIS Z8830. It is -4.0 m 2 / g, still more preferably 1.0 to 3.0 m 2 / g. It is preferable from the viewpoint of easily improving the adhesion between the fluororesin A and the carbon nanotube that the specific surface area is the above lower limit or more, and it is preferable from the viewpoint of easiness of producing the composite resin material that it is the above upper limit.
  • the specific surface area of the composite resin particles giving the composite resin material contained in the lining layer may be the average particle diameter of the composite resin particles used for producing the composite resin material, and the average particle diameter is specifically Specifically, the specific surface area / pore distribution measuring apparatus (for example, BELSORP-miniII manufactured by Nippon Bell), which is a fixed capacity gas adsorption method, is used to measure by a BET method, which is a general measuring method of specific surface area.
  • BELSORP-miniII manufactured by Nippon Bell
  • the lining layer and the like preferably contain a composite resin material which is a molded body of the composite resin particles having the above average particle diameter, and the composite resin material in the lining layer and the like has the above-mentioned preferable range
  • Composite resin particles having a particle diameter of 1 may be used, or the composite resin particles may not be integrated to form a composite resin material and not maintain the particle shape.
  • the volume resistivity of the composite resin material is preferably 1.0 ⁇ 10 8 ⁇ ⁇ cm or less, more preferably 1.0 ⁇ 10 7 ⁇ ⁇ cm or less, as measured in accordance with JIS K 6911 from the viewpoint of antistatic properties. Still more preferably, it is 1.0 ⁇ 10 6 ⁇ ⁇ cm or less.
  • Favorable antistatic property is acquired as a volume resistivity is below the said upper limit.
  • the lower limit value of the volume resistivity of the composite resin material is not particularly limited, and may be 0 or more, but is usually 10 ⁇ ⁇ cm or more.
  • the volume resistivity of the composite resin material is measured by a resistivity meter (for example, "Lorrester” or “Hyrester” manufactured by Mitsubishi Chemical Analytech Co., Ltd.) using a molding material or a cut test piece according to JIS K6911.
  • a resistivity meter for example, "Lorrester” or “Hyrester” manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the composite resin material exhibits the above-mentioned volume resistivity when measured using a test piece of ⁇ 110 ⁇ 10 mm produced by compression molding (compression molding).
  • the lining layer of the portion containing the composite resin material has the above-mentioned antistatic property.
  • the said volume resistivity is similarly applied about the composite resin material containing the fluororesin B or the fluororesin C mentioned later.
  • X and Y have the following formula (1) : X / Y -14 4 4 x 10 -12 (1) It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the composite resin material can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, it is easy to enhance the cleanness of the lining layer containing the composite resin material.
  • the value (X / Y -14 ) calculated from the above formula (1) is more preferably 10 -12 or less, and still more preferably 10 from the viewpoint of easily reducing the volume resistivity of the composite resin material. -13 or less.
  • the lower limit value of the value (X / Y -14 ) calculated from the above formula (1) is not particularly limited, it is usually 10 -18 or more, preferably 10 -16 or more.
  • the above relationship can be achieved by producing a molded body by a production method to be described later, or producing a composite resin material using composite resin particles preferable for effectively reducing the volume resistivity.
  • the method for measuring the volume resistivity is as described above, and the amount of carbon nanotubes contained in the composite resin material is measured by a carbon component analysis method.
  • the tank of the present invention can achieve the desired antistatic properties with a small amount of carbon nanotubes, though the reason is not clear by using the lining layer containing the above-mentioned composite resin material. Therefore, the composite resin material of the present invention is excellent in cleanness. In addition, even when, for example, a molded body produced from the composite resin material of the present invention is used as part of a lining layer for welding, the amount of conductive material present on the welding surface is small, so the adhesion is lowered. It can be avoided. Furthermore, according to the composite resin material of the present invention, even in the case of having the volume resistivity in the above-mentioned preferable range, it is easy to maintain the mechanical strength which the resin originally has.
  • the fluororesin A contained in the composite resin material is, for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / tetrafluoroethylene / Hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE) And polyvinyl fluoride (PVF).
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / tetraflu
  • the fluororesin A contained in the composite resin material is selected from the group consisting of polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE) and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) Is preferred.
  • the fluorine resin A is more preferably selected from the group consisting of polytetrafluoroethylene (PTFE) and modified polytetrafluoroethylene (modified PTFE), from the viewpoint of easily enhancing the conductivity, and further, the conductivity is efficiently selected.
  • modified polytetrafluoroethylene (modified PTFE) is more preferable.
  • Polytetrafluoroethylene is a homopolymer of tetrafluoroethylene.
  • Modified polytetrafluoroethylene is a compound of formula (I) derived from tetrafluoroethylene: In addition to the tetrafluoroethylene units represented by [Wherein, X represents a C 1-6 perfluoroalkyl group or a C 4-9 perfluoroalkoxyalkyl group] And the amount of the perfluorovinyl ether unit represented by the formula (II) is 0.01 to 1% by mass based on the total mass of the modified polytetrafluoroethylene Some modified polytetrafluoroethylenes can be mentioned.
  • Examples of X in the formula (II) include a perfluoroalkyl group having 1 to 6 carbon atoms or a perfluoroalkoxyalkyl group having 4 to 9 carbon atoms.
  • Examples of the perfluoroalkyl group having 1 to 6 carbon atoms include perfluoromethyl group, perfluoroethyl group, perfluorobutyl group, perfluoropropyl group, perfluorobutyl group and the like.
  • Examples of the perfluoroalkoxyalkyl group having 4 to 9 carbon atoms include perfluoro 2-methoxypropyl group and perfluoro 2-propoxypropyl group.
  • X is preferably a perfluoropropyl group, a perfluoroethyl group, or a perfluoromethyl group, more preferably a perfluoropropyl group.
  • the modified PTFE may have one type of perfluorovinylether unit represented by the formula (II) or may have two or more perfluorovinylether units represented by the formula (II) Good.
  • the amount of the perfluorovinyl ether unit represented by the formula (II) contained in the modified PTFE is less than 1 mol%, preferably 0.001 mol% or more, based on the amount of all structural units contained in the modified PTFE It is less than 1 mol%.
  • the amount of the perfluorovinyl ether unit represented by the formula (II) is smaller than the above upper limit, physical properties close to those of the PTFE resin tend to be obtained.
  • the amount of the perfluorovinyl ether unit represented by the formula (II) is equal to or more than the above lower limit, the improvement of the flexibility, the weldability and the compression creepability is more excellent than the PTFE.
  • the amount of the perfluorovinyl ether unit is measured, for example, by performing infrared spectroscopy in the range of 1040 to 890 cm ⁇ 1 characteristic absorption.
  • the amount of perfluorovinyl ether unit represented by the formula (II) contained in the modified PTFE is 0.01 to 1% by mass, preferably 0.03 to 0.2% by mass, based on the total mass of the modified PTFE is there.
  • the melting point of the modified PTFE is preferably 300 to 380 ° C., more preferably 320 to 380 ° C., and still more preferably 320 to 350 ° C.
  • the melting point is the above lower limit or more, the formability is preferably improved, and the melting point is preferably the above upper limit or the like because the optimum mechanical properties of the resin can be easily obtained.
  • the melting point of the modified PTFE is a value determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D 4591.
  • the heat of crystallization of the modified PTFE is preferably 18.0 to 25.0 J / g, more preferably 18.0 to 23.5 J / g.
  • the heat of crystallization is measured by a differential scanning calorimeter (for example, "DSC-50" manufactured by Shimadzu Corporation). Specifically, the temperature is raised to 250 ° C. at a rate of 50 ° C./min, and temporarily held, and then the crystal is melted by raising the temperature to 380 ° C. at a rate of 10 ° C./min. After that, the peak of the crystallization point measured when the temperature is lowered at a rate of 10 ° C./min is measured in terms of heat.
  • the tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) is a compound of formula (I) derived from tetrafluoroethylene: In addition to the tetrafluoroethylene units represented by [Wherein, X represents a C 1-6 perfluoroalkyl group or a C 4-9 perfluoroalkoxyalkyl group] And a compound having an amount of perfluorovinylether unit represented by the formula (II) is more than 1% by mass based on the total mass of PFA.
  • Examples of X in the formula (II) include the groups described above for the modified PTFE, and the same applies to the preferred descriptions.
  • PFA may have one type of perfluorovinylether unit represented by formula (II), or may have two or more perfluorovinylether units represented by formula (II) .
  • the amount of the perfluorovinyl ether unit represented by the formula (II) contained in PFA is 1 mol% or more, preferably 1 to 3 mol%, based on the amount of all the structural units contained in PFA.
  • the amount of the perfluorovinyl ether unit represented by the formula (II) is measured, for example, by performing infrared spectroscopy in the range of 1040 to 890 cm ⁇ 1 characteristic absorption.
  • the fluororesin when the fluororesin is a modified PTFE, its melting point is preferably 300 to 380 ° C., more preferably 320 to 380 ° C., and still more preferably 320 to 350 ° C.
  • the melting point is the above lower limit or more, the formability is preferably improved, and the melting point is preferably the above upper limit or the like because the optimum mechanical properties of the resin can be easily obtained.
  • the melting point of the modified PTFE is a value determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D 4591.
  • the heat of crystallization is preferably 18.0 to 25.0 J / g, more preferably 18.0 to 23.5 J / g.
  • the heat of crystallization is measured by a differential scanning calorimeter (for example, "DSC-50" manufactured by Shimadzu Corporation). Specifically, the temperature is raised to 250 ° C. at a rate of 50 ° C./min, and temporarily held, and then the crystal is melted by raising the temperature to 380 ° C. at a rate of 10 ° C./min. After that, the peak of the crystallization point measured when the temperature is lowered at a rate of 10 ° C./min is measured in terms of heat.
  • a carbon nanotube (hereinafter also referred to as “CNT”) contained in the composite resin material has a structure in which one or a plurality of graphene sheets composed of six-membered rings of carbon atoms are cylindrically wound.
  • the CNT is a single-walled CNT (single-walled carbon nanotube) in which one graphene sheet is concentrically wound, or a multilayer CNT (multi-walled carbon nanotube) in which two or more graphene sheets are concentrically wound. It is.
  • the above carbon nanomaterials may be used alone or in combination. It is more preferable that the carbon nanotube is a multi-walled carbon nanotube from the viewpoint of being easily complexed with the modified PTFE particles and easily lowering the volume resistivity.
  • the fluorocarbon resin A may be a composite resin material containing fluorocarbon resin B and carbon nanotubes which may be contained in a chemical liquid pipe or the like, and a fluorocarbon resin C which may be contained in a hollow spherical molded body etc.
  • resin B or fluorocarbon resin C By substituting resin B or fluorocarbon resin C, the following statements apply analogously.
  • the composite resin material contained in the lining layer is a material in which fluorocarbon resin A and carbon nanotubes are composited.
  • the method for producing the composite resin material is not particularly limited as long as a material having a physical property as described above and in which a fluorocarbon resin and a carbon nanotube are composited is obtained.
  • the composite resin material contained in the lining layer is manufactured from composite resin particles in which fluorocarbon resin A and carbon nanotubes are composited.
  • the method for producing the composite resin particles is not particularly limited as long as a composite resin material in which carbon nanotubes exist on at least the surface and / or surface layer of the fluorocarbon resin A, fluorocarbon resin B or fluorocarbon resin C is obtained.
  • Composite resin particles can be produced by combining particles of fluorocarbon resin A, fluorocarbon resin B or fluorocarbon resin C with carbon nanotubes.
  • carbon nanotubes are dispersed in a solvent to prepare a carbon nanotube dispersion.
  • a solvent water, alcohol solvents (ethanol, n-butyl alcohol, isopropyl alcohol, ethylene glycol etc.), ester solvents (ethyl acetate etc.), ether solvents (diethyl ether, dimethyl ether etc.), ketone solvents (methyl ethyl ketone) , Acetone, diethyl ketone, methyl propyl ketone, cyclohexanone etc., aliphatic hydrocarbon solvents (hexane, heptane etc), aromatic hydrocarbon solvents (toluene, benzene etc), chlorinated hydrocarbon solvents (dichloromethane, chloroform) , Chlorobenzene, etc.).
  • One type of solvent may be used, or two or more types of solvents may be used in combination. From the viewpoint of facilitating complexing of the fluororesin A and the carbon nanotube, it is preferable to use a solvent that easily swells the particle surface of the fluororesin A, and specifically, it is preferable to use a ketone-based solvent.
  • the amount of the solvent contained in the carbon nanotube dispersion is preferably 20,000 to 1, relative to 100 parts by mass of the carbon nanotubes contained in the carbon nanotube dispersion, from the viewpoint of facilitating single dispersion of the carbon nanotubes in the solvent.
  • 000, 000 parts by weight more preferably 30,000 to 300,000 parts by weight, even more preferably 50,000 to 200,000 parts by weight.
  • the carbon nanotubes used for producing the composite resin particles preferably have an average length of 50 to 600 ⁇ m, more preferably 50 to 300 ⁇ m, and still more preferably 100 to 200 ⁇ m.
  • the average length of the carbon nanotubes is measured by a scanning electron microscope (SEM, FE-SEM) or a transmission electron microscope (TEM).
  • Carbon nanotubes can be produced by conventional production methods. Specifically, catalytic hydrogen reduction of carbon dioxide, arc discharge method, laser evaporation method, vapor phase growth method such as CVD method, gas phase flow method, carbon monoxide is reacted with iron catalyst at high pressure and high pressure to be a gas phase Such as the HiPco method to grow by Commercially available carbon nanotubes such as "NC7000" from Nanocyl may be used.
  • a dispersant When dispersing carbon nanotubes in a solvent, a dispersant may be used for the purpose of enhancing the dispersibility of carbon nanotubes.
  • the dispersant include acrylic dispersants, synthetic polymers such as polyvinyl pyrrolidone and polyaniline sulfonic acid, DNA, peptides, organic amine compounds and the like.
  • One dispersant may be used, or two or more dispersants may be used in combination. From the viewpoint of easily reducing the amount of the dispersant remaining in the finally obtained molded article, the dispersant preferably has a boiling point at a temperature lower than the molding temperature of the composite resin particles preferred for the present invention.
  • the amount of the dispersant contained in the carbon nanotube dispersion may be appropriately selected according to the type and the amount of the carbon nanotube, the solvent and the dispersant.
  • the amount of dispersant used is preferably 100 to 6,000 parts by mass, more preferably 200 to 3,000 parts by mass, and still more preferably 300 to 1,000 parts by mass with respect to 100 parts by mass of carbon nanotubes. It is.
  • the carbon nanotube dispersion is mixed with an alcohol solvent or the like before the second step described later. This is because the affinity between the fluororesin A added in the subsequent second step and water is low, and it is difficult to disperse the particles of the fluororesin A in the carbon nanotube dispersion using water as a solvent. Therefore, by mixing an alcohol solvent, the affinity between the particles of the fluorocarbon resin A and the carbon nanotube dispersion liquid can be enhanced.
  • particles of fluorocarbon resin A are added to the carbon nanotube dispersion and stirred to prepare a mixed slurry in which particles of carbon nanotube and fluorocarbon resin A are dispersed.
  • carbon nanotubes in the dispersion liquid are gently adsorbed on the particle surfaces of fluorocarbon resin A.
  • the carbon nanotube is fluorinated while maintaining a high dispersion state of the carbon nanotube and the fluorocarbon resin A. It can be adsorbed on the surface of resin A particles.
  • the addition of the fluororesin A may be performed by adding the particles of the fluororesin A as it is or in the form of a dispersion in which the particles of the fluororesin A are dispersed in advance in a solvent.
  • the particles of the fluorocarbon resin A used for producing the composite resin particles preferred for the present invention are preferably 5 to 500 ⁇ m, more preferably 10 to 250 ⁇ m, still more preferably 10 to 100 ⁇ m, particularly preferably 10 to 50 ⁇ m, very preferably It has an average particle size of 15 to 30 ⁇ m. It is easy to increase the dispersibility of carbon nanotubes in a molded article (composite resin material) produced from composite resin particles such that the average particle diameter of the fluororesin A is not more than the above upper limit, and the antistatic property is uniformly and efficiently enhanced. It is preferable because it is easy.
  • the average particle diameter of the fluorine resin A is not less than the above lower limit.
  • the average particle diameter of the fluororesin A is a median diameter (D 50 ) which means the particle diameter at an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method, using a laser diffraction scattering type particle size distribution apparatus It is measured.
  • the particles of the fluorocarbon resin A used for producing the composite resin particles are preferably 0.5 to 9.0 m 2 / g, more preferably 0.8 to 4.0 m 2 / g, and further more preferably measured according to JIS Z8830. Preferably, it has a specific surface area of 1.0 to 3.0 m 2 / g.
  • the specific surface area is preferably not more than the above upper limit from the viewpoint of easily improving the adhesion between the particles of fluorocarbon resin A and the carbon nanotube, and it is not less than the above lower limit, the viewpoint of easiness of producing composite resin particles It is preferable from Specifically, the specific surface area of the fluorine resin A particles is measured by the BET method, which is a general measurement method of specific surface area, using a specific surface area / pore distribution measuring apparatus, which is a fixed capacity gas adsorption method. Ru.
  • the description on the structure and the melting point of the fluorocarbon resin A described above for the fluorocarbon resin A in the composite resin material contained in at least a part of the lining layer refers to these before and after compounding, and production of the composite resin material Since the characteristics do not change before and after, the same applies to particles of fluororesin A used for producing composite resin particles. The same applies to fluororesins B and C.
  • the fluorocarbon resin A is produced by a conventionally known polymerization method, preferably suspension polymerization, and obtained by the above polymerization Method of spray-drying a dispersion containing a reactive polymer, method of mechanically pulverizing the obtained fluororesin A using a grinder such as a hammer mill, turbo mill, cutting mill, jet mill, etc., obtained fluororesin A And mechanical grinding at a temperature below room temperature.
  • a pulverizer such as a jet mill.
  • the particles of the fluororesin A having an average particle diameter in the above preferable range may be manufactured by adjusting the average particle diameter by a classification step using a sieve or an air stream.
  • the mixed slurry obtained in the second step is supplied to the pressure container, and the carbon dioxide is specified while maintaining the temperature and pressure at which carbon dioxide becomes subcritical or supercritical in the pressure container.
  • carbon dioxide any of liquefied carbon dioxide, carbon dioxide in gas-liquid mixture, and gaseous carbon dioxide may be used.
  • carbon dioxide in the supercritical state refers to a temperature above the critical point and a pressure above the critical point, specifically, a temperature above 31.1 ° C. and a pressure above 72.8 atmospheres I say the state.
  • a subcritical state means the state which exists in the pressure below a critical point, and the temperature below a critical point.
  • the solvent and the dispersant contained in the mixed slurry dissolve in carbon dioxide, and the carbon nanotubes dispersed in the mixed slurry adhere to the particles of the fluororesin A.
  • the feed rate of carbon dioxide is preferably, for example, preferably 1 mg of the dispersing agent contained in the mixed slurry from the viewpoint of suppressing aggregation of carbon nanotubes and allowing carbon nanotubes to be uniformly attached to the particle surface of fluororesin A. It is 25 g / min or less, more preferably 0.07 g / min or less, and even more preferably 0.05 g / min or less.
  • carbon dioxide is discharged from the pressure container together with the solvent and dispersant dissolved in carbon dioxide while maintaining the temperature and pressure at which carbon dioxide is in the subcritical or supercritical state for a predetermined time.
  • the entrainer having high affinity to the dispersant is added to the pressure container while maintaining the state of the fourth step. Thereby, the remaining dispersant can be efficiently removed.
  • the solvent used in preparing the carbon nanotube dispersion in the first step may be used.
  • the same organic solvent may be used as an entrainer.
  • water is used as the solvent in the first step, it is preferable to use an alcohol solvent as the entrainer.
  • the fifth step is an optional step for efficiently removing the dispersant, and is not an essential step. It is also possible to remove the dispersant, for example by maintaining the fourth step without adding an entrainer.
  • the pressure of the pressure resistant container is lowered to remove carbon dioxide in the pressure resistant container to obtain composite resin particles.
  • carbon dioxide and a solvent may remain in the composite resin particles. Therefore, residual carbon dioxide and a solvent can be efficiently removed by exposing the composite resin particles obtained to vacuum or heating.
  • the lining layer provided on the inner surface of the tank of the present invention contains, at least in part, a composite resin material containing fluorocarbon resin A and carbon nanotubes.
  • the lining layer containing the composite resin material may be made of, for example, a lining sheet containing the above-mentioned composite resin material, or a laminate of the lining sheet containing the above-mentioned composite resin material and another sheet (for example, glass cloth) It may be.
  • the lining sheet containing the composite resin material may be manufactured, for example, by melting the above-mentioned composite resin particles and forming it into a sheet, or forming the above-mentioned composite resin particles into a sheet by, for example, compression molding (compression molding).
  • a body may be obtained, or a compact obtained by the compression molding may be cut out into a sheet, for example.
  • the composite resin particles are compression molded to obtain a sheet-like molded product, or the molded product obtained by the compression molding is cut out into, for example, a sheet. It is preferred to produce a lining sheet comprising the material.
  • the reason why the conductivity of the lining sheet can be efficiently enhanced by the above preferred manufacturing method is not clear, but is considered to be due to the following mechanism.
  • the tank of the present invention is not limited to the mechanism described later.
  • carbon nanotubes are present on at least the surface and / or surface layer of the fluorine resin, and these carbon nanotubes are considered to form a conductive network.
  • the conductive network of the carbon nanotube is considered to be easily cut when the carbon nanotube is cut by the external force applied to the composite resin particles or the carbon nanotube is aggregated. Therefore, when manufacturing a lining sheet from composite resin particles, it is considered that the conductivity of the lining sheet can be efficiently enhanced by using a method in which the network is not cut as much as possible.
  • the method of compression-molding composite resin particles to obtain a sheet-like formed body and the method of cutting out the composite resin material obtained by the compression-molding into, for example, a sheet to manufacture lining sheets, melt-extrude the composite resin particles
  • the cutting of the carbon nanotube network can be suppressed more easily than the method of manufacturing the lining sheet, and as a result, the conductivity of the lining sheet can be efficiently enhanced.
  • a composite resin material obtained by compression molding composite resin particles for example, composite resin particles having an average particle diameter of 5 ⁇ m to 500 ⁇ m
  • fluororesin A and carbon nanotubes is used as a lining layer
  • a tank can be provided that includes at least in part.
  • the composite resin material contained in at least a part of the lining layer is formed by compression molding composite resin particles (for example, composite resin particles having an average particle diameter of 5 ⁇ m to 500 ⁇ m) including fluororesin A and carbon nanotubes.
  • An embodiment tank can be provided which is a resulting compression molded body.
  • a fluorine resin contained in a composite resin material for example, polytetrafluoroethylene (PTFE) from the viewpoint of facilitating the production of a lining sheet through compression molding of composite resin particles and of efficiently enhancing the conductivity of the lining sheet , Modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE) And polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF).
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotriflu
  • a fluorine resin contained in the composite resin material a fluorine selected from the group consisting of polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE) and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) It is preferable to use a resin.
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • a molded body may be produced, or composite resin particles may be compression molded to obtain these molded bodies, or these molded bodies may be manufactured by cutting from the molded body obtained by the compression molding. Good.
  • the composite resin particles are subjected to compression molding from the viewpoint of easily enhancing the conductivity of the chemical solution tube etc. It is preferable to produce a drug solution tube and a hollow spherical shaped body.
  • the fluororesins B and / or C contained in the composite resin material are, for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroethylene / perfluoroethylene Fluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene ( PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF).
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • FEP tetrafluoroethylene / perfluoroethylene / perfluoroethylene
  • PTFE polytetrafluoroethylene
  • modified polytetrafluoroethylene modified polytetrafluoroethylene
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • the fluorine resin is a PTFE resin and a modified PTFE resin
  • a method of subjecting a preform obtained by compressing the composite resin particles to a firing treatment is mentioned as a method of producing the composite resin material by compression molding the composite resin particles.
  • the preformed body before firing is produced by subjecting the composite resin particles to a suitable pretreatment (eg, preliminary drying, granulation, etc.) as necessary, and then placing the composite resin particles in a mold and compressing it.
  • the pressure applied during compression to produce a preform before firing is preferably 0.1 to 100 MPa, more preferably 1 to 80 MPa, and still more preferably 5 to 50 MPa.
  • the preformed body obtained as described above is fired, for example, at a temperature equal to or higher than the melting point of the resin contained in the composite resin particles to produce a molded body.
  • the firing temperature is preferably 345 to 400 ° C., more preferably 360 to 390 ° C., although it depends on the size of the preform before firing and the firing time.
  • the preform before firing is placed in a firing furnace, and preferably fired at the above-mentioned firing temperature to produce a formed product.
  • the obtained molded product may be used as it is as a lining sheet or the like (for example, a rod-like molded product to be described later, a stirring rod or the like) or cut from the molded product to a lining sheet or the like (for example A hollow spherical shaped body, a rod-like shaped body, a stirring rod or the like may be produced.
  • the fluorocarbon resin is PCTFE resin, PFA resin, FEP resin, ETFE resin, ECTFE resin, PVDF resin and PVF resin (other than PTFE resin and modified PTFE resin)
  • a method of compression molding the composite resin particles to produce a composite resin material As the heat treatment, appropriate pre-treatment such as pre-drying is performed according to the size of the molding, and after pre-treatment, the mold is heated to 200 ° C. or higher, preferably 200 to 400 ° C., more preferably 210 to 380 ° C. The resin is melted by heating in a circulating electric furnace for 2 hours or more, preferably 2 to 12 hours.
  • the mold After heating for a predetermined time, the mold is taken out of the electric furnace, and the mold is cooled to around normal temperature while pressing and compressing with a hydraulic pressure and a surface pressure of 25 kg / cm 2 or more, preferably 50 kg / cm 2 or more.
  • a molded article (resin material) of composite resin particles was obtained.
  • the obtained molded product may be used as it is as a lining sheet or the like (for example, a rod-like molded product to be described later, a stirring rod or the like) or cut from the molded product to a lining sheet or the like (for example A hollow spherical shaped body, a rod-like shaped body, a stirring rod or the like may be produced.
  • a sheet obtained by etching one side of a sheet of a fluorine resin, or a sheet obtained by laminating glass cloth on one side of a sheet of a fluorine resin The method of making it cut out according to, and bonding the cut-out sheet
  • the gap between the sheets bonded to the inner surface of the tank may be welded, for example, using a rod-like welding material, preferably a PFA material, having a circular or triangular cross section with a diameter of 2 to 5 mm.
  • the tank of the present invention can be provided with a chemical liquid pipe connected to the inside and the outside of the tank.
  • the chemical liquid pipe include a chemical liquid introduction pipe for injecting a chemical liquid and a chemical liquid discharge pipe for discharging a chemical liquid.
  • the chemical solution tube has a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of the chemical solution tube and / or It is preferable that the chemical liquid pipe be a molded body of a composite resin material containing fluorocarbon resin B and carbon nanotubes.
  • the fluorine resin B is, for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene Copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and It can be selected from polyvinyl fluoride (PVF).
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene Copolymer
  • the fluororesin B is preferably selected from the group consisting of polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE) and tetrafluoroethylene / perfluoroalkylvinylether copolymer (PFA).
  • the fluorine resin B is more preferably selected from the group consisting of polytetrafluoroethylene (PTFE) and modified polytetrafluoroethylene (modified PTFE), from the viewpoint of facilitating efficient improvement of the conductivity, and further, the conductivity is efficiently selected.
  • modified polytetrafluoroethylene (modified PTFE) is more preferable.
  • the composite resin material constituting the drug solution pipe or the composite resin material contained in the lining layer provided on the inner surface of the drug solution pipe is a molded body of composite resin particles in which the fluorocarbon resin B and the carbon nanotube are complexed.
  • the composite resin particle is a material in which particles of fluorocarbon resin B and carbon nanotubes are complexed, and carbon nanotubes exist on at least the surface and / or surface layer of the particles of fluorocarbon resin B. For example, at least a part of carbon nanotubes is supported or buried on the particle surface of fluorocarbon resin B.
  • the carbon nanotube may be attached to and supported on the particle surface of the fluorocarbon resin B, or a part may be buried and supported, or the carbon nanotube may be completely embedded in the surface layer of the fluorocarbon resin B particle. It is also good.
  • a composite resin material which is a molded product of such composite resin particles, at least a part of the composite resin particles may be contained while maintaining the particle shape, and the composite resin particles are integrated to form a composite resin material. It may be done.
  • the description of the composite resin material containing the above-mentioned fluororesin A and carbon nanotubes applies similarly.
  • the description described for the fluorocarbon resin A applies in the same manner, and for the carbon nanotube, the description described above for the carbon nanotube applies similarly.
  • the fluororesin B may be the same resin as the fluororesin A or may be a different resin.
  • a method of providing a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of a chemical liquid pipe for example, melt extrusion or compression molding of composite resin particles to prepare a sheet of composite resin material And a method of bonding the same to the inner surface of the drug solution pipe, and a method of cutting a molded composite resin particle into a tubular shape and bonding the same to the inner surface of the drug solution pipe.
  • the description described above for the method of producing the lining sheet applies similarly.
  • the drug solution pipe is made of metal, it is bonded to the inner surface of the drug solution pipe using an adhesive or the like, or when the drug solution pipe is made of resin, it is welded to the inner surface of the drug solution pipe.
  • the method is mentioned.
  • the present invention comprises a chemical liquid pipe connected to the inside and the outside of the tank,
  • the chemical liquid pipe includes a chemical liquid feed pipe for putting the chemical liquid into the tank,
  • the chemical liquid feed pipe has a nozzle at its end (or tip),
  • the nozzle is a molded body of a composite resin material having a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of the nozzle and / or containing fluorocarbon resin B and carbon nanotubes
  • Fluororesin B includes polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene
  • the term "nozzle” refers to a pipe-like mechanical component used to determine the direction of fluid flow, and to control the properties of the fluid such as the flow rate, flow rate, direction and pressure of the flowing material. There is no particular restriction as long as it is a part that is used and is usually understood as a nozzle.
  • the nozzle can be selected, for example, from the group consisting of a spray nozzle, a rotary nozzle, a straight forward nozzle, and a shower nozzle. With regard to the lining layer of the nozzle and the fluorocarbon resin B etc., those descriptions regarding the chemical liquid pipe can be referred to.
  • the tank of the present invention may have a hollow spherical shaped body at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes.
  • a hollow spherical molded body is usually used to float on the liquid surface of the chemical solution charged into the tank of the present invention and remove static electricity charged on the chemical solution from the liquid surface.
  • the chemical solution vibrates to cause friction with the inner surface of the tank to generate static electricity, which tends to cause the chemical solution to be charged.
  • static electricity generated in friction during transportation or the like can be efficiently removed.
  • Fluororesin C includes polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) Is preferably selected from the group consisting of polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE) and tetrafluoroethylene / perfluoroalkylvinyl ether It is more preferably selected from the group consisting of alcohol copolymer (PFA).
  • Fluorine resin C is preferably selected from the group consisting of modified PTFE, PTFE and PFA from the viewpoint of molding processability, and from the viewpoint of easily enhancing the conductivity, more preferably from the group consisting of PTFE and modified PTFE It is more preferably modified PTFE from the viewpoint of being selected and capable of efficiently enhancing the conductivity and the viewpoint of flexibility and weldability.
  • the composite resin material at least partially contained in the hollow spherical molded body is a molded body of composite resin particles in which fluorocarbon resin C and carbon nanotubes are complexed.
  • the composite resin particle is a material in which particles of fluorocarbon resin C and carbon nanotubes are complexed, and carbon nanotubes exist on at least the surface and / or surface layer of the particles of fluorocarbon resin C. For example, at least a part of carbon nanotubes is supported or buried on the particle surface of fluorocarbon resin C.
  • the carbon nanotubes may be attached to and supported on the particle surface of the fluorocarbon resin C, or a part may be buried and supported, and the carbon nanotubes may be completely embedded in the surface layer of the particles of the fluorocarbon resin C. It is also good.
  • the description of the composite resin material containing the above-mentioned fluorocarbon resin A and carbon nanotube applies similarly.
  • the description described for the fluorine resin A applies similarly.
  • the fluorine resin C may be the same resin as the fluorine resin A or B, or may be a different resin.
  • the same description as described above for carbon nanotubes applies to carbon nanotubes.
  • the aspect in which the hollow spherical molded body at least partially includes the composite resin material may be such that at least a part of the hollow spherical molded body includes the composite resin material containing the fluorocarbon resin C and the carbon nanotube, for example, resin
  • a lining material containing the above-mentioned composite resin material is lined on at least a part of the surface of the hollow spherical molded body, a hollow spherical molded body is a molded body composed of a composite resin material containing fluorocarbon resin C and carbon nanotubes. Aspects and the like are included.
  • a tank further comprising a rod-like molded body at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes.
  • a rod-like shaped body is generally used to remove static electricity, which is charged in the chemical solution, from the liquid surface of the chemical solution introduced into the tank of the present invention from the liquid surface and to remove it from the solution.
  • the chemical solution vibrates to cause friction with the inner surface of the tank to generate static electricity, which tends to cause the chemical solution to be charged.
  • rod-like compact containing at least a part of the composite resin material
  • static electricity generated in friction during transportation or the like can be efficiently removed.
  • the dimensions (diameter and length) of the rod-shaped molded product, the shape (circular shape, hexagonal shape, etc.) of the cross section, the conductivity, and the like can be selected appropriately.
  • Fluororesin C includes polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) It is preferred to be selected from the group consisting of The above description can be appropriately referred to for the “fluororesin C”, the “carbon nanotube”, the “composite resin material” and the like.
  • the rod-like shaped body can be connected to the ground wire.
  • a rod-shaped molded product can be connected to the ground wire to more efficiently discharge electricity.
  • a holder also referred to as a “rod-shaped molded body holder” for providing a rod-shaped molded body in a tank can be used.
  • the rod-shaped compact holder is generally cylindrical and the outer shape corresponds to the size of the hole of the tank, and the inner shape corresponds to the outer shape of the rod-shaped compact.
  • the dimensions of the rod-shaped compact holder can be appropriately selected according to the dimensions of the rod-shaped compact and the dimensions of the hole of the tank.
  • a tank further comprising a stir bar at least partially comprising a composite resin material comprising fluorocarbon resin C and carbon nanotubes.
  • a stirring rod is generally used to enter the inside of the chemical solution from the liquid surface of the chemical solution introduced into the tank of the present invention and is used to stir the chemical solution. It is used to remove static electricity from the solution.
  • the dimensions (diameter and length) of the stirring rod, the shape of the cross section (circle, hexagon, etc.), conductivity, etc. can be selected appropriately.
  • Fluororesin C includes polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) It is preferred to be selected from the group consisting of The above description can be appropriately referred to for the “fluororesin C”, the “carbon nanotube”, the “composite resin material” and the like.
  • the stirring rod can have a propeller (or a stirring blade) at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes.
  • the stirring rod and the propeller may be integral, but the stirring rod may be separable from the propeller.
  • the chemical solution can be stirred more efficiently.
  • the dimensions (size) and shape (eg, crescent shape), conductivity, etc. of the stirring rod can be appropriately selected.
  • fluororesin C”, “carbon nanotube” and “composite resin material” relating to a propeller.
  • both of the stirring rod and the propeller may indicate the desired diselectrification.
  • the stir bar can optionally be connected to the ground wire.
  • a stirrer can be connected to the ground wire to more efficiently discharge electricity.
  • An adapter for providing a stir bar in the tank also referred to as a "stir bar adapter" can be used.
  • the stir bar adapter is generally cylindrical and the outer shape corresponds to the size of the hole in the tank, and the inner shape corresponds to the outer shape of the stir bar.
  • the dimensions of the stir bar adapter can be selected appropriately depending on the dimensions of the stir bar and the dimensions of the hole in the tank.
  • the application of the tank of the present invention is not particularly limited, for example, a tank containing a drug solution is mentioned, and specifically, it is a drug solution supply tank, a drug solution storage tank and / or a drug solution transport tank.
  • the chemical solution supply tank is, for example, a tank used in a system for supplying a chemical solution described later.
  • the chemical solution supply tank is used to allow the chemical solution to pass through the tank and be supplied to another tank. Therefore, the chemical solution supply tank is usually provided with a chemical solution input pipe and a chemical solution discharge pipe, and it is also possible to simultaneously input and discharge the chemical solution.
  • the chemical solution storage tank is a tank for storing the chemical solution inside. Therefore, the chemical solution storage tank may have at least one opening.
  • the chemical solution transport tank is a tank transported in a state in which the chemical solution is stored as contents.
  • the tank of the present invention may be a tank for supplying, storing, transporting or the like of a chemical solution, or may be a tank having two or more of these purposes.
  • the chemical solutions stored in the tank of the present invention include aqueous solutions such as hydrochloric acid, nitric acid, hydrofluoric acid, hydrogen peroxide water, sulfuric acid, isopropyl alcohol (IPA), ethanol, acetone, tetrahydrofuran (THF), methyl ethyl ketone (MEK), etc.
  • Organic solvents and water can be mentioned.
  • the chemical solution contained in the tank is preferably an organic solvent.
  • the organic solvent is, for example, a chemical solution used in semiconductor manufacturing, etc., and in applications of semiconductor production, even if it is a problem caused by static electricity or a trace of contaminants charged in the chemical solution, the advantage of the tank of the present invention It is easier to
  • the chemical solution stored in the tank according to the embodiment of the present invention is not particularly limited as long as it can be stored.
  • the chemical solution can include, for example, at least one selected from an organic solvent, a flammable liquid, an acidic liquid, a basic liquid, a neutral liquid, an aqueous solution, and a conductive liquid.
  • the organic solvent includes, for example, isopropyl alcohol (IPA), ethanol, acetone, tetrahydrofuran (THF), methyl ethyl ketone (MEK) and the like.
  • Flammable liquids include, for example, isopropyl alcohol (IPA), ethanol, acetone, tetrahydrofuran (THF), methyl ethyl ketone (MEK) and the like.
  • the acidic liquid includes, for example, hydrochloric acid, nitric acid, hydrofluoric acid, sulfuric acid, hydrogen peroxide water and the like.
  • the basic liquid includes, for example, ammonia water and the like.
  • the neutral liquid includes, for example, ozone water, so-called water, ultrapure water, pure water, deionized water, ion exchanged water, distilled water and the like.
  • the aqueous solution includes, for example, hydrochloric acid, nitric acid, hydrofluoric acid, sulfuric acid, aqueous ammonia, aqueous hydrogen peroxide, ozone water and the like.
  • the conductive liquid includes, for example, hydrochloric acid, nitric acid, hydrofluoric acid, sulfuric acid, hydrogen peroxide water, ammonia water, so-called water, ion exchanged water, deionized water, pure water and the like.
  • the chemical solution contained in the tank may be, for example, an organic solvent.
  • the organic solvent is, for example, a chemical solution used in semiconductor manufacturing, etc., and in applications of semiconductor production, even if it is a problem caused by static electricity or a trace of contaminants charged in the chemical solution, the advantage of the tank of the present invention It is easier to The chemical contained in the tank can be used even if it is a conductive liquid.
  • the present invention also provides a chemical solution supply system including the supply of a chemical solution using the tank of the present invention.
  • the application of the chemical solution supply system of the present invention is not particularly limited, but from the viewpoint of easily utilizing the advantage of the chemical solution supply system of the present invention that contamination of the chemical solution is reduced and the cleanness is high. It is preferable that it is a chemical
  • the chemical solution supply system of the present invention comprises a chemical solution transport tank, a chemical solution storage tank of a semiconductor factory line, a pump for pumping a chemical solution from the chemical solution transport tank to the chemical solution storage tank, and each line from the chemical solution storage tank.
  • the pump according to the present invention may be used as the chemical solution transport tank and / or the chemical solution storage tank, including a pump for pressure-feeding the chemical solution.
  • the chemical solution transport tank for example, ISO tank
  • the pump is carried out from the chemical solution transport tank to the chemical solution storage tank in the semiconductor factory line.
  • a series of chemical solutions can be supplied such that the chemical solution is pressure-fed and the chemical solution is sent from the chemical solution storage tank to each line.
  • the chemical solution supply system of the present invention is a device for supplying the contents of the tank of the present invention in addition to the tank of the present invention, for example, a compressed gas source or chemical solution for delivering inert gas such as nitrogen gas under high pressure.
  • a supply pump may be provided, or a filter or the like may be provided to filter a chemical solution to remove impurities and the like.
  • the present invention can provide a molded body, It can be used for tanks where chemical solutions are handled.
  • the tank may have a layer of lining sheets.
  • the molded body may be a compression molded body which can be obtained by compression molding composite resin particles containing a fluorocarbon resin and a carbon nanotube.
  • the fluorine resin may be, for example, any of the fluorine resins AC described herein.
  • the description of the present specification relating to any of the composite resin particles, the fluororesins A to C and the carbon nanotubes can be referred to for each of the composite resin particles of the molded body, any of the fluororesins A to C and the carbon nanotubes.
  • the formed body that can be used for the tank can include, for example, the above-mentioned lining sheet, a drug solution tube, a hollow formed body, a rod-shaped formed body, a rod-shaped formed body holder, a stirring rod, a stirring blade, a stirring blade adapter, and the like.
  • the tank of the first embodiment of the present invention includes the tanks of the first embodiment A and the first embodiment B.
  • the tank according to the first embodiment A of the present invention is, as shown in FIG. 1A, a tank outer can 1, a lining layer 2 provided on the inner surface of the tank outer can 1, and a chemical solution input for introducing a chemical solution into the tank.
  • the tube 3 has a chemical solution discharge tube 4 for discharging the chemical solution to the outside of the tank, and a hollow spherical shaped body 5 for removing static electricity which is charged in the chemical solution by floating on the liquid surface of the chemical solution. 6 is stored.
  • a lining sheet obtained by etching one side of a sheet of a fluorine resin, or a lining sheet obtained by laminating glass cloth on one side of a sheet of a fluorine resin The method of making it cut out according to the shape of 1 inner surface, and bonding the cut-out sheet to the tank inner surface using an epoxy adhesive etc. is mentioned.
  • the gap between the sheets bonded to the inner surface of the tank may be welded, for example, using a rod-like welding material, preferably a PFA material, having a circular or triangular cross section with a diameter of 2 to 5 mm.
  • the tank in the first embodiment A includes the chemical solution inlet pipe 3, the chemical solution outlet pipe 4, and the hollow spherical shaped body 5, but these are not essential components for the tank of the present invention, and at least one of them is used. It may or may not have any of these.
  • a portion where the introduced chemical solution first contacts the inner surface of the tank outer can ( It is preferable that a lining layer including lining sheet 8 provided in liquid contact portion 7) in FIG. 1A includes a composite resin material including fluorocarbon resin A and carbon nanotubes, and the lining sheet includes fluorocarbon resin A and carbon nanotubes. It is more preferable that it is a molded object comprised with the composite resin material containing.
  • the lining layer including the lining sheet 10 (including the lining sheet 8) provided on the tank bottom 9 includes the composite resin material including the fluororesin A and the carbon nanotube. More preferably, the lining sheet is a molded body composed of a composite resin material containing fluorocarbon resin A and carbon nanotubes.
  • An earth wire 11 is connected to the lining sheet 8 or the lining sheet 10, and the static electricity flowing from the chemical solution into the lining sheet 8 or 10 having a low volume resistivity flows into the ground or the like via the earth wire 11 and is removed.
  • the lining sheet containing the composite resin material containing fluorocarbon resin A and carbon nanotubes is, for example, thinly cut out the molded composite resin particle produced as described above into a sheet, or extruding the composite resin particles into a sheet Manufactured by molding.
  • the efficiency of the chemical solution 6 is obtained. Static charge removal is possible.
  • the tank according to the first embodiment A of the present invention includes a chemical solution inlet pipe 3 and a chemical solution outlet pipe 4 provided on the upper portion of the tank.
  • the discharge port of the drug solution input pipe 3 is provided at a position higher than the liquid level 12 of the drug solution 6, and the suction port of the drug solution discharge pipe 4 is provided at a position near the bottom of the tank.
  • the tank in the first embodiment A has the chemical solution inlet pipe 3 and the chemical solution outlet pipe 4 at the above position, when the tank includes the chemical solution inlet pipe 3 and / or the chemical solution outlet pipe 4, these positions are particularly limited.
  • the upper portion of the tank may have a chemical supply pipe and the tank bottom may have a chemical discharge pipe, or these pipes may be located on the side of the tank.
  • the positions of the discharge port of the chemical liquid feed pipe and the suction port of the chemical liquid discharge pipe may be set appropriately.
  • the tank according to the first embodiment A is not shown in FIG. 1A, but other configurations common to the tank, for example, a further liquid chemical pipe provided at an arbitrary position such as an upper portion, a lateral portion, a lower portion, a safety valve, It may further have a vent or the like.
  • Lining layers 31 and 41 containing a composite resin material containing fluorocarbon resin B and carbon nanotubes are provided on the inner surfaces of the chemical solution inlet tube 3 and the chemical solution outlet tube 4, respectively.
  • the chemical solution input pipe 3 and the chemical solution discharge pipe 4 provided with the lining layers 31 and 41 containing the above-mentioned composite resin material on the inner surface of the pipe for example, cut a formed body of composite resin particles into a tubular shape and made of metal It manufactures by the method of joining to piping inner surface, or the method of welding with resin piping inner surfaces.
  • the chemical solution input pipe 3 and the lining layers 31 and 41 of the chemical liquid discharge pipe 4 are electrically connected to the ground wire 11, respectively, and the static electricity charged when passing through the chemical liquid input pipe 3 and the chemical liquid discharge pipe 4 In particular, it is removed via the ground wire 11.
  • Each of lining layers 31 and 41 may have a ground wire different from ground wire 11.
  • the chemical solution input pipe 3 and the chemical liquid discharge pipe 4 shown in FIG. 1A are provided with a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on a part of the inner surface.
  • It may be a molded body made of a composite resin material containing fluorocarbon resin B and carbon nanotubes, and a tube obtained by cutting the molded body of the composite resin particle into a tubular shape is used as it is as a chemical liquid feed pipe and a chemical liquid discharge pipe. It is also good.
  • the tank according to the first embodiment A of the present invention has a hollow spherical shaped body 5 as shown in FIG. 1A.
  • the number of hollow spherical shaped articles 5 is not particularly limited, and may be appropriately selected according to the size of each shaped article 5 and the required charging effect.
  • An earth wire 13 is connected to each of the molded bodies 5, and the earth wire exits from the lid 14 to the outside of the tank and is connected to the ground.
  • the static electricity charged in the chemical solution 6 flows into the compact 5 having a low volume resistivity, and is removed via the ground wire 13.
  • the hollow spherical molded body 5 is obtained by thinly cutting out a molded body of a composite resin material containing fluorocarbon resin C and carbon nanotubes, or attaching a sheet produced by extruding the composite resin material into a sheet shape into a hollow spherical body. You may manufacture by putting together.
  • the tank of this embodiment has the lid 14, the lid 14 is not essential.
  • the ground wire 13 extends from the lid 14 in the first embodiment A, the ground wire 13 may be electrically connected to the ground wire 11.
  • the tank according to the first embodiment B of the present invention is similar in shape to the tank according to the first embodiment A, and provided on the inner surface of the tank outer can 1 and the tank outer can 1 as shown in FIG. 1B.
  • the lining layer 2, the chemical solution input pipe 3 for introducing the chemical solution into the tank, the nozzle 36 provided at the end of the chemical solution input pipe 3, the chemical solution discharge pipe 4 for discharging the chemical solution outside the tank, the static electricity in the chemical solution A rod-like shaped body 52 inserted in the chemical solution for removing the chemical substances, and a stirring rod 56 for stirring the chemical solution are provided, and the chemical solution 6 is stored in the tank.
  • the method of providing the lining layer 2 in the inner surface of the tank outer can 1 can use the method similar to the method described by the tank of 1st Embodiment A.
  • the tank according to the first embodiment B includes the chemical solution inlet pipe 3, the chemical solution outlet pipe 4, the rod-like molded body 52, and the stirring rod 56, but these are not essential components of the tank according to the present invention. It may have one or none of these.
  • the liquid contact portion 7, the lining layer including the lining sheet 8, the lining layer including the lining sheet 10 (including the lining sheet 8) provided on the tank bottom 9, and the ground wire Have eleven.
  • the description of the tank of 1st Embodiment A can be referred, and the efficient static elimination of the chemical
  • the tank according to the first embodiment B of the present invention is also provided with the chemical solution inlet pipe 3 and the chemical solution outlet pipe 4 provided on the upper portion of the tank, as shown in FIG. 1B.
  • the description regarding the tank of the first embodiment A can be referred to for the chemical liquid inlet pipe 3 and the chemical liquid outlet pipe 4.
  • the tank according to the first embodiment B is also not shown in FIG. 1B, but other configurations common to the tank, such as a further liquid chemical pipe provided at an arbitrary position such as the upper part, the lateral part, and the lower part, a safety valve, It may further have a vent or the like.
  • the tank of the first embodiment B of the present invention has a nozzle 36 provided at the end of the drug solution feed pipe 3 as shown in FIG. 1B.
  • the dimensions of the nozzle 36 are not particularly limited, and the length, the thickness, the shape of the cross section, and the like may be appropriately selected according to the required charging effect.
  • the ground wire may be connected to the nozzle 36
  • the chemical solution feed pipe 3 can function as the ground wire. It is preferable because the static electricity of the chemical solution passing through the nozzle can be reduced before entering the tank.
  • the nozzle 36 may be manufactured by cutting out a molded body of the composite resin material containing the fluorocarbon resin B and the carbon nanotube into a tubular shape, or extruding the composite resin material into a tubular shape.
  • the tank of the first embodiment B of the present invention can have a rod-like formed body 52 as shown in FIG. 1B.
  • the dimensions of the rod-like molded body 52 are not particularly limited, and the length, the thickness, the shape of the cross section, etc. may be appropriately selected according to the required charging effect.
  • An earth wire 53 is connected to the rod-like molded body 52 and is connected to the ground.
  • the static electricity of the chemical solution 6 flows into the rod-like compact 52 having a low volume resistivity, and is removed via the ground wire 53.
  • the rod-like shaped body 52 may be manufactured by cutting out a shaped body of the composite resin material containing the fluorocarbon resin C and the carbon nanotube into a rod-like shape, or extruding the composite resin material into a rod-like shape.
  • the tank according to the embodiment B of the present invention preferably has a rod-shaped holder 54 (hereinafter also referred to as a “rod-shaped holder”), and the holder 54 preferably holds the rod-shaped molding 52.
  • the molded object holder 54 "is not essential.
  • the dimensions of the outside of the rod-shaped molded body holder 54 can be appropriately selected in consideration of the dimensions of the hole provided in the tank.
  • the tank of the first embodiment B of the present invention can have a stirring rod 56 as shown in FIG. 1B.
  • the dimensions of the stirring rod 56 are not particularly limited, and the length, the thickness, the shape of the cross section, etc. may be appropriately selected according to the required charging effect and stirring effect.
  • the stirring rod 56 can be provided with a propeller (or stirring blade) 57 at its end.
  • the stirring rod 56 and the propeller 57 may be integral or separable.
  • a ground wire (not shown) can be contacted with the stir bar 56 and connected to the ground. The static electricity of the chemical solution 6 flows into the stirring rod 56 having a low volume resistivity and can be removed through the ground wire.
  • the stirring rod 56 may be manufactured by cutting out a molded body of the composite resin material containing the fluorocarbon resin C and the carbon nanotube into a rod or extruding the composite resin material into a rod.
  • the propeller 57 can be manufactured by cutting out a molded body of the composite resin material containing the fluorocarbon resin C and the carbon nanotube at least partially including the composite resin material containing the fluorocarbon resin C and the carbon nanotube into a propeller shape.
  • the tank according to Embodiment B of the present invention has a stirring rod adapter 58 (hereinafter also referred to as “stirring rod adapter”), and the adapter 58 preferably holds the stirring rod 56, but “the stirring rod adapter 58” Not required.
  • the external dimensions of the stirring rod adapter 58 can be selected appropriately in consideration of the dimensions of the holes provided in the tank.
  • the stirring rod adapter may be manufactured by cylindrically cutting out a molded product of a composite resin material containing fluorocarbon resin C and carbon nanotubes, or extruding the composite resin material into a cylindrical shape. Additionally, a ground wire may be connected to the stir bar adapter.
  • a tube 15 has a hollow spherical molded body 5 for removing static electricity which is suspended in the liquid surface of the chemical solution and charged in the chemical solution, and the chemical solution 6 is stored in the tank.
  • a lining sheet obtained by etching one side of a sheet of a fluorine resin, or a lining sheet obtained by laminating glass cloth on one side of a sheet of a fluorine resin The method of making it cut out according to the shape of 1 inner surface, and bonding the cut-out sheet to the tank inner surface using an epoxy adhesive etc. is mentioned.
  • the gap between the sheets bonded to the inner surface of the tank may be welded, for example, using a rod-like welding material, preferably a PFA material, having a circular or triangular cross section with a diameter of 2 to 5 mm.
  • the tank in the present embodiment has the drug solution pipe 15 and the hollow spherical shaped body 5, but these are not essential components of the tank of the present invention, and may have at least one of them. It is not necessary to have any of these.
  • a lining layer including lining sheet 8 provided in liquid contact portion 7 in 2 includes a composite resin material including fluororesin A and carbon nanotubes, and the lining sheet includes fluororesin A and carbon nanotubes. More preferably, it is a molded product of a composite resin material. From the viewpoint of further improving the antistatic property, it is preferable that the lining layer including the lining sheet 10 (including the lining sheet 8) provided on the tank bottom 9 includes the composite resin material including the fluororesin A and the carbon nanotube.
  • the lining sheet is a molded article of a composite resin material containing fluororesin A and carbon nanotubes.
  • the grounding wire 11 is connected to the lining sheet 8 or the lining lining sheet 10, and the static electricity flowing from the chemical solution into the lining sheet 8 or 10 having a low volume resistivity flows into the ground or the like via the grounding wire 11 and is removed.
  • the lining sheet containing the composite resin material containing the fluorocarbon resin A and the carbon nanotube is, for example, thinly cut out the molded product of the composite resin material manufactured as described above into a sheet, or extruding the composite resin material into a sheet Manufactured by molding.
  • the tank of 2nd Embodiment of this invention has the chemical
  • a lining layer 151 containing a composite resin material containing fluorocarbon resin B and carbon nanotubes is provided on the inner surface of the drug solution tube 15.
  • the chemical liquid pipe 15 in which the lining layer 151 containing the above-mentioned composite resin material is provided on the inner surface of the pipe is, for example, a method of cutting a molded body of the composite resin material into a tubular shape and bonding it to the inner surface of metal pipe , Manufactured by a method of welding to the inner surface of a resin pipe.
  • the lining layer 151 of the drug solution tube 15 is electrically connected to the ground wire 11, and static electricity charged when passing through the drug solution tube 15 is finally removed via the ground wire 11.
  • the lining layer 151 may have a ground wire different from the ground wire 11.
  • the chemical liquid pipe 15 shown in FIG. 2 is provided with a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on a part of the inner surface, but a composite resin material containing fluorocarbon resin B and carbon nanotubes
  • tube which cut-processed the molded object of composite resin material in the tubular form may be used as it is as a chemical
  • the tank according to the second embodiment of the present invention has a hollow spherical shaped body 5 as shown in FIG.
  • the number of hollow spherical shaped articles 5 is not particularly limited, and may be appropriately selected according to the size of each shaped article 5 and the required charging effect.
  • An earth wire 13 is connected to each of the molded bodies 5, and the earth wire exits from the lid 14 to the outside of the tank and is connected to the outside.
  • the static electricity charged in the chemical solution 6 flows into the compact 5 having a low volume resistivity, and is removed via the ground wire 13.
  • the hollow spherical molded body 5 is obtained by thinly cutting out a molded body of a composite resin material containing fluorocarbon resin C and carbon nanotubes, or attaching a sheet produced by extruding the composite resin material into a sheet shape into a hollow spherical body. You may manufacture by putting together.
  • the tank of this embodiment has the lid 14, the lid 14 is not essential. Further, although the ground wire 13 extends from the lid 14 in the present embodiment, the ground wire 13 may be electrically connected to the ground wire 11.
  • the tank according to the second embodiment of the present invention has a shape as shown in FIG. 2 and is used, for example, as a chemical solution transport tank.
  • it may be a tank container as known as an ISO tank.
  • Tank containers are containers used when cargo is liquid in freight transportation such as ships, railways, automobiles and the like.
  • the chemical solution is transported by the tank container, the liquid inside the tank vibrates due to the vibration at the time of transportation, and such vibration may cause friction to charge the chemical solution.
  • the tank of the present embodiment it is possible to efficiently remove the static electricity generated in the chemical solution.
  • the tank according to the present embodiment is not shown in FIG.
  • conveyance means of the tank of this embodiment is not specifically limited, You may be conveyed by conveyance vehicles, such as a tank lorry and a freight train, and a ship.
  • FIG. 3 an embodiment of the supply system of the present invention is shown in FIG. 3 as a third embodiment.
  • the supply system of the present invention in this embodiment has a chemical solution transport tank 16 and a chemical solution supply tank 22, and is a system for supplying a chemical solution to each use point 18 (POU, point of use). It is.
  • At least one of the chemical solution transport tank 16 and the chemical solution supply tank 22 may be the tank of the present invention, and any of them may be the tank of the present invention.
  • the chemical solution transport tank 16 may be, for example, a tank of the embodiment shown in FIG.
  • the chemical solution transport tank 16 has a chemical solution as its content, is loaded on the transport vehicle 17 and transported.
  • the chemical solution transported by the chemical solution transport tank 16 is finally transported to each use point 28 by the operation of the pump 24.
  • the chemical solution transport tank 16 is connected to the chemical solution supply tank 22 via the coupler 20 in the pass box 19 and the connection pipes 18 and 21, for example, in a semiconductor manufacturing plant.
  • the chemical solution in the chemical solution transport tank 16 passes through the connection pipe 18, is connected by the coupler 20, and is transported to the chemical liquid supply tank 22 via the connection pipe 21.
  • the pump 24 is connected to the chemical solution supply tank 22, and the chemical solution carried from the chemical solution supply tank 22 via the connection pipes 23 and 25 passes through the filter 26 to be finely contained in the chemical solution. Contaminants are removed and transported to each point of use 28 via connection tube 27.
  • the liquid supply is performed using the pump 24, but the position of the pump 24 is not limited to the illustrated position. Also, multiple pumps 24 may be used.
  • the chemical solution may be supplied by a pressurization system or the like without using a pump.
  • Average Particle Size D 50 Fluorine resin particles used in the preparation of the composite resin particles, and an average particle diameter of the composite resin particles, the particle size distribution measured by a laser diffraction scattering particle size distribution analyzer (manufactured by Nikkiso "MT3300II"), the average particle diameter D 50 Obtained.
  • the heat of crystallization of the fluorine resin particles used for producing the composite resin particles was measured using a differential scanning calorimeter ("DSC-50" manufactured by Shimadzu Corporation). 10 mg of the measurement sample is heated to 250 ° C. at a rate of 50 ° C./min and temporarily held, and then the crystal is melted by raising the temperature to 380 ° C. at a rate of 10 ° C./min. The peak of the crystallization point measured when the temperature was lowered at a rate of ° C./min was measured in terms of heat.
  • DSC-50 differential scanning calorimeter
  • the measurement of the melting point of the fluorocarbon resin particles used for producing the composite resin particles was determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D4591.
  • DSC differential scanning calorimeter
  • ⁇ Preparation of composite resin material> The composite resin particles obtained in the production example described later were subjected to pretreatment (eg, preliminary drying, granulation, etc.) as necessary, and then uniformly filled in a predetermined amount in a molding die.
  • the preparation procedure after filling varies depending on the type of fluororesin.
  • the fluorocarbon resin was a PTFE resin and a modified PTFE resin
  • the composite resin particles were compressed by pressing at 15 MPa and holding for a certain period of time to obtain a preformed body.
  • the obtained preform is taken out of the molding die, fired in a hot air circulating electric furnace set at 345 ° C.
  • Composite resin material Composite resin material
  • the fluorocarbon resin is PCTFE resin, PFA resin, FEP resin, ETFE resin, ECTFE resin, PVDF resin, and PVF resin (other than PTFE resin and modified PTFE resin)
  • hot air circulation type electricity having a mold set at 200 ° C. or higher
  • the furnace is heated for 2 hours or more to melt the resin.
  • the mold is taken out of the electric furnace, and the mold is cooled to around normal temperature while pressing and compressing with a hydraulic press at a surface pressure of 25 kg / cm 2 or more. The material was obtained.
  • a test piece of ⁇ 110 ⁇ 10 mm was produced from the composite resin material (molded body) obtained as described above from the composite resin particles, and used as a measurement sample.
  • the measurement of volume resistivity was performed using a resistivity meter ("Loresta” or “Hiresta” manufactured by Mitsubishi Chemical Analytech Co., Ltd.) according to JIS K6911.
  • a test piece 10 mm thick ⁇ 30 mm wide ⁇ 100 mm long is prepared from the composite resin material (molded body) obtained as described above from the composite resin particles, and the test piece is 50 mm long and about 1 mm deep.
  • the V groove was cut.
  • a PFA welding rod with a diameter of 3 mm is welded to the groove portion so that the length of the portion to be fused is 50 mm using a hot air type welding machine, and the test specimen for welding strength measurement as shown in FIG. It was created.
  • FIG. 1 A test piece 10 mm thick ⁇ 30 mm wide ⁇ 100 mm long is prepared from the composite resin material (molded body) obtained as described above from the composite resin particles, and the test piece is 50 mm long and about 1 mm deep.
  • the V groove was cut.
  • a PFA welding rod with a diameter of 3 mm is welded to the groove portion so that the length of the portion to be fused is 50 mm using a hot air type welding machine, and the test specimen for welding strength measurement as shown
  • the test piece for measuring welding strength is set in a tensile tester so that the folded portion of the fused PFA welding rod is on the lower side, and the welding rod remains unfused Set the part on the upper chuck of the tensile tester.
  • Tension was performed at a speed of 10 mm / min using a tensile tester (“Tensilon universal material tester” manufactured by A & D Co., Ltd.), and the maximum stress was measured to obtain welding strength.
  • ⁇ Measurement of carbon dropout of composite resin material The degree of desorption of carbon nanotubes from the composite resin material was evaluated by measuring TOC using a total organic carbon meter (“TOCvwp” manufactured by Shimadzu Corporation). Specifically, a test piece of 10 mm ⁇ 20 mm ⁇ 50 mm obtained by cutting from the composite resin material obtained as described above is converted into 0.5 L of 3.6% hydrochloric acid (EL-UM grade made by Kanto Chemical) for about 1 hour. Immerse, take out after immersion for 1 hour, flush with ultra pure water (specific resistance value: 118.0 M ⁇ ⁇ cm) and wash, immerse the entire test piece in ultra pure water, room temperature environment for 24 hours and 168 I saved time. After the specified time elapsed, the entire amount of the immersion liquid was recovered, and the total organic carbon analysis was performed on the immersion liquid.
  • TOCvwp total organic carbon meter
  • the weight of the piece was measured using an electronic balance in the same manner as before immersion.
  • the weight change before and after immersion was calculated by the following equation and used as an index of chemical resistance.
  • Weight change (%) [(weight after immersion-weight before immersion) / weight before immersion] x 100
  • modified PTFE particles or polytetrafluoroethylene (PTFE) particles shown in the following Table 1 were used.
  • X in the above formula (II) is a perfluoropropyl group, and the amount of perfluorovinylether unit is based on the total mass of the modified polytetrafluoroethylene. It was confirmed to be 0.01 to 1% by mass.
  • Production Example 2 A CNT composite resin particle 2 was obtained in the same manner as in Production Example 1-1 except that the amount of CNT was set to 0.05% by mass based on the total amount of the composite resin particles.
  • Production Example 3 A CNT composite resin particle 3 was obtained in the same manner as in Production Example 1-1 except that the amount of CNT was set to 0.1% by mass based on the total amount of the composite resin particles.
  • Production Example 4 A CNT composite resin particle 4 was obtained in the same manner as in Production Example 1 except that the modified PTFE 2 was used in place of the modified PTFE 1.
  • Production Example 5 A CNT composite resin material 5 was obtained in the same manner as in Production Example 2 except that the modified PTFE 2 was used in place of the modified PTFE 1.
  • X is the volume resistivity [ ⁇ ⁇ cm] of the resin material
  • Y is the amount of CNT contained in the resin material [mass%] (equal to the amount of CNT used for the production of the resin material) is there.
  • composite resin materials prepared from the composite resin particles 1 to 5 according to the above method are also referred to as composite resin materials 1 to 5, respectively, They are also referred to as comparative resin materials 6 to 8 respectively.
  • the amount of CNTs in the composite resin particles or resin particles is equal to the amount of CNTs in the composite resin material or resin material obtained therefrom.
  • a test piece of 10 mm ⁇ 10 mm ⁇ 2 mm in thickness was obtained from the composite resin material 2 produced using the composite resin particles obtained in Production Example 2 according to the production method of the composite resin material.
  • the test pieces were immersed in various chemicals shown in Table 5, and weight changes before and after immersion for about one week (1 W) and about one month (1 M) were measured. The obtained results are shown in Table 5.
  • the immersion test to APM in Table 5 was performed on temperature conditions of 80 degreeC, and the immersion test to another chemical
  • medical solution in Table 5 is as showing in Table 6.
  • a CNT composite resin particle 9 was obtained in the same manner as in Production Example 2 except that PCTFE (average particle diameter 10 ⁇ m, specific surface area 2.9, volume resistivity 10 2 ⁇ ⁇ cm) was used instead of the modified PTFE 1.
  • PCTFE average particle diameter 10 ⁇ m, specific surface area 2.9, volume resistivity 10 2 ⁇ ⁇ cm
  • a composite resin material 9 was produced according to the production method of the above composite resin material, and a test piece of 10 mm ⁇ 10 mm ⁇ thickness 2 mm was obtained.
  • the test pieces were subjected to the immersion tests in various chemical solutions shown in Table 5. The obtained results are shown in Table 5.
  • PCTFE polychlorotetrafluoroethylene
  • Production Example 13 Production of CNT Composite Resin Particles 13 A CNT composite resin particle 13 was obtained in the same manner as in Production Example 1 except that PCTFE particles 2 were used instead of the modified PTFE particles 1.
  • Production Example 14 Production of CNT Composite Resin Particles 14 CNT composite resin particles 14 were obtained in the same manner as in Production Example 2 except that PCTFE particles 2 were used instead of the modified PTFE particles 1.
  • Production Example 16 Production of CNT Composite Resin Particles 16 CNT composite resin particles 16 were obtained in the same manner as in Production Example 14 except that the amount of CNTs was 0.125% by mass based on the total amount of composite resin particles.
  • Production Example 17 Production of CNT Composite Resin Particles 17
  • a CNT composite resin particle 17 was obtained in the same manner as in Production Example 14 except that the amount was set to 0.15% by mass based on the total amount of composite resin particles capable of obtaining the amount of CNT.
  • Production Example 18 Production of CNT Composite Resin Particles 18 CNT composite resin particles 18 were obtained in the same manner as in Production Example 15, except that PCTFE particles 3 were used in place of PCTFE particles 2.
  • CNT composite resin particles 19 were obtained in the same manner as in Production Example 15 except that PCTFE particles 1 were used instead of PCTFE particles 2.
  • PCTFE 2 in which CNTs were not complexed was used as the resin particle 20 for comparison.
  • X is the volume resistivity [ ⁇ ⁇ cm] of the resin material
  • Y is the amount of CNT contained in the resin material [mass%] (equal to the amount of CNT used for the production of the resin material) is there.
  • the composite resin materials prepared according to the above method from the composite resin particles 13-19 are also referred to as composite resin materials 13-19, respectively, and the composite resin material prepared according to the above method from the resin particles 20 for comparison is a resin material for comparison It is also called 20.
  • the above-mentioned composite resin materials 14 and 15 were subjected to sulfuric acid / hydrogen peroxide immersion treatment (SPM treatment) under the above conditions, and the volume resistivity after the treatment was measured. As a result, as shown in Table 11 below, it was confirmed that the composite resin materials 14 and 15 did not increase in volume resistivity even when SPM treatment was performed.
  • a method for producing the language sheet 1 including the composite resin material from the composite resin particles obtained as described above will be described.
  • the production method varies depending on the used fluorine resin.
  • the fluorine resin is polytetrafluoroethylene (PTFE) or modified polytetrafluoroethylene (modified PTFE)
  • the composite resin particles obtained in Production Example 2 are pretreated, if necessary, (eg, predrying, granulation, etc.)
  • the composite resin material was compressed by uniformly filling a fixed amount in a molding die and pressing at 15 MPa and holding for a fixed time to obtain a preform.
  • the obtained preform is taken out of the molding die, fired in a hot air circulating electric furnace set at 345 ° C. or more for 2 hours or more, gradually cooled, taken out from the electric furnace, and block-shaped composite resin material A molded body was obtained.
  • the fluorocarbon resin is tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) which is not shown in the Examples and Comparative Examples, there are compression molding method, compression molding method, sheet extrusion molding method etc.
  • the CNT composite resin particles are subjected to pretreatment (eg, preliminary drying, granulation, etc.) if necessary, and then uniformly filled in a predetermined amount in a molding die, and an electric furnace set at 300 ° C. or higher After firing for 2 hours or more, the product is removed from the electric furnace and pressure-cooled at 5 MPa or more with a hydraulic press to obtain a block-like molded product of the composite resin material.
  • a sheet with a thickness of 2.4 mm was made.
  • the obtained sheet was laminated with a glass cloth having a thickness of 0.5 mm and heat-fused to obtain a lining sheet 1.
  • the volume resistivity of the obtained lining sheet 1 was 10 2 ⁇ ⁇ cm.
  • a lining sheet 2 was obtained in the same manner as the lining sheet 1 except that the resin particle 6 for comparison (Production Example 6) was used in place of the composite resin particles obtained in Production Example 2.
  • the method for manufacturing the drug solution pipe 1 containing a composite resin material from the composite resin particles obtained as described above will be described.
  • the composite resin particles obtained in Production Example 2 are subjected to pretreatment (eg, preliminary drying, granulation, etc.) if necessary, and then uniformly filled in a predetermined amount in a molding die, pressurized at 15 MPa, constant
  • the composite resin material was compressed by holding for a time to obtain a preform.
  • the obtained preform is taken out of the molding die, fired in a hot air circulating electric furnace set at 345 ° C. or more for 2 hours or more, gradually cooled, taken out from the electric furnace, and block-shaped composite resin material A molded body was obtained.
  • the obtained molded body was cut using a CNC ordinary lathe (“TAC-510” manufactured by Takizawa Iron Works Ltd.) to produce a chemical liquid pipe having a diameter of 2 inches.
  • the volume resistivity of the obtained drug solution tube 1 was 5.0 ⁇ 10 2 ⁇ ⁇ cm.
  • a drug solution pipe 2 was obtained in the same manner as the production of the drug solution pipe 1 except that the resin particle 6 for comparison (Production Example 6) was used instead of the composite resin particles obtained in Production Example 2.
  • the method for manufacturing the drug solution pipe 1 containing a composite resin material from the composite resin particles obtained as described above will be described.
  • the composite resin particles obtained in Production Example 2 are subjected to pretreatment (eg, preliminary drying, granulation, etc.) if necessary, and then uniformly filled in a predetermined amount in a molding die, pressurized at 15 MPa, constant
  • the composite resin material was compressed by holding for a time to obtain a preform.
  • the obtained preform is taken out of the molding die, fired in a hot air circulating electric furnace set at 345 ° C. or more for 2 hours or more, gradually cooled, taken out from the electric furnace, and block-shaped composite resin material A molded body was obtained.
  • the obtained molded product was cut and welded using a machining center to produce a hollow spherical molded product having a diameter of 50 mm.
  • the volume resistivity of the obtained hollow spherical molded body was 5.0 ⁇ 10 2 ⁇ ⁇ cm.
  • a hollow sphere 2 was obtained in the same manner as in the production of the hollow sphere 1 except that the resin particle 6 for comparison (Production Example 6) was used instead of the composite resin particle obtained in Production Example 2.
  • Example 1 The lining sheet 1 was bonded to the inner side surface of the 50 L capacity tank using an adhesive (for example, epoxy type). The joints between the sheets were sealed using PFA welding rods of ⁇ 5 mm. The chemical solution pipe 1 was attached to the tank, and a plurality of hollow spheres 1 were disposed inside the tank.
  • an adhesive for example, epoxy type
  • Comparative Example 1 Comparative Example 1 was obtained in the same manner as in Example 1 except that the lining sheet 2, the drug solution pipe 2, and the hollow sphere 2 were used instead of the lining sheet 1, the drug solution pipe 1, and the hollow sphere 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

The present invention provides a tank for handling various chemical solutions, wherein it is possible to prevent electrical charging of the tank contents and reduce contamination of the tank contents. This tank includes a tank outer housing, and a lining layer on the inner surface thereof. The lining layer at least partially includes a composite resin material including a fluororesin A and carbon nanotubes. The fluororesin A is selected from the group consisting of polytetrafluoroethylene, modified polytetrafluoroethylene, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymers, tetrafluoroethylene/hexafluoropropylene copolymers, tetrafluoroethylene/ethylene copolymers, polyvinylidene fluoride, polychlorotrifluoroethylene, chlorotrifluoroethylene/ethylene copolymers, and polyvinyl fluoride.

Description

タンクおよび薬液供給システムTank and chemical supply system
 本特許出願は、日本国特許出願第2017-142264号(2017年7月21日出願)及び日本国特許出願第2018-021649号(2018年2月9日出願)に基づくパリ条約上の優先権を主張し、ここに参照することによって、上記出願に記載された内容の全体が、本明細書に組み込まれる。
 本発明は、フッ素樹脂およびカーボンナノチューブを含む複合樹脂材料をライニング層の少なくとも一部において含むタンク、および、該タンクを用いる薬液供給システムに関する。
This patent application claims priority under the Paris Convention based on Japanese Patent Application No. 2017-142264 (filed on July 21, 2017) and Japanese Patent Application No. 2018-021649 (filed on February 9, 2018) The entire contents of the above application are incorporated herein by reference.
The present invention relates to a tank including a composite resin material including a fluorocarbon resin and a carbon nanotube in at least a part of a lining layer, and a chemical solution supply system using the tank.
 従来、各種薬液を貯蔵等するために使用されるタンクにおいて、薬液の有する腐食性によるタンク内壁の腐食や、腐食による該薬液の汚染を防止する目的で、金属製のタンク外缶の内壁に、ポリ塩化ビニル、ゴム、ポリオレフィン樹脂、フッ素樹脂等の耐薬品性材料からなるライニング材が貼り合わされている。 Conventionally, in a tank used for storing various chemical solutions, the inner wall of a metal tank outer can for the purpose of preventing the corrosion of the inner wall of the tank due to the corrosiveness of the chemical solution or the contamination of the chemical solution due to the corrosion. The lining material which consists of chemical-resistant materials, such as polyvinyl chloride, rubber | gum, polyolefin resin, a fluorine resin, is bonded together.
 ライニング材に含まれる耐薬品性材料ついては、種々の検討がなされている。例えば特許文献1には、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)をライニングさせたフッ素樹脂ライニングタンクが記載されている。特許文献2には、ポリオレフィン基材からなるシート基材を含むライニング材が記載されている。特許文献3には、四フッ化エチレン樹脂とカーボンブラック、グラファイトなどの導電性充填剤とから形成された導電性四フッ化エチレン樹脂層を有するライニングシートが記載されている。 Various studies have been made on chemical resistant materials contained in lining materials. For example, Patent Document 1 describes a fluororesin-lined tank lined with tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA). Patent Document 2 describes a lining material including a sheet base made of a polyolefin base. Patent Document 3 describes a lining sheet having a conductive tetrafluoroethylene resin layer formed of a tetrafluoroethylene resin and a conductive filler such as carbon black or graphite.
特開2003-170994号公報Japanese Patent Application Publication No. 2003-170994 特開2001-328209号公報JP, 2001-328209, A 特開平06-270353号公報Japanese Patent Application Publication No. 06-270353
 通常ライニング材として使用されるフッ素樹脂等の耐薬品性材料は帯電性を有するために、耐薬品性材料と内容物である薬液との間での摩擦が起こる場合に、静電気が発生し、内容物の引火の問題が生じる場合がある。さらに、例えば特許文献3に記載されるように、ライニング材として使用する耐薬品性材料にカーボンブラック等の導電性材料を添加する場合には、所望の帯電防止性を達成するために多量の導電性材料を添加する必要があり、タンク内容物に汚染物質が混入する可能性もある。また、これら導電性材料等がライニング材とタンク内壁との接着面に存在することにより、ライニング材が剥離しやすくなるなどの問題も生じる。 Chemical-resistant materials such as fluoroplastics, which are usually used as lining materials, have chargeability, so when friction occurs between the chemical-resistant material and the chemical solution that is the contents, static electricity is generated, and the content is There may be a problem of ignition of things. Furthermore, as described in, for example, Patent Document 3, when a conductive material such as carbon black is added to a chemical resistant material used as a lining material, a large amount of conductivity is achieved to achieve desired antistatic properties. It is necessary to add some sex material, and there is also the possibility of contamination of the tank contents. Further, the presence of the conductive material or the like on the bonding surface of the lining material and the inner wall of the tank causes a problem such as easy peeling of the lining material.
 本発明は、各種薬液を取り扱うタンクであって、タンク内容物の帯電を防止することが可能であり、タンク内容物の汚染が低減されたタンクを提供することを目的とする。また本発明は、該タンクを用いる薬液供給システムを提供することも目的とする。 An object of the present invention is to provide a tank that handles various chemical solutions, which can prevent charging of the contents of the tank, and in which contamination of the contents of the tank is reduced. Another object of the present invention is to provide a chemical solution supply system using the tank.
 本発明者らは、上記課題を解決すべく、タンクの内面に設けられたライニング層について鋭意検討を行った。その結果、フッ素樹脂およびカーボンナノチューブを含む複合樹脂材料を少なくとも一部に含むライニング層をタンク内面に設けることにより、上記課題が達成されることを見出し、本発明を完成させるに至った。 The present inventors diligently studied the lining layer provided on the inner surface of the tank in order to solve the above-mentioned problems. As a result, it has been found that the above object can be achieved by providing a lining layer containing a composite resin material containing a fluorocarbon resin and a carbon nanotube in at least a part thereof, thereby completing the present invention.
 すなわち、本発明は、以下の好適な態様を包含する。
[1]タンク外缶と、
 タンク外缶の内面に設けられたライニング層とを少なくとも有し、
 ライニング層は、少なくとも一部において、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含み、
 フッ素樹脂Aは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、タンク。
[2]投入された薬液がタンク外缶の内面と最初に接する部分に設けられたライニング層が、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含む、前記[1]に記載のタンク。
[3]タンクの内部と外部とに繋がる薬液管を備え、
 薬液管は、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層を管の内面の少なくとも一部に有する、および/または、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料の成形体であり、
 フッ素樹脂Bは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、前記[1]または[2]に記載のタンク。
[4]タンクの内部と外部とに繋がる薬液管を備え、
 薬液管は、薬液をタンクに入れる薬液投入管を含み、
 薬液投入管は、その端部(又は先端)にノズルを有し、
 ノズルは、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層をノズルの内面の少なくとも一部に有する、および/または、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料の成形体であり、
 フッ素樹脂Bは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、前記[1]~[3]のいずれかに記載のタンク。
[5]ノズルは、スプレーノズル、回転ノズル、直進ノズル、シャワーノズルからなる群から選択される、前記[4]に記載のタンク。
[6]フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含む中空球状の成形体をさらに有し、フッ素樹脂Cは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、前記[1]~[5]のいずれかに記載のタンク。
[7]フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含む棒状の成形体をさらに有し、フッ素樹脂Cは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、前記[1]~[6]のいずれかに記載のタンク。
[8]フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含む攪拌棒をさらに有し、フッ素樹脂Cは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、前記[1]~[7]のいずれかに記載のタンク。
[9]攪拌棒は、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含むプロペラを有する、前記[8]に記載のタンク。
[10]薬液は、有機溶剤、可燃性液体、酸性液体、塩基性液体、中性液体、水溶液、導電性液体から選択される少なくとも1種を含む、前記[1]~[9]のいずれかに記載のタンク。
[11]薬液は、有機溶媒を含む、前記[1]~[9]のいずれかに記載のタンク。
[12]薬液は、酸性液体、塩基性液体、導電性液体から選択される少なくとも1種を含む、前記[1]~[9]のいずれかに記載のタンク。
[13]フッ素樹脂Aは変性ポリテトラフルオロエチレンである、前記[1]~[12]のいずれかに記載のタンク。
[14]変性ポリテトラフルオロエチレンは、式(I):
Figure JPOXMLDOC01-appb-C000003
で表されるテトラフルオロエチレン単位と、式(II):
Figure JPOXMLDOC01-appb-C000004
[式中、Xは、炭素数1~6のパーフルオロアルキル基または炭素数4~9のパーフルオロアルコキシアルキル基を表す]
で表されるパーフルオロビニルエーテル単位とを有する化合物であり、式(II)で表されるパーフルオロビニルエーテル単位の量は、変性ポリテトラフルオロエチレンの全質量に基づいて0.01~1質量%である、前記[1]~[13]のいずれかに記載のタンク。
[15]複合樹脂材料は、フッ素樹脂A~Cのいずれかとカーボンナノチューブを含む、5μm以上500μm以下の平均粒子径を有する複合樹脂粒子の圧縮成形体である、前記[1]~[14]のいずれかに記載のタンク。
[16]薬液供給タンク、薬液貯蔵タンク、および/または、薬液運搬タンクである、前記[1]~[15]のいずれかに記載のタンク。
[17]前記[1]~[16]のいずれかに記載のタンクを用いて薬液の供給を行うことを含む、薬液供給システム。
[18]前記[1]~[16]のいずれか1に記載のタンクに使用される、フッ素樹脂A~Cのいずれかとカーボンナノチューブを含む成形体。
[19]
 ライニングシート、薬液管、中空形状の成形体、棒状の成形体、棒状成形体ホルダー、攪拌棒、攪拌羽根、及び攪拌棒アダプタから選択される、前記[18]に記載の成形体。
[20]フッ素樹脂A~Cのいずれかとカーボンナノチューブを含む、5μm以上500μm以下の平均粒子径を有する複合樹脂粒子の圧縮成形体。
[21]ライニングシート、薬液管、中空形状の成形体、棒状の成形体、棒状成形体ホルダー、攪拌棒、攪拌羽根、及び攪拌棒アダプタから選択される、前記[20]に記載の圧縮成形体。
That is, the present invention includes the following preferred embodiments.
[1] With tank cans,
And at least a lining layer provided on the inner surface of the tank outer can;
The lining layer comprises, at least in part, a composite resin material comprising fluorocarbon resin A and carbon nanotubes,
Fluororesin A is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) A tank selected from the group consisting of
[2] The tank according to the above [1], wherein the lining layer provided at a portion where the introduced chemical solution first contacts the inner surface of the tank outer case contains a composite resin material containing fluororesin A and carbon nanotubes.
[3] equipped with a chemical pipe that leads to the inside and the outside of the tank,
The chemical liquid pipe is a molded body of a composite resin material having a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of the pipe and / or containing fluorocarbon resin B and carbon nanotubes ,
Fluororesin B is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) The tank according to the above [1] or [2], which is selected from the group consisting of
[4] equipped with a chemical pipe that connects the inside and the outside of the tank
The chemical liquid pipe includes a chemical liquid feed pipe for putting the chemical liquid into the tank,
The chemical liquid feed pipe has a nozzle at its end (or tip),
The nozzle is a molded body of a composite resin material having a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of the nozzle and / or containing fluorocarbon resin B and carbon nanotubes,
Fluororesin B is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) The tank according to any one of the above [1] to [3], which is selected from the group consisting of
[5] The tank according to [4], wherein the nozzle is selected from the group consisting of a spray nozzle, a rotating nozzle, a straight forward nozzle, and a shower nozzle.
[6] It further has a hollow spherical shaped body at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes, wherein fluorocarbon resin C is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF) Any one of the above [1] to [5] selected from the group consisting of polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) The tank described in.
[7] It further has a rod-like molded body at least partially containing a composite resin material containing fluorocarbon resin C and carbon nanotubes, and fluorocarbon resin C is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE ), Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF) Selected from the group consisting of polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF), any of the above [1] to [6] Description tank.
[8] It further has a stirring rod which at least partially contains a composite resin material containing fluorocarbon resin C and carbon nanotubes, wherein fluorocarbon resin C is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), poly It is selected from the group consisting of chlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF), according to any one of the above [1] to [7] tank.
[9] The tank according to the above [8], wherein the stirring rod has a propeller at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes.
[10] Any one of the above-mentioned [1] to [9], wherein the chemical solution contains at least one selected from organic solvents, flammable liquids, acidic liquids, basic liquids, neutral liquids, aqueous solutions and conductive liquids. The tank described in.
[11] The tank according to any one of the above [1] to [9], wherein the chemical solution contains an organic solvent.
[12] The tank according to any one of the above [1] to [9], wherein the chemical solution contains at least one selected from an acidic liquid, a basic liquid, and a conductive liquid.
[13] The tank according to any one of the above [1] to [12], wherein the fluororesin A is a modified polytetrafluoroethylene.
[14] Modified polytetrafluoroethylene is represented by formula (I):
Figure JPOXMLDOC01-appb-C000003
And a tetrafluoroethylene unit represented by the formula (II):
Figure JPOXMLDOC01-appb-C000004
[Wherein, X represents a C 1-6 perfluoroalkyl group or a C 4-9 perfluoroalkoxyalkyl group]
And the amount of perfluorovinyl ether unit represented by the formula (II) is 0.01 to 1% by mass based on the total mass of the modified polytetrafluoroethylene The tank according to any one of the above [1] to [13].
[15] The composite resin material is a compression-molded product of composite resin particles having an average particle diameter of 5 μm to 500 μm, which contains any of fluororesins A to C and a carbon nanotube, according to the above [1] to [14] The tank described in either.
[16] The tank according to any one of the above [1] to [15], which is a chemical solution supply tank, a chemical solution storage tank, and / or a chemical solution transport tank.
[17] A chemical solution supply system including supplying a chemical solution using the tank according to any one of the above [1] to [16].
[18] A molded article for use in a tank according to any one of the above [1] to [16], which contains any of the fluororesins A to C and a carbon nanotube.
[19]
The molded article according to the above-mentioned [18], which is selected from a lining sheet, a drug solution tube, a hollow molded body, a rod-shaped molded body, a rod-shaped molded body holder, a stirring rod, a stirring blade, and a stirring rod adapter.
[20] A compression-molded article of composite resin particles having an average particle diameter of 5 μm or more and 500 μm or less, which contains any of fluororesins A to C and a carbon nanotube.
[21] The compression-molded article according to the above [20], which is selected from a lining sheet, a chemical solution tube, a hollow shaped body, a rod-shaped compact, a rod-shaped compact holder, a stirring rod, a stirring blade, and a stirring rod adapter .
 本発明によれば、各種薬液を取り扱うためのタンクであって、タンク内容物の帯電を防止することが可能であり、タンク内容物の汚染が低減されたタンク、ならびに、該タンクを用いる薬液供給システムが提供される。 According to the present invention, it is a tank for handling various chemical solutions, which can prevent charging of the contents of the tank, and a tank in which the contamination of the tank contents is reduced, and a chemical solution supply using the tank A system is provided.
本発明の第1実施形態Aのタンクの縦断面図である。It is a longitudinal cross-sectional view of the tank of 1st Embodiment A of this invention. 本発明の第1実施形態Bのタンクの縦断面図である。It is a longitudinal cross-sectional view of the tank of 1st Embodiment B of this invention. 本発明の第2実施形態のタンクの縦断面図である。It is a longitudinal cross-sectional view of the tank of 2nd Embodiment of this invention. 本発明の第3実施形態の薬液供給システムの概略図である。It is the schematic of the chemical | medical solution supply system of 3rd Embodiment of this invention. 複合樹脂材料の溶接強度を測定するための測定試料を示す図である。It is a figure which shows the measurement sample for measuring the welding strength of composite resin material. 複合樹脂材料の溶接強度の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the welding strength of a composite resin material.
 以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described herein, and various modifications can be made without departing from the spirit of the present invention.
 本発明のタンクは、タンク外缶と、タンク外缶の内面に設けられたライニング層とを少なくとも有する。 The tank of the present invention has at least an outer tank can and a lining layer provided on the inner surface of the outer tank can.
<タンク外缶>
 タンク外缶の材質は、耐腐食性、耐熱性および機械的強度が良好な材質であれば特に限定されないが、通常は金属であり、例えばステンレス、鉄、炭素鋼、チタンなどが挙げられる。タンク外缶の形状、大きさ、肉厚等は特に限定されず、本発明のタンクの用途に応じて、適宜選択してよい。
<Can of tank outside>
The material of the tank outer can is not particularly limited as long as it is a material having good corrosion resistance, heat resistance and mechanical strength, but is usually metal, and examples thereof include stainless steel, iron, carbon steel, titanium and the like. The shape, size, thickness and the like of the tank outer can are not particularly limited, and may be appropriately selected according to the application of the tank of the present invention.
<ライニング層>
 タンク外缶の内面にはライニング層が設けられている。ライニング層に含まれる樹脂としては、フッ素樹脂、塩化ビニル樹脂、ポリオレフィン樹脂等が挙げられる。耐薬品性および耐熱性の観点からは、ライニング層はフッ素樹脂を含むことが好ましい。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)が挙げられる。
<Lining layer>
A lining layer is provided on the inner surface of the tank outer can. The resin contained in the lining layer may, for example, be a fluorine resin, a vinyl chloride resin or a polyolefin resin. From the viewpoint of chemical resistance and heat resistance, the lining layer preferably contains a fluorine resin. As the fluorine resin, for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), polyvinyl fluoride ( PVF).
 ライニング層の厚みは、金属溶出を抑制しやすい観点から、好ましくは1.3~8mm、より好ましくは1.8~4mm、さらに好ましくは2~4mmである。ライニング層の厚みは、マイクロメーターを用いて測定される。本発明の好ましい一態様において、ライニング層はガラスクロスと樹脂シートの積層体であり、その場合、ガラスクロスの厚みは好ましくは0.3~3mm、より好ましくは0.3~1mm、さらに好ましくは0.5~1mmであり、樹脂シートの厚みは、好ましくは1~5mm、より好ましくは1.5~3mmである。 The thickness of the lining layer is preferably 1.3 to 8 mm, more preferably 1.8 to 4 mm, still more preferably 2 to 4 mm, from the viewpoint of easily suppressing metal elution. The thickness of the lining layer is measured using a micrometer. In a preferred embodiment of the present invention, the lining layer is a laminate of glass cloth and a resin sheet, in which case the thickness of the glass cloth is preferably 0.3 to 3 mm, more preferably 0.3 to 1 mm, still more preferably The thickness is 0.5 to 1 mm, and the thickness of the resin sheet is preferably 1 to 5 mm, more preferably 1.5 to 3 mm.
 本発明のタンクにおいて、ライニング層は、少なくとも一部において、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含む。ライニング層が複合樹脂材料を少なくとも一部において含むとは、タンク外缶の内面に設けられたライニング層の少なくとも一部が複合樹脂材料で構成されていてもよいし、ライニング層全体が複合樹脂材料で構成されていてもよい。また、タンク外缶の内面に設けられたライニング層の一部に複合樹脂材料が含有されていてもよいし、タンク外缶の内面に設けられたライニング層全体に複合樹脂材料が含有されていてもよい。帯電防止性を効率的に付与し、タンクの製造コストを低減する観点からは、タンク外缶の内面に設けられたライニング層の一部が複合樹脂材料で構成されるか、または、ライニング層の一部が複合樹脂材料を含むことが好ましい。 In the tank of the present invention, the lining layer contains, at least in part, a composite resin material containing fluorocarbon resin A and carbon nanotubes. When the lining layer contains at least a part of the composite resin material, at least a part of the lining layer provided on the inner surface of the tank outer can may be made of the composite resin material, or the entire lining layer is a composite resin material May be composed of Further, the composite resin material may be contained in a part of the lining layer provided on the inner surface of the tank outer can, and the composite resin material is contained in the entire lining layer provided on the inner surface of the tank outer can. It is also good. From the viewpoint of efficiently imparting antistatic properties and reducing the manufacturing cost of the tank, part of the lining layer provided on the inner surface of the tank outer can is made of a composite resin material, or It is preferable that a part contains a composite resin material.
 本発明のタンクに薬液を投入する際、投入された薬液がタンク外缶の内面と最初に接する部分において摩擦が生じることにより静電気が発生し、薬液が帯電しやすい。そのため、薬液の帯電を効率的に防止する観点からは、投入された薬液がタンク外缶の内面と最初に接する部分に設けられたライニング層が、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含むことが好ましく、該ライニング層がフッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料で構成されることがより好ましい。また、同様の観点から、投入された薬液との摩擦が生じることにより静電気が発生しやすい、タンク外缶の内面の底部に設けられたライニング層が、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含むことが好ましく、該ライニング層がフッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料で構成されることがより好ましい。 When the chemical solution is introduced into the tank of the present invention, friction occurs in a portion where the introduced chemical solution initially contacts the inner surface of the outer tank can, so that static electricity is generated and the chemical solution is likely to be charged. Therefore, from the viewpoint of efficiently preventing charging of the chemical solution, the lining layer provided on the portion where the introduced chemical solution first contacts the inner surface of the outer tank can is a composite resin material including fluororesin A and carbon nanotubes. It is preferable to contain, and it is more preferable that this lining layer is comprised with the composite resin material containing the fluororesin A and a carbon nanotube. From the same point of view, a composite resin material including a fluororesin A and a carbon nanotube, wherein the lining layer provided at the bottom of the inner surface of the outer tank can is likely to generate static electricity due to friction with the supplied chemical solution. It is preferable that the lining layer is made of a composite resin material containing fluorocarbon resin A and carbon nanotubes.
<複合樹脂材料>
 本発明のタンクにおいて、ライニング層は、少なくとも一部において、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含む。フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料は、フッ素樹脂Aとカーボンナノチューブとを複合化させた複合樹脂粒子の成形体である。複合樹脂粒子は、フッ素樹脂Aの粒子とカーボンナノチューブとを複合化させた材料であり、フッ素樹脂Aの粒子の少なくとも表面および/または表層にカーボンナノチューブが存在する。例えば、フッ素樹脂Aの粒子表面にカーボンナノチューブの少なくとも一部が担持または埋没されている。カーボンナノチューブは、フッ素樹脂Aの粒子表面に付着して担持されていてもよいし、一部が埋没して担持されていてもよいし、フッ素樹脂Aの粒子の表層に完全に埋没していてもよい。このような複合樹脂粒子の成形体である複合樹脂材料においては、複合樹脂粒子の少なくとも一部が粒子形状を維持して含まれていてもよいし、複合樹脂粒子が一体となり複合樹脂材料を形成していてもよい。
<Composite resin material>
In the tank of the present invention, the lining layer contains, at least in part, a composite resin material containing fluorocarbon resin A and carbon nanotubes. The composite resin material containing fluorocarbon resin A and carbon nanotubes is a molded article of composite resin particles in which fluorocarbon resin A and carbon nanotubes are composited. The composite resin particle is a material in which particles of fluorocarbon resin A and carbon nanotubes are complexed, and carbon nanotubes exist on at least the surface and / or surface layer of the particles of fluorocarbon resin A. For example, at least a part of carbon nanotubes is supported or buried on the particle surface of fluorocarbon resin A. The carbon nanotubes may be attached to and supported on the particle surface of the fluorocarbon resin A, or a part may be buried and supported, and the carbon nanotubes may be completely buried in the surface layer of the particles of the fluorocarbon resin It is also good. In a composite resin material which is a molded product of such composite resin particles, at least a part of the composite resin particles may be contained while maintaining the particle shape, and the composite resin particles are integrated to form a composite resin material. It may be done.
 複合樹脂粒子の平均粒子径は、好ましくは500μm以下、より好ましくは300μm以下、さらに好ましくは200μm以下、特に好ましくは100μm以下、極めて好ましくは50μm以下、最も好ましくは30μm以下である。平均粒子径が上記の上限以下である場合、カーボンナノチューブをライニング層中に均一に分散させやすく、特にライニング層の厚みが薄い場合であっても、ライニング層の体積抵抗率を十分に低減することができる。複合樹脂材料の平均粒子径の下限は特に限定されないが、通常5μm以上である。上記範囲の平均粒子径を有する複合樹脂粒子からライニング層の少なくとも一部を構成する複合樹脂材料を製造することにより、ライニング層の体積抵抗率を効率的に低下させやすい。本発明において、ライニング層に含まれる複合樹脂材料を与える複合樹脂粒子の平均粒子径は、上記複合樹脂材料の製造に使用した複合樹脂粒子の平均粒子径であってよく、該平均粒子径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒子径を意味するメジアン径(D50)であり、レーザー回折散乱式粒度分布装置を用いて測定される。なお、本発明のタンクにおいては、ライニング層等が、上記の平均粒子径を有する複合樹脂粒子の成形体である複合樹脂材料を含むことが好ましく、ライニング層等における複合樹脂材料が、上記好ましい範囲の粒子径を有する複合樹脂粒子であってもよいし、複合樹脂粒子が一体となり複合樹脂材料を形成し粒子形状を維持していなくてもよい。 The average particle diameter of the composite resin particles is preferably 500 μm or less, more preferably 300 μm or less, still more preferably 200 μm or less, particularly preferably 100 μm or less, very preferably 50 μm or less, most preferably 30 μm or less. When the average particle size is less than the above upper limit, carbon nanotubes are easily dispersed uniformly in the lining layer, and in particular, the volume resistivity of the lining layer is sufficiently reduced even when the thickness of the lining layer is thin. Can. The lower limit of the average particle size of the composite resin material is not particularly limited, but is usually 5 μm or more. By producing the composite resin material that constitutes at least a part of the lining layer from the composite resin particles having an average particle diameter in the above range, the volume resistivity of the lining layer can be efficiently reduced. In the present invention, the average particle size of the composite resin particles giving the composite resin material contained in the lining layer may be the average particle size of the composite resin particles used for producing the composite resin material, and the average particle size is The median diameter (D 50 ) which means the particle diameter at 50% of the integrated value in the particle size distribution determined by the laser diffraction / scattering method, and is measured using a laser diffraction scattering type particle size distribution device. In the tank of the present invention, the lining layer and the like preferably contain a composite resin material which is a molded body of the composite resin particles having the above average particle diameter, and the composite resin material in the lining layer and the like has the above-mentioned preferable range Composite resin particles having a particle diameter of 1 may be used, or the composite resin particles may not be integrated to form a composite resin material and not maintain the particle shape.
 本発明のタンクにおいて、ライニング層が、フッ素樹脂Aおよびカーボンナノチューブを複合化させた複合樹脂材料を少なくとも一部において含むことにより、ライニング層の体積抵抗率を効果的に低下させ、ライニング層に帯電防止性および/または導電性を付与することができる。このため、内容物が帯電することを防止し、例えば有機溶媒等の薬液の引火を防止することができる。また、複合樹脂材料を用いることにより、少量のカーボンナノチューブで体積抵抗率を効果的に低下させることができるため、ライニング層に含まれる導電性材料が内容物に混入することによる、薬液等のタンク内容物の汚染が抑制され、クリーン性に優れる。 In the tank of the present invention, the lining layer contains at least a part of the composite resin material in which the fluororesin A and the carbon nanotube are complexed, thereby effectively reducing the volume resistivity of the lining layer and charging the lining layer. Prevention and / or conductivity can be imparted. For this reason, it is possible to prevent the content from being charged, and to prevent, for example, the ignition of a chemical solution such as an organic solvent. Further, by using the composite resin material, the volume resistivity can be effectively reduced by a small amount of carbon nanotubes, and therefore, the conductive material contained in the lining layer is mixed with the contents, thereby making the tank such as a chemical solution Contamination of the contents is suppressed and the cleanliness is excellent.
 複合樹脂材料に含まれるフッ素樹脂Aの量は、複合樹脂材料の総量に基づいて好ましくは98.0質量%以上、より好ましくは99.0質量%以上、さらにより好ましくは99.8質量%以上である。フッ素樹脂Aの量が上記の下限以上である場合、複合樹脂材料の機械的特性および成形性を高めやすい。フッ素樹脂Aの量の上限は、特に限定されないが、99.99質量%程度以下である。複合樹脂材料に含まれるフッ素樹脂Aの量は、炭素成分分析法により測定される。 The amount of the fluororesin A contained in the composite resin material is preferably 98.0% by mass or more, more preferably 99.0% by mass or more, still more preferably 99.8% by mass or more based on the total amount of the composite resin material It is. When the amount of the fluororesin A is equal to or more than the above lower limit, mechanical properties and moldability of the composite resin material can be easily improved. The upper limit of the amount of the fluororesin A is not particularly limited, but is about 99.99% by mass or less. The amount of fluorocarbon resin A contained in the composite resin material is measured by carbon component analysis.
 複合樹脂材料に含まれるカーボンナノチューブの量は、複合樹脂材料の総量に基づいて好ましくは0.01~2.0質量%、より好ましくは0.02~0.5質量%、さらにより好ましくは0.025~0.2質量%である。カーボンナノチューブの量が上記の下限以上であると、帯電防止性または導電性を高めるために体積抵抗率を低下させやすいため好ましい。カーボンナノチューブの量が上記の上限以下であると、体積抵抗率を効率的に低下させやすいため好ましい。複合樹脂材料に含まれるカーボンナノチューブの量は、炭素成分分析法により測定される。 The amount of carbon nanotubes contained in the composite resin material is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 0.5% by mass, still more preferably 0 based on the total amount of the composite resin material. It is .025 to 0.2% by mass. It is preferable for the amount of carbon nanotubes to be not less than the above lower limit, since it is easy to lower the volume resistivity in order to enhance the antistatic property or the conductivity. It is preferable for the amount of carbon nanotubes to be equal to or less than the above upper limit because the volume resistivity is easily reduced efficiently. The amount of carbon nanotubes contained in the composite resin material is measured by carbon component analysis.
 複合樹脂材料は、複合樹脂粒子の成形体であり、複合樹脂粒子の比表面積は、JIS Z8830に準拠し測定して、好ましくは0.5~9.0m/g、より好ましくは0.8~4.0m/g、さらにより好ましくは1.0~3.0m/gである。比表面積が上記の下限以上であると、フッ素樹脂Aとカーボンナノチューブとの密着性を高めやすい観点から好ましく、上記の上限以下であると、複合樹脂材料の製造しやすさの観点から好ましい。上記範囲の比表面積を有する複合樹脂粒子からライニング層の少なくとも一部を構成する複合樹脂材料を製造することにより、ライニング層の体積抵抗率を効率的に低下させやすい。本発明において、ライニング層に含まれる複合樹脂材料を与える複合樹脂粒子の比表面積は、上記複合樹脂材料の製造に使用した複合樹脂粒子の平均粒子径であってよく、該平均粒子径は、具体的には、定容量式ガス吸着法である比表面積/細孔分布測定装置(例えば日本ベル製BELSORP-miniII)を用いて、一般的な比表面積の測定方法であるBET法により測定される。なお、本発明のタンクにおいては、ライニング層等が、上記の平均粒子径を有する複合樹脂粒子の成形体である複合樹脂材料を含むことが好ましく、ライニング層等における複合樹脂材料が、上記好ましい範囲の粒子径を有する複合樹脂粒子であってもよいし、複合樹脂粒子が一体となり複合樹脂材料を形成し粒子形状を維持していなくてもよい。 The composite resin material is a molded article of composite resin particles, and the specific surface area of the composite resin particles is preferably 0.5 to 9.0 m 2 / g, more preferably 0.8, as measured in accordance with JIS Z8830. It is -4.0 m 2 / g, still more preferably 1.0 to 3.0 m 2 / g. It is preferable from the viewpoint of easily improving the adhesion between the fluororesin A and the carbon nanotube that the specific surface area is the above lower limit or more, and it is preferable from the viewpoint of easiness of producing the composite resin material that it is the above upper limit. By manufacturing the composite resin material which comprises at least one part of a lining layer from the composite resin particle which has the specific surface area of the said range, it is easy to reduce the volume resistivity of a lining layer efficiently. In the present invention, the specific surface area of the composite resin particles giving the composite resin material contained in the lining layer may be the average particle diameter of the composite resin particles used for producing the composite resin material, and the average particle diameter is specifically Specifically, the specific surface area / pore distribution measuring apparatus (for example, BELSORP-miniII manufactured by Nippon Bell), which is a fixed capacity gas adsorption method, is used to measure by a BET method, which is a general measuring method of specific surface area. In the tank of the present invention, the lining layer and the like preferably contain a composite resin material which is a molded body of the composite resin particles having the above average particle diameter, and the composite resin material in the lining layer and the like has the above-mentioned preferable range Composite resin particles having a particle diameter of 1 may be used, or the composite resin particles may not be integrated to form a composite resin material and not maintain the particle shape.
 複合樹脂材料の体積抵抗率は、帯電防止性の観点から、JIS K6911に従い測定して、好ましくは1.0×10Ω・cm以下、より好ましくは1.0×10Ω・cm以下、さらにより好ましくは1.0×10Ω・cm以下である。体積抵抗率が上記の上限以下であると良好な帯電防止性が得られる。複合樹脂材料の体積抵抗率の下限値は特に限定されず、0以上であってよいが、通常10Ω・cm以上である。複合樹脂材料の体積抵抗率は、JIS K6911に従い成形素材または切削加工した試験片を用いて、抵抗率計(例えば三菱化学アナリテック製「ロレスター」または「ハイレスター」)により測定される。例えば圧縮成形(コンプレッション成形)により作製したφ110×10mmの試験片を用いて測定した場合に、複合樹脂材料が上記体積抵抗率を示すことが好ましい。
複合樹脂材料がライニング層に含まれる場合には、複合樹脂材料を含む部分のライニング層が上記帯電防止性を有することが好ましい。なお、上記体積抵抗率は、後述するフッ素樹脂Bまたはフッ素樹脂Cを含有する複合樹脂材料についても同様にあてはまる。
The volume resistivity of the composite resin material is preferably 1.0 × 10 8 Ω · cm or less, more preferably 1.0 × 10 7 Ω · cm or less, as measured in accordance with JIS K 6911 from the viewpoint of antistatic properties. Still more preferably, it is 1.0 × 10 6 Ω · cm or less. Favorable antistatic property is acquired as a volume resistivity is below the said upper limit. The lower limit value of the volume resistivity of the composite resin material is not particularly limited, and may be 0 or more, but is usually 10 Ω · cm or more. The volume resistivity of the composite resin material is measured by a resistivity meter (for example, "Lorrester" or "Hyrester" manufactured by Mitsubishi Chemical Analytech Co., Ltd.) using a molding material or a cut test piece according to JIS K6911. For example, it is preferable that the composite resin material exhibits the above-mentioned volume resistivity when measured using a test piece of φ110 × 10 mm produced by compression molding (compression molding).
When the composite resin material is contained in the lining layer, it is preferable that the lining layer of the portion containing the composite resin material has the above-mentioned antistatic property. In addition, the said volume resistivity is similarly applied about the composite resin material containing the fluororesin B or the fluororesin C mentioned later.
 ここで、複合樹脂材料の体積抵抗率をXΩ・cmとし、複合樹脂材料の総量に基づく複合樹脂材料に含まれるカーボンナノチューブの量をY質量%とすると、XおよびYは次の式(1):
X/Y-14≦4×10-12           (1)
を満たすことが好ましい。上記関係を満たす場合、複合樹脂材料の体積抵抗率を効率的に低下させることができる。また、少量のカーボンナノチューブで、体積抵抗率を十分に低下させることができるため、複合樹脂材料を含むライニング層のクリーン性を高めやすい。上記式(1)より算出される値(X/Y-14)は、複合樹脂材料の体積抵抗率を効率的に低下させやすい観点から、より好ましくは10-12以下であり、さらに好ましくは10-13以下である。なお、上記式(1)より算出される値(X/Y-14)の下限値は特に限定されないが、通常10-18以上、好ましくは10-16以上である。上記関係は、後述する製造方法で成形体を製造することや、体積抵抗率を効率的に低下させるに好ましい複合樹脂粒子を用いて複合樹脂材料を製造することで、達成することができる。なお、体積抵抗率の測定方法は上記に述べたとおりであり、複合樹脂材料に含まれるカーボンナノチューブの量は、炭素成分分析法により測定される。
Here, assuming that the volume resistivity of the composite resin material is X Ω · cm, and the amount of carbon nanotubes contained in the composite resin material based on the total amount of the composite resin material is Y mass%, X and Y have the following formula (1) :
X / Y -14 4 4 x 10 -12 (1)
It is preferable to satisfy When the above relationship is satisfied, the volume resistivity of the composite resin material can be efficiently reduced. In addition, since the volume resistivity can be sufficiently reduced with a small amount of carbon nanotubes, it is easy to enhance the cleanness of the lining layer containing the composite resin material. The value (X / Y -14 ) calculated from the above formula (1) is more preferably 10 -12 or less, and still more preferably 10 from the viewpoint of easily reducing the volume resistivity of the composite resin material. -13 or less. Although the lower limit value of the value (X / Y -14 ) calculated from the above formula (1) is not particularly limited, it is usually 10 -18 or more, preferably 10 -16 or more. The above relationship can be achieved by producing a molded body by a production method to be described later, or producing a composite resin material using composite resin particles preferable for effectively reducing the volume resistivity. The method for measuring the volume resistivity is as described above, and the amount of carbon nanotubes contained in the composite resin material is measured by a carbon component analysis method.
 本発明のタンクは、上記複合樹脂材料を含有するライニング層を用いることにより、理由は明らかではないが、少量のカーボンナノチューブで、所望の帯電防止性を達成することができる。そのため、本発明の複合樹脂材料はクリーン性に優れる。また、例えば本発明の複合樹脂材料から製造した成形体をライニング層の一部として溶接に使用する場合であっても、溶接面に存在する導電性材料の量が少ないため、密着性の低下を回避することができる。さらに、本発明の複合樹脂材料によれば、上記好ましい範囲の体積抵抗率を有する場合であっても、樹脂が本来有する機械的強度を維持しやすい。 The tank of the present invention can achieve the desired antistatic properties with a small amount of carbon nanotubes, though the reason is not clear by using the lining layer containing the above-mentioned composite resin material. Therefore, the composite resin material of the present invention is excellent in cleanness. In addition, even when, for example, a molded body produced from the composite resin material of the present invention is used as part of a lining layer for welding, the amount of conductive material present on the welding surface is small, so the adhesion is lowered. It can be avoided. Furthermore, according to the composite resin material of the present invention, even in the case of having the volume resistivity in the above-mentioned preferable range, it is easy to maintain the mechanical strength which the resin originally has.
(フッ素樹脂A)
 複合樹脂材料に含まれるフッ素樹脂Aは、例えば、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される。
 複合樹脂材料に含まれるフッ素樹脂Aは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)およびテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)からなる群から選択されることが好ましい。フッ素樹脂Aは、導電性を効率的に高めやすい観点から、より好ましくはポリテトラフルオロエチレン(PTFE)および変性ポリテトラフルオロエチレン(変性PTFE)からなる群から選択され、さらに、導電性を効率的に高めやすい観点ならびに屈曲性および溶接性の観点から、更により好ましくは変性ポリテトラフルオロエチレン(変性PTFE)である。
(Fluororesin A)
The fluororesin A contained in the composite resin material is, for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / tetrafluoroethylene / Hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE) And polyvinyl fluoride (PVF).
The fluororesin A contained in the composite resin material is selected from the group consisting of polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE) and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) Is preferred. The fluorine resin A is more preferably selected from the group consisting of polytetrafluoroethylene (PTFE) and modified polytetrafluoroethylene (modified PTFE), from the viewpoint of easily enhancing the conductivity, and further, the conductivity is efficiently selected. In view of easiness of enhancing the properties and flexibility and weldability, modified polytetrafluoroethylene (modified PTFE) is more preferable.
 ポリテトラフルオロエチレン(PTFE)は、テトラフルオロエチレンの単独重合体である。 Polytetrafluoroethylene (PTFE) is a homopolymer of tetrafluoroethylene.
 変性ポリテトラフルオロエチレン(変性PTFE)は、テトラフルオロエチレンに由来する式(I):
Figure JPOXMLDOC01-appb-C000005
で表されるテトラフルオロエチレン単位に加えて、例えば式(II):
Figure JPOXMLDOC01-appb-C000006
[式中、Xは、炭素数1~6のパーフルオロアルキル基又は炭素数4~9のパーフルオロアルコキシアルキル基を表す]
で表されるパーフルオロビニルエーテル単位を含有する化合物であり、式(II)で表されるパーフルオロビニルエーテル単位の量は、変性ポリテトラフルオロエチレンの全質量に基づいて0.01~1質量%である変性ポリテトラフルオロエチレンが挙げられる。
Modified polytetrafluoroethylene (modified PTFE) is a compound of formula (I) derived from tetrafluoroethylene:
Figure JPOXMLDOC01-appb-C000005
In addition to the tetrafluoroethylene units represented by
Figure JPOXMLDOC01-appb-C000006
[Wherein, X represents a C 1-6 perfluoroalkyl group or a C 4-9 perfluoroalkoxyalkyl group]
And the amount of the perfluorovinyl ether unit represented by the formula (II) is 0.01 to 1% by mass based on the total mass of the modified polytetrafluoroethylene Some modified polytetrafluoroethylenes can be mentioned.
 式(II)中のXとしては、炭素数1~6のパーフルオロアルキル基又は炭素数4~9のパーフルオロアルコキシアルキル基が挙げられる。炭素数1~6のパーフルオロアルキル基としては、パーフルオロメチル基、パーフルオロエチル基、パーフルオロブチル基、パーフルオロプロピル基、パーフルオロブチル基等が挙げられる。炭素数4~9のパーフルオロアルコキシアルキル基としては、パーフルオロ2-メトキシプロピル基、パーフルオロ2-プロポキシプロピル基等が挙げられる。変性PTFEの熱的安定性を高めやすい観点からは、Xは、好ましくはパーフルオロプロピル基、パーフルオロエチル基、パーフルオロメチル基であり、より好ましくはパーフルオロプロピル基である。変性PTFEは、1種類の式(II)で表されるパーフルオロビニルエーテル単位を有していてもよいし、2種以上の式(II)で表されるパーフルオロビニルエーテル単位を有していてもよい。 Examples of X in the formula (II) include a perfluoroalkyl group having 1 to 6 carbon atoms or a perfluoroalkoxyalkyl group having 4 to 9 carbon atoms. Examples of the perfluoroalkyl group having 1 to 6 carbon atoms include perfluoromethyl group, perfluoroethyl group, perfluorobutyl group, perfluoropropyl group, perfluorobutyl group and the like. Examples of the perfluoroalkoxyalkyl group having 4 to 9 carbon atoms include perfluoro 2-methoxypropyl group and perfluoro 2-propoxypropyl group. From the viewpoint of easily enhancing the thermal stability of the modified PTFE, X is preferably a perfluoropropyl group, a perfluoroethyl group, or a perfluoromethyl group, more preferably a perfluoropropyl group. The modified PTFE may have one type of perfluorovinylether unit represented by the formula (II) or may have two or more perfluorovinylether units represented by the formula (II) Good.
 変性PTFEに含まれる式(II)で表されるパーフルオロビニルエーテル単位の量は、変性PTFEに含まれる全構成単位の量に基づいて、1モル%未満であり、好ましくは0.001モル%以上1モル%未満である。式(II)で表されるパーフルオロビニルエーテル単位の量が上記の上限より小さいと、PTFE樹脂に近い物性になりやすくなる。また、式(II)で表されるパーフルオロビニルエーテル単位の量が上記の下限以上であると、PTFEよりも屈曲性や溶接性、圧縮クリープ性の向上が優れる。上記パーフルオロビニルエーテル単位の量は、例えば特性吸収1040~890cm-1の範囲で赤外分光分析を行うことにより測定される。変性PTFEに含まれる式(II)で表されるパーフルオロビニルエーテル単位の量は、変性PTFEの全質量に基づいて、0.01~1質量%、好ましくは0.03~0.2質量%である。 The amount of the perfluorovinyl ether unit represented by the formula (II) contained in the modified PTFE is less than 1 mol%, preferably 0.001 mol% or more, based on the amount of all structural units contained in the modified PTFE It is less than 1 mol%. When the amount of the perfluorovinyl ether unit represented by the formula (II) is smaller than the above upper limit, physical properties close to those of the PTFE resin tend to be obtained. In addition, when the amount of the perfluorovinyl ether unit represented by the formula (II) is equal to or more than the above lower limit, the improvement of the flexibility, the weldability and the compression creepability is more excellent than the PTFE. The amount of the perfluorovinyl ether unit is measured, for example, by performing infrared spectroscopy in the range of 1040 to 890 cm −1 characteristic absorption. The amount of perfluorovinyl ether unit represented by the formula (II) contained in the modified PTFE is 0.01 to 1% by mass, preferably 0.03 to 0.2% by mass, based on the total mass of the modified PTFE is there.
 変性PTFEの融点は、好ましくは300~380℃、より好ましくは320~380℃、さらにより好ましくは320~350℃である。融点が上記の下限以上であると、成形性を向上しやすいため好ましく、上記の上限以下であると、樹脂の最適な機械的特性を得やすいため好ましい。変性PTFEの融点は、ASTM-D4591に準拠し、示差走査型熱量計(DSC)を用いて測定できる融解熱ピークの温度として求めた値である。 The melting point of the modified PTFE is preferably 300 to 380 ° C., more preferably 320 to 380 ° C., and still more preferably 320 to 350 ° C. When the melting point is the above lower limit or more, the formability is preferably improved, and the melting point is preferably the above upper limit or the like because the optimum mechanical properties of the resin can be easily obtained. The melting point of the modified PTFE is a value determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D 4591.
 変性PTFEの結晶化熱は、好ましくは18.0~25.0J/gであり、より好ましくは18.0~23.5J/gである。上記結晶化熱は、示差走査型熱量計(例えば島津製作所製「DSC-50」)により測定される。具体的には、約3mgの試料を50℃/分の速度にて250℃まで昇温させ、一旦保持し、更に10℃/分の速度にて380℃まで昇温させることにより結晶を融解させた後、10℃/分の速度で降温させた際に測定される結晶化点のピークから熱量に換算して測定される。 The heat of crystallization of the modified PTFE is preferably 18.0 to 25.0 J / g, more preferably 18.0 to 23.5 J / g. The heat of crystallization is measured by a differential scanning calorimeter (for example, "DSC-50" manufactured by Shimadzu Corporation). Specifically, the temperature is raised to 250 ° C. at a rate of 50 ° C./min, and temporarily held, and then the crystal is melted by raising the temperature to 380 ° C. at a rate of 10 ° C./min. After that, the peak of the crystallization point measured when the temperature is lowered at a rate of 10 ° C./min is measured in terms of heat.
 テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)は、テトラフルオロエチレンに由来する式(I):
Figure JPOXMLDOC01-appb-C000007
で表されるテトラフルオロエチレン単位に加えて、例えば式(II):
Figure JPOXMLDOC01-appb-C000008
[式中、Xは、炭素数1~6のパーフルオロアルキル基又は炭素数4~9のパーフルオロアルコキシアルキル基を表す]
で表されるパーフルオロビニルエーテル単位を含有する化合物であり、式(II)で表されるパーフルオロビニルエーテル単位の量が、PFAの全質量に基づいて1質量%より多い化合物が挙げられる。
The tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) is a compound of formula (I) derived from tetrafluoroethylene:
Figure JPOXMLDOC01-appb-C000007
In addition to the tetrafluoroethylene units represented by
Figure JPOXMLDOC01-appb-C000008
[Wherein, X represents a C 1-6 perfluoroalkyl group or a C 4-9 perfluoroalkoxyalkyl group]
And a compound having an amount of perfluorovinylether unit represented by the formula (II) is more than 1% by mass based on the total mass of PFA.
 式(II)中のXとしては、変性PTFEについて上記に述べた基が挙げられ、好ましい記載が同様にあてはまる。PFAは、1種類の式(II)で表されるパーフルオロビニルエーテル単位を有していてもよいし、2種以上の式(II)で表されるパーフルオロビニルエーテル単位を有していてもよい。 Examples of X in the formula (II) include the groups described above for the modified PTFE, and the same applies to the preferred descriptions. PFA may have one type of perfluorovinylether unit represented by formula (II), or may have two or more perfluorovinylether units represented by formula (II) .
 PFAに含まれる式(II)で表されるパーフルオロビニルエーテル単位の量は、PFAに含まれる全構成単位の量に基づいて、1モル%以上、好ましくは1~3モル%である。式(II)で表されるパーフルオロビニルエーテル単位の量が上記の範囲内である場合、複合樹脂材料から得た成形体の成形性を高めやすい。上記パーフルオロビニルエーテル単位の量は、例えば特性吸収1040~890cm-1の範囲で赤外分光分析を行うことにより測定される。 The amount of the perfluorovinyl ether unit represented by the formula (II) contained in PFA is 1 mol% or more, preferably 1 to 3 mol%, based on the amount of all the structural units contained in PFA. When the amount of the perfluorovinyl ether unit represented by the formula (II) is within the above range, the moldability of the molded body obtained from the composite resin material can be easily improved. The amount of the perfluorovinyl ether unit is measured, for example, by performing infrared spectroscopy in the range of 1040 to 890 cm −1 characteristic absorption.
 特にフッ素樹脂が変性PTFEである場合、その融点は、好ましくは300~380℃、より好ましくは320~380℃、さらにより好ましくは320~350℃である。融点が上記の下限以上であると、成形性を向上しやすいため好ましく、上記の上限以下であると、樹脂の最適な機械的特性を得やすいため好ましい。変性PTFEの融点は、ASTM-D4591に準拠し、示差走査型熱量計(DSC)を用いて測定できる融解熱ピークの温度として求めた値である。 In particular, when the fluororesin is a modified PTFE, its melting point is preferably 300 to 380 ° C., more preferably 320 to 380 ° C., and still more preferably 320 to 350 ° C. When the melting point is the above lower limit or more, the formability is preferably improved, and the melting point is preferably the above upper limit or the like because the optimum mechanical properties of the resin can be easily obtained. The melting point of the modified PTFE is a value determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D 4591.
 特にフッ素樹脂が変性PTFEである場合、その結晶化熱は、好ましくは18.0~25.0J/gであり、より好ましくは18.0~23.5J/gである。上記結晶化熱は、示差走査型熱量計(例えば島津製作所製「DSC-50」)により測定される。具体的には、約3mgの試料を50℃/分の速度にて250℃まで昇温させ、一旦保持し、更に10℃/分の速度にて380℃まで昇温させることにより結晶を融解させた後、10℃/分の速度で降温させた際に測定される結晶化点のピークから熱量に換算して測定される。 In particular, when the fluorocarbon resin is modified PTFE, the heat of crystallization is preferably 18.0 to 25.0 J / g, more preferably 18.0 to 23.5 J / g. The heat of crystallization is measured by a differential scanning calorimeter (for example, "DSC-50" manufactured by Shimadzu Corporation). Specifically, the temperature is raised to 250 ° C. at a rate of 50 ° C./min, and temporarily held, and then the crystal is melted by raising the temperature to 380 ° C. at a rate of 10 ° C./min. After that, the peak of the crystallization point measured when the temperature is lowered at a rate of 10 ° C./min is measured in terms of heat.
(カーボンナノチューブ)
 複合樹脂材料に含まれるカーボンナノチューブ(以下において「CNT」とも称する)は、炭素原子の六員環で構成される1枚または複数枚のグラフェンシートが円筒状に巻かれた構造を有する。CNTは、1枚のグラフェンシートが同心円状に巻かれた単層CNT(シングルウォールカーボンナノチューブ)、または、2枚以上の複数のグラフェンシートが同心円状に巻かれた多層CNT(マルチウォールカーボンナノチューブ)である。上記のカーボンナノ材料を単独で用いてもよいし、これらを組み合わせて用いてもよい。変性PTFEの粒子と複合化させやすく、体積抵抗率を低くしやすい観点からは、カーボンナノチューブは多層カーボンナノチューブであることがより好ましい。
(carbon nanotube)
A carbon nanotube (hereinafter also referred to as “CNT”) contained in the composite resin material has a structure in which one or a plurality of graphene sheets composed of six-membered rings of carbon atoms are cylindrically wound. The CNT is a single-walled CNT (single-walled carbon nanotube) in which one graphene sheet is concentrically wound, or a multilayer CNT (multi-walled carbon nanotube) in which two or more graphene sheets are concentrically wound. It is. The above carbon nanomaterials may be used alone or in combination. It is more preferable that the carbon nanotube is a multi-walled carbon nanotube from the viewpoint of being easily complexed with the modified PTFE particles and easily lowering the volume resistivity.
(複合樹脂材料の製造方法)
 ライニング層に含まれる複合樹脂材料の製造方法を以下に説明する。なお、薬液管等に含まれ得るフッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料、中空球状の成形体等に含まれ得るフッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料についても、フッ素樹脂Aをフッ素樹脂Bまたはフッ素樹脂Cに置き換えることにより、下記の記載が同様にあてはまる。
(Method of manufacturing composite resin material)
The manufacturing method of the composite resin material contained in a lining layer is demonstrated below. The fluorocarbon resin A may be a composite resin material containing fluorocarbon resin B and carbon nanotubes which may be contained in a chemical liquid pipe or the like, and a fluorocarbon resin C which may be contained in a hollow spherical molded body etc. By substituting resin B or fluorocarbon resin C, the following statements apply analogously.
 ライニング層に含まれる複合樹脂材料は、フッ素樹脂Aと、カーボンナノチューブを複合化させた材料である。複合樹脂材料を製造するための方法は、好ましくは上記のような物性を有する、フッ素樹脂とカーボンナノチューブとを複合化させた材料が得られる限り特に限定されない。好ましくは、ライニング層に含まれる複合樹脂材料は、フッ素樹脂Aとカーボンナノチューブとを複合化させた複合樹脂粒子から製造される。ここで、複合樹脂粒子の製造方法は、フッ素樹脂A、フッ素樹脂Bまたはフッ素樹脂Cの少なくとも表面および/または表層にカーボンナノチューブが存在する複合樹脂材料が得られる限り特に限定されない。例えば、特開2014-34591号に記載されるような方法で亜臨界または超臨界状態の二酸化炭素を用いて、または、特開2015-30821号に記載されるような方法でケトン系溶媒を用いて、フッ素樹脂A、フッ素樹脂Bまたはフッ素樹脂Cの粒子と、カーボンナノチューブとを複合化することにより、複合樹脂粒子を製造することができる。 The composite resin material contained in the lining layer is a material in which fluorocarbon resin A and carbon nanotubes are composited. The method for producing the composite resin material is not particularly limited as long as a material having a physical property as described above and in which a fluorocarbon resin and a carbon nanotube are composited is obtained. Preferably, the composite resin material contained in the lining layer is manufactured from composite resin particles in which fluorocarbon resin A and carbon nanotubes are composited. Here, the method for producing the composite resin particles is not particularly limited as long as a composite resin material in which carbon nanotubes exist on at least the surface and / or surface layer of the fluorocarbon resin A, fluorocarbon resin B or fluorocarbon resin C is obtained. For example, carbon dioxide in the subcritical or supercritical state is used as described in JP-A 2014-34591, or ketone solvent is used as described in JP-A 2015-30821. Composite resin particles can be produced by combining particles of fluorocarbon resin A, fluorocarbon resin B or fluorocarbon resin C with carbon nanotubes.
 亜臨界または超臨界状態の二酸化炭素を用いてフッ素樹脂Aの粒子とカーボンナノチューブとを複合化する複合樹脂粒子の製造方法について、以下に具体的に説明する。なお、当該方法は、フッ素樹脂Bまたはフッ素樹脂Cを用いる場合の複合樹脂粒子の製造方法にも同様にあてはまる。 The method for producing composite resin particles, in which particles of fluororesin A and carbon nanotubes are complexed using carbon dioxide in a subcritical or supercritical state, will be specifically described below. In addition, the said method is similarly applied to the manufacturing method of the composite resin particle in the case of using the fluororesin B or the fluororesin C.
 まず第1工程において、カーボンナノチューブを溶媒に分散させて、カーボンナノチューブ分散液を調製する。溶媒としては、水、アルコール系溶媒(エタノール、n-ブチルアルコール、イソプロピルアルコール、エチレングリコール等)、エステル系溶媒(酢酸エチル等)、エーテル系溶媒(ジエチルエーテル、ジメチルエーテル等)、ケトン系溶媒(メチルエチルケトン、アセトン、ジエチルケトン、メチルプロピルケトン、シクロヘキサノン等)、脂肪族炭化水素系溶媒(ヘキサン、ヘプタン等)、芳香族炭化水素系溶媒(トルエン、ベンゼン等)、塩素化炭化水素系溶媒(ジクロロメタン、クロロホルム、クロロベンゼン等)が挙げられる。1種類の溶媒を使用してもよいし、2種以上の溶媒を組み合わせて使用してもよい。フッ素樹脂Aとカーボンナノチューブとを複合化させやすい観点からは、フッ素樹脂Aの粒子表面を膨潤させやすい溶媒を使用することが好ましく、具体的にはケトン系溶媒を使用することが好ましい。 First, in the first step, carbon nanotubes are dispersed in a solvent to prepare a carbon nanotube dispersion. As the solvent, water, alcohol solvents (ethanol, n-butyl alcohol, isopropyl alcohol, ethylene glycol etc.), ester solvents (ethyl acetate etc.), ether solvents (diethyl ether, dimethyl ether etc.), ketone solvents (methyl ethyl ketone) , Acetone, diethyl ketone, methyl propyl ketone, cyclohexanone etc., aliphatic hydrocarbon solvents (hexane, heptane etc), aromatic hydrocarbon solvents (toluene, benzene etc), chlorinated hydrocarbon solvents (dichloromethane, chloroform) , Chlorobenzene, etc.). One type of solvent may be used, or two or more types of solvents may be used in combination. From the viewpoint of facilitating complexing of the fluororesin A and the carbon nanotube, it is preferable to use a solvent that easily swells the particle surface of the fluororesin A, and specifically, it is preferable to use a ketone-based solvent.
 カーボンナノチューブ分散液に含まれる溶媒の量は、溶媒中にカーボンナノチューブを単一分散させやすい観点から、カーボンナノチューブ分散液に含まれるカーボンナノチューブ100質量部に対して、好ましくは20,000~1,000,000質量部、より好ましくは30,000~300,000質量部、さらにより好ましくは50,000~200,000質量部である。 The amount of the solvent contained in the carbon nanotube dispersion is preferably 20,000 to 1, relative to 100 parts by mass of the carbon nanotubes contained in the carbon nanotube dispersion, from the viewpoint of facilitating single dispersion of the carbon nanotubes in the solvent. 000, 000 parts by weight, more preferably 30,000 to 300,000 parts by weight, even more preferably 50,000 to 200,000 parts by weight.
 複合樹脂粒子の製造に使用するカーボンナノチューブは、好ましくは50~600μm、より好ましくは50~300μm、さらにより好ましくは100~200μmの平均長さを有する。カーボンナノチューブの平均長さは、走査型電子顕微鏡(SEM、FE-SEM)や透過型電子顕微鏡(TEM)により測定される。 The carbon nanotubes used for producing the composite resin particles preferably have an average length of 50 to 600 μm, more preferably 50 to 300 μm, and still more preferably 100 to 200 μm. The average length of the carbon nanotubes is measured by a scanning electron microscope (SEM, FE-SEM) or a transmission electron microscope (TEM).
 カーボンナノチューブは、従来の製造方法によって製造できる。具体的には、二酸化炭素の接触水素還元、アーク放電法、レーザー蒸発法、CVD法などの気相成長法、気相流動法、一酸化炭素を高温高圧化で鉄触媒と共に反応させて気相で成長させるHiPco法、オイルファーネス法等が挙げられる。市販のカーボンナノチューブ、例えばNanocyl製「NC7000」を使用してもよい。 Carbon nanotubes can be produced by conventional production methods. Specifically, catalytic hydrogen reduction of carbon dioxide, arc discharge method, laser evaporation method, vapor phase growth method such as CVD method, gas phase flow method, carbon monoxide is reacted with iron catalyst at high pressure and high pressure to be a gas phase Such as the HiPco method to grow by Commercially available carbon nanotubes such as "NC7000" from Nanocyl may be used.
 溶媒にカーボンナノチューブを分散させる際、カーボンナノチューブの分散性を高める目的で分散剤を使用してもよい。分散剤としては、例えばアクリル系分散剤、ポリビニルピロリドン、ポリアニリンスルホン酸等の合成ポリマー、DNA、ペプチド、有機アミン化合物等が挙げられる。1種類の分散剤を使用してもよいし、2種以上の分散剤を組み合わせて使用してもよい。最終的に得られる成形体中に残存する分散剤の量を低減しやすい観点からは、分散剤が、本発明に好ましい複合樹脂粒子の成形温度よりも低い温度の沸点を有することが好ましい。分散剤を使用する場合、カーボンナノチューブ分散液に含まれる分散剤の量は、カーボンナノチューブ、溶媒および分散剤の種類や量によって適宜選択してよい。例えば、使用する分散剤の量は、カーボンナノチューブ100質量部に対して好ましくは100~6,000質量部、より好ましくは200~3,000質量部、さらにより好ましくは300~1,000質量部である。 When dispersing carbon nanotubes in a solvent, a dispersant may be used for the purpose of enhancing the dispersibility of carbon nanotubes. Examples of the dispersant include acrylic dispersants, synthetic polymers such as polyvinyl pyrrolidone and polyaniline sulfonic acid, DNA, peptides, organic amine compounds and the like. One dispersant may be used, or two or more dispersants may be used in combination. From the viewpoint of easily reducing the amount of the dispersant remaining in the finally obtained molded article, the dispersant preferably has a boiling point at a temperature lower than the molding temperature of the composite resin particles preferred for the present invention. When a dispersant is used, the amount of the dispersant contained in the carbon nanotube dispersion may be appropriately selected according to the type and the amount of the carbon nanotube, the solvent and the dispersant. For example, the amount of dispersant used is preferably 100 to 6,000 parts by mass, more preferably 200 to 3,000 parts by mass, and still more preferably 300 to 1,000 parts by mass with respect to 100 parts by mass of carbon nanotubes. It is.
 上記第1工程において水を溶媒として用いる場合、後述する第2工程の前に、カーボンナノチューブ分散液をアルコール系溶媒等と混合する。これは、続く第2工程において添加するフッ素樹脂Aと水との親和性が低く、溶媒として水を用いるカーボンナノチューブ分散液中にフッ素樹脂Aの粒子を分散させることが難しいためである。そこで、アルコール系溶媒を混合することにより、フッ素樹脂Aの粒子とカーボンナノチューブ分散液との親和性を高めることができる。 When water is used as a solvent in the first step, the carbon nanotube dispersion is mixed with an alcohol solvent or the like before the second step described later. This is because the affinity between the fluororesin A added in the subsequent second step and water is low, and it is difficult to disperse the particles of the fluororesin A in the carbon nanotube dispersion using water as a solvent. Therefore, by mixing an alcohol solvent, the affinity between the particles of the fluorocarbon resin A and the carbon nanotube dispersion liquid can be enhanced.
 次に、第2工程において、カーボンナノチューブ分散液にフッ素樹脂Aの粒子を添加し撹拌して、カーボンナノチューブおよびフッ素樹脂Aの粒子が分散した混合スラリーを調製する。 Next, in the second step, particles of fluorocarbon resin A are added to the carbon nanotube dispersion and stirred to prepare a mixed slurry in which particles of carbon nanotube and fluorocarbon resin A are dispersed.
 カーボンナノチューブ分散液にフッ素樹脂Aの粒子を添加すると、分散液中のカーボンナノチューブがフッ素樹脂Aの粒子表面に緩やかに吸着する。ここで、溶媒の温度、カーボンナノチューブおよびフッ素樹脂Aの分散濃度、フッ素樹脂Aの添加速度等を適宜調整することにより、カーボンナノチューブおよびフッ素樹脂Aの高い分散状態を維持しつつ、カーボンナノチューブをフッ素樹脂Aの粒子表面に吸着させることができる。このような方法により、カーボンナノチューブを、低い添加濃度であっても、フッ素樹脂Aの粒子表面に均一に分散させることができる。また、長尺のカーボンナノチューブを用いる場合であっても、その性質を損なうことなく、フッ素樹脂Aの粒子表面に均一に分散させることができる。フッ素樹脂Aの添加は、フッ素樹脂Aの粒子をそのまま添加してもよいし、フッ素樹脂Aの粒子を溶媒にあらかじめ分散させた分散液の形態で添加してもよい。 When particles of fluorocarbon resin A are added to the carbon nanotube dispersion liquid, carbon nanotubes in the dispersion liquid are gently adsorbed on the particle surfaces of fluorocarbon resin A. Here, by appropriately adjusting the temperature of the solvent, the dispersion concentration of the carbon nanotube and the fluorocarbon resin A, the addition rate of the fluorocarbon resin A, and the like, the carbon nanotube is fluorinated while maintaining a high dispersion state of the carbon nanotube and the fluorocarbon resin A. It can be adsorbed on the surface of resin A particles. By such a method, the carbon nanotubes can be uniformly dispersed on the particle surface of the fluororesin A even at a low addition concentration. Further, even in the case of using a long carbon nanotube, it can be uniformly dispersed on the particle surface of the fluorocarbon resin A without impairing its properties. The addition of the fluororesin A may be performed by adding the particles of the fluororesin A as it is or in the form of a dispersion in which the particles of the fluororesin A are dispersed in advance in a solvent.
 本発明に好ましい複合樹脂粒子の製造に使用するフッ素樹脂Aの粒子は、好ましくは5~500μm、より好ましくは10~250μm、さらにより好ましくは10~100μm、特に好ましくは10~50μm、極めて好ましくは15~30μmの平均粒子径を有する。フッ素樹脂Aの平均粒子径が上記の上限以下であることが、複合樹脂粒子から作製した成形体(複合樹脂材料)におけるカーボンナノチューブの分散性を高めやすく、帯電防止性を均一かつ効率的に高めやすいため好ましい。フッ素樹脂Aの平均粒子径が上記の下限以上であることが、複合樹脂粒子の製造しやすさの観点から好ましい。フッ素樹脂Aの平均粒子径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒子径を意味するメジアン径(D50)であり、レーザー回折散乱式粒度分布装置を用いて測定される。 The particles of the fluorocarbon resin A used for producing the composite resin particles preferred for the present invention are preferably 5 to 500 μm, more preferably 10 to 250 μm, still more preferably 10 to 100 μm, particularly preferably 10 to 50 μm, very preferably It has an average particle size of 15 to 30 μm. It is easy to increase the dispersibility of carbon nanotubes in a molded article (composite resin material) produced from composite resin particles such that the average particle diameter of the fluororesin A is not more than the above upper limit, and the antistatic property is uniformly and efficiently enhanced. It is preferable because it is easy. It is preferable from the viewpoint of easiness of production of the composite resin particles that the average particle diameter of the fluorine resin A is not less than the above lower limit. The average particle diameter of the fluororesin A is a median diameter (D 50 ) which means the particle diameter at an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method, using a laser diffraction scattering type particle size distribution apparatus It is measured.
 複合樹脂粒子の製造に使用するフッ素樹脂Aの粒子は、JIS Z8830に従い測定して好ましくは0.5~9.0m/g、より好ましくは0.8~4.0m/g、さらにより好ましくは1.0~3.0m/gの比表面積を有する。比表面積が上記の上限以下であることが、フッ素樹脂Aの粒子とカーボンナノチューブとの密着性を高めやすい観点から好ましく、上記の下限以上であることが、複合樹脂粒子の製造しやすさの観点から好ましい。フッ素樹脂Aの粒子の比表面積は、具体的には、定容量式ガス吸着法である比表面積/細孔分布測定装置を用いて、一般的な比表面積の測定方法であるBET法により測定される。 The particles of the fluorocarbon resin A used for producing the composite resin particles are preferably 0.5 to 9.0 m 2 / g, more preferably 0.8 to 4.0 m 2 / g, and further more preferably measured according to JIS Z8830. Preferably, it has a specific surface area of 1.0 to 3.0 m 2 / g. The specific surface area is preferably not more than the above upper limit from the viewpoint of easily improving the adhesion between the particles of fluorocarbon resin A and the carbon nanotube, and it is not less than the above lower limit, the viewpoint of easiness of producing composite resin particles It is preferable from Specifically, the specific surface area of the fluorine resin A particles is measured by the BET method, which is a general measurement method of specific surface area, using a specific surface area / pore distribution measuring apparatus, which is a fixed capacity gas adsorption method. Ru.
 本発明のタンクにおいてライニング層の少なくとも一部に含まれる複合樹脂材料におけるフッ素樹脂Aについて上記に述べた、フッ素樹脂Aの構造、融点に関する記載は、これらは複合化前後や、複合樹脂材料の製造前後で変化しない特性であるため、複合樹脂粒子の製造に使用するフッ素樹脂Aの粒子についても同様にあてはまる。フッ素樹脂BおよびCについても同様である。 In the tank of the present invention, the description on the structure and the melting point of the fluorocarbon resin A described above for the fluorocarbon resin A in the composite resin material contained in at least a part of the lining layer refers to these before and after compounding, and production of the composite resin material Since the characteristics do not change before and after, the same applies to particles of fluororesin A used for producing composite resin particles. The same applies to fluororesins B and C.
 上記好ましい範囲の平均粒子径や比表面積を有するフッ素樹脂Aの粒子の製造方法は特に限定されず、従来公知の重合方法、好ましくは懸濁重合によってフッ素樹脂Aを製造し、上記重合により得た反応性重合体を含む分散液を噴霧乾燥させる方法、得られるフッ素樹脂Aをハンマーミル、ターボミル、カッティングミル、ジェットミル等の粉砕機を使用して機械的に粉砕する方法、得られるフッ素樹脂Aを室温未満の温度で機械的に粉砕する凍結粉砕などが挙げられる。所望の平均粒子径および比表面積を有するフッ素樹脂Aの粒子を得やすい観点からは、ジェットミル等の粉砕機を使用してフッ素樹脂Aの粒子を製造することが好ましい。 There is no particular limitation on the method of producing the particles of the fluorocarbon resin A having an average particle diameter and specific surface area in the above preferable range, and the fluorocarbon resin A is produced by a conventionally known polymerization method, preferably suspension polymerization, and obtained by the above polymerization Method of spray-drying a dispersion containing a reactive polymer, method of mechanically pulverizing the obtained fluororesin A using a grinder such as a hammer mill, turbo mill, cutting mill, jet mill, etc., obtained fluororesin A And mechanical grinding at a temperature below room temperature. From the viewpoint of easily obtaining particles of fluororesin A having a desired average particle diameter and specific surface area, it is preferable to produce particles of fluororesin A using a pulverizer such as a jet mill.
 上記好ましい範囲の平均粒子径を有するフッ素樹脂Aの粒子は、篩や気流を用いる分級工程により平均粒子径を調整して製造してもよい。 The particles of the fluororesin A having an average particle diameter in the above preferable range may be manufactured by adjusting the average particle diameter by a classification step using a sieve or an air stream.
 次に第3工程において、第2工程で得た混合スラリーを耐圧容器に供給し、耐圧容器内で二酸化炭素が亜臨界または超臨界状態となる温度および圧力を維持しながら、二酸化炭素を特定の速度で供給し、耐圧容器内に二酸化炭素を充満させる。二酸化炭素としては、液化二酸化炭素、気液混合の二酸化炭素、気体の二酸化炭素のうちいずれを使用してもよい。ここで、二酸化炭素が超臨界状態とは、臨界点以上の温度および臨界点以上の圧力にある状態をいい、具体的には31.1℃以上の温度および72.8気圧以上の圧力にある状態をいう。また、亜臨界状態とは、臨界点以上の圧力および臨界点以下の温度にある状態をいう。 Next, in the third step, the mixed slurry obtained in the second step is supplied to the pressure container, and the carbon dioxide is specified while maintaining the temperature and pressure at which carbon dioxide becomes subcritical or supercritical in the pressure container. Supply at speed and fill the pressure vessel with carbon dioxide. As carbon dioxide, any of liquefied carbon dioxide, carbon dioxide in gas-liquid mixture, and gaseous carbon dioxide may be used. Here, carbon dioxide in the supercritical state refers to a temperature above the critical point and a pressure above the critical point, specifically, a temperature above 31.1 ° C. and a pressure above 72.8 atmospheres I say the state. Moreover, a subcritical state means the state which exists in the pressure below a critical point, and the temperature below a critical point.
 第3工程において、混合スラリーに含まれていた溶媒および分散剤が二酸化炭素中に溶け込み、混合スラリー中に分散していたカーボンナノチューブがフッ素樹脂Aの粒子に付着する。 In the third step, the solvent and the dispersant contained in the mixed slurry dissolve in carbon dioxide, and the carbon nanotubes dispersed in the mixed slurry adhere to the particles of the fluororesin A.
 二酸化炭素の供給速度は、カーボンナノチューブ同士の凝集を抑制し、フッ素樹脂Aの粒子表面にカーボンナノチューブを均一に付着させやすい観点から、例えば混合スラリーに含まれる分散剤1mgに対して好ましくは0.25g/分以下、より好ましくは0.07g/分以下、さらにより好ましくは0.05g/分以下である。 The feed rate of carbon dioxide is preferably, for example, preferably 1 mg of the dispersing agent contained in the mixed slurry from the viewpoint of suppressing aggregation of carbon nanotubes and allowing carbon nanotubes to be uniformly attached to the particle surface of fluororesin A. It is 25 g / min or less, more preferably 0.07 g / min or less, and even more preferably 0.05 g / min or less.
 続く第4工程において、二酸化炭素が亜臨界または超臨界状態となる温度および圧力を所定時間保持しながら、二酸化炭素を、二酸化炭素中に溶け込んだ溶媒および分散剤と共に耐圧容器から排出する。 In the subsequent fourth step, carbon dioxide is discharged from the pressure container together with the solvent and dispersant dissolved in carbon dioxide while maintaining the temperature and pressure at which carbon dioxide is in the subcritical or supercritical state for a predetermined time.
 次に、第5工程において、第4工程の状態を維持しながら分散剤と親和性の高いエントレーナを耐圧容器中に添加する。これにより、残存する分散剤を効率的に除去することができる。エントレーナとしては、例えば、第1工程においてカーボンナノチューブ分散液を調製する際に使用した溶媒を使用してよい。具体的には、第1工程において有機溶媒を使用した場合にはエントレーナとして同様の有機溶媒を使用してよい。第1工程において溶媒として水を使用した場合には、エントレーナとしてアルコール系溶媒を使用することが好ましい。なお、第5工程は分散剤を効率的に除去するための任意の工程であり、必須の工程ではない。例えばエントレーナを添加せず、第4工程を維持することにより、分散剤を除去することも可能である。 Next, in the fifth step, entrainer having high affinity to the dispersant is added to the pressure container while maintaining the state of the fourth step. Thereby, the remaining dispersant can be efficiently removed. As the entrainer, for example, the solvent used in preparing the carbon nanotube dispersion in the first step may be used. Specifically, when an organic solvent is used in the first step, the same organic solvent may be used as an entrainer. When water is used as the solvent in the first step, it is preferable to use an alcohol solvent as the entrainer. The fifth step is an optional step for efficiently removing the dispersant, and is not an essential step. It is also possible to remove the dispersant, for example by maintaining the fourth step without adding an entrainer.
 次に、第6工程において、耐圧容器の圧力を下げることにより耐圧容器中の二酸化炭素を除去し、複合樹脂粒子を得ることができる。ここで、二酸化炭素の除去方法によっては、複合樹脂粒子に二酸化炭素や溶媒が残存する場合がある。そのため、得られる複合樹脂粒子を真空にさらしたり、加熱することにより、残存する二酸化炭素や溶媒を効率的に除去することができる。 Next, in the sixth step, the pressure of the pressure resistant container is lowered to remove carbon dioxide in the pressure resistant container to obtain composite resin particles. Here, depending on the carbon dioxide removal method, carbon dioxide and a solvent may remain in the composite resin particles. Therefore, residual carbon dioxide and a solvent can be efficiently removed by exposing the composite resin particles obtained to vacuum or heating.
(本発明のタンクの製造方法)
 本発明のタンクの内面に設けられたライニング層は、少なくとも一部において、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含む。複合樹脂材料を含むライニング層は、例えば、上記複合樹脂材料を含むライニングシートで構成されていてもよいし、上記複合樹脂材料を含むライニングシートと他のシート(例えばガラスクロス)との積層体であってもよい。複合樹脂材料を含むライニングシートは、例えば上記複合樹脂粒子を溶融し、シート状に成形することにより製造してもよいし、上記複合樹脂粒子を例えば圧縮成形(コンプレッション成形)してシート状の成形体を得てもよいし、該圧縮成形により得た成形体を例えばシート状に切り出して製造してもよい。ライニングシートの導電性を効率的に高めやすい観点からは、複合樹脂粒子を圧縮成形してシート状の成形体を得るか、該圧縮成形により得た成形体を例えばシート状に切り出して、複合樹脂材料を含むライニングシートを製造することが好ましい。上記好ましい製造方法により、ライニングシートの導電性を効率的に高めやすい理由は明らかではないが、以下のメカニズムによると考えられる。なお、本発明のタンクは後述するメカニズムに何ら限定されるものではない。複合樹脂粒子においては、上記に述べたように、フッ素樹脂の少なくとも表面および/または表層にカーボンナノチューブが存在し、これらカーボンナノチューブは導電性ネットワークを形成していると考えられる。カーボンナノチューブの導電性ネットワークは、複合樹脂粒子にかかる外力によりカーボンナノチューブが切断されたり、カーボンナノチューブが凝集したりすることにより、切断されやすいと考えられる。そのため、複合樹脂粒子からライニングシートを製造する際に、該ネットワークができる限り切断されないような方法を用いることにより、ライニングシートの導電性を効率的に高めやすいと考えられる。複合樹脂粒子を圧縮成形してシート状の成形体を得る方法、および、該圧縮成形により得た複合樹脂材料を例えばシート状に切り出してライニングシートを製造する方法は、複合樹脂粒子を溶融押出することによりライニングシートを製造する方法と比較して、カーボンナノチューブのネットワークの切断を抑制しやすく、その結果、ライニングシートの導電性を効率的に高めやすいと考えられる。
(Method of producing tank of the present invention)
The lining layer provided on the inner surface of the tank of the present invention contains, at least in part, a composite resin material containing fluorocarbon resin A and carbon nanotubes. The lining layer containing the composite resin material may be made of, for example, a lining sheet containing the above-mentioned composite resin material, or a laminate of the lining sheet containing the above-mentioned composite resin material and another sheet (for example, glass cloth) It may be. The lining sheet containing the composite resin material may be manufactured, for example, by melting the above-mentioned composite resin particles and forming it into a sheet, or forming the above-mentioned composite resin particles into a sheet by, for example, compression molding (compression molding). A body may be obtained, or a compact obtained by the compression molding may be cut out into a sheet, for example. From the viewpoint of improving the conductivity of the lining sheet efficiently, the composite resin particles are compression molded to obtain a sheet-like molded product, or the molded product obtained by the compression molding is cut out into, for example, a sheet. It is preferred to produce a lining sheet comprising the material. The reason why the conductivity of the lining sheet can be efficiently enhanced by the above preferred manufacturing method is not clear, but is considered to be due to the following mechanism. The tank of the present invention is not limited to the mechanism described later. In the composite resin particle, as described above, carbon nanotubes are present on at least the surface and / or surface layer of the fluorine resin, and these carbon nanotubes are considered to form a conductive network. The conductive network of the carbon nanotube is considered to be easily cut when the carbon nanotube is cut by the external force applied to the composite resin particles or the carbon nanotube is aggregated. Therefore, when manufacturing a lining sheet from composite resin particles, it is considered that the conductivity of the lining sheet can be efficiently enhanced by using a method in which the network is not cut as much as possible. The method of compression-molding composite resin particles to obtain a sheet-like formed body, and the method of cutting out the composite resin material obtained by the compression-molding into, for example, a sheet to manufacture lining sheets, melt-extrude the composite resin particles Thus, it is considered that the cutting of the carbon nanotube network can be suppressed more easily than the method of manufacturing the lining sheet, and as a result, the conductivity of the lining sheet can be efficiently enhanced.
 従って、本発明は、フッ素樹脂Aとカーボンナノチューブを含む複合樹脂粒子(例えば、5μm以上500μm以下の平均粒子径を有する複合樹脂粒子)を、圧縮成形して得られる複合樹脂材料を、ライニング層の少なくとも一部において含むタンクを提供することができる。
 また、ライニング層の少なくとも一部に含まれる複合樹脂材料は、フッ素樹脂Aとカーボンナノチューブを含む複合樹脂粒子(例えば、5μm以上500μm以下の平均粒子径を有する複合樹脂粒子)を、圧縮成形して得られる圧縮成形体である、実施形態のタンクを提供することができる。
Therefore, in the present invention, a composite resin material obtained by compression molding composite resin particles (for example, composite resin particles having an average particle diameter of 5 μm to 500 μm) including fluororesin A and carbon nanotubes is used as a lining layer A tank can be provided that includes at least in part.
The composite resin material contained in at least a part of the lining layer is formed by compression molding composite resin particles (for example, composite resin particles having an average particle diameter of 5 μm to 500 μm) including fluororesin A and carbon nanotubes. An embodiment tank can be provided which is a resulting compression molded body.
 複合樹脂粒子を圧縮成形することを経てライニングシートを製造しやすく、ライニングシートの導電性を効率的に高めやすい観点から、複合樹脂材料に含まれるフッ素樹脂として、例えば、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択できる。複合樹脂材料に含まれるフッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)及びテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)からなる群から選択されるフッ素樹脂を用いることが好ましい。
 なお、複合樹脂材料からシートを製造する場合を例に上記製造方法を説明したが、薬液管、中空球状の成形体等を製造する際にも、複合樹脂粒子を溶融押出成形することによりこれらの成形体を製造してもよいし、複合樹脂粒子を圧縮成形してこれらの成形体を得てもよいし、該圧縮成形により得た成形体から切削加工によりこれらの成形体を製造してもよい。ここで、上記に述べたように、カーボンナノチューブのネットワークの切断を抑制しやすく、その結果、薬液管等の導電性を効率的に高めやすい観点から、複合樹脂粒子を圧縮成形することを経て、薬液管、中空球状の成形体を製造することが好ましい。
 このような製造方法に適する観点から、複合樹脂材料に含まれるフッ素樹脂Bおよび/またはCは、例えば、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択できる。複合樹脂材料に含まれるフッ素樹脂Bおよび/またはCとして、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)及びテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)からなる群から選択されることが好ましい。
As a fluorine resin contained in a composite resin material, for example, polytetrafluoroethylene (PTFE) from the viewpoint of facilitating the production of a lining sheet through compression molding of composite resin particles and of efficiently enhancing the conductivity of the lining sheet , Modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE) And polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF). As a fluorine resin contained in the composite resin material, a fluorine selected from the group consisting of polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE) and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) It is preferable to use a resin.
The above manufacturing method has been described by way of example in the case of producing a sheet from a composite resin material, but also when producing a chemical liquid tube, a hollow spherical shaped body, etc., these composite resin particles are melt extruded. A molded body may be produced, or composite resin particles may be compression molded to obtain these molded bodies, or these molded bodies may be manufactured by cutting from the molded body obtained by the compression molding. Good. Here, as described above, it is easy to suppress the cutting of the carbon nanotube network, and as a result, the composite resin particles are subjected to compression molding from the viewpoint of easily enhancing the conductivity of the chemical solution tube etc. It is preferable to produce a drug solution tube and a hollow spherical shaped body.
From the viewpoint of being suitable for such a production method, the fluororesins B and / or C contained in the composite resin material are, for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroethylene / perfluoroethylene Fluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene ( PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF). A group consisting of polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE) and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) as the fluorine resin B and / or C contained in the composite resin material It is preferred to be selected from
 フッ素樹脂がPTFE樹脂及び変性PTFE樹脂の場合、複合樹脂粒子を圧縮成形して複合樹脂材料を製造する方法としては、複合樹脂粒子を圧縮して得た予備成形体に焼成処理を施す方法が挙げられる。焼成前の予備成形体は、複合樹脂粒子を、必要に応じて適切な前処理(例えば、予備乾燥、造粒等)を行った後、金型に入れて圧縮して製造する。焼成前の予備成形体を製造するために圧縮する際の加圧としては、好ましくは0.1~100MPa、より好ましくは1~80MPa、さらにより好ましくは5~50MPaである。 When the fluorine resin is a PTFE resin and a modified PTFE resin, a method of subjecting a preform obtained by compressing the composite resin particles to a firing treatment is mentioned as a method of producing the composite resin material by compression molding the composite resin particles. Be The preformed body before firing is produced by subjecting the composite resin particles to a suitable pretreatment (eg, preliminary drying, granulation, etc.) as necessary, and then placing the composite resin particles in a mold and compressing it. The pressure applied during compression to produce a preform before firing is preferably 0.1 to 100 MPa, more preferably 1 to 80 MPa, and still more preferably 5 to 50 MPa.
 上記のようにして得た予備成形体を例えば複合樹脂粒子に含まれる樹脂の融点以上の温度にて焼成し、成形体を製造する。焼成温度は焼成前の予備成形体の寸法や焼成時間等にもよるが、好ましくは345~400℃、より好ましくは360~390℃である。焼成前の予備成形体を焼成炉内に入れ、好ましくは上記焼成温度で焼成して、成形体を製造する。
 得られた成形体をそのままライニングシート等(例えば、後述する棒状の成形体、撹拌棒等)として用いてもよいし、該成形体から切削加工等を行いライニングシート等(例えば、後述するノズル、中空球状成形体、棒状の成形体、撹拌棒等)を作製してもよい。
The preformed body obtained as described above is fired, for example, at a temperature equal to or higher than the melting point of the resin contained in the composite resin particles to produce a molded body. The firing temperature is preferably 345 to 400 ° C., more preferably 360 to 390 ° C., although it depends on the size of the preform before firing and the firing time. The preform before firing is placed in a firing furnace, and preferably fired at the above-mentioned firing temperature to produce a formed product.
The obtained molded product may be used as it is as a lining sheet or the like (for example, a rod-like molded product to be described later, a stirring rod or the like) or cut from the molded product to a lining sheet or the like (for example A hollow spherical shaped body, a rod-like shaped body, a stirring rod or the like may be produced.
 フッ素樹脂がPCTFE樹脂、PFA樹脂、FEP樹脂、ETFE樹脂、ECTFE樹脂、PVDF樹脂及びPVF樹脂(PTFE樹脂及び変性PTFE樹脂以外)の場合、複合樹脂粒子を圧縮成形して複合樹脂材料を製造する方法としては、成形体寸法に応じて予備乾燥などの適切な前処理を行い、前処理実施後、金型を200℃以上、好ましくは200~400℃、より好ましくは210~380℃に設定した熱風循環式電気炉で2時間以上、好ましくは2~12時間、加熱させて樹脂を溶融させる。所定時間加熱後、電気炉から金型を取り出し、油圧プレスを用いて25kg/cm以上、好ましくは50kg/cm以上、の面圧で加圧圧縮しながら常温付近まで金型を冷却したのち、複合樹脂粒子の成形体(樹脂材料)を得た。
 得られた成形体をそのままライニングシート等(例えば、後述する棒状の成形体、撹拌棒等)として用いてもよいし、該成形体から切削加工等を行いライニングシート等(例えば、後述するノズル、中空球状成形体、棒状の成形体、撹拌棒等)を作製してもよい。
When the fluorocarbon resin is PCTFE resin, PFA resin, FEP resin, ETFE resin, ECTFE resin, PVDF resin and PVF resin (other than PTFE resin and modified PTFE resin), a method of compression molding the composite resin particles to produce a composite resin material As the heat treatment, appropriate pre-treatment such as pre-drying is performed according to the size of the molding, and after pre-treatment, the mold is heated to 200 ° C. or higher, preferably 200 to 400 ° C., more preferably 210 to 380 ° C. The resin is melted by heating in a circulating electric furnace for 2 hours or more, preferably 2 to 12 hours. After heating for a predetermined time, the mold is taken out of the electric furnace, and the mold is cooled to around normal temperature while pressing and compressing with a hydraulic pressure and a surface pressure of 25 kg / cm 2 or more, preferably 50 kg / cm 2 or more. A molded article (resin material) of composite resin particles was obtained.
The obtained molded product may be used as it is as a lining sheet or the like (for example, a rod-like molded product to be described later, a stirring rod or the like) or cut from the molded product to a lining sheet or the like (for example A hollow spherical shaped body, a rod-like shaped body, a stirring rod or the like may be produced.
 タンク外缶の内面にライニング層を設ける方法としては、フッ素樹脂のシートの片面をエッチングしたシート、または、フッ素樹脂のシートの片面にガラスクロスを積層させたシートを、タンク外缶の内面の形状に合わせて切り出し、切り出したシートをエポキシ接着剤等を用いてタンク内面に貼り合せる方法が挙げられる。タンク内面に貼り合せたシート間の隙間を、例えば直径2~5mmの円形または三角形の断面を有する棒状の溶接材料、好ましくはPFA材料を用いて溶接してもよい。 As a method of providing a lining layer on the inner surface of the tank outer can, a sheet obtained by etching one side of a sheet of a fluorine resin, or a sheet obtained by laminating glass cloth on one side of a sheet of a fluorine resin, The method of making it cut out according to, and bonding the cut-out sheet | seat to a tank inner surface using an epoxy adhesive etc. is mentioned. The gap between the sheets bonded to the inner surface of the tank may be welded, for example, using a rod-like welding material, preferably a PFA material, having a circular or triangular cross section with a diameter of 2 to 5 mm.
<薬液管>
 本発明のタンクは、タンクの内部と外部とに繋がる薬液管を備えることができる。薬液管としては、薬液を投入するための薬液投入管、薬液を排出するための薬液排出管が挙げられる。薬液管内を薬液が通過する際、薬液管の内面と薬液との間で摩擦が生じ、静電気が発生することにより薬液が帯電しやすい。そのため、薬液の帯電を効率的に防止する観点からは、薬液管が、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層を薬液管の内面の少なくとも一部に有する、および/または、薬液管がフッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料の成形体であることが好ましい。ここで、フッ素樹脂Bは、例えば、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)から選択されることができる。フッ素樹脂Bは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)およびテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)からなる群から選択されることが好ましい。フッ素樹脂Bは、導電性を効率的に高めやすい観点から、更に好ましくはポリテトラフルオロエチレン(PTFE)および変性ポリテトラフルオロエチレン(変性PTFE)からなる群から選択され、さらに、導電性を効率的に高めやすい観点ならびに屈曲性および溶接性の観点から、更により好ましくは変性ポリテトラフルオロエチレン(変性PTFE)である。
<Chemical liquid pipe>
The tank of the present invention can be provided with a chemical liquid pipe connected to the inside and the outside of the tank. Examples of the chemical liquid pipe include a chemical liquid introduction pipe for injecting a chemical liquid and a chemical liquid discharge pipe for discharging a chemical liquid. When the drug solution passes through the drug solution pipe, friction occurs between the inner surface of the drug solution pipe and the drug solution, and static electricity is generated, whereby the drug solution is likely to be charged. Therefore, from the viewpoint of efficiently preventing electrification of the chemical solution, the chemical solution tube has a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of the chemical solution tube and / or It is preferable that the chemical liquid pipe be a molded body of a composite resin material containing fluorocarbon resin B and carbon nanotubes. Here, the fluorine resin B is, for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene Copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and It can be selected from polyvinyl fluoride (PVF). The fluororesin B is preferably selected from the group consisting of polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE) and tetrafluoroethylene / perfluoroalkylvinylether copolymer (PFA). The fluorine resin B is more preferably selected from the group consisting of polytetrafluoroethylene (PTFE) and modified polytetrafluoroethylene (modified PTFE), from the viewpoint of facilitating efficient improvement of the conductivity, and further, the conductivity is efficiently selected. In view of easiness of enhancing the properties and flexibility and weldability, modified polytetrafluoroethylene (modified PTFE) is more preferable.
 薬液管を構成する複合樹脂材料、または、薬液管の内面に設けられたライニング層に含まれる複合樹脂材料は、フッ素樹脂Bとカーボンナノチューブとを複合化させた複合樹脂粒子の成形体である。複合樹脂粒子は、フッ素樹脂Bの粒子とカーボンナノチューブとを複合化させた材料であり、フッ素樹脂Bの粒子の少なくとも表面および/または表層にカーボンナノチューブが存在する。例えば、フッ素樹脂Bの粒子表面にカーボンナノチューブの少なくとも一部が担持または埋没されている。カーボンナノチューブは、フッ素樹脂Bの粒子表面に付着して担持されていてもよいし、一部が埋没して担持されていてもよいし、フッ素樹脂Bの粒子の表層に完全に埋没していてもよい。このような複合樹脂粒子の成形体である複合樹脂材料においては、複合樹脂粒子の少なくとも一部が粒子形状を維持して含まれていてもよいし、複合樹脂粒子が一体となり複合樹脂材料を形成していてもよい。 The composite resin material constituting the drug solution pipe or the composite resin material contained in the lining layer provided on the inner surface of the drug solution pipe is a molded body of composite resin particles in which the fluorocarbon resin B and the carbon nanotube are complexed. The composite resin particle is a material in which particles of fluorocarbon resin B and carbon nanotubes are complexed, and carbon nanotubes exist on at least the surface and / or surface layer of the particles of fluorocarbon resin B. For example, at least a part of carbon nanotubes is supported or buried on the particle surface of fluorocarbon resin B. The carbon nanotube may be attached to and supported on the particle surface of the fluorocarbon resin B, or a part may be buried and supported, or the carbon nanotube may be completely embedded in the surface layer of the fluorocarbon resin B particle. It is also good. In a composite resin material which is a molded product of such composite resin particles, at least a part of the composite resin particles may be contained while maintaining the particle shape, and the composite resin particles are integrated to form a composite resin material. It may be done.
 薬液管を構成する複合樹脂材料、または、薬液管の内面に設けられたライニング層に含まれる複合樹脂材料について、上記フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料について述べた記載が同様にあてはまる。また、フッ素樹脂Bについては、上記フッ素樹脂Aについて述べた記載が同様にあてはまり、カーボンナノチューブについても、上記カーボンナノチューブについて述べた記載が同様にあてはまる。なお、フッ素樹脂Bはフッ素樹脂Aと同一の樹脂であってもよいし、異なる樹脂であってもよい。 With regard to the composite resin material constituting the chemical solution pipe or the composite resin material contained in the lining layer provided on the inner surface of the chemical solution pipe, the description of the composite resin material containing the above-mentioned fluororesin A and carbon nanotubes applies similarly. Further, with respect to the fluorocarbon resin B, the description described for the fluorocarbon resin A applies in the same manner, and for the carbon nanotube, the description described above for the carbon nanotube applies similarly. The fluororesin B may be the same resin as the fluororesin A or may be a different resin.
 薬液管の内面の少なくとも一部にフッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層を設ける方法としては、例えば、複合樹脂粒子を溶融押出しまた圧縮成形して複合樹脂材料のシートを作成し、これを薬液管の内面に貼り合せる方法、複合樹脂粒子の成形体を管状に切削加工し、これを薬液管の内面に貼り合せる方法が挙げられる。複合樹脂材料のシートを作成する方法については、上記においてライニングシートの製造方法について述べた記載が同様にあてはまる。貼り合せる方法としては、薬液管が金属製の場合には、薬液管の内面に接着剤等を用いて接合させる方法、または、薬液管が樹脂製の場合には、薬液管の内面に溶接させる方法が挙げられる。 As a method of providing a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of a chemical liquid pipe, for example, melt extrusion or compression molding of composite resin particles to prepare a sheet of composite resin material And a method of bonding the same to the inner surface of the drug solution pipe, and a method of cutting a molded composite resin particle into a tubular shape and bonding the same to the inner surface of the drug solution pipe. Regarding the method of producing the sheet of the composite resin material, the description described above for the method of producing the lining sheet applies similarly. As a method of bonding, when the drug solution pipe is made of metal, it is bonded to the inner surface of the drug solution pipe using an adhesive or the like, or when the drug solution pipe is made of resin, it is welded to the inner surface of the drug solution pipe. The method is mentioned.
<ノズル>
 本発明は、タンクの内部と外部とに繋がる薬液管を備え、
 薬液管は、薬液をタンクに入れる薬液投入管を含み、
 薬液投入管は、その端部(又は先端)にノズルを有し、
 ノズルは、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層をノズルの内面の少なくとも一部に有する、および/または、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料の成形体であり、
 フッ素樹脂Bは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)およびテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、タンクを提供することができる。
<Nozzle>
The present invention comprises a chemical liquid pipe connected to the inside and the outside of the tank,
The chemical liquid pipe includes a chemical liquid feed pipe for putting the chemical liquid into the tank,
The chemical liquid feed pipe has a nozzle at its end (or tip),
The nozzle is a molded body of a composite resin material having a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of the nozzle and / or containing fluorocarbon resin B and carbon nanotubes,
Fluororesin B includes polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) The tank can be provided, selected from the group consisting of
 本明細書において「ノズル」とは、流体の流れる方向を定めるために使用されるパイプ状の機械部品をいい、流れる物質の流量、流速、方向及び圧力等の流体の持つ特性をコントロールするために使用され、通常ノズルとして理解される部品であれば特に制限されることはない。
 ノズルは、例えば、スプレーノズル、回転ノズル、直進ノズル、シャワーノズルからなる群から選択されることができる。
 ノズルのライニング層及びフッ素樹脂B等については、薬液管に関するそれらの記載を参照することができる。
As used herein, the term "nozzle" refers to a pipe-like mechanical component used to determine the direction of fluid flow, and to control the properties of the fluid such as the flow rate, flow rate, direction and pressure of the flowing material. There is no particular restriction as long as it is a part that is used and is usually understood as a nozzle.
The nozzle can be selected, for example, from the group consisting of a spray nozzle, a rotary nozzle, a straight forward nozzle, and a shower nozzle.
With regard to the lining layer of the nozzle and the fluorocarbon resin B etc., those descriptions regarding the chemical liquid pipe can be referred to.
<中空球状成形体>
 本発明のタンクは、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含む中空球状の成形体を有してもよい。かかる中空球状成形体は、通常、本発明のタンク内に投入された薬液の液面に浮遊し、薬液に帯電する静電気を液面から除去するために用いられる。特に薬液を本発明のタンクに貯蔵した状態で運搬等を行う場合には、薬液が振動することによりタンク内面との摩擦が生じ、静電気が発生し、薬液が帯電しやすい。複合樹脂材料を少なくとも部分的に含む中空球状の成形体を用いることにより、運搬等の際の摩擦に生じる静電気を効率的に除去することができる。フッ素樹脂Cは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択されることが好ましく、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)およびテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)からなる群から選択されることがより好ましい。フッ素樹脂Cは、成型加工性の観点からは、好ましくは変性PTFE、PTFE及びPFAからなる群から選択され、導電性を効率的に高めやすい観点から、より好ましくはPTFEおよび変性PTFEからなる群から選択され、導電性を効率的に高めやすい観点ならびに屈曲性および溶接性の観点から、さらに好ましくは変性PTFEである。
<Hollow spherical molded body>
The tank of the present invention may have a hollow spherical shaped body at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes. Such a hollow spherical molded body is usually used to float on the liquid surface of the chemical solution charged into the tank of the present invention and remove static electricity charged on the chemical solution from the liquid surface. In particular, when the chemical solution is stored in the tank according to the present invention, the chemical solution vibrates to cause friction with the inner surface of the tank to generate static electricity, which tends to cause the chemical solution to be charged. By using a hollow spherical shaped body that at least partially contains the composite resin material, static electricity generated in friction during transportation or the like can be efficiently removed. Fluororesin C includes polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) Is preferably selected from the group consisting of polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE) and tetrafluoroethylene / perfluoroalkylvinyl ether It is more preferably selected from the group consisting of alcohol copolymer (PFA). Fluorine resin C is preferably selected from the group consisting of modified PTFE, PTFE and PFA from the viewpoint of molding processability, and from the viewpoint of easily enhancing the conductivity, more preferably from the group consisting of PTFE and modified PTFE It is more preferably modified PTFE from the viewpoint of being selected and capable of efficiently enhancing the conductivity and the viewpoint of flexibility and weldability.
 中空球状成形体に少なくとも部分的に含まれる複合樹脂材料は、フッ素樹脂Cとカーボンナノチューブとを複合化させた複合樹脂粒子の成形体である。複合樹脂粒子は、フッ素樹脂Cの粒子とカーボンナノチューブとを複合化させた材料であり、フッ素樹脂Cの粒子の少なくとも表面および/または表層にカーボンナノチューブが存在する。例えば、フッ素樹脂Cの粒子表面にカーボンナノチューブの少なくとも一部が担持または埋没されている。カーボンナノチューブは、フッ素樹脂Cの粒子表面に付着して担持されていてもよいし、一部が埋没して担持されていてもよいし、フッ素樹脂Cの粒子の表層に完全に埋没していてもよい。 The composite resin material at least partially contained in the hollow spherical molded body is a molded body of composite resin particles in which fluorocarbon resin C and carbon nanotubes are complexed. The composite resin particle is a material in which particles of fluorocarbon resin C and carbon nanotubes are complexed, and carbon nanotubes exist on at least the surface and / or surface layer of the particles of fluorocarbon resin C. For example, at least a part of carbon nanotubes is supported or buried on the particle surface of fluorocarbon resin C. The carbon nanotubes may be attached to and supported on the particle surface of the fluorocarbon resin C, or a part may be buried and supported, and the carbon nanotubes may be completely embedded in the surface layer of the particles of the fluorocarbon resin C. It is also good.
 中空球状成形体に少なくとも部分的に含まれる複合樹脂材料について、上記フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料について述べた記載が同様にあてはまる。また、フッ素樹脂Cについては、上記フッ素樹脂Aについて述べた記載が同様にあてはまる。なお、フッ素樹脂Cはフッ素樹脂AまたはBと同一の樹脂であってもよいし、異なる樹脂であってもよい。カーボンナノチューブについても、上記カーボンナノチューブについて述べた記載が同様にあてはまる。 With respect to the composite resin material which is at least partially contained in the hollow spherical molded body, the description of the composite resin material containing the above-mentioned fluorocarbon resin A and carbon nanotube applies similarly. Moreover, as for the fluorine resin C, the description described for the fluorine resin A applies similarly. The fluorine resin C may be the same resin as the fluorine resin A or B, or may be a different resin. The same description as described above for carbon nanotubes applies to carbon nanotubes.
 中空球状成形体が複合樹脂材料を少なくとも部分的に含む態様は、中空球状成形体の少なくとも一部にフッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料が含まれていればよく、例えば、樹脂製の中空球状成形体の表面の少なくとも一部に上記複合樹脂材料を含むライニング材がライニングされている態様、中空球状成形体がフッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料で構成される成形体である態様などが包含される。 The aspect in which the hollow spherical molded body at least partially includes the composite resin material may be such that at least a part of the hollow spherical molded body includes the composite resin material containing the fluorocarbon resin C and the carbon nanotube, for example, resin An embodiment in which a lining material containing the above-mentioned composite resin material is lined on at least a part of the surface of the hollow spherical molded body, a hollow spherical molded body is a molded body composed of a composite resin material containing fluorocarbon resin C and carbon nanotubes. Aspects and the like are included.
<棒状の成形体>
 本発明の実施形態において、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含む棒状の成形体をさらに有するタンクを提供する。
 そのような棒状の成形体は、通常、本発明のタンク内に投入された薬液の液面から薬液の内部に入り、薬液に帯電する静電気を液から除去するために用いられる。特に薬液を本発明のタンクに貯蔵した状態で運搬等を行う場合には、薬液が振動することによりタンク内面との摩擦が生じ、静電気が発生し、薬液が帯電しやすい。複合樹脂材料を少なくとも部分的に含む棒状の成形体を用いることにより、運搬等の際の摩擦に生じる静電気を効率的に除去することができる。棒状の成形体の寸法(直径及び長さ)、横断面の形状(円形、六角形等)、導電性等は、適宜選択することができる。
<Rod-shaped compact>
In an embodiment of the present invention, there is provided a tank further comprising a rod-like molded body at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes.
Such a rod-like shaped body is generally used to remove static electricity, which is charged in the chemical solution, from the liquid surface of the chemical solution introduced into the tank of the present invention from the liquid surface and to remove it from the solution. In particular, when the chemical solution is stored in the tank according to the present invention, the chemical solution vibrates to cause friction with the inner surface of the tank to generate static electricity, which tends to cause the chemical solution to be charged. By using a rod-like compact containing at least a part of the composite resin material, static electricity generated in friction during transportation or the like can be efficiently removed. The dimensions (diameter and length) of the rod-shaped molded product, the shape (circular shape, hexagonal shape, etc.) of the cross section, the conductivity, and the like can be selected appropriately.
 フッ素樹脂Cは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択されることが好ましい。
 「フッ素樹脂C」、「カーボンナノチューブ」及び「複合樹脂材料」等については、上述の記載を適宜参照することができる。
Fluororesin C includes polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) It is preferred to be selected from the group consisting of
The above description can be appropriately referred to for the “fluororesin C”, the “carbon nanotube”, the “composite resin material” and the like.
 棒状の成形体は、アース線と接続することができる。棒状の成形体をアース線と接続して、より効率的に除電することができる。
 タンクに棒状の成形体を設けるためのホルダー(「棒状成形体ホルダー」ともいう)を用いることができる。棒状成形体ホルダーは、一般的に、円筒形であって、外形は、タンクの穴の大きさに対応し、内形は、棒状の成形体の外形に対応する。棒状成形体ホルダーの寸法は、棒状成形体の寸法と、タンクの穴の寸法に応じて、適宜選択することができる。
The rod-like shaped body can be connected to the ground wire. A rod-shaped molded product can be connected to the ground wire to more efficiently discharge electricity.
A holder (also referred to as a “rod-shaped molded body holder”) for providing a rod-shaped molded body in a tank can be used. The rod-shaped compact holder is generally cylindrical and the outer shape corresponds to the size of the hole of the tank, and the inner shape corresponds to the outer shape of the rod-shaped compact. The dimensions of the rod-shaped compact holder can be appropriately selected according to the dimensions of the rod-shaped compact and the dimensions of the hole of the tank.
<攪拌棒>
 本発明の実施形態において、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含む攪拌棒をさらに有するタンクを提供する。
 そのような攪拌棒は、通常、本発明のタンク内に投入された薬液の液面から薬液の内部に入り、薬液を攪拌するために使用されるが、その攪拌の際に、薬液に生じ得る静電気を液から除去するために用いられる。攪拌棒の寸法(直径及び長さ)、横断面の形状(円形、六角形等)、導電性等は、適宜選択することができる。
<Agitator bar>
In an embodiment of the present invention, there is provided a tank further comprising a stir bar at least partially comprising a composite resin material comprising fluorocarbon resin C and carbon nanotubes.
Such a stirring rod is generally used to enter the inside of the chemical solution from the liquid surface of the chemical solution introduced into the tank of the present invention and is used to stir the chemical solution. It is used to remove static electricity from the solution. The dimensions (diameter and length) of the stirring rod, the shape of the cross section (circle, hexagon, etc.), conductivity, etc. can be selected appropriately.
 フッ素樹脂Cは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択されることが好ましい。
 「フッ素樹脂C」、「カーボンナノチューブ」及び「複合樹脂材料」等については、上述の記載を適宜参照することができる。
Fluororesin C includes polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) It is preferred to be selected from the group consisting of
The above description can be appropriately referred to for the “fluororesin C”, the “carbon nanotube”, the “composite resin material” and the like.
 攪拌棒は、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含むプロペラ(又は撹拌羽根)を有することができる。攪拌棒とプロペラは一体であってよいが、攪拌棒は、プロペラと分離可能であってよい。攪拌棒がプロペラを有する場合、薬液の攪拌をより効率的に行うことができる。攪拌棒の寸法(大きさ)及び形状(三日月形等)、導電性等は、適宜選択することができる。
 プロペラに関する「フッ素樹脂C」、「カーボンナノチューブ」及び「複合樹脂材料」について、上述の記載を適宜参照することができる。
 攪拌棒がプロペラを有する場合、攪拌棒とプロペラの両者で目的とする除電性を示せばよい。
The stirring rod can have a propeller (or a stirring blade) at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes. The stirring rod and the propeller may be integral, but the stirring rod may be separable from the propeller. When the stirring rod has a propeller, the chemical solution can be stirred more efficiently. The dimensions (size) and shape (eg, crescent shape), conductivity, etc. of the stirring rod can be appropriately selected.
The above description can be appropriately referred to for “fluororesin C”, “carbon nanotube” and “composite resin material” relating to a propeller.
In the case where the stirring rod has a propeller, both of the stirring rod and the propeller may indicate the desired diselectrification.
 攪拌棒は、適宜、アース線と接続することができる。攪拌棒をアース線と接続して、より効率的に除電することができる。
 タンクに攪拌棒を設けるためのアダプタ(「攪拌棒アダプタ」ともいう)を用いることができる。攪拌棒アダプタは、一般的に、円筒形であって、外形は、タンクの穴の大きさに対応し、内形は、攪拌棒の外形に対応する。攪拌棒アダプタの寸法は、攪拌棒の寸法と、タンクの穴の寸法に応じて、適宜選択することができる。
The stir bar can optionally be connected to the ground wire. A stirrer can be connected to the ground wire to more efficiently discharge electricity.
An adapter for providing a stir bar in the tank (also referred to as a "stir bar adapter") can be used. The stir bar adapter is generally cylindrical and the outer shape corresponds to the size of the hole in the tank, and the inner shape corresponds to the outer shape of the stir bar. The dimensions of the stir bar adapter can be selected appropriately depending on the dimensions of the stir bar and the dimensions of the hole in the tank.
<タンク>
 本発明のタンクの用途は特に限定されないが、例えば薬液を内容物とするタンクが挙げられ、具体的には薬液供給タンク、薬液貯蔵タンクおよび/または薬液運搬タンクである。薬液供給タンクは、例えば後述する薬液を供給するためのシステムにおいて使用されるタンクである。薬液供給タンクは、薬液が該タンク内を通過し別の槽へと供給されるために使用される。そのため、薬液供給タンクは通常、薬液投入管と薬液排出管とを備え、薬液の投入と排出を同時に行うこともできる。薬液貯蔵タンクは、薬液を内部に貯蔵することを目的とするタンクである。そのため、薬液貯蔵タンクは少なくとも1つの開口部を有していればよい。薬液運搬タンクは、内容物として薬液を貯蔵した状態で運搬されるタンクである。薬液の運搬に際しては、薬液が振動することにより静電気が発生しやすいが、本発明のタンクを用いることにより、静電気を除去することができる。本発明のタンクは、薬液の供給、貯蔵または運搬等のいずれかを目的とするタンクであってもよいし、これらの2つ以上の目的を兼ね備えるタンクであってもよい。
<Tank>
Although the application of the tank of the present invention is not particularly limited, for example, a tank containing a drug solution is mentioned, and specifically, it is a drug solution supply tank, a drug solution storage tank and / or a drug solution transport tank. The chemical solution supply tank is, for example, a tank used in a system for supplying a chemical solution described later. The chemical solution supply tank is used to allow the chemical solution to pass through the tank and be supplied to another tank. Therefore, the chemical solution supply tank is usually provided with a chemical solution input pipe and a chemical solution discharge pipe, and it is also possible to simultaneously input and discharge the chemical solution. The chemical solution storage tank is a tank for storing the chemical solution inside. Therefore, the chemical solution storage tank may have at least one opening. The chemical solution transport tank is a tank transported in a state in which the chemical solution is stored as contents. When the chemical solution is transported, static electricity is easily generated due to the vibration of the chemical solution, but the static electricity can be removed by using the tank of the present invention. The tank of the present invention may be a tank for supplying, storing, transporting or the like of a chemical solution, or may be a tank having two or more of these purposes.
<薬液>
 本発明のタンクに収容される薬液としては、塩酸、硝酸、フッ酸、過酸化水素水、硫酸等の水溶液、イソプロピルアルコール(IPA)、エタノール、アセトン、テトラヒドロフラン(THF)、メチルエチルケトン(MEK)等の有機溶媒、および、水が挙げられる。タンクに含まれる薬液は、好ましくは有機溶媒である。有機溶媒は、例えば半導体製造等において使用される薬液であり、半導体製造の用途においては、薬液に帯電する静電気や微量の混入物による汚染であっても問題となるため、本発明のタンクの利点をより発揮しやすい。
<Chemical solution>
The chemical solutions stored in the tank of the present invention include aqueous solutions such as hydrochloric acid, nitric acid, hydrofluoric acid, hydrogen peroxide water, sulfuric acid, isopropyl alcohol (IPA), ethanol, acetone, tetrahydrofuran (THF), methyl ethyl ketone (MEK), etc. Organic solvents and water can be mentioned. The chemical solution contained in the tank is preferably an organic solvent. The organic solvent is, for example, a chemical solution used in semiconductor manufacturing, etc., and in applications of semiconductor production, even if it is a problem caused by static electricity or a trace of contaminants charged in the chemical solution, the advantage of the tank of the present invention It is easier to
<薬液>
 本発明の実施形態のタンクに収容される薬液は、収容可能な薬液であれば、特に制限されることはない。薬液は、例えば、有機溶剤、可燃性液体、酸性液体、塩基性液体、中性液体、水溶液、導電性液体から選択される少なくとも1種を含むことができる。
 有機溶媒は、例えば、イソプロピルアルコール(IPA)、エタノール、アセトン、テトラヒドロフラン(THF)、メチルエチルケトン(MEK)等を含む。
 可燃性液体は、例えば、イソプロピルアルコール(IPA)、エタノール、アセトン、テトラヒドロフラン(THF)、メチルエチルケトン(MEK)等を含む。
 酸性液体は、例えば、塩酸、硝酸、フッ酸、硫酸、過酸化水素水等を含む。
 塩基性液体は、例えば、アンモニア水等を含む。
 中性液体は、例えば、オゾン水、いわゆる水、超純水、純水、脱イオン水、イオン交換水、蒸留水等を含む。
 水溶液は、例えば、塩酸、硝酸、フッ酸、硫酸、アンモニア水、過酸化水素水、オゾン水等を含む。
 導電性液体は、例えば、塩酸、硝酸、フッ酸、硫酸、過酸化水素水、アンモニア水、いわゆる水、イオン交換水、脱イオン水、純水等を含む。
 タンクに含まれる薬液は、例えば、有機溶媒であってよい。有機溶媒は、例えば半導体製造等において使用される薬液であり、半導体製造の用途においては、薬液に帯電する静電気や微量の混入物による汚染であっても問題となるため、本発明のタンクの利点をより発揮しやすい。
 タンクに含まれる薬液は、導電性液体であっても使用することができる。
<Chemical solution>
The chemical solution stored in the tank according to the embodiment of the present invention is not particularly limited as long as it can be stored. The chemical solution can include, for example, at least one selected from an organic solvent, a flammable liquid, an acidic liquid, a basic liquid, a neutral liquid, an aqueous solution, and a conductive liquid.
The organic solvent includes, for example, isopropyl alcohol (IPA), ethanol, acetone, tetrahydrofuran (THF), methyl ethyl ketone (MEK) and the like.
Flammable liquids include, for example, isopropyl alcohol (IPA), ethanol, acetone, tetrahydrofuran (THF), methyl ethyl ketone (MEK) and the like.
The acidic liquid includes, for example, hydrochloric acid, nitric acid, hydrofluoric acid, sulfuric acid, hydrogen peroxide water and the like.
The basic liquid includes, for example, ammonia water and the like.
The neutral liquid includes, for example, ozone water, so-called water, ultrapure water, pure water, deionized water, ion exchanged water, distilled water and the like.
The aqueous solution includes, for example, hydrochloric acid, nitric acid, hydrofluoric acid, sulfuric acid, aqueous ammonia, aqueous hydrogen peroxide, ozone water and the like.
The conductive liquid includes, for example, hydrochloric acid, nitric acid, hydrofluoric acid, sulfuric acid, hydrogen peroxide water, ammonia water, so-called water, ion exchanged water, deionized water, pure water and the like.
The chemical solution contained in the tank may be, for example, an organic solvent. The organic solvent is, for example, a chemical solution used in semiconductor manufacturing, etc., and in applications of semiconductor production, even if it is a problem caused by static electricity or a trace of contaminants charged in the chemical solution, the advantage of the tank of the present invention It is easier to
The chemical contained in the tank can be used even if it is a conductive liquid.
<薬液供給システム>
 本発明は、本発明のタンクを用いて薬液の供給を行うことを含む、薬液供給システムも提供する。本発明の薬液供給システムの用途は特に限定されないが、内容物である薬液の汚染が低減されクリーン性が高いという本発明の薬液供給システムの利点を最大限に利用しやすい観点からは、半導体製造に使用される薬液供給システムであることが好ましい。本発明の好ましい一態様において、本発明の薬液供給システムは、薬液運搬タンク、半導体工場ラインの薬液貯蔵タンク、薬液運搬タンクから薬液貯蔵タンクへ薬液を圧送するためのポンプ、薬液貯蔵タンクから各ラインへ薬液を圧送するためのポンプを含み、ここで、該薬液運搬タンクおよび/または該薬液貯蔵タンクとして、本発明のタンクを用いてよい。この態様の本発明の好ましい薬液供給システムによれば、具体的には、薬液運搬タンク(例えばISOタンク)をタンクローリーで半導体工場まで運送し、薬液運搬タンクから半導体工場ライン内の薬液貯蔵タンクでポンプにより薬液を圧送し、薬液貯蔵タンクから各ラインへと薬液を送液するという一連の薬液供給を行うことができる。本発明の薬液供給システムは、本発明のタンクの他に、本発明のタンクの内容物を供給するための装置、例えば窒素ガス等の不活性ガスを高圧下で送るための圧縮ガス源または薬液供給ポンプを備えていてもよいし、薬液をろ過し不純物等を除去するためのフィルター等を備えていてもよい。
<Chemical solution supply system>
The present invention also provides a chemical solution supply system including the supply of a chemical solution using the tank of the present invention. The application of the chemical solution supply system of the present invention is not particularly limited, but from the viewpoint of easily utilizing the advantage of the chemical solution supply system of the present invention that contamination of the chemical solution is reduced and the cleanness is high. It is preferable that it is a chemical | medical solution supply system used for these. In a preferred embodiment of the present invention, the chemical solution supply system of the present invention comprises a chemical solution transport tank, a chemical solution storage tank of a semiconductor factory line, a pump for pumping a chemical solution from the chemical solution transport tank to the chemical solution storage tank, and each line from the chemical solution storage tank. The pump according to the present invention may be used as the chemical solution transport tank and / or the chemical solution storage tank, including a pump for pressure-feeding the chemical solution. According to the preferred chemical solution supply system of the present invention of this aspect, specifically, the chemical solution transport tank (for example, ISO tank) is transported to the semiconductor factory by the tank truck, and the pump is carried out from the chemical solution transport tank to the chemical solution storage tank in the semiconductor factory line. Thus, a series of chemical solutions can be supplied such that the chemical solution is pressure-fed and the chemical solution is sent from the chemical solution storage tank to each line. The chemical solution supply system of the present invention is a device for supplying the contents of the tank of the present invention in addition to the tank of the present invention, for example, a compressed gas source or chemical solution for delivering inert gas such as nitrogen gas under high pressure. A supply pump may be provided, or a filter or the like may be provided to filter a chemical solution to remove impurities and the like.
<成形体>
 本発明は、成形体を提供することができ、
それは、薬液が取り扱われるタンクに使用することができる。
 タンクは、ライニングシートの層を有していても良い。
 成形体は、フッ素樹脂とカーボンナノチューブを含む複合樹脂粒子を圧縮成形して得ることができる圧縮成形体であり得る。フッ素樹脂は、例えば、本明細書で記載するフッ素樹脂A~Cのいずれかであり得る。複合樹脂粒子、フッ素樹脂A~Cのいずれか及びカーボンナノチューブに関する本明細書の記載は、成形体の複合樹脂粒子、フッ素樹脂A~Cのいずれか及びカーボンナノチューブの各々について参照することができる。
 タンクに使用できる成形体は、例えば、上述のライニングシート、薬液管、中空形状の成形体、棒状の成形体、棒状成形体ホルダー、攪拌棒、攪拌羽根、攪拌棒アダプタ等を含むことができる。
<Molded body>
The present invention can provide a molded body,
It can be used for tanks where chemical solutions are handled.
The tank may have a layer of lining sheets.
The molded body may be a compression molded body which can be obtained by compression molding composite resin particles containing a fluorocarbon resin and a carbon nanotube. The fluorine resin may be, for example, any of the fluorine resins AC described herein. The description of the present specification relating to any of the composite resin particles, the fluororesins A to C and the carbon nanotubes can be referred to for each of the composite resin particles of the molded body, any of the fluororesins A to C and the carbon nanotubes.
The formed body that can be used for the tank can include, for example, the above-mentioned lining sheet, a drug solution tube, a hollow formed body, a rod-shaped formed body, a rod-shaped formed body holder, a stirring rod, a stirring blade, a stirring blade adapter, and the like.
<実施形態>
 次に、本発明を以下の実施形態により詳細に説明する。なお、以下において、図面に表された構成を説明するうえで、「上」、「下」、「左」、「右」等の方向を示す用語、およびそれらを含む別の用語を使用するが、それらの用語を使用する目的は図面を通じて実施形態の理解を容易にすることである。したがって、それらの用語は本発明の実施形態が実際に使用されるときの方向を示すものとは限らないし、それらの用語によって特許請求の範囲に記載された発明の技術的範囲は何ら限定されない。
Embodiment
Next, the present invention will be described in detail by the following embodiments. In the following, in describing the configuration shown in the drawings, terms indicating directions such as “upper”, “lower”, “left”, “right” and the like, and other terms including those will be used. The purpose of using these terms is to facilitate the understanding of the embodiments through the drawings. Therefore, those terms are not limited to those indicating the direction in which the embodiment of the present invention is actually used, and the technical scope of the invention described in the claims is not limited by these terms.
(第1実施形態)
 本発明の第1実施形態のタンクは、第1実施形態Aと第1実施形態Bのタンクを含む。
 本発明の第1実施形態Aのタンクは、図1Aに示すように、タンク外缶1と、タンク外缶1の内面に設けられたライニング層2、タンク内に薬液を投入するための薬液投入管3、タンク外に薬液を排出するための薬液排出管4、薬液の液面に浮遊し薬液中に帯電する静電気を除去するための中空球状の成形体5を有し、タンク内には薬液6が貯蔵されている。タンク外缶1の内面にライニング層2を設ける方法としては、フッ素樹脂のシートの片面をエッチングしたライニングシート、または、フッ素樹脂のシートの片面にガラスクロスを積層させたライニングシートを、タンク外缶1の内面の形状に合わせて切り出し、切り出したシートをエポキシ接着剤等を用いてタンク内面に貼り合せる方法が挙げられる。タンク内面に貼り合せたシート間の隙間を、例えば直径2~5mmの円形または三角形の断面を有する棒状の溶接材料、好ましくはPFA材料を用いて溶接してもよい。第1実施形態Aにおけるタンクは、薬液投入管3、薬液排出管4、中空球状の成形体5を有するが、これらは本発明のタンクに必須の構成ではなく、これらのうちの少なくとも1つを有していてもよいし、これらのいずれも有していなくてもよい。
First Embodiment
The tank of the first embodiment of the present invention includes the tanks of the first embodiment A and the first embodiment B.
The tank according to the first embodiment A of the present invention is, as shown in FIG. 1A, a tank outer can 1, a lining layer 2 provided on the inner surface of the tank outer can 1, and a chemical solution input for introducing a chemical solution into the tank. The tube 3 has a chemical solution discharge tube 4 for discharging the chemical solution to the outside of the tank, and a hollow spherical shaped body 5 for removing static electricity which is charged in the chemical solution by floating on the liquid surface of the chemical solution. 6 is stored. As a method of providing the lining layer 2 on the inner surface of the tank outer can 1, a lining sheet obtained by etching one side of a sheet of a fluorine resin, or a lining sheet obtained by laminating glass cloth on one side of a sheet of a fluorine resin The method of making it cut out according to the shape of 1 inner surface, and bonding the cut-out sheet to the tank inner surface using an epoxy adhesive etc. is mentioned. The gap between the sheets bonded to the inner surface of the tank may be welded, for example, using a rod-like welding material, preferably a PFA material, having a circular or triangular cross section with a diameter of 2 to 5 mm. The tank in the first embodiment A includes the chemical solution inlet pipe 3, the chemical solution outlet pipe 4, and the hollow spherical shaped body 5, but these are not essential components for the tank of the present invention, and at least one of them is used. It may or may not have any of these.
 本発明の第1実施形態Aのタンクにおいては、静電気の除去を効率的に行う観点から、少なくとも、タンクに薬液を投入する際、投入された薬液がタンク外缶の内面と最初に接する部分(図1A中の接液部7)に設けられたライニングシート8を含むライニング層が、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含むことが好ましく、該ライニングシートがフッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料で構成される成形体であることがより好ましい。帯電防止性をさらに向上する観点からは、タンク底部9に設けられたライニングシート10(ライニングシート8を含む)を含むライニング層が、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含むことが好ましく、該ライニングシートがフッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料で構成される成形体であることがより好ましい。ライニングシート8またはライニングシート10には、アース線11が接続され、薬液から体積抵抗率の低いライニングシート8または10に流れ込んだ静電気は、アース線11を介して地面等へと流れ込み除去される。フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含むライニングシートは、例えば上記のようにして製造した複合樹脂粒子の成形体を薄く切り出してシートにするか、または、複合樹脂粒子をシート状に押出成形することにより製造される。このようにして得た複合樹脂材料を含むライニングシートを接液部7またはタンク底部9におけるタンク内面に、上記のライニング層2を設けるための方法と同様にしてライニングすることにより、薬液6の効率的な除電が可能となる。 In the tank according to the first embodiment A of the present invention, from the viewpoint of efficiently removing static electricity, at least when the chemical solution is introduced into the tank, a portion where the introduced chemical solution first contacts the inner surface of the tank outer can ( It is preferable that a lining layer including lining sheet 8 provided in liquid contact portion 7) in FIG. 1A includes a composite resin material including fluorocarbon resin A and carbon nanotubes, and the lining sheet includes fluorocarbon resin A and carbon nanotubes. It is more preferable that it is a molded object comprised with the composite resin material containing. From the viewpoint of further improving the antistatic property, it is preferable that the lining layer including the lining sheet 10 (including the lining sheet 8) provided on the tank bottom 9 includes the composite resin material including the fluororesin A and the carbon nanotube. More preferably, the lining sheet is a molded body composed of a composite resin material containing fluorocarbon resin A and carbon nanotubes. An earth wire 11 is connected to the lining sheet 8 or the lining sheet 10, and the static electricity flowing from the chemical solution into the lining sheet 8 or 10 having a low volume resistivity flows into the ground or the like via the earth wire 11 and is removed. The lining sheet containing the composite resin material containing fluorocarbon resin A and carbon nanotubes is, for example, thinly cut out the molded composite resin particle produced as described above into a sheet, or extruding the composite resin particles into a sheet Manufactured by molding. By lining the lining sheet containing the composite resin material thus obtained on the inner surface of the tank at the liquid contact portion 7 or tank bottom portion 9 in the same manner as the method for providing the lining layer 2 described above, the efficiency of the chemical solution 6 is obtained. Static charge removal is possible.
 本発明の第1実施形態Aのタンクは、図1Aに示すように、タンク上部に設けられた薬液投入管3および薬液排出管4を備える。薬液投入管3の排出口は薬液6の液面12よりも高い位置に設けられており、薬液排出管4の吸入口は、タンクの底部に近い位置に設けられている。なお、第1実施形態Aにおけるタンクは、上記位置に薬液投入管3および薬液排出管4を有するが、タンクが薬液投入管3および/または薬液排出管4を備える場合、これらの位置は特に限定されず、タンク上部に薬液投入管を有しタンク底部に薬液排出管を有していてもよいし、これらの配管がタンク側面に位置していてもよい。薬液投入管の排出口や薬液排出管の吸入口の位置も適宜設定してよい。第1実施形態Aのタンクは、図1Aには示されていないが、タンクに一般的なその他の構成、例えば上部、横部、下部等の任意の位置に設けられたさらなる薬液管、安全弁、通気口等をさらに有していてよい。 The tank according to the first embodiment A of the present invention, as shown in FIG. 1A, includes a chemical solution inlet pipe 3 and a chemical solution outlet pipe 4 provided on the upper portion of the tank. The discharge port of the drug solution input pipe 3 is provided at a position higher than the liquid level 12 of the drug solution 6, and the suction port of the drug solution discharge pipe 4 is provided at a position near the bottom of the tank. Although the tank in the first embodiment A has the chemical solution inlet pipe 3 and the chemical solution outlet pipe 4 at the above position, when the tank includes the chemical solution inlet pipe 3 and / or the chemical solution outlet pipe 4, these positions are particularly limited. Alternatively, the upper portion of the tank may have a chemical supply pipe and the tank bottom may have a chemical discharge pipe, or these pipes may be located on the side of the tank. The positions of the discharge port of the chemical liquid feed pipe and the suction port of the chemical liquid discharge pipe may be set appropriately. The tank according to the first embodiment A is not shown in FIG. 1A, but other configurations common to the tank, for example, a further liquid chemical pipe provided at an arbitrary position such as an upper portion, a lateral portion, a lower portion, a safety valve, It may further have a vent or the like.
 薬液投入管3および薬液排出管4の内面には、それぞれ、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層31および41が設けられている。管の内面に上記複合樹脂材料を含むライニング層31および41が設けられた薬液投入管3および薬液排出管4は、例えば、複合樹脂粒子の成形体を管状に切削加工し、これを金属製の配管内面に接合させる方法、または、樹脂製の配管内面と溶接させる方法により製造される。薬液投入管3および薬液排出管4のライニング層31および41はそれぞれ、アース線11と電気的に接続されており、薬液投入管3および薬液排出管4を通過する際に帯電した静電気は、最終的にアース線11を介して除去される。なお、ライニング層31および41がそれぞれ、アース線11とは異なるアース線を有していてもよい。なお、図1Aに示される薬液投入管3および薬液排出管4は、内面の一部にフッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層が設けられているが、これらの管が、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料で構成される成形体であってもよく、複合樹脂粒子の成形体を管状に切削加工した管を、薬液投入管および薬液排出管としてそのまま使用してもよい。 Lining layers 31 and 41 containing a composite resin material containing fluorocarbon resin B and carbon nanotubes are provided on the inner surfaces of the chemical solution inlet tube 3 and the chemical solution outlet tube 4, respectively. The chemical solution input pipe 3 and the chemical solution discharge pipe 4 provided with the lining layers 31 and 41 containing the above-mentioned composite resin material on the inner surface of the pipe, for example, cut a formed body of composite resin particles into a tubular shape and made of metal It manufactures by the method of joining to piping inner surface, or the method of welding with resin piping inner surfaces. The chemical solution input pipe 3 and the lining layers 31 and 41 of the chemical liquid discharge pipe 4 are electrically connected to the ground wire 11, respectively, and the static electricity charged when passing through the chemical liquid input pipe 3 and the chemical liquid discharge pipe 4 In particular, it is removed via the ground wire 11. Each of lining layers 31 and 41 may have a ground wire different from ground wire 11. The chemical solution input pipe 3 and the chemical liquid discharge pipe 4 shown in FIG. 1A are provided with a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on a part of the inner surface. It may be a molded body made of a composite resin material containing fluorocarbon resin B and carbon nanotubes, and a tube obtained by cutting the molded body of the composite resin particle into a tubular shape is used as it is as a chemical liquid feed pipe and a chemical liquid discharge pipe. It is also good.
 本発明の第1実施形態Aのタンクは、図1Aに示すように、中空球状の成形体5を有する。中空球状の成形体5の数は特に限定されず、各成形体5の大きさや、求められる帯電効果に応じて、適宜選択してよい。成形体5のそれぞれにはアース線13が接続され、アース線は蓋体14からタンク外部へと出て、地面へと接続されている。薬液6中に帯電した静電気は、低い体積抵抗率を有する成形体5に流れ込み、アース線13を介して除去される。中空球状の成形体5は、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料の成形体を薄く切り出すか、または、複合樹脂材料をシート状に押出成形することにより製造したシートを、中空球状に貼り合せることにより製造してよい。本実施形態のタンクは、蓋体14を有するが、蓋体14は必須ではない。また、第1実施形態Aにおいてアース線13は蓋体14から伸びているが、アース線13がアース線11に電気的に接続されていてもよい。 The tank according to the first embodiment A of the present invention has a hollow spherical shaped body 5 as shown in FIG. 1A. The number of hollow spherical shaped articles 5 is not particularly limited, and may be appropriately selected according to the size of each shaped article 5 and the required charging effect. An earth wire 13 is connected to each of the molded bodies 5, and the earth wire exits from the lid 14 to the outside of the tank and is connected to the ground. The static electricity charged in the chemical solution 6 flows into the compact 5 having a low volume resistivity, and is removed via the ground wire 13. The hollow spherical molded body 5 is obtained by thinly cutting out a molded body of a composite resin material containing fluorocarbon resin C and carbon nanotubes, or attaching a sheet produced by extruding the composite resin material into a sheet shape into a hollow spherical body. You may manufacture by putting together. Although the tank of this embodiment has the lid 14, the lid 14 is not essential. Although the ground wire 13 extends from the lid 14 in the first embodiment A, the ground wire 13 may be electrically connected to the ground wire 11.
 本発明の第1実施形態Bのタンクは、第1実施形態Aのタンクと形状が類似しており、図1Bに示すように、タンク外缶1と、タンク外缶1の内面に設けられたライニング層2、タンク内に薬液を投入するための薬液投入管3、薬液投入管3の端部に設けられたノズル36、タンク外に薬液を排出するための薬液排出管4、薬液中の静電気を除去するための、薬液中に挿入された棒状の成形体52、及び薬液を攪拌するための攪拌棒56を有し、タンク内には薬液6が貯蔵されている。
 タンク外缶1の内面にライニング層2を設ける方法は、第1実施形態Aのタンクで記載した方法と同様の方法を使用することができる。
 第1実施形態Bのタンクは、薬液投入管3、薬液排出管4、棒状の成形体52及び攪拌棒56を有するが、これらは本発明のタンクに必須の構成ではなく、これらのうちの少なくとも1つを有していてもよいし、これらのいずれも有していなくてもよい。
The tank according to the first embodiment B of the present invention is similar in shape to the tank according to the first embodiment A, and provided on the inner surface of the tank outer can 1 and the tank outer can 1 as shown in FIG. 1B. The lining layer 2, the chemical solution input pipe 3 for introducing the chemical solution into the tank, the nozzle 36 provided at the end of the chemical solution input pipe 3, the chemical solution discharge pipe 4 for discharging the chemical solution outside the tank, the static electricity in the chemical solution A rod-like shaped body 52 inserted in the chemical solution for removing the chemical substances, and a stirring rod 56 for stirring the chemical solution are provided, and the chemical solution 6 is stored in the tank.
The method of providing the lining layer 2 in the inner surface of the tank outer can 1 can use the method similar to the method described by the tank of 1st Embodiment A.
The tank according to the first embodiment B includes the chemical solution inlet pipe 3, the chemical solution outlet pipe 4, the rod-like molded body 52, and the stirring rod 56, but these are not essential components of the tank according to the present invention. It may have one or none of these.
 本発明の第1実施形態Bのタンクも、接液部7、ライニングシート8を含むライニング層、タンク底部9に設けられたライニングシート10(ライニングシート8を含む)を含むライニング層、及びアース線11を有する。これらについて、第1実施形態Aのタンクの記載を参照することができ、薬液6の効率的な除電が可能となる。 Also in the tank according to the first embodiment B of the present invention, the liquid contact portion 7, the lining layer including the lining sheet 8, the lining layer including the lining sheet 10 (including the lining sheet 8) provided on the tank bottom 9, and the ground wire Have eleven. About these, the description of the tank of 1st Embodiment A can be referred, and the efficient static elimination of the chemical | medical solution 6 is attained.
 本発明の第1実施形態Bのタンクも、図1B示すように、タンク上部に設けられた薬液投入管3および薬液排出管4を備える。薬液投入管3及び薬液排出管4について、第1実施形態Aのタンクに関する記載を参照することができる。
 第1実施形態Bのタンクも、図1Bには示されていないが、タンクに一般的なその他の構成、例えば上部、横部、下部等の任意の位置に設けられたさらなる薬液管、安全弁、通気口等をさらに有していてよい。
The tank according to the first embodiment B of the present invention is also provided with the chemical solution inlet pipe 3 and the chemical solution outlet pipe 4 provided on the upper portion of the tank, as shown in FIG. 1B. The description regarding the tank of the first embodiment A can be referred to for the chemical liquid inlet pipe 3 and the chemical liquid outlet pipe 4.
The tank according to the first embodiment B is also not shown in FIG. 1B, but other configurations common to the tank, such as a further liquid chemical pipe provided at an arbitrary position such as the upper part, the lateral part, and the lower part, a safety valve, It may further have a vent or the like.
 本発明の第1実施形態Bのタンクは、図1Bに示すように、薬液投入管3の端部に設けられたノズル36を有する。ノズル36の寸法は特に限定されず、長さ、太さ及び断面の形状等は、求められる帯電効果に応じて、適宜選択してよい。ノズル36に、アース線を接続してよいが、薬液投入管3がアース線として機能し得る。ノズルを通過する薬液の静電気を、タンクに入る前に、低下し得るので好ましい。
 ノズル36は、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料の成形体を筒状に切り出すか、または、複合樹脂材料を筒状に押出成形することにより製造してよい。
The tank of the first embodiment B of the present invention has a nozzle 36 provided at the end of the drug solution feed pipe 3 as shown in FIG. 1B. The dimensions of the nozzle 36 are not particularly limited, and the length, the thickness, the shape of the cross section, and the like may be appropriately selected according to the required charging effect. Although the ground wire may be connected to the nozzle 36, the chemical solution feed pipe 3 can function as the ground wire. It is preferable because the static electricity of the chemical solution passing through the nozzle can be reduced before entering the tank.
The nozzle 36 may be manufactured by cutting out a molded body of the composite resin material containing the fluorocarbon resin B and the carbon nanotube into a tubular shape, or extruding the composite resin material into a tubular shape.
 本発明の第1実施形態Bのタンクは、図1Bに示すように、棒状の成形体52を有することができる。棒状の成形体52の寸法は特に限定されず、長さ、太さ及び断面の形状等は、求められる帯電効果に応じて、適宜選択してよい。棒状の成形体52にはアース線53が接続され、地面へと接続されている。薬液6の静電気は、低い体積抵抗率を有する棒状の成形体52に流れ込み、アース線53を介して除去される。
 棒状の成形体52は、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料の成形体を棒状に切り出すか、または、複合樹脂材料を棒状に押出成形することにより製造してよい。
 本発明の実施形態Bのタンクは、棒状の成形体用ホルダー54(以下「棒状成形体ホルダー」ともいう)を有し、ホルダー54で棒状の成形体52を保持することが好ましいが、「棒状成形体ホルダー54」は必須ではない。棒状成形体ホルダー54の外側の寸法は、タンクに設けられた穴の寸法を考慮して、適宜選択することができる。
The tank of the first embodiment B of the present invention can have a rod-like formed body 52 as shown in FIG. 1B. The dimensions of the rod-like molded body 52 are not particularly limited, and the length, the thickness, the shape of the cross section, etc. may be appropriately selected according to the required charging effect. An earth wire 53 is connected to the rod-like molded body 52 and is connected to the ground. The static electricity of the chemical solution 6 flows into the rod-like compact 52 having a low volume resistivity, and is removed via the ground wire 53.
The rod-like shaped body 52 may be manufactured by cutting out a shaped body of the composite resin material containing the fluorocarbon resin C and the carbon nanotube into a rod-like shape, or extruding the composite resin material into a rod-like shape.
The tank according to the embodiment B of the present invention preferably has a rod-shaped holder 54 (hereinafter also referred to as a “rod-shaped holder”), and the holder 54 preferably holds the rod-shaped molding 52. The molded object holder 54 "is not essential. The dimensions of the outside of the rod-shaped molded body holder 54 can be appropriately selected in consideration of the dimensions of the hole provided in the tank.
 本発明の第1実施形態Bのタンクは、図1Bに示すように、攪拌棒56を有することができる。攪拌棒56の寸法は特に限定されず、長さ、太さ及び断面の形状等は、求められる帯電効果及び攪拌効果に応じて、適宜選択してよい。攪拌棒56は、その端部にプロペラ(又は撹拌羽根)57を設けることができる。攪拌棒56とプロペラ57は、一体であっても、分離可能であってもよい。攪拌棒56に、アース線(図示せず)が接触され、地面に接続することができる。薬液6の静電気は、低い体積抵抗率を有する攪拌棒56に流れ込み、アース線を介して除去することができる。
 攪拌棒56は、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料の成形体を棒状に切り出すか、または、複合樹脂材料を棒状に押出成形することにより製造してよい。
 プロペラ57は、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含み、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料の成形体をプロペラ状に切り出して製造することができる。
 本発明の実施形態Bのタンクは、攪拌棒用アダプタ58(以下「攪拌棒アダプタ」ともいう)を有し、アダプタ58で攪拌棒56を保持すること好ましいが、「攪拌棒用アダプタ58」は必須ではない。攪拌棒用アダプタ58の外側の寸法は、タンクに設けられた穴の寸法を考慮して適宜選択することができる。
 攪拌棒アダプタは、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料の成形体を筒状に切り出すか、または、複合樹脂材料を筒状に押出成形することにより製造してよい。更に、攪拌棒アダプタにアース線を接続してよい。
The tank of the first embodiment B of the present invention can have a stirring rod 56 as shown in FIG. 1B. The dimensions of the stirring rod 56 are not particularly limited, and the length, the thickness, the shape of the cross section, etc. may be appropriately selected according to the required charging effect and stirring effect. The stirring rod 56 can be provided with a propeller (or stirring blade) 57 at its end. The stirring rod 56 and the propeller 57 may be integral or separable. A ground wire (not shown) can be contacted with the stir bar 56 and connected to the ground. The static electricity of the chemical solution 6 flows into the stirring rod 56 having a low volume resistivity and can be removed through the ground wire.
The stirring rod 56 may be manufactured by cutting out a molded body of the composite resin material containing the fluorocarbon resin C and the carbon nanotube into a rod or extruding the composite resin material into a rod.
The propeller 57 can be manufactured by cutting out a molded body of the composite resin material containing the fluorocarbon resin C and the carbon nanotube at least partially including the composite resin material containing the fluorocarbon resin C and the carbon nanotube into a propeller shape.
The tank according to Embodiment B of the present invention has a stirring rod adapter 58 (hereinafter also referred to as “stirring rod adapter”), and the adapter 58 preferably holds the stirring rod 56, but “the stirring rod adapter 58” Not required. The external dimensions of the stirring rod adapter 58 can be selected appropriately in consideration of the dimensions of the holes provided in the tank.
The stirring rod adapter may be manufactured by cylindrically cutting out a molded product of a composite resin material containing fluorocarbon resin C and carbon nanotubes, or extruding the composite resin material into a cylindrical shape. Additionally, a ground wire may be connected to the stir bar adapter.
(第2実施形態)
 本発明の第2実施形態のタンクは、図2に示すように、タンク外缶1と、タンク外缶1の内面に設けられたライニング層2、タンク内に薬液を投入又は排出するための薬液管15、薬液の液面に浮遊し薬液中に帯電する静電気を除去するための中空球状の成形体5を有し、タンク内には薬液6が貯蔵されている。タンク外缶1の内面にライニング層2を設ける方法としては、フッ素樹脂のシートの片面をエッチングしたライニングシート、または、フッ素樹脂のシートの片面にガラスクロスを積層させたライニングシートを、タンク外缶1の内面の形状に合わせて切り出し、切り出したシートをエポキシ接着剤等を用いてタンク内面に貼り合せる方法が挙げられる。タンク内面に貼り合せたシート間の隙間を、例えば直径2~5mmの円形または三角形の断面を有する棒状の溶接材料、好ましくはPFA材料を用いて溶接してもよい。本実施形態におけるタンクは、薬液管15および中空球状の成形体5を有するが、これらは本発明のタンクに必須の構成ではなく、これらのうちの少なくとも1つを有していてもよいし、これらのいずれもを有していなくてもよい。
Second Embodiment
In the tank according to the second embodiment of the present invention, as shown in FIG. 2, the tank outer can 1, the lining layer 2 provided on the inner surface of the tank outer can 1, and the chemical solution for charging or discharging the chemical solution into the tank. A tube 15 has a hollow spherical molded body 5 for removing static electricity which is suspended in the liquid surface of the chemical solution and charged in the chemical solution, and the chemical solution 6 is stored in the tank. As a method of providing the lining layer 2 on the inner surface of the tank outer can 1, a lining sheet obtained by etching one side of a sheet of a fluorine resin, or a lining sheet obtained by laminating glass cloth on one side of a sheet of a fluorine resin The method of making it cut out according to the shape of 1 inner surface, and bonding the cut-out sheet to the tank inner surface using an epoxy adhesive etc. is mentioned. The gap between the sheets bonded to the inner surface of the tank may be welded, for example, using a rod-like welding material, preferably a PFA material, having a circular or triangular cross section with a diameter of 2 to 5 mm. The tank in the present embodiment has the drug solution pipe 15 and the hollow spherical shaped body 5, but these are not essential components of the tank of the present invention, and may have at least one of them. It is not necessary to have any of these.
 本発明の第2実施形態のタンクにおいては、静電気の除去を効率的に行う観点から、少なくとも、タンクに薬液を投入する際、投入された薬液がタンク外缶の内面と最初に接する部分(図2中の接液部7)に設けられたライニングシート8を含むライニング層が、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含むことが好ましく、該ライニングシートがフッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料の成形体であることがより好ましい。帯電防止性をさらに向上する観点からは、タンク底部9に設けられたライニングシート10(ライニングシート8を含む)を含むライニング層が、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含むことが好ましく、該ライニングシートがフッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料の成形体であることがより好ましい。ライニングシート8またはライニングライニングシート10には、アース線11が接続され、薬液から体積抵抗率の低いライニングシート8または10に流れ込んだ静電気は、アース線11を介して地面等へと流れ込み除去される。フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含むライニングシートは、例えば上記のようにして製造した複合樹脂材料の成形体を薄く切り出してシートにするか、または、複合樹脂材料をシート状に押出成形することにより製造される。このようにして得た複合樹脂材料を含むライニングシートを接液部7またはタンク底部9におけるタンク内面に、上記のライニング層2を設けるための方法と同様にしてライニングすることにより、薬液6の効率的な除電が可能となる。 In the tank according to the second embodiment of the present invention, from the viewpoint of efficiently removing static electricity, at least when the chemical solution is introduced into the tank, a portion where the introduced chemical solution first contacts the inner surface of the tank outer can (see FIG. It is preferable that a lining layer including lining sheet 8 provided in liquid contact portion 7 in 2 includes a composite resin material including fluororesin A and carbon nanotubes, and the lining sheet includes fluororesin A and carbon nanotubes. More preferably, it is a molded product of a composite resin material. From the viewpoint of further improving the antistatic property, it is preferable that the lining layer including the lining sheet 10 (including the lining sheet 8) provided on the tank bottom 9 includes the composite resin material including the fluororesin A and the carbon nanotube. More preferably, the lining sheet is a molded article of a composite resin material containing fluororesin A and carbon nanotubes. The grounding wire 11 is connected to the lining sheet 8 or the lining lining sheet 10, and the static electricity flowing from the chemical solution into the lining sheet 8 or 10 having a low volume resistivity flows into the ground or the like via the grounding wire 11 and is removed. . The lining sheet containing the composite resin material containing the fluorocarbon resin A and the carbon nanotube is, for example, thinly cut out the molded product of the composite resin material manufactured as described above into a sheet, or extruding the composite resin material into a sheet Manufactured by molding. By lining the lining sheet containing the composite resin material thus obtained on the inner surface of the tank at the liquid contact portion 7 or tank bottom portion 9 in the same manner as the method for providing the lining layer 2 described above, the efficiency of the chemical solution 6 is obtained. Static charge removal is possible.
 本発明の第2実施形態のタンクは、図2に示すように、薬液管15を有する。薬液管15の内面には、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層151が設けられている。管の内面に上記複合樹脂材料を含むライニング層151が設けられた薬液管15は、例えば、複合樹脂材料の成形体を管状に切削加工し、これを金属製の配管内面に接合させる方法、または、樹脂製の配管内面と溶接させる方法により製造される。薬液管15のライニング層151は、アース線11と電気的に接続されており、薬液管15を通過する際に帯電した静電気は、最終的にアース線11を介して除去される。なお、ライニング層151が、アース線11とは異なるアース線を有していてもよい。なお、図2に示される薬液管15は、内面の一部にフッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層が設けられているが、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料の成形体であってもよく、複合樹脂材料の成形体を管状に切削加工した管を、薬液管としてそのまま使用してもよい。 The tank of 2nd Embodiment of this invention has the chemical | medical solution pipe 15 as shown in FIG. A lining layer 151 containing a composite resin material containing fluorocarbon resin B and carbon nanotubes is provided on the inner surface of the drug solution tube 15. The chemical liquid pipe 15 in which the lining layer 151 containing the above-mentioned composite resin material is provided on the inner surface of the pipe is, for example, a method of cutting a molded body of the composite resin material into a tubular shape and bonding it to the inner surface of metal pipe , Manufactured by a method of welding to the inner surface of a resin pipe. The lining layer 151 of the drug solution tube 15 is electrically connected to the ground wire 11, and static electricity charged when passing through the drug solution tube 15 is finally removed via the ground wire 11. The lining layer 151 may have a ground wire different from the ground wire 11. The chemical liquid pipe 15 shown in FIG. 2 is provided with a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on a part of the inner surface, but a composite resin material containing fluorocarbon resin B and carbon nanotubes The pipe | tube which cut-processed the molded object of composite resin material in the tubular form may be used as it is as a chemical | medical solution pipe.
 本発明の第2実施形態のタンクは、図2に示すように、中空球状の成形体5を有する。中空球状の成形体5の数は特に限定されず、各成形体5の大きさや、求められる帯電効果に応じて、適宜選択してよい。成形体5のそれぞれにはアース線13が接続され、アース線は蓋体14からタンク外部へと出て、外部と接続されている。薬液6中に帯電した静電気は、低い体積抵抗率を有する成形体5に流れ込み、アース線13を介して除去される。中空球状の成形体5は、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料の成形体を薄く切り出すか、または、複合樹脂材料をシート状に押出成形することにより製造したシートを、中空球状に貼り合せることにより製造してよい。本実施形態のタンクは、蓋体14を有するが、蓋体14は必須ではない。また、本実施形態においてアース線13は蓋体14から伸びているが、アース線13がアース線11に電気的に接続されていてもよい。 The tank according to the second embodiment of the present invention has a hollow spherical shaped body 5 as shown in FIG. The number of hollow spherical shaped articles 5 is not particularly limited, and may be appropriately selected according to the size of each shaped article 5 and the required charging effect. An earth wire 13 is connected to each of the molded bodies 5, and the earth wire exits from the lid 14 to the outside of the tank and is connected to the outside. The static electricity charged in the chemical solution 6 flows into the compact 5 having a low volume resistivity, and is removed via the ground wire 13. The hollow spherical molded body 5 is obtained by thinly cutting out a molded body of a composite resin material containing fluorocarbon resin C and carbon nanotubes, or attaching a sheet produced by extruding the composite resin material into a sheet shape into a hollow spherical body. You may manufacture by putting together. Although the tank of this embodiment has the lid 14, the lid 14 is not essential. Further, although the ground wire 13 extends from the lid 14 in the present embodiment, the ground wire 13 may be electrically connected to the ground wire 11.
 本発明の第2実施形態のタンクは、図2に示すような形状を有し、例えば薬液運搬用タンクとして使用される。具体的には、ISOタンクとして知られるようなタンクコンテナであってよい。タンクコンテナは、船舶、鉄道、自動車などの貨物輸送において、貨物が液体の場合に使用されるコンテナである。特に、タンクコンテナで薬液を運搬する際、運搬時の振動によって、タンク内部の液体が振動し、かかる振動によって摩擦が生じ、薬液が帯電する可能性がある。本実施形態のタンクによれば、薬液に生じた静電気を効率的に除去することが可能である。本実施形態のタンクは、図2には示されていないが、タンクに一般的なその他の構成、例えば上部、横部、下部等の任意の位置に設けられたさらなる薬液管、安全弁、通気口等をさらに有していてよい。また、本実施形態のタンクの運搬手段は特に限定されず、タンクローリーおよび貨物列車等の運搬車両や、船舶等によって運搬されてよい。 The tank according to the second embodiment of the present invention has a shape as shown in FIG. 2 and is used, for example, as a chemical solution transport tank. In particular, it may be a tank container as known as an ISO tank. Tank containers are containers used when cargo is liquid in freight transportation such as ships, railways, automobiles and the like. In particular, when the chemical solution is transported by the tank container, the liquid inside the tank vibrates due to the vibration at the time of transportation, and such vibration may cause friction to charge the chemical solution. According to the tank of the present embodiment, it is possible to efficiently remove the static electricity generated in the chemical solution. The tank according to the present embodiment is not shown in FIG. 2, but other configurations common to the tank, such as additional liquid chemical pipes provided at arbitrary positions such as upper, horizontal and lower parts, safety valves and vents And the like. Moreover, the conveyance means of the tank of this embodiment is not specifically limited, You may be conveyed by conveyance vehicles, such as a tank lorry and a freight train, and a ship.
(第3実施形態)
 次に、本発明の供給システムの実施形態を第3実施形態として図3に示す。この実施形態における本発明の供給システムは、図3に示すように、薬液運搬タンク16および薬液供給タンク22を有し、各使用ポイント18(POU、ポイントオブユース)へ薬液を供給するためのシステムである。薬液運搬タンク16および薬液供給タンク22の少なくとも一方が本発明のタンクであればよく、いずれもが本発明のタンクであってもよい。薬液運搬タンク16は、例えば図2に示す実施形態のタンクであり得る。薬液運搬タンク16は薬液を内容物とし、運搬車両17に積載されて運搬される。薬液運搬タンク16にて運搬された薬液は、ポンプ24の動作によって、最終的に各使用ポイント28へと運ばれる。まず、薬液運搬タンク16は、例えば半導体製造工場において、パスボックス19内のカプラー20と接続管18および21を介して、薬液供給タンク22へと接続される。薬液運搬タンク16内の薬液は、接続管18を通り、カプラー20にて連結され、接続管21を介して、薬液供給タンク22へと運ばれる。薬液供給タンク22には、ポンプ24が接続されており、薬液供給タンク22から接続管23および25を介して運ばれた薬液は、フィルター26を通過することにより、薬液中に含まれ得る微細な汚染物質を除去され、接続管27を介して各使用ポイント28へと運ばれる。図3に示す第3実施形態においては、液の供給をポンプ24を用いて行っているが、ポンプ24の位置は図示される場所に限定されない。また、複数のポンプ24を使用してもよい。さらに、供給をポンプを用いずに、加圧システム等により薬液を供給してもよい。
Third Embodiment
Next, an embodiment of the supply system of the present invention is shown in FIG. 3 as a third embodiment. The supply system of the present invention in this embodiment, as shown in FIG. 3, has a chemical solution transport tank 16 and a chemical solution supply tank 22, and is a system for supplying a chemical solution to each use point 18 (POU, point of use). It is. At least one of the chemical solution transport tank 16 and the chemical solution supply tank 22 may be the tank of the present invention, and any of them may be the tank of the present invention. The chemical solution transport tank 16 may be, for example, a tank of the embodiment shown in FIG. The chemical solution transport tank 16 has a chemical solution as its content, is loaded on the transport vehicle 17 and transported. The chemical solution transported by the chemical solution transport tank 16 is finally transported to each use point 28 by the operation of the pump 24. First, the chemical solution transport tank 16 is connected to the chemical solution supply tank 22 via the coupler 20 in the pass box 19 and the connection pipes 18 and 21, for example, in a semiconductor manufacturing plant. The chemical solution in the chemical solution transport tank 16 passes through the connection pipe 18, is connected by the coupler 20, and is transported to the chemical liquid supply tank 22 via the connection pipe 21. The pump 24 is connected to the chemical solution supply tank 22, and the chemical solution carried from the chemical solution supply tank 22 via the connection pipes 23 and 25 passes through the filter 26 to be finely contained in the chemical solution. Contaminants are removed and transported to each point of use 28 via connection tube 27. In the third embodiment shown in FIG. 3, the liquid supply is performed using the pump 24, but the position of the pump 24 is not limited to the illustrated position. Also, multiple pumps 24 may be used. Furthermore, the chemical solution may be supplied by a pressurization system or the like without using a pump.
 以下、実施例により本発明をさらに詳細に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but these do not limit the scope of the present invention.
<平均粒子径D50の測定>
 複合樹脂粒子の製造に使用したフッ素樹脂粒子、および、複合樹脂粒子の平均粒子径は、レーザー回折散乱式粒度分布装置(日機装製「MT3300II」)により粒度分布を測定し、平均粒子径D50を得た。
<Measurement of Average Particle Size D 50 >
Fluorine resin particles used in the preparation of the composite resin particles, and an average particle diameter of the composite resin particles, the particle size distribution measured by a laser diffraction scattering particle size distribution analyzer (manufactured by Nikkiso "MT3300II"), the average particle diameter D 50 Obtained.
<比表面積の測定>
 複合樹脂粒子の製造に使用したフッ素樹脂粒子、および、複合樹脂粒子の比表面積の測定は、JIS Z8830に従い、比表面積/細孔分布測定装置(日本ベル製BELSORP-miniII)を用いて行った。
<Measurement of specific surface area>
The measurement of the specific surface area of the fluorocarbon resin particles used in the production of the composite resin particles and the composite resin particles was carried out using a specific surface area / pore distribution measuring apparatus (BELSORP-miniII manufactured by Nippon Bell) in accordance with JIS Z8830.
<結晶化熱の測定>
 複合樹脂粒子の製造に使用したフッ素樹脂粒子の結晶化熱は、示差走査型熱量計(島津製作所製「DSC-50」)を用いて測定した。3mgの測定試料を、50℃/分の速度にて250℃まで昇温させ、一旦保持し、さらに10℃/分の速度にて380℃まで昇温させることにより結晶を融解させた後、10℃/分の速度で降温させた際に測定される結晶化点のピークから熱量に換算して測定した。
<Measurement of heat of crystallization>
The heat of crystallization of the fluorine resin particles used for producing the composite resin particles was measured using a differential scanning calorimeter ("DSC-50" manufactured by Shimadzu Corporation). 10 mg of the measurement sample is heated to 250 ° C. at a rate of 50 ° C./min and temporarily held, and then the crystal is melted by raising the temperature to 380 ° C. at a rate of 10 ° C./min. The peak of the crystallization point measured when the temperature was lowered at a rate of ° C./min was measured in terms of heat.
<融点の測定>
 複合樹脂粒子の製造に使用したフッ素樹脂粒子の融点の測定は、ASTM-D4591に準拠し、示差走査熱量計(DSC)を用いて測定できる融解熱ピークの温度として求めた。
<Measurement of melting point>
The measurement of the melting point of the fluorocarbon resin particles used for producing the composite resin particles was determined as the temperature of the heat of fusion peak which can be measured using a differential scanning calorimeter (DSC) in accordance with ASTM-D4591.
<複合樹脂材料の作製>
 後述する製造例で得た複合樹脂粒子を、必要に応じて前処理(例えば、予備乾燥、造粒等)を行った後、成形用金型に一定量、均一に充填した。充填後の作製手順はフッ素樹脂の種類によって異なる。
 フッ素樹脂が、PTFE樹脂及び変性PTFE樹脂の場合は、15MPaで加圧し一定時間保持することにより複合樹脂粒子を圧縮し、予備成形体を得た。得られた予備成形体を成形金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷を行ったのち電気炉から取り出し、複合樹脂粒子の成形体(複合樹脂材料)を得た。
 フッ素樹脂が、PCTFE樹脂、PFA樹脂、FEP樹脂、ETFE樹脂、ECTFE樹脂、PVDF樹脂及びPVF樹脂(PTFE樹脂及び変性PTFE樹脂以外)の場合は、金型を200℃以上に設定した熱風循環式電気炉で2時間以上加熱させて樹脂を溶融させる。所定時間加熱後、電気炉から金型を取り出し、油圧プレスを用いて25kg/cm以上の面圧で加圧圧縮しながら常温付近まで金型を冷却したのち、複合樹脂粒子の成形体(樹脂材料)を得た。
<Preparation of composite resin material>
The composite resin particles obtained in the production example described later were subjected to pretreatment (eg, preliminary drying, granulation, etc.) as necessary, and then uniformly filled in a predetermined amount in a molding die. The preparation procedure after filling varies depending on the type of fluororesin.
When the fluorocarbon resin was a PTFE resin and a modified PTFE resin, the composite resin particles were compressed by pressing at 15 MPa and holding for a certain period of time to obtain a preformed body. The obtained preform is taken out of the molding die, fired in a hot air circulating electric furnace set at 345 ° C. or more for 2 hours or more, slowly cooled, taken out from the electric furnace, and a molded product of composite resin particles ( Composite resin material) was obtained.
When the fluorocarbon resin is PCTFE resin, PFA resin, FEP resin, ETFE resin, ECTFE resin, PVDF resin, and PVF resin (other than PTFE resin and modified PTFE resin), hot air circulation type electricity having a mold set at 200 ° C. or higher The furnace is heated for 2 hours or more to melt the resin. After heating for a predetermined time, the mold is taken out of the electric furnace, and the mold is cooled to around normal temperature while pressing and compressing with a hydraulic press at a surface pressure of 25 kg / cm 2 or more. The material was obtained.
<体積抵抗率の測定>
 複合樹脂粒子から上記のようにして得た複合樹脂材料(成形体)からφ110×10mmの試験片を作製し、測定試料とした。体積抵抗率の測定は、JIS K6911に従い、抵抗率計(三菱化学アナリテック製「ロレスタ」または「ハイレスタ」)を用いて行った。
<Measurement of volume resistivity>
A test piece of φ110 × 10 mm was produced from the composite resin material (molded body) obtained as described above from the composite resin particles, and used as a measurement sample. The measurement of volume resistivity was performed using a resistivity meter ("Loresta" or "Hiresta" manufactured by Mitsubishi Chemical Analytech Co., Ltd.) according to JIS K6911.
<複合樹脂材料の溶接強度の測定>
 複合樹脂粒子から上記のようにして得た複合樹脂材料(成形体)から、厚さ10mm×幅30mm×長さ100mmの試験片を作製し、この試験片に長さ50mm、深さ約1mmのV溝を切削した。次いで、直径3mmのPFA溶接棒を、熱風式溶接機を用いて、融着する部分の長さが50mmとなるように溝部分に溶接し、図4に示されるような溶接強度測定用試験片を作成した。次に、溶接強度測定用試験片を、図5に示すように、融着したPFA溶接棒の折り返し部分が下側となるように引張試験機にセットし、溶接棒の融着されずに残る部分を引張試験機の上チャックにセットする。10mm/分の速度にて引張試験機(株式会社エー・アンド・デイ製「テンシロン万能材料試験機」)を用いて引張を行い、最大応力を測定し、溶接強度とした。
<Measurement of welding strength of composite resin material>
A test piece 10 mm thick × 30 mm wide × 100 mm long is prepared from the composite resin material (molded body) obtained as described above from the composite resin particles, and the test piece is 50 mm long and about 1 mm deep. The V groove was cut. Next, a PFA welding rod with a diameter of 3 mm is welded to the groove portion so that the length of the portion to be fused is 50 mm using a hot air type welding machine, and the test specimen for welding strength measurement as shown in FIG. It was created. Next, as shown in FIG. 5, the test piece for measuring welding strength is set in a tensile tester so that the folded portion of the fused PFA welding rod is on the lower side, and the welding rod remains unfused Set the part on the upper chuck of the tensile tester. Tension was performed at a speed of 10 mm / min using a tensile tester (“Tensilon universal material tester” manufactured by A & D Co., Ltd.), and the maximum stress was measured to obtain welding strength.
<複合樹脂材料の金属溶出量の測定>
 カーボンナノチューブを添加したことによる、成形体における金属汚染の程度を、ICP質量分析装置(パーキンエルマー製「ELAN DRCII」)を用いて金属系17元素の金属溶出量を測定することにより評価した。具体的には、上記のようにして得た複合樹脂材料から切削取得した10mm×20mm×50mmの試験片を、3.6%塩酸(関東化学製EL-UMグレード)0.5Lに1時間程度浸漬し、1時間浸漬後に取出して超純水(比抵抗値:≧18.0MΩ・cm)で掛け流し洗浄を行い、3.6%塩酸0.1Lに試験片全体を浸漬して室温環境下で24時間および168時間保存した。規定時間経過後に浸漬液を全量回収し、浸漬液の金属不純物濃度を分析した。
<Measurement of metal elution amount of composite resin material>
The degree of metal contamination in the molded body due to the addition of the carbon nanotube was evaluated by measuring the metal elution amount of the metal-based 17 element using an ICP mass spectrometer ("ELAN DRCII" manufactured by Perkin Elmer). Specifically, a test piece of 10 mm × 20 mm × 50 mm obtained by cutting from the composite resin material obtained as described above is converted into 0.5 L of 3.6% hydrochloric acid (EL-UM grade made by Kanto Chemical) for about 1 hour. Immerse, take out after immersion for 1 hour, flush with ultra pure water (specific resistance: 118.0 MΩ · cm) and wash, immerse the entire test piece in 0.1 L of 3.6% hydrochloric acid, and under a room temperature environment Stored for 24 hours and 168 hours. After the specified time elapsed, the entire amount of the immersion liquid was recovered, and the metal impurity concentration of the immersion liquid was analyzed.
<複合樹脂材料の炭素脱落の測定>
 複合樹脂材料からのカーボンナノチューブの脱離の程度を、全有機体炭素計(島津製作所製「TOCvwp」)を用いてTOCを測定することにより評価した。具体的には、上記のようにして得た複合樹脂材料から切削取得した10mm×20mm×50mmの試験片を、3.6%塩酸(関東化学製EL-UMグレード)0.5Lに1時間程度浸漬し、1時間浸漬後に取出して超純水(比抵抗値:≧18.0MΩ・cm)で掛け流し洗浄を行い、超純水に試験片全体を浸漬して室温環境下で24時間および168時間保存した。規定時間経過後に浸漬液を全量回収し、浸漬液について全有機体炭素分析をした。
<Measurement of carbon dropout of composite resin material>
The degree of desorption of carbon nanotubes from the composite resin material was evaluated by measuring TOC using a total organic carbon meter (“TOCvwp” manufactured by Shimadzu Corporation). Specifically, a test piece of 10 mm × 20 mm × 50 mm obtained by cutting from the composite resin material obtained as described above is converted into 0.5 L of 3.6% hydrochloric acid (EL-UM grade made by Kanto Chemical) for about 1 hour. Immerse, take out after immersion for 1 hour, flush with ultra pure water (specific resistance value: 118.0 MΩ · cm) and wash, immerse the entire test piece in ultra pure water, room temperature environment for 24 hours and 168 I saved time. After the specified time elapsed, the entire amount of the immersion liquid was recovered, and the total organic carbon analysis was performed on the immersion liquid.
<複合樹脂材料の耐薬品性の評価>
 上記のようにして得た複合樹脂材料から切削取得した10mm×20mm×50mmの試験片の重量を電子天秤(エイ・アンド・デイ製分析用電子天びん「BM-252」)を用いて測定した。次いで、該試験片を、SPM(HSO:H=1:2(質量比))、FPM(HF:H=1:2(質量比))、APM(SC-1)(NHOH:H:HO=1:1:5(質量比))、オゾン水(50ppm)の各溶液中に168時間浸漬し、乾燥させて、浸漬後の試験片の重量を浸漬前度同様に電子天秤を用いて測定した。浸漬前後の重量変化を、次の式にて算出し、耐薬品性の指標とした。
重量変化(%)=[(浸漬後の重量-浸漬前の重量)/浸漬前の重量]×100
<Evaluation of chemical resistance of composite resin material>
The weight of a 10 mm × 20 mm × 50 mm test piece obtained by cutting the composite resin material obtained as described above was measured using an electronic balance (A & D electronic balance for analysis “BM-252”). Then, the test pieces were subjected to SPM (H 2 SO 4 : H 2 O 2 = 1: 2 (mass ratio)), FPM (HF: H 2 O 2 = 1: 2 (mass ratio)), APM (SC− 1) Immerse in each solution of (NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 5 (mass ratio)), ozone water (50 ppm) for 168 hours, allow to dry, and test after immersion The weight of the piece was measured using an electronic balance in the same manner as before immersion. The weight change before and after immersion was calculated by the following equation and used as an index of chemical resistance.
Weight change (%) = [(weight after immersion-weight before immersion) / weight before immersion] x 100
〔複合樹脂粒子の製造〕
以下の実施例および比較例において、次の表1に示す変性PTFE粒子またはポリテトラフルオロエチレン(PTFE)粒子を使用した。なお、表1に示す変性PTFE粒子1および2における、上記式(II)中のXはパーフルオロプロピル基であり、パーフルオロビニルエーテル単位の量は、変性ポリテトラフルオロエチレンの全質量に基づいて、0.01~1質量%であることを確認した。
Figure JPOXMLDOC01-appb-T000009
[Production of Composite Resin Particles]
In the following examples and comparative examples, modified PTFE particles or polytetrafluoroethylene (PTFE) particles shown in the following Table 1 were used. In the modified PTFE particles 1 and 2 shown in Table 1, X in the above formula (II) is a perfluoropropyl group, and the amount of perfluorovinylether unit is based on the total mass of the modified polytetrafluoroethylene. It was confirmed to be 0.01 to 1% by mass.
Figure JPOXMLDOC01-appb-T000009
〔製造例1〕
 水を溶媒としたカーボンナノチューブ分散液(分散剤=0.15質量%、カーボンナノチューブ=0.025質量%)500gにエタノールを3,500g加えて希釈した。さらに、変性PTFE粒子1を1,000g添加して混合スラリーを作製した。
 次いで、作製した混合スラリーを耐圧容器に供給し、耐圧容器内の混合スラリーに含まれる分散剤1mgに対して0.03g/分の供給速度で液化二酸化炭素を供給し、耐圧容器内の圧力を20MPa、温度を50℃となるまで昇圧・昇温させた。上記圧力および温度を3時間保持しながら二酸化炭素を、二酸化炭素中に溶け込んだ溶媒(水、エタノール)および分散剤と共に耐圧容器から排出させた。
 次いで、耐圧容器内の圧力、温度を大気圧、常温まで下げることにより耐圧容器内の二酸化炭素を除去し、CNT複合樹脂粒子1を得た。
Production Example 1
To 500 g of a carbon nanotube dispersion liquid (dispersant = 0.15 mass%, carbon nanotube = 0.025 mass%) using water as a solvent, 3,500 g of ethanol was added for dilution. Furthermore, 1,000 g of modified PTFE particles 1 were added to prepare a mixed slurry.
Next, the prepared mixed slurry is supplied to the pressure container, liquefied carbon dioxide is supplied at a supply rate of 0.03 g / min to 1 mg of the dispersant contained in the mixed slurry in the pressure container, and the pressure in the pressure container is adjusted. The pressure was raised and raised to a temperature of 50 ° C. at 20 MPa. While maintaining the above pressure and temperature for 3 hours, carbon dioxide was discharged from the pressure vessel together with the solvent (water, ethanol) dissolved in carbon dioxide and the dispersant.
Subsequently, the pressure and temperature in the pressure resistant vessel were lowered to atmospheric pressure and normal temperature to remove carbon dioxide in the pressure resistant vessel, whereby CNT composite resin particles 1 were obtained.
〔製造例2〕
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.05質量%としたこと以外は製造例1-1と同様にしてCNT複合樹脂粒子2を得た。
Production Example 2
A CNT composite resin particle 2 was obtained in the same manner as in Production Example 1-1 except that the amount of CNT was set to 0.05% by mass based on the total amount of the composite resin particles.
〔製造例3〕
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.1質量%としたこと以外は製造例1-1と同様にしてCNT複合樹脂粒子3を得た。
Production Example 3
A CNT composite resin particle 3 was obtained in the same manner as in Production Example 1-1 except that the amount of CNT was set to 0.1% by mass based on the total amount of the composite resin particles.
〔製造例4〕
 変性PTFE1に代えて変性PTFE2を用いたこと以外は製造例1と同様にしてCNT複合樹脂粒子4を得た。
Production Example 4
A CNT composite resin particle 4 was obtained in the same manner as in Production Example 1 except that the modified PTFE 2 was used in place of the modified PTFE 1.
〔製造例5〕
 変性PTFE1に代えて変性PTFE2を用いたこと以外は製造例2と同様にしてCNT複合樹脂材料5を得た。
Production Example 5
A CNT composite resin material 5 was obtained in the same manner as in Production Example 2 except that the modified PTFE 2 was used in place of the modified PTFE 1.
〔比較用樹脂粒子6(製造例6)〕
 CNTを複合化させていない変性PTFE1を比較用樹脂粒子6とした。
[Resin particles 6 for comparison (Production Example 6)]
The modified PTFE 1 in which the CNTs were not complexed was used as the resin particle 6 for comparison.
〔比較用樹脂粒子7(製造例7)〕
 CNTを複合化させていない変性PTFE2を比較用樹脂粒子7とした。
[Resin particle 7 for comparison (Production Example 7)]
The modified PTFE 2 in which the CNTs were not complexed was used as the resin particle 7 for comparison.
〔比較用樹脂粒子8(製造例8)〕
 CNTを複合化させていないPTFE粒子を比較用樹脂粒子8とした
[Resin particle 8 for comparison (Production Example 8)]
PTFE particles not composited with CNTs were used as resin particles 8 for comparison
 上記の製造例1~8で得た樹脂粒子の平均粒子径および比表面積を上記測定方法に従い測定した。結果を表2に示す。また、上記の製造例1~8で得た樹脂粒子を用いて上記の方法に従い作製した成形体について測定した体積抵抗率及び溶接強度を表2に示し、耐薬品性評価の結果を表3に示す。さらに、CNTの量と樹脂材料の体積抵抗率から、次の式:
A=X/Y-14
により得た値Aも表2に示す。上記式中のXは、樹脂材料の体積抵抗率[Ω・cm]であり、Yは樹脂材料に含まれるCNTの量[質量%](樹脂材料の製造に使用したCNTの量に等しい)である。
なお、以下において、複合樹脂粒子1~5から上記方法に従い作成した複合樹脂材料を、それぞれ、複合樹脂材料1~5とも称し、比較用樹脂粒子6~8から上記方法に従い作成した樹脂材料を、それぞれ、比較用樹脂材料6~8とも称する。また、複合樹脂粒子または樹脂粒子におけるCNTの量は、これらから得た複合樹脂材料または樹脂材料におけるCNTの量と等しい。
Figure JPOXMLDOC01-appb-T000010
The average particle size and the specific surface area of the resin particles obtained in the above Production Examples 1 to 8 were measured according to the above measurement method. The results are shown in Table 2. Moreover, the volume resistivity and welding strength which were measured about the molded object produced according to said method using the resin particle obtained by said manufacture example 1-8 are shown in Table 2, and the result of chemical resistance evaluation is shown in Table 3. Show. Furthermore, from the amount of CNT and the volume resistivity of the resin material, the following equation:
A = X / Y -14
The value A obtained by the above is also shown in Table 2. In the above formula, X is the volume resistivity [Ω · cm] of the resin material, and Y is the amount of CNT contained in the resin material [mass%] (equal to the amount of CNT used for the production of the resin material) is there.
In the following, composite resin materials prepared from the composite resin particles 1 to 5 according to the above method are also referred to as composite resin materials 1 to 5, respectively, They are also referred to as comparative resin materials 6 to 8 respectively. Also, the amount of CNTs in the composite resin particles or resin particles is equal to the amount of CNTs in the composite resin material or resin material obtained therefrom.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 複合樹脂材料1および2、ならびに、比較用樹脂材料6から得た樹脂材料について、金属溶出量および炭素脱落の評価を行った。得られた結果を表4に示す。なお、表4中の金属溶出量の欄に記載した元素以外の元素(Ag、Cd、Co、Cr、K、Li、Mn、Na、Ni、Pb、Ti、Zn)については、金属溶出量の測定を行ったが装置検出限界(ND)であったため、表4中には結果を記載していない。また、表4中の結果はいずれも24時間浸漬後の結果である。
Figure JPOXMLDOC01-appb-T000012
For the resin materials obtained from the composite resin materials 1 and 2 and the resin material 6 for comparison, evaluation of metal elution amount and carbon dropout was performed. The obtained results are shown in Table 4. In addition, about elements (Ag, Cd, Co, Cr, K, Li, Mn, Na, Ni, Pb, Ti, Zn) other than the element described in the column of the metal elution amount in Table 4, the metal elution amount is The results are not shown in Table 4 because the measurements were taken but at the instrument detection limit (ND). Also, the results in Table 4 are all after immersion for 24 hours.
Figure JPOXMLDOC01-appb-T000012
 上記複合樹脂材料の作製方法にしたがい製造例2で得た複合樹脂粒子を用いて作製した複合樹脂材料2から、10mm×10mm×厚さ2mmの試験片を得た。該試験片を表5に示す種々の薬液に浸漬させ、浸漬前と約1週間(1W)および約1ヶ月(1M)浸漬後の重量変化を測定した。得られた結果を表5に示す。なお、表5中のAPMへの浸漬試験は80℃の温度条件下で行い、その他の薬液への浸漬試験は室温条件下で行った。また、表5中の各薬液の詳細は表6に示すとおりである。 A test piece of 10 mm × 10 mm × 2 mm in thickness was obtained from the composite resin material 2 produced using the composite resin particles obtained in Production Example 2 according to the production method of the composite resin material. The test pieces were immersed in various chemicals shown in Table 5, and weight changes before and after immersion for about one week (1 W) and about one month (1 M) were measured. The obtained results are shown in Table 5. In addition, the immersion test to APM in Table 5 was performed on temperature conditions of 80 degreeC, and the immersion test to another chemical | medical solution was performed on room temperature conditions. Moreover, the detail of each chemical | medical solution in Table 5 is as showing in Table 6.
〔製造例9および複合樹脂材料9〕
 変性PTFE1に代えてPCTFE(平均粒子径10μm、比表面積2.9、体積抵抗率10Ω・cm)を用いたこと以外は製造例2と同様にしてCNT複合樹脂粒子9を得た。得られたCNT複合樹脂粒子9を用いて、上記複合樹脂材料の作製方法にしたがい複合樹脂材料9を作製し、10mm×10mm×厚さ2mmの試験片を得た。該試験片についても同様に、表5に示す種々の薬液への浸漬試験を行った。得られた結果を表5に示す。
Production Example 9 and Composite Resin Material 9
A CNT composite resin particle 9 was obtained in the same manner as in Production Example 2 except that PCTFE (average particle diameter 10 μm, specific surface area 2.9, volume resistivity 10 2 Ω · cm) was used instead of the modified PTFE 1. Using the obtained CNT composite resin particles 9, a composite resin material 9 was produced according to the production method of the above composite resin material, and a test piece of 10 mm × 10 mm × thickness 2 mm was obtained. Likewise, the test pieces were subjected to the immersion tests in various chemical solutions shown in Table 5. The obtained results are shown in Table 5.
〔比較用樹脂材料10~12〕
 PTFEにグラファイトを15重量%添加した市販成形体を比較用樹脂材料10とし、PTFEにカーボンファイバーを15重量%添加した市販成形体を比較用樹脂材料11とした。また、市販の複合材料(PFA樹脂と炭素繊維の複合材料)を比較用樹脂材料12とした。これらの材料の上記サイズを有する試験片についても同様に、表5に示す種々の薬液への浸漬試験を行った。得られた結果を表5に示す。
[Resin materials 10 to 12 for comparison]
A commercially available molded article in which 15% by weight of graphite is added to PTFE is used as the resin material 10 for comparison, and a commercially available molded article in which 15% by weight of carbon fiber is added to PTFE is used as the resin material 11 for comparison. Further, a commercially available composite material (composite material of PFA resin and carbon fiber) was used as the resin material 12 for comparison. The immersion test to the various chemical | medical solutions shown in Table 5 was similarly done about the test piece which has the said size of these materials. The obtained results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
〔複合樹脂粒子の製造(PCTFE)〕
 次の表7に示すポリクロロテトラフルオロエチレン(PCTFE)粒子を使用し、複合樹脂粒子を製造した。
Figure JPOXMLDOC01-appb-T000015
[Production of composite resin particles (PCTFE)]
Composite resin particles were produced using polychlorotetrafluoroethylene (PCTFE) particles shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000015
〔製造例13:CNT複合樹脂粒子13の製造〕
 変性PTFE粒子1に代えてPCTFE粒子2を用いたこと以外は製造例1と同様にしてCNT複合樹脂粒子13を得た。
Production Example 13 Production of CNT Composite Resin Particles 13
A CNT composite resin particle 13 was obtained in the same manner as in Production Example 1 except that PCTFE particles 2 were used instead of the modified PTFE particles 1.
(製造例14:CNT複合樹脂粒子14の製造)
 変性PTFE粒子1に代えてPCTFE粒子2を用いたこと以外は製造例2と同様にしてCNT複合樹脂粒子14を得た。
Production Example 14 Production of CNT Composite Resin Particles 14
CNT composite resin particles 14 were obtained in the same manner as in Production Example 2 except that PCTFE particles 2 were used instead of the modified PTFE particles 1.
(製造例15:CNT複合樹脂粒子15の製造)
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.1質量%としたこと以外は製造例14と同様にしてCNT複合樹脂粒子15を得た。
(Production Example 15: Production of CNT Composite Resin Particles 15)
The CNT composite resin particles 15 were obtained in the same manner as in Production Example 14 except that the amount of CNTs was 0.1% by mass based on the total amount of the composite resin particles.
(製造例16:CNT複合樹脂粒子16の製造)
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.125質量%としたこと以外は製造例14と同様にしてCNT複合樹脂粒子16を得た。
Production Example 16 Production of CNT Composite Resin Particles 16
CNT composite resin particles 16 were obtained in the same manner as in Production Example 14 except that the amount of CNTs was 0.125% by mass based on the total amount of composite resin particles.
(製造例17:CNT複合樹脂粒子17の製造)
 CNTの量を得られる複合樹脂粒子の総量に基づいて0.15質量%としたこと以外は製造例14と同様にしてCNT複合樹脂粒子17を得た。
Production Example 17 Production of CNT Composite Resin Particles 17
A CNT composite resin particle 17 was obtained in the same manner as in Production Example 14 except that the amount was set to 0.15% by mass based on the total amount of composite resin particles capable of obtaining the amount of CNT.
(製造例18:CNT複合樹脂粒子18の製造)
 PCTFE粒子2に代えてPCTFE粒子3を用いたこと以外は製造例15と同様にしてCNT複合樹脂粒子18を得た。
Production Example 18 Production of CNT Composite Resin Particles 18
CNT composite resin particles 18 were obtained in the same manner as in Production Example 15, except that PCTFE particles 3 were used in place of PCTFE particles 2.
(製造例19:CNT複合樹脂粒子19の製造)
 PCTFE粒子2に代えてPCTFE粒子1を用いたこと以外は製造例15と同様にしてCNT複合樹脂粒子19を得た。
(Production Example 19: Production of CNT Composite Resin Particles 19)
CNT composite resin particles 19 were obtained in the same manner as in Production Example 15 except that PCTFE particles 1 were used instead of PCTFE particles 2.
(製造例20:比較用樹脂粒子20)
 CNTを複合化させていないPCTFE2を比較用の樹脂粒子20とした。
(Production Example 20: Resin Particles 20 for Comparison)
PCTFE 2 in which CNTs were not complexed was used as the resin particle 20 for comparison.
 上記の製造例13~20で得た複合樹脂粒子および比較用樹脂粒子の平均粒子径および比表面積を上記測定方法に従い測定した。結果を表8に示す。また、上記の樹脂粒子を用いて上記の方法に従い作製した複合樹脂材料(成形体)13~19および比較用樹脂材料(成形体)20について測定した体積抵抗率も表8に示す。さらに、CNTの量と樹脂材料の体積抵抗率から、次の式:
A=X/Y-14
により得た値Aも表8に示す。上記式中のXは、樹脂材料の体積抵抗率[Ω・cm]であり、Yは樹脂材料に含まれるCNTの量[質量%](樹脂材料の製造に使用したCNTの量に等しい)である。なお、複合樹脂粒子13~19から上記方法に従い作成した複合樹脂材料を、それぞれ、複合樹脂材料13~19とも称し、比較用樹脂粒子20から上記方法に従い作成した複合樹脂材料を、比較用樹脂材料20とも称する。
Figure JPOXMLDOC01-appb-T000016
The average particle size and the specific surface area of the composite resin particles obtained in the above Production Examples 13 to 20 and the resin particles for comparison were measured according to the above-mentioned measuring method. The results are shown in Table 8. Table 8 also shows volume resistivity measured for composite resin materials (molded bodies) 13 to 19 and a comparative resin material (molded body) 20 prepared according to the above method using the above-mentioned resin particles. Furthermore, from the amount of CNT and the volume resistivity of the resin material, the following equation:
A = X / Y -14
The value A obtained by the above is also shown in Table 8. In the above formula, X is the volume resistivity [Ω · cm] of the resin material, and Y is the amount of CNT contained in the resin material [mass%] (equal to the amount of CNT used for the production of the resin material) is there. The composite resin materials prepared according to the above method from the composite resin particles 13-19 are also referred to as composite resin materials 13-19, respectively, and the composite resin material prepared according to the above method from the resin particles 20 for comparison is a resin material for comparison It is also called 20.
Figure JPOXMLDOC01-appb-T000016
 複合樹脂材料14および15、ならびに、比較用樹脂材料20について、金属溶出量および炭素脱落の評価を行った。得られた結果を表9に示す。なお、表9中の金属溶出量の欄に記載した元素以外の元素(Ag、Cd、Co、Cr、K、Li、Mn、Na、Ni、Pb、Ti、Zn)については、金属溶出量の測定を行ったが装置検出限界(ND)であったため、表9中には結果を記載していない。また、表9中の結果はいずれも24時間浸漬後の結果である。
Figure JPOXMLDOC01-appb-T000017
For the composite resin materials 14 and 15 and the comparative resin material 20, evaluation of metal elution amount and carbon dropout was performed. The obtained results are shown in Table 9. In addition, about elements (Ag, Cd, Co, Cr, K, Li, Mn, Na, Ni, Pb, Ti, Zn) other than the element described in the column of the metal elution amount in Table 9, the metal elution amount is The results are not shown in Table 9, as the measurements were taken but at the instrument detection limit (ND). In addition, the results in Table 9 are all after immersion for 24 hours.
Figure JPOXMLDOC01-appb-T000017
 複合樹脂材料14および15、ならびに、比較用樹脂材料20について、上記方法にしたがい耐薬品性の評価を行った。得られた結果を表10に示す。
Figure JPOXMLDOC01-appb-T000018
The chemical resistance of the composite resin materials 14 and 15 and the comparative resin material 20 were evaluated according to the above-mentioned method. The obtained results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000018
 上記の複合樹脂材料14および15について、上記の条件で硫酸過水浸漬処理(SPM処理)を行い、処理後の体積抵抗率を測定した。その結果、次の表11に示すように、複合樹脂材料14および15はSPM処理を行っても体積抵抗率が増加しないことが確認された。
Figure JPOXMLDOC01-appb-T000019
The above-mentioned composite resin materials 14 and 15 were subjected to sulfuric acid / hydrogen peroxide immersion treatment (SPM treatment) under the above conditions, and the volume resistivity after the treatment was measured. As a result, as shown in Table 11 below, it was confirmed that the composite resin materials 14 and 15 did not increase in volume resistivity even when SPM treatment was performed.
Figure JPOXMLDOC01-appb-T000019
〔複合樹脂材料を含むライニングシート1の製造〕
 上記のようにして得た複合樹脂粒子から複合樹脂材料を含むライングシート1を製造するための方法を述べる。製造方法は用いたフッ素樹脂によって異なる。フッ素樹脂がポリテトラフルオロエチレン(PTFE)または変性ポリテトラフルオロエチレン(変性PTFE)の場合、製造例2で得た複合樹脂粒子を、必要に応じて前処理(例えば、予備乾燥、造粒等)を行った後、成形用金型に一定量、均一に充填し、15MPaで加圧し一定時間保持することにより複合樹脂材料を圧縮し、予備成形体を得た。得られた予備成形体を成形金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷を行ったのち電気炉から取り出し、複合樹脂材料のブロック状の成形体を得た。(実施例、比較例には無いがふっ素樹脂がテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)の場合、圧縮成形法やコンプレッション成形法、シート押出成形法等あるが、圧縮成形法の場合、CNT複合樹脂粒子を、必要に応じて前処理(例えば、予備乾燥、造粒等)を行った後、成形用金型に一定量、均一に充填し、300℃以上に設定した電気炉で2時間以上焼成したのち、電気炉から取出し、油圧プレスで5MPa以上で加圧冷却して複合樹脂材料のブロック状の成形体を得る。)該成形体を、切削加工(鬘むき)し、厚み2.4mmのシートを作成した。得られたシートを厚み0.5mmのガラスクロスと積層させ、熱融着させ、ライニングシート1を得た。得られたライニングシート1の体積抵抗率は10Ω・cmであった。
[Production of lining sheet 1 containing composite resin material]
A method for producing the language sheet 1 including the composite resin material from the composite resin particles obtained as described above will be described. The production method varies depending on the used fluorine resin. When the fluorine resin is polytetrafluoroethylene (PTFE) or modified polytetrafluoroethylene (modified PTFE), the composite resin particles obtained in Production Example 2 are pretreated, if necessary, (eg, predrying, granulation, etc.) Then, the composite resin material was compressed by uniformly filling a fixed amount in a molding die and pressing at 15 MPa and holding for a fixed time to obtain a preform. The obtained preform is taken out of the molding die, fired in a hot air circulating electric furnace set at 345 ° C. or more for 2 hours or more, gradually cooled, taken out from the electric furnace, and block-shaped composite resin material A molded body was obtained. (In the case where the fluorocarbon resin is tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) which is not shown in the Examples and Comparative Examples, there are compression molding method, compression molding method, sheet extrusion molding method etc. In this case, the CNT composite resin particles are subjected to pretreatment (eg, preliminary drying, granulation, etc.) if necessary, and then uniformly filled in a predetermined amount in a molding die, and an electric furnace set at 300 ° C. or higher After firing for 2 hours or more, the product is removed from the electric furnace and pressure-cooled at 5 MPa or more with a hydraulic press to obtain a block-like molded product of the composite resin material. A sheet with a thickness of 2.4 mm was made. The obtained sheet was laminated with a glass cloth having a thickness of 0.5 mm and heat-fused to obtain a lining sheet 1. The volume resistivity of the obtained lining sheet 1 was 10 2 Ω · cm.
〔複合樹脂材料を含まないライニングシート2の製造〕
 製造例2で得た複合樹脂粒子に代えて比較用樹脂粒子6(製造例6)を用いたこと以外はライニングシート1の製造と同様にしてライニングシート2を得た。
[Production of lining sheet 2 not containing composite resin material]
A lining sheet 2 was obtained in the same manner as the lining sheet 1 except that the resin particle 6 for comparison (Production Example 6) was used in place of the composite resin particles obtained in Production Example 2.
〔複合樹脂材料を含む薬液管1の製造〕
 上記のようにして得た複合樹脂粒子から複合樹脂材料を含む薬液管1を製造するための方法を述べる。製造例2で得た複合樹脂粒子を、必要に応じて前処理(例えば、予備乾燥、造粒等)を行った後、成形用金型に一定量、均一に充填し、15MPaで加圧し一定時間保持することにより複合樹脂材料を圧縮し、予備成形体を得た。得られた予備成形体を成形金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷を行ったのち電気炉から取り出し、複合樹脂材料のブロック状の成形体を得た。得られた成形体を、CNC普通旋盤((株)滝澤鉄工所製「TAC-510」)を用いて切削加工し、直径2インチの薬液管を製造した。得られた薬液管1の体積抵抗率は5.0×10Ω・cmであった。
[Manufacturing of the drug solution tube 1 containing a composite resin material]
The method for manufacturing the drug solution pipe 1 containing a composite resin material from the composite resin particles obtained as described above will be described. The composite resin particles obtained in Production Example 2 are subjected to pretreatment (eg, preliminary drying, granulation, etc.) if necessary, and then uniformly filled in a predetermined amount in a molding die, pressurized at 15 MPa, constant The composite resin material was compressed by holding for a time to obtain a preform. The obtained preform is taken out of the molding die, fired in a hot air circulating electric furnace set at 345 ° C. or more for 2 hours or more, gradually cooled, taken out from the electric furnace, and block-shaped composite resin material A molded body was obtained. The obtained molded body was cut using a CNC ordinary lathe (“TAC-510” manufactured by Takizawa Iron Works Ltd.) to produce a chemical liquid pipe having a diameter of 2 inches. The volume resistivity of the obtained drug solution tube 1 was 5.0 × 10 2 Ω · cm.
〔複合樹脂材料を含む薬液管2の製造〕
 製造例2で得た複合樹脂粒子に代えて比較用樹脂粒子6(製造例6)を用いたこと以外は薬液管1の製造と同様にして薬液管2を得た。
[Manufacturing of the drug solution tube 2 containing a composite resin material]
A drug solution pipe 2 was obtained in the same manner as the production of the drug solution pipe 1 except that the resin particle 6 for comparison (Production Example 6) was used instead of the composite resin particles obtained in Production Example 2.
〔複合樹脂材料を含む中空球状1の製造〕
 上記のようにして得た複合樹脂粒子から複合樹脂材料を含む薬液管1を製造するための方法を述べる。製造例2で得た複合樹脂粒子を、必要に応じて前処理(例えば、予備乾燥、造粒等)を行った後、成形用金型に一定量、均一に充填し、15MPaで加圧し一定時間保持することにより複合樹脂材料を圧縮し、予備成形体を得た。得られた予備成形体を成形金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷を行ったのち電気炉から取り出し、複合樹脂材料のブロック状の成形体を得た。得られた成形体を、マシニングセンタを用いた切削加工や溶接加工を行う事で、直径50mmの中空球状の成形体を製造した。得られた中空球状成形体の体積抵抗率は5.0×10Ω・cmであった。
[Production of hollow sphere 1 containing composite resin material]
The method for manufacturing the drug solution pipe 1 containing a composite resin material from the composite resin particles obtained as described above will be described. The composite resin particles obtained in Production Example 2 are subjected to pretreatment (eg, preliminary drying, granulation, etc.) if necessary, and then uniformly filled in a predetermined amount in a molding die, pressurized at 15 MPa, constant The composite resin material was compressed by holding for a time to obtain a preform. The obtained preform is taken out of the molding die, fired in a hot air circulating electric furnace set at 345 ° C. or more for 2 hours or more, gradually cooled, taken out from the electric furnace, and block-shaped composite resin material A molded body was obtained. The obtained molded product was cut and welded using a machining center to produce a hollow spherical molded product having a diameter of 50 mm. The volume resistivity of the obtained hollow spherical molded body was 5.0 × 10 2 Ω · cm.
〔複合樹脂材料を含む中空球状2の製造〕
 製造例2で得た複合樹脂粒子に代えて比較用樹脂粒子6(製造例6)を用いたこと以外は中空球状1の製造と同様にして中空球状2を得た。
[Production of hollow sphere 2 containing composite resin material]
A hollow sphere 2 was obtained in the same manner as in the production of the hollow sphere 1 except that the resin particle 6 for comparison (Production Example 6) was used instead of the composite resin particle obtained in Production Example 2.
実施例1
 容量50Lのタンクの内側面に、接着剤(例えば、エポキシ系)を用いてライニングシート1を貼り合せた。シート間の継ぎ目を、φ5mmのPFAの溶接棒を用いて封止した。該タンクに、薬液管1を取り付け、タンク内部に中空球状1を複数個配置させた。
Example 1
The lining sheet 1 was bonded to the inner side surface of the 50 L capacity tank using an adhesive (for example, epoxy type). The joints between the sheets were sealed using PFA welding rods of φ5 mm. The chemical solution pipe 1 was attached to the tank, and a plurality of hollow spheres 1 were disposed inside the tank.
比較例1
 ライニングシート1、薬液管1、中空球状1に代えてライニングシート2、薬液管2、中空球状2を用いたこと以外は実施例1の製造と同様にして比較例1を得た。
Comparative Example 1
Comparative Example 1 was obtained in the same manner as in Example 1 except that the lining sheet 2, the drug solution pipe 2, and the hollow sphere 2 were used instead of the lining sheet 1, the drug solution pipe 1, and the hollow sphere 1.
帯電防止性の評価
 実施例1、比較例1で製作したタンクに、シンナー(三協化学株式会社製NTXエコシンナー)を10L入れ、PTFE製の拡販羽根を有した撹拌機で285r.p.mの回転数で10分間撹拌を行い、電位計(SIMCO製FMX-003)を用いてライニングシートの帯電電位を測定する事で有機溶剤に対する帯電防止性の評価を行った。その結果、比較例1は撹拌により急激に帯電し、かつ時間経過と共に帯電電位が増加する傾向にあった(約5分で1.5kV程度)。これに対して、実施例1は測定限界以下(-0.01kV)の値であり、実施例1のタンクは、比較例1のタンクと比べ、帯電防止性に優れていることが確認された。
Evaluation of Antistatic Property 10 L of thinner (NTX Eco Thinner manufactured by Sankyo Kagaku Co., Ltd.) is put into the tank manufactured in Example 1 and Comparative Example 1, and a stirrer having a sales expansion blade made of PTFE is used. Stirring was carried out for 10 minutes at the number of revolutions of the above, and the charging potential of the lining sheet was measured using an electrometer (FMX-003 manufactured by SIMCO) to evaluate the antistatic property of the organic solvent. As a result, Comparative Example 1 was charged rapidly by stirring, and the charging potential tended to increase with the passage of time (about 1.5 kV in about 5 minutes). On the other hand, Example 1 had a value below the measurement limit (-0.01 kV), and it was confirmed that the tank of Example 1 is superior to the tank of Comparative Example 1 in the antistatic property. .
  1 タンク外缶
  2 ライニング層
  3 薬液投入管
  31 ライニング層
  4 薬液排出管
  41 ライニング層
  5 中空球状成形体
  6 薬液
  7 接液部
  8 ライニングシート
  9 タンク底部
  10 ライニングシート
  11 アース線
  12 液面
  13 アース線
  14 蓋体
  15 薬液管
  151 ライニング層
  16 薬液運搬タンク
  17 運搬車両
  18 接続管
  19 パスボックス
  20 カプラー
  21 接続管
  22 薬液供給タンク
  24 循環ポンプ
  25 接続管
  26 フィルター
  27 接続管
  28 使用ポイント
  29 PFA溶接棒
  30 試験片
  31 溝
  32 下チャック
  33 上チャック
  36 ノズル
  52 棒状成形体
  53 アース線
  54 ホルダー
  56 攪拌棒
  57 プロペラ
  58 アダプタ
Reference Signs List 1 tank outer can 2 lining layer 3 chemical solution feeding pipe 31 lining layer 4 chemical solution discharging pipe 41 lining layer 5 hollow spherical molded body 6 chemical solution 7 wetted portion 8 lining sheet 9 tank bottom portion 10 lining sheet 11 ground wire 12 liquid surface 13 ground wire 14 lid 15 chemical liquid pipe 151 lining layer 16 chemical liquid transport tank 17 transportation vehicle 18 connecting pipe 19 pass box 20 coupler 21 connecting pipe 22 chemical liquid supply tank 24 circulating pump 25 connecting pipe 26 filter 27 connecting pipe 28 point of use 29 PFA welding rod 30 Test piece 31 groove 32 lower chuck 33 upper chuck 36 nozzle 52 rod shaped body 53 ground wire 54 holder 56 stirring bar 57 propeller 58 adapter

Claims (17)

  1.  タンク外缶と、
     タンク外缶の内面に設けられたライニング層とを少なくとも有し、
     ライニング層は、少なくとも一部において、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含み、
     フッ素樹脂Aは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、タンク。
    With the can outside the tank,
    And at least a lining layer provided on the inner surface of the tank outer can;
    The lining layer comprises, at least in part, a composite resin material comprising fluorocarbon resin A and carbon nanotubes,
    Fluororesin A is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) A tank selected from the group consisting of
  2.  投入された薬液がタンク外缶の内面と最初に接する部分に設けられたライニング層が、フッ素樹脂Aおよびカーボンナノチューブを含む複合樹脂材料を含む、請求項1に記載のタンク。 The tank according to claim 1, wherein a lining layer provided at a portion where the introduced chemical solution first contacts the inner surface of the tank outer case comprises a composite resin material containing fluororesin A and carbon nanotubes.
  3.  タンクの内部と外部とに繋がる薬液管を備え、
     薬液管は、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層を薬液管の内面の少なくとも一部に有する、および/または、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料の成形体であり、
     フッ素樹脂Bは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、請求項1または2に記載のタンク。
    It has a chemical pipe that leads to the inside and the outside of the tank,
    The drug solution pipe has a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of the drug solution pipe, and / or is a molded body of a composite resin material containing fluorocarbon resin B and carbon nanotubes. Yes,
    Fluororesin B is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) The tank according to claim 1 or 2, selected from the group consisting of
  4.  タンクの内部と外部とに繋がる薬液管を備え、
     薬液管は、薬液をタンクに入れる薬液投入管を含み、
     薬液投入管は、その端部にノズルを有し、
     ノズルは、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料を含むライニング層をノズルの内面の少なくとも一部に有する、および/または、フッ素樹脂Bおよびカーボンナノチューブを含む複合樹脂材料の成形体であり、
     フッ素樹脂Bは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、請求項1~3のいずれかに記載のタンク。
    It has a chemical pipe that leads to the inside and the outside of the tank,
    The chemical liquid pipe includes a chemical liquid feed pipe for putting the chemical liquid into the tank,
    The chemical feed tube has a nozzle at its end,
    The nozzle is a molded body of a composite resin material having a lining layer containing a composite resin material containing fluorocarbon resin B and carbon nanotubes on at least a part of the inner surface of the nozzle and / or containing fluorocarbon resin B and carbon nanotubes,
    Fluororesin B is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) A tank according to any of the preceding claims, selected from the group consisting of
  5.  ノズルは、スプレーノズル、回転ノズル、直進ノズル、シャワーノズルからなる群から選択される、請求項4に記載のタンク。 5. The tank according to claim 4, wherein the nozzle is selected from the group consisting of a spray nozzle, a rotary nozzle, a straight forward nozzle, and a shower nozzle.
  6.  フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含む中空球状の成形体をさらに有し、フッ素樹脂Cは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、請求項1~5のいずれかに記載のタンク。 It further has a hollow spherical shaped body at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes, wherein fluorocarbon resin C is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), poly The tank according to any of the preceding claims, selected from the group consisting of chlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF).
  7.  フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含む棒状の成形体をさらに有し、フッ素樹脂Cは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、請求項1~6のいずれかに記載のタンク。 It further has a rod-like shaped body at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes, and fluorocarbon resin C is made of polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetragonal Fluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychloro The tank according to any of the preceding claims, selected from the group consisting of trifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF).
  8.  フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含む攪拌棒をさらに有し、フッ素樹脂Cは、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、及びポリフッ化ビニル(PVF)からなる群から選択される、請求項1~7のいずれかに記載のタンク。 It further has a stirring rod at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes, wherein fluorocarbon resin C is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / Perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoro A tank according to any of the preceding claims, selected from the group consisting of ethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF).
  9.  攪拌棒は、フッ素樹脂Cおよびカーボンナノチューブを含む複合樹脂材料を少なくとも部分的に含むプロペラを有する、請求項8に記載のタンク。 The tank according to claim 8, wherein the stirring rod has a propeller at least partially including a composite resin material containing fluorocarbon resin C and carbon nanotubes.
  10.  薬液は、有機溶剤、可燃性液体、酸性液体、塩基性液体、中性液体、水溶液、導電性液体から選択される少なくとも1種を含む、請求項1~9のいずれかに記載のタンク。 The tank according to any one of claims 1 to 9, wherein the chemical solution contains at least one selected from an organic solvent, a flammable liquid, an acidic liquid, a basic liquid, a neutral liquid, an aqueous solution, and a conductive liquid.
  11.  フッ素樹脂Aは変性ポリテトラフルオロエチレンである、請求項1~10のいずれかに記載のタンク。 The tank according to any one of claims 1 to 10, wherein the fluororesin A is modified polytetrafluoroethylene.
  12.  変性ポリテトラフルオロエチレンは、式(I):
    Figure JPOXMLDOC01-appb-C000001
    で表されるテトラフルオロエチレン単位と、式(II):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Xは、炭素数1~6のパーフルオロアルキル基または炭素数4~9のパーフルオロアルコキシアルキル基を表す]
    で表されるパーフルオロビニルエーテル単位とを有する化合物であり、式(II)で表されるパーフルオロビニルエーテル単位の量は、変性ポリテトラフルオロエチレンの全質量に基づいて0.01~1質量%である、請求項1~11のいずれかに記載のタンク。
    Modified polytetrafluoroethylene is represented by formula (I):
    Figure JPOXMLDOC01-appb-C000001
    And a tetrafluoroethylene unit represented by the formula (II):
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, X represents a C 1-6 perfluoroalkyl group or a C 4-9 perfluoroalkoxyalkyl group]
    And the amount of perfluorovinyl ether unit represented by the formula (II) is 0.01 to 1% by mass based on the total mass of the modified polytetrafluoroethylene A tank according to any one of the preceding claims.
  13.  複合樹脂材料は、フッ素樹脂A~Cのいずれかとカーボンナノチューブを含む、5μm以上500μm以下の平均粒子径を有する複合樹脂粒子の圧縮成形体である、請求項1~12のいずれかに記載のタンク。 The tank according to any one of claims 1 to 12, wherein the composite resin material is a compression-molded body of composite resin particles having an average particle diameter of 5 μm to 500 μm, which contains any of fluororesins AC and carbon nanotubes. .
  14.  薬液供給タンク、薬液貯蔵タンク、および/または、薬液運搬タンクである、請求項1~13のいずれかに記載のタンク。 The tank according to any one of claims 1 to 13, which is a chemical solution supply tank, a chemical solution storage tank, and / or a chemical solution transport tank.
  15.  請求項1~14のいずれかに記載のタンクを用いて薬液の供給を行うことを含む、薬液供給システム。 A chemical solution supply system comprising supplying a chemical solution using the tank according to any one of claims 1 to 14.
  16.  請求項1~14のいずれか1項に記載のタンクに使用される、フッ素樹脂A~Cのいずれかとカーボンナノチューブを含む成形体。 A molded article comprising any of the fluororesins A to C and a carbon nanotube, which is used in the tank according to any one of claims 1 to 14.
  17.  ライニングシート、薬液管、中空形状の成形体、棒状の成形体、棒状成形体ホルダー、攪拌棒、攪拌羽根、及び攪拌棒アダプタから選択される、請求項16に記載の成形体。 17. The shaped body according to claim 16, which is selected from lining sheets, chemical tubes, hollow shaped bodies, rod shaped bodies, rod shaped body holders, stirring bars, stirring blades, and stirring bar adapters.
PCT/JP2018/027359 2017-07-21 2018-07-20 Tank, and chemical solution supply system WO2019017488A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207005070A KR102616116B1 (en) 2017-07-21 2018-07-20 Tank and chemical supply system
JP2019522347A JP6571304B2 (en) 2017-07-21 2018-07-20 Tank and chemical supply system
CN201880048526.3A CN110944920B (en) 2017-07-21 2018-07-20 Tank and chemical liquid supply system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-142264 2017-07-21
JP2017142264 2017-07-21
JP2018-021649 2018-02-09
JP2018021649 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019017488A1 true WO2019017488A1 (en) 2019-01-24

Family

ID=65016472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027359 WO2019017488A1 (en) 2017-07-21 2018-07-20 Tank, and chemical solution supply system

Country Status (5)

Country Link
JP (1) JP6571304B2 (en)
KR (1) KR102616116B1 (en)
CN (1) CN110944920B (en)
TW (1) TWI772468B (en)
WO (1) WO2019017488A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170797A1 (en) * 2019-02-22 2020-08-27 大陽日酸株式会社 Composition for fluororesin-containing coating, coating film, and substrate
WO2021166743A1 (en) * 2020-02-17 2021-08-26 東邦化成株式会社 Fluororesin molded article and device including same
CN113525943A (en) * 2020-04-15 2021-10-22 何建智 Liquid storage container and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116565A (en) * 2002-09-24 2004-04-15 Toyota Motor Corp Hydrogen storage tank and producing method of thin film shaped hydrogen storage material
JP2011505525A (en) * 2007-11-30 2011-02-24 本田技研工業株式会社 Heating system for high pressure gas storage
JP2018090323A (en) * 2016-12-01 2018-06-14 サンフロロシステム株式会社 Member that comes into contact with chemical when flowing chemical for producing semiconductor product

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933331A (en) * 1982-08-17 1984-02-23 Du Pont Mitsui Fluorochem Co Ltd Pretreating agent for use in welding of tetrafluoroethylene resin molding and method for welding tetrafluoroethylene resin molding
JPS59120417A (en) * 1982-12-27 1984-07-12 Du Pont Mitsui Fluorochem Co Ltd Pretreating agent for welding and welding method
CN86105130B (en) * 1986-08-15 1987-12-30 陈世杰 Anticorrosion and antistatic reenforced tining
EP1273614B1 (en) * 2000-03-24 2007-05-30 Daikin Industries, Ltd. Seal ring
JP2003268567A (en) * 2002-03-19 2003-09-25 Hitachi Cable Ltd Electrically conductive material-coated corrosion resistant metallic material
MY173618A (en) * 2010-05-11 2020-02-11 Kek Hing Kow Electrostatic discharge transparent sheeting
US9183966B2 (en) * 2011-02-07 2015-11-10 Taiyo Nippon Sanso Corporation Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
JP2013107283A (en) * 2011-11-21 2013-06-06 Toho Kasei Kk Resin molded product
JP6375688B2 (en) * 2013-05-20 2018-08-22 セントラル硝子株式会社 Pumping container, storage method using the pumping container, and liquid transfer method using the pumping container
CN104877283A (en) * 2015-06-25 2015-09-02 河南泛锐复合材料研究院有限公司 Method for preparing anti-static carbon nanomaterial-polytetrafluoroethylene composite material
JP5987100B1 (en) * 2015-10-16 2016-09-06 サーパス工業株式会社 Fluid equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116565A (en) * 2002-09-24 2004-04-15 Toyota Motor Corp Hydrogen storage tank and producing method of thin film shaped hydrogen storage material
JP2011505525A (en) * 2007-11-30 2011-02-24 本田技研工業株式会社 Heating system for high pressure gas storage
JP2018090323A (en) * 2016-12-01 2018-06-14 サンフロロシステム株式会社 Member that comes into contact with chemical when flowing chemical for producing semiconductor product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170797A1 (en) * 2019-02-22 2020-08-27 大陽日酸株式会社 Composition for fluororesin-containing coating, coating film, and substrate
JP2020132792A (en) * 2019-02-22 2020-08-31 大陽日酸株式会社 Fluororesin coating composition, coating film, substrate
WO2021166743A1 (en) * 2020-02-17 2021-08-26 東邦化成株式会社 Fluororesin molded article and device including same
CN113525943A (en) * 2020-04-15 2021-10-22 何建智 Liquid storage container and method for manufacturing the same
CN113525943B (en) * 2020-04-15 2022-11-15 何建智 Liquid storage container and method for manufacturing the same

Also Published As

Publication number Publication date
KR102616116B1 (en) 2023-12-21
CN110944920A (en) 2020-03-31
KR20200034761A (en) 2020-03-31
TWI772468B (en) 2022-08-01
JPWO2019017488A1 (en) 2019-11-07
CN110944920B (en) 2022-04-12
JP6571304B2 (en) 2019-09-04
TW201908208A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
JP5732079B2 (en) Method for producing composite resin material particles
JP6571304B2 (en) Tank and chemical supply system
JP5968720B2 (en) Method for producing composite resin material particles, and method for producing composite resin molded body
TWI705103B (en) Composite resin material and molded article
JP2019151111A (en) Composite molded product contacting with chemicals for manufacturing semiconductor products when the chemicals are caused to flow
WO2019017489A1 (en) Semiconductor element manufacturing device and semiconductor element manufacturing method
WO2019155975A1 (en) Static elimination tube and method for producing same
JP2000514487A (en) Materials for transport container manufacturing
WO2019155977A1 (en) Conductive welding material and method for producing same
TWI699397B (en) Composite resin material and molded article
WO2020230472A1 (en) Filter housing and filter comprising same
JP6539426B1 (en) Conductive welding material and method of manufacturing the same
WO2018101423A1 (en) Member contacting chemical liquid for semiconductor product manufacture when chemical liquid is caused to flow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207005070

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18834929

Country of ref document: EP

Kind code of ref document: A1