WO2019017060A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2019017060A1
WO2019017060A1 PCT/JP2018/018956 JP2018018956W WO2019017060A1 WO 2019017060 A1 WO2019017060 A1 WO 2019017060A1 JP 2018018956 W JP2018018956 W JP 2018018956W WO 2019017060 A1 WO2019017060 A1 WO 2019017060A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
internal combustion
injection
combustion engine
engine
Prior art date
Application number
PCT/JP2018/018956
Other languages
French (fr)
Japanese (ja)
Inventor
政弘 山田
沖 秀行
一成 小林
聡文 平星
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to BR112020001029-4A priority Critical patent/BR112020001029A2/en
Publication of WO2019017060A1 publication Critical patent/WO2019017060A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a control device for an internal combustion engine that injects fuel directly into a cylinder using a fuel containing alcohol, and more particularly to a control device that controls the injection timing of fuel in a low temperature state of the internal combustion engine.
  • control device for this type of internal combustion engine, for example, the one described in Patent Document 1 is known.
  • fuel injection control is performed as follows during start-up and within a predetermined period until warm-up after start-up is completed. To be done.
  • the alcohol concentration of the fuel and the cooling water temperature are detected, and when the condition that the alcohol concentration is equal to or higher than the predetermined concentration and the cooling water temperature is equal to or lower than the predetermined temperature is satisfied, it is determined that And compression stroke injection that injects the fuel in the compression stroke while boosting the pressure of the fuel.
  • the above condition is not satisfied, that is, when the alcohol concentration is lower than the predetermined concentration and / or the cooling water temperature is higher than the predetermined temperature, it is determined that the injected fuel is in the easily vaporized state.
  • Intake stroke injection is performed to inject the fuel in the intake stroke without boosting the fuel.
  • the compression stroke injection is performed when the alcohol concentration is equal to or higher than the predetermined concentration and the cooling water temperature is equal to or lower than the predetermined temperature within a predetermined period until warm-up after startup is completed. Be done.
  • a better combustion state can be obtained by performing the intake stroke injection rather than the compression stroke injection even when the above conditions are satisfied after the low temperature start. confirmed.
  • the compression stroke injection since the compression stroke injection is executed as long as the above-mentioned conditions regarding the alcohol concentration and the coolant temperature are satisfied, the good combustion state can not always be obtained, and the combustion fluctuation increases. There is a fear.
  • the present invention has been made to solve such a problem, and a control of an internal combustion engine capable of securing a stable and good combustion state after a low temperature start of the internal combustion engine using a fuel containing alcohol. It aims at providing an apparatus.
  • the invention according to claim 1 is a control device of an internal combustion engine 3 which uses a fuel containing alcohol and injects the fuel directly into the cylinder 3a.
  • Engine temperature parameter acquiring means water temperature sensor 22 for acquiring an engine temperature parameter (engine water temperature TW) representing, alcohol concentration acquiring means (ethanol concentration sensor 24) for acquiring alcohol concentration (ethanol concentration EC) of fuel, and internal combustion engine Load acquiring means (air flow sensor 23) for acquiring the load (intake air amount GAIRCYL) of 3 and fuel according to the acquired engine temperature parameter, alcohol concentration and load of the internal combustion engine 3 after the low temperature start of the internal combustion engine 3;
  • intake stroke injection which injects fuel in the intake stroke, and injection of fuel in the compression stroke That selects one of the compression stroke injection control means for executing (ECU 2, step 9 in FIG. 2, FIG. 6), characterized in that it comprises a, a.
  • This internal combustion engine uses an alcohol-containing fuel and injects the fuel directly into the cylinder. Further, according to the control device of the internal combustion engine, an engine temperature parameter indicating the temperature of the internal combustion engine, the alcohol concentration of the fuel, and the load of the internal combustion engine are obtained. Then, after the low temperature start of the internal combustion engine, according to the acquired engine temperature parameter, alcohol concentration and load of the internal combustion engine, as the fuel injection mode, intake stroke injection that injects fuel in the intake stroke and fuel is injected in the compression stroke. One of the compression stroke injections to be selected is selected and executed.
  • the injection mode in which the more stable combustion state can be obtained among the compression stroke injection and the intake stroke injection is It differs according to the load of the internal combustion engine.
  • the intake stroke injection or the compression stroke injection is selected according to the load of the internal combustion engine together with the engine temperature parameter and the alcohol concentration, so that a stable good combustion state is ensured after low temperature start of the internal combustion engine. be able to.
  • the invention according to claim 2 is the control apparatus for an internal combustion engine according to claim 1, wherein the control means is configured such that the temperature of the internal combustion engine represented by the engine temperature parameter is equal to or lower than a predetermined temperature TJUD and the alcohol concentration EC is a predetermined concentration If the load on the internal combustion engine is above a predetermined value (predetermined amount GAIRJUD) and the load on the internal combustion engine is less than a predetermined value, the intake stroke injection is performed (see FIG. Step 2 in FIG. 6, FIG. 6) is characterized.
  • low temperature high concentration condition Under the condition that the temperature of the internal combustion engine is lower than a predetermined temperature and the alcohol concentration is higher than a predetermined concentration (hereinafter referred to as "low temperature high concentration condition"), when obtaining a stable combustion state, the load of the internal combustion engine is relatively high. While compression stroke injection is suitable, it has been found that intake stroke injection is suitable when the load on the internal combustion engine is relatively low. The reason is estimated as follows.
  • the low temperature of the internal combustion engine makes it difficult for the fuel to vaporize.
  • the load of the internal combustion engine is high under such low temperature and high concentration conditions, the amount of fuel is large, and the degree to which the injected fuel becomes a liquid film on a piston in a low temperature state becomes high. Is further inhibited. If compression stroke injection is performed in such a situation, the fuel is injected at a higher temperature in the cylinder, and as a result, the formation of a liquid film of the fuel is suppressed and the vaporization of the fuel is promoted, resulting in a stable combustion state. Is estimated to be obtained.
  • the second aspect of the present invention is based on the above viewpoints, and performs compression stroke injection when the load of the internal combustion engine is equal to or higher than a predetermined value corresponding to a high load condition under low temperature and high concentration conditions.
  • a predetermined value corresponding to a high load condition under low temperature and high concentration conditions.
  • the intake stroke injection is performed, so that the compression stroke injection or the intake stroke injection can be appropriately selected according to the load of the internal combustion engine, and hence stable and good combustion state can be achieved after cold start of the internal combustion engine. It can be obtained surely.
  • the invention according to claim 3 is the control apparatus for an internal combustion engine according to claim 1 or 2, wherein the fuel injection amount GFUEL is increased when the fuel injection mode is switched from intake stroke injection to compression stroke injection. It is characterized by further comprising injection amount increasing / decreasing means (ECU 2, steps 33 to 35 in FIG. 13) for reducing the fuel injection amount GFUEL when the compression stroke injection is switched to the intake stroke injection.
  • injection amount increasing / decreasing means ECU 2, steps 33 to 35 in FIG. 13
  • the fuel injection timing changes rapidly, so the degree of homogenization of the mixture of the injected fuel and air changes, and the combustion efficiency changes accordingly.
  • the homogenization is insufficient because the generation time of the mixture is short, and local rich and the like in which the fuel is unevenly distributed in the cylinder tends to occur, and the combustion efficiency decreases.
  • the air-fuel ratio becomes substantially lean, leading to a decrease in the output of the internal combustion engine.
  • the fuel injection amount is increased when the fuel injection mode is switched to the compression stroke injection, and the fuel injection amount is decreased when the fuel injection mode is switched to the intake stroke injection. It is possible to properly compensate for the fluctuation of the air-fuel ratio accompanying with the above and secure the required output of the internal combustion engine.
  • the invention according to claim 4 is the control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the control means executes compression stroke injection at the time of low temperature start of the internal combustion engine 3 and has a high alcohol concentration. It is characterized in that the fuel injection timing is set to be more retarded (step 4 in FIG. 2, FIGS. 3 to 5).
  • the compression stroke injection is performed, and the fuel injection timing is set more retarded as the alcohol concentration becomes higher.
  • the higher the alcohol concentration that is, the lower the degree of vaporization of the fuel, the more fuel vaporization is promoted by injecting the fuel in a state where the in-cylinder temperature is higher.
  • a stable combustion state can be secured, and low temperature startability can be improved.
  • FIG. 4 is a diagram of the start-up map of FIG. 3; It is a figure which shows the relationship between the ethanol concentration in the low temperature conditions of the starting time map of FIG. 3, and the injection end time. It is a warming up operation map for calculating the injection end time at the time of warming up operation. It is a figure which shows the relationship of the injection timing and the torque of an internal combustion engine in low-temperature heavy load conditions. It is a figure which shows the relationship between ethanol concentration, a combustion fluctuation rate, etc.
  • FIG. 10 is a view similar to FIG. 8 and FIG. 9 when an intake stroke injection and a compression stroke injection are used selectively with a threshold value under the low temperature and high load condition. It is a map at the time of normal operation for calculating the injection end time at the time of normal operation. It is a timing chart which shows the operation example obtained by control processing of FIG. It is a flowchart which shows the correction
  • amendment process of the fuel injection quantity accompanying switching of the injection mode. 14 is a timing chart showing an example of calculation of a fuel correction amount by the correction processing of FIG. 13;
  • FIG. 1 shows an internal combustion engine (hereinafter referred to as "engine") 3 to which the present invention is applied and its control device.
  • the engine 3 is mounted on a vehicle (not shown), and can use a mixture of ethanol and gasoline as a fuel containing alcohol.
  • the engine 3 is, for example, a four-cylinder engine having four cylinders 3a (only one shown).
  • a combustion chamber 3d is formed between a piston 3b and a cylinder head 3c of each cylinder 3a, and a fuel injection valve 4 and an ignition plug 5 are provided in the cylinder head 3c for each cylinder 3a.
  • the fuel is directly injected from the fuel injection valve 4 into the combustion chamber 3d.
  • the fuel injection valve 4 and the ignition plug 5 are electrically connected to the ECU (electronic control unit) 2, and the injection amount and injection timing of the fuel from the fuel injection valve 4 and the ignition timing of the ignition plug 5 It is controlled by the control signal from.
  • a throttle valve 7 is provided in the intake passage 6.
  • the throttle valve 7 has a butterfly valve element 7a and a TH actuator 7b for driving the valve element 7a.
  • the TH actuator 7b is driven by a control signal from the ECU 2, whereby the opening degree of the valve body 7a is controlled, and the amount of air sucked into the cylinder 3a is controlled.
  • the engine 3 is provided with various sensors 21 to 24 shown below, and their detection signals are inputted to the ECU 2.
  • the crank angle sensor 21 outputs a CRK signal as a pulse signal and a TDC signal as the crankshaft 3 e of the engine 3 rotates.
  • the CRK signal is output every predetermined crank angle (for example, 30 °).
  • the ECU 2 calculates the number of revolutions NE of the engine 3 (hereinafter referred to as "the number of engine revolutions") based on the CRK signal.
  • the TDC signal is a signal representing that the piston 3b is in the vicinity of TDC (intake air TDC) at the start of the intake stroke in any of the cylinders 3a, and when the engine 3 has four cylinders, it outputs power at every crank angle 180 °. Be done.
  • the water temperature sensor 22 detects an engine water temperature TW, which is the temperature of cooling water circulating in the cylinder block of the engine 3. Further, the air flow sensor 23 detects the amount of air GAIR flowing through the intake passage 6. The ECU 2 calculates an intake air amount GAIRCYL which is an air amount sucked into each cylinder 3a based on the detection signal.
  • the ethanol concentration sensor 24 is provided in the middle of a fuel passage (not shown) connected to the fuel injection valve 4 and the fuel tank, and detects the ethanol concentration EC of the fuel. Note that, for convenience of explanation, a fuel having an ethanol concentration EC of ⁇ % is appropriately described as "E ⁇ fuel”.
  • the ECU 2 is constituted by a microcomputer including a CPU, a RAM, a ROM, an E2PROM, an I / O interface (all not shown) and the like, and based on the detection signals of the various sensors 21 to 24 described above, Various engine control processes are executed according to the stored control program.
  • the ECU 2 corresponds to the control means and the injection amount increasing and decreasing means.
  • FIG. 2 shows the control processing of the fuel injection timing executed by the ECU 2.
  • the operating state including the time of starting the engine 3 is determined, and the injection end timing EOI is set as the fuel injection timing according to the determined operating state. This process is repeatedly performed in synchronization with the generation of the TDC signal.
  • step 1 it is determined whether the engine 3 is starting.
  • under starting refers to a period from the start of cranking to the time when the engine speed NE completely rises above the predetermined idle speed.
  • step 2 the in-cylinder temperature counter value CT described later is incremented (step 2), and the predetermined engine speed NE is lower than the idle speed. It is determined whether or not it is smaller (step 3). If the answer is YES, the process proceeds to step 4 to execute start control and end the present process.
  • the injection end timing EOI is calculated by searching the startup map shown in FIG. 3 according to the detected engine coolant temperature TW and ethanol concentration EC.
  • the start-up map is obtained by setting the injection end timing EOI with respect to the engine coolant temperature TW and the ethanol concentration EC so as to obtain good startability (for example, the shortest start-up time).
  • the injection end timing EOI is set within the compression stroke regardless of the engine coolant temperature TW and the ethanol concentration EC. That is, at the time of start, compression stroke injection for injecting fuel in the compression stroke is performed. It has been confirmed that, at the time of start-up, regardless of the engine coolant temperature TW and the ethanol concentration EC, a better startability can be obtained in the compression stroke injection than in the intake stroke injection in which the fuel is injected in the intake stroke. It is for.
  • the injection end timing EOI is set to be more retarded as the engine coolant temperature TW is lower. This is because as the engine coolant temperature TW is lower, the fuel is less likely to be vaporized and the combustion state is likely to be deteriorated. Therefore, the fuel is injected with the in-cylinder temperature higher by delaying the injection end timing EOI. This is to promote the vaporization of the fuel.
  • FIG. 5 shows the relationship between the ethanol concentration EC and the injection end timing EOI when the engine coolant temperature TW is at a constant low temperature condition (for example, 0 ° C.) from the start-up map.
  • the injection end timing EOI is set more retarded so as to approach the compression TDC as the ethanol concentration EC is higher. This is because the higher the ethanol concentration EC, the higher the boiling point of the fuel, the less the fuel is vaporized and the combustion state is apt to deteriorate, so the injection end timing EOI is later than in the case of the engine water temperature TW described above. By doing this, the fuel is injected in a state where the in-cylinder temperature is higher to promote the vaporization of the fuel.
  • step 3 when the answer to step 3 is NO, and the engine rotational speed NE ⁇ the predetermined rotational speed NREF holds, the engine rotational speed NE is considered to have risen to some extent, and the process proceeds to step 5 until the start is completed. Transition control is executed, and this processing ends.
  • the injection end timing EOI which has been set within the compression stroke at the time of start-up, is advanced toward the target value within the intake stroke after the start is completed. More specifically, for example, as shown in FIG. 12, in the case of fuel E0 to E64 having a low ethanol concentration EC, since the low temperature startability is high, the injection end timing EOI corresponds to the intake stroke at the start of transition control. It will be instantly changed to the target value within. On the other hand, in the case of E85 fuel or E100 fuel having a high ethanol concentration, since the low temperature startability is low, the injection end timing EOI is gradually changed toward the target value in the intake stroke. Thus, it is possible to smoothly shift the injection end timing EOI to the target value after the start is completed while securing a stable low temperature startability.
  • step 6 when the answer to step 1 is NO and the start of the engine 3 is completed, it is determined whether the engine water temperature TW is lower than a predetermined temperature TJUD (for example, 0 ° C.) (step 6) . If the answer is YES, it is determined that the engine 3 has been cold started, and then the in-cylinder temperature counter value CT is incremented (step 7) as in the case of step 2 and the in-cylinder temperature counter value CT is predetermined. It is determined whether the threshold value CJUD or more (step 8).
  • TJUD for example, 0 ° C.
  • the in-cylinder temperature counter value CT is reset to 0 by an unshown process when the ignition switch is turned on, and is incremented in steps 2 and 7. Therefore, the in-cylinder temperature counter value CT generally indicates the number of combustions of the engine 3 from the start start time, and when the engine 3 is started at low temperature, the increase amount of the in-cylinder temperature by the combustion from the start start time Represent. Therefore, when the answer to step 8 is NO, and the in-cylinder temperature counter value CT has not reached the threshold value CJUD, the in-cylinder temperature does not rise to the temperature corresponding to the completion of the warm-up. If it is determined that the warm-up operation is being performed, the process proceeds to step 9, the warm-up operation control is executed, and the present process is ended.
  • the warm-up operation includes a low-load warm-up idle operation following a low-temperature start and a high-load warm-up drive operation when the vehicle travels.
  • step 8 determines that the warm-up operation has ended, and the process proceeds to step 10 to execute normal operation control. This process ends. Also, when the answer to step 6 is NO and the engine 3 is not cold started, the process proceeds to step 10 to execute normal operation control.
  • the injection end timing EOI is retrieved by searching the warm-up operation map shown in FIG. 6 according to the engine water temperature TW, the ethanol concentration EC, the engine speed NE and the intake air amount GAIRCYL. Calculate This warm-up operation map secures combustion stability during warm-up operation (cold condition) of the engine 3 and suppresses the amount of oil dilution (the amount of ethanol mixed in the engine oil) and the amount of soot generation
  • the injection end timing EOI is set for the above four input parameters from the viewpoint of
  • the engine water temperature TW is lower than a predetermined temperature TJUD (for example, 0 ° C.) corresponding to a low temperature state (low temperature condition), and the predetermined concentration EJUD (for example 75%) corresponding to a high concentration state of ethanol
  • TJUD a predetermined temperature
  • EJUD a predetermined concentration
  • the injection end timing EOI is set within the compression stroke when the above (high concentration condition) and the intake air amount GAIRCYL is equal to or higher than the predetermined amount GAIRJUD corresponding to the high load condition (high load condition).
  • the injection end timing EOI is set within the intake stroke. Is executed.
  • FIG. 7 is obtained when the fuel injection timing is changed from the intake stroke to the compression stroke under the low temperature, high concentration, high load conditions where the engine water temperature TW, the ethanol concentration EC, and the intake air amount GAIRCYL satisfy the above conditions, respectively.
  • the torque (engine torque) TRQ of the engine 3 is illustrated. As shown in the figure, when the intake stroke injection is performed, it can be seen that the engine torque TRQ is 0, the engine 3 is misfired, and a combustion failure occurs.
  • FIGS. 8 and 9 show (a) the combustion fluctuation rate RCC, (b) the amount of generation with respect to the ethanol concentration EC, obtained when the intake stroke injection and the compression stroke injection are respectively performed under the low temperature and high load conditions.
  • the relationship between QS, (c) oil dilution amount (hereinafter referred to as "OD amount”) QOD, and (d) injection end timing EOI is shown.
  • the combustion fluctuation rate RCC is sufficiently smaller than the judgment value RCCJ in the region where the ethanol concentration EC is less than about 85%, while the ethanol concentration EC is In a region larger than about 85%, it rapidly increases and exceeds the judgment value RCCJ.
  • the soot generation amount QS is sufficiently smaller than the judgment value QSJ in the entire region of the ethanol concentration EC.
  • the OD amount QOD may exceed the determination value QODJ in a region where the ethanol concentration EC is larger than about 85%.
  • the combustion fluctuation rate RCC tends to increase slightly in the region where the ethanol concentration EC is larger than about 60%, but the total ethanol concentration EC It is very small in the region and sufficiently below the judgment value RCCJ.
  • the soot generation amount QS is very large in the region where the ethanol concentration EC is smaller than about 60%, and exceeds the judgment value QSJ, whereas it is almost zero in the region larger than about 60%. Further, the OD amount QOD is sufficiently smaller than the judgment value QODJ in the entire region of the ethanol concentration EC.
  • the injection end timing EOI is obtained by searching the normal operation map shown in FIG. 11 according to the engine water temperature TW, the engine speed NE and the intake air amount GAIRCYL. calculate.
  • the injection end timing EOI is set within the intake stroke regardless of the intake air amount GAIRCYL or the like, whereby the intake stroke injection is always performed during the normal operation.
  • FIG. 12 shows an operation example when the engine 3 is started at a low temperature, which is obtained by the control processing of the fuel injection timing of FIG. 2 described above.
  • the start control (step 4) is executed until the engine speed NE reaches the predetermined speed NJUD (t1 to t2). Be done.
  • the injection end timing EOI is set within the compression stroke according to the start-up map of FIG. 3 and compression stroke injection is executed, and the injection end timing EOI is slower as the ethanol concentration EC is higher. It is set on the corner side. Further, the in-cylinder temperature counter value CT is incremented from the start of the start.
  • transition control (step 5) is executed until the start of the engine 3 is completed (t2 to t3).
  • the injection end timing EOI set within the compression stroke in the start control is immediately for E0 to E64 fuel, and gradually for E85 fuel and E100 fuel. Is changed to the target value in the intake stroke after completion of the start.
  • step 9 When starting of the engine 3 is completed, warm-up control (step 9) is executed, and the injection end timing EOI is set according to the warm-up operation map of FIG. In this example, since the low load warm-up idle operation is performed following the completion of the start (t3 to t4), the injection end timing EOI is set within the intake stroke during this period, and the intake stroke injection is executed. .
  • the injection end timing EOI is within the intake stroke.
  • the intake stroke injection is continuously performed with values set according to the engine speed NE, the intake air amount GAIRCYL, and the like.
  • the injection end timing EOI depends on the engine speed NE in the compression stroke and the intake air amount GAIRCYL, etc.
  • the compression stroke injection is performed.
  • the injection end timing EOI is set within the intake stroke according to the normal operation map of FIG. 11, and the intake stroke injection is performed.
  • the injection end timing EOI is held at the value at the end of the warm-up operation control from time t5 to t6, and thereafter, within the intake stroke according to the normal operation map Is changed to the value of (solid line).
  • compression stroke injection is performed, while at least one of the low temperature condition, the high concentration condition and the high load condition is satisfied.
  • perform the intake stroke injection when not, perform the intake stroke injection.
  • the compression stroke injection or the suction stroke injection can be appropriately selected according to the load of the engine 3, and therefore, a stable, good combustion state can be reliably obtained after the engine 3 has been cold started. Further, as shown in FIG. 10, it is possible to sufficiently suppress the soot generation amount QS and the OD amount QOD particularly under the low temperature and high load condition.
  • the compression stroke injection is performed, and the injection end timing EOI is set to be more retarded as the ethanol concentration EC is higher.
  • fuel vaporization is promoted by injecting fuel in a state where the temperature in the cylinder is higher as the degree of vaporization of fuel is lower, so that a stable combustion state according to ethanol concentration EC can be secured.
  • the cold startability can be improved.
  • the present process is for compensating for the fluctuation of the air-fuel ratio accompanying the switching between the compression stroke injection and the intake stroke injection, and is repeatedly executed by the ECU 2 in synchronization with the generation of the TDC signal.
  • step 21 it is judged if the compression stroke injection flag F_FCMP is equal to the previous value F_FCMPZ.
  • the compression stroke injection flag F_FCMP is set to "1" when compression stroke injection is being performed, and is set to "0" when intake stroke injection is being performed, by a process not shown.
  • step 21 If the answer to this step 21 is NO, that is, if the current processing cycle corresponds immediately after the injection mode has switched from one of compression stroke injection and intake stroke injection to the other, correction of the fuel injection amount is to be performed.
  • the fuel amount correction flag F_FCHG is set to "1" (step 22), and a counter value i representing the number of corrections is set to 1 (step 23).
  • the fuel correction amount CGF is set to a predetermined initial value CGINI (step 24), and the process proceeds to step 33 described later.
  • a predetermined value NHLD for example 2
  • step 27 If the answer to step 27 is NO, and the counter value i exceeds the predetermined value NHLD, a value obtained by subtracting the predetermined decrease amount ⁇ GF from the previous fuel correction amount CGF is set as the current fuel correction amount CGF (step 29). Next, it is determined whether the fuel correction amount CGF is larger than 0 (step 30). If the answer is YES, the process proceeds to step 33 as it is.
  • step 30 when the answer to step 30 is NO, and the fuel correction amount CGF becomes 0 or less, the fuel correction amount CGF is set to 0 (step 31), and the fuel injection amount correction is ended.
  • the amount correction flag F_FCHG is set to "0" (step 32), and the process proceeds to step 33.
  • the answer to the step 25 is NO, and in this case, the process proceeds to the step 33.
  • the fuel correction amount CGF is set to a large initial value CGINI at the time of switching of the injection mode as shown in FIG. 14 and during the subsequent (NHLD-1) combustion cycles, After being held at the initial value CGINI, it decreases by a predetermined amount of reduction ⁇ GF every combustion cycle and converges to the value 0.
  • step 33 it is determined whether the compression stroke injection flag F_FCMP is "1". If this answer is YES and the switching of the injection mode this time is the switching from the intake stroke injection to the compression stroke injection, the fuel correction amount CGF calculated as described above is used to calculate the fuel injection amount GFUEL by the following equation (1 ) (Step 34), and the present process ends.
  • GFUEL GBS ⁇ KGF + CGF (1)
  • GBS is a basic value of the fuel injection amount calculated according to the intake air amount GAIRCYL and the engine rotational speed NE
  • KGF is an air-fuel ratio correction coefficient for achieving the target air-fuel ratio
  • engine water temperature TW is a total correction coefficient obtained by mutually multiplying various correction coefficients according to the operating state of the engine 3 including the intake temperature and the like.
  • the fuel injection amount GFUEL is increased by the amount of the fuel correction amount CGF when switching to the compression stroke injection, so the air-fuel ratio fluctuation to the lean side accompanying this switching is appropriately compensated. And the required engine power can be secured.
  • step 35 the fuel injection amount GFUEL is decreased by the amount of the fuel correction amount CGF when switching to the intake stroke injection, so that the fluctuation of the air-fuel ratio to the rich side accompanying this switching is appropriately compensated. And the required engine power can be secured.
  • this invention can be implemented in various aspects, without being limited to the described embodiment.
  • one warm-up operation map (FIG. 6) common to warm-up idle operation and warm-up drive operation is used.
  • a map for driving may be created, and the corresponding map may be used according to the determined driving state.
  • the injection end timing EOI is calculated as the fuel injection timing, the present invention is not limited to this, and for example, the injection start timing may be calculated.
  • the fuel correction amount CGF is calculated, and the fuel injection amount GFUEL is increased or decreased by adding or subtracting the product of the basic value GBS and the total correction coefficient KGF.
  • the fuel injection amount GFUEL is mapped to include the increase / decrease amount corresponding to the fuel correction amount CGF, and the fuel injection amount GFUEL is read directly from the map according to the TDC number from switching of the injection mode and the switching direction. You may do so.
  • the method of calculating the fuel correction amount CGF shown in the embodiment is merely an example, and the configuration of the details can be changed.
  • the engine water temperature TW is used as the engine temperature parameter representing the temperature of the internal combustion engine, but instead, another appropriate parameter, for example, the intake temperature or oil temperature of the engine 3 is used It is also good. Furthermore, in the embodiment, the completion determination of the warm-up operation is performed based on the in-cylinder temperature counter value CT, but instead, it may be performed based on an engine temperature parameter such as the above engine water temperature TW. .
  • the intake air amount GAIRCYL is used as a parameter corresponding to the load of the engine 3, but instead, other appropriate parameters such as a fuel injection amount, a required torque, and an accelerator opening of the vehicle may be used. The degree or the like may be used.
  • the ethanol concentration EC is detected using the ethanol concentration sensor 24, but the operating parameter of the engine 3 having a high correlation with the ethanol concentration EC, for example, the feedback correction amount of the air fuel ratio or the detected air fuel ratio You may acquire by estimation from the magnitude
  • a mixed fuel of ethanol and gasoline is used as the alcohol-containing fuel
  • a mixed fuel of methanol and gasoline may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided is a control device which is for an internal combustion engine that uses a fuel containing alcohol, and which is capable of ensuring a stable and good combustion state after the internal combustion engine is cold-started. The present invention is applied to an internal combustion engine 3 that uses a fuel containing alcohol and that directly injects the fuel into a cylinder 3a. A control device according to the present invention detects an engine water temperature TW as an engine temperature parameter indicating the temperature of the internal combustion engine 3, detects the ethanol concentration EC of the fuel, and detects an intake air amount GAIRCYL as a load of the internal combustion engine 3. Then, after a cold-start of the internal combustion engine 3, the control device selects, as a fuel injection mode, either intake process injection for injecting the fuel during an intake process or compression process injection for injecting the fuel during a compression process, on the basis of the detected engine water temperature TW, the detected ethanol concentration EC, and the detected intake air amount GAIRCYL, and executes the selected injection (step 9 in FIG. 2, FIG. 6, FIG. 12).

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、アルコールを含有する燃料を用い、気筒内に直接、噴射する内燃機関の制御装置に関し、特に内燃機関の低温状態において燃料の噴射時期を制御する制御装置に関する。 The present invention relates to a control device for an internal combustion engine that injects fuel directly into a cylinder using a fuel containing alcohol, and more particularly to a control device that controls the injection timing of fuel in a low temperature state of the internal combustion engine.
 従来、この種の内燃機関の制御装置として、例えば特許文献1に記載されたものが知られている。この制御装置では、アルコール含有燃料を使用する内燃機関の低温始動性を向上させるために、その始動中及び始動後の暖機が完了するまでの所定期間内に、燃料噴射制御が以下のように行われる。 Conventionally, as a control device for this type of internal combustion engine, for example, the one described in Patent Document 1 is known. In this control device, in order to improve the low-temperature startability of an internal combustion engine using an alcohol-containing fuel, fuel injection control is performed as follows during start-up and within a predetermined period until warm-up after start-up is completed. To be done.
 まず、燃料のアルコール濃度及び冷却水温を検出し、アルコール濃度が所定濃度以上でかつ冷却水温が所定温度以下であるという条件が成立したときには、噴射された燃料が気化しにくい状態にあると判定し、燃料を昇圧するとともに、圧縮行程において燃料を噴射する圧縮行程噴射を実行する。一方、上記の条件が成立していないとき、すなわちアルコール濃度が所定濃度よりも低いか、及び/又は冷却水温が所定温度よりも高いときには、噴射された燃料が気化しやすい状態にあると判定し、燃料を昇圧することなく、吸気行程において燃料を噴射する吸気行程噴射を実行する。 First, the alcohol concentration of the fuel and the cooling water temperature are detected, and when the condition that the alcohol concentration is equal to or higher than the predetermined concentration and the cooling water temperature is equal to or lower than the predetermined temperature is satisfied, it is determined that And compression stroke injection that injects the fuel in the compression stroke while boosting the pressure of the fuel. On the other hand, when the above condition is not satisfied, that is, when the alcohol concentration is lower than the predetermined concentration and / or the cooling water temperature is higher than the predetermined temperature, it is determined that the injected fuel is in the easily vaporized state. Intake stroke injection is performed to inject the fuel in the intake stroke without boosting the fuel.
特開2010-37968号公報Unexamined-Japanese-Patent No. 2010-37968
 上述したように、従来の制御装置では、始動後の暖機が完了するまでの所定期間内において、アルコール濃度が所定濃度以上で、かつ冷却水温が所定温度以下であるときには、圧縮行程噴射が実行される。しかし、後述するように、低温始動後に上記の条件が成立する場合でも、内燃機関の負荷によっては、圧縮行程噴射よりもむしろ吸気行程噴射を行った方が、良好な燃焼状態が得られることが確認された。これに対し、従来の制御装置では、アルコール濃度及び冷却水温に関する上記の条件が成立する限り、圧縮行程噴射が実行されるので、必ずしも良好な燃焼状態を得ることができず、燃焼変動が増大するおそれがある。 As described above, in the conventional control device, the compression stroke injection is performed when the alcohol concentration is equal to or higher than the predetermined concentration and the cooling water temperature is equal to or lower than the predetermined temperature within a predetermined period until warm-up after startup is completed. Be done. However, as described later, depending on the load of the internal combustion engine, a better combustion state can be obtained by performing the intake stroke injection rather than the compression stroke injection even when the above conditions are satisfied after the low temperature start. confirmed. On the other hand, in the conventional control device, since the compression stroke injection is executed as long as the above-mentioned conditions regarding the alcohol concentration and the coolant temperature are satisfied, the good combustion state can not always be obtained, and the combustion fluctuation increases. There is a fear.
 本発明は、このような課題を解決するためになされたものであり、アルコールを含有する燃料を用いる内燃機関の低温始動後において、安定した良好な燃焼状態を確保することができる内燃機関の制御装置を提供することを目的とする。 The present invention has been made to solve such a problem, and a control of an internal combustion engine capable of securing a stable and good combustion state after a low temperature start of the internal combustion engine using a fuel containing alcohol. It aims at providing an apparatus.
 この目的を達成するため、請求項1に係る発明は、アルコールを含有する燃料を用いるとともに、燃料を気筒3a内に直接、噴射する内燃機関3の制御装置であって、内燃機関3の温度を表す機関温度パラメータ(エンジン水温TW)を取得する機関温度パラメータ取得手段(水温センサ22)と、燃料のアルコール濃度(エタノール濃度EC)を取得するアルコール濃度取得手段(エタノール濃度センサ24)と、内燃機関3の負荷(吸入空気量GAIRCYL)を取得する負荷取得手段(エアフローセンサ23)と、内燃機関3の低温始動後に、取得された機関温度パラメータ、アルコール濃度及び内燃機関3の負荷に応じ、燃料の噴射モードとして、吸気行程において燃料を噴射する吸気行程噴射、及び圧縮行程において燃料を噴射する圧縮行程噴射の一方を選択し、実行する制御手段(ECU2、図2のステップ9、図6)と、を備えることを特徴とする。 In order to achieve this object, the invention according to claim 1 is a control device of an internal combustion engine 3 which uses a fuel containing alcohol and injects the fuel directly into the cylinder 3a. Engine temperature parameter acquiring means (water temperature sensor 22) for acquiring an engine temperature parameter (engine water temperature TW) representing, alcohol concentration acquiring means (ethanol concentration sensor 24) for acquiring alcohol concentration (ethanol concentration EC) of fuel, and internal combustion engine Load acquiring means (air flow sensor 23) for acquiring the load (intake air amount GAIRCYL) of 3 and fuel according to the acquired engine temperature parameter, alcohol concentration and load of the internal combustion engine 3 after the low temperature start of the internal combustion engine 3; As the injection mode, intake stroke injection, which injects fuel in the intake stroke, and injection of fuel in the compression stroke That selects one of the compression stroke injection control means for executing (ECU 2, step 9 in FIG. 2, FIG. 6), characterized in that it comprises a, a.
 この内燃機関は、アルコールを含有する燃料を用いるとともに、燃料を気筒内に直接、噴射するタイプのものである。また、内燃機関の制御装置によれば、内燃機関の温度を表す機関温度パラメータ、燃料のアルコール濃度及び内燃機関の負荷が、それぞれ取得される。そして、内燃機関の低温始動後に、取得された機関温度パラメータ、アルコール濃度及び内燃機関の負荷に応じ、燃料の噴射モードとして、吸気行程において燃料を噴射する吸気行程噴射、及び圧縮行程において燃料を噴射する圧縮行程噴射の一方が選択され、実行される。 This internal combustion engine uses an alcohol-containing fuel and injects the fuel directly into the cylinder. Further, according to the control device of the internal combustion engine, an engine temperature parameter indicating the temperature of the internal combustion engine, the alcohol concentration of the fuel, and the load of the internal combustion engine are obtained. Then, after the low temperature start of the internal combustion engine, according to the acquired engine temperature parameter, alcohol concentration and load of the internal combustion engine, as the fuel injection mode, intake stroke injection that injects fuel in the intake stroke and fuel is injected in the compression stroke. One of the compression stroke injections to be selected is selected and executed.
 前述したように、内燃機関の低温始動後において、内燃機関の温度及びアルコール濃度が同じ条件であっても、圧縮行程噴射と吸気行程噴射のうち、より安定した燃焼状態が得られる噴射モードは、内燃機関の負荷に応じて異なる。この構成によれば、機関温度パラメータ及びアルコール濃度とともに内燃機関の負荷に応じて、吸気行程噴射又は圧縮行程噴射を選択するので、内燃機関の低温始動後において、安定した良好な燃焼状態を確保することができる。 As described above, after the low temperature start of the internal combustion engine, even if the temperature and the alcohol concentration of the internal combustion engine are the same condition, the injection mode in which the more stable combustion state can be obtained among the compression stroke injection and the intake stroke injection is It differs according to the load of the internal combustion engine. According to this configuration, the intake stroke injection or the compression stroke injection is selected according to the load of the internal combustion engine together with the engine temperature parameter and the alcohol concentration, so that a stable good combustion state is ensured after low temperature start of the internal combustion engine. be able to.
 請求項2に係る発明は、請求項1に記載の内燃機関の制御装置において、制御手段は、機関温度パラメータによって表される内燃機関の温度が所定温度TJUD以下で、かつアルコール濃度ECが所定濃度EJUD以上である場合において、内燃機関の負荷が所定値(所定量GAIRJUD)以上のときに圧縮行程噴射を実行し、内燃機関の負荷が所定値未満のときに吸気行程噴射を実行すること(図2のステップ9、図6)を特徴とする。 The invention according to claim 2 is the control apparatus for an internal combustion engine according to claim 1, wherein the control means is configured such that the temperature of the internal combustion engine represented by the engine temperature parameter is equal to or lower than a predetermined temperature TJUD and the alcohol concentration EC is a predetermined concentration If the load on the internal combustion engine is above a predetermined value (predetermined amount GAIRJUD) and the load on the internal combustion engine is less than a predetermined value, the intake stroke injection is performed (see FIG. Step 2 in FIG. 6, FIG. 6) is characterized.
 内燃機関の温度が所定温度以下でかつアルコール濃度が所定濃度以上であるという条件(以下「低温高濃度条件」という)では、安定した燃焼状態を得る上で、内燃機関の負荷が比較的高いときには圧縮行程噴射が適する一方、内燃機関の負荷が比較的低いときには吸気行程噴射が適することが確認された。その理由は、以下のように推定される。 Under the condition that the temperature of the internal combustion engine is lower than a predetermined temperature and the alcohol concentration is higher than a predetermined concentration (hereinafter referred to as "low temperature high concentration condition"), when obtaining a stable combustion state, the load of the internal combustion engine is relatively high. While compression stroke injection is suitable, it has been found that intake stroke injection is suitable when the load on the internal combustion engine is relatively low. The reason is estimated as follows.
 すなわち、低温高濃度条件では、アルコール濃度が高いために燃料の沸点が高いことに加えて、内燃機関が低温であるため、燃料が気化しにくい状態にある。このような低温高濃度条件において内燃機関の負荷が高い場合には、燃料量が多いことで、噴射された燃料が低温状態のピストン上などで液膜化する度合が高くなるため、燃料の気化がさらに阻害される。このような状況において圧縮行程噴射を実行すると、筒内温度がより高い状態で燃料が噴射される結果、燃料の液膜化が抑制され、燃料の気化が促進されることによって、安定した燃焼状態が得られると推定される。一方、低温高濃度条件において内燃機関の負荷が低い場合には、燃料量が少ないことで、噴射された燃料が液膜化する度合が低いため、上述した圧縮行程噴射による燃料の気化の促進効果が相対的に小さく、その結果、吸気行程噴射の方が安定した燃焼状態が得られると推定される。 That is, under low temperature and high concentration conditions, in addition to the high boiling point of the fuel due to the high alcohol concentration, the low temperature of the internal combustion engine makes it difficult for the fuel to vaporize. When the load of the internal combustion engine is high under such low temperature and high concentration conditions, the amount of fuel is large, and the degree to which the injected fuel becomes a liquid film on a piston in a low temperature state becomes high. Is further inhibited. If compression stroke injection is performed in such a situation, the fuel is injected at a higher temperature in the cylinder, and as a result, the formation of a liquid film of the fuel is suppressed and the vaporization of the fuel is promoted, resulting in a stable combustion state. Is estimated to be obtained. On the other hand, when the load of the internal combustion engine is low under high temperature and high concentration conditions, the amount of fuel is small, and the degree to which the injected fuel is converted to a liquid film is low. Is relatively small, and as a result, it is estimated that a stable combustion state can be obtained by the intake stroke injection.
 請求項2の構成は、以上の観点に基づいており、低温高濃度条件において、内燃機関の負荷が高負荷状態に相当する所定値以上のときに圧縮行程噴射を実行し、内燃機関の負荷が所定値未満のときには吸気行程噴射を実行するので、内燃機関の負荷に応じて圧縮行程噴射又は吸入行程噴射を適切に選択でき、したがって、内燃機関の低温始動後において、安定した良好な燃焼状態を確実に得ることができる。 The second aspect of the present invention is based on the above viewpoints, and performs compression stroke injection when the load of the internal combustion engine is equal to or higher than a predetermined value corresponding to a high load condition under low temperature and high concentration conditions. When it is less than the predetermined value, the intake stroke injection is performed, so that the compression stroke injection or the intake stroke injection can be appropriately selected according to the load of the internal combustion engine, and hence stable and good combustion state can be achieved after cold start of the internal combustion engine. It can be obtained surely.
 請求項3に係る発明は、請求項1又は2に記載の内燃機関の制御装置において、燃料の噴射モードが吸気行程噴射から圧縮行程噴射に切り替えられたときに、燃料噴射量GFUELを増量し、圧縮行程噴射から吸気行程噴射に切り替えられたときに、燃料噴射量GFUELを減量する噴射量増減手段(ECU2、図13のステップ33~35)をさらに備えることを特徴とする。 The invention according to claim 3 is the control apparatus for an internal combustion engine according to claim 1 or 2, wherein the fuel injection amount GFUEL is increased when the fuel injection mode is switched from intake stroke injection to compression stroke injection. It is characterized by further comprising injection amount increasing / decreasing means (ECU 2, steps 33 to 35 in FIG. 13) for reducing the fuel injection amount GFUEL when the compression stroke injection is switched to the intake stroke injection.
 燃料の噴射モードが切り替えられた場合、燃料の噴射時期が急激に変化するため、噴射された燃料と空気との混合気の均質化度合が変化し、それに応じて燃焼効率が変化する。例えば、噴射モードが圧縮行程噴射に切り替えられた場合、混合気の生成時間が短いためにその均質化が不十分で、気筒内に燃料が偏在する局所リッチなどが生じやすく、燃焼効率が低下することによって、空燃比が実質的にリーン化し、内燃機関の出力の低下を招く。噴射モードが吸気行程噴射に切り替えられた場合には、上記と逆の動作特性になる。 When the fuel injection mode is switched, the fuel injection timing changes rapidly, so the degree of homogenization of the mixture of the injected fuel and air changes, and the combustion efficiency changes accordingly. For example, when the injection mode is switched to the compression stroke injection, the homogenization is insufficient because the generation time of the mixture is short, and local rich and the like in which the fuel is unevenly distributed in the cylinder tends to occur, and the combustion efficiency decreases. As a result, the air-fuel ratio becomes substantially lean, leading to a decrease in the output of the internal combustion engine. When the injection mode is switched to the intake stroke injection, the operation characteristic reverse to the above is obtained.
 この構成によれば、燃料の噴射モードが圧縮行程噴射に切り替えられたときに、燃料噴射量を増量し、吸気行程噴射に切り替えられたときに、燃料噴射量を減量するので、噴射モードの切替に伴う空燃比の変動を適切に補償し、所要の内燃機関の出力を確保することができる。 According to this configuration, the fuel injection amount is increased when the fuel injection mode is switched to the compression stroke injection, and the fuel injection amount is decreased when the fuel injection mode is switched to the intake stroke injection. It is possible to properly compensate for the fluctuation of the air-fuel ratio accompanying with the above and secure the required output of the internal combustion engine.
 請求項4に係る発明は、請求項1ないし3のいずれかに記載の内燃機関の制御装置において、制御手段は、内燃機関3の低温始動時に、圧縮行程噴射を実行するとともに、アルコール濃度が高いほど、燃料の噴射時期をより遅角側に設定すること(図2のステップ4、図3~図5)を特徴とする。 The invention according to claim 4 is the control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the control means executes compression stroke injection at the time of low temperature start of the internal combustion engine 3 and has a high alcohol concentration. It is characterized in that the fuel injection timing is set to be more retarded (step 4 in FIG. 2, FIGS. 3 to 5).
 この構成によれば、内燃機関の低温始動時に、圧縮行程噴射を実行するとともに、アルコール濃度が高いほど、燃料の噴射時期をより遅角側に設定する。これにより、アルコール濃度が高いほど、すなわち燃料の気化の度合が低いほど、筒内温度がより高い状態で燃料が噴射されることによって、燃料の気化がより促進されるので、アルコール濃度に応じた安定した燃焼状態を確保でき、低温始動性を向上させることができる。 According to this configuration, at the time of low temperature start of the internal combustion engine, the compression stroke injection is performed, and the fuel injection timing is set more retarded as the alcohol concentration becomes higher. Thus, the higher the alcohol concentration, that is, the lower the degree of vaporization of the fuel, the more fuel vaporization is promoted by injecting the fuel in a state where the in-cylinder temperature is higher. A stable combustion state can be secured, and low temperature startability can be improved.
本発明を適用した内燃機関及びその制御装置を示す図である。It is a figure showing an internal combustion engine and its control device to which the present invention is applied. 燃料噴射時期の制御処理を示すフローチャートである。It is a flow chart which shows control processing of fuel injection time. 始動時の噴射終了時期を算出するための始動時マップである。It is a starting time map for calculating the injection end time at the time of starting. 図3の始動時マップを線図化した図である。FIG. 4 is a diagram of the start-up map of FIG. 3; 図3の始動時マップのうちの低温条件におけるエタノール濃度と噴射終了時期との関係を示す図である。It is a figure which shows the relationship between the ethanol concentration in the low temperature conditions of the starting time map of FIG. 3, and the injection end time. 暖機運転時の噴射終了時期を算出するための暖機運転時マップである。It is a warming up operation map for calculating the injection end time at the time of warming up operation. 低温高負荷条件における噴射時期と内燃機関のトルクとの関係を示す図である。It is a figure which shows the relationship of the injection timing and the torque of an internal combustion engine in low-temperature heavy load conditions. 低温高負荷条件において吸気行程噴射を行ったときの、エタノール濃度と燃焼変動率などとの関係を示す図である。It is a figure which shows the relationship between ethanol concentration, a combustion fluctuation rate, etc. when the intake stroke injection is performed in low temperature and high load conditions. 低温高負荷条件において圧縮行程噴射を行ったときの、図8と同様の図である。It is a figure similar to FIG. 8 when compression-stroke injection is performed in low temperature and high load conditions. 低温高負荷条件においてしきい値を境として吸気行程噴射と圧縮行程噴射を使い分けたときの、図8及び図9と同様の図である。FIG. 10 is a view similar to FIG. 8 and FIG. 9 when an intake stroke injection and a compression stroke injection are used selectively with a threshold value under the low temperature and high load condition. 通常運転時の噴射終了時期を算出するための通常運転時マップである。It is a map at the time of normal operation for calculating the injection end time at the time of normal operation. 図2の制御処理によって得られる動作例を示すタイミングチャートである。It is a timing chart which shows the operation example obtained by control processing of FIG. 噴射モードの切替に伴う燃料噴射量の補正処理を示すフローチャートである。It is a flowchart which shows the correction | amendment process of the fuel injection quantity accompanying switching of the injection mode. 図13の補正処理による燃料補正量の算出例を示すタイミングチャートである。14 is a timing chart showing an example of calculation of a fuel correction amount by the correction processing of FIG. 13;
 以下、図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。図1は、本発明を適用した内燃機関(以下「エンジン」という)3及びその制御装置を示す。エンジン3は、車両(図示せず)に搭載されており、アルコールを含有する燃料として、エタノールとガソリンを混合した燃料を使用可能なものである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an internal combustion engine (hereinafter referred to as "engine") 3 to which the present invention is applied and its control device. The engine 3 is mounted on a vehicle (not shown), and can use a mixture of ethanol and gasoline as a fuel containing alcohol.
 エンジン3は、例えば4つの気筒3a(1つのみ図示)を有する4気筒エンジンである。各気筒3aのピストン3bとシリンダヘッド3cとの間には燃焼室3dが形成され、シリリンダヘッド3cには、気筒3aごとに、燃料噴射弁4及び点火プラグ5が設けられている。燃料は、燃料噴射弁4から燃焼室3d内に直接、噴射される。また、燃料噴射弁4及び点火プラグ5はECU(電子制御ユニット)2に電気的に接続されており、燃料噴射弁4からの燃料の噴射量及び噴射時期と点火プラグ5の点火時期は、ECU2からの制御信号によって制御される。 The engine 3 is, for example, a four-cylinder engine having four cylinders 3a (only one shown). A combustion chamber 3d is formed between a piston 3b and a cylinder head 3c of each cylinder 3a, and a fuel injection valve 4 and an ignition plug 5 are provided in the cylinder head 3c for each cylinder 3a. The fuel is directly injected from the fuel injection valve 4 into the combustion chamber 3d. Further, the fuel injection valve 4 and the ignition plug 5 are electrically connected to the ECU (electronic control unit) 2, and the injection amount and injection timing of the fuel from the fuel injection valve 4 and the ignition timing of the ignition plug 5 It is controlled by the control signal from.
 吸気通路6には、スロットル弁7が設けられている。スロットル弁7は、バタフライ型の弁体7aと、これを駆動するTHアクチュエータ7bを有する。THアクチュエータ7bがECU2からの制御信号で駆動されることによって、弁体7aの開度が制御され、気筒3aに吸入される空気量が制御される。 A throttle valve 7 is provided in the intake passage 6. The throttle valve 7 has a butterfly valve element 7a and a TH actuator 7b for driving the valve element 7a. The TH actuator 7b is driven by a control signal from the ECU 2, whereby the opening degree of the valve body 7a is controlled, and the amount of air sucked into the cylinder 3a is controlled.
 エンジン3には、以下に示す各種のセンサ21~24が設けられており、それらの検出信号はECU2に入力される。 The engine 3 is provided with various sensors 21 to 24 shown below, and their detection signals are inputted to the ECU 2.
 クランク角センサ21は、エンジン3のクランクシャフト3eの回転に伴い、パルス信号であるCRK信号及びTDC信号を出力する。CRK信号は、所定のクランク角度(例えば30゜)ごとに出力される。ECU2は、CRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。TDC信号は、いずれかの気筒3aにおいてピストン3bが吸気行程の開始時のTDC(吸気TDC)付近にあることを表す信号であり、エンジン3が4気筒の場合にはクランク角度180°ごとに出力される。 The crank angle sensor 21 outputs a CRK signal as a pulse signal and a TDC signal as the crankshaft 3 e of the engine 3 rotates. The CRK signal is output every predetermined crank angle (for example, 30 °). The ECU 2 calculates the number of revolutions NE of the engine 3 (hereinafter referred to as "the number of engine revolutions") based on the CRK signal. The TDC signal is a signal representing that the piston 3b is in the vicinity of TDC (intake air TDC) at the start of the intake stroke in any of the cylinders 3a, and when the engine 3 has four cylinders, it outputs power at every crank angle 180 °. Be done.
 水温センサ22は、エンジン3のシリンダブロック内を循環する冷却水の温度であるエンジン水温TWを検出する。また、エアフローセンサ23は、吸気通路6を流れる空気量GAIRを検出する。ECU2は、この検出信号に基づき、各気筒3aに吸入される空気量である吸入空気量GAIRCYLを算出する。 The water temperature sensor 22 detects an engine water temperature TW, which is the temperature of cooling water circulating in the cylinder block of the engine 3. Further, the air flow sensor 23 detects the amount of air GAIR flowing through the intake passage 6. The ECU 2 calculates an intake air amount GAIRCYL which is an air amount sucked into each cylinder 3a based on the detection signal.
 エタノール濃度センサ24は、燃料噴射弁4と燃料タンクに接続された燃料通路(いずれも図示せず)の途中に設けられており、燃料のエタノール濃度ECを検出する。なお、説明の便宜上、エタノール濃度ECが○○%である燃料を適宜、「E○○燃料」と表記する。 The ethanol concentration sensor 24 is provided in the middle of a fuel passage (not shown) connected to the fuel injection valve 4 and the fuel tank, and detects the ethanol concentration EC of the fuel. Note that, for convenience of explanation, a fuel having an ethanol concentration EC of ○% is appropriately described as "E 燃料 fuel".
 ECU2は、CPU、RAM、ROM、E2PROM及びI/Oインターフェース(いずれも図示せず)などから成るマイクロコンピュータで構成されており、上記の各種のセンサ21~24の検出信号などに基づき、ROMに記憶された制御プログラムに従って、各種のエンジン制御処理を実行する。なお、本実施形態では、ECU2が制御手段及び噴射量増減手段に相当する。 The ECU 2 is constituted by a microcomputer including a CPU, a RAM, a ROM, an E2PROM, an I / O interface (all not shown) and the like, and based on the detection signals of the various sensors 21 to 24 described above, Various engine control processes are executed according to the stored control program. In the present embodiment, the ECU 2 corresponds to the control means and the injection amount increasing and decreasing means.
 図2は、ECU2で実行される燃料噴射時期の制御処理を示す。この処理は、エンジン3の始動時を含む運転状態を判別するとともに、判別された運転状態に応じて、燃料噴射時期として噴射終了時期EOIを設定するものである。本処理は、TDC信号の発生に同期して繰り返し実行される。 FIG. 2 shows the control processing of the fuel injection timing executed by the ECU 2. In this process, the operating state including the time of starting the engine 3 is determined, and the injection end timing EOI is set as the fuel injection timing according to the determined operating state. This process is repeatedly performed in synchronization with the generation of the TDC signal.
 本処理では、まずステップ1(「S1」と図示。以下同じ)において、エンジン3が始動中であるか否かを判別する。この場合、始動中とは、クランキングの開始時からエンジン回転数NEが所定のアイドル回転数以上に完全に立ち上がるまでの期間をいう。この判別の結果、エンジン3が始動中のときには、後述する筒内温度カウンタ値CTをインクリメントする(ステップ2)とともに、エンジン回転数NEが上記アイドル回転数よりも低い所定回転数NREF(例えば500rpm)よりも小さいか否かを判別する(ステップ3)。この答えがYESのときには、ステップ4に進み、始動時制御を実行し、本処理を終了する。 In this process, first, in step 1 (shown as “S1”; the same applies to the following), it is determined whether the engine 3 is starting. In this case, "under starting" refers to a period from the start of cranking to the time when the engine speed NE completely rises above the predetermined idle speed. As a result of this determination, when the engine 3 is starting, the in-cylinder temperature counter value CT described later is incremented (step 2), and the predetermined engine speed NE is lower than the idle speed. It is determined whether or not it is smaller (step 3). If the answer is YES, the process proceeds to step 4 to execute start control and end the present process.
 この始動時制御では、検出されたエンジン水温TW及びエタノール濃度ECに応じ、図3に示す始動時マップを検索することによって、噴射終了時期EOIを算出する。この始動時マップは、良好な始動性(例えば最短の始動時間)が得られるように、エンジン水温TW及びエタノール濃度ECに対して噴射終了時期EOIを設定したものである。 In this startup control, the injection end timing EOI is calculated by searching the startup map shown in FIG. 3 according to the detected engine coolant temperature TW and ethanol concentration EC. The start-up map is obtained by setting the injection end timing EOI with respect to the engine coolant temperature TW and the ethanol concentration EC so as to obtain good startability (for example, the shortest start-up time).
 図4に示すように、この始動時マップでは、エンジン水温TW及びエタノール濃度ECにかかわらず、噴射終了時期EOIは圧縮行程内に設定されている。すなわち、始動時には、圧縮行程において燃料を噴射する圧縮行程噴射が実行される。これは、始動時には、エンジン水温TW及びエタノール濃度ECにかかわらず、吸気行程において燃料を噴射する吸気行程噴射よりも圧縮行程噴射の方が、より良好な始動性が得られることが確認されているためである。 As shown in FIG. 4, in this start-up map, the injection end timing EOI is set within the compression stroke regardless of the engine coolant temperature TW and the ethanol concentration EC. That is, at the time of start, compression stroke injection for injecting fuel in the compression stroke is performed. It has been confirmed that, at the time of start-up, regardless of the engine coolant temperature TW and the ethanol concentration EC, a better startability can be obtained in the compression stroke injection than in the intake stroke injection in which the fuel is injected in the intake stroke. It is for.
 また、噴射終了時期EOIは、エンジン水温TWが低いほど、より遅角側に設定されている。これは、エンジン水温TWが低いほど、燃料が気化しにくいことで、燃焼状態が悪化しやすいので、噴射終了時期EOIをより遅くすることにより、筒内温度がより高い状態で燃料を噴射し、燃料の気化を促進するためである。 Further, the injection end timing EOI is set to be more retarded as the engine coolant temperature TW is lower. This is because as the engine coolant temperature TW is lower, the fuel is less likely to be vaporized and the combustion state is likely to be deteriorated. Therefore, the fuel is injected with the in-cylinder temperature higher by delaying the injection end timing EOI. This is to promote the vaporization of the fuel.
 また、図5は、始動時マップから、エンジン水温TWが一定の低温条件(例えば0℃)のときの、エタノール濃度ECと噴射終了時期EOIとの関係を取り出したものである。図5にも示すように、噴射終了時期EOIは、エタノール濃度ECが高いほど、圧縮TDCに近づくように、より遅角側に設定されている。これは、エタノール濃度ECが高いほど、燃料の沸点が高いことで、燃料が気化しにくくなり、燃焼状態が悪化しやすいので、上述したエンジン水温TWに対する場合と同様、噴射終了時期EOIをより遅くすることにより、筒内温度がより高い状態で燃料を噴射し、燃料の気化を促進するためである。 Further, FIG. 5 shows the relationship between the ethanol concentration EC and the injection end timing EOI when the engine coolant temperature TW is at a constant low temperature condition (for example, 0 ° C.) from the start-up map. As also shown in FIG. 5, the injection end timing EOI is set more retarded so as to approach the compression TDC as the ethanol concentration EC is higher. This is because the higher the ethanol concentration EC, the higher the boiling point of the fuel, the less the fuel is vaporized and the combustion state is apt to deteriorate, so the injection end timing EOI is later than in the case of the engine water temperature TW described above. By doing this, the fuel is injected in a state where the in-cylinder temperature is higher to promote the vaporization of the fuel.
 図2に戻り、前記ステップ3の答えがNOで、エンジン回転数NE≧所定回転数NREFが成立したときには、エンジン回転数NEがある程度、立ち上がったとして、ステップ5に進み、始動の完了時までの移行時制御を実行し、本処理を終了する。 Referring back to FIG. 2, when the answer to step 3 is NO, and the engine rotational speed NE ≧ the predetermined rotational speed NREF holds, the engine rotational speed NE is considered to have risen to some extent, and the process proceeds to step 5 until the start is completed. Transition control is executed, and this processing ends.
 この移行時制御では、始動時に圧縮行程内に設定されていた噴射終了時期EOIが、始動完了後における吸気行程内の目標値に向かって進角側に制御される。より具体的には、例えば図12に示すように、エタノール濃度ECが低いE0~E64燃料の場合には、低温始動性が高いため、噴射終了時期EOIは、移行時制御の開始時に、吸気行程内の目標値に即座に変更される。これに対し、エタノール濃度が高いE85燃料やE100燃料の場合には、低温始動性が低いため、噴射終了時期EOIは吸気行程内の目標値に向かって徐々に変更される。これにより、安定した低温始動性を確保しながら、噴射終了時期EOIを始動完了後の目標値に円滑に移行させることができる。 In this transition control, the injection end timing EOI, which has been set within the compression stroke at the time of start-up, is advanced toward the target value within the intake stroke after the start is completed. More specifically, for example, as shown in FIG. 12, in the case of fuel E0 to E64 having a low ethanol concentration EC, since the low temperature startability is high, the injection end timing EOI corresponds to the intake stroke at the start of transition control. It will be instantly changed to the target value within. On the other hand, in the case of E85 fuel or E100 fuel having a high ethanol concentration, since the low temperature startability is low, the injection end timing EOI is gradually changed toward the target value in the intake stroke. Thus, it is possible to smoothly shift the injection end timing EOI to the target value after the start is completed while securing a stable low temperature startability.
 図2に戻り、前記ステップ1の答えがNOで、エンジン3の始動が完了した後には、エンジン水温TWが、所定温度TJUD(例えば0℃)よりも低いか否かを判別する(ステップ6)。この答えがYESのときには、エンジン3が低温始動されたと判定し、次いで、前記ステップ2と同様、筒内温度カウンタ値CTをインクリメントする(ステップ7)とともに、筒内温度カウンタ値CTが所定のしきい値CJUD以上であるか否かを判別する(ステップ8)。 Returning to FIG. 2, when the answer to step 1 is NO and the start of the engine 3 is completed, it is determined whether the engine water temperature TW is lower than a predetermined temperature TJUD (for example, 0 ° C.) (step 6) . If the answer is YES, it is determined that the engine 3 has been cold started, and then the in-cylinder temperature counter value CT is incremented (step 7) as in the case of step 2 and the in-cylinder temperature counter value CT is predetermined. It is determined whether the threshold value CJUD or more (step 8).
 この筒内温度カウンタ値CTは、図示しない処理により、イグニッションスイッチがオンされたときに0にリセットされ、前記ステップ2及び7においてインクリメントされる。したがって、筒内温度カウンタ値CTは、始動開始時からのエンジン3の燃焼回数を概ね示すとともに、エンジン3が低温始動された場合には、始動開始時からの燃焼による筒内温度の上昇量を表す。このため、前記ステップ8の答えがNOで、筒内温度カウンタ値CTがしきい値CJUDに達していないときには、筒内温度が暖機の完了に相当する温度まで上昇しておらず、エンジン3が暖機運転中であると判定して、ステップ9に進み、暖機運転時制御を実行し、本処理を終了する。なお、この暖機運転には、低温始動に続く低負荷の暖機アイドル運転と、車両の走行時における高負荷の暖機走行運転が含まれる。 The in-cylinder temperature counter value CT is reset to 0 by an unshown process when the ignition switch is turned on, and is incremented in steps 2 and 7. Therefore, the in-cylinder temperature counter value CT generally indicates the number of combustions of the engine 3 from the start start time, and when the engine 3 is started at low temperature, the increase amount of the in-cylinder temperature by the combustion from the start start time Represent. Therefore, when the answer to step 8 is NO, and the in-cylinder temperature counter value CT has not reached the threshold value CJUD, the in-cylinder temperature does not rise to the temperature corresponding to the completion of the warm-up. If it is determined that the warm-up operation is being performed, the process proceeds to step 9, the warm-up operation control is executed, and the present process is ended. The warm-up operation includes a low-load warm-up idle operation following a low-temperature start and a high-load warm-up drive operation when the vehicle travels.
 一方、上記ステップ8の答えがYESで、筒内温度カウンタ値CTがしきい値CJUDに達したときには、暖機運転が終了したと判定し、ステップ10に進み、通常運転時制御を実行し、本処理を終了する。また、前記ステップ6の答えがNOで、エンジン3が低温始動されていないときにも、同様にステップ10に進み、通常運転時制御を実行する。 On the other hand, if the answer to step 8 is YES and the in-cylinder temperature counter value CT has reached the threshold value CJUD, it is determined that the warm-up operation has ended, and the process proceeds to step 10 to execute normal operation control. This process ends. Also, when the answer to step 6 is NO and the engine 3 is not cold started, the process proceeds to step 10 to execute normal operation control.
 前記ステップ9の暖機運転時制御では、エンジン水温TW、エタノール濃度EC、エンジン回転数NE及び吸入空気量GAIRCYLに応じ、図6に示す暖機運転時マップを検索することによって、噴射終了時期EOIを算出する。この暖機運転時マップは、エンジン3の暖機運転中(冷機状態)において、燃焼安定性を確保するとともに、オイルダイリューション量(エンジンオイルへのエタノールの混入量)や煤発生量を抑制するという観点から、上記4つの入力パラメータに対して噴射終了時期EOIを設定したものである。 In the warm-up operation control of the step 9, the injection end timing EOI is retrieved by searching the warm-up operation map shown in FIG. 6 according to the engine water temperature TW, the ethanol concentration EC, the engine speed NE and the intake air amount GAIRCYL. Calculate This warm-up operation map secures combustion stability during warm-up operation (cold condition) of the engine 3 and suppresses the amount of oil dilution (the amount of ethanol mixed in the engine oil) and the amount of soot generation The injection end timing EOI is set for the above four input parameters from the viewpoint of
 この暖機運転時マップでは、エンジン水温TWが低温状態に相当する所定温度TJUD(例えば0℃)以下であり(低温条件)、エタノール濃度ECが高濃度状態に相当する所定濃度EJUD(例えば75%)以上であり(高濃度条件)、かつ吸入空気量GAIRCYLが高負荷状態に相当する所定量GAIRJUD以上である(高負荷条件)ときには、噴射終了時期EOIは圧縮行程内に設定されており、それにより圧縮行程噴射が実行される。一方、暖機運転時マップでは、上記の低温条件、高濃度条件及び高負荷条件の少なくとも1つが成立していないときには、噴射終了時期EOIは吸気行程内に設定されており、それにより吸気行程噴射が実行される。 In this warm-up operation time map, the engine water temperature TW is lower than a predetermined temperature TJUD (for example, 0 ° C.) corresponding to a low temperature state (low temperature condition), and the predetermined concentration EJUD (for example 75%) corresponding to a high concentration state of ethanol The injection end timing EOI is set within the compression stroke when the above (high concentration condition) and the intake air amount GAIRCYL is equal to or higher than the predetermined amount GAIRJUD corresponding to the high load condition (high load condition). Thus, the compression stroke injection is performed. On the other hand, in the warm-up operation map, when at least one of the low temperature condition, the high concentration condition and the high load condition is not satisfied, the injection end timing EOI is set within the intake stroke. Is executed.
 以上のように、暖機運転時には、上述した条件に従って、圧縮行程噴射又は吸気行程噴射が選択的に実行される。以下、その理由について説明する。図7は、エンジン水温TW、エタノール濃度EC及び吸入空気量GAIRCYLが上記の条件をそれぞれ満たす低温・高濃度・高負荷条件において、燃料噴射時期を吸気行程から圧縮行程にわたって変化させたときに得られたエンジン3のトルク(エンジントルク)TRQを例示したものである。同図に示すように、吸気行程噴射を行った場合には、エンジントルクTRQは0で、エンジン3が失火しており、燃焼不良が生じていることが分かる。これは、エタノール濃度ECが高い燃料はもともと気化しにくいとともに、低温高負荷条件で吸気行程噴射を行った場合には、燃料が低温状態のピストン3b上などで液膜化するなどの理由から、燃料がさらに気化しにくくなるためと推定される。 As described above, during the warm-up operation, the compression stroke injection or the intake stroke injection is selectively performed in accordance with the above-described conditions. The reason will be described below. FIG. 7 is obtained when the fuel injection timing is changed from the intake stroke to the compression stroke under the low temperature, high concentration, high load conditions where the engine water temperature TW, the ethanol concentration EC, and the intake air amount GAIRCYL satisfy the above conditions, respectively. The torque (engine torque) TRQ of the engine 3 is illustrated. As shown in the figure, when the intake stroke injection is performed, it can be seen that the engine torque TRQ is 0, the engine 3 is misfired, and a combustion failure occurs. This is because fuel having a high ethanol concentration EC is inherently difficult to vaporize, and when intake stroke injection is performed under low temperature and high load conditions, the fuel becomes a liquid film on piston 3 b in a low temperature state, etc. It is presumed that the fuel is less likely to be vaporized.
 これに対し、圧縮行程噴射を行った場合には、大きなエンジントルクTRQが発生しており、良好な燃焼性が得られることが分かる。これは、圧縮行程では吸気行程よりも筒内温度が高いため、低温高負荷条件で圧縮行程噴射を行った場合、吸気行程噴射の場合のようなピストン3b上での燃料の液膜化が生じにくく、燃料の気化が促進されることによって、燃焼状態が改善されるためと推定される。 On the other hand, when compression stroke injection is performed, a large engine torque TRQ is generated, and it can be seen that good combustibility is obtained. This is because the in-cylinder temperature is higher in the compression stroke than in the intake stroke, and therefore, when the compression stroke injection is performed under the low temperature and high load condition, the film formation of fuel on the piston 3b occurs as in the intake stroke injection. It is presumed that the combustion state is improved by promoting the vaporization of the fuel.
 また、図8及び図9は、低温高負荷条件において吸気行程噴射及び圧縮行程噴射をそれぞれ行ったときに得られた、エタノール濃度ECに対する、(a)燃焼変動率RCC、(b)煤発生量QS、(c)オイルダイリューション量(以下「OD量」という)QOD及び(d)噴射終了時期EOIの関係を示す。 Also, FIGS. 8 and 9 show (a) the combustion fluctuation rate RCC, (b) the amount of generation with respect to the ethanol concentration EC, obtained when the intake stroke injection and the compression stroke injection are respectively performed under the low temperature and high load conditions. The relationship between QS, (c) oil dilution amount (hereinafter referred to as "OD amount") QOD, and (d) injection end timing EOI is shown.
 図8に示すように、吸気行程噴射の場合には、燃焼変動率RCCは、エタノール濃度ECが約85%未満の領域では、判定値RCCJに対して十分に小さいのに対し、エタノール濃度ECが約85%よりも大きい領域では、急激に増大し、判定値RCCJを上回っている。煤発生量QSは、エタノール濃度ECの全領域において、判定値QSJに対して十分に小さい。また、OD量QODは、エタノール濃度ECが約85%よりも大きい領域では、判定値QODJを上回る場合がある。 As shown in FIG. 8, in the case of intake stroke injection, the combustion fluctuation rate RCC is sufficiently smaller than the judgment value RCCJ in the region where the ethanol concentration EC is less than about 85%, while the ethanol concentration EC is In a region larger than about 85%, it rapidly increases and exceeds the judgment value RCCJ. The soot generation amount QS is sufficiently smaller than the judgment value QSJ in the entire region of the ethanol concentration EC. Also, the OD amount QOD may exceed the determination value QODJ in a region where the ethanol concentration EC is larger than about 85%.
 一方、図9に示すように、圧縮行程噴射の場合には、燃焼変動率RCCは、エタノール濃度ECが約60%よりも大きい領域で若干、増加する傾向が認められるものの、エタノール濃度ECの全領域において非常に小さく、判定値RCCJを十分に下回っている。煤発生量QSは、エタノール濃度ECが約60%よりも小さい領域では、非常に大きく、判定値QSJを上回るのに対し、約60%よりも大きい領域ではほぼ0になる。また、OD量QODは、エタノール濃度ECの全領域において、判定値QODJに対して十分に小さい。 On the other hand, as shown in FIG. 9, in the case of compression stroke injection, the combustion fluctuation rate RCC tends to increase slightly in the region where the ethanol concentration EC is larger than about 60%, but the total ethanol concentration EC It is very small in the region and sufficiently below the judgment value RCCJ. The soot generation amount QS is very large in the region where the ethanol concentration EC is smaller than about 60%, and exceeds the judgment value QSJ, whereas it is almost zero in the region larger than about 60%. Further, the OD amount QOD is sufficiently smaller than the judgment value QODJ in the entire region of the ethanol concentration EC.
 図10は、上述した図8及び図9の結果をふまえ、所定濃度EJUD(例えば75%)をしきい値とし、それよりも低濃度側で吸気行程噴射を行い、高濃度側で圧縮行程噴射を行った場合に得られる結果を示したものである。図10から、このような吸気行程噴射と圧縮行程噴射との切替により、エタノール濃度ECの全領域において、燃焼変動率RCCが判定値RCCJを十分に下回り、良好な燃焼状態が確保されるとともに、煤発生量QS及びOD量QODがそれぞれの判定値QSJ及びQODJを十分に下回り、抑制されることが分かる。 In FIG. 10, based on the results of FIG. 8 and FIG. 9 described above, intake stroke injection is performed on the lower concentration side than the predetermined concentration EJUD (for example, 75%) as a threshold, and compression stroke injection is performed on the high concentration side. Shows the results obtained when the From FIG. 10, by switching between the intake stroke injection and the compression stroke injection, the combustion fluctuation rate RCC is sufficiently lower than the determination value RCCJ in the entire range of the ethanol concentration EC, and a good combustion state is secured. It is understood that the soot generation amount QS and the OD amount QOD are sufficiently lower than the respective determination values QSJ and QODJ, and are suppressed.
 図2に戻り、前記ステップ10の通常運転時制御では、エンジン水温TW、エンジン回転数NE及び吸入空気量GAIRCYLに応じ、図11に示す通常運転時マップを検索することによって、噴射終了時期EOIを算出する。通常運転時には、エンジン3が高温状態にあるため、吸気行程噴射によって燃焼安定性を確保することが可能である。このため、通常運転時マップでは、噴射終了時期EOIは、吸入空気量GAIRCYLなどにかかわらず、吸気行程内に設定されており、それにより、通常運転時には常時、吸気行程噴射が実行される。 Returning to FIG. 2, in the normal operation control of step 10, the injection end timing EOI is obtained by searching the normal operation map shown in FIG. 11 according to the engine water temperature TW, the engine speed NE and the intake air amount GAIRCYL. calculate. During normal operation, since the engine 3 is in a high temperature state, it is possible to secure combustion stability by intake stroke injection. Therefore, in the normal operation time map, the injection end timing EOI is set within the intake stroke regardless of the intake air amount GAIRCYL or the like, whereby the intake stroke injection is always performed during the normal operation.
 図12は、これまでに説明した図2の燃料噴射時期の制御処理によって得られる、エンジン3が低温始動された場合の動作例を示す。まず、時点t1において、エンジン3の始動のためのクランキングが開始されたとすると、エンジン回転数NEが所定回転数NJUDに達するまでの間(t1~t2)、始動時制御(ステップ4)が実行される。この始動時制御では、噴射終了時期EOIは、図3の始動時マップに従って圧縮行程内に設定され、圧縮行程噴射が実行されるとともに、噴射終了時期EOIは、エタノール濃度ECが高いほど、より遅角側に設定される。また、始動開始時から筒内温度カウンタ値CTがインクリメントされる。 FIG. 12 shows an operation example when the engine 3 is started at a low temperature, which is obtained by the control processing of the fuel injection timing of FIG. 2 described above. First, assuming that cranking for starting the engine 3 is started at time t1, the start control (step 4) is executed until the engine speed NE reaches the predetermined speed NJUD (t1 to t2). Be done. In this start-up control, the injection end timing EOI is set within the compression stroke according to the start-up map of FIG. 3 and compression stroke injection is executed, and the injection end timing EOI is slower as the ethanol concentration EC is higher. It is set on the corner side. Further, the in-cylinder temperature counter value CT is incremented from the start of the start.
 その後、エンジン3の始動が完了するまでの間(t2~t3)、移行時制御(ステップ5)が実行される。前述したように、この移行時制御では、始動時制御において圧縮行程内に設定されていた噴射終了時期EOIが、E0~E64燃料の場合には即座に、E85燃料及びE100燃料の場合には徐々に、始動完了後の吸気行程内の目標値に変更される。 Thereafter, transition control (step 5) is executed until the start of the engine 3 is completed (t2 to t3). As described above, in this transition control, the injection end timing EOI set within the compression stroke in the start control is immediately for E0 to E64 fuel, and gradually for E85 fuel and E100 fuel. Is changed to the target value in the intake stroke after completion of the start.
 エンジン3の始動が完了すると、暖機時制御(ステップ9)が実行され、噴射終了時期EOIは、図6の暖機運転時マップに従って設定される。この例では、始動の完了に引き続いて低負荷の暖機アイドル運転が行われているため(t3~t4)、この間、噴射終了時期EOIは吸気行程内に設定され、吸気行程噴射が実行される。 When starting of the engine 3 is completed, warm-up control (step 9) is executed, and the injection end timing EOI is set according to the warm-up operation map of FIG. In this example, since the low load warm-up idle operation is performed following the completion of the start (t3 to t4), the injection end timing EOI is set within the intake stroke during this period, and the intake stroke injection is executed. .
 その後、暖機アイドル運転から高負荷の暖機走行運転に移行すると(t4)、E0~E64燃料の場合には、前述した高濃度条件が成立しないため、噴射終了時期EOIは、吸気行程内のエンジン回転数NE及び吸入空気量GAIRCYLなどに応じた値に設定され、吸気行程噴射が引き続き実行される。一方、E85燃料及びE100燃料の場合には、低温条件、高濃度条件及び高負荷条件がすべて成立するため、噴射終了時期EOIは、圧縮行程内のエンジン回転数NE及び吸入空気量GAIRCYLなどに応じた値に設定され、圧縮行程噴射が実行される。 Thereafter, when transitioning from warm-up idle operation to high-load warm-up operation (t4), in the case of fuel E0 to E64, the above-described high concentration condition does not hold, so the injection end timing EOI is within the intake stroke. The intake stroke injection is continuously performed with values set according to the engine speed NE, the intake air amount GAIRCYL, and the like. On the other hand, in the case of E85 fuel and E100 fuel, the low temperature condition, the high concentration condition and the high load condition are all satisfied, so the injection end timing EOI depends on the engine speed NE in the compression stroke and the intake air amount GAIRCYL, etc. The compression stroke injection is performed.
 その後、筒内温度カウンタ値CTがしきい値CJUDに達すると(t5)、暖機運転が終了したと判定され、通常運転時制御(ステップ10)が実行される。この通常運転時制御では、噴射終了時期EOIは、図11の通常運転時マップに従って吸気行程内に設定され、吸気行程噴射が実行される。なお、この例では、E85燃料及びE100燃料については、噴射終了時期EOIは、時点t5~t6の間、暖機運転制御の終了時の値に保持され、その後、通常運転時マップによる吸気行程内の値に変更される(実線)。あるいは、この場合の噴射終了時期EOIの変更を、破線で示すように徐々に行うことも可能である。 Thereafter, when the in-cylinder temperature counter value CT reaches the threshold value CJUD (t5), it is determined that the warm-up operation is finished, and the normal operation control (step 10) is executed. In the normal operation control, the injection end timing EOI is set within the intake stroke according to the normal operation map of FIG. 11, and the intake stroke injection is performed. In this example, for the E85 fuel and the E100 fuel, the injection end timing EOI is held at the value at the end of the warm-up operation control from time t5 to t6, and thereafter, within the intake stroke according to the normal operation map Is changed to the value of (solid line). Alternatively, it is also possible to gradually change the injection end timing EOI in this case as shown by the broken line.
 以上のように、本実施形態によれば、エンジン3の低温始動後の暖機運転において、エンジン3の温度を表すエンジン水温TW及びエタノール濃度ECに加えて、エンジン3の負荷に相当する吸入空気量GAIRCYLに応じて、吸気行程噴射又は圧縮行程噴射を選択し、実行するので、エンジン3の低温始動後において、安定した良好な燃焼状態を確保することができる。 As described above, according to the present embodiment, in the warm-up operation after the low temperature start of the engine 3, the intake air corresponding to the load of the engine 3 in addition to the engine water temperature TW and the ethanol concentration EC representing the temperature of the engine 3 Since the intake stroke injection or the compression stroke injection is selected and executed according to the amount GAIRCYL, it is possible to ensure a stable good combustion state after the low temperature start of the engine 3.
 より具体的には、エンジン水温TWが低温状態に相当する所定温度TJUD以下である低温条件、エタノール濃度ECが高濃度状態に相当する所定濃度EJUD以上である高濃度条件、及び吸入空気量GAIRCYLが高負荷状態に相当する所定量GAIRJUD以上である高負荷条件が、すべて成立しているときに、圧縮行程噴射を実行する一方、低温条件、高濃度条件及び高負荷条件の少なくとも1つが成立していないときに、吸気行程噴射を実行する。これにより、エンジン3の負荷に応じて圧縮行程噴射又は吸入行程噴射を適切に選択でき、したがって、エンジン3の低温始動後において、安定した良好な燃焼状態を確実に得ることができる。また、図10に示したように、特に低温高負荷条件において、煤発生量QS及びOD量QODを十分に抑制することができる。 More specifically, low temperature conditions in which the engine water temperature TW is equal to or lower than a predetermined temperature TJUD corresponding to a low temperature state, high concentration conditions in which the ethanol concentration EC is equal to or higher than a predetermined concentration EJUD corresponding to a high concentration state, and the intake air amount GAIRCYL When all the high load conditions equal to or higher than the predetermined amount GAIRJUD corresponding to the high load condition are satisfied, compression stroke injection is performed, while at least one of the low temperature condition, the high concentration condition and the high load condition is satisfied. When not, perform the intake stroke injection. As a result, the compression stroke injection or the suction stroke injection can be appropriately selected according to the load of the engine 3, and therefore, a stable, good combustion state can be reliably obtained after the engine 3 has been cold started. Further, as shown in FIG. 10, it is possible to sufficiently suppress the soot generation amount QS and the OD amount QOD particularly under the low temperature and high load condition.
 また、エンジン3の低温始動時に、圧縮行程噴射を実行するとともに、エタノール濃度ECが高いほど、噴射終了時期EOIをより遅角側に設定する。これにより、燃料の気化の度合が低いほど、筒内温度がより高い状態で燃料が噴射されることによって、燃料の気化が促進されるので、エタノール濃度ECに応じた安定した燃焼状態を確保でき、低温始動性を向上させることができる。 Further, at the time of low temperature start of the engine 3, the compression stroke injection is performed, and the injection end timing EOI is set to be more retarded as the ethanol concentration EC is higher. As a result, fuel vaporization is promoted by injecting fuel in a state where the temperature in the cylinder is higher as the degree of vaporization of fuel is lower, so that a stable combustion state according to ethanol concentration EC can be secured. The cold startability can be improved.
 次に、図13及び図14を参照しながら、燃料噴射量の補正処理について説明する。本処理は、圧縮行程噴射と吸気行程噴射との切替に伴う空燃比の変動を補償するためのものであり、ECU2により、TDC信号の発生に同期して繰り返し実行される。 Next, the fuel injection amount correction process will be described with reference to FIGS. 13 and 14. The present process is for compensating for the fluctuation of the air-fuel ratio accompanying the switching between the compression stroke injection and the intake stroke injection, and is repeatedly executed by the ECU 2 in synchronization with the generation of the TDC signal.
 本処理では、まずステップ21において、圧縮行程噴射フラグF_FCMPがその前回値F_FCMPZに等しいか否かを判別する。この圧縮行程噴射フラグF_FCMPは、図示しない処理により、圧縮行程噴射が実行されているときに「1」にセットされ、吸気行程噴射が実行されているときに「0」にセットされる。 In this process, first, at step 21, it is judged if the compression stroke injection flag F_FCMP is equal to the previous value F_FCMPZ. The compression stroke injection flag F_FCMP is set to "1" when compression stroke injection is being performed, and is set to "0" when intake stroke injection is being performed, by a process not shown.
 このステップ21の答えがNOのとき、すなわち今回の処理サイクルが、噴射モードが圧縮行程噴射及び吸気行程噴射の一方から他方に切り替わった直後に相当するときには、燃料噴射量の補正を行うものとして、燃料量補正フラグF_FCHGを「1」にセットする(ステップ22)とともに、その補正回数を表すカウンタ値iを1にセットする(ステップ23)。次に、燃料補正量CGFを所定の初期値CGINIに設定し(ステップ24)、後述するステップ33に進む。 If the answer to this step 21 is NO, that is, if the current processing cycle corresponds immediately after the injection mode has switched from one of compression stroke injection and intake stroke injection to the other, correction of the fuel injection amount is to be performed. The fuel amount correction flag F_FCHG is set to "1" (step 22), and a counter value i representing the number of corrections is set to 1 (step 23). Next, the fuel correction amount CGF is set to a predetermined initial value CGINI (step 24), and the process proceeds to step 33 described later.
 前記ステップ21の答えがYESで、噴射モードの切替の直後でないときには、燃料量補正フラグF_FCHGが「1」であるか否かを判別する(ステップ25)。この答えがYESで、すでに燃料噴射量の補正中のときには、カウンタ値iをインクリメントする(ステップ26)とともに、カウンタ値iが所定値NHLD(例えば2)以下であるか否かを判別する(ステップ27)。その答えがYESのときには、燃料補正量CGFを前回値CGF(=初期値CGINI)に保持し(ステップ28)、ステップ33に進む。 If the answer to step 21 is YES and it is not immediately after the switching of the injection mode, it is determined whether the fuel amount correction flag F_FCHG is "1" (step 25). If the answer is YES and the fuel injection amount is already being corrected, the counter value i is incremented (step 26), and it is determined whether the counter value i is less than or equal to a predetermined value NHLD (for example 2) 27). If the answer is YES, the fuel correction amount CGF is held at the previous value CGF (= initial value CGINI) (step 28), and the process proceeds to step 33.
 前記ステップ27の答えがNOで、カウンタ値iが所定値NHLDを上回ったときには、前回の燃料補正量CGFから所定の減少量ΔGFを差し引いた値を、今回の燃料補正量CGFとして設定する(ステップ29)。次に、燃料補正量CGFが0よりも大きいか否かを判別し(ステップ30)、その答えがYESのときには、そのままステップ33に進む。 If the answer to step 27 is NO, and the counter value i exceeds the predetermined value NHLD, a value obtained by subtracting the predetermined decrease amount ΔGF from the previous fuel correction amount CGF is set as the current fuel correction amount CGF (step 29). Next, it is determined whether the fuel correction amount CGF is larger than 0 (step 30). If the answer is YES, the process proceeds to step 33 as it is.
 一方、上記ステップ30の答えがNOで、燃料補正量CGFが0以下になったときには、燃料補正量CGFを0に設定する(ステップ31)とともに、燃料噴射量の補正を終了するものとして、燃料量補正フラグF_FCHGを「0」にセットし(ステップ32)、ステップ33に進む。また、このステップ32を実行した後には、前記ステップ25の答えがNOになり、その場合にもステップ33に進む。 On the other hand, when the answer to step 30 is NO, and the fuel correction amount CGF becomes 0 or less, the fuel correction amount CGF is set to 0 (step 31), and the fuel injection amount correction is ended. The amount correction flag F_FCHG is set to "0" (step 32), and the process proceeds to step 33. In addition, after the step 32 is performed, the answer to the step 25 is NO, and in this case, the process proceeds to the step 33.
 以上のように算出される結果、燃料補正量CGFは、図14に示すように、噴射モードの切替時に、大きな初期値CGINIに設定され、その後の(NHLD-1)回の燃焼サイクルの間、初期値CGINIに保持された後、燃焼サイクルごとに所定の減少量ΔGFずつ減少し、値0に収束する。 As a result of calculation as described above, the fuel correction amount CGF is set to a large initial value CGINI at the time of switching of the injection mode as shown in FIG. 14 and during the subsequent (NHLD-1) combustion cycles, After being held at the initial value CGINI, it decreases by a predetermined amount of reduction ΔGF every combustion cycle and converges to the value 0.
 図13に戻り、前記ステップ24、28、30又は32などに続くステップ33では、圧縮行程噴射フラグF_FCMPが「1」であるか否かを判別する。この答えがYESで、今回の噴射モードの切替が吸気行程噴射から圧縮行程噴射への切替であるときには、上記のように算出された燃料補正量CGFを用い、燃料噴射量GFUELを次式(1)によって算出し(ステップ34)、本処理を終了する。
 GFUEL = GBS・KGF+CGF        ・・・(1)
Referring back to FIG. 13, in step 33 following the steps 24, 28, 30 or 32, it is determined whether the compression stroke injection flag F_FCMP is "1". If this answer is YES and the switching of the injection mode this time is the switching from the intake stroke injection to the compression stroke injection, the fuel correction amount CGF calculated as described above is used to calculate the fuel injection amount GFUEL by the following equation (1 ) (Step 34), and the present process ends.
GFUEL = GBS · KGF + CGF (1)
 ここで、GBSは、吸入空気量GAIRCYL及びエンジン回転数NEなどに応じて算出される燃料噴射量の基本値、KGFは、目標空燃比を達成するための空燃比補正係数や、エンジン水温TW及び吸気温などを含むエンジン3の運転状態に応じた各種の補正係数を互いに乗算した総補正係数である。 Here, GBS is a basic value of the fuel injection amount calculated according to the intake air amount GAIRCYL and the engine rotational speed NE, KGF is an air-fuel ratio correction coefficient for achieving the target air-fuel ratio, engine water temperature TW and It is a total correction coefficient obtained by mutually multiplying various correction coefficients according to the operating state of the engine 3 including the intake temperature and the like.
 この式(1)により、圧縮行程噴射への切替の際に、燃料補正量CGFの分、燃料噴射量GFUELが増量されるので、この切替に伴うリーン側への空燃比の変動を適切に補償し、所要のエンジン出力を確保することができる。 According to this equation (1), the fuel injection amount GFUEL is increased by the amount of the fuel correction amount CGF when switching to the compression stroke injection, so the air-fuel ratio fluctuation to the lean side accompanying this switching is appropriately compensated. And the required engine power can be secured.
 一方、前記ステップ33の答えがNOで、今回の噴射モードの切替が圧縮行程噴射から吸気行程噴射への切替であるときには、燃料補正量CGFを用い、燃料噴射量GFUELを次式(2)によって算出し(ステップ35)、本処理を終了する。
 GFUEL = GBS・KGF-CGF        ・・・(2)
 この式(2)により、吸気行程噴射への切替の際に、燃料補正量CGFの分、燃料噴射量GFUELが減量されるので、この切替に伴うリッチ側への空燃比の変動を適切に補償し、所要のエンジン出力を確保することができる。
On the other hand, if the answer to step 33 is NO, and the current injection mode switching is switching from compression stroke injection to intake stroke injection, the fuel correction amount CGF is used, and the fuel injection amount GFUEL is expressed by the following equation (2) The calculation is performed (step 35), and the process ends.
GFUEL = GBS · KGF-CGF ... (2)
According to this equation (2), the fuel injection amount GFUEL is decreased by the amount of the fuel correction amount CGF when switching to the intake stroke injection, so that the fluctuation of the air-fuel ratio to the rich side accompanying this switching is appropriately compensated. And the required engine power can be secured.
 なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、暖機運転時に噴射終了時期EOIを算出するために、暖機アイドル運転と暖機走行運転に共通の1つの暖機運転時マップ(図6)を用いているが、両運転時用のマップをそれぞれ作成し、判別された運転状態に応じて、該当するマップを用いるようにしてもよい。また、実施形態では、燃料噴射時期として、噴射終了時期EOIを算出しているが、これに限らず、例えば噴射開始時期を算出してもよい。 In addition, this invention can be implemented in various aspects, without being limited to the described embodiment. For example, in the embodiment, in order to calculate the injection end timing EOI during warm-up operation, one warm-up operation map (FIG. 6) common to warm-up idle operation and warm-up drive operation is used. A map for driving may be created, and the corresponding map may be used according to the determined driving state. Further, in the embodiment, although the injection end timing EOI is calculated as the fuel injection timing, the present invention is not limited to this, and for example, the injection start timing may be calculated.
 また、図13の燃料噴射量の補正処理では、燃料補正量CGFを算出し、基本値GBSと総補正係数KGFとの積に加減算することによって、燃料噴射量GFUELを増減しているが、これに限らない。例えば、燃料補正量CGFに相当する増減量を含めて燃料噴射量GFUELをマップ化し、噴射モードの切替時からのTDC数や切替の方向などに応じて、燃料噴射量GFUELをマップから直接、読み出すようにしてもよい。また、実施形態に示した燃料補正量CGFの算出手法は、あくまで例示であり、細部の構成を変更することが可能である。 Further, in the correction process of the fuel injection amount in FIG. 13, the fuel correction amount CGF is calculated, and the fuel injection amount GFUEL is increased or decreased by adding or subtracting the product of the basic value GBS and the total correction coefficient KGF. Not limited to. For example, the fuel injection amount GFUEL is mapped to include the increase / decrease amount corresponding to the fuel correction amount CGF, and the fuel injection amount GFUEL is read directly from the map according to the TDC number from switching of the injection mode and the switching direction. You may do so. Further, the method of calculating the fuel correction amount CGF shown in the embodiment is merely an example, and the configuration of the details can be changed.
 また、実施形態では、内燃機関の温度を表す機関温度パラメータとして、エンジン水温TWを用いているが、これに代えて、他の適当なパラメータ、例えばエンジン3の吸気温や油温などを用いてもよい。さらに、実施形態では、暖機運転の終了判定を、筒内温度カウンタ値CTに基づいて行っているが、これに代えて、上記のエンジン水温TWなどの機関温度パラメータに基づいて行ってもよい。 In the embodiment, the engine water temperature TW is used as the engine temperature parameter representing the temperature of the internal combustion engine, but instead, another appropriate parameter, for example, the intake temperature or oil temperature of the engine 3 is used It is also good. Furthermore, in the embodiment, the completion determination of the warm-up operation is performed based on the in-cylinder temperature counter value CT, but instead, it may be performed based on an engine temperature parameter such as the above engine water temperature TW. .
 同様に、実施形態では、エンジン3の負荷に相当するパラメータとして、吸入空気量GAIRCYLを用いているが、これに代えて、他の適当なパラメータ、例えば燃料噴射量、要求トルクや車両のアクセル開度などを用いてもよい。また、実施形態では、エタノール濃度ECを、エタノール濃度センサ24を用いて検出しているが、エタノール濃度ECとの相関性が高いエンジン3の運転パラメータ、例えば空燃比のフィードバック補正量や検出空燃比のずれの大きさなどから、推定によって取得してもよい。 Similarly, in the embodiment, the intake air amount GAIRCYL is used as a parameter corresponding to the load of the engine 3, but instead, other appropriate parameters such as a fuel injection amount, a required torque, and an accelerator opening of the vehicle may be used. The degree or the like may be used. In the embodiment, the ethanol concentration EC is detected using the ethanol concentration sensor 24, but the operating parameter of the engine 3 having a high correlation with the ethanol concentration EC, for example, the feedback correction amount of the air fuel ratio or the detected air fuel ratio You may acquire by estimation from the magnitude | size of deviation of, etc.
 さらに、実施形態では、アルコールを含有する燃料として、エタノールとガソリンとの混合燃料を用いているが、メタノールとガソリンとの混合燃料でもよいことは勿論である。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更すること可能である。 Furthermore, in the embodiment, although a mixed fuel of ethanol and gasoline is used as the alcohol-containing fuel, it is needless to say that a mixed fuel of methanol and gasoline may be used. In addition, it is possible to change suitably the configuration of the details within the scope of the present invention.
    2 ECU(制御手段、噴射量増減手段)
    3 エンジン(内燃機関)
   3a 気筒
   10 燃料噴射弁
   22 水温センサ(機関温度パラメータ取得手段)
   23 エアフローセンサ(負荷取得手段)
   24 エタノール濃度センサ(アルコール濃度取得手段)
     TW エンジン水温(機関温度パラメータ)
     EC エタノール濃度(アルコール濃度)
GAIRCYL 吸入空気量(内燃機関の負荷)
    EOI 噴射終了時期(燃料の噴射時期)
   TJUD 所定温度
   EJUD 所定濃度
GAIRJUD 所定量(所定値)
  GFUEL 燃料噴射量
    CGF 燃料補正量
2 ECU (control means, injection amount increase / decrease means)
3 Engine (internal combustion engine)
3a cylinder 10 fuel injection valve 22 water temperature sensor (means for acquiring engine temperature parameter)
23 Air flow sensor (load acquisition means)
24 Ethanol concentration sensor (alcohol concentration acquisition means)
TW engine water temperature (engine temperature parameter)
EC ethanol concentration (alcohol concentration)
GAIRCYL Intake air amount (load of internal combustion engine)
EOI injection end timing (fuel injection timing)
TJUD predetermined temperature EJUD predetermined concentration GAIRJUD predetermined amount (predetermined value)
GFUEL Fuel injection amount CGF Fuel correction amount

Claims (4)

  1.  アルコールを含有する燃料を用いるとともに、当該燃料を気筒内に直接、噴射する内燃機関の制御装置であって、
     前記内燃機関の温度を表す機関温度パラメータを取得する機関温度パラメータ取得手段と、
     前記燃料のアルコール濃度を取得するアルコール濃度取得手段と、
     前記内燃機関の負荷を取得する負荷取得手段と、
     前記内燃機関の低温始動後に、前記取得された機関温度パラメータ、アルコール濃度及び内燃機関の負荷に応じ、燃料の噴射モードとして、吸気行程において燃料を噴射する吸気行程噴射、及び圧縮行程において燃料を噴射する圧縮行程噴射の一方を選択し、実行する制御手段と、
     を備えることを特徴とする内燃機関の制御装置。
    A control device for an internal combustion engine that uses a fuel containing alcohol and injects the fuel directly into a cylinder,
    Engine temperature parameter acquisition means for acquiring an engine temperature parameter representing the temperature of the internal combustion engine;
    Alcohol concentration acquisition means for acquiring the alcohol concentration of the fuel;
    Load acquiring means for acquiring the load of the internal combustion engine;
    After the low temperature start of the internal combustion engine, according to the acquired engine temperature parameter, alcohol concentration, and load of the internal combustion engine, as a fuel injection mode, intake stroke injection that injects fuel in the intake stroke and fuel is injected in the compression stroke Control means for selecting and executing one of the compression stroke injections
    A control device for an internal combustion engine, comprising:
  2.  前記制御手段は、前記機関温度パラメータによって表される内燃機関の温度が所定温度以下で、かつ前記アルコール濃度が所定濃度以上である場合において、前記内燃機関の負荷が所定値以上のときに前記圧縮行程噴射を実行し、前記内燃機関の負荷が前記所定値未満のときに前記吸気行程噴射を実行することを特徴とする、請求項1に記載の内燃機関の制御装置。 The control means performs the compression when the load of the internal combustion engine is equal to or higher than a predetermined value when the temperature of the internal combustion engine represented by the engine temperature parameter is lower than a predetermined temperature and the alcohol concentration is higher than a predetermined concentration. The control system for an internal combustion engine according to claim 1, wherein stroke injection is performed and the intake stroke injection is performed when a load of the internal combustion engine is less than the predetermined value.
  3.  前記燃料の噴射モードが前記吸気行程噴射から前記圧縮行程噴射に切り替えられたときに、燃料噴射量を増量し、前記圧縮行程噴射から前記吸気行程噴射に切り替えられたときに、燃料噴射量を減量する噴射量増減手段をさらに備えることを特徴とする、請求項1又は2に記載の内燃機関の制御装置。 When the fuel injection mode is switched from the intake stroke injection to the compression stroke injection, the fuel injection amount is increased, and when the compression stroke injection is switched from the intake stroke injection, the fuel injection amount is decreased The control device of an internal combustion engine according to claim 1 or 2, further comprising:
  4.  前記制御手段は、前記内燃機関の低温始動時に、前記圧縮行程噴射を実行するとともに、前記アルコール濃度が高いほど、燃料の噴射時期をより遅角側に設定することを特徴とする、請求項1ないし3のいずれかに記載の内燃機関の制御装置。 The control means executes the compression stroke injection at the time of low temperature start of the internal combustion engine, and sets the fuel injection timing to be more retarded as the alcohol concentration is higher. A control device for an internal combustion engine according to any one of 3 to 3.
PCT/JP2018/018956 2017-07-18 2018-05-16 Control device for internal combustion engine WO2019017060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112020001029-4A BR112020001029A2 (en) 2017-07-18 2018-05-16 control device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-138918 2017-07-18
JP2017138918A JP2020180550A (en) 2017-07-18 2017-07-18 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
WO2019017060A1 true WO2019017060A1 (en) 2019-01-24

Family

ID=65015944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018956 WO2019017060A1 (en) 2017-07-18 2018-05-16 Control device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP2020180550A (en)
BR (1) BR112020001029A2 (en)
WO (1) WO2019017060A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428186B2 (en) 2020-02-26 2022-08-30 Clearflame Engines, Inc. Fuel agnostic compression ignition engine
US11674462B2 (en) 2020-07-09 2023-06-13 Clearflame Engines, Inc. Systems and methods of cylinder deactivation in high-temperature mixing-controlled engines
US11952936B1 (en) 2019-05-15 2024-04-09 Clearflame Engines, Inc. Systems and methods for combusting unconventional fuel chemistries in a diesel engine architecture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082216A (en) * 1999-09-09 2001-03-27 Toyota Motor Corp Fuel injection control device for cylinder fuel injection type internal combustion engine
JP2014177882A (en) * 2013-03-14 2014-09-25 Denso Corp Fuel injection control device of internal combustion engine
WO2014171093A1 (en) * 2013-04-15 2014-10-23 マツダ株式会社 Control device for spark-ignition engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082216A (en) * 1999-09-09 2001-03-27 Toyota Motor Corp Fuel injection control device for cylinder fuel injection type internal combustion engine
JP2014177882A (en) * 2013-03-14 2014-09-25 Denso Corp Fuel injection control device of internal combustion engine
WO2014171093A1 (en) * 2013-04-15 2014-10-23 マツダ株式会社 Control device for spark-ignition engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11952936B1 (en) 2019-05-15 2024-04-09 Clearflame Engines, Inc. Systems and methods for combusting unconventional fuel chemistries in a diesel engine architecture
US11428186B2 (en) 2020-02-26 2022-08-30 Clearflame Engines, Inc. Fuel agnostic compression ignition engine
US11952954B2 (en) 2020-02-26 2024-04-09 Clearflame Engines, Inc. Fuel agnostic compression ignition engine
US11959434B2 (en) 2020-02-26 2024-04-16 Clearflame Engines, Inc. Fuel agnostic compression ignition engine
US11976606B2 (en) 2020-02-26 2024-05-07 Clearflame Engines, Inc. Full agnostic compression ignition engine
US11674462B2 (en) 2020-07-09 2023-06-13 Clearflame Engines, Inc. Systems and methods of cylinder deactivation in high-temperature mixing-controlled engines

Also Published As

Publication number Publication date
BR112020001029A2 (en) 2020-07-14
JP2020180550A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
US7278397B2 (en) Control apparatus for internal combustion engine
JP4453625B2 (en) Control device for internal combustion engine
JP4926917B2 (en) Engine control device
JP4462079B2 (en) Control device for internal combustion engine
JP4484085B2 (en) Engine control device
JP2006258017A (en) Control device of internal combustion engine
JP4449706B2 (en) Control device for internal combustion engine
JP4643323B2 (en) Control device for internal combustion engine
JP4453524B2 (en) Control device for internal combustion engine
JP2014202176A (en) Fuel injection control device of internal combustion engine
WO2019017060A1 (en) Control device for internal combustion engine
CA2940631A1 (en) Fuel injection control device for internal combustion engine
JP4738304B2 (en) Control device for internal combustion engine
US20130042846A1 (en) Method and system for compensating for alcohol concentration in fuel
JP2007032326A (en) Controller of internal combustion engine
JP4742633B2 (en) Control device for internal combustion engine
CN108626008B (en) Method and system for engine cold start
US20100319659A1 (en) Control device for internal combustion engine
JP2010019108A (en) Fuel injection controller of internal combustion engine
JP5282636B2 (en) Control device for internal combustion engine
JP5077768B2 (en) Fuel injection control device for internal combustion engine
JP4667275B2 (en) Control device for internal combustion engine
US20140261300A1 (en) Fuel injection control apparatus for internal combustion engine
JP5333361B2 (en) Internal combustion engine fuel injection control device
JP2011064103A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020001029

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020001029

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200116

122 Ep: pct application non-entry in european phase

Ref document number: 18835836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP