WO2019155975A1 - Static elimination tube and method for producing same - Google Patents

Static elimination tube and method for producing same Download PDF

Info

Publication number
WO2019155975A1
WO2019155975A1 PCT/JP2019/003350 JP2019003350W WO2019155975A1 WO 2019155975 A1 WO2019155975 A1 WO 2019155975A1 JP 2019003350 W JP2019003350 W JP 2019003350W WO 2019155975 A1 WO2019155975 A1 WO 2019155975A1
Authority
WO
WIPO (PCT)
Prior art keywords
static elimination
fluororesin
elimination tube
ptfe
composition
Prior art date
Application number
PCT/JP2019/003350
Other languages
French (fr)
Japanese (ja)
Inventor
宏貴 伊丹
徳雄 前田
喬文 中川
弘和 山本
Original Assignee
東邦化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦化成株式会社 filed Critical 東邦化成株式会社
Publication of WO2019155975A1 publication Critical patent/WO2019155975A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F1/00Preventing the formation of electrostatic charges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/02Carrying-off electrostatic charges by means of earthing connections

Definitions

  • the present invention relates to a static elimination tube and a method for producing the same, and more specifically, a static elimination tube having excellent antistatic performance and exhibiting excellent static elimination performance while preventing elution of impurities (metal ions, organic substances, etc.) and the production thereof. Regarding the method.
  • the fluororesin is excellent in chemical resistance, contamination resistance, and the like, it is often used as a material for parts such as a corrosive fluid, pure water, a chemical solution, and the like that are circulated in a semiconductor manufacturing apparatus, a pharmaceutical manufacturing apparatus, and the like.
  • the fluororesin is generally classified as an insulating material, when a fluid contacts a part manufactured using the fluororesin, charging due to friction may occur. Therefore, it is known that conductive materials such as carbon black and iron powder are mixed with fluororesin to impart conductivity to the fluororesin.
  • the conductive material is in contact with the fluid, metal ions, organic matter, etc. Is known to flow into the fluid and contaminate the fluid.
  • Patent Document 1 discloses an antistatic fluororesin tube in which a fluororesin composition containing a conductive substance is embedded in the outer peripheral surface of a transparent fluororesin tube along the longitudinal direction as a striped conductive portion ( (See Abstract of Patent Document 1, FIGS. 1 to 3).
  • Patent Document 2 discloses an antistatic tube formed into a hollow tube shape in which conductive portions made of a fluororesin composition containing a conductive substance and transparent portions made of a fluororesin are alternately arranged (patent) (Refer to Literature 2 abstract, FIGS. 1, 4, 6 etc.).
  • Patent Document 3 discloses that carbon nanotubes (Carbon ⁇ Nano ⁇ Tube, hereinafter also referred to as “CNT”) having a fiber length of 50 ⁇ m to 150 ⁇ m and a fiber diameter of 5 nm to 20 nm are 0.020 wt% to 0.030 wt%.
  • a fluid device having a fluid flow path formed of a fluororesin material containing the following ratio can suppress charging due to friction between the fluid flow path and the fluid and contamination of the fluid due to contact between the fluid flow path and the fluid. (See Patent Document 3, claim 1, [0008] to [0009], [0033], etc.).
  • Patent Document 1 does not contact the fluid and the conductive material, so that the fluid is not contaminated, but there is a problem that antistatic performance cannot be expected.
  • the tube of Patent Document 2 has a problem that although the fluid and the conductive material are in contact with each other, the antistatic performance can be obtained, but the fluid can be contaminated.
  • Patent Document 3 Although the fluid flow path of Patent Document 3 is excellent in preventing the static charge of the fluid and preventing the contamination of the fluid, there is a problem that it is difficult to meet the demand for further performance improvement in recent years.
  • an object of the present invention is to provide a static elimination tube having excellent antistatic performance and exhibiting excellent static elimination performance while preventing the elution of impurities (metal ions, organic substances, etc.) and a method for producing the same. .
  • the present inventors have obtained excellent antistatic performance when using a fluororesin composition in which a specific amount of carbon nanotubes are dispersed in a fluororesin, and impurities (metal ions, organic substances, etc.) It was found that a static elimination tube exhibiting excellent static elimination performance can be obtained while preventing elution. Furthermore, it has been found that such a static elimination tube can be suitably used for a fluid conveyance device, and the present invention has been completed.
  • Fluororesin is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF) 4.
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • EFE ethylene / te
  • the static elimination tube according to any one of 1 to 3 above comprising at least one selected from [5]
  • the above 1 to 5 used for a pipe through which a fluid passes, a nozzle, a shower head, a spray nozzle, a rotary nozzle, a rotary cleaning nozzle, a liquid discharge part, a piping member, a liquid transfer tube, a liquid transfer joint, and a lining pipe
  • the static elimination tube as described in any one of these.
  • a fluid conveyance device including the static elimination tube according to any one of 1 to 6 above.
  • the neutralization tube of the embodiment of the present invention has excellent antistatic performance and exhibits excellent neutralization performance while preventing elution of impurities (metal ions, organic substances, etc.). Therefore, for example, pipes (or tubes) through which fluids such as semiconductor manufacturing apparatuses, pharmaceutical manufacturing apparatuses, chemical manufacturing apparatuses pass, nozzles, shower heads, rotating cleaning nozzles, spray nozzles, rotating nozzles, liquid discharge units, piping members, liquids (Or a chemical solution) It can be used suitably for a conveyance tube, a liquid conveyance coupling, lining piping, etc.
  • FIG. 1 shows an SEM image (10,000 times) of a residue obtained by heating a part of the static elimination tube of Example 1 to 600 ° C.
  • FIG. 2 schematically shows a fluid neutralizing evaluation apparatus.
  • the present invention provides a new static elimination tube, which Made of fluororesin composition in which carbon nanotubes are dispersed in fluororesin,
  • the fluororesin composition contains 0.01 to 2.0% by mass of carbon nanotubes.
  • the static elimination tube of the embodiment of the present invention is made of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
  • the fluororesin composition includes a fluororesin and a carbon nanotube, and may include other components as necessary.
  • the fluororesin composition is not particularly limited as long as a static elimination tube intended by the present invention can be obtained. None happen.
  • fluororesin is a resin that is generally understood as a fluororesin, and is not particularly limited as long as the discharge tube targeted by the present invention can be obtained.
  • fluororesins include polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer.
  • FEP Polymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride At least one selected from (PVF) can be exemplified.
  • Fluororesin includes polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) , Ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), and polyvinylidene fluoride (PVDF) are preferable.
  • PTFE polytetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • Ethylene / tetrafluoroethylene copolymer ETFE
  • PCTFE polychlorotrifluor
  • PTFE Polytetrafluoroethylene
  • modified polytetrafluoroethylene modified polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • a commercial item can be used for a fluororesin.
  • PTFE polytetrafluoroethylene
  • Daikin Industries, Ltd. M-12 (trade name), M-11 (trade name), and Polyflon PTFE-M (trade name)
  • modified polytetrafluoroethylene modified PTFE
  • M-112 trade name
  • M-111 trade name
  • Polyflon PTFE-M trade name manufactured by Daikin Industries, Ltd.
  • PCTFE polychlorotrifluoroethylene
  • M-300PL (trade name), M-300H (trade name), and NEOFLON PCTFE (trade name)
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether
  • AP-230 trade name
  • AP-210 trade name
  • NEOFLON PFA trade name
  • the fluororesin of the fluororesin composition has a particle form, preferably has an average particle size of 500 ⁇ m or less, more preferably has an average particle size of 8 to 250 ⁇ m, 10 to It is even more preferable to have an average particle size of 50 ⁇ m, and it is particularly preferable to have an average particle size of 10 to 25 ⁇ m.
  • the fluororesin of the fluororesin composition has an average particle diameter of 500 ⁇ m or less, the fluororesin and the carbon nanotubes can be mixed more uniformly, so that the conductivity is further improved.
  • the average particle diameter of the particles a laser diffraction scattering particle size distribution analyzer (manufactured by Nikkiso "MT3300II"), obtained by measuring the particle size distribution, the average particle diameter D 50 (laser diffraction scattering (Median diameter, meaning the particle diameter at an integrated value of 50% in the particle size distribution determined by the method).
  • the “carbon nanotube” is a substance that is usually understood as a carbon nanotube, and is not particularly limited as long as the discharge tube targeted by the present invention can be obtained.
  • Examples of such carbon nanotubes include single-wall CNT, multi-wall CNT, and double-wall CNT.
  • Commercially available products can be used as the carbon nanotubes.
  • a CNT-uni (trade name) series manufactured by Taiyo Nippon Sanso Co., Ltd. can be used.
  • CNTs can be used alone or in combination.
  • the carbon nanotubes preferably have an average length of 50 ⁇ m or more, more preferably have an average length of 70 to 250 ⁇ m, and even more preferably have an average length of 100 to 200 ⁇ m. It is particularly preferable to have an average length of 150 to 200 ⁇ m.
  • the CNT has an average length of 50 ⁇ m or more, it is preferable because the conductivity is further improved because the conductive path is easily connected.
  • the average length (or average fiber length) of CNT refers to an average length obtained from an image taken with an SEM, as described in detail in Examples. That is, a part of the static elimination tube is heated to 300 ° C. to 600 ° C. to be ashed to obtain a residue (SEM imaging sample). Take an SEM image of the residue. The length of each carbon nanotube included in the SEM image is obtained by image processing. An average value of lengths obtained by the image processing is obtained by calculation, and the average value is referred to as an average length of CNTs.
  • the fluororesin composition contains 0.01 to 2.0% by mass of carbon nanotubes based on the fluororesin composition (100% by mass) and 0.04 to 1.5% by mass. It is preferably included, more preferably 0.05 to 1.0% by mass, and particularly preferably 0.05 to 0.5% by mass.
  • the fluororesin composition contains 0.05 to 0.5% by mass of carbon nanotubes, the amount is sufficient to form a conductive path, which is preferable because the conductivity is further improved.
  • the discharge tube of the embodiment of the present invention preferably has a volume resistivity of 1 ⁇ 10 ⁇ 1 to 1 ⁇ 10 7 ⁇ ⁇ cm, and a volume resistivity of 1 ⁇ 10 ⁇ 1 to 1 ⁇ 10 6 ⁇ ⁇ cm. It is more preferable to have a volume resistivity of 1 ⁇ 10 0 to 1 ⁇ 10 5 ⁇ ⁇ cm, more preferably a volume resistivity of 1 ⁇ 10 1 to 1 ⁇ 10 3 ⁇ ⁇ cm. Particularly preferred.
  • the volume resistivity measurement is described in the examples.
  • the static elimination tube according to the embodiment of the present invention is evaluated using the method described in the examples, and the charge residual ratio is preferably 70% or less, more preferably 50% or less, and 30% or less. It is still more preferable that it is 20% or less. When the residual charge rate is 20% or less, since static electricity is suppressed, the non-dust collecting property is further improved, which is preferable.
  • the resistance having a length of 10 cm is preferably 1 ⁇ 10 6 ⁇ or less, more preferably 8 ⁇ 10 5 ⁇ or less, and 5 ⁇ 10 5 ⁇ or less. It is even more preferable that it is 1 ⁇ 10 5 ⁇ or less.
  • the resistance having a length of 10 cm is 1 ⁇ 10 5 ⁇ or less, since sufficient conduction can be obtained, the fluid discharge performance is further improved, which is preferable.
  • the antifouling property is preferably such that the elution amount of all metals is less than 5 ppb, and is less than 1 ppb. Is more preferable, and it is still more preferable that it is less than 0.5 ppb. Further, the amount of elution of all organic carbon is preferably less than 50 ppb, more preferably less than 40 ppb, and still more preferably less than 30 ppb.
  • the static elimination tube of the embodiment of the present invention can have various dimensions depending on its application, and the dimension is not particularly limited as long as the neutralization pipe targeted by the present invention can be obtained.
  • the static elimination tube has, for example, a cylindrical shape (or a tube shape), and the outer diameter is preferably 4 to 500 mm, more preferably 6 to 250 mm, and still more preferably 6 to 75 mm. 6 to 50 mm is particularly preferable.
  • the wall thickness is preferably 0.5 to 50 mm, more preferably 1 to 20 mm, even more preferably 1 to 10 mm, and particularly preferably 1 to 5 mm.
  • the neutralization tube of the embodiment of the present invention may be manufactured using any method as long as the neutralization tube targeted by the present invention can be obtained.
  • the static elimination tube of the embodiment of the present invention is preferably manufactured by a manufacturing method including compression molding a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
  • the method for producing a static elimination tube includes a method for producing a static elimination tube related to PTFE and modified PTFE, and a static elimination tube relating to other fluororesins (for example, PFA, FEP, ETFE, ECTFE, PCTFE, PVDF and PVF).
  • the manufacturing method is partially different.
  • a method for producing a static elimination tube related to PTFE and modified PTFE is as follows. Preparing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably a particulate fluororesin); The fluororesin composition is put into a mold (after performing appropriate pretreatment (predrying, granulation, etc., if necessary)), preferably 0.1 to 100 MPa, more preferably 1 to 80 MPa, Even more preferably pressurizing and compressing at a pressure of 5 to 50 MPa to produce a preform.
  • a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably a particulate fluororesin); The fluororesin composition is put into a mold (after performing appropriate pretreatment (predrying, granulation, etc., if necessary)), preferably 0.1 to 100 MPa, more preferably 1 to 80 MPa, Even more preferably pressurizing and compressing at a pressure of 5 to 50 MPa to
  • Firing the preform at a temperature equal to or higher than the melting point of the fluororesin composition preferably a temperature of 345 to 400 ° C., more preferably 360 to 390 ° C.
  • a temperature equal to or higher than the melting point of the fluororesin composition preferably a temperature of 345 to 400 ° C., more preferably 360 to 390 ° C.
  • the manufacturing method of the static elimination tube regarding fluorine resins for example, PFA, FEP, ETFE, ECTFE, PCTFE, PVDF and PVF
  • fluorine resins for example, PFA, FEP, ETFE, ECTFE, PCTFE, PVDF and PVF
  • a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably a particulate fluororesin);
  • the fluororesin composition is put in a mold and subjected to an appropriate pretreatment (preliminary drying or the like) as necessary, and then heated at a temperature of 150 to 400 ° C.
  • the static elimination tube of this embodiment can be used for various applications, and the usage is not particularly limited as long as the static elimination tube targeted by the present invention can be used. It can be used for a passing tube, a nozzle, a shower head, a spray nozzle, a rotating nozzle, a rotating cleaning nozzle, a liquid discharge part, a piping member, a liquid conveying tube, a liquid conveying joint, and a lining piping.
  • the present invention provides a fluid conveyance device including the static elimination tube of the embodiment of the present invention. Furthermore, the present invention provides various facilities including such a fluid transfer device, for example, a semiconductor manufacturing device, a pharmaceutical manufacturing device, a pharmaceutical transfer device, a chemical manufacturing device, a chemical transfer device, and the like.
  • A Fluororesin
  • A1 Polychlorotrifluoroethylene (Neoflon PCTFE (trade name) manufactured by Daikin Industries, Ltd.) (also referred to as “(A1) PCTFE”)
  • A2) Polytetrafluoroethylene (polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.) (also referred to as “(A2) PTFE”)
  • A3) Modified polytetrafluoroethylene (polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.) (also referred to as “(A3) modified PTFE”)
  • Example 1 Polychlorotrifluoroethylene (PCTFE) was pulverized using a pulverizer and classified with a vibration sieve or the like to prepare (A1) PCTFE particles.
  • Laser diffraction scattering particle size distribution analyzer manufactured by Nikkiso "MT3300II"
  • A1 a particle size distribution of the PCTFE particles were measured to obtain (A1) an average particle diameter of PCTFE particles (D 50).
  • the average particle diameter (D 50 ) of the PCTFE particles was 11.5 ⁇ m.
  • the (A1) PCTFE composition was molded to obtain a cylindrical molded body. That is, (A1) the PCTFE composition was put into a mold, and an appropriate pretreatment (preliminary drying or the like) was performed as necessary. After that, after heating the (A1) PCTFE composition at a temperature of 200 ° C. or higher for 2 hours or more, it is cooled to room temperature while compressing the (A1) PCTFE composition at a pressure of 5 MPa or higher. (A1) PCTFE molded body Got. (A1) The PCTFE molded body was cut to obtain a static elimination tube of Example 1 as a cylindrical (or tubular) molded body. The static elimination tube of Example 1 had a diameter (outer diameter) of about 40 mm, a thickness of about 15 mm, and a length of about 100 mm.
  • Example 2 The static elimination tube of Example 2 was manufactured using the method similar to the method as described in Example 1 except having changed so that 0.05 mass% of carbon nanotubes might be included.
  • Example 3 The static elimination tube of Example 3 was manufactured using the method similar to the method as described in Example 1 except having changed (B1) carbon nanotube into (B2) carbon nanotube.
  • Example 4 The static elimination tube of Example 4 was manufactured using the method similar to the method as described in Example 1 except having changed (B1) carbon nanotube into (B3) carbon nanotube.
  • Example 5 Polytetrafluoroethylene (PTFE) is commercially available in granular form, and its average particle size (D 50 ) was 50.4 ⁇ m.
  • D 50 average particle size of PTFE particles was measured using the same method as described in Example 1.
  • a PTFE composition was molded using a compression molding method to obtain a cylindrical molded body. That is, (A2) PTFE composition was pretreated (preliminary drying, etc.) as necessary, and (A2) PTFE composition was uniformly filled in a mold in a certain amount. (A2) The PTFE composition was pressurized at 15 MPa and held for a certain period of time, thereby compressing the (A2) PTFE composition to obtain (A2) a PTFE preform. (A2) The PTFE preform was taken out from the mold, baked for 2 hours or more in a hot air circulating electric furnace set at 345 ° C. or higher, slowly cooled, and taken out from the electric furnace to obtain (A2) PTFE compact.
  • the PTFE molded body was cut to obtain a static elimination tube of Example 5 as a cylindrical molded body.
  • the static elimination tube of Example 5 had a diameter of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
  • Example 6> (B1) A static elimination tube of Example 6 was manufactured using the same method as that described in Example 5 except that the carbon nanotube was changed to include 0.025% by mass.
  • Example 7 Modified polytetrafluoroethylene (modified PTFE) is commercially available in granular form, and its average particle size (D 50 ) was 19.6 ⁇ m. (A3) The average particle diameter (D 50 ) of the modified PTFE particles was measured using the same method as described in Example 1.
  • the modified PTFE composition was molded using a compression molding method to obtain a cylindrical molded body. That is, (A3) the modified PTFE composition was pretreated as necessary (preliminary drying, etc.), and then (A3) the modified PTFE composition was uniformly filled in a mold. (A3) The modified PTFE composition was pressurized at 15 MPa and held for a certain time, whereby (A3) the modified PTFE composition was compressed to obtain (A3) a modified PTFE preform. (A3) The modified PTFE preform is removed from the mold, fired in a hot-air circulating electric furnace set at 345 ° C.
  • (A3) modified PTFE molded body is obtained. It was. (A3) The modified PTFE molded body was cut to obtain a static elimination tube of Example 7 as a cylindrical molded body.
  • the static elimination tube of Example 7 had a diameter of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
  • Example 8 Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) was pulverized using a pulverizer and classified with a vibration sieve or the like to prepare (A4) PFA particles.
  • the average particle diameter (D 50 ) of the PFA particles was 121.7 ⁇ m.
  • the average particle diameter (D 50 ) of the PFA particles was measured using the same method as described in Example 1.
  • the (A4) PFA composition was molded to obtain a cylindrical molded body. That is, (A4) the PFA composition was put into a mold, and an appropriate pretreatment (preliminary drying or the like) was performed as necessary. After that, after heating the (A4) PFA composition at a temperature of 300 ° C. or higher for 2 hours or more, it is cooled to room temperature while compressing the (A4) PFA composition at a pressure of 5 MPa or more. (A4) PFA molded body Got. (A4) The PFA molded body was cut to obtain a static elimination tube of Example 8 as a cylindrical (or tubular) molded body. The static elimination tube of Example 8 had a diameter (outer diameter) of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
  • Example 9 The static elimination tube of Example 9 was manufactured using the method similar to the method as described in Example 1 except having changed the (B1) carbon nanotube into (B4) carbon nanotube.
  • (B1) (A1) PCTFE composition containing 0.1% by mass of carbon nanotubes was molded to obtain a cylindrical molded body. That is, (A1) PCTFE composition is put into an extruder, and appropriate pretreatment (preliminary drying, etc.) is performed as necessary, extruded with a screw at a cylinder temperature of 200 ° C. or higher, and shaped using a sizing die. (A1) A PCTFE molded product was obtained. (A1) The static elimination tube of Comparative Example 1 was manufactured as a cylindrical molded body by cutting the PCTFE molded body. The static elimination tube of Comparative Example 1 has a diameter of about 40 mm, a thickness of about 15 mm, and a length of about 100 mm.
  • Comparative Example 2 A static elimination tube of Comparative Example 2 was produced using the same method as described in Example 1 except that (B1) carbon nanotubes were changed to (B5) ′ carbon nanotubes.
  • This PTFE composition was molded using a compression molding method to obtain a cylindrical molded body. That is, the PTFE composition was pretreated as necessary (preliminary drying or the like), and then the PTFE composition was uniformly filled in a mold in a certain amount. The PTFE composition was pressurized at 15 MPa and held for a certain period of time to compress the PTFE composition to obtain a PTFE preform. The PTFE preform was taken out from the mold and baked for 2 hours or more in a hot air circulating electric furnace set at 345 ° C. or higher, and after slow cooling, taken out from the electric furnace to obtain a PTFE molded body.
  • the PTFE molded body was cut to obtain a static elimination tube of Comparative Example 3 as a cylindrical molded body.
  • the static elimination tube of Comparative Example 3 had a diameter of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
  • ⁇ Static elimination based on resistance value> The neutralizing property and antistatic property based on the resistance value were evaluated based on ISO8031: 2009. That is, a metal joint was connected to each of both ends of the static elimination tube. The resistance value between the two metal joints was measured using an insulation resistance meter (3-range insulation resistance meter (trade name) manufactured by Musashi Electric Instruments Co., Ltd.). For example, the resistance value of the static elimination tube of Example 2 was 2 ⁇ 10 4 ⁇ .
  • the evaluation criteria for static elimination are as follows. A: The resistance value between 10 cm is 1 ⁇ 10 6 ⁇ or less. ⁇ : Resistance value between 10 cm exceeds 1 ⁇ 10 6 ⁇ .
  • the static elimination tube of Example 1 was evaluated to have good static elimination properties. The results are shown in Table 1.
  • test piece was immersed in 0.5 L of 3.6% hydrochloric acid (EL-UM grade manufactured by Kanto Chemical) for about 1 hour, and then washed by pouring with ultrapure water (specific resistance value: ⁇ 18.0 M ⁇ ⁇ cm). . Further, the entire test piece was immersed in 0.1 L of 3.6% hydrochloric acid and stored at room temperature for 24 hours and 168 hours. After the lapse of the specified time, the entire amount of the immersion liquid was collected (collecting all the immersed hydrochloric acid), and the metal impurity concentration of the immersion liquid was analyzed. Three test pieces were prepared, and the maximum value was used as the detection amount. The evaluation criteria are as follows.
  • Measurement of carbon loss of static elimination tube The degree of carbon nanotube detachment from the static elimination tube was evaluated by measuring TOC (total organic carbon) using a total organic carbon meter ("TOCvwp" manufactured by Shimadzu Corporation). . Specifically, a 10 mm ⁇ 20 mm ⁇ 50 mm test piece obtained by cutting from a cylindrical molded body obtained by compression molding was added to 0.5 L of 3.6% hydrochloric acid (EL-UM grade manufactured by Kanto Chemical) for about 1 hour. Immerse, take out after immersion for 1 hour, wash by pouring with ultrapure water (specific resistance value ⁇ 18.0 M ⁇ ⁇ cm), immerse the entire test piece in ultrapure water for 24 hours and 168 at room temperature. Saved for hours.
  • TOCvwp total organic carbon meter
  • the evaluation criteria are as follows. A: The detection amount of all organic carbon is less than 50 ppb. X: The detection amount of total organic carbon is 50 ppb or more.
  • FIG. 1 An outline of the fluid neutralization evaluation apparatus is schematically shown in FIG.
  • the pure water piping from the pure water production apparatus is connected to the PFA piping.
  • a static elimination tube was connected to the end portion of the PFA piping.
  • the static elimination tube is connected to the ground.
  • a nozzle was connected to the end portion of the static elimination tube.
  • the nozzle is a machined PCTFE with a hole in the center.
  • the nozzle hole has an inner diameter of 3 mm and a length of 10 mm.
  • the receiver under the nozzle constitutes a Faraday cage.
  • the receiver has a double cylindrical structure, a cylindrical container having an outer diameter of 14 cm and a height of 20 cm on the outer side, and a cylindrical container having a diameter of 10 cm and a height of 15 cm on the inner side. Both materials are stainless steel.
  • the inner cylindrical container is insulated from ground by PTFE.
  • the shield is a rectangular parallelepiped with a base of 50 cm x 50 cm and a height of 1 m, and a brass wire mesh attached to an angle frame. The PFA piping and the receiver were placed in the shield, and the receiver was installed in the middle of the shield. The distance between the nozzle and the upper lid of the receiver was 10 cm, and the hole in the upper lid was square and 5 cm ⁇ 5 cm.
  • the charge amount of pure water that passed through the nozzles with no static elimination tube connected and the charge amount of pure water that passed through the nozzles with each static elimination tube connected were measured.
  • the flow rate of pure water is 2 m / sec.
  • the charge amount (Q1) of pure water that passed through the nozzle with no static elimination tube connected and the charge amount (Q) of pure water that passed through the nozzle with the static elimination tube connected were measured.
  • the amount of charge was measured using an electrometer (6514 type (trade name) manufactured by KEYTHLEY).
  • the evaluation criteria are as follows. A: The residual charge rate is 30% or less. ⁇ : The residual charge rate exceeds 30% and is 50% or less. (Triangle
  • volume resistivity is 1 ⁇ 10 3 ⁇ ⁇ cm or less.
  • volume resistivity exceeds 1 ⁇ 10 3 ⁇ ⁇ cm and is 1 ⁇ 10 5 ⁇ ⁇ cm or less.
  • volume resistivity exceeds 1 ⁇ 10 5 ⁇ ⁇ cm and is 1 ⁇ 10 7 ⁇ ⁇ cm or less.
  • Volume resistivity exceeds 1 ⁇ 10 7 ⁇ ⁇ cm.
  • the present invention is made of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin, and the fluororesin composition provides a new static elimination tube containing 0.01 to 2.0% by mass of carbon nanotubes.
  • the static elimination tube has excellent antistatic performance and exhibits excellent static elimination performance while preventing elution of impurities (metal ions, organic substances, etc.).
  • pipes through which fluids such as semiconductor manufacturing apparatuses, pharmaceutical manufacturing apparatuses, chemical manufacturing apparatuses pass, nozzles, shower heads, rotating cleaning nozzles, spray nozzles, rotating nozzles, liquid discharge units, piping members, liquids (Or a chemical solution) It can be used suitably for a conveyance tube, a liquid conveyance coupling, lining piping, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Elimination Of Static Electricity (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A static elimination tube made from a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin, wherein the fluororesin composition contains the carbon nanotubes in an amount of 0.01 to 2.0% by mass.

Description

除電管及びその製造方法Static elimination tube and manufacturing method thereof
 本発明は、除電管及びその製造方法に関し、さらに詳しくは優れた帯電防止性能を有し、不純物(金属イオン及び有機物等)の溶出を防止しながら、優れた除電性能を示す除電管及びその製造方法に関する。 The present invention relates to a static elimination tube and a method for producing the same, and more specifically, a static elimination tube having excellent antistatic performance and exhibiting excellent static elimination performance while preventing elution of impurities (metal ions, organic substances, etc.) and the production thereof. Regarding the method.
 フッ素樹脂は、耐薬品性及び耐汚染性等に優れるので、半導体製造装置、医薬品製造装置等に腐食性流体、純水及び薬液等を流通させるための部品等の材料としてしばしば使用される。
 しかし、フッ素樹脂は、一般的に絶縁性材料に分類されるので、フッ素樹脂を用いて製造された部品と流体が接触すると、摩擦による帯電を生じ得る。
 そこで、カーボンブラック及び鉄粉等の導電性物質をフッ素樹脂に混合してフッ素樹脂に導電性を付与することが知られているが、導電性物質と流体が接触するので、金属イオン、有機物等が流体に流出して、流体が汚染されることが知られている。
Since the fluororesin is excellent in chemical resistance, contamination resistance, and the like, it is often used as a material for parts such as a corrosive fluid, pure water, a chemical solution, and the like that are circulated in a semiconductor manufacturing apparatus, a pharmaceutical manufacturing apparatus, and the like.
However, since the fluororesin is generally classified as an insulating material, when a fluid contacts a part manufactured using the fluororesin, charging due to friction may occur.
Therefore, it is known that conductive materials such as carbon black and iron powder are mixed with fluororesin to impart conductivity to the fluororesin. However, since the conductive material is in contact with the fluid, metal ions, organic matter, etc. Is known to flow into the fluid and contaminate the fluid.
 特許文献1は、導電性物質を含むフッ素樹脂組成物をストライプ状の導電性部分として、透明なフッ素樹脂のチューブの外周面に長手方向に沿って埋め込んだ、帯電防止フッ素樹脂チューブを開示する(特許文献1要約、図1~3等参照)。 Patent Document 1 discloses an antistatic fluororesin tube in which a fluororesin composition containing a conductive substance is embedded in the outer peripheral surface of a transparent fluororesin tube along the longitudinal direction as a striped conductive portion ( (See Abstract of Patent Document 1, FIGS. 1 to 3).
 特許文献2は、導電性物質を含有するフッ素樹脂組成物からなる導電性部分とフッ素樹脂からなる透明部分が交互に配置されて、中空のチューブ形状に形成された帯電防止チューブを開示する(特許文献2要約、図1、4、6等参照)。 Patent Document 2 discloses an antistatic tube formed into a hollow tube shape in which conductive portions made of a fluororesin composition containing a conductive substance and transparent portions made of a fluororesin are alternately arranged (patent) (Refer to Literature 2 abstract, FIGS. 1, 4, 6 etc.).
 特許文献3は、50μm以上150μm以下の繊維長及び5nm以上20nm以下の繊維径等を有するカーボンナノチューブ(Carbon Nano Tube、以下「CNT」ともいう)を、0.020重量%以上0.030重量%以下の割合で含むフッ素樹脂材料によって形成された流体流路を備えた流体機器は、流体流路と流体との摩擦による帯電と、流体流路と流体との接触による流体の汚染とを抑制できることを開示する(特許文献3請求項1、[0008]~[0009]、[0033]等参照)。 Patent Document 3 discloses that carbon nanotubes (Carbon 長 NanoμTube, hereinafter also referred to as “CNT”) having a fiber length of 50 μm to 150 μm and a fiber diameter of 5 nm to 20 nm are 0.020 wt% to 0.030 wt%. A fluid device having a fluid flow path formed of a fluororesin material containing the following ratio can suppress charging due to friction between the fluid flow path and the fluid and contamination of the fluid due to contact between the fluid flow path and the fluid. (See Patent Document 3, claim 1, [0008] to [0009], [0033], etc.).
特開2003-4176号公報JP 2003-4176 A 特開2008-82459号公報JP 2008-82459 A 特許第5987100号公報Japanese Patent No. 5987100
 特許文献1のチューブは、流体と導電性物質が接触しないので、流体が汚染されることはないが、帯電防止性能が期待できないという問題がある。 The tube of Patent Document 1 does not contact the fluid and the conductive material, so that the fluid is not contaminated, but there is a problem that antistatic performance cannot be expected.
 特許文献2のチューブは、流体と導電性物質が接触するので、帯電防止性能は得られるが、流体の汚染も生じ得るという問題がある。 The tube of Patent Document 2 has a problem that although the fluid and the conductive material are in contact with each other, the antistatic performance can be obtained, but the fluid can be contaminated.
 特許文献3の流体流路は、流体の帯電防止と、流体の汚染防止に優れるが、近年の更なる性能向上の要求に対応することが困難であるという問題がある。 Although the fluid flow path of Patent Document 3 is excellent in preventing the static charge of the fluid and preventing the contamination of the fluid, there is a problem that it is difficult to meet the demand for further performance improvement in recent years.
 更に、近年、流体の「帯電防止」と流体の「汚染防止」に加えて、既に帯電した流体の「除電」も要求されている。ここで、「帯電防止」とは、帯電していない電気絶縁性物質に静電気が発生して、静電気を帯びることを防止することをいうのに対し、「除電」とは、既に静電気を帯びている電気絶縁性物質から、その静電気を除去することをいう点で相違する。「除電」方法として、アースの設置、 イオナイザー、加湿等が知られている。
 特許文献1~3は、それらのチューブ及び流体流路の除電については、何ら開示も教示もしていない。
Further, in recent years, in addition to “antistatic” of fluid and “contamination prevention” of fluid, “static elimination” of already charged fluid is also required. Here, “antistatic” refers to preventing static electricity from being generated in an electrically insulative material that is not charged, whereas “static elimination” refers to preventing static electricity from being generated. The difference is that the static electricity is removed from the electrically insulating material. Known methods of “static elimination” include grounding, ionizers, humidification, etc.
Patent Documents 1 to 3 do not disclose or teach any charge removal of these tubes and fluid flow paths.
 そこで、本発明は、優れた帯電防止性能を有し、不純物(金属イオン及び有機物等)の溶出を防止しながら、優れた除電性能を示す除電管及びその製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a static elimination tube having excellent antistatic performance and exhibiting excellent static elimination performance while preventing the elution of impurities (metal ions, organic substances, etc.) and a method for producing the same. .
 本発明者等は、鋭意検討を重ねた結果、フッ素樹脂に特定量のカーボンナノチューブを分散させたフッ素樹脂組成物を使用すると、優れた帯電防止性能を有し、不純物(金属イオン及び有機物等)の溶出を防止しながら、優れた除電性能を示す除電管が得られることを見出した。更に、そのような除電管は、流体搬送装置に好適に使用可能であることを見出して、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have obtained excellent antistatic performance when using a fluororesin composition in which a specific amount of carbon nanotubes are dispersed in a fluororesin, and impurities (metal ions, organic substances, etc.) It was found that a static elimination tube exhibiting excellent static elimination performance can be obtained while preventing elution. Furthermore, it has been found that such a static elimination tube can be suitably used for a fluid conveyance device, and the present invention has been completed.
 すなわち、本明細書は、以下の態様を含む。
[1]フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物でできており、
 フッ素樹脂組成物は、カーボンナノチューブを、0.01~2.0質量%含む、除電管。
[2]カーボンナノチューブは、50μm以上の平均長さを有する、上記1に記載の除電管。
[3]1×10-1~1×10Ω・cmの体積抵抗率を有する、上記1又は2に記載の除電管。
[4]フッ素樹脂は、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)から選択される少なくとも1種を含む、上記1~3のいずれか1つに記載の除電管。
[5]フッ素樹脂組成物のフッ素樹脂は、500μm以下の平均粒子径を有する、上記1~4のいずれか1つに記載の除電管。
[6]流体が通る管、ノズル、シャワーヘッド、スプレーノズル、回転ノズル、回転洗浄ノズル、液体吐出部、配管部材、液体搬送チューブ、液体搬送継手、及びライニング配管に使用される、上記1~5のいずれか1つに記載の除電管。
[7]上記1~6のいずれか1つに記載の除電管を含む、流体搬送装置。
[8]上記7に記載の流体搬送装置を含む、半導体製造装置、医薬品製造装置、医薬品搬送装置、化学薬品製造装置又は化学薬品搬送装置。
[9]フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を、圧縮成形することを含む、上記1~6のいずれか1つに記載の除電管の製造方法。
[10]PTFE及び変性PTFEから選択されるフッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
 フッ素樹脂組成物を、金型に入れて、加圧して圧縮して、予備成形体を製造すること;
 予備成形体を、フッ素樹脂組成物の融点以上の温度で焼成して、成形体を製造すること;
 成形体を加工して除電管を製造すること
を含む、上記1~6のいずれか1つに記載の除電管の製造方法。
[11]PTFE及び変性PTFE以外のフッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
 フッ素樹脂組成物を加熱後、加圧して圧縮して、成形体を得ること;及び
 成形体を加工して除電管を得ること
を含む、上記1~6のいずれか1つに記載の除電管の製造方法。
That is, this specification includes the following aspects.
[1] It is made of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin,
The static elimination tube, wherein the fluororesin composition contains 0.01 to 2.0% by mass of carbon nanotubes.
[2] The static elimination tube according to 1 above, wherein the carbon nanotube has an average length of 50 μm or more.
[3] The static elimination tube according to 1 or 2 above, having a volume resistivity of 1 × 10 −1 to 1 × 10 6 Ω · cm.
[4] Fluororesin is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF) 4. The static elimination tube according to any one of 1 to 3 above, comprising at least one selected from
[5] The static elimination tube according to any one of the above 1 to 4, wherein the fluororesin of the fluororesin composition has an average particle diameter of 500 μm or less.
[6] The above 1 to 5 used for a pipe through which a fluid passes, a nozzle, a shower head, a spray nozzle, a rotary nozzle, a rotary cleaning nozzle, a liquid discharge part, a piping member, a liquid transfer tube, a liquid transfer joint, and a lining pipe The static elimination tube as described in any one of these.
[7] A fluid conveyance device including the static elimination tube according to any one of 1 to 6 above.
[8] A semiconductor manufacturing apparatus, a pharmaceutical manufacturing apparatus, a pharmaceutical transporting apparatus, a chemical manufacturing apparatus, or a chemical transporting apparatus including the fluid transporting apparatus according to 7 above.
[9] The method for producing a static elimination tube as described in any one of 1 to 6 above, comprising compression-molding a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
[10] preparing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin selected from PTFE and modified PTFE;
Placing the fluororesin composition in a mold and pressing and compressing to produce a preform;
Firing the preform at a temperature equal to or higher than the melting point of the fluororesin composition to produce a molded body;
7. The method for producing a static elimination tube according to any one of the above 1 to 6, comprising processing the molded body to produce a static elimination tube.
[11] preparing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin other than PTFE and modified PTFE;
The static elimination tube according to any one of 1 to 6 above, comprising heating the fluororesin composition and pressurizing and compressing to obtain a molded article; and processing the molded article to obtain a static elimination pipe Manufacturing method.
 本発明の実施形態の除電管は、優れた帯電防止性能を有し、不純物(金属イオン及び有機物等)の溶出を防止しながら、優れた除電性能を示す。従って、例えば、半導体製造装置、医薬品製造装置、化学薬品製造装置等の流体が通る管(又はチューブ)、ノズル、シャワーヘッド、回転洗浄ノズル、スプレーノズル、回転ノズル、液体吐出部、配管部材、液体(又は薬液)搬送チューブ、液体搬送継手、及びライニング配管等に好適に使用することができる。 The neutralization tube of the embodiment of the present invention has excellent antistatic performance and exhibits excellent neutralization performance while preventing elution of impurities (metal ions, organic substances, etc.). Therefore, for example, pipes (or tubes) through which fluids such as semiconductor manufacturing apparatuses, pharmaceutical manufacturing apparatuses, chemical manufacturing apparatuses pass, nozzles, shower heads, rotating cleaning nozzles, spray nozzles, rotating nozzles, liquid discharge units, piping members, liquids (Or a chemical solution) It can be used suitably for a conveyance tube, a liquid conveyance coupling, lining piping, etc.
図1は、実施例1の除電管の一部を600℃に加熱して得た残渣物のSEM画像(10000倍)を示す。FIG. 1 shows an SEM image (10,000 times) of a residue obtained by heating a part of the static elimination tube of Example 1 to 600 ° C. 図2は、流体除電性の評価装置を模式的に示す。FIG. 2 schematically shows a fluid neutralizing evaluation apparatus.
 本発明は、新たな除電管を提供し、それは、
 フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物でできており、
 フッ素樹脂組成物は、カーボンナノチューブを、0.01~2.0質量%含む。
The present invention provides a new static elimination tube, which
Made of fluororesin composition in which carbon nanotubes are dispersed in fluororesin,
The fluororesin composition contains 0.01 to 2.0% by mass of carbon nanotubes.
 本発明の実施形態の除電管は、フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物でできている。
 本明細書において、フッ素樹脂組成物とは、フッ素樹脂とカーボンナノチューブを含み、必要に応じて他の成分を含んでよく、本発明が目的とする除電管を得ることができる限り、特に制限されることはない。
The static elimination tube of the embodiment of the present invention is made of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
In the present specification, the fluororesin composition includes a fluororesin and a carbon nanotube, and may include other components as necessary. The fluororesin composition is not particularly limited as long as a static elimination tube intended by the present invention can be obtained. Never happen.
 本明細書において、「フッ素樹脂」とは、通常フッ素樹脂と理解される樹脂であって、本発明が目的とする除電管を得ることができる限り、特に制限されることはない。
 そのようなフッ素樹脂として、例えば、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)から選択される少なくとも1種を例示することができる。
In the present specification, the “fluororesin” is a resin that is generally understood as a fluororesin, and is not particularly limited as long as the discharge tube targeted by the present invention can be obtained.
Examples of such fluororesins include polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer. Polymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride At least one selected from (PVF) can be exemplified.
 フッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)が好ましく、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)がより好ましい。 Fluororesin includes polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) , Ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), and polyvinylidene fluoride (PVDF) are preferable. Polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetra More preferred are fluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) and polychlorotrifluoroethylene (PCTFE).
 フッ素樹脂は、市販品を使用することができる。例えば、
 ポリテトラフルオロエチレン(PTFE)として、ダイキン工業株式会社製のM-12(商品名)、M-11(商品名)、及びポリフロンPTFE-M(商品名)、
 変性ポリテトラフルオロエチレン(変性PTFE)として、ダイキン工業株式会社製のM-112(商品名)、M-111(商品名)、及びポリフロンPTFE-M(商品名)、
 ポリクロロトリフルオロエチレン(PCTFE)として、ダイキン工業株式会社製のM-300PL(商品名)、M-300H(商品名)、及びネオフロンPCTFE(商品名)
 テトラフルオロエチレン/パーフルオロアルキルビニルエーテル(PFA)として、ダイキン工業株式会社製のAP-230(商品名)、AP-210(商品名)、及びネオフロンPFA(商品名)等を例示できる。
 フッ素樹脂は、単独で又は組み合わせて使用できる。
A commercial item can be used for a fluororesin. For example,
As polytetrafluoroethylene (PTFE), Daikin Industries, Ltd. M-12 (trade name), M-11 (trade name), and Polyflon PTFE-M (trade name),
As modified polytetrafluoroethylene (modified PTFE), M-112 (trade name), M-111 (trade name), and Polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.,
As polychlorotrifluoroethylene (PCTFE), Daikin Industries, Ltd. M-300PL (trade name), M-300H (trade name), and NEOFLON PCTFE (trade name)
Examples of tetrafluoroethylene / perfluoroalkyl vinyl ether (PFA) include AP-230 (trade name), AP-210 (trade name), and NEOFLON PFA (trade name) manufactured by Daikin Industries, Ltd.
The fluororesin can be used alone or in combination.
 本発明の実施形態において、フッ素樹脂組成物のフッ素樹脂は、粒子形態を有し、500μm以下の平均粒子径を有することが好ましく、8~250μmの平均粒子径を有することがより好ましく、10~50μmの平均粒子径を有することが更により好ましく、10~25μmの平均粒子径を有することが特に好ましい。
 フッ素樹脂組成物のフッ素樹脂は、500μm以下の平均粒子径を有する場合、フッ素樹脂とカーボンナノチューブがより均一に混合できるので、導電性がより向上する。
In an embodiment of the present invention, the fluororesin of the fluororesin composition has a particle form, preferably has an average particle size of 500 μm or less, more preferably has an average particle size of 8 to 250 μm, 10 to It is even more preferable to have an average particle size of 50 μm, and it is particularly preferable to have an average particle size of 10 to 25 μm.
When the fluororesin of the fluororesin composition has an average particle diameter of 500 μm or less, the fluororesin and the carbon nanotubes can be mixed more uniformly, so that the conductivity is further improved.
 本明細書において、粒子の平均粒子径とは、レーザー回折散乱式粒度分布装置(日機装製「MT3300II」)を用いて、粒度分布を測定して得られる、平均粒子径D50を(レーザー回折散乱法によって求められる粒度分布における積算値50%での粒子径を意味するメジアン径)いう。 In the present specification, the average particle diameter of the particles, a laser diffraction scattering particle size distribution analyzer (manufactured by Nikkiso "MT3300II"), obtained by measuring the particle size distribution, the average particle diameter D 50 (laser diffraction scattering (Median diameter, meaning the particle diameter at an integrated value of 50% in the particle size distribution determined by the method).
 本明細書において、「カーボンナノチューブ」とは、通常カーボンナノチューブと理解される物質であって、本発明が目的とする除電管を得ることができる限り、特に制限されることはない。 In the present specification, the “carbon nanotube” is a substance that is usually understood as a carbon nanotube, and is not particularly limited as long as the discharge tube targeted by the present invention can be obtained.
 そのようなカーボンナノチューブ(「CNT」ともいう)として、例えば、単層のCNT、多層のCNT、2層のCNT等を例示できる。カーボンナノチューブとして市販品を使用することができ、例えば、大陽日酸社製のCNT-uni(商品名)シリーズを使用することができる。
 CNTは、単独又は組み合わせて使用することができる。
Examples of such carbon nanotubes (also referred to as “CNT”) include single-wall CNT, multi-wall CNT, and double-wall CNT. Commercially available products can be used as the carbon nanotubes. For example, a CNT-uni (trade name) series manufactured by Taiyo Nippon Sanso Co., Ltd. can be used.
CNTs can be used alone or in combination.
 本発明の実施形態において、カーボンナノチューブは、50μm以上の平均長さを有することが好ましく、70~250μmの平均長さを有することがより好ましく、100~200μmの平均長さを有することが更により好ましく、150~200μmの平均長さを有することが特に好ましく。
 CNTは、50μm以上の平均長さを有する場合、導電パスが繋がりやすいである点から、導電性がより向上し、好ましい。
In an embodiment of the present invention, the carbon nanotubes preferably have an average length of 50 μm or more, more preferably have an average length of 70 to 250 μm, and even more preferably have an average length of 100 to 200 μm. It is particularly preferable to have an average length of 150 to 200 μm.
When the CNT has an average length of 50 μm or more, it is preferable because the conductivity is further improved because the conductive path is easily connected.
 本明細書において、CNTの平均長さ(又は平均繊維長)とは、実施例で詳細に記載するように、SEMで撮影した画像から得られる平均長さをいう。即ち、除電管の一部を、300℃~600℃に加熱して、灰化し、残渣物(SEM撮影用サンプル)を得る。その残渣物のSEM画像を撮影する。そのSEM画像に含まれる各カーボンナノチューブの長さを画像処理によって求める。その画像処理によって得た長さの平均値を計算によって求め、その平均値をCNTの平均長さという。 In this specification, the average length (or average fiber length) of CNT refers to an average length obtained from an image taken with an SEM, as described in detail in Examples. That is, a part of the static elimination tube is heated to 300 ° C. to 600 ° C. to be ashed to obtain a residue (SEM imaging sample). Take an SEM image of the residue. The length of each carbon nanotube included in the SEM image is obtained by image processing. An average value of lengths obtained by the image processing is obtained by calculation, and the average value is referred to as an average length of CNTs.
 本発明の実施形態において、フッ素樹脂組成物は、フッ素樹脂組成物を基準(100質量%)として、カーボンナノチューブを、0.01~2.0質量%含み、0.04~1.5質量%含むことが好ましく、0.05~1.0質量%含むことがより好ましく、0.05~0.5質量%含むことが特に好ましい。
 フッ素樹脂組成物が、カーボンナノチューブを、0.05~0.5質量%含む場合、導電パスを形成するために十分な量なので、導電性がより向上し、好ましい。
In an embodiment of the present invention, the fluororesin composition contains 0.01 to 2.0% by mass of carbon nanotubes based on the fluororesin composition (100% by mass) and 0.04 to 1.5% by mass. It is preferably included, more preferably 0.05 to 1.0% by mass, and particularly preferably 0.05 to 0.5% by mass.
When the fluororesin composition contains 0.05 to 0.5% by mass of carbon nanotubes, the amount is sufficient to form a conductive path, which is preferable because the conductivity is further improved.
 本発明の実施形態の除電管は、1×10-1~1×10Ω・cmの体積抵抗率を有することが好ましく、1×10-1~1×10Ω・cmの体積抵抗率を有することが更に好ましく、1×10~1×10Ω・cmの体積抵抗率を有することがより好ましく、1×10~1×10Ω・cmの体積抵抗率を有することが特に好ましい。
 体積抵抗率の測定については、実施例に記載した。
The discharge tube of the embodiment of the present invention preferably has a volume resistivity of 1 × 10 −1 to 1 × 10 7 Ω · cm, and a volume resistivity of 1 × 10 −1 to 1 × 10 6 Ω · cm. It is more preferable to have a volume resistivity of 1 × 10 0 to 1 × 10 5 Ω · cm, more preferably a volume resistivity of 1 × 10 1 to 1 × 10 3 Ω · cm. Particularly preferred.
The volume resistivity measurement is described in the examples.
 本発明の実施形態の除電管は、実施例に記載した方法を用いて評価して、電荷残存率が、70%以下であることが好ましく、50%以下であることがより好ましく、30%以下であることが更により好ましく、20%以下であることが特に好ましい。
 電荷残存率が、20%以下である場合、静電気が抑えられているので、非集塵性の性質がより向上し、好ましい。
The static elimination tube according to the embodiment of the present invention is evaluated using the method described in the examples, and the charge residual ratio is preferably 70% or less, more preferably 50% or less, and 30% or less. It is still more preferable that it is 20% or less.
When the residual charge rate is 20% or less, since static electricity is suppressed, the non-dust collecting property is further improved, which is preferable.
 本発明の実施形態の除電管は、10cmの長さの抵抗が、1×10Ω以下であることが好ましく、8×10Ω以下であることがより好ましく、5×10Ω以下であることが更により好ましく、1×10Ω以下であることが特に好ましい。
 10cmの長さの抵抗が、1×10Ω以下である場合、導通が十分に取れているので、流体除電性がより向上し、好ましい。
In the static elimination tube according to the embodiment of the present invention, the resistance having a length of 10 cm is preferably 1 × 10 6 Ω or less, more preferably 8 × 10 5 Ω or less, and 5 × 10 5 Ω or less. It is even more preferable that it is 1 × 10 5 Ω or less.
When the resistance having a length of 10 cm is 1 × 10 5 Ω or less, since sufficient conduction can be obtained, the fluid discharge performance is further improved, which is preferable.
 本発明の実施形態の除電管に関し、本明細書の実施例に記載の方法で評価して、汚染防止性は、全ての金属の溶出量が、5ppb未満であることが好ましく、1ppb未満であることがより好ましく、0.5ppb未満であることが更に好ましい。
 また、全有機体炭素の溶出量が、50ppb未満であることが好ましく、40ppb未満であることがより好ましく、30ppb未満であることが更に好ましい。
Regarding the static elimination tube of the embodiment of the present invention, as evaluated by the method described in the examples of the present specification, the antifouling property is preferably such that the elution amount of all metals is less than 5 ppb, and is less than 1 ppb. Is more preferable, and it is still more preferable that it is less than 0.5 ppb.
Further, the amount of elution of all organic carbon is preferably less than 50 ppb, more preferably less than 40 ppb, and still more preferably less than 30 ppb.
 本発明の実施形態の除電管は、その用途に応じて種々の寸法を有することができ、本発明が目的とする除電管を得ることができる限り、その寸法は特に制限されることはない。
 除電管は、例えば、円筒形(又はチューブ状)を有し、外径は、4~500mmであることが好ましく、6~250mmであることがより好ましく、6~75mmであることが更により好ましく、6~50mmであることが特に好ましい。肉厚は、0.5~50mmであることが好ましく、1~20mmであることがより好ましく、1~10mmであることが更により好ましく、1~5mmであることが特に好ましい。
The static elimination tube of the embodiment of the present invention can have various dimensions depending on its application, and the dimension is not particularly limited as long as the neutralization pipe targeted by the present invention can be obtained.
The static elimination tube has, for example, a cylindrical shape (or a tube shape), and the outer diameter is preferably 4 to 500 mm, more preferably 6 to 250 mm, and still more preferably 6 to 75 mm. 6 to 50 mm is particularly preferable. The wall thickness is preferably 0.5 to 50 mm, more preferably 1 to 20 mm, even more preferably 1 to 10 mm, and particularly preferably 1 to 5 mm.
 本発明に実施形態の除電管は、本発明が目的とする除電管を得ることができる限り、いずれの方法を用いて製造してもよい。
 本発明に実施形態の除電管は、フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を、圧縮成形することを含む製造方法で製造することが好ましい。
The neutralization tube of the embodiment of the present invention may be manufactured using any method as long as the neutralization tube targeted by the present invention can be obtained.
The static elimination tube of the embodiment of the present invention is preferably manufactured by a manufacturing method including compression molding a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
 本発明の実施形態の除電管の製造方法は、PTFE及び変性PTFEに関する除電管の製造方法と、その他のフッ素樹脂(例えば、PFA、FEP、ETFE、ECTFE、PCTFE、PVDF及びPVF)に関する除電管の製造方法は、一部相違する。 The method for producing a static elimination tube according to an embodiment of the present invention includes a method for producing a static elimination tube related to PTFE and modified PTFE, and a static elimination tube relating to other fluororesins (for example, PFA, FEP, ETFE, ECTFE, PCTFE, PVDF and PVF). The manufacturing method is partially different.
 PTFE及び変性PTFEに関する除電管の製造方法は、
 フッ素樹脂(好ましくは粒子状フッ素樹脂)にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
 フッ素樹脂組成物を、(必要に応じて適切な前処理(予備乾燥、造粒等)を行った後、)金型に入れて、好ましくは0.1~100MPa、より好ましくは1~80MPa、さらにより好ましくは5~50MPaの圧力で加圧して圧縮して、予備成形体を製造すること;
 予備成形体を、フッ素樹脂組成物の融点以上の温度(好ましくは345~400℃、より好ましくは360~390℃の温度)で、好ましくは2時間以上焼成して、成形体を製造すること;
 成形体を加工(好ましくは切削加工)して除電管を製造すること
を含む。
A method for producing a static elimination tube related to PTFE and modified PTFE is as follows.
Preparing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably a particulate fluororesin);
The fluororesin composition is put into a mold (after performing appropriate pretreatment (predrying, granulation, etc., if necessary)), preferably 0.1 to 100 MPa, more preferably 1 to 80 MPa, Even more preferably pressurizing and compressing at a pressure of 5 to 50 MPa to produce a preform.
Firing the preform at a temperature equal to or higher than the melting point of the fluororesin composition (preferably a temperature of 345 to 400 ° C., more preferably 360 to 390 ° C.), preferably for 2 hours or more to produce a molded product;
It includes processing (preferably cutting) the molded body to produce a static elimination tube.
 PTFE及び変性PTFE以外のフッ素樹脂(例えば、PFA、FEP、ETFE、ECTFE、PCTFE、PVDF及びPVF)に関する除電管の製造方法は、
 フッ素樹脂(好ましくは粒子状フッ素樹脂)にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
 フッ素樹脂組成物を、金型に入れ、必要に応じて適切な前処理(予備乾燥等)をした後、例えば、150~400℃の温度で1~5時間加熱後、例えば、0.1~100MPa(好ましくは、1~80MPa、より好ましくは、5~50MPa)の圧力で圧縮して、成形体を得ること;及び
 成形体を加工(好ましくは切削加工)して除電管を得ること
を含む。
The manufacturing method of the static elimination tube regarding fluorine resins (for example, PFA, FEP, ETFE, ECTFE, PCTFE, PVDF and PVF) other than PTFE and modified PTFE
Preparing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably a particulate fluororesin);
The fluororesin composition is put in a mold and subjected to an appropriate pretreatment (preliminary drying or the like) as necessary, and then heated at a temperature of 150 to 400 ° C. for 1 to 5 hours, for example, 0.1 to Compressing at a pressure of 100 MPa (preferably 1 to 80 MPa, more preferably 5 to 50 MPa) to obtain a molded body; and processing (preferably cutting) the molded body to obtain a static elimination tube. .
 本実施形態の除電管は、種々の用途に使用することができ、本発明が目的とする除電管を使用することができる限り、その用途は特に制限されることはないが、例えば、流体が通る管、ノズル、シャワーヘッド、スプレーノズル、回転ノズル、回転洗浄ノズル、液体吐出部、配管部材、液体搬送チューブ、液体搬送継手、及びライニング配管等に使用することができる。 The static elimination tube of this embodiment can be used for various applications, and the usage is not particularly limited as long as the static elimination tube targeted by the present invention can be used. It can be used for a passing tube, a nozzle, a shower head, a spray nozzle, a rotating nozzle, a rotating cleaning nozzle, a liquid discharge part, a piping member, a liquid conveying tube, a liquid conveying joint, and a lining piping.
 本発明は、本発明の実施形態の除電管を含む、流体搬送装置を提供する。
 更に、本発明は、そのような流体搬送装置を含む、種々の設備、例えば、半導体製造装置、医薬品製造装置、医薬品搬送装置、化学薬品製造装置及び化学薬品搬送装置等を提供する。
The present invention provides a fluid conveyance device including the static elimination tube of the embodiment of the present invention.
Furthermore, the present invention provides various facilities including such a fluid transfer device, for example, a semiconductor manufacturing device, a pharmaceutical manufacturing device, a pharmaceutical transfer device, a chemical manufacturing device, a chemical transfer device, and the like.
 以下、本発明を実施例及び比較例により具体的かつ詳細に説明するが、これらの実施例は本発明の一態様にすぎず、本発明はこれらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be described specifically and in detail with reference to examples and comparative examples, but these examples are only one aspect of the present invention, and the present invention is not limited to these examples.
 本実施例で使用した成分を以下に示す。
 (A)フッ素樹脂
 (A1)ポリクロロトリフルオロエチレン(ダイキン工業株式会社製のネオフロンPCTFE(商品名))(「(A1)PCTFE」ともいう)
 (A2)ポリテトラフルオロエチレン(ダイキン工業株式会社製のポリフロンPTFE-M(商品名))(「(A2)PTFE」ともいう)
 (A3)変性ポリテトラフルオロエチレン(ダイキン工業株式会社製のポリフロンPTFE-M(商品名))(「(A3)変性PTFE」ともいう)
 (A4)テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(ダイキン工業株式会社製のネオフロンPFA(商品名)(「(A4)PFA」ともいう)
The components used in this example are shown below.
(A) Fluororesin (A1) Polychlorotrifluoroethylene (Neoflon PCTFE (trade name) manufactured by Daikin Industries, Ltd.) (also referred to as “(A1) PCTFE”)
(A2) Polytetrafluoroethylene (polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.) (also referred to as “(A2) PTFE”)
(A3) Modified polytetrafluoroethylene (polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.) (also referred to as “(A3) modified PTFE”)
(A4) Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (Neoflon PFA (trade name) manufactured by Daikin Industries, Ltd. (also referred to as “(A4) PFA”))
 (B)カーボンナノチューブ
 (B1)カーボンナノチューブ(平均繊維長=約150μm、大陽日酸社製のCNT-uni(商品名))(「(B1)CNT」ともいう)
 (B2)カーボンナノチューブ(平均繊維長=約400μm、大陽日酸社製のCNT-uni(商品名))(「(B2)CNT」ともいう)
 (B3)カーボンナノチューブ(平均繊維長=約90μm、大陽日酸社製のCNT-uni(商品名))(「(B3)CNT」ともいう)
 (B4)カーボンナノチューブ(平均繊維長=約600μm、大陽日酸社製のCNT-uni(商品名))(「(B4)CNT」ともいう)
 (B5)’カーボンナノチューブ(平均繊維長=約30μm、大陽日酸社製のCNT-uni(商品名))(「(B5)’CNT」ともいう)
 カーボンファイバー入りフッ素樹脂
 (C1)カーボンファイバー入りPTFE(旭硝子製のPB2515(商品名))
(B) Carbon nanotube (B1) Carbon nanotube (average fiber length = about 150 μm, CNT-uni (trade name) manufactured by Taiyo Nippon Sanso Co., Ltd.) (also referred to as “(B1) CNT”)
(B2) Carbon nanotubes (average fiber length = about 400 μm, CNT-uni (trade name) manufactured by Taiyo Nippon Sanso Co., Ltd.) (also referred to as “(B2) CNT”)
(B3) Carbon nanotubes (average fiber length = about 90 μm, CNT-uni (trade name) manufactured by Taiyo Nippon Sanso Co., Ltd.) (also referred to as “(B3) CNT”)
(B4) Carbon nanotubes (average fiber length = approximately 600 μm, CNT-uni (trade name) manufactured by Taiyo Nippon Sanso Co., Ltd.) (also referred to as “(B4) CNT”)
(B5) ′ carbon nanotubes (average fiber length = about 30 μm, CNT-uni (trade name) manufactured by Taiyo Nippon Sanso) (also referred to as “(B5) ′ CNT”)
Fluororesin with carbon fiber (C1) PTFE with carbon fiber (PB2515 (trade name) manufactured by Asahi Glass)
 <実施例1>
 (A1)ポリクロロトリフルオロエチレン(PCTFE)を、粉砕機を用いて粉砕し、振動篩機等で分級して、(A1)PCTFE粒子を準備した。レーザー回折散乱式粒度分布装置(日機装製「MT3300II」)を用いて、(A1)PCTFE粒子の粒度分布を測定して、(A1)PCTFE粒子の平均粒子径(D50)を得た。(A1)PCTFE粒子の平均粒子径(D50)は、11.5μmであった。
<Example 1>
(A1) Polychlorotrifluoroethylene (PCTFE) was pulverized using a pulverizer and classified with a vibration sieve or the like to prepare (A1) PCTFE particles. Laser diffraction scattering particle size distribution analyzer (manufactured by Nikkiso "MT3300II"), (A1) a particle size distribution of the PCTFE particles were measured to obtain (A1) an average particle diameter of PCTFE particles (D 50). (A1) The average particle diameter (D 50 ) of the PCTFE particles was 11.5 μm.
 水を溶媒とする(B1)カーボンナノチューブ分散液(分散剤=0.15質量%、(B1)カーボンナノチューブ=0.1質量%)500gにエタノールを3,500g加えて希釈した。更に、上述の(A1)PCTFE粒子を1000g添加して混合スラリーを作製した。
 混合スラリーを耐圧容器に供給し、耐圧容器内の混合スラリーに含まれる分散剤1mgに対して0.03g/分の供給速度で液化二酸化炭素を供給し、耐圧容器内の圧力が20MPa、温度が50℃になるまで、昇圧及び昇温した。上記圧力および温度を3時間保持しながら、二酸化炭素中に溶け込んだ溶媒(水、エタノール)および分散剤と共に、二酸化炭素を耐圧容器から排出した。
 耐圧容器内の圧力及び温度を、大気圧及び常温に各々下げて、耐圧容器内の二酸化炭素を除去して、(B1)カーボンナノチューブを0.1質量%含む(A1)PCTFE組成物を得た。
Diluted by adding 3,500 g of ethanol to 500 g of (B1) carbon nanotube dispersion (dispersant = 0.15 mass%, (B1) carbon nanotube = 0.1 mass%) using water as a solvent. Further, 1000 g of the above (A1) PCTFE particles were added to prepare a mixed slurry.
The mixed slurry is supplied to a pressure vessel, liquefied carbon dioxide is supplied at a supply rate of 0.03 g / min to 1 mg of the dispersant contained in the mixed slurry in the pressure vessel, the pressure in the pressure vessel is 20 MPa, and the temperature is The pressure was increased and the temperature was increased to 50 ° C. While maintaining the pressure and temperature for 3 hours, carbon dioxide was discharged from the pressure vessel together with the solvent (water, ethanol) and the dispersant dissolved in the carbon dioxide.
The pressure and temperature in the pressure vessel were lowered to atmospheric pressure and room temperature, respectively, and carbon dioxide in the pressure vessel was removed to obtain (A1) a PCTFE composition containing (B1) 0.1% by mass of carbon nanotubes. .
 圧縮成形法を使用して、(A1)PCTFE組成物を成形して、円柱状成形体を得た。即ち、(A1)PCTFE組成物を、金型に入れ、必要に応じて適切な前処理(予備乾燥等)を行った。その後、200℃以上の温度で2時間以上、(A1)PCTFE組成物を加熱後、5MPa以上の圧力で、(A1)PCTFE組成物を圧縮しながら、常温まで冷却して(A1)PCTFE成形体を得た。
 (A1)PCTFE成形体を切削加工して、円筒状(又は管状)成形体として、実施例1の除電管を得た。実施例1の除電管は、約40mmの直径(外径)、約15mmの肉厚、約100mmの長さを有した。
Using the compression molding method, the (A1) PCTFE composition was molded to obtain a cylindrical molded body. That is, (A1) the PCTFE composition was put into a mold, and an appropriate pretreatment (preliminary drying or the like) was performed as necessary. After that, after heating the (A1) PCTFE composition at a temperature of 200 ° C. or higher for 2 hours or more, it is cooled to room temperature while compressing the (A1) PCTFE composition at a pressure of 5 MPa or higher. (A1) PCTFE molded body Got.
(A1) The PCTFE molded body was cut to obtain a static elimination tube of Example 1 as a cylindrical (or tubular) molded body. The static elimination tube of Example 1 had a diameter (outer diameter) of about 40 mm, a thickness of about 15 mm, and a length of about 100 mm.
 <実施例2>
 (B1)カーボンナノチューブを0.05質量%含むように変更した以外は、実施例1に記載の方法と同様の方法を用いて、実施例2の除電管を製造した。
<Example 2>
(B1) The static elimination tube of Example 2 was manufactured using the method similar to the method as described in Example 1 except having changed so that 0.05 mass% of carbon nanotubes might be included.
 <実施例3>
 (B1)カーボンナノチューブを、(B2)カーボンナノチューブに変更した以外は、実施例1に記載の方法と同様の方法を用いて、実施例3の除電管を製造した。
<Example 3>
The static elimination tube of Example 3 was manufactured using the method similar to the method as described in Example 1 except having changed (B1) carbon nanotube into (B2) carbon nanotube.
 <実施例4>
 (B1)カーボンナノチューブを、(B3)カーボンナノチューブに変更した以外は、実施例1に記載の方法と同様の方法を用いて、実施例4の除電管を製造した。
<Example 4>
The static elimination tube of Example 4 was manufactured using the method similar to the method as described in Example 1 except having changed (B1) carbon nanotube into (B3) carbon nanotube.
 <実施例5>
 (A2)ポリテトラフルオロエチレン(PTFE)は、粒状で市販されており、その平均粒子径(D50)は50.4μmであった。(A2)PTFE粒子の平均粒子径(D50)は、実施例1に記載の方法と同様の方法を用いて測定した。
<Example 5>
(A2) Polytetrafluoroethylene (PTFE) is commercially available in granular form, and its average particle size (D 50 ) was 50.4 μm. (A2) The average particle diameter (D 50 ) of PTFE particles was measured using the same method as described in Example 1.
 (A1)PCTFE粒子を、(A2)PTFE粒子に変更した以外は、実施例1に記載の方法と同様の方法を用いて、(B1)カーボンナノチューブを0.1質量%含む(A2)PTFE組成物を得た。 (A1) Except for changing the PCTFE particles to (A2) PTFE particles, using the same method as described in Example 1, (B1) containing 0.1% by mass of carbon nanotubes (A2) PTFE composition I got a thing.
 圧縮成形法を使用して、(A2)PTFE組成物を成形して、円柱状成形体を得た。即ち、(A2)PTFE組成物を、必要に応じて前処理(予備乾燥等)後、(A2)PTFE組成物を金型に一定量、均一に充填した。(A2)PTFE組成物を15MPaで加圧し、一定時間保持することで、(A2)PTFE組成物を圧縮して、(A2)PTFE予備成形体を得た。(A2)PTFE予備成形体を金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷後電気炉から取り出し、(A2)PTFE成形体を得た。(A2)PTFE成形体の切削加工を行い、円筒状成形体として、実施例5の除電管を得た。実施例5の除電管は、約40mmの直径、約15mmの肉厚、約100mmの長さを有した。 (A2) A PTFE composition was molded using a compression molding method to obtain a cylindrical molded body. That is, (A2) PTFE composition was pretreated (preliminary drying, etc.) as necessary, and (A2) PTFE composition was uniformly filled in a mold in a certain amount. (A2) The PTFE composition was pressurized at 15 MPa and held for a certain period of time, thereby compressing the (A2) PTFE composition to obtain (A2) a PTFE preform. (A2) The PTFE preform was taken out from the mold, baked for 2 hours or more in a hot air circulating electric furnace set at 345 ° C. or higher, slowly cooled, and taken out from the electric furnace to obtain (A2) PTFE compact. (A2) The PTFE molded body was cut to obtain a static elimination tube of Example 5 as a cylindrical molded body. The static elimination tube of Example 5 had a diameter of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
 <実施例6>
 (B1)カーボンナノチューブを0.025質量%含むように変更した以外は、実施例5に記載の方法と同様の方法を用いて、実施例6の除電管を製造した。
<Example 6>
(B1) A static elimination tube of Example 6 was manufactured using the same method as that described in Example 5 except that the carbon nanotube was changed to include 0.025% by mass.
 <実施例7>
 (A3)変性ポリテトラフルオロエチレン(変性PTFE)は、粒状で市販されており、その平均粒子径(D50)は19.6μmであった。(A3)変性PTFE粒子の平均粒子径(D50)は、実施例1に記載の方法と同様の方法を用いて測定した。
<Example 7>
(A3) Modified polytetrafluoroethylene (modified PTFE) is commercially available in granular form, and its average particle size (D 50 ) was 19.6 μm. (A3) The average particle diameter (D 50 ) of the modified PTFE particles was measured using the same method as described in Example 1.
 (A1)PCTFE粒子を、(A3)変性PTFE粒子に変更した以外は、実施例1に記載の方法と同様の方法を用いて、(B1)カーボンナノチューブを0.1質量%含む(A3)変性PTFE組成物を得た。 (A1) PCTFE particles were changed to (A3) modified PTFE particles, using the same method as described in Example 1, (B1) containing 0.1% by mass of carbon nanotubes (A3) modified A PTFE composition was obtained.
 圧縮成形法を使用して、(A3)変性PTFE組成物を成形して、円柱状成形体を得た。即ち、(A3)変性PTFE組成物を、必要に応じて前処理(予備乾燥等)後、(A3)変性PTFE組成物を金型に一定量、均一に充填した。(A3)変性PTFE組成物を15MPaで加圧し、一定時間保持することで、(A3)変性PTFE組成物を圧縮して、(A3)変性PTFE予備成形体を得た。(A3)変性PTFE予備成形体を金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷後電気炉から取り出し、(A3)変性PTFE成形体を得た。(A3)変性PTFE成形体の切削加工を行い、円筒状成形体として、実施例7の除電管を得た。実施例7の除電管は、約40mmの直径、約15mmの肉厚、約100mmの長さを有した。 (A3) The modified PTFE composition was molded using a compression molding method to obtain a cylindrical molded body. That is, (A3) the modified PTFE composition was pretreated as necessary (preliminary drying, etc.), and then (A3) the modified PTFE composition was uniformly filled in a mold. (A3) The modified PTFE composition was pressurized at 15 MPa and held for a certain time, whereby (A3) the modified PTFE composition was compressed to obtain (A3) a modified PTFE preform. (A3) The modified PTFE preform is removed from the mold, fired in a hot-air circulating electric furnace set at 345 ° C. or higher for 2 hours or more, slowly cooled and then removed from the electric furnace, and (A3) modified PTFE molded body is obtained. It was. (A3) The modified PTFE molded body was cut to obtain a static elimination tube of Example 7 as a cylindrical molded body. The static elimination tube of Example 7 had a diameter of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
 <実施例8>
 (A4)テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)を、粉砕機を用いて粉砕し、振動篩機等で分級して、(A4)PFA粒子を準備した。(A4)PFA粒子の、平均粒子径(D50)は121.7μmであった。(A4)PFA粒子の平均粒子径(D50)は、実施例1に記載の方法と同様の方法を用いて測定した。
<Example 8>
(A4) Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) was pulverized using a pulverizer and classified with a vibration sieve or the like to prepare (A4) PFA particles. (A4) The average particle diameter (D 50 ) of the PFA particles was 121.7 μm. (A4) The average particle diameter (D 50 ) of the PFA particles was measured using the same method as described in Example 1.
 (A1)PCTFE粒子を、(A4)PFA粒子に変更した以外は、実施例1に記載の方法と同様の方法を用いて、(B1)カーボンナノチューブを0.1質量%含む(A4)PFA組成物を得た。 (A1) PCTFE particles were changed to (A4) PFA particles, except that (B1) containing 0.1% by mass of carbon nanotubes (A4) PFA composition, using the same method as described in Example 1 I got a thing.
 圧縮成形法を使用して、(A4)PFA組成物を成形して、円柱状成形体を得た。即ち、(A4)PFA組成物を、金型に入れ、必要に応じて適切な前処理(予備乾燥等)を行った。その後、300℃以上の温度で2時間以上、(A4)PFA組成物を加熱後、5MPa以上の圧力で、(A4)PFA組成物を圧縮しながら、常温まで冷却して(A4)PFA成形体を得た。
 (A4)PFA成形体を切削加工して、円筒状(又は管状)成形体として、実施例8の除電管を得た。実施例8の除電管は、約40mmの直径(外径)、約15mmの肉厚、約100mmの長さを有した。
Using a compression molding method, the (A4) PFA composition was molded to obtain a cylindrical molded body. That is, (A4) the PFA composition was put into a mold, and an appropriate pretreatment (preliminary drying or the like) was performed as necessary. After that, after heating the (A4) PFA composition at a temperature of 300 ° C. or higher for 2 hours or more, it is cooled to room temperature while compressing the (A4) PFA composition at a pressure of 5 MPa or more. (A4) PFA molded body Got.
(A4) The PFA molded body was cut to obtain a static elimination tube of Example 8 as a cylindrical (or tubular) molded body. The static elimination tube of Example 8 had a diameter (outer diameter) of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
 <実施例9>
 (B1)カーボンナノチューブを、(B4)カーボンナノチューブに変更した以外は、実施例1に記載の方法と同様の方法を用いて、実施例9の除電管を製造した。
<Example 9>
The static elimination tube of Example 9 was manufactured using the method similar to the method as described in Example 1 except having changed the (B1) carbon nanotube into (B4) carbon nanotube.
 <比較例1>
 溶融混練法を使用して、(B1)カーボンナノチューブを0.1質量%含む(A1)PCTFE組成物を成形して、円筒状成形体を得た。即ち、(A1)PCTFE組成物を押出機に入れ、必要に応じて適切な前処理(予備乾燥等)を行い、シリンダー温度200℃以上の温度でスクリューで押し出し、サイジングダイを用いて形を整えて、(A1)PCTFE成形体を得た。(A1)PCTFE成形体の切削加工を行い円筒状成形体として、比較例1の除電管を製造した。比較例1の除電管は約40mmの直径、約15mmの肉厚、約100mmの長さを有する。
<Comparative Example 1>
Using a melt-kneading method, (B1) (A1) PCTFE composition containing 0.1% by mass of carbon nanotubes was molded to obtain a cylindrical molded body. That is, (A1) PCTFE composition is put into an extruder, and appropriate pretreatment (preliminary drying, etc.) is performed as necessary, extruded with a screw at a cylinder temperature of 200 ° C. or higher, and shaped using a sizing die. (A1) A PCTFE molded product was obtained. (A1) The static elimination tube of Comparative Example 1 was manufactured as a cylindrical molded body by cutting the PCTFE molded body. The static elimination tube of Comparative Example 1 has a diameter of about 40 mm, a thickness of about 15 mm, and a length of about 100 mm.
 <比較例2>
 (B1)カーボンナノチューブを、(B5)’カーボンナノチューブに変更した以外は、実施例1に記載の方法と同様の方法を用いて、比較例2除電管を製造した。
<Comparative Example 2>
A static elimination tube of Comparative Example 2 was produced using the same method as described in Example 1 except that (B1) carbon nanotubes were changed to (B5) ′ carbon nanotubes.
 <比較例3>
 (C1)カーボンファイバー入りPTFE(カーボンファイバー15質量%)組成物は、粒状で市販されており、その平均粒子径(D50)は630μmであった。そのPTFE組成物の平均粒子径(D50)は、実施例1に記載の方法と同様の方法を用いて測定した。
<Comparative Example 3>
The (C1) carbon fiber-containing PTFE (carbon fiber 15% by mass) composition was commercially available in a granular form, and the average particle diameter (D 50 ) thereof was 630 μm. The average particle size (D 50 ) of the PTFE composition was measured using the same method as described in Example 1.
 圧縮成形法を使用して、このPTFE組成物を成形して、円柱状成形体を得た。即ち、PTFE組成物を、必要に応じて前処理(予備乾燥等)後、PTFE組成物を金型に一定量、均一に充填した。PTFE組成物を15MPaで加圧し、一定時間保持することで、PTFE組成物を圧縮して、PTFE予備成形体を得た。PTFE予備成形体を金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷後電気炉から取り出し、PTFE成形体を得た。PTFE成形体の切削加工を行い、円筒状成形体として、比較例3の除電管を得た。比較例3の除電管は、約40mmの直径、約15mmの肉厚、約100mmの長さを有した。 This PTFE composition was molded using a compression molding method to obtain a cylindrical molded body. That is, the PTFE composition was pretreated as necessary (preliminary drying or the like), and then the PTFE composition was uniformly filled in a mold in a certain amount. The PTFE composition was pressurized at 15 MPa and held for a certain period of time to compress the PTFE composition to obtain a PTFE preform. The PTFE preform was taken out from the mold and baked for 2 hours or more in a hot air circulating electric furnace set at 345 ° C. or higher, and after slow cooling, taken out from the electric furnace to obtain a PTFE molded body. The PTFE molded body was cut to obtain a static elimination tube of Comparative Example 3 as a cylindrical molded body. The static elimination tube of Comparative Example 3 had a diameter of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
 <平均繊維長>
 除電管に含まれるカーボンナノチューブの平均繊維長を、SEM(KEYENCE社製のVE-9800(商品名))を用いて、除電管の画像を撮影して、評価した。灰化法を用いて、除電管の一部を灰化して、画像撮影用サンプルを、作製した。即ち、除電管の一部を300℃~600℃に加熱し、灰化して、残渣物を得た。その残渣物を画像撮影用サンプルとして、SEM(走査電子顕微鏡)観察をおこなった。例えば、実施例1の除電管のSEM画像を、図1に示した。その画像に含まれる各カーボンナノチューブの繊維の繊維長を画像処理によって求めて、その繊維長の値の平均値を計算して得た。結果は、表1に示した。
<Average fiber length>
The average fiber length of the carbon nanotubes contained in the static elimination tube was evaluated by taking an image of the static elimination tube using SEM (VE-9800 (trade name) manufactured by KEYENCE). Using the ashing method, a part of the static elimination tube was ashed to produce a sample for imaging. That is, a part of the static elimination tube was heated to 300 ° C. to 600 ° C. and incinerated to obtain a residue. Using the residue as a sample for imaging, SEM (scanning electron microscope) observation was performed. For example, the SEM image of the static elimination tube of Example 1 is shown in FIG. The fiber length of each carbon nanotube fiber included in the image was obtained by image processing, and the average value of the fiber length values was calculated. The results are shown in Table 1.
 <抵抗値に基づく除電性>
 抵抗値に基づく除電性及び帯電防止性は、ISO8031:2009に基づいて評価した。即ち、除電管の両端の各々に金属継手を接続した。2つの金属継手間の抵抗値を、絶縁抵抗計(ムサシ電機計器製作所製の3レンジ絶縁抵抗計(商品名))を用いて測定した。例えば、実施例2の除電管の抵抗値は、2×10Ωであった。
<Static elimination based on resistance value>
The neutralizing property and antistatic property based on the resistance value were evaluated based on ISO8031: 2009. That is, a metal joint was connected to each of both ends of the static elimination tube. The resistance value between the two metal joints was measured using an insulation resistance meter (3-range insulation resistance meter (trade name) manufactured by Musashi Electric Instruments Co., Ltd.). For example, the resistance value of the static elimination tube of Example 2 was 2 × 10 4 Ω.
 除電性の評価基準は、下記の通りである。
 ○:10cmの間の抵抗値が1×10Ω以下である。
 ×:10cmの間の抵抗値が1×10Ωを超える。
 実施例1の除電管は、良好な除電性を有すると評価された。結果は、表1に示した。
The evaluation criteria for static elimination are as follows.
A: The resistance value between 10 cm is 1 × 10 6 Ω or less.
×: Resistance value between 10 cm exceeds 1 × 10 6 Ω.
The static elimination tube of Example 1 was evaluated to have good static elimination properties. The results are shown in Table 1.
 <汚染防止性>
 除電管の金属溶出量の測定
 除電管における金属汚染の程度を、ICP質量分析装置(パーキンエルマー製「ELAN DRCII」)を用いて金属系17元素(Li、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Cd及びPb)の金属溶出量を測定することで、評価した。
 圧縮成形して得た円筒状成形体から、10mm×20mm×50mmの試験片を切削取得した。試験片を、3.6%塩酸(関東化学製EL-UMグレード)0.5Lに1時間程度浸漬後、超純水(比抵抗値:≧18.0MΩ・cm)で掛け流し洗浄を行った。更に、3.6%塩酸0.1Lに、試験片全体を浸漬して、室温環境で24時間及び168時間保存した。規定時間経過後に浸漬液を全量回収し(浸漬した塩酸を全量集めて)、浸漬液の金属不純物濃度を分析した。試験片を3つ準備して、その最大値を検出量とした。
 評価基準は下記の通りである。
 ◎:全ての金属の各々の検出量が、5ppb未満である。
 ○:Al、Cr、Cu、Fe、Ni、Zn、Ca、K及びNaの各々の検出量が、5ppb未満である。
 △:Al、Cr、Cu、Fe、Ni及びZnの各々の検出量が、5ppb未満である。
 ×:Al、Cr、Cu、Fe、Ni及びZnのいずれか1種の検出量が、5ppb以上である。
 結果は、表1に示した。
<Pollution prevention>
Measurement of metal elution amount of static elimination tube The degree of metal contamination in the static elimination tube was measured using an ICP mass spectrometer (“ELAN DRCII” manufactured by Perkin Elmer) and 17 metal elements (Li, Na, Mg, Al, K, Ca, Evaluation was made by measuring metal elution amounts of Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Cd and Pb).
A 10 mm × 20 mm × 50 mm test piece was cut and obtained from a cylindrical molded body obtained by compression molding. The test piece was immersed in 0.5 L of 3.6% hydrochloric acid (EL-UM grade manufactured by Kanto Chemical) for about 1 hour, and then washed by pouring with ultrapure water (specific resistance value: ≧ 18.0 MΩ · cm). . Further, the entire test piece was immersed in 0.1 L of 3.6% hydrochloric acid and stored at room temperature for 24 hours and 168 hours. After the lapse of the specified time, the entire amount of the immersion liquid was collected (collecting all the immersed hydrochloric acid), and the metal impurity concentration of the immersion liquid was analyzed. Three test pieces were prepared, and the maximum value was used as the detection amount.
The evaluation criteria are as follows.
(Double-circle): The detection amount of each of all the metals is less than 5 ppb.
(Circle): The detection amount of each of Al, Cr, Cu, Fe, Ni, Zn, Ca, K, and Na is less than 5 ppb.
(Triangle | delta): Each detection amount of Al, Cr, Cu, Fe, Ni, and Zn is less than 5 ppb.
X: The detection amount of any one of Al, Cr, Cu, Fe, Ni, and Zn is 5 ppb or more.
The results are shown in Table 1.
 除電管の炭素脱落の測定
 除電管からのカーボンナノチューブの脱離の程度を、全有機体炭素計(島津製作所製「TOCvwp」)を用いてTOC(全有機体炭素)を測定することにより評価した。具体的には、圧縮成形して得た円筒状成形体から切削取得した10mm×20mm×50mmの試験片を、3.6%塩酸(関東化学製EL-UMグレード)0.5Lに1時間程度浸漬し、1時間浸漬後に取出して超純水(比抵抗値:≧18.0MΩ・cm)で掛け流し洗浄を行い、超純水に試験片全体を浸漬して室温環境下で24時間および168時間保存した。規定時間経過後に浸漬液を全量回収し(浸漬した超純水を全量集めて)、浸漬液について全有機体炭素分析をした。試験片を3つ準備して、その最大値を検出量とした。
 評価基準は下記の通りである。
 ○:全有機体炭素の検出量が、50ppb未満である。
 ×:全有機体炭素の検出量が、50ppb以上である。
Measurement of carbon loss of static elimination tube The degree of carbon nanotube detachment from the static elimination tube was evaluated by measuring TOC (total organic carbon) using a total organic carbon meter ("TOCvwp" manufactured by Shimadzu Corporation). . Specifically, a 10 mm × 20 mm × 50 mm test piece obtained by cutting from a cylindrical molded body obtained by compression molding was added to 0.5 L of 3.6% hydrochloric acid (EL-UM grade manufactured by Kanto Chemical) for about 1 hour. Immerse, take out after immersion for 1 hour, wash by pouring with ultrapure water (specific resistance value ≧ 18.0 MΩ · cm), immerse the entire test piece in ultrapure water for 24 hours and 168 at room temperature. Saved for hours. After the lapse of the specified time, the whole amount of the immersion liquid was collected (collecting all the immersed ultrapure water), and the whole organic carbon analysis was performed on the immersion liquid. Three test pieces were prepared, and the maximum value was used as the detection amount.
The evaluation criteria are as follows.
A: The detection amount of all organic carbon is less than 50 ppb.
X: The detection amount of total organic carbon is 50 ppb or more.
 <流体除電性>
 流体除電性評価装置の概略を模式的に図2に示す。純水製造装置からの純水配管は、PFA配管と接続されている。PFA配管の末端部分に除電管を接続した。除電管はアースに接続されている。除電管の末端部分にノズルを接続した。ノズルはPCTFEを加工したもので、中心に穴が開いている。ノズルの穴は内径3mm、長さ10mmである。ノズルの下のレシーバーはファラデーケージを構成している。レシーバーは、二重円筒構造をしており、外側が外径14cm、高さ20cmの円筒容器で、内側は直径10cm、高さ15cmの円筒容器である。材質は共にステンレスである。内側の円筒容器はPTFEによりアースから絶縁されている。シールドは底辺が50cm×50cmで高さが1mの直方体で、アングルの骨組みに真鍮製の金網を張りつけたものである。PFA配管とレシーバーは、シールド内に配置され、レシーバーはシールド内のほぼ中央に設置した。
 ノズルとレシーバーの上蓋との距離を10cmとし、上蓋の穴は正方形で5cm×5cmとした。
 除電管を接続していない状態でノズルを通過した純水の電荷量と、各除電管を接続した状態でノズルを通過した純水の電荷量を測定した。純水の流速は2m/secである。
 除電管を接続していない状態でノズルを通過した純水の電荷量(Q1)と、除電管を接続した状態でノズルを通過した純水の電荷量(Q)を測定した。
 電荷量は、はエレクトロメーター(KEYTHLEY社製の6514型(商品名))を用いて測定した。
 電荷残存率:(Q/Q1)×100を求めた。
 評価基準は、下記の通りである。
 ◎:電荷残存率が、30%以下である。
 ○:電荷残存率が、30%を超え、50%以下である。
 △:電荷残存率が、50%を超え、70%以下である。
 ×:電荷残存率が、70%を超える。
<Fluid neutralization>
An outline of the fluid neutralization evaluation apparatus is schematically shown in FIG. The pure water piping from the pure water production apparatus is connected to the PFA piping. A static elimination tube was connected to the end portion of the PFA piping. The static elimination tube is connected to the ground. A nozzle was connected to the end portion of the static elimination tube. The nozzle is a machined PCTFE with a hole in the center. The nozzle hole has an inner diameter of 3 mm and a length of 10 mm. The receiver under the nozzle constitutes a Faraday cage. The receiver has a double cylindrical structure, a cylindrical container having an outer diameter of 14 cm and a height of 20 cm on the outer side, and a cylindrical container having a diameter of 10 cm and a height of 15 cm on the inner side. Both materials are stainless steel. The inner cylindrical container is insulated from ground by PTFE. The shield is a rectangular parallelepiped with a base of 50 cm x 50 cm and a height of 1 m, and a brass wire mesh attached to an angle frame. The PFA piping and the receiver were placed in the shield, and the receiver was installed in the middle of the shield.
The distance between the nozzle and the upper lid of the receiver was 10 cm, and the hole in the upper lid was square and 5 cm × 5 cm.
The charge amount of pure water that passed through the nozzles with no static elimination tube connected and the charge amount of pure water that passed through the nozzles with each static elimination tube connected were measured. The flow rate of pure water is 2 m / sec.
The charge amount (Q1) of pure water that passed through the nozzle with no static elimination tube connected and the charge amount (Q) of pure water that passed through the nozzle with the static elimination tube connected were measured.
The amount of charge was measured using an electrometer (6514 type (trade name) manufactured by KEYTHLEY).
Charge residual ratio: (Q / Q1) × 100 was determined.
The evaluation criteria are as follows.
A: The residual charge rate is 30% or less.
◯: The residual charge rate exceeds 30% and is 50% or less.
(Triangle | delta): A charge residual rate exceeds 50% and is 70% or less.
X: Charge residual ratio exceeds 70%.
 <体積抵抗率>
 上述した圧縮成形法と同様の方法を用いて、各実施例及び比較例について、φ110×10mmの試験片を作製し、測定試料とした。
 体積抵抗率の測定は、JIS K6911に従い、抵抗率計(三菱化学アナリテック製「ロレスター」または「ハイレスター」)を用いて行った。
 評価基準は下記の通りである。
 ◎:体積抵抗率が、1×10Ω・cm以下である。
 ○:体積抵抗率が、1×10Ω・cmを超え、1×10Ω・cm以下である。
 △:体積抵抗率が、1×10Ω・cmを超え、1×10Ω・cm以下である。
 ×:体積抵抗率が、1×10Ω・cmを超える。
<Volume resistivity>
Using a method similar to the compression molding method described above, a test piece of φ110 × 10 mm was prepared for each example and comparative example, and used as a measurement sample.
The volume resistivity was measured using a resistivity meter (“Lorestar” or “High Lester” manufactured by Mitsubishi Chemical Analytech) in accordance with JIS K6911.
The evaluation criteria are as follows.
A: Volume resistivity is 1 × 10 3 Ω · cm or less.
○: Volume resistivity exceeds 1 × 10 3 Ω · cm and is 1 × 10 5 Ω · cm or less.
Δ: Volume resistivity exceeds 1 × 10 5 Ω · cm and is 1 × 10 7 Ω · cm or less.
×: Volume resistivity exceeds 1 × 10 7 Ω · cm.
Figure JPOXMLDOC01-appb-T000001
a)溶融混練法を使用した。
b)体積抵抗率が、測定上限を超えた為、測定できなかった。
Figure JPOXMLDOC01-appb-T000001
a) A melt kneading method was used.
b) Since the volume resistivity exceeded the upper limit of measurement, it could not be measured.
 本発明は、フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物でできており、フッ素樹脂組成物は、カーボンナノチューブを、0.01~2.0質量%含む、新たな除電管を提供する。
 その除電管は、優れた帯電防止性能を有し、不純物(金属イオン及び有機物等)の溶出を防止しながら、優れた除電性能を示す。従って、例えば、半導体製造装置、医薬品製造装置、化学薬品製造装置等の流体が通る管(又はチューブ)、ノズル、シャワーヘッド、回転洗浄ノズル、スプレーノズル、回転ノズル、液体吐出部、配管部材、液体(又は薬液)搬送チューブ、液体搬送継手、及びライニング配管等に好適に使用することができる。

 関連出願
 尚、本出願は、2018年2月9日に日本国でされた出願番号2018-021648に基づく、パリ条約第4条に基づく優先権を主張する。この基礎出願の内容は、参照することによって、本明細書に組み込まれる。
The present invention is made of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin, and the fluororesin composition provides a new static elimination tube containing 0.01 to 2.0% by mass of carbon nanotubes.
The static elimination tube has excellent antistatic performance and exhibits excellent static elimination performance while preventing elution of impurities (metal ions, organic substances, etc.). Therefore, for example, pipes (or tubes) through which fluids such as semiconductor manufacturing apparatuses, pharmaceutical manufacturing apparatuses, chemical manufacturing apparatuses pass, nozzles, shower heads, rotating cleaning nozzles, spray nozzles, rotating nozzles, liquid discharge units, piping members, liquids (Or a chemical solution) It can be used suitably for a conveyance tube, a liquid conveyance coupling, lining piping, etc.

Related Application This application claims priority under Article 4 of the Paris Convention based on application number 2018-021648 filed in Japan on February 9, 2018. The contents of this basic application are incorporated herein by reference.

Claims (11)

  1.  フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物でできており、
     フッ素樹脂組成物は、カーボンナノチューブを、0.01~2.0質量%含む、除電管。
    Made of fluororesin composition in which carbon nanotubes are dispersed in fluororesin,
    The static elimination tube, wherein the fluororesin composition contains 0.01 to 2.0% by mass of carbon nanotubes.
  2.  カーボンナノチューブは、50μm以上の平均長さを有する、請求項1に記載の除電管。 The neutralization tube according to claim 1, wherein the carbon nanotube has an average length of 50 μm or more.
  3.  1×10-1~1×10Ω・cmの体積抵抗率を有する、請求項1又は2に記載の除電管。 3. The static elimination tube according to claim 1 or 2, having a volume resistivity of 1 × 10 −1 to 1 × 10 6 Ω · cm.
  4.  フッ素樹脂は、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)から選択される少なくとも1種を含む、請求項1~3のいずれか1項に記載の除電管。 Fluororesin is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) , Ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF) The static elimination tube according to any one of claims 1 to 3, comprising at least one selected from the above.
  5.  フッ素樹脂組成物のフッ素樹脂は、500μm以下の平均粒子径を有する、請求項1~4のいずれか1項に記載の除電管。 The static elimination tube according to any one of claims 1 to 4, wherein the fluororesin of the fluororesin composition has an average particle diameter of 500 µm or less.
  6.  流体が通る管、ノズル、シャワーヘッド、スプレーノズル、回転ノズル、回転洗浄ノズル、液体吐出部、配管部材、液体搬送チューブ、液体搬送継手、及びライニング配管に使用される、請求項1~5のいずれか1項に記載の除電管。 Use in a pipe through which a fluid passes, a nozzle, a shower head, a spray nozzle, a rotary nozzle, a rotary cleaning nozzle, a liquid discharge part, a piping member, a liquid transfer tube, a liquid transfer joint, and a lining pipe. The static elimination tube according to claim 1.
  7.  請求項1~6のいずれか1項に記載の除電管を含む、流体搬送装置。 A fluid conveyance device including the static elimination tube according to any one of claims 1 to 6.
  8.  請求項7に記載の流体搬送装置を含む、半導体製造装置、医薬品製造装置、医薬品搬送装置、化学薬品製造装置又は化学薬品搬送装置。 A semiconductor manufacturing device, a pharmaceutical manufacturing device, a pharmaceutical transporting device, a chemical manufacturing device or a chemical transporting device including the fluid transporting device according to claim 7.
  9.  フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を、圧縮成形することを含む、請求項1~6のいずれか1項に記載の除電管の製造方法。 The method for producing a static elimination tube according to any one of claims 1 to 6, comprising compression-molding a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
  10.  PTFE及び変性PTFEから選択されるフッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
     フッ素樹脂組成物を、金型に入れて、加圧して圧縮して、予備成形体を製造すること;
     予備成形体を、フッ素樹脂組成物の融点以上の温度で焼成して、成形体を製造すること;
     成形体を加工して除電管を製造すること
    を含む、請求項1~6のいずれか1項に記載の除電管の製造方法。
    Preparing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin selected from PTFE and modified PTFE;
    Placing the fluororesin composition in a mold and pressing and compressing to produce a preform;
    Firing the preform at a temperature equal to or higher than the melting point of the fluororesin composition to produce a molded body;
    The method for producing a static elimination tube according to any one of claims 1 to 6, comprising processing the molded body to produce a static elimination tube.
  11.  PTFE及び変性PTFE以外のフッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
     フッ素樹脂組成物を加熱後、加圧して圧縮して、成形体を得ること;及び
     成形体を加工して除電管を得ること
    を含む、請求項1~6のいずれか1項に記載の除電管の製造方法。
    Preparing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin other than PTFE and modified PTFE;
    The static elimination according to any one of claims 1 to 6, comprising heating and pressurizing and compressing the fluororesin composition to obtain a molded article; and processing the molded article to obtain a static elimination tube. A method of manufacturing a tube.
PCT/JP2019/003350 2018-02-09 2019-01-31 Static elimination tube and method for producing same WO2019155975A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-021648 2018-02-09
JP2018021648A JP2021082373A (en) 2018-02-09 2018-02-09 Diselectrification tube and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019155975A1 true WO2019155975A1 (en) 2019-08-15

Family

ID=67548460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003350 WO2019155975A1 (en) 2018-02-09 2019-01-31 Static elimination tube and method for producing same

Country Status (3)

Country Link
JP (1) JP2021082373A (en)
TW (1) TW201936657A (en)
WO (1) WO2019155975A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079724A1 (en) * 2019-10-23 2021-04-29 ダイキン工業株式会社 Member for semiconductor cleaning apparatus
WO2021140837A1 (en) * 2020-01-07 2021-07-15 Nok株式会社 Fluororubber composition
TWI794683B (en) * 2019-12-26 2023-03-01 大陸商中微半導體設備(上海)股份有限公司 plasma processing equipment
TWI843903B (en) 2019-10-23 2024-06-01 日商大金工業股份有限公司 Semiconductor cleaning equipment components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180302A (en) * 2009-02-04 2010-08-19 Hitachi Cable Fine Tech Ltd Engineering plastic composition and molded article of the same
WO2012098840A1 (en) * 2011-01-17 2012-07-26 株式会社クラレ Resin composition and molded article including same
JP2012233552A (en) * 2011-05-09 2012-11-29 Mitsubishi Cable Ind Ltd Method of manufacturing seal member and seal member made by the method
JP5987100B1 (en) * 2015-10-16 2016-09-06 サーパス工業株式会社 Fluid equipment
JP6353599B1 (en) * 2017-12-27 2018-07-04 リックス株式会社 Two-fluid nozzle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180302A (en) * 2009-02-04 2010-08-19 Hitachi Cable Fine Tech Ltd Engineering plastic composition and molded article of the same
WO2012098840A1 (en) * 2011-01-17 2012-07-26 株式会社クラレ Resin composition and molded article including same
JP2012233552A (en) * 2011-05-09 2012-11-29 Mitsubishi Cable Ind Ltd Method of manufacturing seal member and seal member made by the method
JP5987100B1 (en) * 2015-10-16 2016-09-06 サーパス工業株式会社 Fluid equipment
JP6353599B1 (en) * 2017-12-27 2018-07-04 リックス株式会社 Two-fluid nozzle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079724A1 (en) * 2019-10-23 2021-04-29 ダイキン工業株式会社 Member for semiconductor cleaning apparatus
JP2021068891A (en) * 2019-10-23 2021-04-30 ダイキン工業株式会社 Member for semiconductor cleaning apparatus
TWI843903B (en) 2019-10-23 2024-06-01 日商大金工業股份有限公司 Semiconductor cleaning equipment components
TWI794683B (en) * 2019-12-26 2023-03-01 大陸商中微半導體設備(上海)股份有限公司 plasma processing equipment
WO2021140837A1 (en) * 2020-01-07 2021-07-15 Nok株式会社 Fluororubber composition
JPWO2021140837A1 (en) * 2020-01-07 2021-07-15
CN114929802A (en) * 2020-01-07 2022-08-19 Nok株式会社 Fluororubber composition
JP7129574B2 (en) 2020-01-07 2022-09-01 Nok株式会社 Fluoro rubber composition
CN114929802B (en) * 2020-01-07 2023-12-26 Nok株式会社 Fluororubber composition

Also Published As

Publication number Publication date
JP2021082373A (en) 2021-05-27
TW201936657A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
WO2019155975A1 (en) Static elimination tube and method for producing same
JP2020100823A (en) Fluoropolymer composition, molded article, and injection molded article
WO2019017489A1 (en) Semiconductor element manufacturing device and semiconductor element manufacturing method
JP2019006983A (en) Thermofusion fluorine resin molded article
TWI772468B (en) Tank and chemical liquid supply system
KR101954647B1 (en) Polytetra fluoroethylene-carbon nano tube composite fabrication method with good electronic property
CN113574126A (en) Composition for coating fluorine-containing resin, coating film, and substrate
WO2019155977A1 (en) Conductive welding material and method for producing same
WO2020230472A1 (en) Filter housing and filter comprising same
JP6539426B1 (en) Conductive welding material and method of manufacturing the same
JP2008082459A (en) Antistatic tube
TWI699397B (en) Composite resin material and molded article
JP7381498B2 (en) Composite secondary particles containing carbon nanotubes and their manufacturing method
WO2021166743A1 (en) Fluororesin molded article and device including same
WO2018237297A1 (en) Melt processible fluororesin molded article
WO2020149371A1 (en) Electrical resistance measuring instrument, and electrical resistance measuring method employing same
JP2020119923A (en) Member for conveying semiconductor substrate and manufacturing apparatus of semiconductor device having the same
JP2013136675A (en) Conductive fluororesin composition and molded product thereof
KR20190014005A (en) Polytetra fluoroethylene-carbon nano tube composite with good electronic property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP