WO2019015681A1 - 一种终端设备及其控制方法 - Google Patents

一种终端设备及其控制方法 Download PDF

Info

Publication number
WO2019015681A1
WO2019015681A1 PCT/CN2018/096527 CN2018096527W WO2019015681A1 WO 2019015681 A1 WO2019015681 A1 WO 2019015681A1 CN 2018096527 W CN2018096527 W CN 2018096527W WO 2019015681 A1 WO2019015681 A1 WO 2019015681A1
Authority
WO
WIPO (PCT)
Prior art keywords
usb
interface
signal
type
terminal
Prior art date
Application number
PCT/CN2018/096527
Other languages
English (en)
French (fr)
Inventor
孙学斌
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710598183.5A external-priority patent/CN107277416A/zh
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Priority to EP18835936.8A priority Critical patent/EP3657778B1/en
Publication of WO2019015681A1 publication Critical patent/WO2019015681A1/zh
Priority to US16/747,296 priority patent/US11232057B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4022Coupling between buses using switching circuits, e.g. switching matrix, connection or expansion network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • G06F13/385Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • G06F13/4081Live connection to bus, e.g. hot-plugging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • H04N21/4112Peripherals receiving signals from specially adapted client devices having fewer capabilities than the client, e.g. thin client having less processing power or no tuning capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network
    • H04N21/43632Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network involving a wired protocol, e.g. IEEE 1394
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network
    • H04N21/43632Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network involving a wired protocol, e.g. IEEE 1394
    • H04N21/43635HDMI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44227Monitoring of local network, e.g. connection or bandwidth variations; Detecting new devices in the local network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44231Monitoring of peripheral device or external card, e.g. to detect processing problems in a handheld device or the failure of an external recording device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0042Universal serial bus [USB]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a terminal device and a control method thereof.
  • the USB-Type-C interface can transmit USB2.0 signals, USB3.0 signals and non-USB signals, and is usually used in mobile terminals or computers. Usually the USB-Type-C interface is used to connect a mobile phone, computer or PAD for high-speed data transmission.
  • the USB-Type-C interface in the prior art can also be applied to a monitor device, but is rarely used in a television terminal.
  • the main reason for the limited application of the USB-Type-C interface in the television terminal is that when the USB-Type-C interface is applied in the television terminal, there is a problem that the compatibility between the billboard signal transmission function and the USB2.0 signal transmission function cannot be satisfied.
  • the TV terminal When the TV terminal interacts with the USB2.0 signal on the external device connected to the USB-Type-C interface, the TV terminal can be used as the host of the device externally connected to the USB-Type-C interface, and the device externally connected to the USB-Type-C interface can serve as the TV terminal. Peripherals.
  • the TV terminal When the TV terminal interacts with the device connected to the USB-Type-C interface, the TV terminal can be used as a peripheral device of the external device of the USB-Type-C interface, and the external device of the USB-Type-C interface can serve as the host of the TV terminal.
  • the number of USB D+/D-differential terminals on the USB-Type-C interface is fixed, and it is not possible to take into account both application requirements.
  • USB-Type-C interface application since the USB-Type-C interface application is incompatible with the USB2.0 signal transmission function in the TV terminal, the USB-Type-C interface cannot be applied to the TV terminal as a multi-function interface.
  • the embodiment of the invention provides a terminal device and a control method thereof.
  • the terminal device can be a television terminal, and can implement a USB-Type-C interface in a television terminal, and can be compatible with a billboard signal transmission function and a USB2.0 signal transmission function.
  • the first aspect is a terminal device, where the terminal device includes:
  • the SOC chip is provided with a DFP interface, and the DFP interface is connected to the switch module through a USB D+/D-differential pair, and the USB D+/D-differential pair between the DFP interface and the switch module is a first channel;
  • the USB Type-C interface main control module is provided with a UFP interface, and the UFP interface is connected to the switch module through a USB D+/D-differential pair, and the USB D+/ between the UFP interface and the switch module
  • the D-differential pair is the second channel
  • USB Type-C interface connected to the switch module via a USB D+/D-differential pair
  • the USB Type-C interface main control module is further connected to the switch module by a control signal line, configured to control the switch module to conduct the first channel, close the second channel, or turn on the The second channel closes the first channel.
  • the USB Type-C interface main control module is further connected to the USB Type-C interface through a control signal line, and is configured to exchange a CC signal with the USB Type-C interface to identify the USB Type.
  • the type of the device externally connected to the C interface according to the identified type, controlling the switch module to conduct the first channel, close the second channel, or turn on the second channel, and close the first One channel.
  • the USB Type-C interface main control module is configured to control the switch module to conduct the first channel when the type of the device externally connected to the USB Type-C interface is a USB device.
  • the second channel is closed; when the type of the device externally connected to the USB Type-C interface is identified as an ALT MODE device, the second channel is turned on, and the first channel is closed.
  • the terminal device further includes a multiplexing switch
  • the multiplexing switch is connected to the USB Type-C interface through a USB SSTX/RX differential pair, and is also connected to the DFP interface through a USB SSTX/RX differential pair, between the multiplexing switch and the DFP interface.
  • the USB SSTX/RX differential pair is the third channel;
  • the SOC chip further includes an HDMI interface for receiving or transmitting an HDMI signal
  • the multiplexing switch is further connected to the HDMI interface through an HDMI signal channel, and the HDMI signal channel between the multiplexing switch and the HDMI interface is a fourth channel;
  • the USB Type-C interface control module is further connected to the multiplexing switch by using a control signal line, and is configured to control the multiplexing when the type of the device externally connected to the USB Type-C interface is a USB device. Turning on the third channel to close the fourth channel; or controlling the multiplexing switch to turn on the fourth when identifying that the type of the device externally connected to the USB Type-C interface is an ALT MODE device Channel, closing the third channel.
  • the terminal device further includes a protocol conversion module between the multiplexing switch and the HDMI interface, where
  • the protocol conversion module is configured to convert the DP signal into an HDMI signal when the ALT MODE device transmits a DP signal, to transmit the HDMI signal to an HDMI interface of the SOC chip.
  • the DFP interface includes a USB2.0 interface and a USB3.0 interface.
  • the DFP interface interacts with the device external to the USB Type-C interface through the first channel to exchange a USB2.0 signal; or the DFP The interface interacts with the external device of the USB Type-C interface through the third channel to exchange a USB3.0 signal.
  • the USB Type-C interface is adapted to a USB UFP mode; when the external device supports the DP DFP mode, the USB Type-C The interface switches to DO DFP mode for DP signal transmission.
  • the USB Type-C interface is adapted to a USB DFP mode.
  • the UFP interface is a billboard signal output interface, and is used as an output of a billboard signal
  • the billboard signal output interface may send a billboard signal to the ALT MODE device external to the USB Type-C interface through the second channel.
  • the switch module turns on the first channel by default.
  • the billboard signal includes transmission mode information supported by the terminal device
  • the USB Type-C interface control module is used to:
  • the switch module When detecting that the USB Type-C interface is inserted into the computer, the switch module is controlled to switch to the second channel, so that the computer acquires the transmission mode information, and then controls the switch module to switch to the first channel.
  • an embodiment of the present invention provides a method for controlling a terminal device, including:
  • the USB Type-C interface main control module sends a first control signal or a second control signal to the switch module, where the first control signal is used to control the switch module to turn on the first channel, and close the second a channel, the second control signal is used to control the switch module to conduct the second channel, and close the first channel.
  • the USB Type-C interface main control module before sending the first control signal, further includes:
  • the USB Type-C interface main control module interacts with the USB Type-C interface for a CC signal
  • the USB Type-C interface main control module sends a first control signal or a second control signal to the switch module, including:
  • the first control signal is sent to the switch module
  • the second control signal is sent to the switch module.
  • it also includes:
  • the third control signal is further sent to the multiplexing switch, where the third control signal is used to control the multiplexing switch Opening the fourth channel through the third channel;
  • the fourth control signal is further sent to the multiplexing switch, where the fourth control signal is used to control the multiplexing switch
  • the fourth channel is turned on, and the third channel is closed.
  • an embodiment of the present invention provides a terminal device, including:
  • the SOC chip provides a USB D+/D-differential terminal for inputting or outputting a USB D+/D- signal, and is electrically connected with a USB D+/D-differential terminal provided by the switch module to form an optional first channel;
  • the C interface main control module provides a USB D+/D-differential terminal for inputting a USB D+/D- signal or an output of a billboard signal, and is electrically connected with a USB D+/D-differential terminal provided by the switch module to form a The second channel of the gate;
  • USB Type-C interface providing USB D+/D-differential terminal for inputting or outputting USB D+/D- signals, and electrically connecting with USB D+/D-differential terminals provided by the switch module;
  • the C interface main control module further provides a control signal output pin, which is available for outputting a first control signal or a second control signal, and is electrically connected to a control signal input pin of the switch module; the first control The signal is used to turn on the first channel, the second channel is closed, and the second control signal is used to turn on the second channel to close the first channel.
  • the C interface main control module provides a CC pin, and the CC pin is electrically connected to a CC pin in the USB Type-C interface, and can be used for inputting or outputting a CC signal to identify The type of device external to the C interface.
  • the C interface main control module is configured to: when the type of the device externally connected to the USB Type-USB TYPE-C interface is a USB device, the control signal input pin to the switch module And inputting the first control signal; when identifying that the type of the device externally connected to the USB Type-C interface is an ALT MODE device, inputting the second control signal to the control signal input pin of the switch module.
  • the terminal device further includes a multiplexing switch
  • the SOC chip further provides a USB SSTX/RX differential terminal for inputting or outputting a USB3.0 signal, and electrically connecting with the USB SSTX/RX differential terminal of the multiplexing switch to form a third channel;
  • the USB Type-C interface further provides a USB SSTX/RX differential terminal for inputting or outputting a USB3.0 signal, and is electrically connected to the USB SSTX/RX differential terminal of the multiplexing switch;
  • the C interface main control module further provides a control signal output pin for outputting a third control signal, which is electrically connected to a control signal input pin of the multiplexing switch; the third control signal is used to guide The fourth channel is closed through the third channel.
  • the SOC chip further provides an HDMI differential terminal for receiving or transmitting an HDMI signal.
  • the HDMI differential terminal is electrically connected to the HDMI differential terminal between the multiplexing switch to form an optional fourth channel;
  • the C interface main control module further provides a control signal output pin for outputting a fourth control signal, and is electrically connected to another control signal input pin of the multiplexing switch; the fourth control signal is used for guiding The third channel is closed through the fourth channel.
  • the terminal device further includes a protocol conversion module, where the protocol conversion module is configured to convert the DP signal into an HDMI signal to transmit the HDMI signal when the ALT MODE device transmits a DP signal.
  • the protocol conversion module is configured to convert the DP signal into an HDMI signal to transmit the HDMI signal when the ALT MODE device transmits a DP signal.
  • the HDMI differential terminal of the SOC chip is electrically connected to the HDMI differential terminal of the protocol conversion module, and the DP differential terminal of the protocol conversion module is electrically connected to the DP differential terminal of the multiplexing switch, and the DP differential terminal is available Input or output of the DP signal.
  • the C interface main control module is further configured to input, when the type of the device externally connected to the USB Type-C interface is a USB device, to a control signal input pin of the multiplexing switch. a third control signal; when it is recognized that the type of the device externally connected to the USB Type-C interface is an ALT MODE device, the fourth control signal is input to a control signal input pin of the multiplexing switch.
  • an embodiment of the present invention provides a terminal device having a USB Type-C interface, including: a USB Type-C interface, a controller, a selection switch unit, and a SoC chip;
  • the USB Type-C interface is configured with a CC pin and a USB D+/D- signal pin, and the USB Type-C interface is used to connect an external device;
  • the controller is electrically connected to the CC pin, and is configured to determine an operating mode of the external device according to a CC signal in the CC pin;
  • the controller is further connected to the selection switch unit, configured to strobe the USB D+/D-signal pin and the transmission USB D+/D- signal in the SoC chip according to an operation mode of the external device
  • the interface is connected, or the USB D+/D-signal pin is strobed to interface with the transfer billboard information in the controller.
  • the controller is configured to strobe the USB D+/D-signal pin and the transmission USB D+/D- in the SoC chip when determining that the working mode of the external device is the USB mode.
  • An interface of the signal is connected to transmit a USB D+/D- signal to the SoC chip;
  • the controller is configured to: when determining that the working mode of the external device is Alt Mode, send a second control signal to the selection switch unit, so that the selection switch unit is strobed according to the first control information
  • the USB D+/D-signal pin is interfaced with the transfer billboard information in the controller such that the external device performs the operation indicated by the billboard information.
  • the terminal device further includes: a composite switch unit;
  • the USB Type-C interface further includes: TX1/RX1 and TX2/RX2 pins;
  • the composite switch unit is electrically connected to the TX1/RX1 and TX2/RX2 pins; the composite switch unit is configured to connect the SoC chip, and transmit a USB SS TX/SS RX signal or an audio and video signal to the SoC chip. ;
  • the controller is connected to the composite switch unit, and is configured to strobe the X1/RX1 and TX2/RX2 pins and the transmission USB SS TX/SS RX in the SoC chip according to an operation mode of the external device.
  • the interface of the signal is connected, or the X1/RX1 and TX2/RX2 pins are strobed to interface with the transmitted audio and video signals in the SoC chip.
  • the controller is configured to send a third control signal to the composite switch unit when the working mode of the external device is determined to be in a USB mode, so that the composite switch unit strobes the X1/ An RX1 and TX2/RX2 pin is coupled to the interface of the transmit USB SS TX/SS RX signal in the SoC chip to transmit a USB SS TX/SS RX signal to the SoC chip;
  • the controller is configured to send a fourth control signal to the composite switch unit when the working mode of the external device is determined to be Alt Mode, so that the composite switch unit gates the X1/RX1 and TX2/
  • the RX2 pin is interfaced with the transmitted audio and video signals in the SoC chip to transmit audio and video signals to the SoC chip.
  • the interface for transmitting the audio and video signals in the SoC chip is an HDMI interface.
  • the terminal device further includes: a format conversion unit;
  • the input end of the format conversion unit is connected to the selection switch unit, and is used for format conversion of the audio and video signals transmitted by the selection switch unit to obtain a format converted audio and video signal;
  • the output end of the format conversion unit is configured to connect an interface for transmitting audio and video signals in the SoC chip to transmit the format converted audio and video signals to the SoC chip.
  • the working mode of the external device includes: USB2.0, USB3.0, USB3.1, and any of the USB powered PDs.
  • the controller is further configured to: when determining that the working mode of the external device is a USB PD, setting a CC signal on the CC pin as a power supply command, so that the terminal device supplies power to the external device .
  • an embodiment of the present invention provides a data communication method, which is applied to a terminal device having a USB Type-C interface, where the terminal device includes: a USB Type-C interface, a controller, a selection switch unit, and a SoC chip, wherein The USB Type-C interface is configured to connect to an external device, the controller is respectively connected to the USB Type-C interface and the selection switch unit, and the selection switch unit is further connected to the SoC chip;
  • Methods including:
  • the transmitting according to the working mode of the external device, the USB D+/D- signal in the external device to the SoC chip, including:
  • the billboard information is transmitted to the external device, so that the external device performs the operation indicated by the billboard information.
  • the terminal device further includes: a composite switch unit, wherein the composite switch is respectively connected to the USB Type-C interface, the controller, and the SoC chip; the method further includes:
  • the transmitting according to the working mode of the external device, the USB SS TX/SS RX signal in the external device to the SoC chip, including:
  • Transmitting the audio and video signals in the external device to the SoC chip according to the working mode of the external device including:
  • the audio and video signals in the external device are transmitted to the SoC chip.
  • the terminal device further includes: a format conversion unit, wherein the format conversion unit is respectively connected to the selection switch unit and the SoC chip; and the audio and video signal in the external device is transmitted Before the SoC chip, it also includes:
  • an embodiment of the present invention provides a method for controlling a USB-C interface of a television to connect to an external device, which includes the following steps:
  • the external device is a USB flash drive
  • the low-speed differential pair pin of the USB-C interface is turned on to the main chip of the television
  • the low speed differential pair pin of the USB-C interface is turned on to the module containing the Billboard information on the television.
  • the low speed differential pair pin of the USB-C interface is connected to a first terminal of a SWICH switch, and the second terminal and the third terminal of the SWICH switch are respectively associated with the main chip and the A module connection of the Billboard information, the SWICH switch being controllable to make the first terminal and the second terminal conductive, or the first terminal and the third terminal being conductive.
  • an embodiment of the present invention provides a television set that adopts the control method as described in the sixth aspect.
  • an embodiment of the present invention provides a television set, which includes a main chip
  • the main chip is connected to a SWICH switch
  • the SWICH switch is respectively connected to a CC+PD chip and a module including Billboard information;
  • USB-C interface for connecting an external device
  • the USB-C interface is respectively connected to the CC+PD chip and the SWICH switch.
  • the module including the Billboard information is integrated in the CC+PD chip.
  • the module containing the Billboard information is a separate hardware module.
  • the SWICH switch and the CC+PD are connected by a control signal line and a data signal line; the data signal line is used to pass the Billboard information in the Billboard module built in the CC+PD chip to the USB-C through the SWICH switch.
  • the control signal line is configured to transmit whether the SWICH switch is turned on with the main chip or is turned on by the data signal line and the CC+PD chip.
  • an embodiment of the present invention provides a method for controlling a USB-C interface of a television to connect to an external device, which includes the following steps:
  • the CC+PD chip of the television set controls the SWICH switch to conduct the low-speed differential pair pin of the USB-C interface to the television when the USB-C interface of the television is not detected to have an external device inserted.
  • the CC+PD chip of the television does not control the SWICH switch action when detecting that the USB-C interface of the television is inserted into the USB flash drive;
  • the CC+PD chip of the television set controls the low-speed differential pair pin of the USB-C interface of the television to be turned on to the television when detecting that the USB-C interface of the television is inserted into the computer.
  • a module of Billboard information after the Billboard information is transmitted to the computer, the CC+PD chip controls the SWICH switch action to turn on the low-speed differential pair pin of the USB-C interface of the television to the TV set.
  • the SOC main chip is connected to the path.
  • an embodiment of the present invention provides a television set that adopts the control method as described in the ninth aspect.
  • an embodiment of the present invention provides an electronic terminal device that receives data from an external device through a USB TYPE-C interface, including:
  • the control chip is electrically connected to the CC pin of the USB TYPE-C interface, and has a pin for connecting the USB D+/D- signal;
  • a control pin is electrically connected to a control signal output pin of the control chip; an input pin is electrically connected to a USB D+/D- signal pin of the USB TYPE-C interface; One of the two output pins is electrically connected to the pin of the SOC chip for inputting a USB D+/D- signal; the other is connected to the control chip for a USB D+/D- signal.
  • the pins are electrically connected.
  • it also includes:
  • the SOC chip includes a pin for inputting a USB SS TX/RX signal, and a pin for inputting an HDMI format signal;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • the control pin of the composite switch chip is electrically connected to another control signal output pin of the control chip, and one of the two output pins of the composite switch chip is connected to the SOC chip.
  • the pin for the USB SSTX/RX signal input is electrically connected; the other is electrically connected to the pin of the SOC chip for inputting an HDMI format signal.
  • the method further includes: the connection terminal in the control control chip is electrically connected to the USB D+/D- signal pin, so that the control chip can send the billboard information to the external device.
  • an embodiment of the present invention provides an electronic terminal device that receives data from an external device through a USB TYPE-C interface, and includes: a control chip, configured to control the access device type according to the USB TYPE-C interface, and control the An electrical connection between the D+/D-signal input pin and the SOC chip in the USB TYPE-C interface, and between the D+/D- input terminal of the USB TYPE-C interface and the control control chip capable of interacting with the billboard information Electrically connected, at the same time, only one of the electrical connections of the two is electrically connected.
  • the SOC chip has a pin for inputting the USB D+/D- signal
  • the control chip is electrically connected to the CC pin of the USB TYPE-C interface, and has a pin for connecting the USB D+/D- signal;
  • a control pin is electrically connected to a control signal output pin of the control control chip; and an input pin is electrically connected to the USB D+/D- signal pin of the USB TYPE-C interface;
  • One of the two optional output pins is electrically connected to the pin of the SOC chip for USB D+/D- input; the other circuit and the control chip are available for USB D+/D- signal The pins of the connection are electrically connected.
  • the SOC chip includes a pin for inputting a USB SSTX/RX signal, and a pin for inputting an HDMI format signal;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • the control pin of the composite switch chip is electrically connected to another control signal output pin of the control chip, and one of the two output pins of the composite switch chip is The pin of the SOC chip that can be input to the USB SSTX/RX signal is electrically connected; the other is electrically connected to the pin of the SOC chip that is available for an HDMI format signal.
  • an embodiment of the present invention provides an electronic terminal device that receives data from an external device through a USB TYPE-C interface, including:
  • a CC module electrically connected to a CC pin of the USB TYPE-C interface
  • a control pin is electrically connected to a control signal output pin of the CC module; and an input pin is electrically connected to a USB D+/D- signal pin of the USB TYPE-C interface;
  • One of the two output pins is electrically connected to the pin of the SOC chip for USB D+/D-signal input; the other is connected to the PD module for USB D+/D- signal connection.
  • the pins are electrically connected.
  • the SOC chip includes a pin for inputting a USB SSTX/RX signal, and a pin for inputting an HDMI format signal;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • the control pin of the composite switch chip is electrically connected to another control signal output pin of the CC module, and one of the two output pins of the composite switch chip and the SOC chip
  • the pin for USB SSTX/RX signal input is electrically connected; the other is electrically connected to the pin of the SOC chip for HDMI format signal input.
  • the method further includes: the PD module is equipped with a billboard function, and is electrically connected to the USB D+/D-signal pin through a connection terminal of the PD module, so that the PD module can feed back billboard information to the external device.
  • an embodiment of the present invention provides an electronic terminal device that receives data from an external device through a USB TYPE-C interface, including:
  • the control chip is used to detect the USB TYPE-C interface access device type.
  • the USB D+/D- signal pin and the SOC chip in the USB TYPE-C interface are strobed.
  • the pin for USB D+/D- signal input is electrically connected; when the USB TYPE-C is connected to the ALT MODE protocol type device, the USB D+/D- signal pin in the USB TYPE-C interface is strobed and described
  • the signal pins of the control chip that can exchange the billboard information are electrically connected.
  • the SOC chip includes: a pin for inputting a USB SSTX/RX signal, and a pin for inputting an HDMI format signal;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • the control pin of the composite switch chip is electrically connected to another control signal output pin of the control control chip, and one of the two output pins of the composite switch chip is connected to the SOC
  • the pins of the chip for the USB SSTX/RX signal input are electrically connected; the other is electrically coupled to the pins of the SOC chip for input of the HDMI format signal.
  • an embodiment of the present invention provides a television terminal, including: a display screen configured to display a screen; a power supply circuit configured to provide power to the device, and a signal input circuit configured to receive data from the external device;
  • the signal input circuit includes:
  • the control chip is electrically connected to the CC pin of the USB TYPE-C interface, and has a pin for connecting the USB D+/D- signal;
  • a control pin is electrically connected to a control signal output pin of the control chip; and an input pin is electrically connected to the USB D+/D- signal pin of the USB TYPE-C interface;
  • One of the two output pins is electrically connected to the pin of the SOC chip for USB D+/D- input; the other is connected to the control chip for USB D+/D- signal connection.
  • the pins are electrically connected.
  • it also includes:
  • the SOC chip includes a pin for inputting a USB SSTX/RX signal, and a pin for inputting in an HDMI format;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • the control signal input pin of the composite switch chip is electrically connected to another control signal output pin of the control chip, and one of the two output pins that are selectable in the composite switch chip is The pins of the SOC chip that are available for input of the USB SSTX/RX signal are electrically connected; the other is electrically connected to the pins of the SOC chip that are HDMI format input.
  • control chip is equipped with a billboard function, and the connection terminal of the control chip is electrically connected to the USB D+/D-signal pin, so that the control chip can interact with the external device. .
  • the embodiment of the present invention provides a television terminal, including:
  • the display screen is configured to display a picture
  • the power supply circuit is configured to provide power to the device
  • a signal input circuit configured to receive data from the external device
  • the signal input circuit includes:
  • the control chip is used to detect the USB TYPE-C interface access device type.
  • the USB D+/D- signal pin and the SOC chip are available in the strobe USB TYPE-C interface.
  • the USB D+/D- signal input pin is electrically connected; when the USB TYPE-C is connected to the ALT MODE device, the USB D+/D- signal pin and the control chip in the USB TYPE-C interface are strobed.
  • the signal pins of the interactive billboard information are electrically connected.
  • the SOC chip includes: a pin for inputting a USB SSTX/RX signal, and a pin for inputting in an HDMI format;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • the control pin of the composite switch chip is electrically connected to another control signal output pin of the control chip, and one of the two output pins of the composite switch chip is connected to the SOC chip.
  • the pin for the USB SSTX/RX signal input is electrically connected; the other is electrically connected to the pin of the SOC chip that is HDMI format input.
  • the electronic terminal device further includes a DP-HDMI module, where the HPD terminal of the DP-HDMI module is connected to the CC module, and is used for determining a connection state between the external device and the DP-HDMI module, and the another path is An input end of the DP-HDMI module is electrically connected, and an output end of the DP-HDMI module is electrically connected to the pin of the SOC chip that can be input in an HDMI format.
  • an embodiment of the present invention provides a signal input circuit that is compatible with USB and ALT MODE device data input and can implement billboard information interaction, including:
  • the control chip is electrically connected to the CC pin of the USB TYPE-C interface, and has a pin for connecting the USB D+/D- signal;
  • a control pin is electrically connected to a control signal output pin of the control chip; and an input pin is electrically connected to the USB D+/D- signal pin of the USB TYPE-C interface;
  • One of the two output pins is electrically connected to the pin of the SOC chip for USB D+/D- input; the other is connected to the control chip for USB D+/D- signal connection.
  • the pins are electrically connected.
  • it also includes:
  • the SOC chip includes a pin for inputting a USB SSTX/RX signal, and a pin for inputting in an HDMI format;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • the control pin of the composite switch chip is electrically connected to another control signal output pin of the control chip, and one of the two output pins of the composite switch chip is connected to the SOC chip.
  • the pin for the USB SSTX/RX signal input is electrically connected; the other is electrically connected to the pin of the SOC chip that is HDMI format input.
  • control chip is equipped with a billboard function, and the connection terminal of the control chip is electrically connected to the USB D+/D-signal pin, so that the control chip can feed the billboard information to the external device. .
  • an embodiment of the present invention provides a signal input circuit that is compatible with USB and ALT MODE device data input and can implement billboard information interaction, including:
  • control chip configured to control an electrical connection between the D+/D- input terminal of the USB TYPE-C interface and a connection terminal of the SOC chip according to the identification type of the USB TYPE-C interface access device, and the USB TYPE-C
  • the D+/D- input terminal of the interface and the connection terminal of the control chip capable of interacting with the billboard information are electrically connected, and at the same time, only one of the two electrical connection paths is electrically connected.
  • USB TYPE-C interface with USB D+/D- signal pins
  • the control chip is electrically connected to the CC pin of the USB TYPE-C interface, and has a pin for connecting the USB D+/D- signal;
  • a control pin is electrically connected to a control signal output pin of the control chip; and an input pin is electrically connected to the USB D+/D- signal pin of the USB TYPE-C interface;
  • One of the two output pins is electrically connected to the pin of the SOC chip for USB D+/D- input; the other is connected to the control chip for USB D+/D- signal connection.
  • the pins are electrically connected.
  • the SOC chip includes: a pin for inputting a USB SSTX/RX signal, and a pin for inputting in an HDMI format;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • the control pin of the composite switch chip is electrically connected to another control signal output pin of the control chip, and one of the two output pins of the composite switch chip is connected to the SOC chip.
  • the pin for USB SSTX/RX signal input is electrically connected; the other is electrically connected to the pin of the SOC chip that is HDMI format input.
  • an embodiment of the present invention provides a signal input method that can be compatible with external device data input of USB and ALT MODE and can implement billboard information interaction, including:
  • USB TYPE-C access signal type controlling an electrical connection between the D+/D- input terminal of the USB TYPE-C interface and a connection terminal of the SOC chip, and a D+/D- input in the USB TYPE-C interface
  • the terminal and the connection terminal of the control chip that can exchange the billboard information are electrically connected, so that only one of the two electrical connection paths is electrically connected at the same time.
  • the composite switch chip receives the control signal of the control chip, and according to the control signal, one of the two output pins that can be selected, and one of the SOC chips can be used for inputting the USB SSTX/RX signal.
  • the pins are electrically connected; the other is electrically coupled to the pins of the SOC chip that are HDMI format input.
  • USB TYPE-C when the USB TYPE-C is connected to the USB protocol signal type, the electrical connection between the USB D+/D- terminal of the strobe USB TYPE-C interface and the connection terminal of the SOC chip is recognized; when the USB TYPE is recognized.
  • C accesses the ALT MODE protocol signal type the USB D+/D- terminal in the USB TYPE-C interface is strobed to be electrically connected to the connection terminal of the control chip for interacting with the billboard information.
  • USB TYPE-C when the USB TYPE-C is connected to the ALT MODE protocol signal type, it is determined whether the VDM information of the external device matches the VDM information pre-stored in the control chip, and if the information does not match, the USB TYPE is strobed.
  • the USB D+/D- terminal in the -C interface is electrically connected to the connection terminal of the control chip for interacting with the billboard information.
  • an embodiment of the present invention provides a signal input method that can be compatible with USB and ALT MODE external device data input and can implement billboard information interaction, including:
  • USB TYPE-C When the USB TYPE-C is connected to the USB protocol signal type, the electrical connection between the USB D+/D- terminal of the strobe USB TYPE-C interface and the connection terminal of the SOC chip is enabled, so that the USB external device can pass the SOC chip.
  • the electrical connection between the connection terminals enables the ALT MODE external device to interact with the PD module via the USB D+/D- terminal.
  • the composite switch chip strobes the USB TYPE-C interface, and the high-speed differential pair signal pin is electrically connected to the USB signal connection terminal of the SOC, so that the USB external The device can transmit data with the SOC chip through the USB SSTX/RX terminal;
  • the composite switch chip When the USB TYPE-C is connected to the ALT MODE protocol signal type, the composite switch chip strobes at least one high-speed differential pair signal pin of the USB TYPE C interface to electrically conduct with the HDMI signal connection terminal of the SOC, so that the ALT MODE external device The audio and video data is transmitted with the SOC chip through a terminal that can transmit HDMI signals.
  • an embodiment of the present invention provides a signal input method that can be compatible with external device data input of USB and ALT MODE and can implement billboard information interaction, including:
  • the USB TYPE-C interface is an ALT MODE protocol signal type
  • the connection between the USB D+/D- terminal in the USB TYPE-C interface and the connection terminal of the control chip for interacting with the billboard information is strobed, Enabling an ALT MODE external device to interact with the control chip via the USB D+/D- terminal,
  • USB D+/D- input terminal is electrically connected to the connection terminal of the SOC chip by default.
  • an embodiment of the present invention provides an electronic terminal device that receives data from an external device through a USB TYPE C interface, and includes:
  • a SOC chip a pin for inputting the USB D+/D- signal
  • the USB D+/D- signal pin in the USB TYPE C is electrically connected to a pin of the SOC chip for inputting the USB D+/D- signal, so that the USB access device and the SOC chip pass the USB D+/D-channel for data transmission.
  • the SOC chip a pin for inputting a USB SSTX/RX signal, and a pin for inputting in an HDMI format;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • the control pin of the composite switch chip is electrically connected to another control signal output pin of the control chip, and one of the two output pins of the composite switch chip is The pins of the SOC chip that are available for input of the USB SSTX/RX signal are electrically connected; the other is electrically connected to the pins of the SOC chip that are HDMI format input.
  • an embodiment of the present invention provides a television terminal, including: a display screen configured to display a screen; a power supply circuit configured to provide power to the device, and a signal input circuit configured to receive data from the external device;
  • the signal input circuit includes:
  • a SOC chip a pin for inputting the USB D+/D- signal
  • the USB D+/D- signal pin in the USB TYPE C is electrically connected to a pin of the SOC chip for inputting the USB D+/D- signal, so that the USB access device and the SOC chip pass the USB D+/D-channel for data transmission.
  • it also includes:
  • the SOC chip a pin for inputting a USB SSTX/RX signal, and a pin for inputting in an HDMI format;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • control signal input pin of the composite switch chip is electrically connected to another control signal output pin of the control chip, and one of the two output pins of the composite switch chip is The pins of the SOC chip that are available for input of the USB SSTX/RX signal are electrically connected; the other is electrically connected to the pin of the SOC chip that is HDMI format input.
  • an embodiment of the present invention provides a signal input circuit for data input of an external device compatible with USB and ALT MODE, and the signal input circuit includes:
  • a SOC chip a pin for inputting the USB D+/D- signal
  • the USB D+/D- signal pin in the USB TYPE C is electrically connected to a pin of the SOC chip for inputting the USB D+/D- signal, so that the USB access device and the SOC chip pass the USB D+/D-channel for data transmission.
  • the SOC chip a pin for inputting a USB SSTX/RX signal, and a pin for inputting in an HDMI format;
  • the composite switch chip has two high-speed differential pair signal input pins, and is connected with the USB TYPE-C interface USB TX1/2 and RX1/2;
  • control signal input pin of the composite switch chip is electrically connected to another control signal output pin of the control chip, and one of the two output pins of the composite switch chip is The pins of the SOC chip that are available for input of the USB SSTX/RX signal are electrically connected; the other is electrically connected to the pin of the SOC chip that is HDMI format input.
  • an embodiment of the present invention provides a signal input method for data input of an external device compatible with USB and ALT MODE, including:
  • the high-speed differential pair signal pin of the composite switch chip strobe USB TYPE-C interface is electrically connected to the USB signal connection terminal of the SOC, so that the USB external device can be connected with the SOC.
  • the chip transmits data through the USB SSTX/RX terminal; when the USB TYPE-C is connected to the ALT MODE protocol signal type, the composite switch chip strobes at least one high-speed differential pair signal pin and the SOC HDMI signal of the USB TYPE C interface.
  • the connection terminal is electrically connected, so that the ALT MODE external device and the SOC chip transmit audio and video data through terminals that can transmit HDMI signals.
  • an embodiment of the present invention provides a television set with a USB TYPE-C interface, including:
  • USB TYPE-C interface for connecting external devices
  • a microprocessor chip connected to the SOC chip and the USB TYPE-C interface, supports USB Type-C CC communication and PD protocol, and has a billboard UFP interface for outputting a billboard signal in the case of ALT MODE;
  • a switching device controlled by the microprocessor chip for connecting a USB D+/D- terminal of the USB TYPE-C interface to a USB DFP interface of the SOC chip, or a billboard UFP interface of the microprocessor chip Connected.
  • the microprocessor chip detects an access device type, and when the USB protocol device is connected, the switch device is in a default state, so that the USB D+/D- terminal of the USB Type-C interface and the USB of the SOC chip are The DFP interface is connected; when the ALT MODE device is connected, the switching device is controlled by the microprocessor chip, so that the USB D+/D- terminal of the USB Type-C interface is switched to be connected to the billboard UFP interface of the microprocessor chip.
  • the television further comprises a composite switch chip.
  • the microprocessor chip controls the composite switch chip to switch, so that the TX1/RX1 and the TX2/RX2 terminal of the USB Type-C interface are Connected to the USB DFP interface of the SOC chip.
  • the SOC chip further includes an HDMI SINK interface
  • the television further includes a composite switch chip and a DP-HDMI module connected between the composite switch chip and the HDMI SINK interface, where the DP-HDMI module is used for DP
  • the signal is converted to an HDMI signal for display by the SOC chip.
  • the USB Type-C interface is initially set to a dual-purpose USB mode, and when a different character device is accessed, a role change is performed to match.
  • the USB Type-C interface is adapted to be a USB UFP device; if the connected device supports the DP DFP mode, the mode is switched to the DO DFP mode for DP signal transmission.
  • the USB Type-C interface is adapted to be a USB DFP device when the USB UFP device is connected.
  • the USB Type-C interface negotiates with an external device, and the USB Type-C interface is adapted to be a DP UFP device.
  • the TV is powered externally as POWER SOURCE.
  • the switch of the optional link of the USB2.0 signal and the billboard signal is realized, which can be realized.
  • the USB 2.0 signal transmission function is compatible with the billboard signal transmission function.
  • the USB Type-C interface main control module strobes the link between the USB device and the SOC chip to implement the USB 2.0 signal transmission function.
  • the USB Type-C interface main control module 220 strobes the link between the billboard signal output interface and the ALT MODE device, thereby implementing the Billboard function.
  • FIG. 1(a) is a schematic structural diagram of a monitor device when a USB-Type-C interface is applied to a Monitor device in the prior art
  • FIG. 1(b) is a schematic diagram showing the architecture of the interface conflict of the television terminal when the USB-Type-C interface is applied to the television terminal;
  • FIG. 2 is a schematic structural diagram of a television terminal device when a USB-Type-C interface is applied to a television terminal device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of data transmission of a terminal device with a USB Type-C interface in a USB mode according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of data transmission of a terminal device with a USB Type-C interface in an Alt Mode according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a terminal device with a USB Type-C interface according to the present invention.
  • FIG. 6 is a schematic structural diagram of a data communication apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a television terminal device when a USB-Type-C interface is applied to a television terminal device according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a circuit in which a terminal device is in a working state when a USB-Type-C interface is connected to a USB device according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a circuit in which a terminal device is in an active state when an external ALT MODE device is externally connected to a USB-Type-C interface according to an embodiment of the present disclosure
  • FIG. 10 is a schematic structural diagram of a television set with a USB TYPE-C interface according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a television set of the present invention when a USB device is connected according to an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of a television set connected to a DP device according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a circuit related to a USB-C interface of a television according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a circuit related to a USB-C interface of a television according to an embodiment of the present invention.
  • FIG. 15 is a structural block diagram of a television terminal according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a television terminal according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a USB structure of a television terminal when the external device is a UFP device according to an embodiment of the present disclosure
  • FIG. 18 is a schematic diagram of a USB structure of a television terminal when the external device is a DP device according to an embodiment of the present disclosure
  • FIG. 19 is a schematic flowchart of a method for controlling a television terminal according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a USB-C interface application of a television terminal according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a selection switch device according to an embodiment of the present invention.
  • 22a to 22c are schematic diagrams showing the operation of a composite switch chip according to an embodiment of the present invention.
  • FIG. 23 is a schematic structural diagram of another application of a USB-C interface of a television terminal according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic diagram of a working process when an external USB device is provided according to an embodiment of the present invention.
  • 25 is a schematic diagram of a workflow when an external ALT MODE device is provided according to an embodiment of the present invention.
  • FIG. 26 is a schematic structural diagram of a USB-C interface application of a television terminal according to an embodiment of the present disclosure
  • FIG. 27 is a schematic structural diagram of an electronic terminal device according to an embodiment of the present disclosure.
  • FIG. 28 is a schematic structural diagram of a television terminal according to an embodiment of the present invention.
  • FIG. 29 is a schematic flowchart of a USB-C application process according to an embodiment of the present disclosure.
  • FIG. 30 is a schematic structural diagram of a USB-C interface application of a television terminal according to Embodiment 1 of the present invention.
  • FIG. 31 is a schematic structural diagram of an electronic terminal device according to Embodiment 2 of the present invention.
  • FIG. 32 is a schematic structural diagram of a television terminal according to Embodiment 3 of the present invention.
  • FIG. 33 is a schematic flowchart of a USB-C application process according to Embodiment 4 of the present invention.
  • a plurality of the present application means two or more.
  • the terms "first”, “second” and the like are used only to distinguish the purpose of description, and are not to be understood as indicating or implying relative importance, nor as an indication. Or suggest the order.
  • DP the abbreviation of Display Port
  • Display Port 1.1 standard supports 10.8Gb/S transmission bandwidth
  • HDMI 1.3 standard can support 10.2G/s. Transmission bandwidth.
  • HDMI the abbreviation of High Definition Multimedia Interface
  • High Definition Multimedia Interface is a high-definition multimedia interface. It is a digital video/audio interface technology. It is a dedicated digital interface for image transmission. It can transmit audio and video signals at the same time. The highest data transmission speed is 48Gbps. Can be used to transfer 4K images.
  • DP ALT MODE referred to as DP replaceable mode
  • DP replaceable mode is a DP alternative mode designed for USB Type-C interface specifications, enabling applications equipped with USB Type-C interfaces to support high-speed USB signals and DP with only one cable. Signal transmission, and at the same time support power supply to USB Type-C interface external devices.
  • HDMI ALT MODE referred to as HDMI replaceable mode
  • HDMI replaceable mode is an HDMI alternative mode designed for USB Type-C interface specifications, enabling applications with USB Type-C interface to support high-speed USB signals and HDMI with only one cable. Signal transmission, and at the same time support power supply to USB Type-C interface external devices.
  • the ALT MODE device in this application such as computers, notebooks, PAD mobile terminals and other electronic devices, can support DP ALT MODE or can support HDMI ALT MODE.
  • USB Type-C interface supports USB 2.0 signal, USB 3.0 signal and high-definition digital display signal (referred to as DP signal) transmission.
  • the maximum transmission rate of the USB Type-C interface is 10 Gb/s, and the power transmission of the USB Type-C interface is bidirectional.
  • the USB Type-C interface is used in the terminal device to support the terminal device to charge the device externally connected to the USB Type-C interface. It also supports devices connected to the USB Type-C interface to charge the terminal device.
  • the USB Type-C interface can be configured as a downstream port (DFP), an uplink port (UFP), or a dual-purpose port (referred to as a DRP port).
  • UFP interface uplink interface, also known as uplink port
  • UFP interface can be used as a USB peripheral interface.
  • the UFP interface can be used as a peripheral port, and the port that interacts with it is a host port.
  • the UFP interface is connected as a peripheral to a host device.
  • the terminal device externally connects the ALT MODE device through the USB Type-C interface
  • the billboard signal output interface of the PD module is equivalent to a UFP interface, and the USB Type-C interface at this time.
  • the external device is the host device, and the terminal device is equivalent to the peripheral device of the USB Type-C interface external device.
  • the DFP interface, the downlink interface, also referred to as the downlink port, is the USB host interface.
  • the DFP interface can be used as a host port, and the port that interacts with the DFP interface is used as a peripheral port.
  • the DFP interface is connected as a host to a peripheral device. Similar to the USB interface on a home computer, the peripheral device can be inserted.
  • the terminal device when the terminal device externally connects the USB device through the USB Type-C interface, when there is a need to send a USB2.0 signal or a USB3.0 signal, the USB interface on the SOC chip functions as a DFP interface, and at this time, the USB Type The USB device external to the -C interface is a peripheral device, and the terminal device is equivalent to the host of the USB Type-C interface external device.
  • the USB signal is a differential signal, and the USB signal is transmitted through a differential pair, such as a D+D-differential pair.
  • D+ and D- are a pair of differential signals, which are responsible for transmitting data, a pair of lines transmitting one signal, and two lines transmitting signals. The amplitudes are the same in opposite polarity.
  • the so-called differential signal means that when a high level is to be transmitted, one line (such as D+) sends a high level, while the other paired line transmits a low level. When a low level is to be sent, D+ Send low, D- send high, so the signal sent by the two lines is reversed, which can improve the anti-interference ability, which can increase the data transmission rate.
  • the USB signal includes USB2.0 signal and USB3.0 signal.
  • the USB2.0 signal is a half-duplex differential signal. One-way data transmission, the transmission direction can be pre-negotiated, and the data signal line of the USB2.0 signal is a low-speed differential pair. The transmission rate is 1.5Mbps, 12Mbps or 480Mbps.
  • the USB3.0 signal is a full-duplex differential signal that supports simultaneous bidirectional data transmission.
  • the data signal line of the USB 3.0 signal is a high speed differential pair with a data transmission rate of 5.0 Gbps.
  • the data transmission line of the USB2.0 signal in this application is defined as a USB D+/D-pair
  • the data transmission line of the USB3.0 signal is defined as a USB SSTX/RX differential pair.
  • the data input pin or data output pin of the USB2.0 signal is defined as a USB D+/D-differential terminal
  • the data input pin or data output pin of the USB3.0 signal is defined as a USB SSTX/RX differential terminal.
  • the data transmission line of the HDMI signal is also a high-speed differential pair, which is defined as an HDMI signal channel, such as D0 P/N, D1 P/N, D2 P/N, CLK P/N (P in FIG. 3).
  • /N is a high-speed differential pair, corresponding to two transmission lines, the transmitted signal amplitude is the same, the polarity is opposite).
  • the data transmission line of the DP signal is also a high-speed differential pair, which is defined as a DP signal channel, such as DP0 P/N, DP1 P/N, DP2 P/N and DP3 P/N in FIG.
  • the data input pin or data output pin of the DP signal is defined as a DP differential terminal
  • the data input pin or data output pin of the HDMI signal is defined as an HDMI differential terminal.
  • Billboard signal refers to the Billboard communication signal specified by the Billboard standard, which supports ALT MODE, that is, when the TV terminal externally connects to the ALT MODE device (for example, electronic devices such as computers, notebooks, mobile terminals, etc.) through the USB Type-C interface, if the TV terminal appears If the display is abnormal, the TV terminal should feed back the billboard signal to the ALT MODE device, so that the ALT MODE device detects the abnormal cause according to the billboard.
  • the ALT MODE device for example, electronic devices such as computers, notebooks, mobile terminals, etc.
  • the Billboard signal output interface (including the Billboard signal output pin) is set in the PD module of the C interface main control module, and the PD module is a USB power supply specification that supports the USB Type-C interface protocol standard, that is, "USB Power Delivery Specification" Abbreviation, support different power supply requirements of USB Type-C interface external devices.
  • the CC module supports the USB Type-C interface protocol CC communication, and is used for CC communication with a device externally connected to the USB Type-C interface, and the CC module and the device externally connected to the USB Type-C interface perform CC communication as a signal.
  • CC signal the USB Type-C interface protocol
  • the Monitor device when the USB Type-C interface is applied to the Monitor device, the Monitor device has two application requirements for the USB D+/D-differential terminal of the USB Type-C interface, one requirement is the USB2.0.
  • One of the transmission requirements one is the billboard signal transmission needs.
  • the inventor of the present invention found that when the USB-Type-C interface is applied to the Monitor device, the USB 3.0 HUB device can be used as a connector to satisfy both of these requirements, and the USB 2.0 transmission function and the billboard function are compatible.
  • the inventors of the present invention found that when the USB-Type-C interface is applied to the Monitor device, as shown in FIG. 1(a), the Monitor device externally connects the USB device or the ALT MODE device through the USB-Type-C interface.
  • the Monitor device is equivalent to a peripheral device of the external device. Therefore, the USB interface and the billboard signal output interface of the Monitor device are equivalent to the uplink port UFP port.
  • a USB3.0HUB device is integrated at the USB interface of the Monitor device, and the USB3.0HUB device includes two output interfaces.
  • the first output interface is electrically connected with the billboard signal output interface to form a first path; the second output interface is electrically connected with the USB interface of the Monitor device to form a second path, and the data input interface of the USB3.0HUB device and the USB- The Type-C interface is electrically connected.
  • the USB3.0HUB device provides two channels.
  • the USB data of the external device is transmitted using the USB-Type-C interface
  • the USB data is transmitted from the second path to the USB interface of the Monitor device.
  • HDMI data is transmitted to the display of the Monitor device, and when the HDMI data is abnormal, the billboard signal output interface is transmitted through the second path.
  • HDMI data is transmitted to the display of the Monitor device, and when the HDMI data is abnormal, the billboard signal output interface is transmitted through the second path.
  • the USB D+/D-differential terminal of the TV terminal for the USB Type-C interface also has the USB 2.0. signal transmission requirement and the billboard signal transmission requirement. .
  • the inventor of the present invention found that when the external device of the USB Type-C interface is a USB device (USB2.0 device or USB3.0 device), the USB 2.0 signal needs to pass the USB D+/D-differential in the USB Type-C interface.
  • the terminal is transmitted to the SOC chip of the television terminal; when the external device is an ALT MODE device (for example, an electronic device such as a computer, a notebook, a mobile terminal, etc.), if the television terminal displays an abnormality, the television terminal usually displays the billboard information in the PD module.
  • the ALT MODE device for example, an electronic device such as a computer, a notebook, a mobile terminal, etc.
  • USB D+/D-differential terminals that can be used when the C interface is connected to an external device is fixed, and one-way transmission is supported, and the data transmission link of the USB 2.0 signal and the Billboard signal cannot be simultaneously multiplexed to the USB Type-C.
  • USB D+/D-differential terminal of the interface therefore, if the USB D+/D-differential terminal of the USB Type-C interface is directly connected to the pin of the SOC chip for USB D+/D- signal input, then USB Type When the -C interface is connected to the DP ALT MODE device, the Billboard function cannot be implemented; if the USB D+/D-differential terminal of the USB Type-C interface is connected to the pin for the USB D+/D- signal input in the PD module to implement the Billboard Function, when the USB Type-C interface is connected to a USB device, the USB 2.0 signal transmission function cannot be realized.
  • the inventors of the present invention have also found that when the USB Type-C interface is applied to a television terminal, the incompatibility between the Billboard function and the USB 2.0 signal transmission function cannot be solved even if the USB 3.0 HUB is used.
  • the TV terminal when the TV terminal interacts with the USB2.0 signal on the external device connected to the USB-Type-C interface, the TV terminal can be used as the host of the USB-Type-C interface external device, USB-Type- The external device of the C interface can be used as a peripheral of the TV terminal.
  • the USB interface on the SOC chip of the TV terminal is equivalent to the DFP interface, and the DFP interface of the two outputs of the USB3.0HUB device does not match, so the compatibility of the Billboard function and the USB 2.0 signal transmission function cannot be solved using the USB3.0HUB.
  • the terminal device in the present application may be a television terminal, as shown in FIG. 2, and mainly includes:
  • the SOC chip 210 is provided with a DFP interface, and the DFP interface is connected to the switch module 240 through a USB D+/D-differential pair, and the USB D+/D- differential pair between the DFP interface and the switch module 240 is the first channel;
  • the USB Type-C interface main control module 220 is provided with a UFP interface, and the UFP interface is connected to the switch module 240 through the USB D+/D-differential pair, and the USB D+/D-differential pair between the UFP interface and the switch module 240 is the second. aisle;
  • USB Type-C interface 230 connected to the switch module 240 via a USB D+/D-differential pair;
  • the USB Type-C interface main control module 220 is further connected to the switch module 240 through the control signal line C1 for controlling the switch module 240 to conduct the first channel, close the second channel, or turn on the second channel, and close the first channel. .
  • the CC module in the USB Type-C interface main control module 220 realizes the identification of the type of the device externally connected to the USB Type-C interface 230, and according to the identified Type, which implements switching between the first channel and the second channel.
  • the USB Type-C interface main control module 220 is further connected to the USB Type-C interface 230 through the control signal line C2, and is configured to exchange CC signals with the USB Type-C interface 230, according to the identified external device.
  • the control switch module 240 turns on the first channel, turns off the second channel, or turns on the second channel to close the first channel.
  • the USB Type-C interface main control module 220 is configured to: when the type of the device externally connected to the USB Type-C interface 230 is a USB device, the control switch module 240 turns on the first channel and turns off the second channel; When it is recognized that the type of the device externally connected to the USB Type-C interface 230 is the ALT MODE device, the second channel is turned on, and the first channel is turned off.
  • the switching of the optional link of the USB2.0 signal and the billboard signal is realized. It can realize the compatibility of USB2.0 signal transmission function and billboard signal transmission function.
  • the USB Type-C interface main control module 220 strobes the link between the USB device and the SOC chip 210, so that the USB D+/D-differential terminal of the USB Type-C interface 230 It is connected with the pin of the SOC chip 210 for USB D+/D- signal input, and realizes the transmission function of the USB 2.0 signal.
  • the USB Type-C interface main control module 220 strobes the link between the billboard signal output interface and the ALT MODE device, so that the USB Type-C interface 230 is USB D+/D.
  • the differential terminal is connected to the pin of the PD module in the USB Type-C interface main control module 220 for USB D+/D- signal input, thereby implementing the Billboard function.
  • the USB3.0 signal and the DP or HDMI signal are transmitted by the high-speed differential pair, in order to reduce the signal transmission line, the USB3.0 signal and the DP or HDMI signal can be configured to share the high-speed differential pair, and the USB Type-C interface 230 is connected to the USB device.
  • the USB Type-C interface 230 is connected to the ALT MODE device, a part of the high-speed differential pair is selected to transmit the DP or HDMI signal.
  • the terminal device with the USB Type-C interface includes the USB Type-C interface, the USB Type-C interface main control module, the switch module, and the SoC chip, and the USB Type-C interface can receive the external device.
  • the transmitted data, the switch module can be connected with the USB Type-C interface main control module, and the USB Type-C interface main control module can strobe the USB D+/D- signal pin and the SoC chip when confirming the type of the external device.
  • the interface for transmitting USB D+/D- signals or the interface of the strobed USB D+/D- signal pins to the transmission billboard information in the controller enables the process of transmitting USB D+/D- signals from the external device to the SoC chip.
  • the present embodiment is based on the USB Type-C interface, and recognizes the working mode of the external device by adding a switch, and is compatible with the transmission of the USB D+/D-signal and the billboard information of the billboard module, and can also meet the requirements of the plug-in direction. Claim.
  • the conduction of the transmission channel of the billboard information completes the data signal transmission of the SoC chip and the external device, and solves the problem that the SoC chip cannot realize the interface and the wiring direction requirement by using the USB Type-C interface.
  • the controller can determine the strobing state of the switch module according to the working mode of the external device.
  • the present application further provides two data transmission diagrams of FIG. 3 and FIG. 4, wherein the controller is an implementation manner of the USB Type-C interface main control module, and the selection switch unit is the above. An implementation of a switch module. Referring to FIG. 3 and FIG.
  • the controller connects the USB D+/D- signal pin to the interface of the transmission USB D+/D- signal in the SoC chip according to the working mode of the external device, or strobes the USB D+/
  • the specific process of connecting the D-signal pin to the interface of the transmission billboard information in the controller is described in detail.
  • FIG. 3 is a schematic diagram of data transmission of a terminal device with a USB Type-C interface in a USB mode according to the present invention
  • FIG. 4 is a schematic diagram of data transmission of a terminal device with a USB Type-C interface according to the present invention in an Alt Mode.
  • the controller is configured to strobe the USB D+/D- signal pin and the transmission USB D+/D in the SoC chip when determining that the working mode of the external device is the USB mode. - an interface of the signal to transmit a USB D+/D- signal to the SoC chip;
  • a controller configured to send a second control signal to the selection switch unit when determining that the working mode of the external device is Alt Mode, so that the selection switch unit strobes the USB D+/D- signal pin and the controller according to the second control signal
  • the interface connection for transmitting the billboard information, so that the external device performs the operation indicated by the billboard information.
  • the terminal device when the controller determines that the working mode of the external device is the USB mode, the terminal device strobes the USB D+/D-signal pin and the USB D+/D- signal in the SoC chip by default.
  • the interface is connected, so that the terminal device can accurately provide a channel for transmitting the USB D+/D- signal to the external device, so that the external device can transmit the USB D+/D- signal to the SoC chip.
  • the controller when the controller determines that the working mode of the external device is Alt Mode, the controller sends a second control signal K1 to the selection switch unit.
  • the control selection switch unit can connect the USB D+/D-signal pin to the interface of the transmission billboard information in the controller according to the second control signal K1, so that the external device can monitor the information interaction process between the SoC chip and the external device in real time. An abnormal situation will occur. When the external device does not obtain the billboard information, or the billboard information indicates that no abnormality occurs, it indicates that the information exchange between the external device and the terminal device is normal.
  • the external device When the external device obtains the billboard information, it may perform an operation indicated by the billboard information, such as an operation of reconnecting with the terminal device, or an operation of adjusting its own working mode. Therefore, the external device can monitor the information exchange between itself and the terminal device in real time, and it is convenient to adopt corresponding measures when an abnormality occurs, thereby providing guarantee for the normal transmission of data.
  • an operation indicated by the billboard information such as an operation of reconnecting with the terminal device, or an operation of adjusting its own working mode. Therefore, the external device can monitor the information exchange between itself and the terminal device in real time, and it is convenient to adopt corresponding measures when an abnormality occurs, thereby providing guarantee for the normal transmission of data.
  • the terminal device further includes a multiplexing switch 250, which is used for signal multiplexing of a high-speed differential pair of a USB 3.0 signal and a DP or HDMI signal, and is compatible with USB 3.0.
  • the multiplexing function of the signal and DP or HDMI signal, the high-speed differential pair between the multiplexing switch 250 and the USB Type-C interface 230 may be defined as USB SSTX P/N and USB SSRX P/N, which can be used for USB3.
  • the transmission of the 0 signal can be used for the transmission of DP or HDMI signals.
  • the multiplexing switch 250 is connected to the USB Type-C interface 230 through a USB SSTX/RX differential pair, and is also connected to the DFP interface through a USB SSTX/RX differential pair, and the DFP interface of the multiplexing switch 250 and the SOC chip 210
  • the USB SSTX/RX differential pair is the third channel.
  • the SOC chip 210 includes an HDMI interface.
  • the SOC chip 210 does not support conversion between the DP signal and the HDMI signal, and only supports receiving or transmitting the HDMI signal, the DP signal needs to be converted into an HDMI signal before being transmitted.
  • the SOC chip 210 or to convert the HDMI signal into a DP signal in advance, it is transmitted to the multiplexing switch 250.
  • the terminal device further includes a protocol conversion module 260 for implementing conversion between the DP signal and the HDMI signal.
  • the multiplexing switch 250 is further connected to the DP interface of the protocol conversion module 260 through the DP signal channel, and the HDMI signal channel between the multiplexing switch 250 and the HDMI interface of the SOC chip 210 is the fourth channel.
  • the HDMI interface is connected to the HDMI interface of the protocol conversion module 260 through the HDMI signal channel; the protocol conversion module 260 is configured to convert the DP signal into an HDMI signal when the ALT MODE device transmits the DP signal, to The HDMI signal is transmitted to the HDMI interface of the SOC chip.
  • the SOC chip 210 when the SOC chip 210 supports conversion between the DP signal and the HDMI signal, the SOC chip 210 further includes a high-definition digital display interface DP interface for receiving or transmitting the DP signal; the multiplexing switch 250 also passes the DP signal. The channel is connected to the DP interface.
  • USB Type-C interface 230 When the USB Type-C interface 230 is connected to a USB device and performs USB3.0 signal transmission, it is required to strobe the transmission path of the USB3.0 signal, that is, a part between the strobe multiplexing switch 250 and the USB Type-C interface 230. A high speed differential pair, and a portion of the high speed differential pair between the multiplexer switch 250 and the SOC chip 210 is used to carry the USB 3.0 signal.
  • the USB Type-C interface 230 When the USB Type-C interface 230 is connected to the ALT MODE device and transmits the DP signal, the transmission path of the DP signal needs to be strobed, that is, a part of the high-speed differential pair between the multiplex switch 250 and the USB Type-C interface 230. And a portion of the high speed differential pair between the multiplexing switch 250 and the SOC chip 210 is used to transmit the DP signal.
  • the CC module realizes the identification of the type of the device externally connected to the USB Type-C interface 230, and implements the USB3.0 signal according to the identified type. Switching of the DP signal strobe function.
  • the USB Type-C interface 230 control module is further connected to the multiplexing switch 250 through the control signal line C2, and is used to control multiplexing when the type of the device externally connected to the USB Type-C interface 230 is recognized as a USB device.
  • the switch 250 turns on the third channel to turn off the fourth channel; or when it is recognized that the type of the device externally connected to the USB Type-C interface 230 is the ALT MODE device, the control multiplexing switch 250 turns on the fourth channel and turns off the third channel.
  • the composite switch unit in the figure is the aforementioned multiplexer switch 250.
  • the controller determines that the working mode of the external device is the USB mode, the controller sends a third control signal K2 to the composite switch unit.
  • the composite switch unit can strobe the X1/RX1 and TX2/RX2 pins to interface with the transmission USB SS TX/SS RX signals in the SoC chip according to the third control signal K2, so that the terminal device can provide an accurate external device.
  • the controller when the controller determines that the working mode of the external device is Alt Mode, the controller sends a fourth control signal K3 to the composite switch unit.
  • the composite switch unit can strobe the X1/RX1 and TX2/RX2 pins to interface with the transmitted audio and video signals in the SoC chip according to the fourth control signal K3, so that the terminal device can accurately transmit the audio and video signals to the external device.
  • the channel is convenient for the external device to transmit audio and video signals to the SoC chip.
  • the fourth control signal K3 and the third control signal K2 may be signals of the same channel and different contents, and may also be signals of different channels and different contents, which is not limited in this embodiment.
  • the terminal device transmits the audio and video signals to the SoC chip
  • the format of the audio and video signals in the external device may include multiple types, and the format of the audio and video signals required by the SoC chip may also include multiple types, therefore, The process of unifying the format of the audio and video signals of the external device and the SoC chip by the terminal device will be described in detail below with reference to FIG.
  • the terminal device further includes: a format conversion unit, that is, the foregoing protocol conversion module 260;
  • the input end of the format conversion unit is connected to the selection switch unit, and is used for format conversion of the audio and video signals transmitted by the selection switch unit to obtain a format converted audio and video signal;
  • the output of the format conversion unit is used to connect an interface for transmitting audio and video signals in the SoC chip to transmit the format converted audio and video signals to the SoC chip.
  • the input end of the format conversion unit can receive the audio and video signals transmitted by the selection switch unit through the connection with the selection switch unit. And the format conversion unit can format the audio and video signals to obtain the format converted audio and video signals.
  • the formatted audio and video signals can be directly recognized by the SoC chip, and therefore, the format conversion unit can transmit the format converted audio and video signals to the SoC chip for SoC chip identification.
  • the terminal device provided with the format conversion unit can convert the format of the audio and video signal transmitted by the external device into a data format that can be directly recognized by the SoC chip, and realize the unification of the format of the audio and video signals of the external device, thereby reducing the SoC.
  • the chip performs format conversion on the audio and video signals, which improves the subsequent operation of the SoC chip.
  • the external device can also make a request to the SoC chip to supply power to it.
  • the controller is further configured to enable the terminal device to supply power to the external device by using a power supply command on the CC pin when determining that the working mode of the external device is a USB PD.
  • the controller may enable the terminal device to supply power to the external device through a connection with the terminal device and the external device, respectively.
  • the controller specifically transmits the power supply command on the CC pin of the Type-C interface to implement the process of supplying power to the external device of the terminal device.
  • the computer having the Type-C interface is an external device
  • the television is the terminal device
  • the format of the audio and video signals received by the television is in the HDMI format
  • the terminal having the Type-C interface in this embodiment is used.
  • the specific process of data transmission by the device is:
  • the controller in the terminal device determines the working mode of the computer through the CC signal in the CC pin.
  • the controller When the working mode of the computer is USB mode, the controller strobes the USB D+/D- signal pin to interface with the transmission USB D+/D- signal in the SoC chip, so that the data in the computer can be transmitted by selecting the switch unit. To the TV. The controller also strobes the X1/RX1 and TX2/RX2 pins to interface with the transmitted USB SS TX/SS RX signals in the SoC chip, allowing data from the computer to be transmitted to the TV through the composite switch unit. Either way, at this time, the TV is used as a DFP.
  • the controller can strobe the USB D+/D- signal pin to connect with the interface of the controller in the controller.
  • the computer can first obtain the billboard information from the TV.
  • the billboard module that stores the billboard is used as UFP.
  • the computer can perform the operation of reconnecting the Type-C interface, or the computer can adjust its working mode to achieve the purpose of transmitting data to the television.
  • the format conversion unit may first format the audio and video signals, and then the controller strobes the interfaces of the X1/RX1 and TX2/RX2 pins and the transmitted audio and video signals in the SoC chip. Connect and transfer the formatted audio and video data to the TV.
  • the DFP interface on the SOC chip 210 includes a USB 2.0 interface and a USB 3.0 interface.
  • the DFP interface interacts with the USB 2.0 device externally connected to the USB Type-C interface 230 through the first channel; or, when USB Type- When the type of the external device of the C interface 230 is a USB 3.0 device, the DFP interface interacts with the USB 3.0 device externally connected to the USB Type-C interface 230 through the third channel.
  • the UFP interface in the C interface main control module 210 is a billboard signal output interface, and is available as an output of a billboard signal.
  • the billboard signal output interface can be connected to the ALT MODE device externally connected to the USB Type-C interface 230 through the second channel.
  • the billboard signal is sent; or, when the ALT MODE device interacts with the SOC chip normally, the HDMI interface interacts with the ALT MODE device externally connected to the USB Type-C interface 230 through the fourth channel.
  • the USB Type-C interface main control module 220 and the multiplexing switch 250 are integrated on different chips, or the multiplexing switch 250 and the USB Type-C interface main control module 220 are integrated on the same chip. .
  • the module function of the terminal device further provides a control method of the terminal device, which is used to implement switching of the optional link of the USB2.0 signal and the billboard signal, and implement the USB3.0 signal and the DP. Switching of the optional link of the signal. Specifically, it mainly includes:
  • the USB Type-C interface main control module 220 sends a first control signal or a second control signal to the switch module 240.
  • the first control signal is used to control the switch module 240 to conduct the first channel, close the second channel, and use the second control signal.
  • the control switch module 240 turns on the second channel to close the first channel.
  • the USB Type-C interface main control module 220 further includes: the USB Type-C interface main control module 220 and the USB Type-C interface 230 interact with the CC signal; and identify the USB according to the CC signal.
  • the USB Type-C interface main control module 220 sends the first control signal or the second control signal to the switch module 240, including: when identifying that the type of the device externally connected to the USB Type-C interface 230 is a USB device, The switch module 240 sends a first control signal; when it is recognized that the type of the device externally connected to the USB Type-C interface 230 is an ALT MODE device, the second control signal is sent to the switch module 240.
  • the USB Type-C interface main control module 220 further sends a third control signal to the multiplexing switch 250, where the third control signal is used.
  • the control multiplexing switch 250 turns on the third channel and turns off the fourth channel;
  • the USB Type-C interface main control module 220 also recognizes that the type of the device externally connected to the USB Type-C interface 230 is an ALT MODE device, and also to the multiplexing switch.
  • the 250 sends a fourth control signal, and the fourth control signal is used to control the multiplexing switch 250 to turn on the fourth channel and turn off the third channel.
  • the switch of the optional link of the USB2.0 signal and the billboard signal is realized, and the USB2.0 signal transmission function can be realized.
  • the USB2.0 signal transmission function can be realized.
  • the first control signal is sent to the switch module 240 to strobe the link between the USB device and the SOC chip 210, so that the USB Type-C interface 230 is USB D+/D-differential.
  • the terminal is connected with a pin of the SOC chip 210 for inputting a USB D+/D- signal to realize a USB 2.0 signal transmission function.
  • the second control signal is sent to the switch module 240 to strobe the link between the billboard signal output interface and the ALT MODE device, so that the USB Type-C interface 230 is USB D+/
  • the D-differential terminal is connected to the pin of the PD module for USB D+/D- signal input, thereby implementing the Billboard function.
  • the USB D+/D- signal in the external device is transmitted to the SoC chip.
  • the billboard information is transmitted to the external device, so that the external device performs the operation indicated by the billboard information.
  • the terminal device when the controller determines that the working mode of the external device is the USB mode, the terminal device strobes the USB D+/D-signal pin and the USB D+/D- signal in the SoC chip by default.
  • the interface is connected, so that the terminal device can provide a channel for transmitting the USB D+/D- signal to the external device, and transmit the USB D+/D- signal in the external device to the SoC chip.
  • the controller when determining that the working mode of the external device is Alt Mode, can strobe the interface of the USB D+/D-signal pin and the transmission billboard information in the controller, so that the billboard can be The information is transmitted to the external device, so that the external device performs the operation indicated by the billboard information, so that the external device can monitor the information exchange process between the SoC chip and the external device in real time whether an abnormal situation occurs.
  • the terminal device further includes: a composite switch unit, wherein the composite switch and the USB Type-C interface respectively , controller and SoC chip connection.
  • USB SS TX/SS RX signal in the external device is transmitted to the SoC chip according to the working mode of the external device;
  • the audio and video signals in the external device are transmitted to the SoC chip according to the working mode of the external device.
  • the terminal device can strobe the X1/RX1 and TX2/RX2 pins to interface with the transmission USB SS TX/SS RX signals in the SoC chip according to the working mode of the external device, and connect the USB SS TX/ in the external device.
  • the SS RX signal is transmitted to the SoC chip.
  • the terminal device can also strobe the X1/RX1 and TX2/RX2 pins to interface with the transmitted audio and video signals in the SoC chip according to the working mode of the external device, and transmit the audio and video signals in the external device to the SoC chip.
  • the control device can determine the strobe of the composite switch unit for different types of data channels according to the working mode of the external device, and therefore, according to FIG. 3 and FIG.
  • the working mode of the external device transmits the USB SS TX/SS RX signal in the external device to the SoC chip or according to the working mode of the external device, and the specific process of transmitting the audio and video signals in the external device to the SoC chip is described in detail.
  • the USB SS TX/SS RX signal in the external device is transmitted to the SoC chip.
  • the audio and video signals in the external device are transmitted to the SoC chip.
  • the billboard information is transmitted to the external device, so that the external device performs the operation indicated by the billboard information.
  • the terminal device when the terminal device determines that the working mode of the external device is the USB mode, the terminal device strobes the X1/RX1 and TX2/RX2 pins and transmits the USB SS TX/SS RX signal in the SoC chip.
  • the interface is connected so that the terminal device can provide a channel for transmitting the USB SS TX/SS RX signal to the external device, so that the USB SS TX/SS RX signal in the external device can be transmitted to the SoC chip in the terminal device.
  • the controller can strobe the X1/RX1 and TX2/RX2 pins to interface with the transmitted audio and video signals in the SoC chip.
  • the terminal device can provide a channel for transmitting the audio and video signals to the external device, so as to facilitate the transmission of the audio and video signals in the external device to the SoC chip in the terminal device.
  • the format of the audio and video signals of the external device is various, the format of the audio and video signals can be unified for the terminal device.
  • the audio and video signals transmitted by the selection switch unit are format converted to obtain a format converted audio and video signal.
  • the terminal device may perform format conversion on the audio and video signals to obtain a format converted audio and video signal.
  • the formatted audio and video signals can be directly recognized by the SoC chip, so the terminal device can transmit the format converted audio and video signals to the SoC chip for SoC chip identification, reducing the format of the SoC chip for audio and video signals.
  • the conversion operation improves the subsequent operation of the SoC chip.
  • the terminal device can also implement power supply to the external device.
  • the working mode of the external device is a USB PD
  • setting a power supply command to enable the terminal device to supply power to the external device.
  • the terminal device can identify the working mode of the external device by connecting with the external device.
  • the CC signal on the CC pin can be set as the power supply command, so that the terminal device can determine that the working mode of the external device is USB PD, and then the terminal device can be connected to the external device. The process of powering the device.
  • the embodiment provides a computer readable storage medium, on which a computer program is stored, and when the computer program is executed by the processor, the technical solution of the foregoing method embodiments of the data communication method of the present invention is implemented, and the implementation principle and technical effects thereof are implemented. Similar, it will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a data communication apparatus according to the present invention. As shown in FIG. 6, the data communication apparatus 600 of this embodiment may include:
  • a memory 602 configured to store executable instructions of the processor 601;
  • the processor 601 is configured to execute by executing the executable instruction: the data communication method, the method is applied to a terminal device having a USB Type-C interface, and the terminal device includes: a USB Type-C interface a controller, a selection switch unit, and a SoC chip, wherein the USB Type-C interface is for connecting an external device, and the controller is respectively connected to the USB Type-C interface and the selection switch unit, the selection The switching unit is also connected to the SoC chip; the method includes:
  • the transmitting according to the working mode of the external device, the USB D+/D- signal in the external device to the SoC chip, including:
  • the billboard information is transmitted to the external device, so that the external device performs the operation indicated by the billboard information.
  • the terminal device further includes: a composite switch unit, wherein the composite switch is respectively connected to the USB Type-C interface, the controller, and the SoC chip; the method further includes:
  • the transmitting according to the working mode of the external device, the USB SS TX/SS RX signal in the external device to the SoC chip, including:
  • Transmitting the audio and video signals in the external device to the SoC chip according to the working mode of the external device including:
  • the audio and video signals in the external device are transmitted to the SoC chip.
  • the terminal device further includes: a format conversion unit, wherein the format conversion unit is respectively connected to the selection switch unit and the SoC chip; and the audio and video signal in the external device is transmitted Before the SoC chip, it also includes:
  • the working mode of the external device includes: any one of USB2.0, USB3.0, USB3.1, and USB PD.
  • it also includes:
  • a power supply command is set to enable the terminal device to supply power to the external device.
  • the data communication device 600 may further include:
  • a bus 603 is provided for connecting the processor 601 and the memory 602.
  • the data communication device 600 of this embodiment may be used to perform the technical solutions in the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • the module function of the terminal device further provides a circuit connection relationship between modules of the terminal device, which is used to implement switching of the optional link of the USB2.0 signal and the billboard signal, and implement USB3. Switching of the .0 signal and the optional link of the DP signal.
  • the terminal device includes:
  • the SOC chip 210 provides a USB D+/D-differential terminal for inputting or outputting a USB D+/D- signal, and is electrically connected with a USB D+/D-differential terminal provided by the switch module 240 to form an optional first channel. ;
  • the USB Type-C interface main control module 210 provides a USB D+/D-differential terminal for inputting a USB D+/D- signal or an output of a billboard signal, and is electrically connected to a USB D+/D-differential terminal provided by the switch module 240. Forming an optional second channel;
  • the USB Type-C interface 230 provides a USB D+/D-differential terminal for inputting or outputting a USB D+/D- signal, and is electrically connected to a USB D+/D-differential terminal provided by the switch module 240;
  • the USB Type-C interface main control module 210 further provides a control signal output pin for outputting the first control signal or the second control signal, which is electrically connected to the control signal input pin of the switch module 240; the first control signal The first channel is turned on, the second channel is turned off, and the second control signal is used to turn on the second channel to close the first channel.
  • an optional USB Type-C interface main control module 210 provides a CC pin, and the provided CC pin is electrically connected to the CC pin of the USB Type-C interface 230.
  • the input or output of the CC signal is available to identify the type of device external to the C interface.
  • the USB Type-C interface main control module 210 is configured to identify the type of the device externally connected to the USB Type-USB TYPE-C interface 230 as a USB device.
  • the first control signal is input to the control signal input pin of the switch module 240; when the type of the device externally connected to the USB Type-C interface 230 is identified as the ALT MODE device, the control signal input pin input to the switch module 240 is input. Two control signals.
  • the terminal device further includes a multiplexing switch 250, and the connection relationship between the multiplexing switch 250 and the SOC chip 210, the USB Type-C interface 230, and the USB Type-C interface main control module 210 is:
  • the SOC chip 210 further provides a USB SSTX/RX differential terminal for inputting or outputting a USB3.0 signal, and is electrically connected to the USB SSTX/RX differential terminal of the multiplexing switch 250 to form a third channel;
  • the USB Type-C interface 230 also provides a USB SSTX/RX differential terminal for inputting or outputting a USB 3.0 signal, and is electrically connected to the USB SSTX/RX differential terminal of the multiplex switch 250;
  • the USBType-C interface main control module 210 further provides a control signal output pin for outputting a third control signal, which is electrically connected to one control signal input pin of the multiplexing switch 250; the third control signal is used for conducting Three channels, closing the fourth channel.
  • connection relationship between the multiplexing switch 250 and the SOC chip 210 further includes:
  • the SOC chip 210 further provides an HDMI differential terminal, and the HDMI differential terminal can be used for inputting or outputting an HDMI signal; the HDMI differential terminal is electrically connected to the HDMI differential terminal of the multiplexing switch 250 to form an optional fourth channel;
  • the USB Type-C interface main control module 210 further provides a control signal output pin for outputting the fourth control signal, and is electrically connected to another control signal input pin of the multiplexing switch 250; the fourth control signal is used for conducting The fourth channel closes the third channel.
  • the terminal device further includes a protocol conversion module 260.
  • the connection relationship between the protocol conversion module 260 and the SOC chip 210, the USB Type-C interface 230, and the USB Type-C interface main control module 210 is:
  • the SOC chip 210 further provides an HDMI differential terminal for inputting or outputting an HDMI signal; the HDMI differential terminal is electrically connected to the HDMI differential terminal of the protocol conversion module 260;
  • the protocol conversion module 260 further provides a high-definition digital display interface DP differential terminal, and the DP differential terminal is available for inputting or outputting a DP signal; the DP differential terminal is electrically connected to the DP differential terminal of the multiplexing switch 250 to form an optional fourth channel. ;
  • the USB Type-C interface main control module 210 further provides a control signal output pin for outputting the fourth control signal, and is electrically connected to another control signal input pin of the multiplexing switch 250; the fourth control signal is used for conducting The fourth channel closes the third channel.
  • the SOC chip 210 When the SOC chip 210 supports the conversion between the DP signal and the HDMI signal, the SOC chip 210 further includes a high-definition digital display interface DP interface for receiving or transmitting the DP signal, the multiplexing switch 250, and the DP signal channel and the SOC chip.
  • the DP interface of 210 is connected.
  • the USB Type-C interface main control module 210 is configured to recognize that the type of the device externally connected to the USB Type-USB TYPE-C interface 230 is a USB device.
  • the third control signal is input to the control signal input pin of the multiplexing switch 250
  • the type of the device externally connected to the USB Type-C interface 230 is identified as the ALT MODE device
  • the control signal input pin to the multiplexing switch 250 is input. Enter the fourth control signal.
  • the circuit connection relationship and control method between the switch module 240, the USB Type-USB Type-C interface main control module 220, and the SOC chip 210, through the USB2.0 signal and the optional link of the billboard signal The switch can realize the USB2.0 signal transmission function and the billboard signal transmission function.
  • the USB Type-C interface 230 is externally connected to the USB device, the link between the USB device and the SOC chip 210 is gated, so that the USB D+/D-differential terminal of the USB Type-C interface 230 and the SOC chip 210 are available for USB D+.
  • the /D- signal input pin is connected to realize the USB2.0 signal transmission function.
  • USB Type-C interface 230 When the USB Type-C interface 230 is connected to the ALT MODE device, the link between the billboard signal output interface and the ALT MODE device is strobed, so that the USB D+/D-differential terminal of the USB Type-C interface 230 and the PD module are available.
  • the USB D+/D- signal input is pin-connected to implement the Billboard function.
  • the present application provides a specific implementation of a terminal device.
  • the function of the USB Type-C interface main control module in the above embodiment is implemented by the C interface main control chip
  • the function of the switch module is implemented by the USB 2.0 switch 340
  • the function of the multiplexing switch is by the MUX chip (below) Implemented as MUX)
  • the function of the protocol conversion module is implemented by the protocol conversion chip, which is described in detail below.
  • the terminal device mainly includes a USB Type-C interface 320, a USB 2.0 switch 340, a C interface master chip 310, a multiplexing switch chip MUX 350, and a protocol conversion chip 360 (DP TO HDMI in FIG. 7). And the SOC chip 330.
  • the C interface main control chip 310 includes a CC module and a PD module.
  • the CC module can be used for CC communication with the USB Type-C interface 320, identifying the type of the device externally connected to the USB Type-C interface 320, and strobing the USB 2.0 switch 340 according to the type of the device externally connected to the USB Type-C interface 320.
  • the billboard signal is communicated between the PD module and the ALT MODE device, specifically the USB D+/D-differential terminal of the USB Type-C interface 320 and the USB D+/ in the PD module.
  • the D-signal input is pin-connected to implement the Billboard function.
  • the USB 2.0 switch 340 is strobed to the SOC chip 330, the USB D+/D-differential terminal of the USB Type-C interface 320 is connected to a pin of the SOC chip 330 for inputting a USB D+/D- signal to implement USB 2.0. Signal transmission function.
  • the device externally connected to the USB Type-C interface 320 is a USB device
  • the path between the USB 2.0 switch 340 and the USB 2.0 interface on the SOC chip 330 is turned on, and the switch 340 and USB are switched through the USB 2.0.
  • the link between the Type-C interface 320 implements USB 2.0 signal communication between the USB device externally connected to the USB Type-C interface 320 and the USB 2.0 interface on the SOC chip 330.
  • the external device of the USB Type-C interface 320 is an ALT MODE device
  • the path between the USB2.0 switch 340 and the Billboard signal output interface of the PD module is turned on, and the USB 2.0 switch 340 and the USB Type-C interface are connected.
  • the link between 320 enables the ALT MODE device externally connected to the USB Type-C interface 320 to communicate with the Billboard signal output interface for Billboard signals.
  • USB Type-C interface 320 the USB 2.0 changeover switch 340, and the USB D+/D-differential terminal on the SOC chip 330 will be described with reference to FIG.
  • connection terminals of the USB Type-C interface 320 mainly include a CC terminal, an SBU terminal, a power supply pin, a differential terminal, and a ground terminal.
  • the CC terminal includes an A5 terminal and a B5 terminal.
  • the SBU terminal includes an A8 terminal and a B8 terminal; the power supply pin includes an A4 terminal, an A9 terminal, a B4 terminal, and a B9 terminal.
  • the differential terminals include A2 terminal, B2 terminal, A3 terminal, B3 terminal, A6 terminal, B6 terminal, A7 terminal, B7 terminal, A10 terminal, B10 terminal, A11 terminal and B11 terminal; among them, A2 terminal, B2 terminal, A3 terminal, The B3 terminal, the A10 terminal, the B10 terminal, the A11 terminal, and the B11 terminal are high-speed differential terminals, and the A6 terminal, the B6 terminal, the A7 terminal, and the B7 terminal are low-speed differential terminals; the ground terminal includes an A1 terminal, an A12 terminal, a B1 terminal, and a B12 terminal.
  • connection terminals of the USB Type-C interface 320 are arranged in two layers, wherein A1 to A12 respectively represent 12 connection terminals from the left to the right, and B1 to B12 respectively indicate the lower layer from right to left. 12 connection terminals.
  • the USB D+/D-differential terminal of the USB Type-C interface 320 includes two pairs: A6 terminal, B6 terminal, A7 terminal and B7 terminal, which can be used for transmitting USB2.0 in the USB Type-C interface 320 protocol. Signal or Billboard signal.
  • the USB 2.0 switch 340 includes two USB D+/D-differential terminals for electrically connecting two pairs of USB D+/D-differential terminals of the USB Type-C interface 320, specifically through two USB D+/D - Differential pair connection, the two USB D+/D- differential pairs can be the USB data transmission line USB D P/N signal line in Figure 7, and the USB D P/N signal line is used to transmit the USB2.0 signal.
  • the USB 2.0 switch 340 also includes two additional USB D+/D-differential terminals, one of which is electrically connected to the USB D+/D-differential terminal of the PD module. Specifically, it is connected through a USB D+/D- differential pair, such as the USB data transmission line BB DP/DM signal line in FIG. 7, which can be used to send a Billboard signal.
  • the other pair of USB D+/D-differential terminals are electrically connected to a pair of USB D+/D-differential terminals on the SOC chip 330, specifically through a USB D+/D- differential pair, for example, USB2 in FIG. 0 Data transmission line SOC USB DP/N signal line, can be used to transmit USB2.0 signals.
  • the SOC chip 330 includes a USB interface including a USB 3.0 interface and a USB 2.0 interface, or a USB interface having the same USB signal processing function as the USB 2.0 interface and the USB 3.0 interface, which can be regarded as a USB 2.0 interface and A compatible interface for the USB 3.0 interface.
  • the USB interface provides USB D+/D-differential terminals and USB SSTX/RX differential terminals.
  • USB Type-C interface 320 the multiplexing switch chip MUX 350, and the USB SSTX/RX differential terminals on the SOC chip 330 will be described with reference to FIG.
  • the USB SSTX/RX differential terminal of the USB Type-C interface 320 includes 4 pairs (eight in total): A2 terminal, B2 terminal, A3 terminal, B3 terminal, A10 terminal, B10 terminal, A11 terminal, and B11 terminal. It can be used to transmit USB3.0 signals or DP signals in the USB Type-C interface 320 protocol.
  • connection relationship between the multiplexing switch chip MUX 350 and the USB Type-C interface 320 is:
  • the multiplexing switch chip MUX 350 includes four pairs of USB SSTX/RX differential terminals, and four pairs of USB SSTX/RX differential terminals with the USB Type-C interface 320 (A2 terminal, B2 terminal, A3 terminal, B3 terminal, A10 terminal, B10 terminal). , A11 terminal and B11 terminal) are electrically connected, specifically connected by 4 USB SSTX/RX differential pairs, such as SSTX1 P/N, SSRX1 P/N, SSTX2 P/N, SSRX2 P/N as shown in FIG.
  • the SSTX1 P/N is an optional data signal line for the USB Type-C interface 320 to send a USB3.0 signal or a DP signal to the multiplexing switch chip MUX 350, and the SSTX2P/N is another optional channel.
  • the USB Type-C interface 320 transmits a data signal line of a USB 3.0 signal or a DP signal to the multiplexer switch chip MUX 350.
  • the SSRX2 P/N is an optional data line for the USB Type-C interface 320 to receive the USB3.0 signal or DP signal sent by the multiplexing switch chip MUX 350.
  • the SSRX2P/N is another optional channel.
  • the USB Type-C interface 320 receives the data signal line of the USB 3.0 signal or the DP signal transmitted by the multiplexing switch chip MUX 350.
  • the multiplexing switch chip MUX 350 further includes two pairs of USB SSTX/RX differential terminals electrically connected to two pairs of USB SSTX/RX differential terminals on the SOC chip 330, specifically by two USB SSTX/RX differential pairs, for example
  • the SSTX P/N, SSRX P/N, SSTX P/N shown in FIG. 7 is an optional data signal line for the multiplexer switch chip MUX 350 to transmit a USB 3.0 signal to the SOC chip 330
  • SS RX P/N is another optional data signal line for multiplexing the switch chip MUX 350 to receive the USB 3.0 signal transmitted by the SOC chip 330.
  • the multiplexing switch chip MUX 350 further includes a DP interface, and the DP interface includes four pairs of DP differential terminals, which are electrically connected to the four pairs of DP differential terminals of the protocol conversion chip 360, specifically, connected by two DP signal channels, for example, as shown in FIG. DP0 P/N, DP1 P/N, DP2 P/N and DP3 P/N are shown for transmitting DP signals.
  • the protocol conversion chip 360MUX is used to receive the DP signal transmitted by the multiplexing switch chip MUX 350MUX, convert the DP signal into an HDMI signal and provide it to the HDMI interface, and also convert the HDMI signal provided by the HDMI interface into a DP signal and then send it to the multiplexing switch.
  • the SOC chip 330 further includes an HDMI interface, and the HDMI interface includes four pairs of HDMI differential terminals, which are electrically connected to the four pairs of HDMI differential terminals of the protocol conversion chip 360, specifically through four HDMI signal channels, for example, D0 as shown in FIG. P/N, D1 P/N, D2 P/N and CLK P/N for transmitting 3 HDMI signals and one clock signal CLK.
  • the HDMI interface includes four pairs of HDMI differential terminals, which are electrically connected to the four pairs of HDMI differential terminals of the protocol conversion chip 360, specifically through four HDMI signal channels, for example, D0 as shown in FIG. P/N, D1 P/N, D2 P/N and CLK P/N for transmitting 3 HDMI signals and one clock signal CLK.
  • the C interface master chip 310 identifies the type of the device externally connected to the USB Type-C interface 320 mainly by the following methods:
  • the CC terminal of the CC module is electrically connected to the CC terminal of the USB Type-C interface 320, and the CC module can be used for CC communication with the USB Type-C interface 320 to identify the device externally connected to the USB Type-C interface 320.
  • the output of the CC module includes a CC1 pin and a CC2 pin, and the two CC pins are connected to the A5 terminal and the B5 terminal of the USB Type-C interface 320 through two CC signal lines (CC1 and CC2). Used to transmit CC communication signals in the USB Type-C interface 320 protocol.
  • the C interface main control chip 310 further includes a GPIO module.
  • the SOC chip 330 further includes an IIC control module (IIC master), and the IIC control module (IIC master) is connected to the GPIO module for implementing bus control of the C interface main control chip 310. system update. The relevant content of the system update is not described here.
  • the C interface master chip 310 identifies the type of the device externally connected to the USB Type-C interface 320, the USB 2.0 switch 340 and the MUX can be bus-controlled through the GPIO module.
  • the process of the C interface master chip 310 transmitting the first control signal or the second control signal to the USB 2.0 switch 340 according to the type of the device externally connected to the USB Type-C interface 320 is as follows:
  • the C interface main control chip sends a first control signal or a second control signal to the USB 2.0 switch 340 through the GPIO module, and the GPIO module provides a control signal output pin and a control signal input pin of the USB 2.0 switch 340.
  • the electrical connection is specifically connected through a control signal line, such as a USB switch (SWITCH) signal line as shown in FIG. 7, and the USB SWITCH signal line is used to transmit a first control signal sent by the C interface control chip to the USB 2.0 switch 340.
  • SWITCH USB switch
  • the first control signal is used to turn on a link between the USB D+/D-differential terminal on the SOC chip 330 and the USB D+/D-differential terminal of the USB 2.0 switch 340, and the PD module
  • the link between the USB D+/D-differential terminal and the USB D+/D-differential terminal of the USB 2.0 switch 340 is turned off.
  • the second control signal is used to close the link between the USB D+/D-differential terminal on the SOC chip 330 and the USB D+/D-differential terminal of the USB 2.0 switch 340, and the USB D+/D- in the PD module.
  • the link between the differential terminal and the USB D+/D-differential terminal of the USB 2.0 switch 340 is turned on.
  • the link between the USB D+/D-differential terminal on the SOC chip 330 and the USB D+/D-differential terminal of the USB 2.0 switch 340 is the first channel, as shown in FIG. 7 SOC USB DP/ N signal line; the link between the USB D+/D-differential terminal in the PD module and the USB D+/D-differential terminal of the USB 2.0 switch 340 is the second channel, such as the BB DP/DM signal line in FIG. .
  • the C interface master chip 310 determines that the type of the device externally connected to the USB Type-C interface 320 is a USB device, the C interface master chip 310 can send a first control signal to the USB 2.0 switch 340 through the GPIO module, the first control signal.
  • the USB 2.0 switch 340 is controlled to conduct the first channel and close the second channel.
  • the C interface master chip 310 determines that the type of the device externally connected to the USB Type-C interface 320 is an ALT MODE device, the C interface master chip 310 sends a second control signal to the USB 2.0 switch 340 through the GPIO module, and the USB SWITCH signal line At this time, the second control signal sent by the C interface control chip to the USB 2.0 switch 340 is transmitted, and the second control signal is used to control the USB 2.0 switch 340 to turn on the second channel to close the first channel.
  • the first control signal may be a high level signal
  • the second control signal is a low level signal
  • the process of the C interface master chip 310 transmitting the third control signal or the fourth control signal to the multiplexing switch chip MUX 350 according to the type of the device externally connected to the USB Type-C interface 320 is as follows:
  • the GPIO module and the multiplexing switch chip MUX 350 can also be connected through the IIC bus.
  • the link between the GPIO module and the MUX includes the IIC enable signal line (IIC_EN) and the IIC/GPIO signal line. Used to power on the MUX.
  • the C interface master chip 310 sends a third control signal or a fourth control signal to the MUX through the GPIO module.
  • the GPIO module provides a control signal output pin, which is electrically connected to the control signal input pin of the MUX, specifically through the DP_CFG control signal line as shown in FIG. 7, and the DP_CFG signal line is used to transmit the C interface control chip to the MUX.
  • a third control signal for turning on a link between the USB SSTX/RX differential terminal on the SOC chip 330 and the USB SSTX/RX differential terminal of the MUX, and the TP differential terminal of the protocol conversion chip 360 The link between the TP differential terminal with the MUX is turned off.
  • the GPIO module also provides a control signal output pin, which is electrically connected to the control signal input pin of the MUX, specifically through the DP_CFG control signal line as shown in FIG. 7, and the DP_CFG signal line is used to transfer the C interface control chip to the MUX.
  • the fourth control signal is sent, and the fourth control signal is used to close the link between the USB SSTX/RX differential terminal on the SOC chip 330 and the USB SSTX/RX differential terminal of the MUX, and the TP differential terminal of the protocol conversion chip 360 The link between the TP differential terminal of the MUX is turned on.
  • the link between the USB SSTX/RX differential terminal on the SOC chip 330 and the USB SSTX/RX differential terminal of the MUX is the third channel, and the chain between the TP differential terminal of the protocol conversion chip 360 and the TP differential terminal of the MUX.
  • the road is the fourth channel.
  • the C interface master chip 310 When the C interface master chip 310 recognizes that the type of the device externally connected to the C interface is a USB device, the C interface master chip 310 sends a third control signal (C2) to the multiplexing switch chip MUX 350, and the third control signal is used.
  • the multiplexing switch chip MUX 350 is controlled to conduct the third channel, and the fourth channel is closed.
  • the C interface main control chip 310 sends a third to the multiplexing switch chip MUX 350 through the DP_CFG signal line when the type of the device external to the C interface is a USB device according to the USB Type-C interface 320 protocol.
  • the control signal causes the multiplexing switch chip MUX 350 to turn on the link between the DFP interface and the multiplexing switch chip MUX 350 (differential pair SSTX P/N and differential pair SSRX P/N), turn off the protocol conversion chip 360 and reuse Selecting a link between the switch chip MUX 350 and selecting a high speed differential pair responsive to the USB 3.0 signal, such as from a pair of high speed differential pairs between the multiplex switch chip MUX 350 and the USB Type-C interface 320, selecting SSTX1 P/N is used to send an uplink USB3.0 signal to the MUX, and select SSRX1 P/N for transmitting the downlink USB3.0 signal to the USB Type-C interface 320.
  • the C interface master chip 310 When the C interface master chip 310 recognizes that the type of the device externally connected to the C interface is an ALT MODE device, the C interface master chip 310 sends the fourth control signal to the multiplexing switch, the fourth control signal. And configured to control the multiplexing switch to turn on the fourth channel, and close the third channel.
  • the C interface main control chip 310 recognizes that the type of the external device connected to the C interface is an ALT MODE device, and passes the DP_CFG signal line (or SBU) to the multiplexing switch chip.
  • the MUX 350 transmits a fourth control signal, so that the multiplexing switch chip MUX 350 turns on the link between the protocol conversion chip 360 and the multiplexing switch chip MUX 350 (differential pair DP0 P/N, differential pair DP1 P/N, differential pair) DP2 P/N and differential pair DP3 P/N), close the link between the DFP interface and the multiplexer switch chip MUX 350 (differential pair SSTX P/N and differential pair SSRX P/N), and select the response DP signal
  • the high speed differential pair for example, from the four pairs of high speed differential pairs between the multiplexing switch chip MUX350 and the USB Type-C interface 320, select SSTX1 P/N and SSTX2 P/N for transmitting DP signals to the MUX, selecting SSRX1 P/N and SSRX2 P/N are used to transmit DP signals to the USB Type-C interface 320.
  • the method further includes: establishing an HDMI HPD connection between the HDMISINK and the device externally connected to the USB Type-C interface 320.
  • the link between the protocol conversion chip 360 and the HDMI SINK further includes a DDC (display data channel) IIC signal line and an HDMI HPD signal line
  • the link between the protocol conversion chip 360 and the MUX further includes a DP HPD signal line.
  • the link between the MUX and the C interface master chip 310 also includes a DP HPD signal line.
  • the HDMI HPD signal line is used to transmit the hot plug signal of HDMI
  • the DP HPD signal line is used to transmit the hot plug signal of DP.
  • the DDC IIC signal cable is used first (the device externally connected to the USB Type-C interface 320).
  • the EDID data and the HDCP key are exchanged with the receiving device (HDMI SINK), and the source device can learn the receiving capability of the audio and video of the receiving device through the EDID communication; the real-time communication can be performed through the HDCP key exchange.
  • the content protection authentication of the data stream is performed to achieve the purpose of data content protection.
  • the propagation path of the HPD connection state between the source device and the sink device is: the HPD connection state sent from the source device reaches the protocol conversion module via the HDMI HPD signal line, and then reaches the MUX via the DP HPD signal line. Then, the DP HPD signal line between the MUX and the C interface main control chip 310 reaches the C interface main control chip 310, and then passes through the CC signal line between the C interface main control chip 310 and the USB Type-C interface 320 to reach the USB Type- The C interface 320, and the ALT MODE device external to the USB Type-C interface 320.
  • the output end of the CC+PD module is further connected to the SBU terminal of the USB Type-C interface 320 for performing SBU communication with the USB Type-C interface 320.
  • the output of the CC+PD module includes an SBU interface
  • the SBU interface includes an SBU1 pin and an SBU2 pin.
  • the two SBU pins pass through two SBU signal lines and the A8 terminal and the B8 of the USB Type-C interface 320.
  • the terminal is connected to transmit the SBU communication signal in the USB Type-C interface 320 protocol.
  • the device provided by the embodiment of the present invention further includes a power switching chip 370.
  • the C interface main control chip 310 is further configured to determine different power supply requirements of the device externally connected to the USB Type-C interface 320 according to the CC communication, and control the power switching chip 370 to the USB Type-C according to each power supply requirement.
  • the device connected to interface 320 performs corresponding power supply.
  • the output end of the power control chip is connected to the power pin of the USB Type-C interface 320, and is used for externally connecting the USB Type-C interface 320 according to at least two power supply requirements of the device externally connected to the USB Type-C interface 320. Provide the corresponding supply voltage.
  • the output end of the power switching chip 370 includes four V BUS output terminals, and the four V BUS output terminals pass through four power control signal lines and the A4 terminal, the A9 terminal, and the B4 terminal of the USB Type-C interface 320.
  • the B9 terminal is connected to transmit a corresponding power supply voltage V BUS according to different power supply requirements of the external device of the USB Type-C interface 320.
  • the embodiment of the present invention provides an information transmission method when the USB Type-C interface 320 is connected to different devices.
  • Step 101 Two pairs of USB D+/D-differential terminals (A6 terminal, B6 terminal, A7 terminal and B7 terminal) of the USB Type-C interface 320 respond, and the USB Type-C interface 320 passes the CC signal line and the C interface main control chip.
  • the CC module of 310 performs CC communication and reports response information of two pairs of USB D+/D-differential terminals of the USB Type-C interface 320.
  • Step 102 The CC module identifies that the type of the device externally connected to the USB Type-C interface 320 is a USB device according to the response information of the CC communication, and sends the first control signal through the USB SWITCH signal line between the GPIO module and the USB 2.0 switch 340.
  • the first control signal instructs the USB 2.0 switch 340 to turn on the link between the USB D+/D-differential terminal on the SOC chip 330 and the USB D+/D-differential terminal of the USB 2.0 switch 340, The link between the USB D+/D-differential terminal and the other USB D+/D-differential terminal of the USB 2.0 switch 340 is turned off.
  • step 102 when the CC module recognizes that the type of the device externally connected to the USB Type-C interface 320 is a USB device, the third control signal is also sent through the DP_CFG signal line between the GPIO module and the MUX, and the third control signal indicates
  • the MUX turns on the link between the USB SSTX/RX differential terminal on the SOC chip 330 and the USB SSTX/RX differential terminal of the MUX, and links the DP differential terminal of the protocol conversion chip 360 to the DP differential terminal of the MUX. shut down.
  • Step 103 the USB 2.0 switch 340 turns on the link between the USB D+/D-differential terminal on the SOC chip 330 and the USB D+/D-differential terminal of the USB 2.0 switch 340, and the USB D+/ of the PD module.
  • the link between the D-differential terminal and the other USB D+/D-differential terminal of the USB 2.0 switch 340 is turned off.
  • the step 103 further includes: according to the third control signal transmitted on the DP_CFG signal line, the MUX turns on the link between the USB SSTX/RX differential terminal on the SOC chip 330 and the USB SSTX/RX differential terminal of the MUX.
  • the link between the DP differential terminal of the protocol conversion chip 360 and the DP differential terminal of the MUX is turned off, for example, SSTX1 P/N and SSRX1 P/N are turned on, but the data interaction between the USB 2.0 device and the SOC chip 330 is performed. In the process, there is no transmission of the USB 3.0 signal in the conduction link between the USB Type-C interface 320 and the DFP interface of the SOC chip 330.
  • Step 104 The USB2.0 device externally connected to the USB Type-C interface 320 sends an uplink USB2.0 signal to the DFP interface on the SOC chip 330.
  • the transmission path of the uplink USB2.0 signal is: from the USB2.0 device to the USB Type- USB D+/D-differential terminals (A6 terminal and B6 terminal) of C interface 320, USB DP/N signal line between USB Type-C interface 320 and USB 2.0 switch 340 (low-speed USB D+/D- differential pair) And the SOC USB DP/N signal line (low speed USB D+/D-differential pair) between the USB 2.0 switch 340 and the SOC chip 330 is finally transferred to the USB D+/D-differential terminal on the SOC chip 330.
  • Step 105 The USB D+/D-differential terminal on the SOC chip 330 sends a downlink USB2.0 signal to the USB2.0 device externally connected to the USB Type-C interface 320.
  • the transmission path of the downlink USB2.0 signal is: from the SOC chip 330.
  • the USB D+/D-differential terminal is passed to the SOC USB DP/N signal line (low-speed USB D+/D-differential pair) between the USB 2.0 switch 340 and the SOC chip 330, and then from the USB Type-C interface 320
  • the USB DP/N signal line (low-speed USB D+/D- differential pair) between the USB 2.0 switch 340 is passed to the USB D+/D-differential terminal (A7 terminal and B7 terminal) of the USB Type-C interface 320, and then Passed to a USB 2.0 device.
  • Step 201 When two pairs of USB SSTX/RX differential terminals (such as A2 terminal, A3 terminal, B10 terminal, and B11 terminal) of the USB Type-C interface 320 respond, the USB Type-C interface 320 passes through the CC signal line and the C interface.
  • the CC module of the control chip 310 performs CC communication and reports the response information of the four pairs of USB SSTX/RX differential terminals of the USB Type-C interface 320.
  • Step 202 The CC module identifies that the type of the device externally connected to the USB Type-C interface 320 is a USB device according to the response information of the CC communication, and sends a third control signal, a third control signal, through the DP_CFG signal line between the GPIO module and the MUX. Instructing the MUX to turn on the link between the USB SSTX/RX differential terminal on the SOC chip 330 and the USB SSTX/RX differential terminal of the MUX, and to link the link between the DP differential terminal of the protocol conversion chip 360 and the DP differential terminal of the MUX. The road is closed.
  • step 102 when the CC module recognizes that the type of the device externally connected to the USB Type-C interface 320 is a USB device, the CC sends a first control signal through a USB SWITCH signal line between the GPIO module and the USB 2.0 switch 340.
  • the first control signal instructs the USB 2.0 switch 340 to turn on the link between the USB D+/D-differential terminal on the SOC chip 330 and the USB D+/D-differential terminal of the USB 2.0 switch 340, and to connect the USB of the PD module.
  • the link between the D+/D-differential terminal and the other USB D+/D-differential terminal of the USB 2.0 switch 340 is turned off.
  • Step 203 according to the third control signal transmitted on the DP_CFG signal line, the MUX turns on the link between the USB SSTX/RX differential terminal on the SOC chip 330 and the USB SSTX/RX differential terminal of the MUX, and converts the protocol conversion chip 360.
  • the link between the DP differential terminal and the DP differential terminal of the MUX is turned off, and two pairs of USB SSTX/RX differential pairs between the USB Type-C interface 320 and the MUX are selected, such as SSTX1 P/N and SSRX1 P/ N is turned on, where SSTX1 P/N is used to send an uplink USB3.0 signal to the MUX, and SSRX1 P/N is used to transmit the downlink USB3.0 signal to the USB Type-C interface 320.
  • the step 203 further includes: the USB 2.0 switch 340, according to the first control signal transmitted on the USB SWITCH signal line, the USB D+/D-differential terminal on the SOC chip 330 and the USB D+/ of the USB 2.0 switch 340.
  • the link between the D-differential terminals is turned on, and the link between the USB D+/D-differential terminal of the PD module and the other USB D+/D-differential terminal of the USB 2.0 switch 340 is turned off.
  • Step 204 The USB 3.0 device externally connected to the USB Type-C interface 320 sends an uplink USB3.0 signal to the USB SSTX/RX differential terminal on the SOC chip 330.
  • the transmission path of the uplink USB3.0 signal is: transmitted from the USB 3.0 device.
  • One pair of USB SSTX/RX differential terminals (such as A2 terminal and A3 terminal) to USB Type-C interface 320, SSTX1 P/N between USB Type-C interface 320 and MUX, and MUX and SOC chip 330
  • the SSRX P/N between the DFP interfaces is ultimately passed to the USB SSTX/RX differential terminals on the SOC chip 330.
  • Step 205 the USB SSTX/RX differential terminal of the DFP interface on the SOC chip 330 sends a downlink USB3.0 signal to the USB 3.0 device externally connected to the USB Type-C interface 320.
  • the transmission path of the downlink USB3.0 signal is: the slave SOC chip
  • the USB SSTX/RX differential terminal of the DFP interface on 330 is passed to the SSTX1 P/N between the MUX and the SOC chip 330, and then transferred from the SSTX1 P/N between the USB Type-C interface 320 and the MUX to the USB Type-
  • a pair of USB SSTX/RX differential terminals (such as B10 terminal and B11 terminal) of C interface 320 are then passed to the USB 3.0 device.
  • the information transmission method provided by the embodiment of the present invention, combined with the circuit structure shown in FIG. 9, specifically includes:
  • Step 301 When the USB SSTX/RX differential terminals (such as the B2 terminal, the B3 terminal, the A10 terminal, and the A11 terminal) of the USB Type-C interface 320 are responsive, the USB Type-C interface 320 passes the CC signal line and the C interface main control chip.
  • the CC module of 310 performs CC communication and reports the response information of the four pairs of high speed differential terminals of the USB Type-C interface 320.
  • Step 302 The CC module identifies, according to the response information of the CC communication, that the type of the device externally connected to the USB Type-C interface 320 is an ALT MODE device, and sends a fourth control signal through the DP_CFG signal line between the GPIO module and the MUX, and the fourth control The signal indicates that the MUX closes the link between the USB SSTX/RX differential terminal on the SOC chip 330 and the USB SSTX/RX differential terminal of the MUX, and links the DP differential terminal of the protocol conversion chip 360 to the DP differential terminal of the MUX.
  • the channel is turned on, and SSTX1 P/N and SSTX2 P/N are selected to transmit the uplink DP signal to HDMISINK, and SSRX1 P/N and SSRX2 P/N are selected, and the downlink DP signal is transmitted to the external ALT MODE device of USB Type-C interface 320.
  • step 302 when the CC module recognizes that the type of the device externally connected to the USB Type-C interface 320 is a USB device, the second control signal is also sent through the USB SWITCH signal line between the GPIO module and the USB 2.0 switch 340.
  • the second control signal instructs the USB 2.0 switch 340 to close the link between the USB D+/D-differential terminal on the SOC chip 330 and the USB D+/D-differential terminal of the USB 2.0 switch 340, and the USB D+ of the PD module
  • the link between the /D-differential terminal and the other USB D+/D-differential terminal of the USB 2.0 switch 340 is turned on.
  • Step 303 according to the fourth control signal transmitted on the DP_CFG signal line, the MUX closes the link between the USB SSTX/RX differential terminal on the SOC chip 330 and the USB SSTX/RX differential terminal of the MUX, and converts the protocol conversion chip 360.
  • the link between the DP differential terminal and the DP differential terminal of the MUX is turned on, and the four pairs of high-speed differential pairs between the USB Type-C interface 320 and the MUX are selected to be turned on, wherein SSTX1 P/N and SSTX2 P/N are used.
  • the uplink DP signal is transmitted to the HDMISINK, and the SSRX1 P/N and the SSRX2 P/N are used to transmit the downlink DP signal to the ALT MODE device externally connected to the USB Type-C interface 320.
  • the step 303 further includes: the USB 2.0 switch 340, according to the second control signal transmitted on the USB SWITCH signal line, the USB D+/D-differential terminal on the SOC chip 330 and the USB D+/ of the USB 2.0 switch 340.
  • the link between the D-differential terminals is closed, and the link between the USB D+/D-differential terminal of the PD module and the other USB D+/D-differential terminal of the USB 2.0 switch 340 is turned on, except in ALT.
  • Step 304 The DP device externally connected to the USB Type-C interface 320 sends an uplink DP signal, and the transmission path of the uplink DP signal is: a USB SSTX/RX differential terminal (such as a B2 terminal and a USB terminal-C interface 320) that is transmitted from the ALT MODE device to the USB Type-C interface 320.
  • a USB SSTX/RX differential terminal such as a B2 terminal and a USB terminal-C interface 320
  • SSTX2 P/N between USB Type-C interface 320 and MUX, and differential pair DP0 P/N between MUX and protocol conversion chip 360 are transferred to protocol conversion chip 360, protocol conversion chip 360 will DP
  • the signal is converted to an HDMI signal, the HDMI signal is passed through a differential pair DP0 P/N, the differential pair DP1 P/N, the differential pair DP2P/N and the differential pair CLK P/N are ultimately passed to the HDMI differential terminal on the SOC chip 330.
  • Step 305 the HDMI differential terminal on the SOC chip 330 sends a downlink HDMI signal to the ALT MODE device externally connected to the USB Type-C interface 320.
  • the transmission path of the downlink HDMI signal is: from the HDMI differential terminal on the SOC chip 330 to the protocol conversion chip. 360, the protocol conversion chip 360 converts the HDMI signal into a DP signal, and then the DP signal is transmitted to the MUX via the differential pair DP0 P/N, and then passed to the USB Type via the SSRX2 P/N between the MUX and the USB Type-C interface 320.
  • the USB SSTX/RX differential terminals of the -C interface 320 (such as the A10 terminal and the A11 terminal) are passed to the ALT MODE device.
  • Step 306 when a data transmission abnormality occurs, the SOC chip 330 stores the abnormality information into the PD module through the IIC bus, and passes between the PD module and the USB2.0 switch 340, and the USB2.0 switch 340 and the USB Type- The conductive link between the C interfaces 320 interacts with the external DP device to determine the cause of the abnormality.
  • the present application provides a specific implementation of another terminal device, which may be a television set with a USB Type-C interface.
  • another terminal device which may be a television set with a USB Type-C interface.
  • the USB Type-C interface main control module in the above embodiment is implemented by a microprocessor chip, and the function of the switch module is implemented by a switch device, and the function of the multiplexing switch is implemented by a composite switch chip, and the function of the protocol conversion module is It is implemented by a protocol conversion chip, which is described in detail below.
  • FIG. 10 is a schematic structural diagram of a television set with a USB Type-C interface according to the present invention.
  • the present invention provides a television set 10 comprising: a USB Type-C interface 1001, a microprocessor chip 1002, a composite switch chip 1004, a display screen 1006, a DP-HDMI module 1007, a SOC chip 1008 and a switching device 1009.
  • SOC (System on a chip) chip 1008 has a USB DFP interface for USB 3.0/2.0DFP function; it can receive HDMI input signals and can be used as a USB DFP device complying with USB2.0/3.0 protocol (ie USB) Host device).
  • the SOC chip 1008 includes an IIC host module for implementing IIC control and firmware upgrades; a USB 3.0 DFP module for implementing USB 3.0 DFP functions; an HDMI SINK module for implementing HDMI SINK functions; and a USB 2.0 DFP module Used to implement USB2.0DFP function.
  • the input pin of the composite switch chip 1004 is connected to the TX1/RX1 and TX2/RX2 signal pins of the USB TYPE-C interface 1001, and the output pin is connected to the USB SSTX/SSRX signal of the SOC chip 1008 or the DP-HDMI module 1007. Switching is performed between the DFP interface and the HDMI interface of the SOC chip 1008.
  • the DP-HDMI module 1007 is used to convert the DP signal into an HDMI signal for display use by the SOC chip 1008. It can be understood that if the SOC chip 1008 itself supports direct DP (DISPLAYPORT) signal input, the DP-HDMI module 1007 can be omitted.
  • the signal DP is an audio and video signal of the DP protocol. For example, the DP-HDMI module 1007 selects a PS176 conversion chip.
  • the switching device 1009 is configured to switch the USB 2.0/3.0 path between the USB DFP interface of the SOC chip 1008 and the billboard UFP interface of the microprocessor chip, and connect to the USB Type-C interface 1001 when different requirements are respectively required.
  • the USB Type-C interface 1001 is connected to the USB DFP interface of the SOC chip 1008 via the USB D+/D-channel by default.
  • the microprocessor chip 1002 is a controller supporting the USB Type-C CC (Channel Configuration) communication and the PD (POWER DELIVERY) protocol, and controls the switching of the composite switch chip 1004 on the one hand to adapt the forward and reverse insertion of the external device; On the other hand, the communication between the signal CC and the signal SBU is performed externally, which has a billboard UFP interface for outputting the billboard signal to the DP UFP device (ie, the DP slave device) in the case of ALT MODE.
  • CP CC Channel Configuration
  • PD POWER DELIVERY
  • the USB Type-C interface 1001 includes: a terminal for transmitting a CC signal, a terminal for transmitting an SBU signal, a terminal for transmitting a USB D+/D-signal, a terminal for transmitting a TX1 signal, a terminal for transmitting a TX2 signal, and a signal for transmitting the RX1 signal.
  • the microprocessor chip 1002 includes: a pin for connecting the signal CC of the USB Type-C interface 1001; a pin for connecting the signal SBU of the USB Type-C interface 1001; and a signal USB for the USB Type-C interface 1001. D+/D- (via switching device 1009) pin connected; control signal C1 output pin; control signal C2 output pin; communication signal C3 transmission pin; signal DP HPD input pin; and AUX signal Transfer pin.
  • the composite switch chip 1004 includes a pin for connecting the control signal C2, a pin connected to the pin of the SOC chip 1008 for inputting the USB SS TX/RX signal, and a reference for the DP signal input of the DP-HDMI module 1007. Pins connected to the pins, pins connected to the TX1, TX2, RX1, and RX2 terminals of the USB Type-C interface 1001.
  • the DP-HDMI module 1007 includes: a pin for inputting a DP signal, a pin for outputting an HDMI signal, a pin for inputting an HDMI HPD signal, a pin for transmitting an IIC 2 signal, a pin for outputting a DP HPD signal, and a transmission AUX.
  • the pin of the signal includes: a pin for inputting a DP signal, a pin for outputting an HDMI signal, a pin for inputting an HDMI HPD signal, a pin for transmitting an IIC 2 signal, a pin for outputting a DP HPD signal, and a transmission AUX. The pin of the signal.
  • the SOC chip 1008 includes: a pin for USB D+/D-signal input, a pin for USB SS TX/RX signal input, a pin for HDMI HPD signal output, and a pin for HDMI signal input.
  • the pin of the signal IIC 2 signal is transmitted, and the pin of the signal C3 signal is transmitted.
  • the switching device 1009 includes: a pin connecting the control signal C1, a pin for inputting a USB D+/D- signal, a pin for outputting a USB D+/D- signal to the microprocessor chip 1002, and a SOC chip 108 outputs the pin of another USB D+/D- signal.
  • the microprocessor chip 1002 selects the RTS5440 processor, which supports CC communication and supports the PD protocol.
  • the internal arrangement is: 10Gbps 3:2 composite switch chip, corresponding to the function of the aforementioned composite switch chip 1004.
  • the switching device 1009, the composite switch chip 104, and the microprocessor chip 102 are implemented by two chips, wherein the composite switch chip 1004 and the microprocessor chip 1002 share one chip-RTS5440
  • the processor, the switching device 1009 uses another chip-TS3USB3031 converter; in other embodiments, depending on the performance of the selected chip, the switching device 1009, the composite switch chip 1004, and the microprocessor chip 1002 can also pass three chips.
  • the microprocessor chip 1002 selects the CYPD3125 processor
  • the composite switch chip 1004 selects the PS8742 composite switch chip
  • the switch device 1009 selects the TS3USB3031 converter.
  • signals TX1 and TX2 are high-speed differential pairs of the USB Type-C protocol, which can transmit DP signals or high-speed differential pairs of USB3.0 protocol.
  • the signal USB D+/D- is the differential pair of the USB2.0 protocol.
  • Signals USB SS RX and USB SS TX are high speed differential pairs for USB 3.0.
  • the signal SBU is an auxiliary communication interface in the USB Type-C protocol. In the present invention, it can be used for the AUX signal of the communication DP.
  • the signal AUX is a control signal of the DP protocol.
  • the signal CC is a communication signal in the USB Type-C protocol, and can be used for forward/reverse interpolation judgment and communication of signals such as PD (POWER DELIVERY) and DP HPD.
  • the signal HPD is a hot plug signal of the DP protocol.
  • the signal HDMI HPD is the hot plug signal of HDMI.
  • Signal C1 is a control signal for controlling switching of switching device 1009.
  • Signal C2 is a control signal for controlling switching of composite switch chip 1004.
  • the signal C3 is a signal for the microprocessor chip 1002 to communicate with the SOC chip 1008, and can also be used for upgrading and controlling the microprocessor chip 1002.
  • FIG. 11 is a schematic structural diagram of a television set of the present invention when a USB device is coupled.
  • a USB UFP device such as a USB flash drive via a USB Type-C interface 1001 (ie, a USB slave device)
  • the USB CC device is connected via the signal CC, it is a USB UFP device.
  • the signal C1 is not controlled, the switching device 1009 maintains the default state of being connected to the USB DFP interface of the SOC chip 1008, and the USB 2.0/3.0 connection is directly connected from the USB Type-C interface 1001 to the SOC.
  • the USB DFP interface of the chip 108 ensures the normal operation of the USB 2.0/3.0 connection.
  • the composite switch chip 1004 is controlled by the microprocessor chip 1002 to ensure that the USB DFP interface of the SOC chip 1008 is connected with the setting signal of the USB Type-C interface 1001, thereby ensuring the USB Type-C interface. Normal connection.
  • FIG. 12 is a schematic structural diagram of a television set of the present invention when a DP device is connected.
  • the signal C1 controls the switching device 109 to switch to the billboard UFP of the microprocessor chip 1002.
  • the interface ensures the connection of the billboard UFP interface of the microprocessor chip 1002 and the USB D+/D- interface of the USB Type-C interface 1001, thereby ensuring the normal function of the billboard.
  • the signal C2 controls the switching of the composite switch chip 1004 to ensure the normality of the DP output path and sequence.
  • the DP-HDMI module 1007 communicates with the HDMI SINK interface of the SOC chip 1008 to communicate information such as EDID, and establishes an HDMI HPD connection.
  • the DP-HDMI module 1007 and the microprocessor chip 1002 communicate control information via the signal AUX, and communicate the HPD connection state via the signal DP HPD.
  • the microprocessor chip 1002 transmits the control information of the DP through the signal SBU, and transmits the DP HPD information through the signal CC.
  • the abnormal information is stored in the billboard module of the microprocessor chip 1002, and communicates with the DP SOURCE device through the USB D+/D-.
  • the role exchange PR_SWAP
  • the television 10 is set as the PD SOURCE device to supply power to the DP SINK device.
  • the TV set 10 of the present invention is designed correspondingly to ensure compatibility between the two characters.
  • the actual application scenarios of TV products are mainly divided into two categories: one, connecting USB storage peripherals or HUB and other storage class extensions.
  • the USB Type of the TV 10 needs to be
  • the C interface 1001 role is set to a USB DFP device and is powered externally.
  • the USB Type-C interface 1001 role of the TV set 10 needs to be set to DP UFP (ie DP SINK device). ), and external power supply.
  • the television set 10 of the present invention does not support simultaneous transmission of USB and ALT MODE, that is, at a specific moment, the television set 10 of the present invention can only play both the USB 2.0/3.0 role and the ALT MODE role. one of.
  • the USB Type-C interface 1001 of the television 10 supports the following functions: CC communication; PD protocol of PD2.0 and above; external power supply, maximum 5V3A; full-function ALT MODE, and bulletin board; USB2 .0, USB3.0 and above USB host; VCONN_Swap, can provide VCONN to the outside.
  • the microprocessor chip 1002 selects a chip that supports the IIC upgrade.
  • the USB DFP devices that the TV 10 may connect to are: desktop mainframes, notebooks, mobile phones, PADs, and adapters.
  • the USB DRP USB dual-purpose device
  • ALT MODE notebook, mobile phone and PAD.
  • Other USB DRP devices that TV 10 may connect to are: HUB, Dongle, DOCK, and Charging.
  • the USB UFP devices that TV 10 may connect to are: USB flash drive, hard drive, mobile phone, PAD, HUB, Dongle, DOCK and monitor.
  • the control implementation process of the USB Type-C interface 1001 of the television set 10 includes: initially setting the USB DRP mode, and performing role change to match when accessing different role devices, as follows:
  • the USB Type-C interface 1001 is adapted to be a USB UFP device; if the connected device supports the DP DFP mode, the DP DFP is switched to perform DP signal transmission.
  • the peripheral supports POWER SINK (Power Absorption)
  • PR_SWAP is initiated, and the TV 10 is externally powered as a POWER SOURCE.
  • the USB Type-C interface 1001 is adapted to be a USB DFP device, and the television 10 is externally powered as a POWER SOURCE.
  • the USB Type-C interface 1001 negotiates with an external device, and the USB Type-C interface 1001 role can be set to the DP UFP mode and externally supplied with power.
  • the present invention makes the microprocessor chip 1002 capable of identifying the USB TYPE-C interface 1001 by skillfully designing the cooperation relationship between the USB TYPE-C interface 1001, the SOC chip 1008, and the microprocessor chip 1002.
  • the access device type the second one selectively controls the USB Type-C interface 1001 to transmit the USB D+/D-signal terminal, and the SOC chip 1008 or the microprocessor chip 1002 for the USB D+/D- signal input.
  • the pins are electrically connected to support the USB TYPE-C interface 1001 for simultaneous compatibility of the USB 2.0/3.0 role with the ALT MODE character.
  • USB TYPE-C interface 1001 SOC chip 1008, and microprocessor chip 1002 can be widely applied.
  • It is compatible with USB and ALT MODE data input and can realize the signal input circuit of billboard information interaction;
  • a display device that is compatible with the 0/3.0 character and the ALT MODE character.
  • the present application provides a control method for connecting a USB Type-C interface of an television to an external device, and the method is applicable to the television set provided by any of the above embodiments.
  • the SWICH switch in the television is used to implement the function of the switch module 240
  • the CC+PD chip is used to implement the CC and PD functions of the USB Type-C interface main control module 220, and the Billboard module. It is used to implement the Billboard function in the above USB Type-C interface main control module 220.
  • CC + PD chip that is, integrated chip with CC and PD functions
  • CC Configuration Channel
  • PD USB Power Delivery
  • PD is a communication protocol, which is a new power and communication connection method, which allows transmission of up to 100W (20V/5A) power between USB devices, and it can change the port. The attribute also allows the port to switch between DFP and UFP, and it can also communicate with the cable to get the properties of the cable.
  • the CC+PD chip when the CC+PD chip is connected to the USB Type-C interface, the information of the external device inserted into the USB Type-C interface can be obtained, thereby judging the type of the external device and the forward and reverse insertion.
  • the VDM Header determines the information transmission mode supported by the external device.
  • the ALT MODE mode When the ALT MODE mode is supported, the external device is judged as The computer; when the VDM information cannot be read, it is judged that the external device is a USB flash drive.
  • the control method for connecting the USB Type-C interface of the television to the external device comprises the following steps:
  • the external device is a USB flash drive
  • the low speed differential pair pin of the USB Type-C interface is turned on to the main chip of the television
  • the low speed differential pair pin of the USB Type-C interface is turned on to the module containing the Billboard information on the television.
  • the core of the present invention is to multiplex the low-speed differential pair pins of the USB Type-C interface, and when the different types of external devices are connected, the pins are turned on by different chips or modules inside the TV set. Different types of data are transmitted, which play different roles.
  • the television using the method of the present invention can be externally inserted into the U disk because the low-speed differential pair pin of the USB Type-C interface can be multiplexed, and the data of the U disk is from the pin.
  • the SWICH switch leads to the main chip of the TV, so that the TV can read the data of the U disk; and it can also support the USB Type-C interface to plug in the computer.
  • the external computer can pass the pin and the SWICH switch. It leads to the module containing Billboard information, so that the external computer can read the Billboard information of the TV according to the standard communication protocol, so as to prepare the TV for subsequent communication.
  • a more specific solution may be that the CC+PD chip controls the SWICH switch to turn on the low-speed differential pair pin of the USB Type-C interface to the TV SOC when the USB Type-C interface is not detected to have an external device inserted.
  • the main chip when detecting that the USB Type-C interface is inserted into the computer, controls the low-speed differential pair pin of the USB Type-C interface to be turned on to the module containing the Billboard information, and after the Billboard information is transmitted to the computer, the CC+PD chip is controlled again.
  • the SWICH switch operates to turn the USB-C low-speed differential pair pin to the path connected to the SOC chip.
  • the low-speed differential pair pin of the USB Type-C interface is turned on to the path with the SOC chip, and the SWICH switch is switched only when the CC+PD detects that the USB Type-C interface is inserted into the computer. And then transfer the Billboard information and then switch back to the default state.
  • the present invention provides an embodiment, by means of a SWICH switch or a module or chip having a SWICH switch function, the pin of the USB Type-C interface is gated differently, and the television is turned on. Different modules or chips inside the machine.
  • the SWICH switch acts like a single pole double throw switch.
  • the low speed differential pair pin of the USB Type-C interface is connected to a first terminal of a SWICH switch, and the second terminal and the third terminal of the SWICH switch are respectively associated with the main chip and the include Billboard A module connection of information, the SWICH switch being controllable to conduct the first terminal and the second terminal, or the first terminal and the third terminal being conductive.
  • the present invention also provides a television set employing the above method.
  • the television set of this embodiment includes a main chip to implement the function of the SOC chip 210; the main chip is connected to a SWICH switch; the SWICH switch is respectively connected to a CC+PD chip and a Billboard module; the television set further includes A USB-C interface is connected to the external device; the USB-C interface is connected to the CC+PD chip and the SWICH switch, respectively.
  • connection lines in the drawing corresponds to two lines in the actual product, for example, the CC+PD chip and the USB Type-C interface can pass D+, The D-two lines are connected to the two corresponding pins of the USB. The same is true for other cables.
  • the CC+PD chip can be connected to the USB Type-C interface interface, so the CC+PD chip can obtain the state of the pin at the USB-C interface, and judge
  • the external plug-in device is a U-disk storage device, or a device such as a computer that has its own host system.
  • the CC+PD chip can control the strobing state of the SWICH switch, that is, when the external device is a U disk, the SWICH switch is turned on to the main chip of the television to realize the USB Type-C interface.
  • the low-speed differential pair pin is electrically connected to the main chip of the television, so that the main chip of the television directly reads the data in the U disk through the path; when the external device is a computer, the SWICH switch is turned on to the Billboard module of the television. In order to support external computers to read Billboard information directly through the path, to achieve communication between the external computer and the television.
  • FIG. 14 is a schematic diagram of a hardware connection scheme according to another embodiment of the present invention.
  • the Billboard module is integrated into the CC+PD chip, so that the SWICH switch and the CC+PD chip pass control.
  • the signal line (the connecting line whose arrow shape is a dot in the figure) is connected to the data signal line (the connecting line whose arrow shape is a triangle in the figure); the data signal line is used in the Billboard module built in the CC+PD chip.
  • the Billboard information is transmitted to the USB Type-C interface through the SWICH switch; the control signal line is used to transmit whether the SWICH switch is turned on with the main chip or the CC+PD chip through the data signal line.
  • the CC+PD chip conducts the SWICH switch through the data signal line to the CC+PD chip through the control signal line, thereby supporting the external computer directly.
  • the Billboard information built in the CC+PD chip is read, and the handshake communication between the external computer and the television is realized.
  • the USB flash drive of the present invention may be a similar memory with a USB Type-C interface, such as a mobile hard disk, a camera card reader, and other electronic devices supporting the U disk mode.
  • the computer referred to in the present invention represents a device that can initiate communication actively, and also includes a PAD, etc., and these devices can also be directly inserted into a U disk type memory and read data.
  • the SWICH switch of the present invention sometimes referred to as a gate or data selector, can be defined and controlled by some small chips, and its form is not limited, as long as it can support controlled data access. The two options can be selected.
  • USB-C interface of the television is connected to the control method of the external device, and further includes the following steps:
  • the CC+PD chip of the television set controls the SWICH switch to turn on the low-speed differential pair pin of the USB Type-C interface to the gateway when the USB Type-C interface of the television is not detected to be inserted by the external device.
  • the SOC main chip of the television set; the CC+PD chip of the television set; the CC+PD chip of the television set controls the television set when detecting that the USB Type-C interface of the television set is inserted into the computer
  • the low-speed differential pair pin of the USB Type-C interface is turned on to the module containing the Billboard information of the television. After the Billboard information is transmitted to the computer, the CC+PD chip controls the SWICH switch action, and the The low-speed differential pair pin of the USB Type-C interface of the TV is turned on to the path connected to the SOC main chip of the television.
  • the core of the present invention is to multiplex the low-speed differential pair pins of the USB Type-C interface, and when the different types of external devices are connected, the pins are turned on by different chips or modules inside the TV set. Different types of data are transmitted, which play different roles.
  • the television using the method of the present invention can be multiplexed because the low-speed differential pair pins of the USB Type-C interface are multiplexed, and the CC+PD chip detects that the USB Type-C interface is inserted without an external device or detects When the inserted external device is a U disk type memory, the SWICH switch is controlled to turn on the low speed differential pair pin of the USB Type-C interface to the state of the SOC main chip leading to the television; when the CC+PD chip detects the location When the USB Type-C interface of the television is inserted into the computer, the low-speed differential pair pin that controls the USB Type-C interface of the television is turned on to the module containing the Billboard information of the television, and the Billboard information is transmitted to the After the computer is described, the CC+PD chip controls the SWICH switch action to turn on the low-speed differential pair pin of the USB Type-C interface of the television to the path connected to the SOC main chip of the television.
  • the external computer can read the Billboard information of the TV according to the standard communication protocol, and then the computer can transmit the data to the TV through the low-speed differential pair pin of the USB Type-C interface of the TV. chip.
  • the present invention provides an embodiment, by means of a SWICH switch or a module or chip having a SWICH switch function, the pin of the USB Type-C interface is gated differently, and the television is turned on. Different modules or chips inside the machine.
  • the SWICH switch acts like a single pole double throw switch.
  • the low speed differential pair pin of the USB Type-C interface is connected to a first terminal of a SWICH switch, and the second terminal and the third terminal of the SWICH switch are respectively associated with the main chip and the include Billboard A module connection of information, the SWICH switch being controllable to conduct the first terminal and the second terminal, or the first terminal and the third terminal being conductive.
  • the present application provides a specific implementation of another television terminal.
  • the television terminal 1500 includes a USB Type-C interface 1501, a USB Type-C main control module 1502, and a switch module SWITCH1503 connected between the USB Type-C main control module 1502 and the USB Type-C interface 1501.
  • the USB Type-C main control module 1502 interacts with the USB Type-C interface 1501 (the signal passing through the signal line CC is referred to as a CC signal) to identify the type of the device externally connected to the USB Type-C interface 1501; then, USB Type The -C master module 1502 controls the state of the switch module SWITCH 1503 according to the type to control the data exchange between the device externally connected to the USB Type-C interface 1501 and the SOC chip 1504 in the television terminal.
  • the switch module SWITCH 1503 controls the state of the switch module SWITCH 1503 according to the type to control the data exchange between the device externally connected to the USB Type-C interface 1501 and the SOC chip 1504 in the television terminal.
  • the USB Type-C interface refers to an interface for data transmission using the USB Type-C protocol.
  • the USB Type-C interface can be interposed with a device provided with a USB Type-C interface to form a USB communication connection.
  • the USB Type-C main control module refers to a configuration channel (Configuration Channel, CC) in the USB Type-C protocol, and/or a power delivery channel (Power Delivery, PD).
  • the USB Type-C main control module can be configured as a configuration channel according to actual needs, or can be configured as a power transmission channel according to actual needs, or a configuration channel and a power transmission channel exist at the same time, which is not limited in this embodiment.
  • the switch module SWITCH1503 is controlled by the USB Type-C main control module 1502, and can switch the working state. In actual practice, it can be implemented by a controllable switching device or software.
  • the SOC chip 1504 in the television terminal refers to a chip used in the television terminal 1504 for processing audio and video signals, and the chip is different from Moniter, and can receive and transmit data.
  • the USB Type-C interface of the TV terminal is compatible with the Billboard interface of the UFP device (especially the USB2.0 type device) and the USB Type-C main control module through the switch module SWITCH1503, and
  • the structure is simple, easy to implement, and can reduce production costs.
  • the USB Type-C main control module 1502 recognizes that the type of the external device of the USB Type-C interface 1501 is a video interface device DP (Displayport) type; the USB Type-C main control module 1502 is based on the type. Control the status of the switch module SWITCH1503, including:
  • a state switching signal is sent to the switch module SWITCH 1503 to cause the switch module SWITCH 1503 to switch to the state of the Billboard interface in the video interface device DP and the USB Type-C master module 1501.
  • the preset information of the interaction between the USB Type-C main control module 1501 and the SOC chip 1504 can be directly stored in the memory of the Billboard interface, and the data is exchanged between the Billboard interface and the device connected to the USB Type-C interface 1501.
  • the Billboard interface does not require the USB3.0 HUB to provide an uplink port UFP, which realizes the simultaneous compatibility between the Billboard interface and the USB Type-C interface 1501.
  • the USB Type-C main control module 1502 recognizes that the type of the external device of the USB Type-C interface 1501 is a UFP device type; and the USB Type-C main control module 1502 controls the switch module SWITCH1503 according to the type. Status, including:
  • the switch module SWITCH1503 maintains the UFP device and the SOC chip 1504 in the TV terminal, that is, the UFP device and the SOC chip 1504 directly perform data interaction, that is, the USB3.0 HUB is not required to provide uplink.
  • the port UFP implements the simultaneous compatibility between the Billboard interface and the USB Type-C interface 1501.
  • the television terminal further includes a multiplexing switch MUX.
  • the multiplexing switch MUX is connected between the USB Type-C interface 1501 and the SOC chip 1504 in the television terminal.
  • the multiplexing switch MUX turns on the external device of the USB Type-C interface and the SOC chip of the television terminal under the control of the USB Type-C main control module 1502, so that the device externally connected to the USB Type-C interface and the SOC chip in the television terminal Perform data interaction.
  • the multiplexing switch MUX can be controlled by the USB Type-C main control module 1502, so that the external device is a UFP device or a video interface device DP, and the data of each type of device can be accurately transmitted.
  • the television terminal further includes a protocol conversion module DP-HDMI.
  • the protocol conversion module DP-HDMI is connected between the multiplexing switch MUX and the SOC chip in the television terminal for converting the DP signal from the multiplexing switch MUX into an HDMI signal and transmitting it to the SOC chip 1504, and pre-processing the SOC chip 1504.
  • the information is sent to the memory of the Billboard interface in the USB Type-C main control module 1502.
  • the protocol conversion module DP-HDMI can exchange control information and connection status with the USB Type-C main control module 1502, and can ensure that the connection between the USB Type-C interface 1501 and the SOC chip 1504 is in an active state, and the data is improved. The accuracy of the transmission.
  • the USB Type-C main control module 1502 and the USB Type-C interface 1501 further determine the power supply state of the device externally connected to the USB Type-C interface 1501 by using an interactive CC signal.
  • the USB Type-C master module 1502 sets the TV terminal as the power source PD Source to supply power to the video interface device DP.
  • the USB terminal-C main control module 1502 sets the TV terminal to supply power to the video interface device DP, which can extend the use time of the video interface device DP.
  • the TV terminal in this embodiment includes a USB Type-C interface 1501, a USB Type-C main control module 1502, a switch module 1503, a SOC chip 1504, a multiplexing switch MUX 1505, and a protocol conversion module DP-HDMI 1506.
  • the specific connection relationship is as follows:
  • the USB Type-C main control module 1502 is connected to the USB Type-C interface 1501 via the signal line CC and the channel SBU.
  • the USB Type-C main control module 1502 can identify the following information through the external device of the signal line CC and the USB Type-C interface 1501, for example, the type of the USB Type-C interface 1501, the forward and reverse insertion, and the power transmission information PD and video. Hot plug information HPD of the interface device DP. Since the signal line CC and the CC signal transmitted by the channel can pass the USB Type-C protocol, details are not described herein again.
  • the USB Type-C main control module 1502 is connected to the switch module SWITCH 1503 via the signal line C1 and USB D+/D- (due to the smaller interval of the drawing, indicated by D+/D-).
  • the USB Type-C main control module 1502 sends a state switching signal to the switch module SWITCH1503 through the signal line C1.
  • the switch module SWITCH 1503 is connected to the USB Type-C master module 1502, and data interaction between the two can be performed.
  • the USB D+/D- between the switch module SWITCH1503 and the USB Type-C master module 1502 is disconnected, and is connected to the SOC chip 1504 via USB D+/D-.
  • the USB Type-C main control module 1502 is connected to the multiplexing switch MUX 1505 via the signal line C2.
  • the multiplexing switch MUX 1505 is connected to the USB Type-C interface 1501 via signal lines TX1, TX2, RX1, RX2.
  • the multiplexing switch MUX 1505 is connected to the SOC chip 1503 through the signal lines USB SS RX and USB SS TX, and the multiplexing switch MUX 1505 is connected to the protocol conversion module DP-HDMI 1506 through the signal line DP.
  • the USB Type-C main control module 1502 interacts with the USB Type-C interface 1501 by using the signal line TX1/RX1 or the signal line TX2/RX2 according to the type of the external device and the forward/reverse insertion control switch MUX1505, or controls the multiplexing switch MUX1505.
  • the DP data is transmitted to the protocol conversion module DP-HDMI 1506 via the signal line DP.
  • the protocol conversion module DP-HDMI 1506 is connected to the receiving end HDMI sink of the SOC chip 1504 via the signal line IIC (Inter IC BUS), HDMI, HDMI HPD, and is connected to the USB Type-C master module 1502 via the signal lines AUX, DP HPD.
  • the protocol conversion module DP-HDMI1506 acquires information such as EDID (Extended Display Identification Data) of the receiving end HDMI Sink through the IIC, and establishes an HDMI HPD connection through the signal line HDMI HPD. After the connection is established, the protocol conversion module DP-HDMI 1506 transmits the converted HDMI data to the receiving end HDMI Sink through the signal line HDMI for display by the SOC chip 1504.
  • the USB Type-C main control module 1502 is connected to the SOC chip 1504 via the signal line C3 for data interaction between the two, and can also be used as the software of the USB Type-C main control module 1502 as another communication interface connected with the SOC chip 1504. Upgrade and control usage. It should be noted that the signal line C3 may be selected to be reserved or deleted according to a specific scenario, which is not limited in this embodiment.
  • the device that is externally connected to the USB Type-C interface 1501 is a UFP device.
  • the workflow of the television terminal provided by the embodiment of the present application is as follows:
  • FIG. 17 is a schematic diagram of a USB structure of a television terminal when the external device is a UFP device.
  • the signal line and module that are not involved in this workflow are hidden in the embodiment of the television terminal shown in FIG. Understandably, according to the specific scenario, part of the signal lines and modules can participate in this process.
  • the USB Type-C main control module 1502 acquires a CC signal through the signal line CC to obtain the type of the device, and determines that the device is a UFP device.
  • the USB Type-C main control module 1502 prohibits sending a status switching signal to the switch module SWITCH1503 (USB D+/D-hiding between the signal line C1, the USB Type-C main control module and the switch module SWITCH1503), and the switch module SWITCH1503 protects at this time.
  • the USB Type-C interface 1501 and the SOC chip 1504 are maintained in an ON state to ensure the normal operation of the USB 2.0.
  • the data in the UFP device sequentially passes through the USB Type-C interface 1501, the signal line USB D+/D-, the switch module SWITCH1503, and the signal line USB D+/D- to the downlink port of the SOC chip 1504. DFP.
  • the data in the SOC chip 1504 sequentially passes through the signal line USB D+/D-, the switch module SWITCH1503, the signal line USB D+/D- to the USB Type-C interface 1501, and finally stored in the USB 2.0 device.
  • the USB Type-C main control module 1502 sends control information to the multiplexing switch MUX1505 through the signal line C2 according to the forward and reverse insertion state of the UFP device, and selects a TX1/RX1 signal line combination or a TX2/RX2 signal line combination. That is, the USB Type-C main control module 1502 controls the multiplexing switch MUX to switch according to the USB Type-C protocol, and ensures that the downlink port DFP of the SOC chip 1504 is connected with the USB Type-C interface to ensure the normal connection of the USB 3.0 interface.
  • the data in the UFP device sequentially passes through the USB Type-C interface 1501, the signal line TX1 (or TX2), the multiplexing switch MUX1505, and the signal line USB SS RX to the downlink port DFP of the SOC chip 1504. .
  • the data of the SOC chip 1504 sequentially passes through the downlink port DFP, the signal line USB SS TX, the multiplexing switch MUX1505, the signal line RX1 (or TX2) to the USB Type-C interface 1501, and finally stored in the USB 3.0 device.
  • the workflow of the television terminal is as follows:
  • FIG. 18 is a schematic diagram of a USB structure of a television terminal when the external device is a video interface device DP.
  • the external device is a video interface device DP.
  • FIG. 18 some of the signal lines and modules that are not involved in the workflow are hidden. Understandably, according to the specific scenario, part of the signal lines and modules can participate in this process.
  • the USB Type-C main control module 1502 acquires a CC signal through the signal line CC to obtain the type of the device, and determines that the device is the video interface device DP.
  • the USB Type-C master module 1502 transmits a state switching signal to the switch module SWITCH 1503.
  • the switch module SWITCH1503 is switched and connected to the uplink port UFP of the Billboard interface in the USB Type-C main control module 1502.
  • the USB Type-C main control module 1502 sends control information to the multiplexing switch MUX1505 through the signal line C2 according to the forward and reverse insertion state of the UFP device, and selects a TX1/RX1 signal line combination or a TX2/RX2 signal line combination. That is, the USB Type-C main control module 1502 controls the multiplexing switch MUX to switch according to the USB Type-C protocol, and ensures that the downlink port DFP of the SOC chip 1504 is connected with the USB Type-C interface to ensure the normal connection of the USB 3.0 interface.
  • the protocol conversion module DP-HDMI1506 interacts with the HDMI Sink of the receiving end of the SOC chip 1504 through the IIC, acquires the EDID information of the receiving end HDMI Sink, and establishes an HDMI HPD connection through the signal line HDMI HPD.
  • the protocol conversion module DP-HDMI 1506 exchanges control information with the USB Type-C master module 1502 through the signal line AUX, and interacts with the HPD connection state through the signal line DP HPD.
  • the USB Type-C main control module 1502 transmits the HPD connection state of the protocol conversion module DP-HDMI1506 to the video interface device DP through the USB Type-C interface 1501 through the signal line CC, and transmits the AUX control of the protocol conversion module DP-HDMI1506 through the signal line SBU. information.
  • the data in the video interface device DP can sequentially reach the SOC through the signal line TX1 (or TX2), the multiplexing switch MUX1505, the signal line DP, the protocol conversion module DP-HDMI1506 (protocol conversion), and the signal line HDMI.
  • the receiving end of the chip 1504 is HDMI SINK.
  • the abnormality information is stored in the memory of the Billboard interface of the USB Type-C main control module 1502, and then the USB Type-C main control module 1502 passes the signal line USB D+/. D- is sent to the video interface device DP.
  • the embodiment of the present application further provides a control method for a television terminal. As shown in FIG. 19, the method includes:
  • Step 1901 The USB Type-C main control module interacts with the USB Type-C interface to identify a type of the device externally connected to the USB Type-C interface.
  • Step 1902 The USB Type-C main control module controls the state of the switch module SWITCH according to the type to control data exchange between the device externally connected to the USB Type-C interface and the SOC chip in the television terminal.
  • the USB Type-C main control module is configured according to the type. Controlling the state of the switch module SWITCH, including:
  • the USB Type-C main control module controls the location according to the type The state of the switch module SWITCH, including:
  • the method includes:
  • the USB Type-C main control module controls the multiplexing switch MUX to turn on the device externally connected to the USB Type-C interface and the SOC chip in the television terminal, so that the USB Type-C interface is connected to the device.
  • the SOC chip in the television terminal performs data interaction.
  • the method further includes:
  • the USB Type-C main control module and the protocol conversion module DP-HDMI exchange control information and connection status, and presets in the data conversion process between the protocol conversion module DP-HDMI and the SOC chip in the television terminal
  • the information is stored in the memory of the Billboard interface in the USB Type-C main control module.
  • the method further includes:
  • the USB Type-C main control module and the USB Type-C interface determine the power supply state of the device externally connected to the USB Type-C interface by using an interactive CC signal;
  • the USB Type-C main control module sets the TV terminal as a power source PD Source to supply power to the video interface device DP.
  • the signal lines may be composed of one or more pieces, which may be represented as a control line, or may be represented as a data bus, and are understood according to the drawings and the transmission object.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • Embodiment 1 of the present invention provides a signal input circuit 2000 that is compatible with USB and ALT MODE device data input and can implement billboard information interaction.
  • the signal input circuit 2000 includes: a control chip (CC+PD module).
  • CC+PD module control chip
  • the function of the USB Type-C interface main control module 220 is implemented, and the USB Type-C (hereinafter referred to as USB-C) interface 2020 access device type can be controlled to control the D+/D of the USB-C interface 2020 interface.
  • the USB-C interface refers to an interface that uses the USB Type-C protocol for data transmission.
  • the USB-C interface can be connected to a device equipped with a USB-C interface (including a USB device: a terminal device for transmitting a USB protocol signal, such as a USB flash drive, a hard disk, etc.; an ALT MODE device: a terminal for transmitting audio and video signals)
  • a USB device including a USB device: a terminal device for transmitting a USB protocol signal, such as a USB flash drive, a hard disk, etc.; an ALT MODE device: a terminal for transmitting audio and video signals
  • Devices such as notebooks, cell phones, PADs, etc. are plugged in to form a USB or ALT MODE communication connection.
  • the control chip 2010 refers to a configuration channel (Configuration Channel, CC module) and/or a power delivery channel (Power Delivery, PD module) in the USB-C protocol.
  • the control chip 2010 can be specifically configured as a configuration channel (ie, a CC module) according to actual needs, or as a power transmission channel (ie, a PD module), or can be configured as a whole configuration channel and a power transmission channel (ie, a CC+PD module). .
  • control chip 2010 supports the CC (Channel Configuration) communication and the PD (POWER DELIVERY) protocol in the USB-C protocol specification, and on the one hand, adapts the forward and reverse insertion of the external device through the CC channel, confirms the external device type, and obtains The power transmission information PD of the ALT MODE device; on the other hand, the CC signal and the SBU signal are communicated externally, and it is equipped with a billboard function, through the connection terminal of the control chip 2010 and the USB D+/D- signal pin point of the USB-C interface 2020 The electrical connection is used to cause the control chip 2010 to feed back the billboard information to the external ALT MODE device when the external ALT MODE device is externally connected.
  • the control chip 340 is a CC+PD module. It can be understood that the control chip in this solution can also be used as a CC module or a PD module with an MCU processing function, and details are not described herein.
  • the SOC chip 2010 refers to a system on a chip, which is used to process audio and video signals, and can realize data transmission and reception.
  • the SOC chip 2010 has a USB DFP interface for implementing the USB3.0/USB2.0 signal transmission function; at the same time, it can also receive audio and video data signals, such as HDMI signals, DP signals, and the like.
  • the SOC chip 2010 may include an IIC (Integrated Circuit Bus) host module for implementing IIC control and firmware upgrades; a USB 3.0 DFP interface for implementing USB 3.0 DFP functions; and a USB 2.0 DFP interface for implementing USB 2.0 DFP function; and HDMI SINK module for implementing HDMI SINK (ie, the receiving end of the HDMI protocol that minimizes the transmission of differential signaling TMDS).
  • IIC Integrated Circuit Bus
  • USB 3.0DFP interface and the USB2.0DFP interface can be specifically combined into a DFP interface for both USB 3.0 and USB 2.0 signal transmission (as shown in FIG. 20); likewise, the USB 3.0DFP interface and the USB2
  • the .0DFP interface can also be specifically divided into two interfaces for implementing USB 3.0DFP function and USB 2.0DFP function respectively (as shown in Figure 23).
  • control chip 2010 provides a method for the control chip 2010 to identify an external device type.
  • the details are as follows:
  • the control chip 2010 communicates with the CC pin of the USB-C through the CC channel, thereby identifying the USB-C external device type.
  • mapping relationship between the switch mode and the external device type information is pre-stored in the control chip 2010.
  • the device information (such as the device ID information) of the external device is identified, thereby controlling The pattern type pre-stored in the chip 2010 is matched, and the connection terminal of the SOC chip 2030 is electrically connected according to the matching result, or the connection terminal of the D+/D- input terminal of the USB-C interface 2020 and the interactive board information in the control chip 2010 is controlled. Electrical connection between them.
  • the embodiment of the present application provides another manner for the control chip 2010 to identify the type of the external device.
  • the details are as follows:
  • the control chip 2010 identifies that the external device type is specifically a USB device.
  • the control chip 2010 identifies the external device as an ALT MODE device.
  • VDM information of the device is as follows:
  • VDM information obtained by the CC communication is 01
  • the ALT MODE device is a UFP device
  • the data signal can be transmitted to other devices.
  • the VDM information is 10
  • the ALT MODE device is determined to be a DFP device.
  • the device receives the data signal transmitted by the other device.
  • the obtained VDM information is 11, it determines that the accessed device can be used as both a UFP device and a DFP device, that is, it can transmit data to other devices and receive other data.
  • the data signal transmitted by the device is 01
  • the USB-C interface 2020 in the embodiment of the present application has a USB D+/D- signal pin for inputting a USB 2.0 signal, and correspondingly, the SOC chip provides A pin for the USB D+/D- signal input for receiving USB 2.0 signals transmitted from an external device.
  • control chip 2010 controls the D+/D- terminal of the USB-C interface 2020, and the USB D+/D- terminal can be controlled by the software in different modes with the SOC chip or the control chip.
  • the connection terminal is electrically connected, and the USB D+/D- terminal can also be electrically connected to the connection terminal of the SOC chip or the control chip in different modes by selecting the switching device strobe.
  • the signal input circuit 2000 further includes a selection switch device 2040.
  • the selection switch device 2040 controls the USB D+/D- signal pin and the control chip 2010.
  • the output pin of the control signal C1 is electrically connected; the input pin is electrically connected to the USB D+/D- signal pin of the USB-C interface 2020; one of the two output pins of the optional pass, the SOC chip In the 2030, the pins for the USB D+/D- input are electrically connected; the other is electrically connected to the pins of the control chip 2010 that can be connected to the USB D+/D- signals.
  • the selection switching device 2040 is selected as the selection switching device 2040 in the embodiment of the present application.
  • the D+/D- pin of the chip is electrically connected with the USB D+/D- input signal pin of the USB-C interface, and the USB 2+/USB2- is connected with the DFP interface of the SOC chip for implementing the USB 2.0 signal transmission function;
  • the USB 1+/USB1 is connected to the function module of the control board (or CC module) for interacting with the billboard information, and is used for implementing the USB 3.0 signal transmission function;
  • SEL1 and SEL2 are control pins, and the control chip in the embodiment of the present application ( Or CC module) connection.
  • the control chip (or CC module) is low through the control pin SEL0, and SEL1 is at a high level, and then the switching device is selected to switch the USB D+/D- terminal and the SOC chip DFP interface. Connection; when accessing the ALT MODE device, the control chip (or CC module) is low through the control pin SEL0, SEL1 is low, and then the switching device is selected to switch the USB D+/D- terminal and the control chip (or CC) In the module), the function module of the interactive billboard information is electrically connected.
  • selection switching device only one specific form of the selection switching device is given here. Those skilled in the art can also select other chips having the same or similar functions as the selection switching device in the embodiment of the present application.
  • a switching process of the selection switch device 2040 is specifically: the control chip 2010 detects the access device type of the USB-C interface 2020, and when detecting that the USB-C interface 2020 is connected to the USB device, the selection switch is controlled by the control signal C1.
  • the device 2040, the USB D+/D- terminal of the strobe USB-C interface 2020 is electrically connected to the connection terminal of the SOC chip 2030; when the USB-C interface 2020 is connected to the ALT MODE device, the selection switch is controlled by the control signal C1.
  • the device 2040 is configured to strobe electrical connection between the USB D+/D- terminal of the USB-C interface 2020 and a connection terminal of the switchable board information in the control chip 2010.
  • Another switching process of the selection switching device 2040 is, in particular, by default, the connection between the selection switching device 2040 and the connection terminal of the interchangeable billboard information in the control chip is maintained, while the connection terminal of the selection switching device 2040 and the SOC chip 2030 is maintained.
  • the selection switching device 2040 is controlled by the control signal C1, and the connection terminal thereof with the SOC chip 2030 is disconnected, and simultaneously with the control chip. Electrical connection between the connection terminals of the interactive billboard information.
  • the SOC chip 2030 further includes: a pin for inputting a USB SSTX/RX signal, and a pin for inputting audio and video formats; wherein the USB SSTX/RX signal input is available.
  • the pin acts as a functional pin in the USB 3.0DFP interface of the SOC chip 2030 for USB 3.0 devices to transmit USB 3.0 signals; and the pin for audio and video format input is used as the functionality of the SOC chip 2030 mid-video module. Pin for the ALT MODE device to transmit audio and video signals.
  • the signal input circuit 2000 further includes: a composite switch chip 2050 (the MUX module in FIG. 20), and the composite switch chip 2050 includes two high-speed differential pair signal input pins respectively, and the signal pins of the USB-C interface 2020 respectively
  • the USB TX1/2 and RX1/2 connections can be used to transfer DP signals or USB 3.0 signals from the ALT MODE device.
  • control pin of the composite switch chip 2050 is electrically connected to the output pin of the other control signal C2 in the control chip 2010, and one of the two output pins of the selectable pass is available to the SOC chip.
  • the pins of the USB SSTX/RX signal input are electrically connected; the other is electrically coupled to the pins of the SOC chip that are available for audio and video format input.
  • control chip 2010 detects the access device type of the USB-C interface 2020.
  • the control chip 2010 controls the composite switch chip 2050 through the control signal C2 to strobe the high-speed differential in the USB-C interface 2020.
  • USB 3.0 signals such as strobe high-speed differential pair TX1/RX1, or strobe high-speed differential pair TX2/RX2
  • the USB 3.0 signal is transmitted to the USB 3.0DFP interface of the SOC chip 2030 via the composite switch chip 2050; when the external device is ALT In the MODE device, at least one high-speed differential pair of the USB-C interface 2020 transmits audio and video signals, such as a strobe high-speed differential pair TX1/RX1 and/or a high-speed differential pair TX2/RX2 to transmit audio and video signals to the SOC chip 2030. Audio and video terminal module.
  • the gating mode of the high speed differential pair in the USB-C interface provided in the USB-C protocol is selected as the composite switch chip 2050 in the embodiment of the present application.
  • the chip's two high-speed differential pair pins TX1/RX1 and TX2/RX2 are connected to the USB-C interface respectively.
  • the SSTX/SSRX pin of the chip is connected to the USB device for transmitting USB 3.0 when the USB device is connected.
  • Signal; the ML0 ⁇ ML3 pins of the chip are connected to the DP SINK module and are used to transmit DP signals when connected to the ALT MODE device.
  • the TX1/RX1 pin of the composite switch chip PS8742 is input to the USB-C interface, and the signal is input from the SSTX.
  • the /SSRX pin is transmitted to the USB Device (USB device); in Mode 2, the TX2/RX2 pin of the composite switch chip PS8742 inputs the incoming signal from the USB-C interface and is transmitted from the SSTX/SSRX pin to the DP SINK module.
  • the four modes correspond to the electrical conduction relationship between the TX1/RX1 and TX2/RX2 pins of the composite switch chip PS8742 and ML0 to ML3 when accessing the ALT MODE device, and audio and video signals (such as DP signals). It is transmitted from the TX1/RX1, TX2/RX2 pins to the chip PS8742, and then from the ML0 to ML3 pins to the audio and video module (DP SINK module).
  • DP SINK module the audio and video module
  • DP SINK in the drawing can also be evolved into other modules with similar functions according to the actual situation, such as HDMI SINK module, etc., and will not be described here.
  • the signal input circuit further includes a DP-HDMI module, and when the external device is an ALT MODE device capable of transmitting only the DP signal, and the SOC chip can only serve as the receiving end of the HDMI signal, The DP signal is converted to an HDMI signal and transmitted to the SOC chip.
  • the signal input circuit 2000 includes a DP-HDMI module 2060, wherein the HPD terminal of the DP-HDMI module 2060 is electrically connected to the control chip 2010, and is used for determining and confirming the external device connected to the USB-C interface 2020 and the DP-HDMI.
  • the communication state of the module 2060, the input end of the DP-HDMI module 2060 is connected to the composite switch chip 2050, and is used for strobing the composite switch chip 2050 when the external device is an ALT MODE device, and the output pin of the DP-HDMI module 2060 is The pins of the SOC chip 2030 that can be input to the HDMI format are electrically connected.
  • the DP-HDMI module 2060 is electrically connected to the SOC chip 2030 through the signal line IIC2 (Inter IC BUS), and obtains information such as EDID (Extended Display Identification Data) of the HDMI Sink of the receiving end through the IIC2, and passes the information.
  • the signal line HDMI HPD establishes an HDMI HPD connection. After the connection is established, the DP-HDMI module 2060 transmits the converted HDMI data to the receiving end HDMI SINK module through the signal line HDMI for display and use by the SOC chip 2030.
  • control chip 2010 and the USB-C interface 2020 also determine the power supply state of the external device of the USB-C interface 2020 by interacting with the CC signal.
  • the control chip 2010 sets the electronic terminal device as the power source PD Source to supply power to the video interface device DP.
  • the usage time of the external ALT MODE device can be extended.
  • the control chip 2010 is also connected to the SOC chip 2030 through the signal line C3 for data interaction between the two, and can also be used as a software upgrade and control in the control chip 2010 as another communication interface connected to the SOC chip 2030.
  • the signal line C3 may be selected to be reserved or deleted according to a specific scenario, which is not limited in this embodiment.
  • USB-C interface 2020 external device is USB device
  • FIG. 24 is a schematic diagram of signal conduction of a signal input circuit when the external device is a USB device.
  • the signal input circuit embodiment shown in FIG. 24 hides part of the signal lines and modules that are not involved in the workflow (specifically, in the USB device mode, between the signal line C1, the control chip, and the selection switch device). USB D+/D-communication is hidden). Understandably, according to the specific scenario, part of the signal lines and modules can participate in this process.
  • the control chip 2010 when a device is connected to the USB-C interface 2020, the control chip 2010 performs CC signal interaction with the CC pin of the USB-C interface 2020 through the CC channel to obtain the type of the access device, and determines that the device is a USB device. device.
  • the control chip 2010 controls the gate selection switching device 2040 to electrically conduct with the DFP interface of the SOC chip 2030 through the signal line C1, or the control chip 2010 prohibits the transmission of the state switching signal to the selection switching device 2040. At this time, the selection switching device 2040 protects the default state.
  • the USB-C interface 2020 and the SOC chip 2030 are maintained in a conducting state to ensure the normal operation of the USB 2.0.
  • the USB device is a USB 2.0 device
  • the data in the UFP device sequentially passes through the USB-C interface 2020, the signal line USB D+/D-, the selection switch device 2040, the signal line USB D+/D- reaches the USB 2.0 of the SOC chip 2030.
  • DFP interface the data in the SOC chip 2030 can also be sequentially transmitted through the signal line USB D+/D-, the selection switching device 2040, the signal line USB D+/D- to the USB-C interface 2020, and finally transmitted and stored in the USB 2.0 device.
  • control chip 2010 sends control information to the multiplexing switch chip 2050 through the signal line C2 according to the forward and reverse insertion state of the USB device, and selects one high-speed differential pair TX1/RX1 or TX2/RX2. That is, the control chip 2010 controls the multiplexing switch chip 2050 to switch according to the USB-C protocol, and ensures that the DFP interface of the SOC chip 2030 is connected to the USB-C interface 2020 to ensure the normal connection of the USB 3.0 interface.
  • the USB device When the USB device is a USB 3.0 device, the data in the USB device sequentially passes through the USB-C interface 2020, the signal line TX1 (or TX2), the composite switch chip 2050, and the signal line USB SS RX to reach the USB 3.0 DFP interface of the SOC chip 2030.
  • the data of the SOC chip 2030 sequentially passes through the USB 3.0 DFP interface, the signal line USB SS TX, the composite switch chip 2050, the signal line RX1 (or TX2) to the USB-C interface 2020, and finally stored in the USB 3.0 device.
  • the external device of USB-C interface 2020 is ALT MODE device
  • 25 is a schematic diagram of signal conduction of a television terminal when the external device is an ALT MODE device.
  • the signal line and module that are not involved in this workflow are hidden in the embodiment of the television terminal shown in FIG. Understandably, according to the specific scenario, part of the signal lines and modules can participate in this process.
  • the control chip 2010 when a device is inserted into the USB-C interface 2020, the control chip 2010 interacts with the CC signal through the CC channel to acquire the type of the device, and determines that the device is an ALT MODE device.
  • the control chip 2010 communication signal line C1 controls the selection switch device 2040 to be electrically connected to the billboard module in the control chip 2010, specifically, to the UFP port of the substrate Billboard in the control chip 2010.
  • the control chip 2010 transmits control information to the multiplexing switch chip 2050 via the signal line C2 according to the forward and reverse insertion state of the UFP device, and selects the differential pair TX1/RX1 or TX2/RX2. That is, the control chip 2010 controls the multiplexing switch chip 2050 to switch according to the USB-C protocol, and ensures that the DFP port of the SOC chip 2030 is connected to the USB-C interface to ensure the normal connection of the USB 3.0 interface.
  • the DP-HDMI module 2060 interacts with the HDMI chip of the SOC chip 2030 through the IIC2, acquires the EDID information of the receiving end HDMI SINK, and establishes an HDMI HPD connection through the signal line HDMI HPD.
  • the DP-HDMI module 2060 exchanges control information with the control chip 2010 through the signal line AUX, and interacts with the HPD connection state through the signal line DP HPD.
  • the control chip 2010 transmits the HPD connection state of the DP-HDMI module 2060 to the ALT MODE device via the CC-channel via the USB-C interface 2020, and transmits the control information of the DP-HDMI module 2060 through the signal line SBU.
  • the data in the ALT MODE device can sequentially reach the SOC chip through the signal line TX1/RX1 (or TX2/RX2), the multiplexing switch chip 2050, the signal line DP, the DP-HDMI module 2060, and the signal line HDMI.
  • the abnormal information is sent to the ALT MODE device by the Billboard module in the control chip 2010 through the signal line USB D+/D-, and the corresponding abnormal information is displayed on the ALT MODE device. To remind users.
  • the SOC chip 2030 includes only the HDMI SINK module supporting the HDMI signal, and the ALT MODE input signal is the DP signal;
  • the SOC chip 2030 includes only the HDMI SINK module supporting the HDMI signal, and the ALT MODE input signal is the DP signal;
  • the DP-HDMI module 2060 needs to be set may also be considered according to the actual situation. This embodiment 1 does not describe too much here.
  • the electronic device terminal provided in this embodiment electrically connects the USB D+/D- terminal to the SOC chip or the control chip according to the type of the external device, so as to solve the USB 2.0/3.0 signal and the billboard information existing in the USB-C interface of the television terminal application.
  • the control chip communicates with the CC signal pin of the USB-C interface through the CC channel, thereby identifying the external device type, and when the USB-C interface access device type is the USB mode device, the strobe The USB D+/D- terminal is electrically connected to the connection terminal of the SOC chip; when the USB-C interface is connected to the device type ALT MODE mode device, the strobe USB D+/D- terminal and the control chip can exchange the billboard information.
  • the electrical connection between the connection terminals enables compatibility between the USB 2.0/3.0 signal and the billboard information.
  • the control chip includes a CC module and a PD module, and the CC module and the PD module can be separately set (ie, a CC module + a PD module), or can be combined into one chip (ie, a CC+PD module).
  • the signal input circuit 22800 includes: a CC module 22810 for detecting a USB-C interface 22820 access device type, when detecting the USB-C interface 22820 When entering the USB device, the USB D+/D- terminal of the strobe USB-C interface 22820 is electrically connected to the connection terminal of the SOC chip; when the USB-C interface 22820 is connected to the ALT MODE device, the USB-C interface is strobed. In the 22820, the USB D+/D- terminal is electrically connected to the connection terminal of the PD module 22830 that can exchange the billboard information.
  • the CC module 22810 can be regarded as a CC physical channel, which is electrically connected with the CC pin of the USB-C interface 22820, can perform CC communication with the USB-C interface 22820, and is positive and negative to the external device through the CC channel. Plug in to adapt, confirm the external device type and obtain the power transfer information PD of the ALT MODE device.
  • the PD module 22830 is used to support the PD protocol, and is equipped with a billboard function module, and is electrically connected with a USB D+/D- signal pin in the USB-C interface 22820 for feeding back billboard information when the external device is an ALT MODE device. Give the external ALT MODE device.
  • the signal input circuit 22800 further includes a selection switching device 2640.
  • the selection switching device 2640 controls a USB D+/D- signal pin and a control signal in the CC module 22810.
  • the C1 output pin is electrically connected; its input pin is electrically connected to the USB D+/D- signal pin of the USB-C interface 22820; one of the two output pins of the optional pass is available to the SOC chip 2650.
  • the USB D+/D- input pins are electrically connected; the other is electrically connected to the pins of the PD module 22830 that can be connected to the USB D+/D- signals.
  • the switching process of the selection switching device 2640 is specifically: the CC module 22810 detects the access device type of the USB-C interface 22820.
  • the selection switching device 2640 is controlled by the control signal C1.
  • the electrical connection between the USB D+/D- terminal of the strobe USB-C interface 22820 and the connection terminal of the SOC chip 2650 is connected; when the USB-C interface 22820 is connected to the ALT MODE device, the selection switching device 2640 is controlled by the control signal C1.
  • the electrical connection between the USB D+/D- terminal of the USB-C interface 22820 and the connection terminal of the PD module 22830 that can exchange the billboard information is strobed.
  • the SOC chip 2650 further includes: a pin for inputting a USB SSTX/RX signal, and a pin for inputting an HDMI format; wherein the USB SSTX/RX signal input is available.
  • the pin acts as a functional pin in the USB 3.0DFP interface of the SOC chip 2650 for USB 3.0 devices to transmit USB 3.0 signals; and the pin for HDMI format input acts as the HDMI SINK module in the SOC chip 2650. Pin for the ALT MODE device to transmit HDMI signals.
  • the signal input circuit 22800 further includes: a composite switch chip 2660 (the MUX module in FIG. 6), and the composite switch chip 2660 includes two high-speed differential pair signal input pins and a signal pin of the USB-C interface 22820.
  • USB TX1/2 and RX1/2 connections can be used to transfer DP signals or USB 3.0 signals from ALT MODE devices.
  • control pin of the composite switch chip 2660 is electrically connected to the output pin of the other control signal C2 in the CC module 22810.
  • the control pin of the composite switch chip 2660 is electrically connected to the output pin of the other control signal C2 in the CC module 22810.
  • one channel and the SOC chip 2650 are available for USB SSTX/
  • the pin of the RX signal input is electrically connected; the other circuit is electrically connected to a pin of the SOC chip 2650 that can be input to the HDMI format.
  • the CC module 22810 detects the access device type of the USB-C interface 22820.
  • the CC module 22810 controls the composite switch chip 2660 through the control signal C2 to strobe the high-speed differential in the USB-C interface 22820.
  • USB 3.0 signals such as strobe high-speed differential pair TX1/RX1, or strobe high-speed differential pair TX2/RX2
  • the USB 3.0 signal is transmitted to the USB 3.0DFP interface of the SOC chip 2650 via the composite switch chip 2660; when the external device For the ALT MODE device, at least one high-speed differential pair in the strobe USB-C interface 22820 transmits audio and video signals, such as a strobe high-speed differential pair TX1/RX1 and/or a high-speed differential pair TX2/RX2 to transmit audio and video signals to the SOC chip.
  • HDMI SINK module
  • the signal input circuit 22800 also needs to include a DP-HDMI module for converting the DP signal into an HDMI signal and transmitting it to the SOC chip 2650 when the external device transmits the DP signal.
  • the signal input circuit 22800 includes a DP-HDMI module 2670, wherein the HPD terminal of the DP-HDMI module 2670 is electrically connected to the CC module 22810, and is used for determining and confirming the external device connected to the USB-C interface 22820 and the DP-HDMI.
  • the connection state of the module 2660, the input end of the DP-HDMI module 2670 is connected to the composite switch chip 2660, and is used for strobing the composite switch chip 2660 when the external device is the ALT MODE device, and the output pin of the DP-HDMI module 2670 is The pins of the SOC chip 2650 that can be input to the HDMI format are electrically connected.
  • the CC module 22810 and the USB-C interface 2020 also determine the power supply state of the external device of the USB-C interface 2020 by interacting with the CC signal.
  • the CC module 22810 sets the electronic terminal device as the power source PD Source to supply power to the video interface device DP.
  • the electronic terminal device is configured to supply power to the video interface device DP through the CC module 22810, which can extend the use time of the video interface device DP.
  • the electronic device terminal provided by the embodiment is electrically connected to the SOC chip or the PD module according to the external device type strobing the USB D+/D- terminal according to the external device frame structure, so as to solve the problem that the TV terminal application USB-C interface is used. There is a problem that USB 2.0/3.0 signals and panel information cannot be compatible at the same time.
  • the CC module communicates with the CC signal pin of the USB-C interface through the CC channel, thereby identifying the external device type, and when the USB-C interface access device type is the USB mode device, the strobe The USB D+/D- terminal is electrically connected to the connection terminal of the SOC chip; when the USB-C interface is connected to the device type ALT MODE mode device, the strobe USB D+/D- terminal and the PD module can exchange the billboard information.
  • the electrical connection between the connection terminals enables compatibility between the USB 2.0/3.0 signal and the billboard information.
  • Embodiment 2 of the present application further provides an electronic terminal device that receives data from an external device through a USB TYPE-C interface.
  • the electronic terminal device 2700 includes a display screen 2710 and a signal input circuit 2720, wherein the display screen 2710
  • the signal input circuit 2720 further includes a SOC chip 2721, a control chip 2722 (CC+PD), and a USB-C interface 2723, wherein the USB-C interface 2723 is used to access an external device, and the control chip 2722 is used to control
  • the external device is caused to perform data interaction with the SOC chip 2721 through the USB-C interface 2723, and the signal of the external device is transmitted to the SOC chip 2721, and the SOC chip 2721 drives the display screen 2710 to display the screen.
  • the control chip 2722 controls the USB 2.0/USB 3.0 signal to be transmitted to the SOC chip 2721 through the USB-C interface 2721, thereby driving the display screen 2710 to display related information;
  • the control chip 2722 controls the audio and video signals to be transmitted to the SOC chip 2721 through the USB-C interface 2721, thereby driving the display screen 2710 to display the related picture;
  • the control chip 2722 controls the USB D+.
  • the /D- terminal is electrically connected to the SOC chip 2721, and the billboard information is transmitted to the SOC chip 2721, and the relevant billboard information is displayed on the display screen to remind the user of the abnormality.
  • the signal input circuit 2720 can adopt any of the signal input circuits in the first embodiment.
  • the data transmission process of the external device and the SOC chip 2721 can be specifically referred to the corresponding data transmission process in the first embodiment, where Do more than enough.
  • the third embodiment of the present application further provides a television terminal.
  • the television terminal 2800 includes a display screen 2810, a signal input circuit 2820, and a power supply circuit 2830.
  • the display screen 2810 is configured to display a picture, and the power supply circuit 2830
  • the device is configured to provide power, and the signal input circuit 2820 is configured to receive data from the external device;
  • the signal input circuit 2820 further includes a SOC chip 2821, a control chip 2822 (CC+PD), a USB-C interface 2823, wherein the USB The -C interface 2823 is used for accessing an external device, and the control chip 2822 is configured to control the external device to perform data interaction with the SOC chip 2821 through the USB-C interface 2823, so as to transmit the signal of the external device to the SOC chip 2821, and then the SOC chip The 2821 drives the display 2810 to display a picture.
  • the control chip 2822 controls the USB 2.0/USB 3.0 signal to be transmitted to the SOC chip 2821 through the USB-C interface 2821, thereby driving the display 2810 to display related information;
  • the external device is an ALT MODE device
  • the control chip 2822 controls the audio and video signals to be transmitted to the SOC chip 2821 through the USB-C interface 2821, thereby driving the display screen 2810 to display the related picture;
  • the control chip 2822 controls the USB D+.
  • the /D- terminal is electrically connected to the SOC chip 2821, and the billboard information is transmitted to the SOC chip 2821, and the relevant billboard information is displayed on the display screen to remind the user of the abnormality.
  • the signal input circuit 2820 can adopt any of the signal input circuits of the above-mentioned Embodiment 1, and correspondingly, the data transmission process of the external device and the SOC chip 2821 can refer to the corresponding data transmission process in the above Embodiment 1, and Do more than enough.
  • Embodiment 4 of the present application further provides a signal input method that can be compatible with external device data input of USB and ALT MODE and can implement billboard information interaction. As shown in FIG. 29, the method includes:
  • Step S2810 identifying a USB TYPE-C interface access signal type
  • control chip performs signal interaction with the CC pin of the USB-C interface through the CC channel, thereby obtaining identity information (such as VDM information, ID information, and the like) of the external device, and determining the type of the external device to be accessed according to the information.
  • identity information such as VDM information, ID information, and the like
  • the device type corresponds to different access signal types.
  • mapping relationship between the switching mode and the access device type information may be pre-stored in the control chip.
  • the device information may be read by the slave device. And matching with the mapping relationship to determine the access device type.
  • Step S2820 controlling the electrical connection between the D+/D- input terminal of the USB-C interface and the connection terminal of the SOC chip, and the D+/D- input terminal of the USB-C interface and the connection terminal of the control chip capable of interacting with the billboard information.
  • an electrical connection only one of the two electrical connection paths is electrically conductive.
  • USB TYPE-C when the USB TYPE-C is connected to the USB protocol signal type, the electrical connection between the USB D+/D- input terminal of the strobe USB TYPE-C interface and the connection terminal of the SOC chip is recognized; when the USB TYPE is recognized.
  • C accesses the ALT MODE protocol signal type, the USB D+/D- input terminal in the strobe USB TYPE-C interface is electrically connected to the connection terminal of the control chip that can exchange the billboard information.
  • the embodiment of the present application can also maintain the connection between the USB D+/D- input terminal and the connection terminal of the SOC chip by the control chip by default; when the USB TYPE-C is connected to the ALT MODE protocol signal When the type is selected, the USB D+/D- input terminal is electrically connected to the connection terminal of the control chip for interacting with the billboard information through the control signal.
  • the control chip controls the D+/D- terminal of the USB-C interface, and the connection of the USB D+/D- terminal to the SOC chip or the control chip in different modes can be controlled by software.
  • the terminal is electrically connected, and the selection switch device can be added to control the selection switch device to strobe the USB D+/D- terminal to be electrically connected to the connection terminal of the SOC chip or the control chip in different modes.
  • the USB D+/D- terminal can be temporarily not electrically connected to the connection terminal of the control chip for interacting with the billboard information, but is satisfied.
  • the USB D+/D- terminal is strobed to be electrically connected to a connection terminal of the control chip for interacting with the billboard information.
  • the USB TYPE-C when the USB TYPE-C is connected to the ALT MODE protocol signal type, it is determined whether the identity information (VDM information, ID information) of the external device matches the pre-stored identity information in the control chip. If the information does not match, select The electrical connection between the USB D+/D- terminal in the USB TYPE-C interface and the connection terminal of the control chip for interacting with the billboard information is electrically connected.
  • identity information VDM information, ID information
  • the USB TYPE-C when the USB TYPE-C is recognized to access the ALT MODE protocol signal type, it can also be determined whether the electronic terminal device or the display device (such as a television terminal) successfully switches to the ALT MODE mode within the threshold time T, if If the ALT MODE mode is not successfully switched, the USB D+/D- input terminal in the USB TYPE-C interface is electrically connected to the connection terminal of the control chip that can exchange the billboard information.
  • connection terminals in the gating and control chip can also have various other forms, and no further description is made here.
  • Step S2830 the composite switch chip receives the control signal of the control chip, and according to the control signal, one of the two output pins that are selectable is electrically connected to the pin of the SOC chip for inputting the USB SSTX/RX signal.
  • the other circuit is electrically connected to a pin of the SOC chip that can be input to the HDMI format.
  • the control chip detects the access device type of the USB-C interface.
  • the control chip controls the composite switch chip (ie, the switch MUX) through the control signal, and strops a high-speed differential pair in the USB-C interface.
  • USB 3.0 signals such as strobe high-speed differential pair TX1/RX1, or strobe high-speed differential pair TX2/RX2 to transfer USB 3.0 signals to the USB 3.0DFP interface of the SOC chip via the composite switch chip; when the external device is an ALT MODE device
  • the strobe USB-C interface transmits at least one high-speed differential pair of audio and video signals, such as a strobe high-speed differential pair TX1/RX1 and/or a high-speed differential pair TX2/RX2 to transmit audio and video signals to the audio and video modules of the SOC chip.
  • the signal input method provided by the embodiment of the present application provides the control chip by detecting the type of the access signal, and then connecting the connection between the USB D+/D- terminal and the connection terminal of the SOC chip when accessing the USB protocol signal type. Electrically connected, when the ALT MODE protocol signal type is connected, the connection between the USB D+/D- terminal in the USB TYPE-C interface and the connection terminal of the control chip for interacting with the billboard information is strobed, thereby realizing USB 2.0/USB 3.0 signal transmission and interaction of billboard information.
  • Another embodiment of the present application provides a signal input method that is compatible with USB and ALT MODE external device data input and can implement billboard information interaction, including:
  • Step S710 detecting a USB TYPE-C interface access signal type
  • the CC module performs signal interaction with the CC pin of the USB-C interface through the CC channel, thereby obtaining identity information (such as VDM information, ID information, and the like) of the external device, and determining the signal type of the accessed external device according to the information.
  • identity information such as VDM information, ID information, and the like
  • mapping relationship between the switching mode and the access device type information may be pre-stored in the CC module.
  • the device information may be read by the slave device. And matching with the mapping relationship to determine the access device type.
  • Step S720 when the USB TYPE-C is connected to the USB protocol signal type, the electrical connection between the USB D+/D- terminal of the strobe USB TYPE-C interface and the connection terminal of the SOC chip is enabled, so that the USB external device can be
  • the SOC chip transmits data through the USB D+/D- terminal;
  • the USB-C interface includes a USB D+/D-signal pin
  • the SOC chip includes a pin for inputting a USB D+/D- signal
  • the external device is a USB mode device (transmitting a signal based on the USB protocol) Terminal devices, such as U disk, hard disk, etc.)
  • the CC module recognizes based on CC communication, and controls the pin conductance of the USB D+/D- signal pin and the USB D+/D- signal input in the SOC chip. Therefore, the external device can perform data interaction with the SOC chip through the USB D+/D- terminal, such as transmitting a USB 2.0 signal.
  • Step S730 when the USB TYPE-C is connected to the ALT MODE protocol signal type, the USB D+/D- terminal in the strobe USB TYPE-C interface is electrically connected to the connection terminal of the PD module for interacting with the billboard information. Enables the ALT MODE external device to interact with the PD module via the USB D+/D- terminal.
  • the PD module includes a pin for inputting a USB D+/D- signal, and when the external device is an ALT MODE device (based on a non-USB protocol, a terminal device mainly for transmitting audio and video signals, such as a computer, Notebook, mobile phone, PAD and other equipment), the CC module makes judgment and recognition based on CC communication, and controls the strobing USB D+/D- signal pin and the pin of the PD module for USB D+/D- signal input to be electrically conductive, thereby The external device can perform information exchange with the PD module through the USB D+/D- terminal.
  • the external device is an ALT MODE device (based on a non-USB protocol, a terminal device mainly for transmitting audio and video signals, such as a computer, Notebook, mobile phone, PAD and other equipment)
  • the CC module makes judgment and recognition based on CC communication, and controls the strobing USB D+/D- signal pin and the pin of the PD module for USB D+/D-
  • the access signal type is detected by the CC module, and when the USB protocol signal type is connected, the electrical connection between the strobed USB D+/D- terminal and the connection terminal of the SOC chip is performed.
  • the USB D+/D- terminal in the USB TYPE-C interface and the connection terminal of the PD module for interacting with the billboard information are strobed, thereby implementing USB 2.0/USB. 3.0 signal transmission and interaction of billboard information.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the present invention also provides the following two specific implementation manners:
  • Embodiment 6 of the present application provides a signal input circuit for receiving data from an external device through a USB Type-C interface.
  • the signal input circuit 3000 includes:
  • SOC chip 3020 a pin for USB D+/D-signal input
  • USB D+/D- signal pin in the USB Type-C interface 3010 is electrically connected to the pin of the SOC chip 3020 for USB D+/D- signal input, so that the USB access device and the SOC chip 3020 pass the USB D+/D. - Channel for data transmission.
  • the USB-C interface refers to an interface that uses the USB Type-C protocol for data transmission.
  • the USB-C interface can be connected to a device equipped with a USB-C interface (including a USB device: a terminal device for transmitting a USB protocol signal, such as a USB flash drive, a hard disk, etc.; an ALT MODE device: a terminal for transmitting audio and video signals)
  • a USB device including a USB device: a terminal device for transmitting a USB protocol signal, such as a USB flash drive, a hard disk, etc.; an ALT MODE device: a terminal for transmitting audio and video signals
  • Devices such as notebooks, cell phones, PADs, etc. are plugged in to form a USB or ALT MODE communication connection.
  • the SOC chip 3020 refers to a system on a chip, which is used to process audio and video signals, and can transmit and receive data.
  • the SOC chip 3020 has a USB DFP interface for implementing the USB3.0/USB2.0 signal transmission function; at the same time, it can also receive audio and video data signals, such as HDMI signals, DP signals, and the like.
  • the SOC chip 3020 may include an IIC (Integrated Circuit Bus) host module for implementing IIC control and firmware upgrades; a USB 3.0 DFP interface for implementing USB 3.0 DFP functions; and a USB 2.0 DFP interface for implementing USB 2.0 DFP function; and HDMI SINK module for implementing HDMI SINK (ie, the receiving end of the HDMI protocol that minimizes the transmission of differential signaling TMDS).
  • IIC Integrated Circuit Bus
  • USB 3.0DFP interface and the USB2.0DFP interface can be specifically combined into a DFP interface for both USB 3.0 and USB 2.0 signal transmission; similarly, the USB 3.0DFP interface and the USB2.0DFP interface can also be specifically divided. It is a two-interface for USB 3.0DFP function and USB 2.0DFP function respectively.
  • the USB-C interface 3010 in the embodiment of the present application has a USB D+/D- signal pin for inputting a USB 2.0 signal.
  • the SOC chip 3020 provides a pin for inputting the USB D+/D- signal.
  • the USB 2.0 signal transmission function of the external device is realized by electrically connecting the corresponding pins of the two, and then the signal transmission function of the USB protocol of the USB-C interface is implemented in the electronic device terminal (television terminal).
  • the SOC chip 3020 a pin for inputting a USB SSTX/RX signal, and a pin for inputting in an HDMI format;
  • the composite switch chip 3030 has two high-speed differential pair signal input pins connected to the USB TYPE-C interface USB TX1/2 and RX1/2;
  • the control pin of the composite switch chip 3030 is electrically connected to another control signal output pin of the control chip 3040, and one of the two output pins of the optional switch is available for USB SSTX/RX in the SOC chip 3020.
  • the pins of the signal input are electrically connected; the other is electrically connected to a pin of the SOC chip 3020 that can be input to the HDMI format.
  • the control chip refers to a configuration channel (Configuration Channel, CC module) and/or a power transmission channel (Power Delivery, PD module) in the USB-C protocol.
  • the control chip 3040 can be specifically configured as a configuration channel (ie, a CC module) according to actual needs, or as a power transmission channel (ie, a PD module), or as a whole configuration channel and a power transmission channel (ie, a CC+PD module).
  • control chip 3040 is a CC+PD module. It can be understood that the control chip in this solution can also be used as a CC module or a PD module with an MCU processing function, and will not be described here.
  • control chip 3040 supports the CC (Channel Configuration) communication and the PD (POWER DELIVERY) protocol in the USB-C protocol specification, and on the one hand, adapts the forward and reverse insertion of the external device through the CC channel, confirms the external device type, and obtains The power transmission information PD of the ALT MODE device; on the other hand, the CC signal and the SBU signal are communicated externally, and the billboard function is provided, and the USB D+/D- signal pin point in the USB-C interface 3020 is controlled by the connection terminal of the control chip 3040. The electrical connection is used to cause the control chip 3040 to feed back the billboard information to the external ALT MODE device when the external ALT MODE device is externally connected.
  • CC Channel Configuration
  • PD POWER DELIVERY
  • the SOC chip 3030 includes: a pin for inputting a USB SSTX/RX signal, and a pin for inputting an audio and video format; wherein the pin for inputting the USB SSTX/RX signal is used as the SOC chip 3030.
  • the composite switch chip 3030 further includes two high-speed differential pair signal input pins respectively connected to the signal pins USB TX1/2 and RX1/2 of the USB-C interface 3020, which can be used for transmitting the input of the ALT MODE device.
  • control pin of the composite switch chip 3030 is electrically connected to the output pin of the other control signal C2 in the control chip 3040, and one of the two output pins of the selectable pass is available to the SOC chip.
  • the pins of the USB SSTX/RX signal input are electrically connected; the other is electrically coupled to the pins of the SOC chip that are available for audio and video format input.
  • control chip 3040 detects the access device type of the USB-C interface 3020.
  • the control chip 3040 controls the composite switch chip 3030 through the control signal C2 to strobe the high-speed differential in the USB-C interface 3020.
  • USB 3.0 signals such as strobe high-speed differential pair TX1/RX1, or strobe high-speed differential pair TX2/RX2
  • the USB 3.0 signal is transmitted to the USB 3.0DFP interface of the SOC chip 3030 via the composite switch chip 3030; when the external device is ALT In the MODE device, at least one high-speed differential pair in the USB-C interface 3020 is strobed to transmit audio and video signals, such as a strobe high-speed differential pair TX1/RX1 and/or a high-speed differential pair TX2/RX2 to transmit audio and video signals to the SOC chip 3030. Audio and video terminal module.
  • the strobe mode of the high-speed differential pair in the USB-C interface provided in the USB-C protocol can be as shown in Figures 22a-22c.
  • the signal input circuit 3000 includes a DP-HDMI module 3060, wherein the HPD terminal of the DP-HDMI module 3060 is electrically connected to the control chip 3040, and is used for determining and confirming the external device connected to the USB-C interface 3020 and the DP-HDMI.
  • the communication state of the module 3060, the input end of the DP-HDMI module 3060 is connected to the composite switch chip 3030, and is used for strobing the composite switch chip 3030 when the external device is the ALT MODE device, and the output pin of the DP-HDMI module 3060 is The pins of the SOC chip 3030 that can be input to the HDMI format are electrically connected.
  • the DP-HDMI module 3060 is further electrically connected to the SOC chip 3030 via the signal line IIC2 (Inter IC BUS), and obtains information such as EDID (Extended Display Identification Data) of the HDMI Sink of the receiving end through the IIC2, and passes the information.
  • the signal line HDMI HPD establishes an HDMI HPD connection. After the connection is established, the DP-HDMI module 3060 transmits the converted HDMI data to the receiving end HDMI SINK module through the signal line HDMI for display by the SOC chip 3030.
  • control chip 3040 and the USB-C interface 3020 also determine the power supply state of the external device of the USB-C interface 3020 by interacting with the CC signal.
  • the control chip 3040 sets the electronic terminal device as the power source PD Source to supply power to the video interface device DP.
  • the electronic terminal device is configured to supply power to the video interface device DP through the control chip 3040, which can extend the use time of the external ALT MODE device.
  • the control chip 3040 is also connected to the SOC chip 3030 through the signal line C3 for data interaction therebetween, and can also be used as a software upgrade and control in the control chip 3040 as another communication interface connected to the SOC chip 3030.
  • the signal line C3 may be selected to be reserved or deleted according to a specific scenario, which is not limited in this embodiment.
  • the type of the external device that is accessed is detected.
  • the access device transmits the USB 2.0 signal
  • the USB 2.0 data is directly transmitted through the USB D+/D-channel;
  • the external device transmits the USB 3.0 signal.
  • the USB 3.0 signal is transmitted through the SSTX/SSRX channel of the composite switch, and the external device transmits the audio and video signal (such as the HDMI signal), and the data is exchanged with the HDMI SINK module of the SOC chip through the composite switch.
  • the solution provided by the embodiment of the present application When the external device is abnormal, the billboard information is no longer exchanged with the external device, thereby implementing data transmission between different external devices and the SOC chip.
  • Embodiment 7 of the present application further provides an electronic terminal device that receives data from an external device through a USB TYPE C interface.
  • the electronic terminal device 3100 includes a display screen 3110 and a signal input circuit 3120, wherein the display screen 3110 is
  • the signal input circuit 3120 further includes a SOC chip 3121, a control chip 3122 (CC+PD), and a USB-C interface 3123.
  • the USB-C interface 3123 is used to access an external device, and the control chip 3122 is used to control the display.
  • the external device completes data interaction with the SOC chip 3121 through the USB-C interface 3123, and transmits the signal of the external device to the SOC chip 3121, and the SOC chip 3121 drives the display screen 3110 to display the screen.
  • the control chip 3122 controls the USB 2.0/USB3.0 signal to be transmitted to the SOC chip 3121 through the USB-C interface 3121, thereby driving the display screen 3110 to display related information;
  • the control chip 3122 controls the audio and video signals to be transmitted to the SOC chip 3121 through the USB-C interface 3121, thereby driving the display screen 3110 to display the related picture.
  • the signal input circuit 3120 can adopt any of the signal input circuits in the above-mentioned Embodiment 6, and correspondingly, the data transmission process of the external device and the SOC chip 3121 can refer to the corresponding data transmission process in the foregoing Embodiment 6, and Do more than enough.
  • the embodiment 8 of the present application further provides a television terminal.
  • the television terminal 3200 includes a display screen 3210, a signal input circuit 3220, and a power supply circuit 3230.
  • the display screen 3210 is configured to display a picture, and the power supply circuit 3230
  • the device is configured to provide power, and the signal input circuit 3220 is configured to receive data from the external device;
  • the signal input circuit 3220 further includes a SOC chip 3221, a control chip 3222 (CC+PD), a USB-C interface 3223, wherein the USB The -C interface 3223 is used to access an external device, and the control chip 3222 is configured to control the external device to complete data interaction with the SOC chip 3221 through the USB-C interface 3223, so as to transmit the signal of the external device to the SOC chip 3221, and then the SOC chip.
  • the 3221 drives the display 3210 to display a picture.
  • the control chip 3222 controls the USB 2.0/USB3.0 signal to be transmitted to the SOC chip 3221 through the USB-C interface 3221, thereby driving the display 3210 to display related information;
  • the control chip 3222 controls the audio and video signals to be transmitted to the SOC chip 3221 through the USB-C interface 3221, thereby driving the display screen 3210 to display the related picture.
  • the signal input circuit 3220 can adopt any of the signal input circuits of the above-mentioned Embodiment 6, and correspondingly, the data transmission process of the external device and the SOC chip 3221 can refer to the corresponding data transmission process in the foregoing Embodiment 6, and Do more than enough.
  • Embodiment 9 of the present application further provides a signal input method for external device data input compatible with USB and ALT MODE. As shown in FIG. 33, the method includes:
  • Step S3210 identifying a USB TYPE-C interface access device type
  • control chip performs signal interaction with the CC pin of the USB-C interface through the CC channel, thereby obtaining identity information (such as VDM information, ID information, and the like) of the external device, and determining the type of the external device to be accessed according to the information.
  • identity information such as VDM information, ID information, and the like
  • mapping relationship between the switching mode and the access device type information may be pre-stored in the control chip.
  • similar information may be read from the device. And matching with the mapping relationship to determine the access device type.
  • Step S3220 The composite switch chip receives the control signal of the control chip, and according to the control signal, one of the two output pins of the selectable one, and one of the pins of the SOC chip for inputting the USB SSTX/RX signal Electrically connected; the other is electrically connected to a pin of the SOC chip that can be input to the HDMI format.
  • the control chip detects the access device type of the USB-C interface.
  • the control chip controls the composite switch chip (ie, the switch MUX) through the control signal, and strops a high-speed differential pair in the USB-C interface.
  • USB 3.0 signals such as strobe high-speed differential pair TX1/RX1, or strobe high-speed differential pair TX2/RX2 to transfer USB 3.0 signals to the USB 3.0DFP interface of the SOC chip via the composite switch chip; when the external device is an ALT MODE device
  • the strobe USB-C interface transmits at least one high-speed differential pair of audio and video signals, such as a strobe high-speed differential pair TX1/RX1 and/or a high-speed differential pair TX2/RX2 to transmit audio and video signals to the audio and video modules of the SOC chip.
  • the type of the external access device is detected, and when the access device transmits the USB 2.0 signal, the USB 2.0 data is directly transmitted through the USB D+/D-channel; when the external device transmits the USB 3.0 signal
  • the USB 3.0 signal is transmitted through the SSTX/SSRX channel of the composite switch, when the external device transmits the audio and video signals (taking the HDMI signal as an example), the data is exchanged with the HDMI SINK module of the SOC chip through the composite switch; thereby implementing different external devices and SOCs. Chip data transfer.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.

Abstract

本发明公开了一种终端设备及其控制方法,包括SOC芯片,其DFP接口通过USB D+/D-差分对与开关模块连接,DFP接口与开关模块之间的USB D+/D-差分对为第一通道;USB Type-C接口主控模块,设置有UFP接口,UFP接口通过USB D+/D-差分对与开关模块连接,UFP接口与开关模块之间的USB D+/D-差分对为第二通道;USB Type-C接口,通过USB D+/D-差分对与开关模块连接;USB Type-C接口主控模块,还通过控制信号线与开关模块连接,用以控制开关模块进行上述第一通道和第二通道的选通切换。基于终端设备中开关模块、USB Type-C接口主控模块以及SOC芯片之间的电路连接关系,实现了USB2.0信号和billboard信号的可选通链路的切换,可实现USB2.0信号传输功能与billboard信号传输功能的兼容。

Description

一种终端设备及其控制方法
本申请要求在2017年7月20日提交中国专利局、申请号为201710598183.5、题目为“电视终端及控制方法”的中国专利申请、在2018年1月26日提交中国专利局、申请号为201810077730.X、题目为“一种电视机及其USB-C接口连接外部设备的控制方法”的中国专利申请、在2018年1月26日提交中国专利局、申请号为201810077737.1、题目为“一种电视机USB-C接口连接外部设备的控制方法及电视机”的中国专利申请、在2018年1月26日提交中国专利局、申请号为201810079012.6、题目为“电子终端设备、电视终端、信号输入电路及方法”的中国专利申请、在2018年1月26日提交中国专利局、申请号为201810078504.3、题目为“电子终端设备、电视终端、信号输入电路及方法”的中国专利申请、在2018年1月26日提交中国专利局、申请号为201810076750.5、题目为“具有USB Type-C接口的电视机”的中国专利申请、在2018年1月26日提交中国专利局、申请号为201810078871.3、题目为“一种终端设备及其控制方法”的中国专利申请、在2018年1月26日提交中国专利局、申请号为201810076150.9、题目为“具有USB Type-C接口的终端设备和数据通信方法”的中国专利申请等八个中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种终端设备及其控制方法。
背景技术
USB-Type-C接口可以传输USB2.0信号、USB3.0信号和非USB信号,通常用在手机终端或电脑上。通常USB-Type-C接口用于连接手机、电脑或PAD进行高速数据传输。现有技术中USB-Type-C接口也可应用在显示屏(Monitor)设备中,但是很少应用在电视终端中。
USB-Type-C接口在电视终端中的应用受限的主要原因是当USB-Type-C接口应用在电视终端中时,存在无法满足billboard信号传输功能与USB2.0信号传输功能的兼容问题。
当电视终端在与USB-Type-C接口外接的设备交互USB2.0信号时,电视终端可以作为USB-Type-C接口外接的设备的主机,USB-Type-C接口外接的设备可以作为电视终端的外设。电视终端在与USB-Type-C接口外接的设备交互billboard信号时,电视终端可以作为USB-Type-C接口外接的设备的外设,USB-Type-C接口外接的设备可以作为电视终端的主机。但是USB-Type-C接口的USB D+/D-差分端子个数固定,并不能同时兼顾这两种应用需求。
综上,由于USB-Type-C接口应用在电视终端存在billboard信号传输功能与USB2.0信号传输功能不兼容,导致USB-Type-C接口还无法作为多功能接口应用在电视终端中。
发明内容
本发明实施例提供一种终端设备及其控制方法,该终端设备可以是电视终端,可以实现USB-Type-C接口应用在电视终端中,能够兼容billboard信号传输功能与USB2.0信号传输功能。
第一方面,一种终端设备,所述终端设备包括:
SOC芯片,设置有DFP接口,所述DFP接口通过USB D+/D-差分对与开关模块连接,所述DFP接口与所述开关模块之间的USB D+/D-差分对为第一通道;
所述USB Type-C接口主控模块,设置有UFP接口,所述UFP接口通过USB D+/D-差分对与所述开关模块连接,所述UFP接口与所述开关模块之间的USB D+/D-差分对为第二通道;
USB Type-C接口,通过USB D+/D-差分对与所述开关模块连接;
所述USB Type-C接口主控模块,还通过控制信号线与所述开关模块连 接,用以控制所述开关模块导通所述第一通道,关闭所述第二通道,或者导通所述第二通道,关闭所述第一通道。
可选的,所述USB Type-C接口主控模块,还通过控制信号线与所述USB Type-C接口连接,用于与所述USB Type-C接口交互CC信号,以识别所述USB Type-C接口外接的设备的类型,根据识别出的所述类型,控制所述开关模块导通所述第一通道,关闭所述第二通道,或者导通所述第二通道,关闭所述第一通道。
可选的,所述USB Type-C接口主控模块,用于在识别出所述USB Type-C接口外接的设备的类型为USB设备时,控制所述开关模块导通所述第一通道,关闭所述第二通道;在识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,导通所述第二通道,关闭所述第一通道。
可选的,所述终端设备还包括复用开关;
所述复用开关,通过USB SSTX/RX差分对与所述USB Type-C接口连接,还通过USB SSTX/RX差分对与所述DFP接口连接,所述复用开关与所述DFP接口之间的USB SSTX/RX差分对为第三通道;
所述SOC芯片还包括HDMI接口,可供HDMI信号的接收或发送;
所述复用开关,还通过HDMI信号通道与所述HDMI接口连接,所述复用开关与所述HDMI接口之间的HDMI信号通道为第四通道;
所述USB Type-C接口控制模块,还通过控制信号线与所述复用开关连接,用以在识别出所述USB Type-C接口外接的设备的类型为USB设备时,控制所述复用开关导通所述第三通道,关闭所述第四通道;或者在识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,控制所述复用开关导通所述第四通道,关闭所述第三通道。
可选的,所述终端设备还包括所述复用开关与所述HDMI接口之间的协议转换模块,
所述协议转换模块,用于在所述ALT MODE设备传输DP信号时,将所述DP信号转换为HDMI信号,以将所述HDMI信号传输至所述SOC芯片的 HDMI接口。
可选的,所述DFP接口包括USB2.0接口和USB3.0接口;
当所述USB Type-C接口外接的设备的类型为USB设备时,所述DFP接口通过所述第一通道与所述USB Type-C接口外接的设备交互USB2.0信号;或者,所述DFP接口通过所述第三通道与所述USB Type-C接口外接的设备交互USB3.0信号。
可选的,当所述外接的设备的类型为USB DFP设备时,所述USB Type-C接口适配为USB UFP模式;在所述外接的设备支持DP DFP模式时,所述USB Type-C接口切换到DO DFP模式进行DP信号传输。
可选的,当所述外接的设备的类型为USB UFP设备时,所述USB Type-C接口适配为USB DFP模式。
可选的,所述UFP接口为billboard信号输出接口,可供为billboard信号的输出;
当所述USB Type-C接口外接的设备的类型为ALT MODE设备时,所述billboard信号输出接口可通过所述第二通道向所述USB Type-C接口外接的ALT MODE设备发送billboard信号。
可选的,所述开关模块默认导通所述第一通道。
可选的,所述billboard信号包括所述终端设备支持的传输模式信息;
所述USB Type-C接口控制模块用于:
在检测到所述USB Type-C接口插入计算机时,控制所述开关模块切换至所述第二通道,使所述计算机获取所述传输模式信息后,控制所述开关模块切换至第一通道。
第二方面,本发明实施例提供一种终端设备的控制方法,包括:
USB Type-C接口主控模块向所述开关模块发送第一控制信号或第二控制信号,所述第一控制信号用于控制所述开关模块导通所述第一通道,关闭所述第二通道,所述第二控制信号用于控制所述开关模块导通所述第二通道,关闭所述第一通道。
可选的,USB Type-C接口主控模块在发送所述第一控制信号之前,还包括:
所述USB Type-C接口主控模块与所述USB Type-C接口交互CC信号;
根据所述CC信号,识别所述USB Type-C接口外接的设备的类型。
可选的,所述USB Type-C接口主控模块向所述开关模块发送第一控制信号或第二控制信号,包括:
当识别出所述USB Type-C接口外接的设备的类型为USB设备时,向所述开关模块发送所述第一控制信号;
当识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,向所述开关模块发送所述第二控制信号。
可选的,还包括:
当识别出所述USB Type-C接口外接的设备的类型为USB设备时,还向所述复用开关发送所述第三控制信号,所述第三控制信号用于控制所述复用开关导通所述第三通道,关闭所述第四通道;
当识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,还向所述复用开关发送所述第四控制信号,所述第四控制信号用于控制所述复用开关导通所述第四通道,关闭所述第三通道。
第三方面,本发明实施例提供一种终端设备,包括:
SOC芯片,提供USB D+/D-差分端子,可供USB D+/D-信号的输入或输出,与开关模块提供的USB D+/D-差分端子电连接,构成可选通的第一通道;
C接口主控模块,提供USB D+/D-差分端子,可供USB D+/D-信号的输入或者billboard信号的输出,与所述开关模块提供的USB D+/D-差分端子电连接,构成可选通的第二通道;
USB Type-C接口,提供USB D+/D-差分端子,可供USB D+/D-信号的输入或输出,与所述开关模块提供的USB D+/D-差分端子电连接;
所述C接口主控模块,还提供控制信号输出引脚,可供第一控制信号或第二控制信号的输出,其与所述开关模块的控制信号输入引脚电连接;所述 第一控制信号用于导通所述第一通道,关闭所述第二通道,所述第二控制信号用于导通所述第二通道,关闭所述第一通道。
可选的,所述C接口主控模块,其提供CC引脚,所述CC引脚与所述USB Type-C接口中的CC引脚电连接,可供CC信号的输入或输出,以识别所述C接口外接的设备的类型。
可选的,所述C接口主控模块,用于在识别出所述USB Type-USB TYPE-C接口外接的设备的类型为USB设备时,向所述开关模块的所述控制信号输入引脚输入所述第一控制信号;在识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,向所述开关模块的所述控制信号输入引脚输入所述第二控制信号。
可选的,所述终端设备还包括复用开关;
所述SOC芯片,还提供USB SSTX/RX差分端子,可供USB3.0信号的输入或输出,与所述复用开关的USB SSTX/RX差分端子电连接,构成第三通道;
所述USB Type-C接口,还提供USB SSTX/RX差分端子,可供USB3.0信号的输入或输出,与所述复用开关的USB SSTX/RX差分端子电连接;
所述C接口主控模块,还提供用于输出第三控制信号的控制信号输出引脚,其与所述复用开关的一路控制信号输入引脚电连接;所述第三控制信号用于导通所述第三通道,关闭所述第四通道。
可选的,所述SOC芯片,还提供HDMI差分端子,可供HDMI信号的接收或发送,
所述HDMI差分端子与所述复用开关之间的HDMI差分端子电连接,构成可选通的所述第四通道;
所述C接口主控模块,还提供用于输出第四控制信号的控制信号输出引脚,与所述复用开关的另一路控制信号输入引脚电连接;所述第四控制信号用于导通所述第四通道,关闭所述第三通道。
可选的,所述终端设备还包括协议转换模块,所述协议转换模块,用于 在所述ALT MODE设备传输DP信号时,将所述DP信号转换为HDMI信号,以将所述HDMI信号传输至所述SOC芯片的HDMI接口;
所述SOC芯片的HDMI差分端子与所述协议转换模块的HDMI差分端子电连接,所述协议转换模块的DP差分端子与所述复用开关的DP差分端子电连接,所述DP差分端子可供DP信号的输入或输出。
可选的,所述C接口主控模块,还用于在识别出所述USB Type-C接口外接的设备的类型为USB设备时,向所述复用开关的控制信号输入引脚输入所述第三控制信号;在识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,向所述复用开关的控制信号输入引脚输入所述第四控制信号。
第四方面,本发明实施例提供一种具有USB Type-C接口的终端设备,包括:USB Type-C接口、控制器、选择开关单元以及SoC芯片;
其中,所述USB Type-C接口配置有CC引脚和USB D+/D-信号引脚,所述USB Type-C接口用于连接外接设备;
所述控制器与所述CC引脚电连接,用于根据所述CC引脚中的CC信号,确定所述外接设备的工作模式;
所述控制器还与所述选择开关单元连接,用于根据所述外接设备的工作模式,选通所述USB D+/D-信号引脚与所述SoC芯片中的传输USB D+/D-信号的接口连接,或者,选通所述USB D+/D-信号引脚与所述控制器中的传输billboard信息的接口连接。
可选的,所述控制器,用于在确定所述外接设备的工作模式为USB模式时,选通所述USB D+/D-信号引脚与所述SoC芯片中的传输USB D+/D-信号的接口连接,以向所述SoC芯片传输USB D+/D-信号;
所述控制器,用于在确定所述外接设备的工作模式为Alt Mode时,向所述选择开关单元发送第二控制信号,以使所述选择开关单元根据所述第一控制信息选通所述USB D+/D-信号引脚与所述控制器中的传输billboard信息的接口连接,使得所述外接设备执行billboard信息指示的操作。
可选的,所述终端设备还包括:复合开关单元;所述USB Type-C接口还 包括:TX1/RX1和TX2/RX2引脚;
所述复合开关单元与所述TX1/RX1和TX2/RX2引脚电连接;所述复合开关单元用于连接所述SoC芯片,向所述SoC芯片传输USB SS TX/SS RX信号或者音视频信号;
所述控制器与所述复合开关单元连接,用于根据所述外接设备的工作模式,选通所述X1/RX1和TX2/RX2引脚与所述SoC芯片中的传输USB SS TX/SS RX信号的接口连接,或者,选通所述X1/RX1和TX2/RX2引脚与所述SoC芯片中的传输音视频信号的接口连接。
可选的,所述控制器,用于在确定所述外接设备的工作模式为USB模式时,向所述复合开关单元发送第三控制信号,以使所述复合开关单元选通所述X1/RX1和TX2/RX2引脚与所述SoC芯片中的传输USB SS TX/SS RX信号的接口连接,以向所述SoC芯片传输USB SS TX/SS RX信号;
所述控制器,用于在确定所述外接设备的工作模式为Alt Mode时,向所述复合开关单元发送第四控制信号,以使所述复合开关单元选通所述X1/RX1和TX2/RX2引脚与所述SoC芯片中的传输音视频信号的接口连接,以向所述SoC芯片传输音视频信号。
可选的,所述SoC芯片中的传输音视频信号的接口为HDMI接口。
可选的,所述终端设备还包括:格式转换单元;
其中,所述格式转换单元的输入端与所述选择开关单元连接,用于对所述选择开关单元传输的音视频信号进行格式转换,得到格式转换后的音视频信号;
所述格式转换单元的输出端用于连接所述SoC芯片中的传输音视频信号的接口,以向所述SoC芯片传输所述格式转换后的音视频信号。
可选的,所述外接设备的工作模式包括:USB2.0、USB3.0、USB3.1以及USB供电PD的任一。
可选的,所述控制器,还用于在确定所述外接设备的工作模式为USB PD时,设置所述CC引脚上CC信号为供电指令,使所述终端设备向所述外接设 备供电。
第五方面,本发明实施例提供一种数据通信方法,应用于具有USB Type-C接口的终端设备,所述终端设备包括:USB Type-C接口、控制器、选择开关单元以及SoC芯片,其中,所述USB Type-C接口用于连接外接设备,所述控制器分别与所述USB Type-C接口和所述选择开关单元连接,所述选择开关单元还与所述SoC芯片连接;所述方法,包括:
确定所述外接设备的工作模式;
根据所述外接设备的工作模式,将所述外接设备中的USB D+/D-信号传输至所述SoC芯片;或者,
根据所述外接设备的工作模式,将billboard信息传输至所述外接设备,以使所述外接设备执行所述billboard信息指示的操作。
可选的,所述根据所述外接设备的工作模式,将所述外接设备中的USB D+/D-信号传输至所述SoC芯片,包括:
在确定所述外接设备的工作模式为USB模式时,将所述外接设备中的USB D+/D-信号传输至所述SoC芯片;
所述根据所述外接设备的工作模式,将billboard信息传输至所述外接设备,以使所述外接设备执行所述billboard信息指示的操作,包括:
在确定所述外接设备的工作模式为Alt Mode时,将所述billboard信息传输至所述外接设备,以使所述外接设备执行所述billboard信息指示的操作。
可选的,所述终端设备还包括:复合开关单元,其中所述复合开关分别与所述USB Type-C接口、所述控制器以及所述SoC芯片连接;所述方法还包括:
根据所述外接设备的工作模式,将所述外接设备中的USB SS TX/SS RX信号传输至所述SoC芯片;或者,
根据所述外接设备的工作模式,将所述外接设备中的音视频信号传输至所述SoC芯片。
可选的,所述根据所述外接设备的工作模式,将所述外接设备中的USB  SS TX/SS RX信号传输至所述SoC芯片,包括:
在确定所述外接设备的工作模式为USB模式时,将所述外接设备中的USB SS TX/SS RX信号传输至所述SoC芯片;
所述根据所述外接设备的工作模式,将所述外接设备中的音视频信号传输至所述SoC芯片,包括:
在确定所述外接设备的工作模式为Alt Mode时,将所述外接设备中的音视频信号传输至所述SoC芯片。
可选的,所述终端设备还包括:格式转换单元,其中,所述格式转换单元分别与所述选择开关单元和所述SoC芯片连接;在所述将所述外接设备中的音视频信号传输至所述SoC芯片之前,还包括:
对所述选择开关单元传输的音视频信号进行格式转换,得到格式转换后的音视频信号。
第六方面,本发明实施例提供一种电视机USB-C接口连接外部设备的控制方法,它包括以下步骤:
监测到所述电视机的USB-C接口有外部设备插入;
若外部设备为U盘,则将USB-C接口的低速差分对引脚导通至所述电视机的主芯片;
若外部设备为计算机,将USB-C接口的所述低速差分对引脚导通至所述电视机上包含Billboard信息的模块。
可选的,所述USB-C接口的所述低速差分对引脚连接至一个SWICH开关的第一端子,所述SWICH开关的第二端子和第三端子分别与所述主芯片和所述包含Billboard信息的模块连接,所述SWICH开关可受控使第一端子与第二端子导通,或者是第一端子与第三端子导通。
第七方面,本发明实施例提供一种电视机,它采用如第六方面所述的控制方法。
第八方面,本发明实施例提供一种电视机,它包括主芯片;
所述主芯片与一SWICH开关连接;
所述SWICH开关分别与一CC+PD芯片和一包含Billboard信息的模块连接;
还包括用于连接外部设备的USB-C接口;
所述USB-C接口分别与所述CC+PD芯片和所述SWICH开关连接。
可选的,所述包含Billboard信息的模块集成在所述CC+PD芯片内。
可选的,所述包含Billboard信息的模块是一个单独的硬件模块。
可选的,所述SWICH开关与CC+PD通过控制信号线和数据信号线连接;所述数据信号线用于将CC+PD芯片中内置的Billboard模块中的Billboard信息通过SWICH开关向USB-C传输;所述控制信号线用于传输指示所述SWICH开关与主芯片导通还是通过所述数据信号线与CC+PD芯片导通。
第九方面,本发明实施例提供一种电视机USB-C接口连接外部设备的控制方法,它包括以下步骤:
所述电视机的CC+PD芯片在未检测到所述电视机的USB-C接口有外部设备插入时,控制SWICH开关将USB-C接口的低速差分对引脚导通至通向所述电视机的SOC主芯片;
所述电视机的CC+PD芯片在检测到所述电视机的USB-C接口插入U盘时,不控制所述SWICH开关动作;
所述电视机的CC+PD芯片在检测到所述电视机的USB-C接口插入计算机时,控制所述电视机的USB-C接口的低速差分对引脚导通至所述电视机的含有Billboard信息的模块,待Billboard信息传递给所述计算机以后,所述CC+PD芯片再控制SWICH开关动作,将所述电视机的USB-C接口的低速差分对引脚导通到与电视机的SOC主芯片连接的通路上。
第十方面,本发明实施例提供一种电视机,它采用如第九方面所述的控制方法。
第十一方面,本发明实施例提供一种通过USB TYPE-C接口接收来自外部设备数据的电子终端设备,包括:
USB TYPE-C接口,有USB D+/D-信号引脚;
SOC芯片,有可供USB D+/D-信号输入的引脚;
控制芯片,与所述USB TYPE-C接口中CC引脚电连接,有可供USB D+/D-信号连接的引脚;
选择开关器件,其控制引脚与所述控制芯片中一路控制信号输出引脚电连接;其输入引脚与所述USB TYPE-C接口中USB D+/D-信号引脚电连接;-可选通的两路输出引脚中,一路与所述SOC芯片中可供USB D+/D-信号输入的所述引脚电连接;另一路与所述控制芯片中可供USB D+/D-信号连接的所述引脚电连接。
可选的,还包括:
所述SOC芯片,包括可供USB SS TX/RX信号输入的引脚,以及可供HDMI格式信号输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制引脚与所述控制芯片中另一路控制信号输出引脚电连接,所述复合开关芯片中可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式信号输入的所述引脚电连接。
可选的,还包括:所述控制控制芯片中连接端子与USB D+/D-信号引脚电连接,以使所述控制芯片可-发送billboard信息给所述外部设备。
第十二方面,本发明实施例提供一种通过USB TYPE-C接口接收来自外部设备数据的电子终端设备,包括:控制芯片,用于根据识别USB TYPE-C接口接入设备类型,控制所述USB TYPE-C接口中D+/D-信号输入引脚与SOC芯片之间电连接,以及所述USB TYPE-C接口中D+/D-输入端子和可交互billboard信息的所述控制控制芯片之间电连接,同一时刻其两者电连接中仅选通任一通路电导通。
可选的,SOC芯片,有可供所述USB D+/D-信号输入的引脚;
控制芯片,与所述USB TYPE-C接口中CC引脚电连接,有可供USB  D+/D-信号连接的引脚;
选择开关器件,其控制引脚与所述控制控制芯片中一路控制信号输出引脚电连接;其输入引脚与所述USB TYPE-C接口中USB D+/D-信号引脚电连接;任一可选通的两路输出引脚中,一路与所述SOC芯片中可供USB D+/D-输入的所述引脚电连接;另一路与所述控制芯片中可供USB D+/D-信号连接的所述引脚电连接。
可选的,所述SOC芯片,包括可供USB SSTX/RX信号输入的引脚,以及HDMI格式信号输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制引脚与所述控制芯片中另一路控制信号输出引脚电连接,所述复合开关芯片的任一可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式信号的所述引脚电连接。
第十三方面,本发明实施例提供一种通过USB TYPE-C接口接收来自外部设备数据的电子终端设备,包括:
USB TYPE-C接口,有USB D+/D-信号引脚;
SOC芯片,有可供USB D+/D-信号输入的引脚;
CC模块,与所述USB TYPE-C接口中CC引脚电连接;
PD模块,有可供USB D+/D-信号连接的引脚;
选择开关器件,其控制引脚与所述CC模块中一路控制信号输出引脚电连接;其输入引脚与所述USB TYPE-C接口中USB D+/D-信号引脚电连接;可选通的两路输出引脚中,一路与所述SOC芯片中可供USB D+/D-信号输入的所述引脚电连接;另一路与所述PD模块中可供USB D+/D-信号连接的所述引脚电连接。
可选的,所述SOC芯片,包括可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式信号输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制引脚与所述CC模块中另一路控制信号输出引脚电连接,所述复合开关芯片的可选通的两路输出引脚中,一路与所述SOC芯片中可供USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式信号输入的所述引脚电连接。
可选的,还包括:所述PD模块配备billboard功能,通过所述PD模块的连接端子与USB D+/D-信号引脚电连接,使所述PD模块可反馈billboard信息给所述外部设备。
第十四方面,本发明实施例提供一种通过USB TYPE-C接口接收来自外部设备数据的电子终端设备,包括:
USB TYPE-C接口,有USB D+/D-信号引脚;
SOC芯片,有可供USB D+/D-信号输入的引脚;
控制芯片,用于检测USB TYPE-C接口接入设备类型,当检测USB TYPE-C接入USB协议类型设备时,选通USB TYPE-C接口中USB D+/D-信号引脚与SOC芯片中可供USB D+/D-信号输入的引脚电连接;当USB TYPE-C接入ALT MODE协议类型设备时,选通所述USB TYPE-C接口中USB D+/D-信号引脚与所述控制芯片中可交互billboard信息的信号引脚电连接。
可选的,所述SOC芯片,包括:可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式信号输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制引脚与所述控制控制芯片中另一路控制信号输出引脚电连接,所述复合开关芯片的可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供所述HDMI格式信号输入的所述引脚电连接。
第十五方面,本发明实施例提供一种电视终端,包括:显示屏被配置显示画面;供电电路被配置为设备提供电力,以及信号输入电路被配置为用于接收来自外部设备数据;其中,所述信号输入电路,包括:
USB TYPE-C接口,有USB D+/D-信号引脚;
SOC芯片,有可供USB D+/D-信号输入的引脚;
控制芯片,与所述USB TYPE-C接口中CC引脚电连接,有可供USB D+/D-信号连接的引脚;
选择开关器件,其控制引脚与所述控制芯片中一路控制信号输出引脚电连接;其输入引脚与所述USB TYPE-C接口中USB D+/D-信号引脚电连接;可选通的两路输出引脚中,一路与所述SOC芯片中可供USB D+/D-输入的所述引脚电连接;另一路与所述控制芯片中可供USB D+/D-信号连接的所述引脚电连接。
可选的,还包括:
所述SOC芯片,包括可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制信号输入引脚与所述控制芯片中另一路控制信号输出引脚电连接,所述复合开关芯片中可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式输入的所述引脚电连接。
可选的,还包括:所述控制芯片配备billboard功能,通过所述控制芯片中连接端子与USB D+/D-信号引脚点电连接,使所述控制芯片可与所述外部设备交互billboard信息。
第十六方面,本发明实施例提供一种电视终端,包括:
显示屏被配置显示画面;
供电电路被配置为设备提供电力;
以及信号输入电路被配置为用于接收来自外部设备数据;
其中,所述信号输入电路,包括:
USB TYPE-C接口,有USB D+/D-信号引脚;
SOC芯片,有可供USB D+/D-信号输入的引脚;
控制芯片,用于检测USB TYPE-C接口接入设备类型,当检测USB TYPE-C接入USB设备时,选通USB TYPE-C接口中USB D+/D-信号引脚与SOC芯片中可供所述USB D+/D-信号输入的引脚电连接;当USB TYPE-C接入ALT MODE设备时,选通所述USB TYPE-C接口中USB D+/D-信号引脚与控制芯片中可交互billboard信息的信号引脚电连接。
可选的,所述SOC芯片,包括:可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制引脚与所述控制芯片中另一路控制信号输出引脚电连接,所述复合开关芯片中可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式输入的所述引脚电连接。
可选的,所述电子终端设备还包括DP-HDMI模块,所述DP-HDMI模块的HPD端子与CC模块连接,用于判断外接设备与DP-HDMI模块的连通状态,且所述另一路与所述DP-HDMI模块的输入端电连接,所述DP-HDMI模块的输出端与所述SOC芯片中可供HDMI格式输入的所述引脚电连接。
第十七方面,本发明实施例提供一种可兼容USB和ALT MODE设备数据输入且可实现billboard信息交互的信号输入电路,包括:
USB TYPE-C接口,有USB D+/D-信号引脚;
SOC芯片,有可供USB D+/D-信号输入的引脚;
控制芯片,与所述USB TYPE-C接口中CC引脚电连接,有可供USB D+/D-信号连接的引脚;
选择开关器件,其控制引脚与所述控制芯片中一路控制信号输出引脚电连接;其输入引脚与所述USB TYPE-C接口中USB D+/D-信号引脚电连接;可选通的两路输出引脚中,一路与所述SOC芯片中可供USB D+/D-输入的所述引脚电连接;另一路与所述控制芯片中可供USB D+/D-信号连接的所述引脚电连接。
可选的,还包括:
所述SOC芯片,包括可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制引脚与所述控制芯片中另一路控制信号输出引脚电连接,所述复合开关芯片中可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式输入的所述引脚电连接。
可选的,还包括:所述控制芯片配备billboard功能,通过所述控制芯片中连接端子与USB D+/D-信号引脚点电连接,使所述控制芯片可反馈billboard信息给所述外部设备。
第十八方面,本发明实施例提供一种可兼容USB和ALT MODE设备数据输入且可实现billboard信息交互的信号输入电路,包括:
控制芯片,用于根据识别USB TYPE-C接口接入设备类型,控制所述USB TYPE-C接口中D+/D-输入端子与SOC芯片的连接端子之间电连接,以及所述USB TYPE-C接口中D+/D-输入端子和所述控制芯片中可交互billboard信息的连接端子之间电连接,同一时刻其两者电连接通路中仅选通任一通路电导通。
可选的,USB TYPE-C接口,有USB D+/D-信号引脚;
SOC芯片,有可供USB D+/D-信号输入的引脚;
控制芯片,与所述USB TYPE-C接口中CC引脚电连接,有可供USB  D+/D-信号连接的引脚;
选择开关器件,其控制引脚与所述控制芯片中一路控制信号输出引脚电连接;其输入引脚与所述USB TYPE-C接口中USB D+/D-信号引脚电连接;可选通的两路输出引脚中,一路与所述SOC芯片中可供USB D+/D-输入的所述引脚电连接;另一路与所述控制芯片中可供USB D+/D-信号连接的所述引脚电连接。
可选的,所述SOC芯片,包括:可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制引脚与所述控制芯片中另一路控制信号输出引脚电连接,所述复合开关芯片中可选通的两路输出引脚中,一路与所述SOC芯片中可供USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式输入的所述引脚电连接。
第十九方面,本发明实施例提供一种可兼容USB和ALT MODE的外部设备数据输入且可实现billboard信息交互的信号输入方法,包括:
检测USB TYPE-C接入信号类型,控制所述USB TYPE-C接口中D+/D-输入端子与SOC芯片的连接端子之间电连接,以及所述USB TYPE-C接口中D+/D-输入端子和控制芯片中可交互billboard信息的连接端子之间电连接,使同一时刻其两者电连接通路中仅选通任一通路电导通。
可选的,复合开关芯片接收所述控制芯片的控制信号,根据所述控制信号,可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式输入的所述引脚电连接。
可选的,当识别出USB TYPE-C接入USB协议信号类型时,选通USB TYPE-C接口中USB D+/D-端子与SOC芯片的连接端子之间连接电导通;当识别USB TYPE-C接入ALT MODE协议信号类型时,选通所述USB TYPE-C 接口中USB D+/D-端子与所述控制芯片中可供交互billboard信息的连接端子之间连接电导通。
可选的,当识别USB TYPE-C接入ALT MODE协议信号类型时,判断外接设备的VDM信息是否与所述控制芯片中预存的VDM信息相匹配,若信息不匹配,选通所述USB TYPE-C接口中USB D+/D-端子与所述控制芯片中可供交互billboard信息的连接端子之间连接电导通。
第二十方面,本发明实施例提供一种可兼容USB和ALT MODE的外部设备数据输入且可实现billboard信息交互的信号输入方法,包括:
检测USB TYPE-C接口接入信号类型;
当识别出USB TYPE-C接入USB协议信号类型时,选通USB TYPE-C接口中USB D+/D-端子与SOC芯片的连接端子之间连接电导通,使USB外部设备可与SOC芯片通过USB D+/D-端子数据传输;当识别USB TYPE-C接入ALT MODE协议信号类型时,选通所述USB TYPE-C接口中USB D+/D-端子与PD模块中可供交互billboard信息的连接端子之间连接电导通,使ALT MODE外部设备可与所述PD模块通过USB D+/D-端子交互billboard信息。
可选的,当识别出USB TYPE-C接入USB协议信号类型时,复合开关芯片选通USB TYPE-C接口中一路高速差分对信号引脚与SOC的USB信号连接端子电导通,使USB外部设备可与SOC芯片通过USB SSTX/RX端子数据传输;
当识别USB TYPE-C接入ALT MODE协议信号类型时,复合开关芯片选通所述USB TYPE C接口中至少一路高速差分对信号引脚与SOC的HDMI信号连接端子电导通,使ALT MODE外部设备与SOC芯片通过可供HDMI信号传输的端子传输音视频数据。
第二十一方面,本发明实施例提供一种可兼容USB和ALT MODE的外部设备数据输入且可实现billboard信息交互的信号输入方法,包括:
检测USB TYPE-C接口接入信号类型;
当检测到USB TYPE-C接口为ALT MODE协议信号类型时,选通所述 USB TYPE-C接口中USB D+/D-端子与控制芯片中可供交互billboard信息的连接端子之间连接电导通,使ALT MODE外部设备可与所述控制芯片通过USB D+/D-端子交互billboard信息,
否则,所述USB D+/D-输入端子与SOC芯片的连接端子之间默认电导通。
第二十二方面,本发明实施例提供一种通过USB TYPE C接口接收来自外部设备数据的电子终端设备,其特征在于,包括:
USB TYPE-C接口,有USB D+/D-信号引脚;
SOC芯片,可供所述USB D+/D-信号输入的引脚;
所述USB TYPE C中所述USB D+/D-信号引脚与所述SOC芯片中可供所述USB D+/D-信号输入的引脚电连接,以使USB接入设备与SOC芯片通过USB D+/D-通道进行数据传输。
可选的,所述SOC芯片,可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制引脚与所述控制芯片中另一路控制信号输出引脚电连接,所述复合开关芯片中任一可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式输入的所述引脚电连接。
第二十三方面,本发明实施例提供一种电视终端,包括:显示屏被配置显示画面;供电电路被配置为设备提供电力,以及信号输入电路被配置为用于接收来自外部设备数据;其中,所述信号输入电路,包括:
USB TYPE-C接口,有USB D+/D-信号引脚;
SOC芯片,可供所述USB D+/D-信号输入的引脚;
所述USB TYPE C中所述USB D+/D-信号引脚与所述SOC芯片中可供所述USB D+/D-信号输入的引脚电连接,以使USB接入设备与SOC芯片通过USB D+/D-通道进行数据传输。
可选的,还包括:
所述SOC芯片,可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制信号输入引脚与所述控制芯片中另一路控制信号输出引脚电连接,所述复合开关芯片中任一可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式输入的所述引脚电连接。
第二十四方面,本发明实施例提供一种可兼容USB和ALT MODE的外部设备数据输入的信号输入电路,所述信号输入电路包括:
USB TYPE-C接口,有USB D+/D-信号引脚;
SOC芯片,可供所述USB D+/D-信号输入的引脚;
所述USB TYPE C中所述USB D+/D-信号引脚与所述SOC芯片中可供所述USB D+/D-信号输入的引脚电连接,以使USB接入设备与SOC芯片通过USB D+/D-通道进行数据传输。
可选的,所述SOC芯片,可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式输入的引脚;
复合开关芯片,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,所述复合开关芯片的控制信号输入引脚与所述控制芯片中另一路控制信号输出引脚电连接,所述复合开关芯片中任一可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供HDMI格式输入的所述引脚电连接。
第二十五方面,本发明实施例提供一种可兼容USB和ALT MODE的外部设备数据输入的信号输入方法,包括:
检测USB TYPE-C接口接入信号类型;
当识别出USB TYPE-C接入USB协议信号类型时,复合开关芯片选通USB TYPE-C接口中一路高速差分对信号引脚与SOC的USB信号连接端子电导通,使USB外部设备可与SOC芯片通过USB SSTX/RX端子数据传输;当识别USB TYPE-C接入ALT MODE协议信号类型时,复合开关芯片选通所述USB TYPE C接口中至少一路高速差分对信号引脚与SOC的HDMI信号连接端子电导通,使ALT MODE外部设备与SOC芯片通过可供HDMI信号传输的端子传输音视频数据。
第二十六方面,本发明实施例提供一种具有USB TYPE-C接口的电视机,包括:
USB TYPE-C接口,用于连接外部设备;
SOC芯片,其具有USB DFP接口,用于实现USB2.0/3.0DFP功能;
微处理器芯片,与该SOC芯片及该USB TYPE-C接口相连,支持USB Type-C CC通讯和PD协议,其具有billboard UFP接口,用于在ALT MODE的情况下对外输出billboard信号;以及
开关器件,其受控于该微处理器芯片,用于使该USB TYPE-C接口的USB D+/D-端子与该SOC芯片的USB DFP接口连通,或者与该微处理器芯片的billboard UFP接口连通。
可选的,该微处理器芯片检测接入设备类型,当接入USB协议设备时,该开关器件处于默认状态,使得该USB Type-C接口的USB D+/D-端子与该SOC芯片的USB DFP接口连通;当接入ALT MODE设备时,该开关器件受该微处理器芯片控制,使得该USB Type-C接口的USB D+/D-端子切换到与该微处理器芯片的billboard UFP接口连通。
可选的,该电视机还包括复合开关芯片,当接入USB协议设备时,该微处理器芯片控制该复合开关芯片进行切换,使得该USB Type-C接口的TX1/RX1与TX2/RX2端子与该SOC芯片的USB DFP接口联通。
可选的,该SOC芯片还包括HDMI SINK接口;该电视机还包括复合开关芯片和连接在该复合开关芯片与该HDMI SINK接口之间的DP-HDMI模 块,该DP-HDMI模块用于将DP信号转换为HDMI信号,供该SOC芯片显示使用。
可选的,该USB Type-C接口,初始设置成双用途USB模式,在接入不同角色设备时,进行角色变化来匹配。
可选的,在连接USB DFP设备时,该USB Type-C接口适配为USB UFP设备;若连接的设备支持DP DFP模式,则切换到DO DFP模式进行DP信号传输。
可选的,在连接USB UFP设备时,该USB Type-C接口适配为USB DFP设备。
可选的,在连接支持ALT MODE的双用途USB设备时,该USB Type-C接口和外部设备进行协商,该USB Type-C接口适配为DP UFP设备。
可选的,该电视机作为POWER SOURCE对外供电。
上述实施例中,基于终端设备中开关模块、USB Type-C接口主控模块以及SOC芯片之间的电路连接关系,实现了USB2.0信号和billboard信号的可选通链路的切换,可实现USB2.0信号传输功能与billboard信号传输功能的兼容。当USB Type-C接口外接USB设备时,USB Type-C接口主控模块选通USB设备与SOC芯片之间的链路,实现USB 2.0信号的传输功能。当USB Type-C接口外接ALT MODE设备时,USB Type-C接口主控模块220选通billboard信号输出接口与ALT MODE设备之间的链路,进而实现Billboard功能。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1(a)为现有技术中USB-Type-C接口应用在Monitor设备时,Monitor设备的架构示意图;
图1(b)为USB-Type-C接口应用在电视终端时,电视终端存在接口冲 突的架构示意图;
图2为本发明实施例提供的一种USB-Type-C接口应用在电视终端设备时,电视终端设备的架构示意图;
图3为本发明实施例提供的一种具有USB Type-C接口的终端设备在USB模式下的数据传输示意图;
图4为本发明实施例提供的一种具有USB Type-C接口的终端设备在Alt Mode下的数据传输示意图;
图5为本发明提供的一种具有USB Type-C接口的终端设备的结构示意图;
图6为本发明实施例提供的一种数据通信装置的结构示意图;
图7为本发明实施例提供的一种USB-Type-C接口应用在电视终端设备时,电视终端设备的架构示意图;
图8为本发明实施例提供的一种USB-Type-C接口外接USB设备时,终端设备处于工作状态的电路结构示意图;
图9为本发明实施例提供的一种USB-Type-C接口外接ALT MODE设备时,终端设备处于工作状态的电路结构示意图;
图10为本发明实施例提供的一种本发明的具有USB TYPE-C接口的电视机的架构示意;
图11为本发明实施例提供的一种本发明的电视机配接USB设备时的架构示意;
图12为本发明实施例提供的一种电视机配接DP设备时的架构示意;
图13为本发明实施例提供的一种电视机USB-C接口相关电路示意图;
图14为本发明实施例提供的一种电视机USB-C接口相关电路示意图;
图15为本发明实施例提供的一种电视终端的结构框图;
图16为本发明实施例提供的一种电视终端的结构示意图;
图17为本发明实施例提供的一种外接设备为UFP设备时电视终端的USB结构示意图;
图18为本发明实施例提供的一种外接设备为DP设备时电视终端的USB结构示意图;
图19为本发明实施例提供的一种用于电视终端的控制方法的流程示意图;
图20为本发明实施例提供的一种电视终端USB-C接口应用的结构示意图;
图21为本发明实施例提供的一种选择开关器件结构示意图;
图22a~22c为本发明实施例提供的一种复合开关芯片工作示意图;
图23为本发明实施例提供的又一种电视终端USB-C接口应用的结构示意图;
图24为本发明实施例提供的外接USB设备时,工作流程示意图;
图25为本发明实施例提供的外接ALT MODE设备时,工作流程示意图;
图26为本发明实施例提供的还一种电视终端USB-C接口应用的结构示意图;
图27为本发明实施例提供的一种电子终端设备结构示意图;
图28为本发明实施例提供的一种电视终端结构示意图;
图29为本发明实施例提供的一种USB-C应用流程示意图;
图30为本发明实施例一提供的一种电视终端USB-C接口应用的结构示意图;
图31为本发明实施例二提供的一种电子终端设备的结构示意图;
图32为本发明实施例三提供的一种电视终端结构示意图;
图33为本发明实施例四提供的一种USB-C应用流程示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请中的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为 指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在介绍本申请的具体实施例之前,下面首先对本申请中涉及到的名词做一些说明。
DP,Display Port的缩写,是一种高清数字显示接口标准,可以连接电脑和显示器进行DP信号的传输,Display Port 1.1标准最大支持10.8Gb/S的传输带宽,HDMI 1.3标准能支持10.2G/s的传输带宽。
HDMI,是High Definition Multimedia Interface的缩写,是高清晰度多媒体接口,是一种数字化视频/音频接口技术,适合影像传输的专用型数字化接口,可同时传送音频和影像信号,最高数据传输速度为48Gbps,可用于传输4K影像。
DP ALT MODE,简称DP可替代模式,是针对USB Type-C接口规格所设计的DP可替代模式,使得搭载USB Type-C接口的应用装置只需一条线缆即可同时支持高速USB信号、DP信号传输,并同时支持对USB Type-C接口外接设备供电。
HDMI ALT MODE,简称HDMI可替代模式,是针对USB Type-C接口规格所设计的HDMI可替代模式,使得搭载USB Type-C接口的应用装置只需一条线缆即可同时支持高速USB信号、HDMI信号传输,并同时支持对USB Type-C接口外接设备供电。
本申请中的ALT MODE设备,如电脑、笔记本、PAD移动终端等电子设备,能够支持DP ALT MODE,或者能够支持HDMI ALT MODE。
USB Type-C接口,USB Type-C接口可支持USB 2.0信号、USB 3.0信号和高清数字显示信号(简称DP信号)的传输。USB Type-C接口的最高传输速率为每秒10Gb,USB Type-C接口的功率传输是双向,USB Type-C接口应用在终端设备中,支持终端设备对USB Type-C接口外接的设备充电,也支持USB Type-C接口外接的设备对终端设备充电。USB Type-C接口可以被配置为下行端口(DFP),上行端口(UFP)或双用途端口(简称DRP端口)。
UFP接口,上行接口,也称上行端口,可以作为USB外设接口,可将 UFP接口作为外设端口,与其交互的端口为主机端口,UFP接口作为一个外设连接到一个主机设备上。例如,在本申请中,当终端设备通过USB Type-C接口外接ALT MODE设备时,当有需求发送billboard信号时,PD模块的billboard信号输出接口相当于一个UFP接口,此时USB Type-C接口外接的设备为主机设备,终端设备相当于USB Type-C接口外接设备的外设。
DFP接口,下行接口,也称是指下行端口,就是USB主机接口。可将DFP接口作为主机端口,与DFP接口交互的端口作为外设端口,DFP接口作为一个主机与一个外设连接,和家用电脑上的USB接口类似,可以插外设。例如,在本申请中,当终端设备通过USB Type-C接口外接USB设备时,当有需求发送USB2.0信号或USB3.0信号时,SOC芯片上的USB接口作为DFP接口,此时USB Type-C接口外接的USB设备为外设,终端设备相当于USB Type-C接口外接设备的主机。
USB信号是差分信号,USB信号通过差分对来传输,例如D+D-差分对,D+和D-是一对差分信号,负责传输数据,一对线传输一个信号,两根线所传输的信号幅度相同极性相反。所谓差分信号的意思是当要传输高电平时,一根线(比如是D+)送的是高电平,而另一根配对的线上传输的是低电平,要送低电平时,D+送低,D-送高,这样两根线上送的信号相位是反的,这样可以提高抗干扰的能力,从而能提高数据传输的速率。
USB信号包括USB2.0信号和USB3.0信号,USB2.0信号是半双工差分信号,单向数据传输,传输方向可以预先协商,USB2.0信号的数据信号线是低速差分对,其数据传输速率为1.5Mbps,12Mbps或480Mbps。而USB3.0信号是全双工差分信号,支持同时双向数据传输。USB3.0信号的数据信号线是高速差分对,其数据传输速率为5.0Gbps。
为了区分USB2.0信号的差分对,本申请中USB2.0信号的数据传输线定义为USB D+/D-对,USB3.0信号的数据传输线定义为USB SSTX/RX差分对。
相应的,USB2.0信号的数据输入引脚或者数据输出引脚定义为USB D+/D-差分端子,USB3.0信号的数据输入引脚或者数据输出引脚定义为USB  SSTX/RX差分端子。
此外,本申请中,HDMI信号的数据传输线,也是高速差分对,其定义为HDMI信号通道,如图3中的D0 P/N,D1 P/N,D2 P/N,CLK P/N(P/N是一个高速差分对,对应两根传输线,所传输的信号幅度相同,极性相反)。
相应的,DP信号的数据传输线,也是高速差分对,其定义为DP信号通道,如图3中的DP0 P/N,DP1 P/N,DP2 P/N和DP3 P/N。
相应的,DP信号的数据输入引脚或者数据输出引脚定义为DP差分端子,HDMI信号的数据输入引脚或者数据输出引脚定义为HDMI差分端子。
Billboard信号,是指Billboard标准规定的Billboard通信信号,支持ALT MODE,即当电视终端通过USB Type-C接口外接ALT MODE设备(例如,电脑、笔记本、移动终端等电子设备)时,如果电视终端出现显示异常,电视终端应当将billboard信号反馈至ALT MODE设备,使ALT MODE设备根据billboard检测异常原因。
本申请中,Billboard信号输出接口(包括Billboard信号输出引脚)设置在C接口主控模块的PD模块中,PD模块是支持USB Type-C接口协议标准的USB供电规格,即“USB Power Delivery Specification”的简称,支持USB Type-C接口外接设备的不同供电需求。
本申请中,CC模块,支持USB Type-C接口协议CC通信,用于与USB Type-C接口外接的设备进行CC通信,CC模块与USB Type-C接口外接的设备进行CC通信的信号定义为CC信号。
对于Monitor设备来说,将USB Type-C接口应用到Monitor设备中时,Monitor设备针对USB Type-C接口的USB D+/D-差分端子具有两种应用需求,一种需求是USB2.0.信号的传输需求,一种是billboard信号传输需求。本发明的发明人发现,当USB-Type-C接口应用在Monitor设备时,可以通过USB3.0HUB设备作为连接器来满足这两种需求,实现USB2.0传输功能和billboard功能的兼容。
具体来说,本发明的发明人发现,当USB-Type-C接口应用在Monitor设 备时,如图1(a)所示,Monitor设备通过USB-Type-C接口外接USB设备或者ALT MODE设备。Monitor设备相当于外接设备的一个外设,因此,Monitor设备的USB接口和billboard信号输出接口相当于上行端口UFP端口。当使用USB-Type-C接口时,为了实现Monitor设备内的USB2.0传输功能和billboard功能的兼容,在Monitor设备的USB接口处集成一个USB3.0HUB设备,USB3.0HUB设备包括两个输出接口,第一个输出接口与billboard信号输出接口电连接,形成第一个通路;第二个输出接口与Monitor设备的USB接口电连接形成第二个通路,USB3.0HUB设备的数据输入接口与USB-Type-C接口电连接,USB3.0HUB设备的作用是提供了两条通道,当使用USB-Type-C接口传输外接设备的USB数据时,USB数据从第二个通路传输到Monitor设备的USB接口,当使用USB-Type-C接口传输外接设备的高清显示影音频数据(HDMI数据)时,HDMI数据传输到Monitor设备的显示器,当HDMI数据显示异常时,billboard信号输出接口通过第二个通路传输到USB-Type-C接口外接的设备,从而使手机或者电脑的整个USB系统工作正常。
对于电视终端来说,将USB Type-C接口应用到电视终端中时,电视终端针对USB Type-C接口的USB D+/D-差分端子也具有USB2.0.信号的传输需求和billboard信号传输需求。
本发明的发明人发现,当USB Type-C接口的外接设备为USB设备(USB2.0设备或者USB3.0设备)时,USB 2.0信号需要通过USB Type-C接口中的USB D+/D-差分端子来传输至电视终端的SOC芯片;当外接设备为ALT MODE设备(例如,电脑、笔记本、移动终端等电子设备)时,如果电视终端出现显示异常,电视终端通常会将PD模块中的billboard信息通过USB Type-C接口反馈至ALT MODE设备,由于billboard信息需要通过C接口中的USB D+/D-信号引脚传输至ALT MODE设备。由于C接口接入外接设备时可使用的USB D+/D-差分端子的个数固定,且支持单向传输,且USB 2.0信号和Billboard信号的数据传输链路不能同时复用到USB Type-C接口的USB D+/D-差分端子上,因此,若USB Type-C接口的USB D+/D-差分端子与SOC 芯片中可供USB D+/D-信号输入的引脚直接连接,则当USB Type-C接口外接DP ALT MODE设备时,不能实现Billboard功能;若USB Type-C接口的USB D+/D-差分端子与PD模块中可供USB D+/D-信号输入的引脚连接用以实现Billboard功能,则USB Type-C接口外接USB设备时,不能实现USB 2.0信号的传输功能。
本发明的发明人还发现,当USB Type-C接口应用到电视终端中时,即使使用USB3.0HUB也解决不了在Billboard功能和USB 2.0信号传输功能的不兼容问题。如图1(b)所示,当电视终端在与USB-Type-C接口外接的设备交互USB2.0信号时,电视终端可以作为USB-Type-C接口外接的设备的主机,USB-Type-C接口外接的设备可以作为电视终端的外设。此时电视终端SOC芯片上的USB接口相当于DFP接口,与USB3.0HUB设备的两个输出端的DFP接口不匹配,因此无法使用USB3.0HUB解决Billboard功能和USB 2.0信号传输功能的兼容。
为了解决上述问题,本申请提供一种终端设备,实现Billboard功能和USB2.0信号传输功能的兼容,本申请提的终端设备可以是电视终端,如图2所示,主要包括:
SOC芯片210,设置有DFP接口,DFP接口通过USB D+/D-差分对与开关模块240连接,DFP接口与开关模块240之间的USB D+/D-差分对为第一通道;
USB Type-C接口主控模块220,设置有UFP接口,UFP接口通过USB D+/D-差分对与开关模块240连接,UFP接口与开关模块240之间的USB D+/D-差分对为第二通道;
USB Type-C接口230,通过USB D+/D-差分对与开关模块240连接;
USB Type-C接口主控模块220,还通过控制信号线C1与开关模块240连接,用以控制开关模块240导通第一通道,关闭第二通道,或者导通第二通道,关闭第一通道。
为了实现第一通道和第二通道的切换,本申请中,由USB Type-C接口主 控模块220中的CC模块实现USB Type-C接口230外接的设备的类型的识别,以及根据识别出的类型,实现第一通道和第二通道的切换。
可选的,USB Type-C接口主控模块220,还通过控制信号线C2与USB Type-C接口230连接,用于与USB Type-C接口230交互CC信号,以根据识别出的外接设备的类型,控制开关模块240导通第一通道,关闭第二通道,或者导通第二通道,关闭第一通道。
具体而言,USB Type-C接口主控模块220,用于在识别出USB Type-C接口230外接的设备的类型为USB设备时,控制开关模块240导通第一通道,关闭第二通道;在识别出USB Type-C接口230外接的设备的类型为ALT MODE设备时,导通第二通道,关闭第一通道。
上述实施例中,基于终端设备中开关模块240、USB Type-C接口主控模块220以及SOC芯片210之间的电路连接关系,实现了USB2.0信号和billboard信号的可选通链路的切换,可实现USB2.0信号传输功能与billboard信号传输功能的兼容。当USB Type-C接口230外接USB设备时,USB Type-C接口主控模块220选通USB设备与SOC芯片210之间的链路,使得USB Type-C接口230的USB D+/D-差分端子与SOC芯片210中可供USB D+/D-信号输入的引脚连接,实现USB 2.0信号的传输功能。当USB Type-C接口230外接ALT MODE设备时,USB Type-C接口主控模块220选通billboard信号输出接口与ALT MODE设备之间的链路,使得USB Type-C接口230的USB D+/D-差分端子与USB Type-C接口主控模块220中的PD模块中可供USB D+/D-信号输入的引脚连接,进而实现Billboard功能。
由于USB3.0信号和DP或HDMI信号都用高速差分对传输,因此,为了减少信号传输线,可以配置USB3.0信号和DP或HDMI信号共用高速差分对,当USB Type-C接口230外接USB设备时,选择一部分高速差分对传输USB3.0信号,当USB Type-C接口230外接ALT MODE设备时,选择一部分高速差分对传输DP或HDMI信号。
本实施例提供的具有USB Type-C接口的终端设备,该终端设备包括USB  Type-C接口、USB Type-C接口主控模块、开关模块以及SoC芯片,且USB Type-C接口能够接收外接设备传输的数据,开关模块能够与USB Type-C接口主控模块连接,且USB Type-C接口主控模块在确认外接设备的类型时,能够选通USB D+/D-信号引脚与SoC芯片中的传输USB D+/D-信号的接口连接或者选通USB D+/D-信号引脚与控制器中的传输billboard信息的接口连接,能够实现外接设备向SoC芯片传输USB D+/D-信号的过程,且还能够实现外接设备能够获取billboard信息的过程。本实施例基于USB Type-C接口,通过增加一路开关,识别外接设备的工作模式,能够同时兼容USB D+/D-信号的传输以及billboard模块的billboard信息的传输,还能够满足插线方向需求的要求。
对billboard信息的传输通道的导通,完成SoC芯片与外接设备的数据信号传输,解决了SoC芯片无法利用USB Type-C接口实现接口多且有插线方向要求的问题。
首先,由于外接设备的类型,即工作模式,有很多种,因此,控制器可以根据外接设备的工作模式,确定开关模块的选通状态。在上述图2实施例的基础上,本申请还提供图3和图4两种数据传输示意图,其中,控制器为上述USB Type-C接口主控模块的一种实现方式,选择开关单元为上述开关模块的一种实现方式。结合图3和图4,对控制器根据外接设备的工作模式,选通USB D+/D-信号引脚与SoC芯片中的传输USB D+/D-信号的接口连接,或者,选通USB D+/D-信号引脚与控制器中的传输billboard信息的接口连接的具体过程进行详细的说明。
图3为本发明提供的具有USB Type-C接口的终端设备在USB模式下的数据传输示意图,图4为本发明提供的具有USB Type-C接口的终端设备在Alt Mode下的数据传输示意图。
如图3和图4所示,可选地,控制器,用于在确定外接设备的工作模式为USB模式时,选通USB D+/D-信号引脚与SoC芯片中的传输USB D+/D-信号的接口连接,以向SoC芯片传输USB D+/D-信号;
控制器,用于在确定外接设备的工作模式为Alt Mode时,向选择开关单元发送第二控制信号,以使选择开关单元根据第二控制信号选通USB D+/D-信号引脚与控制器中的传输billboard信息的接口连接,使得外接设备执行billboard信息指示的操作。
具体的,如图3所示,控制器在确定外接设备的工作模式为USB模式时,终端设备会默认选通USB D+/D-信号引脚与SoC芯片中的传输USB D+/D-信号的接口连接,这样,终端设备可以准确的向外接设备提供传输USB D+/D-信号的通道,便于外接设备向SoC芯片传输USB D+/D-信号。
进一步地,如图4所示,控制器在确定外接设备的工作模式为Alt Mode时,控制器会向选择开关单元发送第二控制信号K1。控制选择开关单元能够根据第二控制信号K1选通USB D+/D-信号引脚与控制器中的传输billboard信息的接口连接,使得外接设备能够实时监测SoC芯片与外接设备的信息交互的过程是否会出现异常情况。当外接设备没有获取到billboard信息,或者billboard信息指示未出现异常情况时,表明外接设备与终端设备的信息交互情况正常。当外接设备获取到billboard信息时,可以执行billboard信息指示的操作,如与终端设备重新连接的操作,或者调整自身工作模式的操作等。因此,外接设备能够实时监测到自身与终端设备的信息交互情况,便于在出现异常时采用相应的措施,对数据能够正常传输提供保障。
本申请中,如图2所示,终端设备还包括复用开关250,该复用开关250用于进行USB3.0信号和DP或HDMI信号的高速差分对的信号复用,能够兼容USB3.0信号和DP或HDMI信号的复用功能,复用开关250与USB Type-C接口230之间的高速差分对,不妨定义为USB SSTX P/N和USB SSRX P/N,既可以用于USB3.0信号的传输,又可以用于DP或HDMI信号的传输。
可选的,复用开关250,通过USB SSTX/RX差分对与USB Type-C接口230连接,还通过USB SSTX/RX差分对与DFP接口连接,复用开关250与SOC芯片210的DFP接口之间的USB SSTX/RX差分对为第三通道。
可选的,SOC芯片210上包括HDMI接口,当SOC芯片210不支持DP 信号与HDMI信号之间的转换,只支持HDMI信号的接收或发送时,需要预先将DP信号转换成HDMI信号之后再传输到SOC芯片210上,或者需要预先将HDMI信号转换成DP信号之后再传输到复用开关250上。
为了实现这一转换功能,本申请中,终端设备还包括协议转换模块260,用来实现DP信号与HDMI信号之间的转换。
可选的,复用开关250,还通过DP信号通道与协议转换模块260的DP接口连接,复用开关250与SOC芯片210的HDMI接口之间的HDMI信号通道为第四通道。HDMI接口,通过HDMI信号通道与协议转换模块260的HDMI接口连接;协议转换模块260,用于将在所述ALT MODE设备传输DP信号时,将所述DP信号转换为HDMI信号,以将所述HDMI信号传输至所述SOC芯片的HDMI接口。
可选的,当SOC芯片210支持DP信号与HDMI信号之间的转换时,SOC芯片210还包括高清数字显示接口DP接口,可供DP信号的接收或发送;复用开关250,还通过DP信号通道与DP接口连接。
当USB Type-C接口230外接USB设备,并进行USB3.0信号的传输时,需要选通USB3.0信号的传输路径,即选通复用开关250与USB Type-C接口230之间的一部分高速差分对,以及复用开关250与SOC芯片210之间的一部分高速差分对用来传输USB3.0信号。当USB Type-C接口230外接ALT MODE设备,并进行DP信号的传输时,需要选通DP信号的传输路径,即选通复用开关250与USB Type-C接口230之间的一部分高速差分对,以及复用开关250与SOC芯片210之间的一部分高速差分对用来传输DP信号。
为了实现上述USB3.0信号和DP信号选通功能的切换,本申请中由CC模块实现USB Type-C接口230外接的设备的类型的识别,以及根据识别出的类型,实现USB3.0信号和DP信号选通功能的切换。
可选的,USB Type-C接口230控制模块,还通过控制信号线C2与复用开关250连接,用以在识别出USB Type-C接口230外接的设备的类型为USB设备时,控制复用开关250导通第三通道,关闭第四通道;或者在识别出USB  Type-C接口230外接的设备的类型为ALT MODE设备时,控制复用开关250导通第四通道,关闭第三通道。
具体地,如图3所示,图中复合开关单元即前述复用开关250。控制器在确定外接设备的工作模式为USB模式时,控制器会向复合开关单元发送第三控制信号K2。复合开关单元能够根据第三控制信号K2,选通X1/RX1和TX2/RX2引脚与SoC芯片中的传输USB SS TX/SS RX信号的接口连接,这样,终端设备可以准确的向外接设备提供传输USB SS TX/SS RX信号的通道,便于外接设备向SoC芯片传输USB SS TX/SS RX信号。
进一步地地,如图4所示,如图4所示,控制器在确定外接设备的工作模式为Alt Mode时,控制器会向复合开关单元发送第四控制信号K3。复合开关单元能够根据第四控制信号K3,选通X1/RX1和TX2/RX2引脚与SoC芯片中的传输音视频信号的接口连接,这样,终端设备可以准确的向外接设备提供传输音视频信号的通道,便于外接设备向SoC芯片传输音视频信号。其中第四控制信号K3与第三控制信号K2可以为同一通道且不同内容的信号,也可以为不同通道且不同内容的信号,本实施例对此不做限定。
再次,在终端设备向SoC芯片传输音视频信号之前,由于外接设备中的音视频信号的格式可以包括多种类型,而SoC芯片所需的音视频信号的格式也可以包括多种类型,因此,下面结合图5,对终端设备实现外接设备与SoC芯片的音视频信号的格式统一的过程进行详细的说明。
图5为本发明提供的具有USB Type-C接口的终端设备的结构示意图,如图5所示,终端设备还包括:格式转换单元,即前述协议转换模块260;
其中,格式转换单元的输入端与选择开关单元连接,用于对选择开关单元传输的音视频信号进行格式转换,得到格式转换后的音视频信号;
格式转换单元的输出端用于连接SoC芯片中的传输音视频信号的接口,以向SoC芯片传输格式转换后的音视频信号。
具体地,格式转换单元的输入端通过与选择开关单元的连接,能够接收选择开关单元传输的音视频信号。且格式转换单元能够对音视频信号进行格 式转换,得到格式转换后的音视频信号。该格式转换后的音视频信号是能够被SoC芯片直接识别,因此,格式转换单元可以将格式转换后的音视频信号传输至SoC芯片,以便SoC芯片识别。
进一步地,设有格式转换单元的终端设备可以将外接设备传输的音视频信号的格式转换成能够被SoC芯片直接识别的数据格式,对外接设备的音视频信号实现了格式的统一,减少了SoC芯片对音视频信号进行格式转换的操作,对SoC芯片进行后续操作提高了保障。
最后,外接设备除了能够进行数据信号的传输以外,还可以向SoC芯片提出向其供电的请求。可选地,控制器,还用于在确定外接设备的工作模式为USB PD时,通过CC引脚上的供电指令,使终端设备向外接设备供电。
具体地,控制器当确定外接设备的工作模式为供电模式时,控制器可以分别通过与终端设备和外接设备的连接,使得终端设备能够向外接设备供电。其中,控制器具体可通过Type-C接口的CC引脚上传输供电指令,实现终端设备向外接设备供电的过程。
在一个具体的实施例中,以具有Type-C接口的电脑为外接设备,电视为终端设备,且电视接收的音视频信号的格式为HDMI格式,采用本实施例的具有Type-C接口的终端设备进行数据传输的具体过程是:
在终端设备中的各个模块连接正常,且电视和电脑分别与终端设备的Type-C接口可靠连接时,终端设备中的控制器会通过CC引脚中的CC信号确定电脑的工作模式。
当电脑的工作模式为USB模式时,控制器选通USB D+/D-信号引脚与SoC芯片中的传输USB D+/D-信号的接口连接,使得通过选择开关单元,电脑中的数据能够传输至电视。控制器还会选通X1/RX1和TX2/RX2引脚与SoC芯片中的传输USB SS TX/SS RX信号的接口连接,使得通过复合开关单元,电脑中的数据能够传输至电视。无论上述哪种方式,此时,电视作为DFP使用。
当电脑的工作模式为Alt Mode时,控制器可以选通USB D+/D-信号引脚 与控制器中的传输billboard信息的接口连接,电脑可以先从电视端获取billboard信息。此时,存储billboard的billboard模块作为UFP使用。且当billboard信息表明电视与电脑信息相互异常时,电脑可以执行重新连接Type-C接口的操作,或者电脑可以调整自身的工作模式,以达到向电视传输数据的目的。当电脑没有获取到的billboard信息时,格式转换单元可以先对该音视频信号进行格式转换后,控制器再选通X1/RX1和TX2/RX2引脚与SoC芯片中的传输音视频信号的接口连接,并可以将格式转换后的音视频数据传输至电视。
可选的,上述实施例中,SOC芯片210上的DFP接口包括USB2.0接口和USB3.0接口。当USB Type-C接口230外接的设备的类型为USB2.0设备时,DFP接口通过第一通道与USB Type-C接口230外接的USB2.0设备交互USB2.0信号;或者,当USB Type-C接口230外接的设备的类型为USB3.0设备时,DFP接口通过第三通道与USB Type-C接口230外接的USB3.0设备交互USB3.0信号。
可选的,上述实施例中,C接口主控模块210中的UFP接口为billboard信号输出接口,可供为billboard信号的输出。
当USB Type-C接口230外接的设备的类型为ALT MODE设备时,当ALT MODE设备与SOC芯片交互异常时,billboard信号输出接口可通过第二通道向USB Type-C接口230外接的ALT MODE设备发送billboard信号;或者,当ALT MODE设备与SOC芯片交互正常时,HDMI接口通过第四通道与USB Type-C接口230外接的ALT MODE设备交互HDMI信号。
可选的,上述实施例中,USB Type-C接口主控模块220与复用开关250集成在不同的芯片上,或者复用开关250和USB Type-C接口主控模块220集成在同一芯片上。
基于本申请上述实施例的终端设备的模块功能,还提供一种终端设备的控制方法,用以实现USB2.0信号和billboard信号的可选通链路的切换,以及实现USB3.0信号和DP信号的可选通链路的切换。具体来说,主要包括:
USB Type-C接口主控模块220向开关模块240发送第一控制信号或第二控制信号,第一控制信号用于控制开关模块240导通第一通道,关闭第二通道,第二控制信号用于控制开关模块240导通第二通道,关闭第一通道。
可选的,USB Type-C接口主控模块220在发送第一控制信号之前,还包括:USB Type-C接口主控模块220与USB Type-C接口230交互CC信号;根据CC信号,识别USB Type-C接口230外接的设备的类型。
可选的,USB Type-C接口主控模块220向开关模块240发送第一控制信号或第二控制信号,包括:当识别出USB Type-C接口230外接的设备的类型为USB设备时,向开关模块240发送第一控制信号;当识别出USB Type-C接口230外接的设备的类型为ALT MODE设备时,向开关模块240发送第二控制信号。
可选的,当识别出USB Type-C接口230外接的设备的类型为USB设备时,USB Type-C接口主控模块220还向复用开关250发送第三控制信号,第三控制信号用于控制复用开关250导通第三通道,关闭第四通道;USB Type-C接口主控模块220当识别出USB Type-C接口230外接的设备的类型为ALT MODE设备时,还向复用开关250发送第四控制信号,第四控制信号用于控制复用开关250导通第四通道,关闭第三通道。
上述实施例中,基于终端设备中的USB Type-C接口主控模块220执行的控制方法,实现了USB2.0信号和billboard信号的可选通链路的切换,可实现USB2.0信号传输功能与billboard信号传输功能的兼容。当USB Type-C接口230外接USB设备时,向开关模块240发送第一控制信号,选通USB设备与SOC芯片210之间的链路,使得USB Type-C接口230的USB D+/D-差分端子与SOC芯片210中可供USB D+/D-信号输入的引脚连接,实现USB 2.0信号的传输功能。当USB Type-C接口230外接ALT MODE设备时,向开关模块240发送第二控制信号,选通billboard信号输出接口与ALT MODE设备之间的链路,使得USB Type-C接口230的USB D+/D-差分端子与PD模块中可供USB D+/D-信号输入的引脚连接,进而实现Billboard功能。
首先,在上述方法实施例的基础上,结合图3和图4,对具体过程进行详细的说明。
可选地,在确定外接设备的工作模式(类型)为USB模式时,将外接设备中的USB D+/D-信号传输至SoC芯片。
在确定外接设备的工作模式为Alt Mode时,将billboard信息传输至外接设备,以使外接设备执行billboard信息指示的操作。
具体地,如图3所示,控制器在确定外接设备的工作模式为USB模式时,终端设备会默认选通USB D+/D-信号引脚与SoC芯片中的传输USB D+/D-信号的接口连接,这样,终端设备可以向外接设备提供传输USB D+/D-信号的通道,将外接设备中的USB D+/D-信号传输至SoC芯片。
进一步地,如图4所示,在确定外接设备的工作模式为Alt Mode时,控制器能够选通USB D+/D-信号引脚与控制器中的传输billboard信息的接口连接,便可以将billboard信息传输至外接设备,以使外接设备执行billboard信息指示的操作,使得外接设备能够实时监测SoC芯片与外接设备的信息交互的过程是否会出现异常情况。
其次,由于外接设备的工作模式不同,传输的数据也可以由多种类型因此,为了能够传输外接设备中各类型数据,终端设备还包括:复合开关单元,其中复合开关分别与USB Type-C接口、控制器以及SoC芯片连接。
可选地,根据外接设备的工作模式,将外接设备中的USB SS TX/SS RX信号传输至SoC芯片;或者,
根据外接设备的工作模式,将外接设备中的音视频信号传输至SoC芯片。
具体地,终端设备可以根据外接设备的工作模式,选通X1/RX1和TX2/RX2引脚与SoC芯片中的传输USB SS TX/SS RX信号的接口连接,将外接设备中的USB SS TX/SS RX信号传输至SoC芯片。终端设备也可以根据外接设备的工作模式,选通X1/RX1和TX2/RX2引脚与SoC芯片中的传输音视频信号的接口连接,将外接设备中的音视频信号传输至SoC芯片。
进一步地,由于外接设备的工作模式有很多种,因此,控制设备可以根 据外接设备的工作模式,确定复合开关单元的对于不同类型数据通道的选通,因此,结合图3和图4,对根据外接设备的工作模式,将外接设备中的USB SS TX/SS RX信号传输至SoC芯片或者根据外接设备的工作模式,将外接设备中的音视频信号传输至SoC芯片的具体过程进行详细的说明。
可选地,在确定外接设备的工作模式为USB模式时,将外接设备中的USB SS TX/SS RX信号传输至SoC芯片。
可选地,在确定外接设备的工作模式为Alt Mode时,将外接设备中的音视频信号传输至SoC芯片。
在确定外接设备的工作模式为Alt Mode时,将billboard信息传输至外接设备,以使外接设备执行billboard信息指示的操作。
具体地,如图3所示,终端设备在确定外接设备的工作模式为USB模式时,终端设备会选通X1/RX1和TX2/RX2引脚与SoC芯片中的传输USB SS TX/SS RX信号的接口连接,这样,终端设备可以向外接设备提供传输USB SS TX/SS RX信号的通道,便于将外接设备中的USB SS TX/SS RX信号传输至终端设备中的SoC芯片。
进一步地,如图4所示,终端设备在确定外接设备的工作模式为Alt Mode时,控制器可以选通X1/RX1和TX2/RX2引脚与SoC芯片中的传输音视频信号的接口连接,这样,终端设备可以向外接设备提供传输音视频信号的通道,便于将外接设备中的音视频信号传输至终端设备中的SoC芯片。
再次,由于外接设备的音视频信号的格式多种多样,为了终端设备能够实现对该音视频信号的格式的统一。可选地,对选择开关单元传输的音视频信号进行格式转换,得到格式转换后的音视频信号。
具体地,本实施例中,终端设备可以对音视频信号进行格式转换,得到格式转换后的音视频信号。该格式转换后的音视频信号是能够被SoC芯片直接识别,因此,终端设备便可以将格式转换后的音视频信号传输至SoC芯片,以便SoC芯片识别,减少了SoC芯片对音视频信号进行格式转换的操作,对SoC芯片进行后续操作提高了保障。
最后,通过终端设备还可以实现对外接设备的供电。可选地,在确定外接设备的工作模式为USB PD时,设置供电指令,以使终端设备向外接设备供电。
具体地,终端设备可以通过与外接设备的连接,识别外接设备的工作模式。当外接设备向终端设备提出向其供电的请求时,可以通过将CC引脚上CC信号设置为供电指令,使得终端设备可以确定外接设备的工作模式为USB PD,便可以完成终端设备提向外接设备供电的过程。
本实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本发明数据通信方法的上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图6为本发明提供的数据通信装置的结构示意图,如图6所示,本实施例的数据通信装置600可以包括:
处理器601;以及
存储器602,用于存储所述处理器601的可执行指令;
其中,所述处理器601配置为经由执行所述可执行指令来执行:所述数据通信方法,该方法应用于具有USB Type-C接口的终端设备,所述终端设备包括:USB Type-C接口、控制器、选择开关单元以及SoC芯片,其中,所述USB Type-C接口用于连接外接设备,所述控制器分别与所述USB Type-C接口和所述选择开关单元连接,所述选择开关单元还与所述SoC芯片连接;所述方法,包括:
确定所述外接设备的工作模式;
根据所述外接设备的工作模式,将所述外接设备中的USB D+/D-信号传输至所述SoC芯片;或者,
根据所述外接设备的工作模式,将billboard信息传输至所述外接设备,以使所述外接设备执行所述billboard信息指示的操作。
可选地,所述根据所述外接设备的工作模式,将所述外接设备中的USB D+/D-信号传输至所述SoC芯片,包括:
在确定所述外接设备的工作模式为USB模式时,将所述外接设备中的USB D+/D-信号传输至所述SoC芯片;
所述根据所述外接设备的工作模式,将所述billboard信息传输至所述外接设备,以使所述外接设备执行所述billboard信息指示的操作,包括:
在确定所述外接设备的工作模式为Alt Mode时,将所述billboard信息传输至所述外接设备,以使所述外接设备执行所述billboard信息指示的操作。
可选地,所述终端设备还包括:复合开关单元,其中所述复合开关分别与所述USB Type-C接口、所述控制器以及所述SoC芯片连接;所述方法还包括:
根据所述外接设备的工作模式,将所述外接设备中的USB SS TX/SS RX信号传输至所述SoC芯片;或者,
根据所述外接设备的工作模式,将所述外接设备中的音视频信号传输至所述SoC芯片。
可选地,所述根据所述外接设备的工作模式,将所述外接设备中的USB SS TX/SS RX信号传输至所述SoC芯片,包括:
在确定所述外接设备的工作模式为USB模式时,将所述外接设备中的USB SS TX/SS RX信号传输至所述SoC芯片;
所述根据所述外接设备的工作模式,将所述外接设备中的音视频信号传输至所述SoC芯片,包括:
在确定所述外接设备的工作模式为Alt Mode时,将所述外接设备中的音视频信号传输至所述SoC芯片。
可选地,所述终端设备还包括:格式转换单元,其中,所述格式转换单元分别与所述选择开关单元和所述SoC芯片连接;在所述将所述外接设备中的音视频信号传输至所述SoC芯片之前,还包括:
对所述选择开关单元传输的音视频信号进行格式转换,得到格式转换后的音视频信号。
可选地,所述外接设备的工作模式包括:USB2.0、USB3.0、USB3.1以及 USB PD中的任一。
可选地,还包括:
在确定所述外接设备的工作模式为USB PD时,设置供电指令,以使所述终端设备向所述外接设备供电。
当所述存储器602是独立于处理器601之外的器件时,所述数据通信装置600还可以包括:
总线603,用于连接处理器601和所述存储器602。
本实施例的数据通信装置600,可以用于执行上述各方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
基于本申请上述实施例的终端设备的模块功能,还提供一种终端设备的模块之间的电路连接关系,用以实现USB2.0信号和billboard信号的可选通链路的切换,以及实现USB3.0信号和DP信号的可选通链路的切换。具体的,终端设备,包括:
SOC芯片210,提供USB D+/D-差分端子,可供USB D+/D-信号的输入或输出,与开关模块240提供的USB D+/D-差分端子电连接,构成可选通的第一通道;
USB Type-C接口主控模块210,提供USB D+/D-差分端子,可供USB D+/D-信号的输入或者billboard信号的输出,与开关模块240提供的USB D+/D-差分端子电连接,构成可选通的第二通道;
USB Type-C接口230,提供USB D+/D-差分端子,可供USB D+/D-信号的输入或输出,与开关模块240提供的USB D+/D-差分端子电连接;
USB Type-C接口主控模块210,还提供控制信号输出引脚,可供第一控制信号或第二控制信号的输出,其与开关模块240的控制信号输入引脚电连接;第一控制信号用于导通第一通道,关闭第二通道,第二控制信号用于导通第二通道,关闭第一通道。
为了识别C接口外接的设备的类型,可选的,USB Type-C接口主控模块210,其提供CC引脚,提供的CC引脚与USB Type-C接口230中的CC引脚 电连接,可供CC信号的输入或输出,以识别C接口外接的设备的类型。
为了实现USB2.0信号和billboard信号的可选通链路的切换,USB Type-C接口主控模块210,用于在识别出USB Type-USB TYPE-C接口230外接的设备的类型为USB设备时,向开关模块240的控制信号输入引脚输入第一控制信号;在识别出USB Type-C接口230外接的设备的类型为ALT MODE设备时,向开关模块240的控制信号输入引脚输入第二控制信号。
可选的,终端设备还包括复用开关250,复用开关250分别与SOC芯片210、USB Type-C接口230和USB Type-C接口主控模块210之间的连接关系为:
SOC芯片210,还提供USB SSTX/RX差分端子,可供USB3.0信号的输入或输出,与复用开关250的USB SSTX/RX差分端子电连接,构成第三通道;
USB Type-C接口230,还提供USB SSTX/RX差分端子,可供USB3.0信号的输入或输出,与复用开关250的USB SSTX/RX差分端子电连接;
USBType-C接口主控模块210,还提供用于输出第三控制信号的控制信号输出引脚,其与复用开关250的一路控制信号输入引脚电连接;第三控制信号用于导通第三通道,关闭第四通道。
可选的,复用开关250与SOC芯片210之间的连接关系,还包括:
SOC芯片210,还提供HDMI差分端子,HDMI差分端子可供HDMI信号的输入或输出;HDMI差分端子与复用开关250的HDMI差分端子电连接,构成可选通的第四通道;
USB Type-C接口主控模块210,还提供用于输出第四控制信号的控制信号输出引脚,与复用开关250的另一路控制信号输入引脚电连接;第四控制信号用于导通第四通道,关闭第三通道。
可选的,终端设备还包括协议转换模块260;协议转换模块260分别与SOC芯片210、USB Type-C接口230和USB Type-C接口主控模块210之间的连接关系为:
SOC芯片210,还提供HDMI差分端子,HDMI差分端子可供HDMI信 号的输入或输出;HDMI差分端子与协议转换模块260的HDMI差分端子电连接;
协议转换模块260,还提供高清数字显示接口DP差分端子,DP差分端子可供DP信号的输入或输出;DP差分端子与复用开关250的DP差分端子电连接,构成可选通的第四通道;
USB Type-C接口主控模块210,还提供用于输出第四控制信号的控制信号输出引脚,与复用开关250的另一路控制信号输入引脚电连接;第四控制信号用于导通第四通道,关闭第三通道。
当SOC芯片210支持DP信号与HDMI信号之间的转换时,SOC芯片210还包括高清数字显示接口DP接口,可供DP信号的接收或发送;复用开关250,还通过DP信号通道与SOC芯片210的DP接口连接。
为了实现USB3.0信号和DP信号的可选通链路的切换,USB Type-C接口主控模块210,用于在识别出USB Type-USB TYPE-C接口230外接的设备的类型为USB设备时,向复用开关250的控制信号输入引脚输入第三控制信号;在识别出USB Type-C接口230外接的设备的类型为ALT MODE设备时,向复用开关250的控制信号输入引脚输入第四控制信号。
上述实施例中,通过开关模块240、USB Type-USB Type-C接口主控模块220以及SOC芯片210之间的电路连接关系和控制方法,通过USB2.0信号和billboard信号的可选通链路的切换,可实现USB2.0信号传输功能与billboard信号传输功能的兼容。当USB Type-C接口230外接USB设备时,选通USB设备与SOC芯片210之间的链路,使得USB Type-C接口230的USB D+/D-差分端子与SOC芯片210中可供USB D+/D-信号输入的引脚连接,实现USB2.0信号的传输功能。当USB Type-C接口230外接ALT MODE设备时,选通billboard信号输出接口与ALT MODE设备之间的链路,使得USB Type-C接口230的USB D+/D-差分端子与PD模块中可供USB D+/D-信号输入的引脚连接,进而实现Billboard功能。
基于上述实施例,本申请提供了一种终端设备的具体实现。需要说明的 是,上述实施例中的USB Type-C接口主控模块的功能由C接口主控芯片实现,开关模块的功能由USB 2.0切换开关340实现,复用开关的功能由MUX芯片(以下称MUX)实现,协议转换模块的功能由协议转换芯片实现,下面详细说明。
如图7所示,该终端设备主要包括USB Type-C接口320,USB 2.0切换开关340,C接口主控芯片310,复用开关芯片MUX 350,协议转换芯片360(图7中的DP TO HDMI)和SOC芯片330。
其中,C接口主控芯片310包括CC模块和PD模块。CC模块可以用于与USB Type-C接口320进行CC通信,识别USB Type-C接口320外接的设备的类型,根据USB Type-C接口320外接的设备的类型,将USB 2.0切换开关340选通到SOC芯片330,或者,将USB 2.0切换开关340选通到PD模块。当USB 2.0切换开关340选通到PD模块时,PD模块与ALT MODE设备之间通信billboard信号,具体是USB Type-C接口320的USB D+/D-差分端子与PD模块中可供USB D+/D-信号输入的引脚连接,进而实现Billboard功能。当USB 2.0切换开关340选通到SOC芯片330时,USB Type-C接口320的USB D+/D-差分端子与SOC芯片330中可供USB D+/D-信号输入的引脚连接,实现USB 2.0信号的传输功能。
具体而言,当USB Type-C接口320外接的设备为USB设备时,将USB 2.0切换开关340与SOC芯片330上的USB 2.0接口之间的通路导通,通过USB2.0切换开关340与USB Type-C接口320之间的链路,实现USB Type-C接口320外接的USB设备与SOC芯片330上的USB 2.0接口进行USB2.0信号的通信。当USB Type-C接口320外接的设备为ALT MODE设备时,将USB2.0切换开关340与PD模块的Billboard信号输出接口之间的通路导通,通过USB 2.0切换开关340与USB Type-C接口320之间的链路,可实现USB Type-C接口320外接的ALT MODE设备与Billboard信号输出接口进行Billboard信号的通信。
下面结合图7,说明USB Type-C接口320、USB 2.0切换开关340、SOC 芯片330上的USB D+/D-差分端子之间的连接关系。
如图7所示,USB Type-C接口320的连接端子主要包括CC端子,SBU端子,电源引脚、差分端子和接地端子。CC端子包括A5端子和B5端子。SBU端子包括A8端子和B8端子;电源引脚包括A4端子、A9端子、B4端子和B9端子。差分端子包括A2端子、B2端子、A3端子、B3端子、A6端子、B6端子、A7端子、B7端子、A10端子、B10端子、A11端子和B11端子;其中,A2端子、B2端子、A3端子、B3端子、A10端子、B10端子、A11端子和B11端子为高速差分端子,A6端子、B6端子、A7端子和B7端子为低速差分端子;接地端子包括A1端子、A12端子、B1端子和B12端子。在具体的产品结构中,USB Type-C接口320的连接端子分上下两层排布,其中A1~A12分别表示上层由左至右的12个连接端子,B1~B12分别表示下层由右至左的12个连接端子。
上述实施例中,USB Type-C接口320的USB D+/D-差分端子包括两对:A6端子、B6端子、A7端子和B7端子,可用于传输USB Type-C接口320协议中的USB2.0信号或者Billboard信号。
相应的,USB 2.0切换开关340包括两路USB D+/D-差分端子,用于与USB Type-C接口320的两对USB D+/D-差分端子电连接,具体是通过2个USB D+/D-差分对连接,这两个USB D+/D-差分对可以是图7中的USB数据传输线USB D P/N信号线,USB D P/N信号线用于传输USB2.0信号。
USB 2.0切换开关340还包括另外两路可选通的USB D+/D-差分端子,其中一路可选通的USB D+/D-差分端子与PD模块的一对USB D+/D-差分端子电连接,具体是通过一个USB D+/D-差分对连接,如图7中的USB数据传输线BB DP/DM信号线,可用于发送Billboard信号。另外一对USB D+/D-差分端子与SOC芯片330上的一对USB D+/D-差分端子电连接,具体是通过一个USB D+/D-差分对连接,例如,如图7中的USB2.0数据传输线SOC USB DP/N信号线,可用于传输USB2.0信号。
SOC芯片330上包括USB接口包括USB3.0接口和USB2.0接口,或者 包括具有与USB2.0接口和USB3.0接口相同的USB信号处理功能的USB接口,可以看作是USB2.0接口和USB3.0接口的兼容接口,USB接口提供USB D+/D-差分端子和USB SSTX/RX差分端子。
下面结合图7,说明USB Type-C接口320、复用开关芯片MUX 350、SOC芯片330上的USB SSTX/RX差分端子之间的连接关系。
上述实施例中,USB Type-C接口320的USB SSTX/RX差分端子包括4对(共八个):A2端子、B2端子、A3端子、B3端子、A10端子、B10端子、A11端子和B11端子,可用于传输USB Type-C接口320协议中的USB3.0信号或DP信号。
复用开关芯片MUX 350与USB Type-C接口320之间的连接关系是:
复用开关芯片MUX 350包括4对USB SSTX/RX差分端子,与USB Type-C接口320的4对USB SSTX/RX差分端子(A2端子、B2端子、A3端子、B3端子、A10端子、B10端子、A11端子和B11端子)电连接,具体是通过4个USB SSTX/RX差分对连接,例如如图7中所示的SSTX1 P/N,SSRX1 P/N,SSTX2 P/N,SSRX2 P/N,其中,SSTX1 P/N是一路可选通的用于USB Type-C接口320向复用开关芯片MUX 350发送USB3.0信号或DP信号的数据信号线,SSTX2P/N是另一路可选通的USB Type-C接口320向复用开关芯片MUX 350发送USB3.0信号或DP信号的数据信号线。SSRX1 P/N是一路可选通的用于USB Type-C接口320接收复用开关芯片MUX 350发送的USB3.0信号或DP信号的数据信号线,SSRX2P/N是另一路可选通的用于USB Type-C接口320接收复用开关芯片MUX 350发送的USB3.0信号或DP信号的数据信号线。
复用开关芯片MUX 350还包括另外2对USB SSTX/RX差分端子,与SOC芯片330上的2对USB SSTX/RX差分端子电连接,具体是通过2个USB SSTX/RX差分对连接,例如如图7中所示的SSTX P/N,SSRX P/N,SSTX P/N是一路可选通的用于复用开关芯片MUX 350向SOC芯片330发送USB3.0信号的数据信号线,SS RX P/N是另一路可选通的用于复用开关芯片MUX 350 接收SOC芯片330发送的USB3.0信号的数据信号线。
下面结合图7,复用开关芯片MUX 350、协议转换芯片360和SOC芯片330之间关于DP差分端子和HDMI差分端子的连接关系。
复用开关芯片MUX 350还包括DP接口,DP接口包括4对DP差分端子,与协议转换芯片360的4对DP差分端子电连接,具体是通过2个DP信号通道连接,例如如图7中所示的DP0 P/N,DP1 P/N,DP2 P/N和DP3 P/N,用于传输DP信号。
协议转换芯片360MUX用来接收复用开关芯片MUX 350MUX发送的DP信号,将DP信号转换成HDMI信号后提供给HDMI接口,也可将HDMI接口提供的HDMI信号转换为DP信号后发送给复用开关芯片MUX 350MUX。
SOC芯片330还包括HDMI接口,HDMI接口包括4对HDMI差分端子,与协议转换芯片360的4对HDMI差分端子电连接,具体是通过4个HDMI信号通道连接,例如如图7中所示的D0 P/N,D1 P/N,D2 P/N和CLK P/N,用于传输3路HDMI信号和一路时钟信号CLK。
C接口主控芯片310识别USB Type-C接口320外接的设备的类型主要通过以下方式实现:
可选的,CC模块的CC端子与USB Type-C接口320的CC端子电连接,CC模块可以用于与USB Type-C接口320进行CC通信,以识别USB Type-C接口320外接的设备的类型。
具体而言,CC模块的输出端包括CC1引脚和CC2引脚,这两个CC引脚通过2根CC信号线(CC1和CC2)与USB Type-C接口320的A5端子和B5端子连接,用以传输USB Type-C接口320协议中的CC通信信号。
C接口主控芯片310还包括GPIO模块,SOC芯片330上还包括IIC控制模块(IIC master),IIC控制模块(IIC master)与GPIO模块连接,用于实现C接口主控芯片310的总线控制和系统更新。系统更新的相关内容此处不再累述。C接口主控芯片310识别USB Type-C接口320外接的设备的类型之后,可通过GPIO模块对USB 2.0切换开关340和MUX进行总线控制。
C接口主控芯片310根据USB Type-C接口320外接的设备的类型,向USB 2.0切换开关340发送第一控制信号或第二控制信号的过程如下:
具体而言,C接口主控芯片通过GPIO模块向USB 2.0切换开关340发送第一控制信号或第二控制信号,GPIO模块提供控制信号输出引脚,与USB 2.0切换开关340的控制信号输入引脚电连接,具体是通过控制信号线,如图7中所示的USB开关(SWITCH)信号线电连接,USB SWITCH信号线用于传递C接口控制芯片向USB 2.0切换开关340发送的第一控制信号或第二控制信号,第一控制信号用于将SOC芯片330上的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路导通,将PD模块中的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路关闭。第二控制信号用于将SOC芯片330上的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路关闭,将PD模块中的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路导通。
具体而言,若SOC芯片330上的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路为第一通道,如图7中的SOC USB DP/N信号线;PD模块中的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路为第二通道,如图7中的BB DP/DM信号线。
当C接口主控芯片310确定USB Type-C接口320外接的设备的类型为USB设备时,C接口主控芯片310可以通过GPIO模块向USB 2.0切换开关340发送第一控制信号,第一控制信号用于控制USB 2.0切换开关340导通所述第一通道,关闭第二通道。当C接口主控芯片310确定USB Type-C接口320外接的设备的类型为ALT MODE设备时,C接口主控芯片310通过GPIO模块向USB 2.0切换开关340发送第二控制信号,USB SWITCH信号线此时用于传递C接口控制芯片向USB 2.0切换开关340发送的第二控制信号,第二控制信号用于控制USB 2.0切换开关340导通所述第二通道,关闭第一通道。
可选的,第一控制信号可以为高电平信号,第二控制信号为低电平信号。
C接口主控芯片310根据USB Type-C接口320外接的设备的类型,向复用开关芯片MUX 350发送第三控制信号或第四控制信号的过程如下:
可选的,GPIO模块与复用开关芯片MUX 350之间也可以通过IIC总线连接,具体而言,GPIO模块与MUX之间的链路包括IIC使能信号线(IIC_EN)和IIC/GPIO信号线,用于将MUX上电。
可选的,C接口主控芯片310通过GPIO模块向MUX发送第三控制信号或第四控制信号。GPIO模块提供控制信号输出引脚,与MUX的控制信号输入引脚电连接,具体是通过如图7中所示的DP_CFG控制信号线电连接,DP_CFG信号线用于传递C接口控制芯片向MUX发送的第三控制信号,第三控制信号用于将SOC芯片330上的USB SSTX/RX差分端子与MUX的USB SSTX/RX差分端子之间的链路导通,将协议转换芯片360的TP差分端子与MUX的TP差分端子之间的链路关闭。
GPIO模块还提供控制信号输出引脚,与MUX的控制信号输入引脚电连接,具体是通过如图7中所示的DP_CFG控制信号线电连接,DP_CFG信号线用于传递C接口控制芯片向MUX发送的第四控制信号,第四控制信号用于将SOC芯片330上的USB SSTX/RX差分端子与MUX的USB SSTX/RX差分端子之间的链路关闭,将协议转换芯片360的TP差分端子与MUX的TP差分端子之间的链路导通。
假如,SOC芯片330上的USB SSTX/RX差分端子与MUX的USB SSTX/RX差分端子之间的链路为第三通道,协议转换芯片360的TP差分端子与MUX的TP差分端子之间的链路为第四通道。
当C接口主控芯片310识别出所述C接口外接的设备的类型为USB设备时,C接口主控芯片310向复用开关芯片MUX 350发送第三控制信号(C2),第三控制信号用于控制所述复用开关芯片MUX 350导通所述第三通道,关闭所述第四通道。
具体而言,C接口主控芯片310根据USB Type-C接口320协议,当识别 出所述C接口外接的设备的类型为USB设备时,通过DP_CFG信号线向复用开关芯片MUX 350发送第三控制信号,使复用开关芯片MUX 350导通DFP接口与复用开关芯片MUX 350之间的链路(差分对SSTX P/N和差分对SSRX P/N),关闭协议转换芯片360与复用开关芯片MUX 350之间的链路,并选择出响应USB3.0信号的高速差分对,如从复用开关芯片MUX 350与USB Type-C接口320之间的4对高速差分对中,选择SSTX1 P/N,用于向MUX发送上行USB3.0信号,选择SSRX1 P/N,用于向USB Type-C接口320传输下行USB3.0信号。
当C接口主控芯片310识别出所述C接口外接的设备的类型为ALT MODE设备时,C接口主控芯片310向所述复用开关发送所述第四控制信号,所述第四控制信号用于控制所述复用开关导通所述第四通道,关闭所述第三通道。
具体而言,C接口主控芯片310根据USB Type-C接口320协议,当识别出所述C接口外接的设备的类型为ALT MODE设备时,通过DP_CFG信号线(或者SBU)向复用开关芯片MUX 350发送第四控制信号,使复用开关芯片MUX 350导通协议转换芯片360与复用开关芯片MUX 350之间的链路(差分对DP0 P/N,差分对DP1 P/N,差分对DP2 P/N和差分对DP3 P/N),关闭DFP接口与复用开关芯片MUX 350之间的链路(差分对SSTX P/N和差分对SSRX P/N),并选择出响应DP信号的高速差分对,如,从复用开关芯片MUX350与USB Type-C接口320之间的4对高速差分对中,选择SSTX1 P/N和SSTX2 P/N,用于向MUX发送DP信号,选择SSRX1 P/N和SSRX2 P/N,用于向USB Type-C接口320传输DP信号。
可选的,在USB Type-C接口320外接的设备与HDMISINK之间交互DP信号或HDMI信号之前,还包括:建立HDMISINK与USB Type-C接口320外接的设备之间的HDMI HPD连接。
可选的,协议转换芯片360与HDMI SINK之间的链路还包括DDC(显示数据通道)IIC信号线和HDMI HPD信号线,协议转换芯片360与MUX之 间的链路还包括DP HPD信号线。MUX与C接口主控芯片310之间的链路还包括DP HPD信号线。其中,HDMI HPD信号线用于传递HDMI的热插拔信号,DP HPD信号线用于传递为DP的热插拔信号。
在源端设备(USB Type-C接口320外接的设备)与接收端设备(HDMISINK)之间建立热插拔HPD连接时,先通过DDC IIC信号线进行(USB Type-C接口320外接的设备)与接收端设备(HDMI SINK)之间进行EDID数据及HDCP密钥的交流,通过EDID交流,使源端设备可以了解到接收端设备音视频的接收能力;通过HDCP秘钥的交流,可以实时的进行数据流的内容保护认证,从而达到数据内容保护的目的。
具体而言,源端设备与接收端设备之间的HPD连接状态的传播路径为:从源端设备发出的HPD连接状态经由HDMI HPD信号线到达协议转换模块,再经由DP HPD信号线到达MUX,再经过MUX与C接口主控芯片310之间的DP HPD信号线到达C接口主控芯片310,再经过C接口主控芯片310与USB Type-C接口320之间的CC信号线到达USB Type-C接口320,以及USB Type-C接口320外接的ALT MODE设备中。
可选的,CC+PD模块的输出端,还与USB Type-C接口320的SBU端子连接,用于与USB Type-C接口320进行SBU通信。
具体而言,CC+PD模块的输出端包括SBU接口,SBU接口包括SBU1引脚和SBU2引脚,这两个SBU引脚通过两根SBU信号线与USB Type-C接口320的A8端子和B8端子连接,用以传输USB Type-C接口320协议中的SBU通信信号。
可选的,本发明实施例提供的装置还包括电源切换芯片370。
可选的,C接口主控芯片310还可以用于根据CC通信,确定USB Type-C接口320外接的设备的不同供电需求,根据每一种供电需求,控制电源切换芯片370对USB Type-C接口320外接的设备进行相应供电。其中,电源控制芯片的输出端与USB Type-C接口320的电源引脚连接,用于根据USB Type-C接口320外接的设备的至少两种供电需求,向USB Type-C接口320外接的设 备提供相应的供电电压。
具体而言,电源切换芯片370的输出端包括4个V BUS输出端子,这4个V BUS输出端子通过4根电源控制信号线与USB Type-C接口320的A4端子、A9端子、B4端子和B9端子连接,用以根据USB Type-C接口320外接的设备的不同供电需求,传输相应的供电电压V BUS
基于上述电路结构,和相应的连接关系,本发明实施例提供一种USB Type-C接口320连接不同的设备时的信息传输方法。
实施例一
当USB Type-C接口320连接USB2.0设备时,本发明实施例提供的信息传输方法,结合图8所示的电路结构,具体包括:
步骤101,USB Type-C接口320的两对USB D+/D-差分端子(A6端子、B6端子、A7端子和B7端子)响应,USB Type-C接口320通过CC信号线与C接口主控芯片310的CC模块进行CC通信,报告USB Type-C接口320的两对USB D+/D-差分端子的响应信息。
步骤102,CC模块根据CC通信的响应信息,识别到USB Type-C接口320外接的设备的类型为USB设备,通过GPIO模块与USB 2.0切换开关340之间的USB SWITCH信号线发送第一控制信号,第一控制信号指示USB 2.0切换开关340将SOC芯片330上的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路导通,将PD模块的USB D+/D-差分端子与USB 2.0切换开关340的另一路USB D+/D-差分端子之间的链路关闭。
其中,在步骤102中,CC模块识别到USB Type-C接口320外接的设备的类型为USB设备时,还通过GPIO模块与MUX之间的DP_CFG信号线发送第三控制信号,第三控制信号指示MUX将SOC芯片330上的USB SSTX/RX差分端子与MUX的USB SSTX/RX差分端子之间的链路导通,将协议转换芯片360的DP差分端子与MUX的DP差分端子之间的链路关闭。
步骤103,USB 2.0切换开关340将SOC芯片330上的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路导通,将PD 模块的USB D+/D-差分端子与USB 2.0切换开关340的另一路USB D+/D-差分端子之间的链路关闭。
其中,步骤103中,还包括:根据DP_CFG信号线上传递的第三控制信号,MUX将SOC芯片330上的USB SSTX/RX差分端子与MUX的USB SSTX/RX差分端子之间的链路导通,将协议转换芯片360的DP差分端子与MUX的DP差分端子之间的链路关闭,比如SSTX1 P/N和SSRX1 P/N导通,只不过在USB2.0设备与SOC芯片330的数据交互过程中,USB Type-C接口320与SOC芯片330的DFP接口之间的导通链路中没有USB3.0信号的传输。
步骤104,USB Type-C接口320外接的USB2.0设备向SOC芯片330上的DFP接口发送上行USB2.0信号,上行USB2.0信号的传递路径为:从USB2.0设备传递到USB Type-C接口320的USB D+/D-差分端子(A6端子和B6端子),经USB Type-C接口320与USB 2.0切换开关340之间的USB DP/N信号线(低速USB D+/D-差分对),以及USB 2.0切换开关340与SOC芯片330之间的SOC USB DP/N信号线(低速USB D+/D-差分对),最终传递到SOC芯片330上的USB D+/D-差分端子。
步骤105,SOC芯片330上的USB D+/D-差分端子向USB Type-C接口320外接的USB2.0设备发送下行USB2.0信号,下行USB2.0信号的传递路径为:从SOC芯片330上的USB D+/D-差分端子,传递到USB 2.0切换开关340与SOC芯片330之间的SOC USB DP/N信号线(低速USB D+/D-差分对),再从USB Type-C接口320与USB 2.0切换开关340之间的USB DP/N信号线(低速USB D+/D-差分对),传递到USB Type-C接口320的USB D+/D-差分端子(A7端子和B7端子),再传递到USB2.0设备。
实施例二
当USB Type-C接口320连接USB3.0设备时,本发明实施例提供的信息传输方法,结合图8所示的电路结构,具体包括:
步骤201,USB Type-C接口320的2对USB SSTX/RX差分端子(比如A2端子、A3端子、B10端子和B11端子)有响应时,USB Type-C接口320 通过CC信号线与C接口主控芯片310的CC模块进行CC通信,报告USB Type-C接口320的4对USB SSTX/RX差分端子的响应信息。
步骤202,CC模块根据CC通信的响应信息,识别到USB Type-C接口320外接的设备的类型为USB设备,通过GPIO模块与MUX之间的DP_CFG信号线发送第三控制信号,第三控制信号指示MUX将SOC芯片330上的USB SSTX/RX差分端子与MUX的USB SSTX/RX差分端子之间的链路导通,将协议转换芯片360的DP差分端子与MUX的DP差分端子之间的链路关闭。
其中,在步骤102中,CC模块识别到USB Type-C接口320外接的设备的类型为USB设备时,还通过GPIO模块与USB 2.0切换开关340之间的USB SWITCH信号线发送第一控制信号,第一控制信号指示USB 2.0切换开关340将SOC芯片330上的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路导通,将PD模块的USB D+/D-差分端子与USB 2.0切换开关340的另一路USB D+/D-差分端子之间的链路关闭。
步骤203,根据DP_CFG信号线上传递的第三控制信号,MUX将SOC芯片330上的USB SSTX/RX差分端子与MUX的USB SSTX/RX差分端子之间的链路导通,将协议转换芯片360的DP差分端子与MUX的DP差分端子之间的链路关闭,并选择USB Type-C接口320与MUX之间的两对USB SSTX/RX差分对导通,比如SSTX1 P/N和SSRX1 P/N导通,其中,SSTX1 P/N,用于向MUX发送上行USB3.0信号,SSRX1 P/N,用于向USB Type-C接口320传输下行USB3.0信号。
其中,步骤203中,还包括:USB 2.0切换开关340根据USB SWITCH信号线上传递的第一控制信号,将SOC芯片330上的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路导通,将PD模块的USB D+/D-差分端子与USB 2.0切换开关340的另一路USB D+/D-差分端子之间的链路关闭。只不过在USB3.0设备与SOC芯片330的数据交互过程中,USB Type-C接口320与USB 2.0切换开关340,以及USB 2.0切换开关340与SOC芯片330之间的导通链路中没有USB2.0信号的传输。
步骤204,USB Type-C接口320外接的USB3.0设备向SOC芯片330上的USB SSTX/RX差分端子发送上行USB3.0信号,上行USB3.0信号的传递路径为:从USB3.0设备传递到USB Type-C接口320的1对USB SSTX/RX差分端子(比如A2端子和A3端子),经USB Type-C接口320与MUX之间的SSTX1 P/N,以及MUX与SOC芯片330上的DFP接口之间的SSRX P/N,最终传递到SOC芯片330上的USB SSTX/RX差分端子上。
步骤205,SOC芯片330上的DFP接口的USB SSTX/RX差分端子向USB Type-C接口320外接的USB3.0设备发送下行USB3.0信号,下行USB3.0信号的传递路径为:从SOC芯片330上的DFP接口的USB SSTX/RX差分端子,传递到MUX与SOC芯片330之间的SSTX1 P/N,再从USB Type-C接口320与MUX之间的SSTX1 P/N传递到USB Type-C接口320的1对USB SSTX/RX差分端子(比如B10端子和B11端子),再传递到USB3.0设备。
实施例三
当USB Type-C接口320连接ALT MODE设备时,本发明实施例提供的信息传输方法,结合图9所示的电路结构,具体包括:
步骤301,USB Type-C接口320的USB SSTX/RX差分端子(比如B2端子、B3端子、A10端子和A11端子)有响应时,USB Type-C接口320通过CC信号线与C接口主控芯片310的CC模块进行CC通信,报告USB Type-C接口320的4对高速差分端子的响应信息。
步骤302,CC模块根据CC通信的响应信息,识别到USB Type-C接口320外接的设备的类型为ALT MODE设备,通过GPIO模块与MUX之间的DP_CFG信号线发送第四控制信号,第四控制信号指示MUX将SOC芯片330上的USB SSTX/RX差分端子与MUX的USB SSTX/RX差分端子之间的链路关闭,将协议转换芯片360的DP差分端子与MUX的DP差分端子之间的链路导通,并且选择SSTX1 P/N和SSTX2 P/N向HDMISINK传递上行DP信号,选择SSRX1 P/N和SSRX2 P/N,向USB Type-C接口320外接的ALT MODE设备传输下行DP信号。
其中,在步骤302中,CC模块识别到USB Type-C接口320外接的设备的类型为USB设备时,还通过GPIO模块与USB 2.0切换开关340之间的USB SWITCH信号线发送第二控制信号,第二控制信号指示USB 2.0切换开关340将SOC芯片330上的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路关闭,将PD模块的USB D+/D-差分端子与USB 2.0切换开关340的另一路USB D+/D-差分端子之间的链路导通。
步骤303,根据DP_CFG信号线上传递的第四控制信号,MUX将SOC芯片330上的USB SSTX/RX差分端子与MUX的USB SSTX/RX差分端子之间的链路关闭,将协议转换芯片360的DP差分端子与MUX的DP差分端子之间的链路导通,并选择USB Type-C接口320与MUX之间的4对高速差分对都导通,其中SSTX1 P/N和SSTX2 P/N用于向HDMISINK传递上行DP信号,SSRX1 P/N和SSRX2 P/N,用于向USB Type-C接口320外接的ALT MODE设备传输下行DP信号。
其中,步骤303中,还包括:USB 2.0切换开关340根据USB SWITCH信号线上传递的第二控制信号,将SOC芯片330上的USB D+/D-差分端子与USB 2.0切换开关340的USB D+/D-差分端子之间的链路关闭,将PD模块的USB D+/D-差分端子与USB 2.0切换开关340的另一路USB D+/D-差分端子之间的链路导通,只不过在ALT MODE设备与SOC芯片330之间的数据正常传输过程中,USB Type-C接口320与USB 2.0切换开关340之间,以及USB2.0切换开关340与PD模块的USB D+/D-差分端子之间的导通链路中没有Billboard信号的传输,只有当ALT MODE设备与SOC芯片330之间的数据传输异常时,USB Type-C接口320与USB 2.0切换开关340之间,以及USB2.0切换开关340与PD模块的USB D+/D-差分端子之间的导通链路中才会传递Billboard信号。
步骤304,USB Type-C接口320外接的DP设备发送上行DP信号,上行DP信号的传递路径为:从ALT MODE设备传递到USB Type-C接口320的USB SSTX/RX差分端子(比如B2端子和B3端子),经USB Type-C接口 320与MUX之间的SSTX2 P/N,以及MUX与协议转换芯片360之间的差分对DP0 P/N传递到协议转换芯片360,协议转换芯片360将DP信号转化为HDMI信号,HDMI信号通过差分对DP0 P/N,差分对DP1 P/N,差分对DP2P/N和差分对CLK P/N最终传递到SOC芯片330上的HDMI差分端子。
步骤305,SOC芯片330上的HDMI差分端子向USB Type-C接口320外接的ALT MODE设备发送下行HDMI信号,下行HDMI信号的传递路径为:从SOC芯片330上的HDMI差分端子传递到协议转换芯片360,协议转换芯片360将HDMI信号转化为DP信号,然后DP信号经差分对DP0 P/N传递到MUX,再经MUX与USB Type-C接口320之间的SSRX2 P/N,传递到USB Type-C接口320的USB SSTX/RX差分端子(比如A10端子和A11端子),再传递到ALT MODE设备。
步骤306,当出现数据传输异常时,SOC芯片330通过IIC总线将异常信息存储到PD模块中,并通过PD模块与USB2.0切换开关340之间,以及USB2.0切换开关340与USB Type-C接口320之间的导通链路,与外接的DP设备交互确定异常原因。
基于上述实施例,本申请提供了另一种终端设备的具体实现,该终端可以为一种具有USB Type-C接口的电视机。需要说明的是,上述实施例中的USB Type-C接口主控模块由微处理器芯片实现,开关模块的功能由开关器件实现,复用开关的功能由复合开关芯片实现,协议转换模块的功能由协议转换芯片实现,下面详细说明。
参见图10,图10为本发明的具有USB Type-C接口的电视机的架构示意。本发明提出一种电视机10,其包括:USB Type-C接口1001,微处理器芯片1002,复合开关芯片1004,显示屏1006,DP-HDMI模块1007,SOC芯片1008和开关器件1009。
SOC(System on a chip,片上系统)芯片1008具有USB DFP接口,用于实现USB 3.0/2.0DFP功能;其可以接收HDMI输入信号,可以作为遵照USB2.0/3.0协议的USB DFP设备(即USB主机设备)。举例而言,SOC芯片 1008包括IIC主机模块,用于实现IIC控制和固件升级;USB3.0DFP模块,用于实现USB3.0DFP功能;HDMI SINK模块,用于实现HDMI SINK功能;以及USB2.0DFP模块,用于实现USB2.0DFP功能。
复合开关芯片1004的输入引脚与USB TYPE-C接口1001的TX1/RX1、TX2/RX2信号引脚连接,输出引脚与SOC芯片1008的USB SSTX/SSRX信号或DP-HDMI模块1007连接,用于在SOC芯片1008的DFP接口和HDMI接口间进行开关切换。
DP-HDMI模块1007用于将DP信号转换为HDMI信号,供SOC芯片1008显示使用。可以理解的是,若SOC芯片1008本身支持直接的DP(DISPLAYPORT)信号输入,则DP-HDMI模块1007可以省去。信号DP为DP协议的音视频信号。举例而言,DP-HDMI模块1007选用PS176转换芯片。
开关器件1009用于将USB2.0/3.0通路在SOC芯片1008的USB DFP接口及该微处理器芯片的billboard UFP接口之间切换,分别在不同的需求时,与USB Type-C接口1001连接。其中,USB Type-C接口1001默认为经由USB D+/D-通路与SOC芯片1008的USB DFP接口相连。
微处理器芯片1002为支持USB Type-C CC(Channel Configuration)沟通和PD(POWER DELIVERY)协议的控制器,一方面控制复合开关芯片1004的切换,以对外部设备的正反插进行适配;另一方面对外进行信号CC与信号SBU的沟通,其具有billboard UFP接口,用于在ALT MODE的情况下对外输出billboard信号,作为DP UFP设备(即DP从机设备)。
具体而言,USB Type-C接口1001包括:传输CC信号的端子,传输SBU信号的端子,传输USB D+/D-信号的端子,传输TX1信号的端子,传输TX2信号的端子,传输RX1信号的端子,传输RX2信号的端子以及传输电力供给的端子。
微处理器芯片1002包括:可供USB Type-C接口1001的信号CC连接的引脚;可供USB Type-C接口1001的信号SBU连接的引脚;可供USB Type-C接口1001的信号USB D+/D-(经由开关器件1009)连接的引脚;控制信号 C1的输出引脚;控制信号C2的输出引脚;沟通信号C3的传输引脚;信号DP HPD的输入引脚;以及AUX信号的传输引脚。
复合开关芯片1004包括:连接控制信号C2的引脚,与SOC芯片1008的可供USB SS TX/RX信号输入的引脚相连的引脚,与DP-HDMI模块1007的可供DP信号输入的引脚相连的引脚,与USB Type-C接口1001的TX1、TX2、RX1及RX2端子相连的引脚。
DP-HDMI模块1007包括:可供DP信号输入的引脚,输出HDMI信号的引脚,输入HDMI HPD信号的引脚,传输IIC 2信号的引脚,输出DP HPD信号的引脚,以及传输AUX信号的引脚。
SOC芯片1008包括:可供USB D+/D-信号输入的引脚,可供USB SS TX/RX信号输入的引脚,可供HDMI HPD信号输出的引脚,可供HDMI信号输入的引脚,传输信号IIC 2信号的引脚,传输沟通信号C3信号的引脚。
开关器件1009包括:连接控制信号C1的引脚,可供USB D+/D-信号输入的引脚,可向微处理器芯片1002输出一路USB D+/D-信号的引脚,以及可向SOC芯片108输出另一路USB D+/D-信号的引脚。
举例而言,微处理器芯片1002选用RTS5440处理器,其支持CC沟通,支持PD协议。其内部设置有:10Gbps 3:2复合开关芯片,对应于前述的复合开关芯片1004的功能。可以理解的是,在本实施例中,开关器件1009、复合开关芯片104以及微处理器芯片102是通过两个芯片来实现,其中,复合开关芯片1004以及微处理器芯片1002共用一个芯片-RTS5440处理器,开关器件1009用另一个芯片-TS3USB3031转换器;在其他实施例中,取决于所选用的芯片的性能,开关器件1009、复合开关芯片1004以及微处理器芯片1002也可以通过三个芯片来实现,例如:微处理器芯片1002选用CYPD3125处理器,复合开关芯片1004选用PS8742复合开关芯片,开关器件1009选用TS3USB3031转换器。
信号TX1和TX2,信号RX1和RX2为USB Type-C协议的高速差分对,可以传输DP信号或者USB3.0协议的高速差分对。信号USB D+/D-为USB2.0 协议的差分对。信号USB SS RX和USB SS TX为USB3.0的高速差分对。
信号SBU为USB Type-C协议里面的辅助通讯接口。在本发明中,可用于通讯DP的AUX信号。信号AUX为DP协议的控制信号。
信号CC为USB Type-C协议里面的通讯信号,可用于正反插判断以及PD(POWER DELIVERY),DP的HPD等信号的通讯。信号HPD为DP协议的hot plug(热插)信号。信号HDMI HPD为HDMI的hot plug信号。
信号C1为用于控制开关器件1009切换的控制信号。信号C2为用于控制复合开关芯片1004切换的控制信号。信号C3为用于微处理器芯片1002与SOC芯片1008沟通的信号,也可以用于微处理器芯片1002的升级及控制。
结合参见图11,图11为本发明的电视机配接USB设备时的架构示意。当电视机10通过USB Type-C接口1001外接U盘等USB UFP设备(即USB从机设备)时,如果通过信号CC沟通认连接的是USB UFP设备。对于USB2.0/3.0应用,信号C1不做控制,开关器件1009保持默认的、与SOC芯片1008的USB DFP接口接通的状态,USB2.0/3.0连接从USB Type-C接口1001直通到SOC芯片108的USB DFP接口,可以保证USB 2.0/3.0连接的正常工作。对于USB Type-C应用,通过微处理器芯片1002控制复合开关芯片1004进行切换,保证SOC芯片1008的USB DFP接口与USB Type-C接口1001的设定信号联通,进而保证USB Type-C接口的正常连接。
结合参见图12,图12为本发明的电视机配接DP设备时的架构示意。当电视机10通过USB Type-C接口1001外接DP设备时,如果通过CC沟通确认连接的是确认目前连接的为DP的SOURCE设备,信号C1控制开关器件109切换到微处理器芯片1002的billboard UFP接口,保证微处理器芯片1002的billboard UFP接口与USB Type-C接口1001的USB D+/D-接口的连接,从而保证billboard功能的正常。信号C2控制复合开关芯片1004切换,保证DP输出通路及顺序的正常。DP-HDMI模块1007与SOC芯片1008的HDMI SINK接口沟通EDID等信息,并建立HDMI HPD连接。DP-HDMI模块1007与微处理器芯片1002通过信号AUX沟通控制信息,通过信号DP HPD沟通 HPD连接状态。微处理器芯片1002通过信号SBU传输DP的控制信息,通过信号CC传输DP HPD信息。
值得一提的是,在整个ALT MODE过程中,若出现异常,将异常信息存入微处理器芯片1002的billboard模块中,通过USB D+/D-与DP SOURCE设备沟通。另外,若电视机10本身支持对外供电功能,可以通过信号CC沟通,进行角色交换(PR_SWAP),将电视机10设置成PD SOURCE设备,对DP SINK设备进行供电。
以下,结合图10、图11和图12,对本发明的电视机10的实际应用场景,予以更进一步的详细描述。
考虑到,电视产品由于其本身特性限制,USB2.0/3.0角色与ALT MODE角色存在冲突,本发明的电视机10从架构上进行相应的设计,来保证两个角色的兼容。电视产品的实际应用场景主要分为两类:一、连接USB存储类外设或HUB等存储类扩展,此时,参见图11,只会用到USB功能,需将电视机10的USB Type-C接口1001角色设置为USB DFP设备,并对外供电。二、连接支持ALT MODE的笔记本/盒子等设备,此时,参见图12,只会用到ALT MODE功能,需将电视机10的USB Type-C接口1001角色设置为DP UFP(即DP SINK设备),并对外供电。
可以理解的是,本发明的电视机10不支持USB与ALT MODE同时传输,也就是说,在特定时刻,本发明的电视机10只能扮演USB2.0/3.0角色与ALT MODE角色两者中的一个。
在本实施例中,电视机10的USB Type-C接口1001支持以下功能:CC通讯;PD2.0及以上的PD协议;对外供电,最大为5V3A;全功能的ALT MODE,以及公告牌;USB2.0,USB3.0及以上的USB主机;VCONN_Swap,可向外提供VCONN。微处理器芯片1002选用支持IIC升级的芯片。
电视机10可能连接的USB DFP设备有:台式主机,笔记本,手机,PAD和适配器等。电视机10可能连接的支持ALT MODE的USB DRP(USB双用途设备)有:笔记本,手机和PAD等。电视机10可能连接的其它USB DRP 设备有:HUB,Dongle,DOCK和充电宝等。电视机10可能连接的USB UFP设备有:U盘,硬盘,手机,PAD,HUB,Dongle,DOCK和显示器等。
电视机10的USB Type-C接口1001的控制实现过程包括:初始设置成USB DRP模式,在接入不同角色设备时,进行角色变化来匹配,具体如下:
在连接USB DFP设备时,USB Type-C接口1001适配为USB UFP设备;若连接的设备支持DP DFP模式,则切换到DP DFP进行DP信号传输。在外设支持POWER SINK(电力吸收)的情况,发起PR_SWAP,由电视机10作为POWER SOURCE(电力供给)对外供电。
在连接USB UFP设备时,USB Type-C接口1001适配为USB DFP设备,电视机10作为POWER SOURCE对外供电。
在连接支持ALT MODE的USB DRP设备时,USB Type-C接口1001和外部设备进行协商,USB Type-C接口1001角色可以设置为DP UFP模式,并对外供电。
与现有技术相比,本发明通过巧妙地设计USB TYPE-C接口1001、SOC芯片1008以及微处理器芯片1002之间的配合关系,使得微处理器芯片1002能够根据识别USB TYPE-C接口1001的接入设备类型,二中选一地控制USB Type-C接口1001的传输USB D+/D-信号的端子,与SOC芯片1008中或者微处理器芯片1002中的可供USB D+/D-信号输入的引脚电连接,从而能够很好地支持USB TYPE-C接口1001对USB2.0/3.0角色与ALT MODE角色的同时兼容。
值得一提的是,虽然上述是以电视机为例进行说明,本发明的上述巧妙设计的USB TYPE-C接口1001、SOC芯片1008以及微处理器芯片1002之间的配合关系,可以广泛应用于:可兼容USB和ALT MODE的数据输入且可实现billboard信息交互的信号输入电路;通过USB Type-C接口接收来自外部设备数据的电子终端设备以及能够很好地支持USB Type-C接口对USB2.0/3.0角色与ALT MODE角色的同时兼容的显示设备。
基于上述实施例,本申请提供了一种电视机USB Type-C接口连接外部设 备的控制方法,该方法适用于上述任一实施例所提供的电视机。在一种可行的实现方式中,电视机中的SWICH开关用于实现上述开关模块240的功能,CC+PD芯片用于实现上述USB Type-C接口主控模块220的CC和PD功能,Billboard模块用于实现上述USB Type-C接口主控模块220中的Billboard功能。所谓CC+PD芯片,即集成了CC和PD功能的芯片,CC(Configuration Channel):配置通道,它的作用有检测USB连接,检测正反插,USB设备间数据与VBUS的连接建立与管理等;PD(USB Power Delivery):PD是一种通信协议,它是一种新的电源和通讯连接方式,它允许USB设备间传输最高至100W(20V/5A)的功率,同时它可以改变端口的属性,也可以使端口在DFP与UFP之间切换,它还可以与电缆通信,获取电缆的属性。
故CC+PD芯片与USB Type-C接口连接时,可以获取插入USB Type-C接口的外部设备的信息,从而判断出外接设备的类型以及正反插等情况。根据PD协议,CC+PD芯片在USB Type-C接口外接设备上能够读取到VDM信息时,则根据VDM Header判断外部设备支持的信息传输模式,当支持ALT MODE模式时,则判断外部设备为计算机;当不能读取到VDM信息时,判断外部设备为U盘。
本发明电视机USB Type-C接口连接外部设备的控制方法,包括以下步骤:
监测到所述电视机的USB Type-C接口有外部设备插入;
若外部设备为U盘,则将USB Type-C接口的低速差分对引脚导通至所述电视机的主芯片;
若外部设备为计算机,将USB Type-C接口的所述低速差分对引脚导通至所述电视机上包含Billboard信息的模块。
也就是说,本发明的核心是将USB Type-C接口的低速差分对引脚进行复用,在接入不同类型的外部设备时该引脚导通的是电视机内部不同的芯片或模块,传输的是不同类型的数据,起到的是不同的作用。进一步的说,采用本发明方法的电视机,由于其USB Type-C接口的低速差分对引脚可以复用, 所以能够支持在该接口外插U盘,此时U盘的数据从该引脚经过SWICH开关通向电视机主芯片,从而使得电视机能够读取U盘的数据;并且,还能够支持USB Type-C接口外插计算机,此时外插的计算机能够通过该引脚以及SWICH开关通向含有Billboard信息的模块,这样的话,外接的计算机就能够按照标准通信协议的规定读取电视机的Billboard信息,从而与电视机为后续的通信做好准备。
更为具体的方案,可以是CC+PD芯片在未检测到USB Type-C接口有外部设备插入时,控制SWICH开关将USB Type-C接口的低速差分对引脚导通至通向电视机SOC主芯片,在检测到USB Type-C接口插入计算机时,控制USB Type-C接口的低速差分对引脚导通至含有Billboard信息的模块,待Billboard信息传递给计算机以后,CC+PD芯片再控制SWICH开关动作,将USB-C的低速差分对引脚导通到与SOC芯片连接的通路上。也就是说,USB Type-C接口的低速差分对引脚导通到与SOC芯片的通路上是默认的状态,只有再CC+PD检测到USB Type-C接口插入计算机时才控制SWICH开关进行切换,并且再传输完Billboard信息后又切换回默认状态。
进一步的,本发明提供了一种实施例,借助于一个SWICH开关或者说是具备SWICH开关功能的模块或芯片,来实现上述USB Type-C接口的该引脚选通不同的通路,导通电视机内部不同的模块或芯片。该SWICH开关的作用类似于一个单刀双掷开关。具体的,将USB Type-C接口的所述低速差分对引脚连接至一个SWICH开关的第一端子,所述SWICH开关的第二端子和第三端子分别与所述主芯片和所述包含Billboard信息的模块连接,所述SWICH开关可受控使第一端子与第二端子导通,或者是第一端子与第三端子导通。
本发明还提供采用上述方法的电视机。
基于目前流行的电视机硬件架构,本发明提供了一种具体的硬件连接方案架构,如附图13所示。本实施例的电视机包括主芯片,以实现上述SOC芯片210的功能;该主芯片与一SWICH开关连接;SWICH开关又分别与一CC+PD芯片和一Billboard模块连接;电视机还包括用于连接外部设备的 USB-C接口;此USB-C接口分别与所述CC+PD芯片和所述SWICH开关连接。
由于目前的USB引脚信号的传输基本都是采用差分信号,因此附图中的一条连接线在实际产品中对应两条线,例如CC+PD芯片与USB Type-C接口就可以是通过D+、D-两条线和USB的两个对应引脚相连接。其它的连接线也是同样的道理。
实际使用时,USB Type-C接口有外部设备插入时,由于CC+PD芯片与USB Type-C接口接口相连接,故CC+PD芯片能够获取到USB-C接口处引脚的状态,并且判断出外插设备为U盘类存储设备,还是计算机等自带主系统的设备。
根据判断出的外部设备的类型,CC+PD芯片可控制SWICH开关的选通状态,即当外部设备为U盘时,将SWICH开关导通至电视机主芯片,实现将USB Type-C接口的低速差分对引脚导通至所述电视机主芯片,从而支持电视机主芯片直接通过该通路读取U盘中的数据;当外部设备为计算机时,将SWICH开关导通至电视机Billboard模块,从而支持外部的计算机直接通过该通路读取Billboard信息,实现外部计算机与电视机的通信。
图14是本发明另外一种实施例的硬件连接方案架构示意图,与图13所示实施例相比,Billboard模块被集成到了CC+PD芯片内部,这样的话,SWICH开关与CC+PD芯片通过控制信号线(图中箭头形状为圆点的连接线)和数据信号线(图中箭头形状为三角的连接线)连接;所述数据信号线用于将CC+PD芯片中内置的Billboard模块中的Billboard信息通过SWICH开关向USB Type-C接口传输;所述控制信号线用于传输指示所述SWICH开关与主芯片导通还是通过所述数据信号线与CC+PD芯片导通。
运行时,与图13所示实施例不同的是,当外部设备为计算机时,CC+PD芯片通过控制信号线将SWICH开关通过数据信号线导通至CC+PD芯片,从而支持外部的计算机直接通过该通路读取CC+PD芯片内置的Billboard信息,实现外部计算机与电视机的握手通信。
需要说明的是,本发明所说的U盘,可以是类似的带有USB Type-C接口的存储器,例如移动硬盘、相机读卡器、支持U盘模式的其它电子设备。本发明所说的计算机,代表的是可以主动发起通信的设备,也包括PAD等,这些设备往往也可以直接插入U盘类存储器并且读取数据。另外,本发明所说的SWICH开关,有时也称为选通器或者数据选择器,可以采用一些小的芯片进行定义和受控,其形态并无固定的限制,只要能够支持受控进行数据通路的二选一功能即可。
可选的,该电视机USB-C接口连接外部设备的控制方法,还包括以下步骤:
所述电视机的CC+PD芯片在未检测到所述电视机的USB Type-C接口有外部设备插入时,控制SWICH开关将USB Type-C接口的低速差分对引脚导通至通向所述电视机的SOC主芯片;所述电视机的CC+PD芯片;所述电视机的CC+PD芯片在检测到所述电视机的USB Type-C接口插入计算机时,控制所述电视机的USB Type-C接口的低速差分对引脚导通至所述电视机的含有Billboard信息的模块,待Billboard信息传递给所述计算机以后,所述CC+PD芯片再控制SWICH开关动作,将所述电视机的USB Type-C接口的低速差分对引脚导通到与电视机的SOC主芯片连接的通路上。
也就是说,本发明的核心是将USB Type-C接口的低速差分对引脚进行复用,在接入不同类型的外部设备时该引脚导通的是电视机内部不同的芯片或模块,传输的是不同类型的数据,起到的是不同的作用。进一步的说,采用本发明方法的电视机,由于其USB Type-C接口的低速差分对引脚可以复用,CC+PD芯片在检测到USB Type-C接口在无外部设备插入时或检测到插入的外部设备为U盘类存储器时,控制SWICH开关将USB Type-C接口的低速差分对引脚导通至通向所述电视机的SOC主芯片的状态;当CC+PD芯片检测到所述电视机的USB Type-C接口插入计算机时,控制所述电视机的USB Type-C接口的低速差分对引脚导通至所述电视机的含有Billboard信息的模块,待Billboard信息传递给所述计算机以后,所述CC+PD芯片再控制SWICH 开关动作,将所述电视机的USB Type-C接口的低速差分对引脚导通到与电视机的SOC主芯片连接的通路上。
这样的话,外接的计算机就能够按照标准通信协议的规定读取电视机的Billboard信息,并且之后计算机还可以通过电视机USB Type-C接口的低速差分对引脚将数据传输给电视机呃SOC主芯片。
进一步的,本发明提供了一种实施例,借助于一个SWICH开关或者说是具备SWICH开关功能的模块或芯片,来实现上述USB Type-C接口的该引脚选通不同的通路,导通电视机内部不同的模块或芯片。该SWICH开关的作用类似于一个单刀双掷开关。具体的,将USB Type-C接口的所述低速差分对引脚连接至一个SWICH开关的第一端子,所述SWICH开关的第二端子和第三端子分别与所述主芯片和所述包含Billboard信息的模块连接,所述SWICH开关可受控使第一端子与第二端子导通,或者是第一端子与第三端子导通。
基于上述实施例,本申请提供了另一种电视终端的具体实现。参见图15,该电视终端1500包括USB Type-C接口1501、USB Type-C主控模块1502,以及连接在USB Type-C主控模块1502和USB Type-C接口1501之间的开关模块SWITCH1503。首先,USB Type-C主控模块1502与USB Type-C接口1501交互CC信号(通过信号线CC的信号称为CC信号)以识别USB Type-C接口1501外接的设备的类型;然后,USB Type-C主控模块1502依据该类型控制开关模块SWITCH1503的状态,以控制USB Type-C接口1501外接的设备与电视终端中SOC芯片1504进行数据交互。
本实施例中,USB Type-C接口是指,采用USB Type-C协议进行数据传输的接口。该USB Type-C接口可以与设置有USB Type-C接口的设备对插,从而形成USB通信连接。
本实施例中,USB Type-C主控模块是指,USB Type-C协议中的配置通道(Configuration Channel,CC),和/或,电源传输通道(Power Delivery,PD)。该USB Type-C主控模块可以根据实际需要设置为配置通道,也可以根据实际需要配置为电源传输通道,或者配置通道和电源传输通道同时存在,本实施 例不作限定。
本实施例中,开关模块SWITCH1503受到USB Type-C主控模块1502的控制,可以切换工作状态。在具体实际时可以采用可控开关器件或者软件实现。
本实施例中,电视终端中SOC芯片1504是指,电视终端1504中用于对音视频信号进行处理的芯片,且该芯片区别于Moniter,可以实现接收和发送数据。
可见,本申请实施例中通过开关模块SWITCH1503实现了电视终端的USB Type-C接口对UFP设备(尤其是USB2.0类型的设备)和USB Type-C主控模块中Billboard接口的同时兼容,且结构简单,易于实现,能够降低生产成本。
本申请一实施例中,USB Type-C主控模块1502识别出的USB Type-C接口1501外接的设备的类型为视频接口设备DP(Displayport)类型;USB Type-C主控模块1502依据该类型控制开关模块SWITCH1503的状态,包括:
向开关模块SWITCH1503发送状态切换信号,以使开关模块SWITCH1503切换至接通视频接口设备DP与USB Type-C主控模块1501中Billboard接口的状态。
本实施例中USB Type-C主控模块1501与SOC芯片1504交互的预设信息可以直接存储在Billboard接口的存储器中,由于Billboard接口与USB Type-C接口1501外接的设备进行数据交互,此时Billboard接口作为UFP设备,即无需USB3.0 HUB提供上行端口UFP,实现了Billboard接口与USB Type-C接口1501同时兼容的效果。
本申请一实施例中,USB Type-C主控模块1502识别出的USB Type-C接口1501外接的设备的类型为UFP设备类型;USB Type-C主控模块1502依据该类型控制开关模块SWITCH1503的状态,包括:
禁止向开关模块SWITCH1503发送状态切换信号,以使开关模块SWITCH1503维持UFP设备与电视终端中SOC芯片1504接通的状态。
本实施例中,在外接设备为UFP设备时,该开关模块SWITCH1503维持UFP设备与电视终端中SOC芯片1504接通,即UFP设备和SOC芯片1504直接进行数据交互,即无需USB3.0 HUB提供上行端口UFP,实现了Billboard接口与USB Type-C接口1501同时兼容的效果。
本申请一实施例中,电视终端还包括复用开关MUX。该复用开关MUX连接在USB Type-C接口1501与电视终端中SOC芯片1504之间。该复用开关MUX在USB Type-C主控模块1502的控制下导通USB Type-C接口外接的设备与电视终端中SOC芯片,以使USB Type-C接口外接的设备与电视终端中SOC芯片进行数据交互。本实施例中,该复用开关MUX可以接受USB Type-C主控模块1502的控制,从而适用外接设备为UFP设备或者视频接口设备DP的情况,能够准确的传输各类型设备的数据。
在电视终端未包含视频接口设备DP的类型的接口时,本申请一实施例中,电视终端还包括协议转换模块DP-HDMI。该协议转换模块DP-HDMI连接在复用开关MUX和电视终端中SOC芯片之间,用于将来自复用开关MUX的DP信号转换成HDMI信号发送给SOC芯片1504,以及将SOC芯片1504的预设信息发送给USB Type-C主控模块1502中Billboard接口的存储器。本实施例中,该协议转换模块DP-HDMI可以与USB Type-C主控模块1502交互控制信息和连接状态,可以保证USB Type-C接口1501和SOC芯片1504之间连接处于有效状态,提高数据传输的准确率。
需要说明的是,本申请中仅采用DP协议类型和HDMI协议类型转换的情况,本领域技术人员可以根据具体场景选择合适的协议转换模块,本申请不作限定。
本申请一实施例中,USB Type-C主控模块1502与USB Type-C接口1501还通过交互CC信号确定USB Type-C接口1501外接的设备的供电状态。在USB Type-C接口1501外接的设备需要供电时,USB Type-C主控模块1502将电视终端设置为电源PD Source以向视频接口设备DP供电。本实施例中,通过USB Type-C主控模块1502设置电视终端为视频接口设备DP供电,可 以延长视频接口设备DP的使用时间。
下面具体实施例对本申请提供的电视终端作进一步描述:
参见图16,本实施例中电视终端包括USB Type-C接口1501、USB Type-C主控模块1502、开关模块1503、SOC芯片1504、复用开关MUX1505和协议转换模块DP-HDMI1506。具体连接关系如下:
USB Type-C主控模块1502经过信号线CC和通道SBU与USB Type-C接口1501连接。其中,USB Type-C主控模块1502经过信号线CC与USB Type-C接口1501的外接设备可以识别以下信息,例如,USB Type-C接口1501的类型、正反插以及电源传输信息PD、视频接口设备DP的热插拔信息HPD。由于该信号线CC以及该通道传输的CC信号可以通过USB Type-C协议,在此不再赘述。
USB Type-C主控模块1502经过信号线C1和USB D+/D-(由于附图间隔较小,采用D+/D-表示)与开关模块SWITCH1503连接。其中,USB Type-C主控模块1502通过信号线C1向开关模块SWITCH1503发送状态切换信号。在发送状态切换信号时,开关模块SWITCH1503连接至USB Type-C主控模块1502,两者之间可以数据交互。默认情况下,该开关模块SWITCH1503与USB Type-C主控模块1502之间的USB D+/D-断开,通过USB D+/D-与SOC芯片1504连接。
USB Type-C主控模块1502经过信号线C2与复用开关MUX1505连接。复用开关MUX1505通过信号线TX1、TX2、RX1、RX2与USB Type-C接口1501连接。复用开关MUX1505通过信号线USB SS RX和USB SS TX与SOC芯片1503连接,并且,复用开关MUX1505通过信号线DP与协议转换模块DP-HDMI1506连接。USB Type-C主控模块1502根据外接设备的类型以及正反插控制复用开关MUX1505采用信号线TX1/RX1或者信号线TX2/RX2与USB Type-C接口1501数据交互,或者控制复用开关MUX1505通过信号线DP将DP数据发送给协议转换模块DP-HDMI1506。
协议转换模块DP-HDMI1506通过信号线IIC(Inter IC BUS)、HDMI、 HDMI HPD与SOC芯片1504的接收端HDMI Sink连接,并且通过信号线AUX、DP HPD与USB Type-C主控模块1502连接。其中,协议转换模块DP-HDMI1506通过IIC获取接收端HDMI Sink的EDID(Extended Display Identification Data,扩展显示标识数据)等信息,并通过信号线HDMI HPD建立HDMI HPD连接。在建立连接后,协议转换模块DP-HDMI1506通过信号线HDMI向接收端HDMI Sink发送转换后的HDMI数据,供SOC芯片1504显示使用。
USB Type-C主控模块1502经过信号线C3与SOC芯片1504连接,用于两者之间数据交互,还可以作为与SOC芯片1504连接的其他通讯接口为USB Type-C主控模块1502中软件升级及控制使用。需要说明的是,信号线C3可以根据具体场景选择保留或者删除,本实施例不作限定。
实施例一
USB Type-C接口1501外接的设备为UFP设备本申请实施例提供的电视终端的工作流程如下:
图17是外接设备为UFP设备时电视终端的USB结构示意图。为方便理解,图17所示电视终端实施例中将部分未参与本次工作流程的信号线和模块隐藏。可理解的是,根据具体场景,部分信号线和模块可以再参与到本次流程。
参见图17,当有设备插入USB Type-C接口1501时,USB Type-C主控模块1502通过信号线CC获取CC信号获取该设备的类型,确定该设备为UFP设备。USB Type-C主控模块1502禁止向开关模块SWITCH1503发送状态切换信号(信号线C1、USB Type-C主控模块和开关模块SWITCH1503之间的USB D+/D-隐藏),此时开关模块SWITCH1503保护默认状态,维持USB Type-C接口1501和SOC芯片1504接通状态,保证USB2.0的正常工作。
在UFP设备为USB2.0设备时,UFP设备中的数据依次经过USB Type-C接口1501、信号线USB D+/D-、开关模块SWITCH1503、信号线USB D+/D-到达SOC芯片1504的下行端口DFP。反之,SOC芯片1504中的数据依次经 过信号线USB D+/D-、开关模块SWITCH1503、信号线USB D+/D-到达USB Type-C接口1501,最后存储在USB2.0设备中。
USB Type-C主控模块1502根据UFP设备的正反插状态,通过信号线C2向复用开关MUX1505发送控制信息,选择TX1/RX1信号线组合或者TX2/RX2信号线组合。即USB Type-C主控模块1502根据USB Type-C协议,控制复用开关MUX进行切换,保证SOC芯片1504中下行端口DFP与USB Type-C接口连通,保证USB3.0接口的正常连接。
在UFP设备为USB3.0设备时,UFP设备中的数据依次经过USB Type-C接口1501、信号线TX1(或者TX2)、复用开关MUX1505、信号线USB SS RX到达SOC芯片1504的下行端口DFP。反之,SOC芯片1504的数据依次经过下行端口DFP、信号线USB SS TX、复用开关MUX1505、信号线RX1(或者TX2)到达USB Type-C接口1501,最后存储在USB3.0设备中。
实施例二
USB Type-C接口1501外接的设备为视频接口设备DP时,本申请实施例提供的电视终端的工作流程如下:
图18是外接设备为视频接口设备DP时电视终端的USB结构示意图。为方便理解,图18所示电视终端实施例中将部分未参与本次工作流程的信号线和模块隐藏。可理解的是,根据具体场景,部分信号线和模块可以再参与到本次流程。
参见图18,当有设备插入USB Type-C接口1501时,USB Type-C主控模块1502通过信号线CC获取CC信号获取该设备的类型,确定该设备为视频接口设备DP。USB Type-C主控模块1502通信信号线C1向开关模块SWITCH1503发送状态切换信号。开关模块SWITCH1503进行切换,并与USB Type-C主控模块1502中Billboard接口的上行端口UFP连接。
USB Type-C主控模块1502根据UFP设备的正反插状态,通过信号线C2向复用开关MUX1505发送控制信息,选择TX1/RX1信号线组合或者TX2/RX2信号线组合。即USB Type-C主控模块1502根据USB Type-C协议, 控制复用开关MUX进行切换,保证SOC芯片1504中下行端口DFP与USB Type-C接口连通,保证USB3.0接口的正常连接。
协议转换模块DP-HDMI1506通过IIC与SOC芯片1504接收端HDMI Sink交互,获取接收端HDMI Sink的EDID等信息,并通过信号线HDMI HPD建立HDMI HPD连接。
协议转换模块DP-HDMI1506通过信号线AUX与USB Type-C主控模块1502交互控制信息,通过信号线DP HPD交互HPD连接状态。USB Type-C主控模块1502通过信号线CC经过USB Type-C接口1501向视频接口设备DP发送协议转换模块DP-HDMI1506的HPD连接状态,通过信号线SBU发送协议转换模块DP-HDMI1506的AUX控制信息。
可见,经过上述流程后,视频接口设备DP中的数据可以依次通过信号线TX1(或者TX2)、复用开关MUX1505、信号线DP、协议转换模块DP-HDMI1506(协议转换)、信号线HDMI到达SOC芯片1504中的接收端HDMI SINK。
需要说明的是,本实施例中若出现异常,则将异常信息存入USB Type-C主控模块1502中Billboard接口的存储器中,之后通过USB Type-C主控模块1502通过信号线USB D+/D-发送给视频接口设备DP。
针对上述电视终端,本申请实施例还提供了一种用于电视终端的控制方法,如图19所示,所述方法包括:
步骤1901,USB Type-C主控模块与USB Type-C接口交互CC信号以识别所述USB Type-C接口外接的设备的类型;
步骤1902,所述USB Type-C主控模块依据所述类型控制所述开关模块SWITCH的状态,以控制所述USB Type-C接口外接的设备与电视终端中SOC芯片进行数据交互。
可选地,在所述USB Type-C主控模块识别出的所述USB Type-C接口外接的设备的类型为视频接口设备DP类型时,所述USB Type-C主控模块依据所述类型控制所述开关模块SWITCH的状态,包括:
向所述开关模块SWITCH发送状态切换信号,以使所述开关模块SWITCH切换至接通所述视频接口设备DP与所述USB Type-C主控模块中Billboard接口的状态。
可选地,在所述USB Type-C主控模块识别出的所述USB Type-C接口外接的设备的类型为UFP设备类型时,所述USB Type-C主控模块依据所述类型控制所述开关模块SWITCH的状态,包括:
禁止向所述开关模块SWITCH发送状态切换信号,以使所述开关模块SWITCH维持所述UFP设备与所述电视终端中SOC芯片接通的状态。
可选地,在所述电视终端还包括复用开关MUX时,所述方法包括:
所述USB Type-C主控模块控制所述复用开关MUX导通所述USB Type-C接口外接的设备与所述电视终端中SOC芯片,以使所述USB Type-C接口外接的设备与电视终端中SOC芯片进行数据交互。
可选地,在所述电视终端包括协议转换模块DP-HDMI时,所述方法还包括:
所述USB Type-C主控模块与所述协议转换模块DP-HDMI交互控制信息和连接状态,以及将所述协议转换模块DP-HDMI和所述电视终端中SOC芯片数据交互过程中的预设信息存储在所述USB Type-C主控模块中Billboard接口的存储器中。
可选地,所述方法还包括:
所述USB Type-C主控模块与所述USB Type-C接口通过交互CC信号确定所述USB Type-C接口外接的设备的供电状态;
在所述USB Type-C接口外接的设备需要供电时,所述USB Type-C主控模块将所述电视终端设置为电源PD Source以向视频接口设备DP供电。
关于上述实施例中的方法,其中各个单元或者模块执行操作的具体方式已经在电视终端的实施例中进行了详细描述,此处将不做详细阐述说明。
本实施例中,信号线可以为一条或者多条组成,可以表示为控制线,也可以表示为数据总线,根据附图以及传输对象进行理解。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
基于上述实施例,本申请还提供以下五个具体实施例:
实施例1
本发明实施例1提供一种可兼容USB和ALT MODE设备数据输入且可实现billboard信息交互的信号输入电路2000,如图20所示,该信号输入电路2000包括:控制芯片(CC+PD模块)2010,用于实现上述USB Type-C接口主控模块220的功能,可以根据识别USB Type-C(以下简称USB-C)接口2020接入设备类型,控制USB-C接口2020接口中D+/D-输入端子与SOC芯片2030的连接端子之间电连接,以及USB-C接口2020中D+/D-输入端子和控制芯片2010中可交互billboard信息的连接端子之间电连接,其两者电连接通路中仅选通任一通路电导通。
USB-C接口是指,采用USB Type-C协议进行数据传输的接口。该USB-C接口可以与设置有USB-C接口的设备(包括USB设备:用于传输USB协议 信号的终端设备,如:U盘、硬盘等;ALT MODE设备:用于传输音视频信号的终端设备,如笔记本、手机、PAD等)对插,从而形成USB或ALT MODE通信连接。
控制芯片2010是指,USB-C协议中的配置通道(Configuration Channel,CC模块)和/或电源传输通道(Power Delivery,PD模块)。该控制芯片2010可根据实际需求具体设置为配置通道(即CC模块),或者设置为电源传输通道(即PD模块),也可以设置为配置通道和电源传输通道的整体(即CC+PD模块)。
进一步的,控制芯片2010支持USB-C协议规范中CC(Channel Configuration)沟通和PD(POWER DELIVERY)协议,一方面通过CC通道,对外部设备的正反插进行适配、确认外部设备类型及获得ALT MODE设备的电源传输信息PD;另一方面对外进行CC信号与SBU信号的沟通,其配备billboard功能,通过控制芯片2010中连接端子与USB-C接口2020中USB D+/D-信号引脚点电连接,用于在外接ALT MODE设备时,使控制芯片2010反馈billboard信息给该外接ALT MODE设备。本方案中控制芯片340为CC+PD模块,可以理解的是本方案中控制芯片也可以作为带有MCU处理功能的CC模块或者PD模块,此处不多做赘述。
SOC芯片2010是指片上系统(System on a chip),用于对音视频信号进行处理的芯片,可以实现数据的发送与接收。SOC芯片2010具有USB DFP接口,用于实现USB3.0/USB2.0的信号传输功能;同时,其还可以接收音视频数据信号,如HDMI信号、DP信号等。举例而言,SOC芯片2010可包括IIC(集成电路总线)主机模块,用于实现IIC控制和固件升级;USB 3.0DFP接口,用于实现USB 3.0DFP功能;USB 2.0DFP接口,用于实现USB 2.0DFP功能;以及HDMI SINK模块,用于实现HDMI SINK(即HDMI协议中最小化传输差分信号TMDS的接收端)功能。
进一步的,该USB 3.0DFP接口和该USB2.0DFP接口可具体合成一个DFP接口,用于兼顾USB 3.0和USB 2.0信号的传输(如图20所示);同样, 该USB 3.0DFP接口和该USB2.0DFP接口也可具体分为两个接口,用于分别实现USB 3.0DFP功能和USB 2.0DFP功能(如图23所示)。
进一步的,本申请实施例提供一种控制芯片2010识别外接设备类型方式。具体如下:控制芯片2010通过CC通道与USB-C的CC引脚进行通讯,进而识别USB-C外接设备类型。具体的,控制芯片2010中预存有开关模式与外接设备类型信息的映射关系,当USB-C接口2020接入外接设备时,通过识别该外接设备的设备信息(例如设备ID信息),从而与控制芯片2010中预存的模式类型进行匹配,并根据匹配结果控制SOC芯片2030的连接端子电连接,或者控制USB-C接口2020中D+/D-输入端子与控制芯片2010中可交互billboard信息的连接端子之间电连接。
进一步的,本申请实施例提供另一种控制芯片2010识别外接设备类型的方式。具体如下:默认情况下,控制芯片2010识别外接设备类型具体为USB设备,当其通过USB-C的CC信号引脚进行CC通讯后,若该CC引脚传输的设备类型信号中包含对应的VDM信息,则控制芯片识别外接设备为ALT MODE设备。
示例性的,当接入设备为ALT MODE设备时,设备的VDM信息示例如下:
00:RESERVED;01:UFP_D-capable;10:DFP_D-capable;11:Both UFP_D和DFP_D-capable。具体的,当CC通讯获得的VDM信息为01时,判断接入ALT MODE设备为UFP设备,其可以向其他设备传输数据信号,当获取VDM信息为10时,判断接入ALT MODE设备为DFP设备,其接收其他设备传输的数据信号,当获取的VDM信息为11时,判断接入的设备既可以作为UFP设备,又可以作为DFP设备,即其既能向其他设备传输数据,又可以接收其他设备传输的数据信号。
进一步的,如图20所述,信号输入电路2000中,本申请实施例中的USB-C接口2020具有USB D+/D-信号引脚,用于输入USB 2.0信号,对应的,该SOC芯片提供可供该USB D+/D-信号输入的引脚,用于接收从外部设备传输的 USB 2.0信号。
进一步的,本实施例中,控制芯片2010对USB-C接口2020的D+/D-端子的控制,既可以通过软件方式控制该USB D+/D-端子在不同模式下与SOC芯片或控制芯片的连接端子电连接,同时也可以通过选择开关器件选通控制该USB D+/D-端子在不同模式下与SOC芯片或控制芯片的连接端子电连接。
具体的,当控制芯片具体通过选择开关器件实现控制时,信号输入电路2000还包括选择开关器件2040,如图20所示,该选择开关器件2040控制USB D+/D-信号引脚与控制芯片2010中一路控制信号C1输出引脚电连接;其输入引脚与USB-C接口2020中USB D+/D-信号引脚电连接;任一可选通的两路输出引脚中,一路与SOC芯片2030中可供USB D+/D-输入的引脚电连接;另一路与控制芯片2010中可供USB D+/D-信号连接的引脚电连接。
进一步的,本申请实施例中给出选择开关器件2040的一种具体示例,如图21所示,示例性的,选取TS3USB3031RMGR芯片作为本申请实施例中的选择开关器件2040。该芯片的D+/D-引脚与USB-C接口中USB D+/D-输入信号引脚电连接,USB 2+/USB2-与SOC芯片中DFP接口连接,用于实现USB 2.0信号传输功能;USB 1+/USB1-与控制芯片(或CC模块)中交互billboard信息的功能模块连接,用于实现USB 3.0信号传输功能;SEL1、SEL2为控制引脚,与本申请实施例中的控制芯片(或CC模块)连接。
具体的,当接入USB设备时,控制芯片(或CC模块)通过控制引脚SEL0为低电平,SEL1为高电平,进而选择开关器件切换USB D+/D-端子与SOC芯片DFP接口电连接;当接入ALT MODE设备时,控制芯片(或CC模块)通过控制引脚SEL0为低电平,SEL1为低电平,进而选择开关器件切换USB D+/D-端子与控制芯片(或CC模块)中交互billboard信息的功能模块电连接。
需要注意的是,此处仅仅是给出选择开关器件的一种具体形式,本领域的技术人员也可根据实际情况选择其他具备相同或类似功能的芯片作为本申请实施例中的选择开关器件。
进一步的,选择开关器件2040的一种切换过程具体是,控制芯片2010 检测USB-C接口2020的接入设备类型,当检测USB-C接口2020接入USB设备时,通过控制信号C1控制选择开关器件2040,选通USB-C接口2020中USB D+/D-端子与SOC芯片2030的连接端子之间连接电导通;当USB-C接口2020接入ALT MODE设备时,通过控制信号C1控制选择开关器件2040,选通所述USB-C接口2020中USB D+/D-端子与控制芯片2010中可交互billboard信息的连接端子之间连接电导通。
选择开关器件2040的另一种切换过程具体是,默认情况下,保持选择开关器件2040与控制芯片中可交互billboard信息的连接端子之间断开,而保持选择开关器件2040与SOC芯片2030的连接端子之间连接电导通;当检测到USB-C接口2020接入ALT MODE设备时,通过控制信号C1控制选择开关器件2040,断开其与SOC芯片2030的连接端子,同时使其与与控制芯片中可交互billboard信息的连接端子之间电导通。
进一步的,信号输入电路2000中,SOC芯片2030还包括:可供USB SSTX/RX信号输入的引脚,以及可供音视频格式输入的引脚;其中,该可供USB SSTX/RX信号输入的引脚作为SOC芯片2030的USB 3.0DFP接口中的功能性引脚,用于USB 3.0设备传输USB 3.0信号;而该可供音视频格式输入的引脚作为SOC芯片2030中音视频模块的功能性引脚,用于ALT MODE设备传输音视频信号。
进一步的,信号输入电路2000还包括:复合开关芯片2050(图20中MUX模块),复合开关芯片2050包括有两路高速差分对信号输入引脚,其分别与USB-C接口2020的信号引脚USB TX1/2和RX1/2连接,可用于传输ALT MODE设备输入的DP信号或者USB 3.0信号。
同时,复合开关芯片2050的控制引脚与控制芯片2010中另一路控制信号C2输出引脚电连接,任一可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供音视频格式输入的所述引脚电连接。
具体的,控制芯片2010检测USB-C接口2020的接入设备类型,当外接 设备为USB设备时,控制芯片2010通过控制信号C2控制复合开关芯片2050,选通USB-C接口2020中一路高速差分对传输USB 3.0信号,如选通高速差分对TX1/RX1、或者选通高速差分对TX2/RX2将USB 3.0信号经由复合开关芯片2050传输至SOC芯片2030的USB 3.0DFP接口;当外接设备为ALT MODE设备时,选通USB-C接口2020中至少一路高速差分对传输音视频信号,如选通高速差分对TX1/RX1和/或高速差分对TX2/RX2将音视频信号传输至SOC芯片2030的音视频端子模块。
示例性的,如图22a~22c所示,为USB-C协议中提供的USB-C接口中高速差分对的选通方式。示例性的,选取PS8742芯片作为本申请实施例中的复合开关芯片2050。该芯片的两路高速差分对引脚TX1/RX1和TX2/RX2分别与USB-C接口连接,该芯片的SSTX/SSRX引脚与USB设备连接,用于在接入USB设备时,传输USB 3.0信号;该芯片的ML0~ML3引脚与DP SINK模块连接,用于接入ALT MODE设备时,传输DP信号。
具体的,如图22a的模式一和模式二,当接入USB设备时,模式一中,对应的,复合开关芯片PS8742的TX1/RX1引脚输入USB-C接口传入的信号,并从SSTX/SSRX引脚传输至USB Device(USB设备);模式二中,复合开关芯片PS8742的TX2/RX2引脚输入USB-C接口传入的信号,并从SSTX/SSRX引脚传输至DP SINK模块。
如图22b~22c,这四种模式分别对应,接入ALT MODE设备时,复合开关芯片PS8742的TX1/RX1和TX2/RX2引脚与ML0~ML3的电导通关系,音视频信号(如DP信号)从TX1/RX1、TX2/RX2引脚传输至芯片PS8742中,再从ML0~ML3引脚传出至音视频模块(DP SINK模块)。
需要注意的是,此处仅仅是给出复合开关芯片的一种具体形式,本领域的技术人员也可根据实际情况选择其他具备相同或类似功能的芯片作为本申请实施例中的复合开关芯片,同样,附图中DP SINK也可根据实际情况演变为其他具有类似功能的模块,如HDMI SINK模块等,此处不做过多的赘述。
通常情况下,当外接设备为ALT MODE设备时,其输入信号为DP信号,但是目前SOC芯片基本上都智能作为HDMI信号的接收端,其并不具有接收DP信号的能力。因此,如图23所示,该信号输入电路还包括DP-HDMI模块,用于在外接设备为只能传输DP信号的ALT MODE设备,同时SOC芯片只能作为HDMI信号的接收端时,将该DP信号转换为HDMI信号,并传输至该SOC芯片中。
具体的,信号输入电路2000包括DP-HDMI模块2060,其中,DP-HDMI模块2060的HPD端子与控制芯片2010电连接,用于判断并确认USB-C接口2020接入的外接设备与DP-HDMI模块2060的连通状态,DP-HDMI模块2060的输入端与复合开关芯片2050连接,用于在外接设备为ALT MODE设备时,根据复合开关芯片2050选通,DP-HDMI模块2060的输出引脚与SOC芯片2030中可供HDMI格式输入的引脚电连接。
进一步的,DP-HDMI模块2060还通过信号线IIC2(Inter IC BUS)与SOC芯片2030电连接,通过IIC2获取接收端HDMI Sink的EDID(Extended Display Identification Data,扩展显示标识数据)等信息,并通过信号线HDMI HPD建立HDMI HPD连接。在建立连接后,DP-HDMI模块2060通过信号线HDMI向接收端HDMI SINK模块发送转换后的HDMI数据,供SOC芯片2030显示使用。
进一步的,控制芯片2010与USB-C接口2020还通过交互CC信号确定USB-C接口2020外接设备的供电状态。在USB-C接口2020外接的ALT MODE设备需要供电时,控制芯片2010将该电子终端设备设置为电源PD Source以向视频接口设备DP供电。本实施例中,通过控制芯片2010设置电子终端设备为视频接口设备DP供电,可以延长外接ALT MODE设备的使用时间。
控制芯片2010还通过信号线C3与SOC芯片2030连接,用于两者之间数据交互,还可以作为与SOC芯片2030连接的其他通讯接口为控制芯片2010中软件升级及控制使用。需要说明的是,信号线C3可以根据具体场景选择保 留或者删除,本实施例不作限定。
本申请实施例1提供的信号输入电路的工作流程具体如下:
一、USB-C接口2020外接设备为USB设备
图24是外接设备为USB设备时信号输入电路的信号导通示意图。为方便理解,图24所示信号输入电路实施例中将部分未参与本次工作流程的信号线和模块隐藏(具体的,USB设备模式下,信号线C1、控制芯片和选择开关器件之间的USB D+/D-通讯隐藏)。可理解的是,根据具体场景,部分信号线和模块可以再参与到本次流程。
参见图24,当有设备接入USB-C接口2020时,控制芯片2010通过CC通道与USB-C接口2020的CC引脚进行CC信号交互,以获取接入设备的类型,确定该设备为USB设备。控制芯片2010通过信号线C1,控制选通选择开关器件2040与SOC芯片2030的DFP接口电导通,或者控制芯片2010禁止向选择开关器件2040发送状态切换信号,此时选择开关器件2040保护默认状态,维持USB-C接口2020和SOC芯片2030导通状态,保证USB 2.0的正常工作。
当该USB设备为USB 2.0设备时,UFP设备中的数据依次经过USB-C接口2020、信号线USB D+/D-、选择开关器件2040、信号线USB D+/D-到达SOC芯片2030的USB 2.0DFP接口。类似的,SOC芯片2030中的数据也可依次经过信号线USB D+/D-、选择开关器件2040、信号线USB D+/D-到达USB-C接口2020,最后传输并存储在USB 2.0设备中。
同时,控制芯片2010根据USB设备的正反插状态,通过信号线C2向复用开关芯片2050发送控制信息,选择一路高速差分对TX1/RX1或者TX2/RX2。即控制芯片2010根据USB-C协议,控制复用开关芯片2050进行切换,保证SOC芯片2030中DFP接口与USB-C接口2020连通,保证USB3.0接口的正常连接。
在USB设备为USB 3.0设备时,USB设备中的数据依次经过USB-C接口2020、信号线TX1(或者TX2)、复合开关芯片2050、信号线USB SS RX 到达SOC芯片2030的USB 3.0DFP接口。反之,SOC芯片2030的数据依次经过USB 3.0DFP接口、信号线USB SS TX、复合开关芯片2050、信号线RX1(或者TX2)到达USB-C接口2020,最后存储在USB 3.0设备中。
二、USB-C接口2020外接的设备为ALT MODE设备
图25是外接设备为ALT MODE设备时电视终端的信号导通示意图。为方便理解,图25所示电视终端实施例中将部分未参与本次工作流程的信号线和模块隐藏。可理解的是,根据具体场景,部分信号线和模块可以再参与到本次流程。
参见图25,当有设备插入USB-C接口2020时,控制芯片2010通过CC通道交互CC信号,以获取该设备的类型,确定该设备为ALT MODE设备。控制芯片2010通信信号线C1,控制选择开关器件2040与控制芯片2010中billboard模块电导通,具体的,与控制芯片2010中基板Billboard的UFP端口连接。
控制芯片2010根据UFP设备的正反插状态,通过信号线C2向复用开关芯片2050发送控制信息,选择差分对TX1/RX1或者TX2/RX2。即控制芯片2010根据USB-C协议,控制复用开关芯片2050进行切换,保证SOC芯片2030中DFP端口与USB-C接口连通,保证USB3.0接口的正常连接。
DP-HDMI模块2060通过IIC2与SOC芯片2030接收端HDMI SINK交互,获取接收端HDMI SINK的EDID等信息,并通过信号线HDMI HPD建立HDMI HPD连接。
DP-HDMI模块2060通过信号线AUX与控制芯片2010交互控制信息,通过信号线DP HPD交互HPD连接状态。控制芯片2010通过CC通道经过USB-C接口2020向ALT MODE设备发送DP-HDMI模块2060的HPD连接状态,通过信号线SBU发送DP-HDMI模块2060的控制信息。
可见,经过上述流程后,ALT MODE设备中的数据可以依次通过信号线TX1/RX1(或者TX2/RX2)、复用开关芯片2050、信号线DP、DP-HDMI模块2060、信号线HDMI到达SOC芯片2030中的接收端HDMI SINK。
本实施例中若ALT MODE设备连接出现异常,则将异常信息由控制芯片2010中Billboard模块,通过信号线USB D+/D-发送给ALT MODE设备,并在该ALT MODE设备上显示对应的异常信息,以提醒用户。
需要说明的是,本实施例1提供的信号输入电路的具体工作流程,为方便描述,简化SOC芯片2030中仅包括支持HDMI信号的HDMI SINK模块,同时ALT MODE输入信号为DP信号;对于其他类似的场景,可参考该具体工作流程作一定的调整,是否需要设置DP-HDMI模块2060也可根据实际情况进行考虑,本实施例1在此处不做过多的赘述。
本实施例提供的电子设备终端,根据外接设备类型选通USB D+/D-端子与SOC芯片或控制芯片电连接,以解决电视终端应用USB-C接口中存在的USB 2.0/3.0信号与billboard信息交互不能同时兼容的问题。具体的,该电子设备终端中,控制芯片通过CC通道与USB-C接口的CC信号引脚进行通讯,进而识别外接设备类型,当USB-C接口接入设备类型为USB模式设备时,选通USB D+/D-端子与SOC芯片的连接端子之间电连接;当USB-C接口接入设备类型为ALT MODE模式设备时,选通USB D+/D-端子与控制芯片中可交互billboard信息的连接端子之间电连接,进而实现USB 2.0/3.0信号与billboard信息交互的兼容性问题。
控制芯片包括CC模块和PD模块,CC模块与PD模块可分开设置(即CC模块+PD模块),也可合成为一个芯片(即CC+PD模块)。
具体的,如图26所示,在本申请的另一实施例中,信号输入电路22800包括:CC模块22810,用于检测USB-C接口22820接入设备类型,当检测USB-C接口22820接入USB设备时,选通USB-C接口22820中USB D+/D-端子与SOC芯片的连接端子之间连接电导通;当USB-C接口22820接入ALT MODE设备时,选通USB-C接口22820中USB D+/D-端子与PD模块22830中可供交互billboard信息的连接端子之间连接电导通。
本方案中,CC模块22810可看作是CC物理通道,其与USB-C接口22820 中CC引脚电连接,可与USB-C接口22820进行CC通讯,通过CC通道,对外部设备的正反插进行适配、确认外部设备类型及获得ALT MODE设备的电源传输信息PD。
PD模块22830用于支持PD协议,并配备有billboard功能模块,与与USB-C接口22820中USB D+/D-信号引脚点电连接,用于在外接设备为ALT MODE设备时,反馈billboard信息给该外接ALT MODE设备。
进一步的,通过选择开关器件实现控制时,信号输入电路22800还包括选择开关器件2640,如图26所示,该选择开关器件2640控制USB D+/D-信号引脚与CC模块22810中一路控制信号C1输出引脚电连接;其输入引脚与USB-C接口22820中USB D+/D-信号引脚电连接;任一可选通的两路输出引脚中,一路与SOC芯片2650中可供USB D+/D-输入的引脚电连接;另一路与PD模块22830中可供USB D+/D-信号连接的引脚电连接。
进一步的,选择开关器件2640的切换过程具体是,CC模块22810检测USB-C接口22820的接入设备类型,当检测USB-C接口22820接入USB设备时,通过控制信号C1控制选择开关器件2640,选通USB-C接口22820中USB D+/D-端子与SOC芯片2650的连接端子之间连接电导通;当USB-C接口22820接入ALT MODE设备时,通过控制信号C1控制选择开关器件2640,选通所述USB-C接口22820中USB D+/D-端子与PD模块22830中可交互billboard信息的连接端子之间连接电导通。
在本实施例的信号输入电路22800中,SOC芯片2650还包括:可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式输入的引脚;其中,该可供USB SSTX/RX信号输入的引脚作为SOC芯片2650的USB 3.0DFP接口中的功能性引脚,用于USB 3.0设备传输USB 3.0信号;而该可供HDMI格式输入的引脚作为SOC芯片2650中HDMI SINK模块的功能性引脚,用于ALT MODE设备传输HDMI信号。
进一步的,信号输入电路22800中,还包括:复合开关芯片2660(图6 中MUX模块),复合开关芯片2660包括有两路高速差分对信号输入引脚,与USB-C接口22820的信号引脚USB TX1/2和RX1/2连接;可用于传输ALT MODE设备输入的DP信号或者USB 3.0信号。
同时,复合开关芯片2660的控制引脚与CC模块22810中另一路控制信号C2输出引脚电连接,任一可选通的两路输出引脚中,一路与SOC芯片2650中可供USB SSTX/RX信号输入的引脚电连接;另一路与SOC芯片2650中可供HDMI格式输入的引脚电连接。
具体的,CC模块22810检测USB-C接口22820的接入设备类型,当外接设备为USB设备时,CC模块22810通过控制信号C2控制复合开关芯片2660,选通USB-C接口22820中一路高速差分对进行数据传输USB 3.0信号,如选通高速差分对TX1/RX1、或者选通高速差分对TX2/RX2将USB 3.0信号经由复合开关芯片2660传输至SOC芯片2650的USB 3.0DFP接口;当外接设备为ALT MODE设备时,选通USB-C接口22820中至少一路高速差分对传输音视频信号,如选通高速差分对TX1/RX1和/或高速差分对TX2/RX2将音视频信号传输至SOC芯片2030的HDMI SINK模块。
通常情况下,当外接设备为ALT MODE设备时,其输入信号为DP信号,而SOC芯片2650中HDMI SINK模块并不具备接收该DP信号的能力。因此,信号输入电路22800还需要包括DP-HDMI模块,用于在外接设备传输的是DP信号时,将该DP信号转换为HDMI信号,并传输至该SOC芯片2650中。
具体的,信号输入电路22800包括DP-HDMI模块2670,其中,DP-HDMI模块2670的HPD端子与CC模块22810电连接,用于判断并确认USB-C接口22820接入的外接设备与DP-HDMI模块2660的连通状态,DP-HDMI模块2670的输入端与复合开关芯片2660连接,用于在外接设备为ALT MODE设备时,根据复合开关芯片2660选通,DP-HDMI模块2670的输出引脚与SOC芯片2650中可供HDMI格式输入的引脚电连接。
进一步的,CC模块22810与USB-C接口2020还通过交互CC信号确定USB-C接口2020外接设备的供电状态。在USB-C接口2020外接的ALT  MODE设备需要供电时,CC模块22810将该电子终端设备设置为电源PD Source以向视频接口设备DP供电。本实施例中,通过CC模块22810设置电子终端设备为视频接口设备DP供电,可以延长视频接口设备DP的使用时间
本实施例提供的电子设备终端,通过在现有的硬件框架结构中,根据外接设备类型选通USB D+/D-端子与SOC芯片或PD模块电连接,以解决电视终端应用USB-C接口中存在的USB 2.0/3.0信号与billboard信息交互不能同时兼容的问题。具体的,该电子设备终端中,CC模块通过CC通道与USB-C接口的CC信号引脚进行通讯,进而识别外接设备类型,当USB-C接口接入设备类型为USB模式设备时,选通USB D+/D-端子与SOC芯片的连接端子之间电连接;当USB-C接口接入设备类型为ALT MODE模式设备时,选通USB D+/D-端子与PD模块中可交互billboard信息的连接端子之间电连接,进而实现USB 2.0/3.0信号与billboard信息交互的兼容性问题。
实施例2
本申请实施例2还提供一种通过USB TYPE-C接口接收来自外部设备数据的电子终端设备,如图27所示,电子终端设备2700包括显示屏2710和信号输入电路2720,其中,显示屏2710被配置为显示画面,信号输入电路2720还包括SOC芯片2721,控制芯片2722(CC+PD),USB-C接口2723,其中USB-C接口2723用于接入外部设备,控制芯片2722用于控制使外部设备通过USB-C接口2723与SOC芯片2721完成数据交互,实现将外部设备的信号传输至SOC芯片2721中,进而SOC芯片2721驱动显示屏2710显示画面。
具体的,当外部设备为USB设备时,控制芯片2722控制USB 2.0/USB 3.0信号通过USB-C接口2721传输至SOC芯片2721,进而驱动显示屏2710显示相关信息;当外部设备为ALT MODE设备时,控制芯片2722控制音视频信号通过USB-C接口2721传输至SOC芯片2721,进而驱动显示屏2710显示相关画面;当外部设备为ALT MODE设备,且需要传输billboard信息时,控制芯片2722控制USB D+/D-端子与SOC芯片2721电导通,实现billboard 信息传输至SOC芯片2721,并在显示屏上显示相关billboard信息,用于提醒用户异常。
进一步的,信号输入电路2720可采用上述实施例1中任一信号输入电路,相应的,外部设备与SOC芯片2721的数据传输过程具体可参考上述实施例1中对应的数据传输过程,此处不做过多赘述。
实施例3
本申请实施例3还提供一种电视终端,如图28所示,该电视终端2800包括:显示屏2810、信号输入电路2820及供电电路2830,其中,显示屏2810被配置显示画面,供电电路2830被配置为设备提供电力,以及信号输入电路2820被配置为用于接收来自外部设备数据;信号输入电路2820还包括SOC芯片2821,控制芯片2822(CC+PD),USB-C接口2823,其中USB-C接口2823用于接入外部设备,控制芯片2822用于控制使外部设备通过USB-C接口2823与SOC芯片2821完成数据交互,实现将外部设备的信号传输至SOC芯片2821中,进而SOC芯片2821驱动显示屏2810显示画面。
具体的,当外部设备为USB设备时,控制芯片2822控制USB 2.0/USB 3.0信号通过USB-C接口2821传输至SOC芯片2821,进而驱动显示屏2810显示相关信息;当外部设备为ALT MODE设备时,控制芯片2822控制音视频信号通过USB-C接口2821传输至SOC芯片2821,进而驱动显示屏2810显示相关画面;当外部设备为ALT MODE设备,且需要传输billboard信息时,控制芯片2822控制USB D+/D-端子与SOC芯片2821电导通,实现billboard信息传输至SOC芯片2821,并在显示屏上显示相关billboard信息,用于提醒用户异常。
进一步的,信号输入电路2820可采用上述实施例1中任一信号输入电路,相应的,外部设备与SOC芯片2821的数据传输过程具体可参考上述实施例1中对应的数据传输过程,此处不做过多赘述。
实施例4
本申请实施例4还提供一种可兼容USB和ALT MODE的外部设备数据输入且可实现billboard信息交互的信号输入方法,如图29所示,该方法包括:
步骤S2810,识别USB TYPE-C接口接入信号类型
具体的,控制芯片通过CC通道与USB-C接口的CC引脚进行信号交互,进而获得外接设备的身份信息(例如VDM信息、ID信息等),根据该信息判断接入的外接设备类型,不同设备类型对应不同的接入信号类型。
示例性的,也可以在控制芯片中预存有切换模式与接入设备类型信息(如VDM信息、ID信息)的映射关系,当接入不同模式的外接设备时,可通过从读取设备类型信息,并与映射关系进行匹配判断接入设备类型。当然,需要注意的是,USB-C接口接入信号类型的识别方式还有其他多种,此处不做过多赘述。
步骤S2820,控制USB-C接口中D+/D-输入端子与SOC芯片的连接端子之间电连接,以及USB-C接口中D+/D-输入端子和控制芯片中可交互billboard信息的连接端子之间电连接,其两者电连接通路中仅有任一通路电导通。
进一步的,当识别出USB TYPE-C接入USB协议信号类型时,选通USB TYPE-C接口中USB D+/D-输入端子与SOC芯片的连接端子之间连接电导通;当识别USB TYPE-C接入ALT MODE协议信号类型时,选通USB TYPE-C接口中USB D+/D-输入端子与控制芯片中可供交互billboard信息的连接端子之间连接电导通。
需要注意的是,本申请实施例也可保持默认情况下,控制芯片控制USB D+/D-输入端子与SOC芯片的连接端子之间连接电导通;当识别USB TYPE-C接入ALT MODE协议信号类型时,再通过控制信号选通USB D+/D-输入端子与控制芯片中可供交互billboard信息的连接端子电导通。
进一步的,本申请实施例中,控制芯片对USB-C接口的D+/D-端子的控制,既可以通过软件方式控制该USB D+/D-端子在不同模式下与SOC芯片或控制芯片的连接端子电连接,同时也可以通过增加选择开关器件,进而控制 该选择开关器件选通该USB D+/D-端子在不同模式下与SOC芯片或控制芯片的连接端子电连接。
进一步的,当识别USB TYPE-C接入ALT MODE协议信号类型时,可暂时不选通USB D+/D-端子与控制芯片中可供交互billboard信息的连接端子之间电导通,而是在满足一定的判断条件时,选通该USB D+/D-端子与控制芯片中可供交互billboard信息的连接端子电导通。
示例性的,当识别USB TYPE-C接入ALT MODE协议信号类型时,判断外接设备的身份信息(VDM信息、ID信息)是否与控制芯片中预存的身份信息相匹配,若信息不匹配,选通USB TYPE-C接口中USB D+/D-端子与控制芯片中可供交互billboard信息的连接端子之间连接电导通。
示例性的,当识别USB TYPE-C接入ALT MODE协议信号类型时,还可通过判断在阈值时间T内,该电子终端设备或显示设备(比如电视终端)是否成功切换至ALT MODE模式,若未成功切换至该ALT MODE模式,则选通USB TYPE-C接口中USB D+/D-输入端子与控制芯片中可供交互billboard信息的连接端子之间连接电导通。
需要注意的是,选通与控制芯片中连接端子的判断条件还可有其他多种形式,此处不做过多的赘述。
步骤S2830,复合开关芯片接收控制芯片的控制信号,并根据该控制信号,可选通的两路输出引脚中,一路与SOC芯片中可供所述USB SSTX/RX信号输入的引脚电连接;另一路与SOC芯片中可供HDMI格式输入的引脚电连接。
具体的,控制芯片检测USB-C接口的接入设备类型,当外接设备为USB设备时,控制芯片通过控制信号控制复合开关芯片(即开关MUX),选通USB-C接口中一路高速差分对传输USB 3.0信号,如选通高速差分对TX1/RX1、或者选通高速差分对TX2/RX2将USB 3.0信号经由复合开关芯片传输至SOC芯片的USB 3.0DFP接口;当外接设备为ALT MODE设备时,选通USB-C接口中至少一路高速差分对传输音视频信号,如选通高速差分对TX1/RX1和/或高速差分对TX2/RX2将音视频信号传输至SOC芯片的音视频 模块。
本申请提供的本申请实施例提供的信号输入方法,控制芯片通过检测接入信号类型,进而在接入USB协议信号类型时,选通USB D+/D-端子与SOC芯片的连接端子之间连接电导通,在接入ALT MODE协议信号类型时,选通所述USB TYPE-C接口中USB D+/D-端子与控制芯片中可供交互billboard信息的连接端子之间连接电导通,从而实现了USB 2.0/USB 3.0信号的传输及billboard信息的交互。
本申请实施例5中提供又一种可兼容USB和ALT MODE的外部设备数据输入且可实现billboard信息交互的信号输入方法,包括:
步骤S710,检测USB TYPE-C接口接入信号类型;
具体的,CC模块通过CC通道与USB-C接口的CC引脚进行信号交互,进而获得外接设备的身份信息(例如VDM信息、ID信息等),根据该信息判断接入的外接设备信号类型。
示例性的,也可以在CC模块中预存有切换模式与接入设备类型信息(如VDM信息、ID信息)的映射关系,当接入不同模式的外接设备时,可通过从读取设备类型信息,并与映射关系进行匹配判断接入设备类型。当然,需要注意的是,USB-C接口接入信号类型的识别方式还有其他多种,此处不做过多赘述。
步骤S720,当识别出USB TYPE-C接入USB协议信号类型时,选通USB TYPE-C接口中USB D+/D-端子与SOC芯片的连接端子之间连接电导通,使USB外部设备可与SOC芯片通过USB D+/D-端子数据传输;
具体的,该USB-C接口包括USB D+/D-信号引脚,该SOC芯片包括可供USB D+/D-信号输入的引脚,当外接设备为USB模式的设备时(基于USB协议传输信号的终端设备,如U盘、硬盘等设备),CC模块基于CC通信作出识别,并控制选通USB D+/D-信号引脚与SOC芯片中可供USB D+/D-信号输入的引脚电导通,从而使外接设备可与SOC芯片通过该USB D+/D-端子进 行数据交互,如传输USB 2.0信号等。
步骤S730,当识别USB TYPE-C接入ALT MODE协议信号类型时,选通USB TYPE-C接口中USB D+/D-端子与PD模块中可供交互billboard信息的连接端子之间连接电导通,使ALT MODE外部设备可与PD模块通过USB D+/D-端子交互billboard信息。
具体的,该PD模块包括可供USB D+/D-信号输入的引脚,当外接设备为ALT MODE模式的设备时(基于非USB协议、主要用于传输音视频信号的终端设备,如电脑、笔记本、手机、PAD等设备),CC模块基于CC通信作出判断识别,并控制选通USB D+/D-信号引脚与PD模块中可供USB D+/D-信号输入的引脚电导通,从而使外接设备可与PD模块通过该USB D+/D-端子进行billboard的信息交互。
本申请实施例提供的信号输入方法,通过CC模块检测接入信号类型,进而在接入USB协议信号类型时,选通USB D+/D-端子与SOC芯片的连接端子之间连接电导通,在接入ALT MODE协议信号类型时,选通所述USB TYPE-C接口中USB D+/D-端子与PD模块中可供交互billboard信息的连接端子之间连接电导通,从而实现了USB 2.0/USB 3.0信号的传输及billboard信息的交互。
关于上述实施例中的方法,其中各个芯片或者模块执行操作的具体方式已经在信号输入电路的实施例中进行了详细描述,此处将不做详细阐述说明。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
基于上述实施例,本发明还提供以下两个具体实现方式:
实施例6
本申请实施例6提供了一种通过USB Type-C接口接收来自外部设备数据的信号输入电路,如图30所示,该信号输入电路3000包括:
USB T ype-C接口3010,有USB D+/D-信号引脚;
SOC芯片3020,可供USB D+/D-信号输入的引脚;
USB Type-C接口3010中USB D+/D-信号引脚与SOC芯片3020中可供USB D+/D-信号输入的引脚电连接,以使USB接入设备与SOC芯片3020通过USB D+/D-通道进行数据传输。
USB-C接口是指,采用USB Type-C协议进行数据传输的接口。该USB-C接口可以与设置有USB-C接口的设备(包括USB设备:用于传输USB协议信号的终端设备,如:U盘、硬盘等;ALT MODE设备:用于传输音视频信号的终端设备,如笔记本、手机、PAD等)对插,从而形成USB或ALT MODE通信连接。
SOC芯片3020是指片上系统(System on a chip),用于对音视频信号进行处理的芯片,可以实现数据的发送与接收。SOC芯片3020具有USB DFP接口,用于实现USB3.0/USB2.0的信号传输功能;同时,其还可以接收音视频数据信号,如HDMI信号、DP信号等。举例而言,SOC芯片3020可包括IIC(集成电路总线)主机模块,用于实现IIC控制和固件升级;USB 3.0DFP 接口,用于实现USB 3.0DFP功能;USB 2.0DFP接口,用于实现USB 2.0DFP功能;以及HDMI SINK模块,用于实现HDMI SINK(即HDMI协议中最小化传输差分信号TMDS的接收端)功能。
进一步的,该USB 3.0DFP接口和该USB2.0DFP接口可具体合成一个DFP接口,用于兼顾USB 3.0和USB 2.0信号的传输;同样,该USB 3.0DFP接口和该USB2.0DFP接口也可具体分为两个接口,用于分别实现USB 3.0DFP功能和USB 2.0DFP功能。
本申请实施例中的USB-C接口3010具有USB D+/D-信号引脚,用于输入USB 2.0信号,对应的,SOC芯片3020提供可供该USB D+/D-信号输入的引脚,用于接收从外部设备传输的USB 2.0信号。通过将两者对应的引脚进行电连接,从而实现外部设备的USB 2.0信号传输功能,进而在电子设备终端(电视终端)实现USB-C接口的USB协议下信号的传输功能应用。
进一步的,SOC芯片3020,可供USB SSTX/RX信号输入的引脚,以及可供HDMI格式输入的引脚;
复合开关芯片3030,有两路高速差分对信号输入引脚,与USB TYPE-C接口USB TX1/2和RX1/2连接;
其中,复合开关芯片3030的控制引脚与控制芯片3040中另一路控制信号输出引脚电连接,任一可选通的两路输出引脚中,一路与SOC芯片3020中可供USB SSTX/RX信号输入的引脚电连接;另一路与SOC芯片3020中可供HDMI格式输入的引脚电连接。
控制芯片是指,USB-C协议中的配置通道(Configuration Channel,CC模块)和/或电源传输通道(Power Delivery,PD模块)。控制芯片3040可根据实际需求具体设置为配置通道(即CC模块),或者设置为电源传输通道(即PD模块),也可以设置为配置通道和电源传输通道的整体(即CC+PD模块)。
本方案中控制芯片3040为CC+PD模块,可以理解的是本方案中控制芯片也可以作为带有MCU处理功能的CC模块或者PD模块,此处不做过多赘述。
进一步的,控制芯片3040支持USB-C协议规范中CC(Channel Configuration)沟通和PD(POWER DELIVERY)协议,一方面通过CC通道,对外部设备的正反插进行适配、确认外部设备类型及获得ALT MODE设备的电源传输信息PD;另一方面对外进行CC信号与SBU信号的沟通,其配备billboard功能,通过控制芯片3040中连接端子与USB-C接口3020中USB D+/D-信号引脚点电连接,用于在外接ALT MODE设备时,使控制芯片3040反馈billboard信息给该外接ALT MODE设备。
进一步的,SOC芯片3030包括:可供USB SSTX/RX信号输入的引脚,以及可供音视频格式输入的引脚;其中,该可供USB SSTX/RX信号输入的引脚作为SOC芯片3030的USB 3.0DFP接口中的功能性引脚,用于USB 3.0设备传输USB 3.0信号;而该可供音视频格式输入的引脚作为SOC芯片3030中音视频模块的功能性引脚,用于ALT MODE设备传输音视频信号。
进一步的,复合开关芯片3030还包括有两路高速差分对信号输入引脚,其分别与USB-C接口3020的信号引脚USB TX1/2和RX1/2连接,可用于传输ALT MODE设备输入的DP信号或者USB 3.0信号。
同时,复合开关芯片3030的控制引脚与控制芯片3040中另一路控制信号C2输出引脚电连接,任一可选通的两路输出引脚中,一路与所述SOC芯片中可供所述USB SSTX/RX信号输入的所述引脚电连接;另一路与所述SOC芯片中可供音视频格式输入的所述引脚电连接。
具体的,控制芯片3040检测USB-C接口3020的接入设备类型,当外接设备为USB设备时,控制芯片3040通过控制信号C2控制复合开关芯片3030,选通USB-C接口3020中一路高速差分对传输USB 3.0信号,如选通高速差分对TX1/RX1、或者选通高速差分对TX2/RX2将USB 3.0信号经由复合开关芯片3030传输至SOC芯片3030的USB 3.0DFP接口;当外接设备为ALT MODE设备时,选通USB-C接口3020中至少一路高速差分对传输音视频信号,如选通高速差分对TX1/RX1和/或高速差分对TX2/RX2将音视频信号传输至SOC芯片3030的音视频端子模块。其中,USB-C协议中提供的USB-C接口 中高速差分对的选通方式可以如图22a~22c所示。
具体的,信号输入电路3000包括DP-HDMI模块3060,其中,DP-HDMI模块3060的HPD端子与控制芯片3040电连接,用于判断并确认USB-C接口3020接入的外接设备与DP-HDMI模块3060的连通状态,DP-HDMI模块3060的输入端与复合开关芯片3030连接,用于在外接设备为ALT MODE设备时,根据复合开关芯片3030选通,DP-HDMI模块3060的输出引脚与SOC芯片3030中可供HDMI格式输入的引脚电连接。
进一步的,DP-HDMI模块3060还通过信号线IIC2(Inter IC BUS)与SOC芯片3030电连接,通过IIC2获取接收端HDMI Sink的EDID(Extended Display Identification Data,扩展显示标识数据)等信息,并通过信号线HDMI HPD建立HDMI HPD连接。在建立连接后,DP-HDMI模块3060通过信号线HDMI向接收端HDMI SINK模块发送转换后的HDMI数据,供SOC芯片3030显示使用。
进一步的,控制芯片3040与USB-C接口3020还通过交互CC信号确定USB-C接口3020外接设备的供电状态。在USB-C接口3020外接的ALT MODE设备需要供电时,控制芯片3040将该电子终端设备设置为电源PD Source以向视频接口设备DP供电。本实施例中,通过控制芯片3040设置电子终端设备为视频接口设备DP供电,可以延长外接ALT MODE设备的使用时间。
控制芯片3040还通过信号线C3与SOC芯片3030连接,用于两者之间数据交互,还可以作为与SOC芯片3030连接的其他通讯接口为控制芯片3040中软件升级及控制使用。需要说明的是,信号线C3可以根据具体场景选择保留或者删除,本实施例不作限定。
本申请实施例提供的方案中,检测接入的外部设备类型,当接入设备传输USB 2.0信号时,直接通过USB D+/D-通道进行USB 2.0数据的传输;当外部设备传输USB 3.0信号时,通过复合开关SSTX/SSRX通道传输USB 3.0信号,当外部设备传输音视频信号(如HDMI信号),通过复合开关与SOC 芯片的HDMI SINK模块进行数据交互;同时,本申请实施例提供的方案,在外接设备异常时不再与外部设备交互billboard信息,进而实现不同外部设备与SOC芯片的数据传输。
实施例7
本申请实施例7还提供一种通过USB TYPE C接口接收来自外部设备数据的电子终端设备,如图31所示,电子终端设备3100包括显示屏3110和信号输入电路3120,其中,显示屏3110被配置为显示画面,信号输入电路3120还包括SOC芯片3121,控制芯片3122(CC+PD),USB-C接口3123,其中USB-C接口3123用于接入外部设备,控制芯片3122用于控制使外部设备通过USB-C接口3123与SOC芯片3121完成数据交互,实现将外部设备的信号传输至SOC芯片3121中,进而SOC芯片3121驱动显示屏3110显示画面。
具体的,当外部设备为USB协议设备时,控制芯片3122控制USB 2.0/USB3.0信号通过USB-C接口3121传输至SOC芯片3121,进而驱动显示屏3110显示相关信息;当外部设备为ALT MODE设备时,控制芯片3122控制音视频信号通过USB-C接口3121传输至SOC芯片3121,进而驱动显示屏3110显示相关画面。
进一步的,信号输入电路3120可采用上述实施例6中任一信号输入电路,相应的,外部设备与SOC芯片3121的数据传输过程具体可参考上述实施例6中对应的数据传输过程,此处不做过多赘述。
实施例8
本申请实施例8还提供一种电视终端,如图32所示,该电视终端3200包括:显示屏3210、信号输入电路3220及供电电路3230,其中,显示屏3210被配置显示画面,供电电路3230被配置为设备提供电力,以及信号输入电路3220被配置为用于接收来自外部设备数据;信号输入电路3220还包括SOC芯片3221,控制芯片3222(CC+PD),USB-C接口3223,其中USB-C接口 3223用于接入外部设备,控制芯片3222用于控制使外部设备通过USB-C接口3223与SOC芯片3221完成数据交互,实现将外部设备的信号传输至SOC芯片3221中,进而SOC芯片3221驱动显示屏3210显示画面。
具体的,当外部设备为USB协议设备时,控制芯片3222控制USB 2.0/USB3.0信号通过USB-C接口3221传输至SOC芯片3221,进而驱动显示屏3210显示相关信息;当外部设备为ALT MODE设备时,控制芯片3222控制音视频信号通过USB-C接口3221传输至SOC芯片3221,进而驱动显示屏3210显示相关画面。
进一步的,信号输入电路3220可采用上述实施例6中任一信号输入电路,相应的,外部设备与SOC芯片3221的数据传输过程具体可参考上述实施例6中对应的数据传输过程,此处不做过多赘述。
实施例9
本申请实施例9还提供一种可兼容USB和ALT MODE的外部设备数据输入的信号输入方法,如图33所示,该方法包括:
步骤S3210,识别USB TYPE-C接口接入设备类型
具体的,控制芯片通过CC通道与USB-C接口的CC引脚进行信号交互,进而获得外接设备的身份信息(例如VDM信息、ID信息等),根据该信息判断接入的外接设备类型。
示例性的,也可以在控制芯片中预存有切换模式与接入设备类型信息(如VDM信息、ID信息)的映射关系,当接入不同模式的外接设备时,可通过从读取类似信息,并与映射关系进行匹配判断接入设备类型。当然,需要注意的是,USB-C接口接入信号类型的识别方式还有其他多种,此处不做过多赘述。
步骤S3220,复合开关芯片接收控制芯片的控制信号,并根据该控制信号,任一可选通的两路输出引脚中,一路与SOC芯片中可供所述USB SSTX/RX信号输入的引脚电连接;另一路与SOC芯片中可供HDMI格式输入的引脚电 连接。
具体的,控制芯片检测USB-C接口的接入设备类型,当外接设备为USB设备时,控制芯片通过控制信号控制复合开关芯片(即开关MUX),选通USB-C接口中一路高速差分对传输USB 3.0信号,如选通高速差分对TX1/RX1、或者选通高速差分对TX2/RX2将USB 3.0信号经由复合开关芯片传输至SOC芯片的USB 3.0DFP接口;当外接设备为ALT MODE设备时,选通USB-C接口中至少一路高速差分对传输音视频信号,如选通高速差分对TX1/RX1和/或高速差分对TX2/RX2将音视频信号传输至SOC芯片的音视频模块。
本申请实施例提供的信号输入方法中,检测外部接入设备类型,当接入设备传输USB 2.0信号时,直接通过USB D+/D-通道进行USB 2.0数据的传输;当外部设备传输USB 3.0信号时,通过复合开关SSTX/SSRX通道传输USB 3.0信号,当外部设备传输音视频信号(以HDMI信号为例),通过复合开关与SOC芯片的HDMI SINK模块进行数据交互;进而实现不同外部设备与SOC芯片的数据传输。
关于上述实施例中的方法,其中各个芯片或者模块执行操作的具体方式已经在信号输入电路的实施例中进行了详细描述,此处将不做详细阐述说明。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (22)

  1. 一种终端设备,其特征在于,所述终端设备包括:
    SOC芯片,设置有DFP接口,所述DFP接口通过USB D+/D-差分对与开关模块连接,所述DFP接口与所述开关模块之间的USB D+/D-差分对为第一通道;
    所述USB Type-C接口主控模块,设置有UFP接口,所述UFP接口通过USB D+/D-差分对与所述开关模块连接,所述UFP接口与所述开关模块之间的USB D+/D-差分对为第二通道;
    USB Type-C接口,通过USB D+/D-差分对与所述开关模块连接;
    所述USB Type-C接口主控模块,还通过控制信号线与所述开关模块连接,用以控制所述开关模块导通所述第一通道,关闭所述第二通道,或者导通所述第二通道,关闭所述第一通道。
  2. 如权利要求1所述的终端设备,其特征在于,
    所述USB Type-C接口主控模块,还通过控制信号线与所述USB Type-C接口连接,用于与所述USB Type-C接口交互CC信号,以识别所述USB Type-C接口外接的设备的类型,根据识别出的所述类型,控制所述开关模块导通所述第一通道,关闭所述第二通道,或者导通所述第二通道,关闭所述第一通道。
  3. 如权利要求2所述的终端设备,其特征在于,
    所述USB Type-C接口主控模块,用于在识别出所述USB Type-C接口外接的设备的类型为USB设备时,控制所述开关模块导通所述第一通道,关闭所述第二通道;在识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,导通所述第二通道,关闭所述第一通道。
  4. 如权利要求3所述的终端设备,其特征在于,所述终端设备还包括复用开关;
    所述复用开关,通过USB SSTX/RX差分对与所述USB Type-C接口连接, 还通过USB SSTX/RX差分对与所述DFP接口连接,所述复用开关与所述DFP接口之间的USB SSTX/RX差分对为第三通道;
    所述SOC芯片还包括HDMI接口,可供HDMI信号的接收或发送;
    所述复用开关,还通过HDMI信号通道与所述HDMI接口连接,所述复用开关与所述HDMI接口之间的HDMI信号通道为第四通道;
    所述USB Type-C接口控制模块,还通过控制信号线与所述复用开关连接,用以在识别出所述USB Type-C接口外接的设备的类型为USB设备时,控制所述复用开关导通所述第三通道,关闭所述第四通道;或者在识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,控制所述复用开关导通所述第四通道,关闭所述第三通道。
  5. 如权利要求4所述的终端设备,其特征在于,所述终端设备还包括所述复用开关与所述HDMI接口之间的协议转换模块,
    所述协议转换模块,用于在所述ALT MODE设备传输DP信号时,将所述DP信号转换为HDMI信号,以将所述HDMI信号传输至所述SOC芯片的HDMI接口。
  6. 如权利要求1至5中任一项所述的终端设备,其特征在于,所述DFP接口包括USB2.0接口和USB3.0接口;
    当所述USB Type-C接口外接的设备的类型为USB设备时,所述DFP接口通过所述第一通道与所述USB Type-C接口外接的设备交互USB2.0信号;或者,所述DFP接口通过所述第三通道与所述USB Type-C接口外接的设备交互USB3.0信号。
  7. 如权利要求6所述的终端设备,其特征在于,当所述外接的设备的类型为USB DFP设备时,所述USB Type-C接口适配为USB UFP模式;在所述外接的设备支持DP DFP模式时,所述USB Type-C接口切换到DO DFP模式进行DP信号传输。
  8. 如权利要求6所述的终端设备,其特征在于,当所述外接的设备的类型为USB UFP设备时,所述USB Type-C接口适配为USB DFP模式。
  9. 如权利要求1至5中任一项所述的终端设备,其特征在于,所述UFP接口为billboard信号输出接口,可供为billboard信号的输出;
    当所述USB Type-C接口外接的设备的类型为ALT MODE设备时,所述billboard信号输出接口可通过所述第二通道向所述USB Type-C接口外接的ALT MODE设备发送billboard信号。
  10. 如权利要求9所述的终端设备,其特征在于,所述开关模块默认导通所述第一通道。
  11. 如权利要求10所述的终端设备,其特征在于,所述billboard信号包括所述终端设备支持的传输模式信息;
    所述USB Type-C接口控制模块用于:
    在检测到所述USB Type-C接口插入计算机时,控制所述开关模块切换至所述第二通道,使所述计算机获取所述传输模式信息后,控制所述开关模块切换至第一通道。
  12. 一种如权利要求1-9中任一项所述的终端设备的控制方法,其特征在于包括:
    USB Type-C接口主控模块向所述开关模块发送第一控制信号或第二控制信号,所述第一控制信号用于控制所述开关模块导通所述第一通道,关闭所述第二通道,所述第二控制信号用于控制所述开关模块导通所述第二通道,关闭所述第一通道。
  13. 如权利要求12所述的控制方法,其特征在于,USB Type-C接口主控模块在发送所述第一控制信号之前,还包括:
    所述USB Type-C接口主控模块与所述USB Type-C接口交互CC信号;
    根据所述CC信号,识别所述USB Type-C接口外接的设备的类型。
  14. 如权利要求13所述的控制方法,其特征在于,所述USB Type-C接口主控模块向所述开关模块发送第一控制信号或第二控制信号,包括:
    当识别出所述USB Type-C接口外接的设备的类型为USB设备时,向所述开关模块发送所述第一控制信号;
    当识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,向所述开关模块发送所述第二控制信号。
  15. 如权利要求14所述的控制方法,其特征在于,还包括:
    当识别出所述USB Type-C接口外接的设备的类型为USB设备时,还向所述复用开关发送所述第三控制信号,所述第三控制信号用于控制所述复用开关导通所述第三通道,关闭所述第四通道;
    当识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,还向所述复用开关发送所述第四控制信号,所述第四控制信号用于控制所述复用开关导通所述第四通道,关闭所述第三通道。
  16. 一种终端设备,其特征在于,包括:
    SOC芯片,提供USB D+/D-差分端子,可供USB D+/D-信号的输入或输出,与开关模块提供的USB D+/D-差分端子电连接,构成可选通的第一通道;
    C接口主控模块,提供USB D+/D-差分端子,可供USB D+/D-信号的输入或者billboard信号的输出,与所述开关模块提供的USB D+/D-差分端子电连接,构成可选通的第二通道;
    USB Type-C接口,提供USB D+/D-差分端子,可供USB D+/D-信号的输入或输出,与所述开关模块提供的USB D+/D-差分端子电连接;
    所述C接口主控模块,还提供控制信号输出引脚,可供第一控制信号或第二控制信号的输出,其与所述开关模块的控制信号输入引脚电连接;所述第一控制信号用于导通所述第一通道,关闭所述第二通道,所述第二控制信号用于导通所述第二通道,关闭所述第一通道。
  17. 如权利要求16所述的终端设备,其特征在于,
    所述C接口主控模块,其提供CC引脚,所述CC引脚与所述USB Type-C接口中的CC引脚电连接,可供CC信号的输入或输出,以识别所述C接口外接的设备的类型。
  18. 如权利要求17所述的终端设备,其特征在于,
    所述C接口主控模块,用于在识别出所述USB Type-USB TYPE-C接口外 接的设备的类型为USB设备时,向所述开关模块的所述控制信号输入引脚输入所述第一控制信号;在识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,向所述开关模块的所述控制信号输入引脚输入所述第二控制信号。
  19. 如权利要求18所述的终端设备,其特征在于,所述终端设备还包括复用开关;
    所述SOC芯片,还提供USB SSTX/RX差分端子,可供USB3.0信号的输入或输出,与所述复用开关的USB SSTX/RX差分端子电连接,构成第三通道;
    所述USB Type-C接口,还提供USB SSTX/RX差分端子,可供USB3.0信号的输入或输出,与所述复用开关的USB SSTX/RX差分端子电连接;
    所述C接口主控模块,还提供用于输出第三控制信号的控制信号输出引脚,其与所述复用开关的一路控制信号输入引脚电连接;所述第三控制信号用于导通所述第三通道,关闭所述第四通道。
  20. 如权利要求19所述的终端设备,其特征在于,
    所述SOC芯片,还提供HDMI差分端子,可供HDMI信号的接收或发送,
    所述HDMI差分端子与所述复用开关之间的HDMI差分端子电连接,构成可选通的所述第四通道;
    所述C接口主控模块,还提供用于输出第四控制信号的控制信号输出引脚,与所述复用开关的另一路控制信号输入引脚电连接;所述第四控制信号用于导通所述第四通道,关闭所述第三通道。
  21. 如权利要求20所述的终端设备,其特征在于,所述终端设备还包括协议转换模块,所述协议转换模块,用于在所述ALT MODE设备传输DP信号时,将所述DP信号转换为HDMI信号,以将所述HDMI信号传输至所述SOC芯片的HDMI接口;
    所述SOC芯片的HDMI差分端子与所述协议转换模块的HDMI差分端子电连接,所述协议转换模块的DP差分端子与所述复用开关的DP差分端子电 连接,所述DP差分端子可供DP信号的输入或输出。
  22. 如权利要求18-21中任一项所述的终端设备,其特征在于,
    所述C接口主控模块,还用于在识别出所述USB Type-C接口外接的设备的类型为USB设备时,向所述复用开关的控制信号输入引脚输入所述第三控制信号;在识别出所述USB Type-C接口外接的设备的类型为ALT MODE设备时,向所述复用开关的控制信号输入引脚输入所述第四控制信号。
PCT/CN2018/096527 2017-07-20 2018-07-20 一种终端设备及其控制方法 WO2019015681A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18835936.8A EP3657778B1 (en) 2017-07-20 2018-07-20 Terminal device and control method therefor
US16/747,296 US11232057B2 (en) 2017-07-20 2020-01-20 Terminal device and control method thereof

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201710598183.5A CN107277416A (zh) 2017-07-20 2017-07-20 电视终端及控制方法
CN201710598183.5 2017-07-20
CN201810076750.5 2018-01-26
CN201810077737.1 2018-01-26
CN201810078504.3A CN108259803B (zh) 2017-07-20 2018-01-26 电子终端设备、电视终端、信号输入电路及方法
CN201810078871.3 2018-01-26
CN201810077737.1A CN108235129A (zh) 2017-07-20 2018-01-26 一种电视机usb-c接口连接外部设备的控制方法及电视机
CN201810079012.6A CN109286838B (zh) 2017-07-20 2018-01-26 电子终端设备、电视终端、信号输入电路及方法
CN201810076750.5A CN109286764B (zh) 2017-07-20 2018-01-26 具有usb type-c接口的电视机
CN201810076150.9 2018-01-26
CN201810077730.XA CN108337463A (zh) 2017-07-20 2018-01-26 一种电视机及其usb-c接口连接外部设备的控制方法
CN201810078871.3A CN109286771B (zh) 2017-07-20 2018-01-26 一种终端设备及其控制方法
CN201810077730.X 2018-01-26
CN201810076150.9A CN109286770B (zh) 2017-07-20 2018-01-26 具有USB Type-C接口的终端设备和数据通信方法
CN201810078504.3 2018-01-26
CN201810079012.6 2018-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/747,296 Continuation US11232057B2 (en) 2017-07-20 2020-01-20 Terminal device and control method thereof

Publications (1)

Publication Number Publication Date
WO2019015681A1 true WO2019015681A1 (zh) 2019-01-24

Family

ID=65015803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096527 WO2019015681A1 (zh) 2017-07-20 2018-07-20 一种终端设备及其控制方法

Country Status (2)

Country Link
US (1) US11232057B2 (zh)
WO (1) WO2019015681A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677602A (zh) * 2019-09-30 2020-01-10 重庆惠科金扬科技有限公司 显示设备的通道模式切换方法、装置及显示设备
US20220164432A1 (en) * 2020-11-25 2022-05-26 Canon Kabushiki Kaisha Electronic device and control method
US20220327087A1 (en) * 2019-10-18 2022-10-13 Autel Intelligent Technology Corp., Ltd. Interface circuit, and method and apparatus for interface communication thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11055253B2 (en) * 2017-10-18 2021-07-06 Nvidia Corporation Method to increase the bandwidth of a USB-C connector
CN110377545B (zh) * 2019-06-12 2023-07-21 苏州佳世达电通有限公司 双重用途埠的判断方法及其系统
CN112241277A (zh) * 2019-07-19 2021-01-19 瑞昱半导体股份有限公司 Ic固件更新方法
KR20220058538A (ko) * 2019-09-03 2022-05-09 엘지전자 주식회사 데이터를 처리하는 방법 및 그 전자 장치
CN213303021U (zh) * 2020-03-02 2021-05-28 威锋电子股份有限公司 连接接口转换芯片与连接接口转换装置
NL2025755B1 (en) * 2020-06-04 2022-01-26 Microsoft Technology Licensing Llc Systems and methods of controlling communication modes in an electronic device
US11507200B2 (en) * 2020-06-23 2022-11-22 Action Star Technology Co., Ltd. KVM device supporting transmission of super speed USB signal and displayport video signal
TWI733535B (zh) 2020-07-24 2021-07-11 技嘉科技股份有限公司 顯示系統及顯示裝置
CN112486864A (zh) * 2020-11-20 2021-03-12 广州朗国电子科技有限公司 一种Type-C信源传输画面自动调整方法、电子设备、存储介质
CN114564426A (zh) * 2020-11-27 2022-05-31 中国科学院声学研究所 一种嵌入式多接口数据转换装置
TWI754477B (zh) * 2020-12-01 2022-02-01 創惟科技股份有限公司 Usb訊號傳輸裝置、usb纜線及其操作方法
WO2022152321A1 (zh) * 2021-01-14 2022-07-21 海信视像科技股份有限公司 显示设备及工作模式设置方法
US11487697B2 (en) * 2021-01-18 2022-11-01 Shenzhen Paramoun T Tech Co., Ltd HDMI-free display device and method for type interface being compatible with HDMI
CN113179377B (zh) * 2021-03-17 2022-11-08 青岛小鸟看看科技有限公司 一种vr设备的信号切换方法和一种vr设备
CN115190260A (zh) * 2021-04-02 2022-10-14 瑞昱半导体股份有限公司 影音传输系统
CN113784247A (zh) * 2021-08-30 2021-12-10 维沃移动通信有限公司 电子设备、耳机转接线及电子设备组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761624A (zh) * 2012-06-07 2012-10-31 华为技术有限公司 一种调试网口出面板的方法、装置及线缆
CN106021150A (zh) * 2016-04-29 2016-10-12 青岛海信电器股份有限公司 Type-C接口设备、通信系统和通信方法
US20170109312A1 (en) * 2015-10-16 2017-04-20 Dell Products L.P. Secondary data channel communication system
CN107277416A (zh) * 2017-07-20 2017-10-20 青岛海信电器股份有限公司 电视终端及控制方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201919041U (zh) 2010-12-02 2011-08-03 惠州Tcl移动通信有限公司 多外设共用接口的终端设备
KR20120061711A (ko) 2010-12-03 2012-06-13 삼성전자주식회사 모바일 장치 및 이를 포함하는 컴퓨팅 시스템
CN102687520A (zh) 2012-03-05 2012-09-19 戎卫华 一种实现串口通信的数字电视及系统
KR20140028383A (ko) 2012-08-28 2014-03-10 삼성전자주식회사 사용자 단말 장치 및 그 제어 방법
EP2711843B1 (en) 2012-09-21 2016-04-06 Nxp B.V. DisplayPort over USB mechanical interface
CN103888829B (zh) 2014-03-27 2018-03-23 青岛海信宽带多媒体技术有限公司 一种连通usb端口的方法和设备
US9558144B2 (en) 2014-09-26 2017-01-31 Intel Corporation Serial bus electrical termination control
US9952996B2 (en) * 2014-10-15 2018-04-24 Icron Technologies Corporation Devices and methods for providing concurrent superspeed communication and four-lane displayport communication via a USB type-C receptacle
KR20160092671A (ko) 2015-01-28 2016-08-05 삼성전자주식회사 전자 장치 및 전력 관리 방법
CN106292973B (zh) 2015-06-29 2020-01-31 联想(北京)有限公司 一种信息处理方法、电子设备系统及传输线
CN205139907U (zh) 2015-08-05 2016-04-06 东莞铭基电子科技集团有限公司 一种USB Type-C数据线
CN106445858B (zh) 2015-08-13 2020-06-23 联想(北京)有限公司 一种信息处理方法、信息处理模组和电子设备
CN105138365B (zh) 2015-08-21 2019-01-08 硅谷数模半导体(北京)有限公司 接口转换器的升级方法和装置
CN205017486U (zh) 2015-09-15 2016-02-03 深圳Tcl数字技术有限公司 模块电视
JP6661342B2 (ja) 2015-11-26 2020-03-11 Dynabook株式会社 ポート接続回路、ポート接続制御方法、電子機器
CN106844252B (zh) 2015-12-07 2020-03-24 瑞昱半导体股份有限公司 Usb转换电路与信号转换及传输方法
CN205265858U (zh) 2015-12-24 2016-05-25 浙江大学自贡创新中心 一种配置usb接口转接器的电视机
CN105491421B (zh) 2015-12-29 2018-10-12 康佳集团股份有限公司 一种基于Type-C接口的无电源线电视
US10289584B2 (en) * 2016-01-06 2019-05-14 Toshiba Client Solutions CO., LTD. Using a standard USB Type-C connector to communicate both USB 3.x and displayport data
CN105630726B (zh) 2016-01-29 2018-11-20 努比亚技术有限公司 复用usb端口的双通道移动终端
CN105703185B (zh) 2016-02-18 2018-03-16 北京小米移动软件有限公司 信号传输方法、装置及转接头
CN105867874A (zh) 2016-03-25 2016-08-17 乐视控股(北京)有限公司 用户设备
CN205644533U (zh) 2016-04-11 2016-10-12 惠州市德泓科技有限公司 一种USB Type-c接口的多功能扩展装置
CN205844970U (zh) 2016-04-25 2016-12-28 合肥惠科金扬科技有限公司 一种具有USB Type‑C接口的显示终端和显示系统
CN105867593B (zh) 2016-05-17 2018-11-13 深圳慧能泰半导体科技有限公司 一种USB Type-C接口电路及其控制装置
CN205680089U (zh) 2016-05-27 2016-11-09 深圳市昂纬科技开发有限公司 一种基于usb type‑c接口的信号处理电路
CN106060633A (zh) 2016-05-31 2016-10-26 青岛海信电器股份有限公司 一种信号源的图像预览方法及电视终端
CN105915898B (zh) 2016-06-07 2018-06-19 深圳创维-Rgb电子有限公司 一种电视机的串口调试装置及其系统
CN106201951B (zh) 2016-07-19 2019-03-19 青岛海信电器股份有限公司 基于USB Type-C接口的终端设备、外接设备及供电系统
CN106815160A (zh) 2016-12-09 2017-06-09 硅谷数模半导体(北京)有限公司 布告板实现方法及布告板实现装置
CN107544934B (zh) * 2017-09-07 2020-07-07 龙迅半导体(合肥)股份有限公司 一种USB Type-C线缆的双向信号调节芯片及USB Type-C线缆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761624A (zh) * 2012-06-07 2012-10-31 华为技术有限公司 一种调试网口出面板的方法、装置及线缆
US20170109312A1 (en) * 2015-10-16 2017-04-20 Dell Products L.P. Secondary data channel communication system
CN106021150A (zh) * 2016-04-29 2016-10-12 青岛海信电器股份有限公司 Type-C接口设备、通信系统和通信方法
CN107277416A (zh) * 2017-07-20 2017-10-20 青岛海信电器股份有限公司 电视终端及控制方法
CN108235129A (zh) * 2017-07-20 2018-06-29 青岛海信电器股份有限公司 一种电视机usb-c接口连接外部设备的控制方法及电视机
CN108259803A (zh) * 2017-07-20 2018-07-06 青岛海信电器股份有限公司 电子终端设备、电视终端、信号输入电路及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677602A (zh) * 2019-09-30 2020-01-10 重庆惠科金扬科技有限公司 显示设备的通道模式切换方法、装置及显示设备
CN110677602B (zh) * 2019-09-30 2022-10-25 重庆惠科金扬科技有限公司 显示设备的通道模式切换方法、装置及显示设备
US20220327087A1 (en) * 2019-10-18 2022-10-13 Autel Intelligent Technology Corp., Ltd. Interface circuit, and method and apparatus for interface communication thereof
US20220164432A1 (en) * 2020-11-25 2022-05-26 Canon Kabushiki Kaisha Electronic device and control method

Also Published As

Publication number Publication date
US11232057B2 (en) 2022-01-25
US20200226087A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2019015681A1 (zh) 一种终端设备及其控制方法
EP3657778B1 (en) Terminal device and control method therefor
US10409752B2 (en) Bidirectional signal conditioning chip including processor determining data transmission direction and type of transmitted data of USB type-C cable and USB type-C cable including the same
CN107111588B (zh) 经由USB端口使用PCIe协议的数据传输
US8151018B2 (en) Dual-mode data transfer of uncompressed multimedia contents or data communications
US8799537B1 (en) Transfer of uncompressed multimedia contents and data communications
US9280506B1 (en) Transfer of uncompressed multimedia contents or data communications
US20130217274A1 (en) Connector for achieving complete interoperability between different types of data and multimedia interfaces
US10204067B2 (en) Data transfer device of display equipment and data transfer method
US20210200705A1 (en) Terminal, terminal peripheral, signal transmission system and signal sending and receiving method
CN107622031B (zh) 一种基于intel kabylake平台的双type-c接口装置
CN110418100A (zh) 视频会议系统及其传送端装置
CN213151196U (zh) 一种信号转接器
WO2024022195A1 (zh) 电子设备、快充方法、装置、系统及可读存储介质
CN212659070U (zh) 一种转接器
CN209560528U (zh) 接口兼容装置及显示平板
CN217883623U (zh) 一种接口电路
WO2023226118A1 (zh) 显示器模组及计算机设备
CN219997567U (zh) 一种支持多主机连接的Type-C拓展坞及其系统
CN217134842U (zh) 一种集线器
WO2023065162A1 (zh) 移动存储装置的数据传输方法、装置和存储介质
CN218350864U (zh) 一种显示器
CN117492525B (zh) Usb扩展设备、带宽管理方法和可读存储介质
WO2022170861A1 (zh) 电子设备的数据传输方法、电子设备及接口电路
CN210983387U (zh) 一种显示器的底座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018835936

Country of ref document: EP

Effective date: 20200220