WO2019015457A1 - 盲检测参数获取方法、相关设备及系统 - Google Patents

盲检测参数获取方法、相关设备及系统 Download PDF

Info

Publication number
WO2019015457A1
WO2019015457A1 PCT/CN2018/093321 CN2018093321W WO2019015457A1 WO 2019015457 A1 WO2019015457 A1 WO 2019015457A1 CN 2018093321 W CN2018093321 W CN 2018093321W WO 2019015457 A1 WO2019015457 A1 WO 2019015457A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
blind detection
pdcch
signal
detection
Prior art date
Application number
PCT/CN2018/093321
Other languages
English (en)
French (fr)
Inventor
姜大洁
姜蕾
秦飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/632,495 priority Critical patent/US11418283B2/en
Priority to EP18834827.0A priority patent/EP3657862A4/en
Publication of WO2019015457A1 publication Critical patent/WO2019015457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a blind detection parameter acquisition method, related device, and system.
  • the user terminal performs blind detection on the signal sent by the base station in some scenarios, for example, performing blind detection on the physical downlink control channel (PDCCH) to obtain the PDCCH signal sent by the base station.
  • PDCCH physical downlink control channel
  • the user terminal needs to perform a maximum of 44 blind detections, the processing complexity of such blind detection is high, resulting in serious power consumption of the user terminal.
  • an embodiment of the present disclosure provides a method for acquiring a blind detection parameter, which is applied to a user terminal, and includes:
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • an embodiment of the present disclosure provides a method for acquiring a blind detection parameter, which is applied to a base station, and includes:
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel
  • the communication signal or the signal transmitted by the communication channel all correspond to the blind detection parameter.
  • an embodiment of the present disclosure provides a user terminal, including:
  • a detecting module configured to detect a communication signal or a communication channel, and obtain a detection result
  • An obtaining module configured to acquire a blind detection parameter corresponding to the detection result
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • an embodiment of the present disclosure provides a base station, including:
  • a determining module configured to determine a blind detection parameter of the user terminal
  • a sending module configured to send a communication signal to the user terminal or send a signal to the user terminal on a communication channel, so that the user terminal detects the communication signal or the communication channel, obtains a detection result, and obtains The blind detection parameter corresponding to the detection result;
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel
  • the communication signal or the signal transmitted by the communication channel all correspond to the blind detection parameter.
  • an embodiment of the present disclosure provides a user terminal, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor implements the implementation of the disclosure when the computer program is executed.
  • an embodiment of the present disclosure provides a base station, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the computer program to implement an embodiment of the present disclosure
  • the steps in the method for obtaining blind detection parameters of the base station side are provided.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer program is executed by a processor, and the method for acquiring a blind detection parameter on the user terminal side provided by the embodiment of the present disclosure is implemented. step.
  • an embodiment of the present disclosure provides a computer readable storage medium, where a computer program is stored, and when the computer program is executed by a processor, the steps in the method for acquiring a blind detection parameter of the base station side provided by the embodiment of the present disclosure are implemented. .
  • the embodiment of the present disclosure provides a blind detection parameter acquisition system, including the user terminal and the base station provided by the embodiments of the present disclosure.
  • FIG. 1 is a structural diagram of a blind detection parameter acquisition system according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for acquiring a blind detection parameter according to an embodiment of the present disclosure
  • FIG. 3 is a second flowchart of a method for acquiring blind detection parameters according to an embodiment of the present disclosure
  • FIG. 4 is a third flowchart of a blind detection parameter acquisition method according to an embodiment of the present disclosure.
  • FIG. 5 is a structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a second structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a third structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a fourth structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a fifth structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a sixth structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a seventh structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a structural diagram 9 of a user terminal according to an embodiment of the present disclosure.
  • FIG. 15 is a second structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 1 is a structural diagram of a blind detection parameter acquisition system according to an embodiment of the present disclosure.
  • the user terminal 11 and the base station 12 are included, where the user equipment 11 (User Equipment, UE) may be a mobile phone. , Tablet PC, Laptop Computer, Personal Digital Assistant (PDA), Mobile Internet Device (MID) or Wearable Device, etc.
  • the terminal side device it should be noted that the specific type of the user terminal 11 is not limited in the embodiment of the present disclosure.
  • the foregoing base station 12 may be a 5G base station (for example, gNB, 5G NR NB), or may be a 4G base station (for example, an eNB), or may be a 3G base station (for example, NB), etc., and it should be noted that, in the implementation of the present disclosure, The specific type of base station 12 is not limited in the example.
  • FIG. 2 is a flowchart of a method for acquiring a blind detection parameter according to an embodiment of the present disclosure. The method is applied to a user terminal. As shown in FIG. 2, the method includes the following steps:
  • Step 201 Perform a detection on a communication signal or a communication channel to obtain a detection result.
  • the detection may be to detect a wake-up signal (WUS) or a sleep signal energy, level, sequence content, payload or indication information, etc., to obtain a corresponding detection result.
  • the detection of the communication channel may be performed by detecting, by the base station, a payload on the communication channel.
  • Step 202 Obtain a blind detection parameter corresponding to the detection result.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • the above wake-up channel may be a channel for transmitting a wake-up signal
  • the above-mentioned sleep channel may be a channel for transmitting a sleep signal.
  • the two channels may belong to the same channel.
  • the above wake-up signal or sleep signal may be sent by the base station.
  • the method for obtaining the blind detection parameter corresponding to the detection result may be: obtaining the blind detection parameter indicated by the detection result, or may obtain the blind detection parameter and the like included in the detection result, which is not limited in this embodiment of the disclosure.
  • the above-mentioned blind detection parameter may include a blind detection parameter of the PDCCH.
  • the embodiment of the present disclosure does not limit this. For example, it may also be a blind detection parameter of other channels.
  • the corresponding blind detection parameter is obtained by detecting the communication signal or the communication channel, thereby reducing the number of blind detections of the user terminal, thereby reducing the power consumption of the blind detection of the user terminal, and saving power consumption of the user terminal.
  • the communication signal or the communication channel is detected to obtain a detection result; and the blind detection parameter corresponding to the detection result is acquired; wherein the communication signal includes a wake-up signal or a sleep signal, and the communication channel includes a wake-up channel. Or sleep channel.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel. Or sleep channel.
  • FIG. 3 is a flowchart of a method for acquiring a blind detection parameter according to an embodiment of the present disclosure. The method is applied to a user terminal. The main difference between this embodiment and the embodiment shown in FIG. 2 is that the use is increased. Blind detection parameters, the step of performing PDCCH blind detection. As shown in Figure 3, the following steps are included:
  • Step 301 Perform a detection on a communication signal or a communication channel to obtain a detection result.
  • the foregoing detection may be to detect the energy, level, sequence content, payload or indication information of the wake-up signal or the sleep signal, etc., to obtain a corresponding detection result.
  • Step 302 Obtain a blind detection parameter corresponding to the detection result.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • the sleep channel when the sleep channel is a signal that is not detected or is detected to be 0, it may indicate that the sleep signal is detected.
  • the blind detection parameter corresponding to the detection result may be a blind detection parameter in a correspondence between the detection result and the blind detection parameter acquired in advance, or may be a blind detection parameter indicated by the indication information in the detection result, and the like.
  • the embodiment of the present disclosure is not limited thereto.
  • the blind detection parameter includes a blind detection parameter of the PDCCH.
  • the blind detection parameter of the PDCCH is obtained by using the wake-up signal or the sleep signal, so that the number of blind detection PDCCHs can be reduced, and the power consumption of the user terminal is saved.
  • the step of detecting the communication signal or the communication channel to obtain the detection result includes: performing state detection on the communication signal or the communication channel to obtain a state detection result; wherein the communication signal or the communication channel passes Start and close keying OOK mode transmission.
  • the foregoing state detection may be detecting an on state or an off state of the communication signal or the communication channel.
  • the state may be detected by using an uncorrelated energy or level, if the energy or level is non-zero. When it is determined, it can be determined to be in the on state. If the energy or level is 0, it can be determined to be in the off state.
  • the wake-up signal or the sleep signal here may be an OOK-corresponding signal, that is, the wake-up signal or the sleep signal is represented by the OOK-corresponding signal, and of course, the payload may also be represented.
  • the blind detection parameter indicated by the state detection result may be obtained by using the state detection result.
  • the blind detection parameter may be determined to include the aggregation level 1, the common search space, and the downlink control. Downlink Control Information format (DCI format) 1 and so on.
  • DCI format Downlink Control Information format
  • the method further includes: performing PDCCH blind detection if the state detection result is in an on state; When the detection result is off, it stays asleep.
  • the PDCCH blind detection is performed, that is, the PDCCH is received, and if it is in the off state, the sleep state is maintained, and specifically, the sleep may be continued, that is, the wake-up signal is received. Or the sleep signal is in a sleep state.
  • the state detection result is the on state, it can be understood that the wake-up signal is received, and if the state detection result is the off state, it can be understood as receiving the sleep signal, or can also be understood as not receiving the signal, because this The result detected may be energy or a level of zero.
  • the user terminal can wake up or sleep in time to save power consumption of the user terminal.
  • the step of performing state detection on the communication signal or the communication channel to obtain a state detection result includes: performing state detection on the communication signal or the communication channel on the at least one resource unit, and obtaining a state detection result, where the state The detection result includes a result of performing state detection on the at least one resource unit; the step of acquiring the blind detection parameter corresponding to the detection result includes: acquiring a blind detection parameter corresponding to the state detection result, and the state The detection state corresponds to a detection state, and the detection state includes an awake state or a sleep state.
  • the state detection is performed on the at least one resource unit, so that at least one state detection result may be obtained, that is, a detection result is obtained on each resource unit, and then the blind detection parameter indicated by the at least one detection result may be determined.
  • the blind detection parameter it may also be determined that the awake state or the sleep state, that is, two blind detection parameters are determined by one detection, and the awake state or the sleep state is determined, thereby saving transmission resources.
  • the state detection result corresponds to the PDCCH aggregation level, to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent by OOK on two resource units, if the user terminal is on both resource units The on state is detected, and the PDCCH aggregation level that the user terminal needs to detect is 4 or 8, and the user terminal performs blind detection according to the information. Of course, if blind detection fails, you can try blind detection based on other aggregation levels. If the user terminal detects the on state and the off state in the two resource units, the PDCCH aggregation level is 2, and the user terminal performs blind detection according to the information.
  • the PDCCH aggregation level is 1, and the user terminal performs blind detection according to the information.
  • blind detection fails, you can try blind detection based on other aggregation levels.
  • the user terminal detects the off state and the off state in the two resource units, the user terminal does not blindly detect the paging signal or the PDCCH, and continues to sleep, that is, the two resource units detect the shutdown.
  • the (off) state and the off state indicate a sleep signal, and the rest includes at least one on state, and is determined to be a wake-up signal.
  • the search space 1 for example, a common search space
  • the test fails you can try blind detection based on other search spaces. If the user terminal detects the off state and the on state in the two resource units, the search space that the user terminal needs to detect is the search space 3 (such as the user terminal dedicated search space 2), and the user terminal follows the Information is blindly detected. If blind detection fails, you can try blind detection based on other search spaces. If the user terminal detects the off state and the off state in the two resource units, the user terminal does not blindly detect the paging signal or the PDCCH, and continues to sleep.
  • the search space 3 such as the user terminal dedicated search space 2
  • the state detection result corresponds to the DCI format that the user terminal needs to detect, to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent by OOK on two resource units, if the user terminal is in two The ON state is detected on the resource unit, and the DCI format that the user terminal needs to detect is DCI format 1, and the user terminal performs blind detection according to the information. If blind detection fails, you can try to blindly detect other DCI formats. If the user terminal detects the on state and the off state in the two resource units, the DCI format that the user terminal needs to detect is DCI format 3, and the user terminal performs blind detection according to the information. If blind detection fails, you can try to blindly detect other DCI formats.
  • the DCI format that the user terminal needs to detect is DCI format 1 and DCI format 3, and the user terminal performs blind detection according to the information. If blind detection fails, you can try to blindly detect other DCI formats. If the user terminal detects the off state and the off state in the two resource units, the user terminal does not blindly detect the paging signal or the PDCCH, and continues to sleep.
  • the status detection result corresponds to the bandwidth segment (Bandwidth parts) that the user terminal needs to detect, to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent by OOK on two resource units, if the user The terminal detects an on state on both resource units, and the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 1, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection on other Bandwidth parts. If the user terminal detects the on state and the off state in the two resource units, the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 2, and the user terminal performs blind detection according to the information.
  • the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 3, and the user terminal performs blind detection according to the information. If blind detection fails, try blind detection on other Bandwidth parts. If the user terminal detects an off state and an off state in two resource units, the user terminal does not blindly detect a paging signal or a PDCCH to continue to sleep.
  • the state detection result corresponds to the time-frequency resource that the user terminal needs to detect, to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent by OOK on two resource units, then two resource units The on state is detected, and the time-frequency resource that the UE needs to detect is the wake-up signal or the first Orthogonal Frequency Division Multiplexing (OFDM) symbol of the subframe in which the sleep signal is located, and the user terminal follows the This information is blindly detected. If the blind detection fails, then blind detection can be attempted on other OFDM symbols (combinations).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the time-frequency resource that the user terminal needs to detect is the wake-up signal or the first two OFDM symbols of the subframe in which the sleep signal is located, and the user terminal.
  • the time-frequency resource that the user terminal needs to detect is the wake-up signal or the first three OFDM symbols of the subframe in which the sleep signal is located, and the UE follows the This information is blindly detected. If the blind test fails, then blind detection can be attempted on other OFDM symbols (combinations). If the user terminal detects an off state and an off state in two resource units, the user terminal does not blindly detect a paging signal or a PDCCH to continue to sleep.
  • the state detection result corresponds to the time interval between the PDCCH and the corresponding wake-up signal or the sleep signal, to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent by OOK on two resource units. If the user terminal detects an on state on both resource units, the time interval between the PDCCH that the user terminal needs to detect and the corresponding wake-up signal or sleep signal is X ms, where X is greater than 0. Integer. If the two resource units of the user terminal detect the on state and the off state, the time interval between the PDCCH that the user terminal needs to detect and the corresponding wake-up signal or sleep signal is Y ms, where Y is An integer greater than 0.
  • the time interval between the PDCCH that the user terminal needs to detect and the corresponding wake-up signal or sleep signal is Z ms, where Z Is an integer greater than 0. If the user terminal detects an off state and an off state in two resource units, the user terminal does not blindly detect a paging signal or a PDCCH to continue to sleep.
  • the status detection result corresponds to multiple blind detection parameters (for example, aggregation level and bandwidth segment) to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent by OOK on two resource units. If the user terminal detects an on state on both resource units, the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 1 and the aggregation level is 1. If the user terminal detects the on state and the off state in the two resource units, the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 1 and the aggregation level is 2.
  • the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 2 and the aggregation level is 1. If the user terminal detects the off state and the off state in the two resource units, the user terminal does not blindly detect the paging signal or the PDCCH, and continues to sleep.
  • the corresponding one or more blind detection parameters may be acquired, and the probability of successful detection of the blind detection of the user terminal is improved, thereby reducing the number of blind detections and saving the user.
  • the power consumption of the terminal by detecting the communication signal or the communication channel on the at least one resource unit, the corresponding one or more blind detection parameters may be acquired, and the probability of successful detection of the blind detection of the user terminal is improved, thereby reducing the number of blind detections and saving the user.
  • the power consumption of the terminal by detecting the communication signal or the communication channel on the at least one resource unit, the corresponding one or more blind detection parameters may be acquired, and the probability of successful detection of the blind detection of the user terminal is improved, thereby reducing the number of blind detections and saving the user.
  • the step of detecting a communication signal or a communication channel to obtain a detection result includes: detecting a communication signal or a communication channel sequence to obtain a sequence detection result; and acquiring the blind detection parameter corresponding to the detection result
  • the method includes: acquiring a blind detection parameter corresponding to the sequence detection result, where the communication signal or the communication channel is sent by using an orthogonal sequence manner, a quasi-orthogonal sequence manner, or a random sequence manner.
  • the sequence detection may be a communication signal or the communication channel may be detected by a sequence correlation operation to detect a sequence detection result of the communication signal or the communication channel.
  • the length of the communication signal or the communication channel including the signal sequence is not limited, for example, it may be 1, 2, 4 or 8 bits or the like.
  • the corresponding blind detection parameter can be represented by the sequence of the communication signal or the communication channel, so that the flexibility of the blind detection parameter can be improved to further reduce the number of times the user terminal blindly detects.
  • the method further includes: performing PDCCH blind detection if the sequence detection result is a preset sequence; If the sequence detection result is not the preset sequence, the sleep state is maintained.
  • the preset sequence may be pre-configured by the user terminal, or may be a sequence in which the user terminal receives the base station transmission sequence or a protocol, which is not limited in this embodiment.
  • the above preset sequence may be other sequences such as a sequence M or a ZadeOff-chu sequence.
  • the PDCCH blind detection is performed, that is, the PDCCH is subsequently received, otherwise, the user terminal continues to sleep. Therefore, in the embodiment of the present disclosure, the user terminal can receive the PDCCH or sleep in time to save the power consumption of the user terminal.
  • the sequence detection result corresponds to the PDCCH aggregation level to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent in a sequence manner, if the user terminal detects the sequence by detecting the wake-up signal or the sequence of the sleep signal. It is sequence 1, which represents that the PDCCH aggregation level that the user terminal needs to detect is 4 or 8, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection based on other aggregation levels. If the sequence detected by the user terminal is sequence 2, the PDCCH aggregation level that the user terminal needs to detect is 1 or 2, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection based on other aggregation levels. If the sequence detected by the user terminal is sequence 3, the user terminal does not blindly detect the paging signal or the PDCCH, and continues to sleep.
  • the search space type that the user terminal corresponding to the sequence detection result needs to detect, to further reduce the power consumption of the PDCCH of the user terminal blindly detecting the wake-up signal or the sleep signal is sent in a sequence manner, if the user terminal detects the wake-up signal or the sleep signal
  • the sequence detected by the sequence is sequence 1
  • the search space that the user terminal needs to detect is the search space 1
  • the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection based on other search spaces.
  • the sequence detected by the user terminal is sequence 2
  • the search space that the user terminal needs to detect is the search space 2
  • the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection based on other search spaces.
  • the sequence detected by the user terminal is sequence 3, the user terminal does not blindly detect the paging signal or the PDCCH, and continues to sleep.
  • the sequence detection result corresponds to the DCI format that the user terminal needs to detect, to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent in a sequence manner, and the user terminal detects the wake-up signal or the sleep signal sequence.
  • the sequence is sequence 1, which represents that the DCI format that the user terminal needs to detect is DCI format 1, and the user terminal performs blind detection according to the information. If blind detection fails, you can try to blindly detect other DCI formats. If the sequence detected by the user terminal is sequence 2, the DCI format that the user terminal needs to detect is DCI format 3, and the UE performs blind detection according to the information. If blind detection fails, you can try to blindly detect other DCI formats. If the sequence detected by the user terminal is sequence 3, the user terminal does not blindly detect the paging signal or the PDCCH, and continues to sleep.
  • the sequence detection result corresponds to the bandwidth segment (Bandwidth parts) that the user terminal needs to detect, to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent in a sequence manner, if the user terminal detects the wake-up signal or The sequence detected by the sequence of the sleep signal is sequence 1, and the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 1, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection on other Bandwidth parts. If the sequence detected by the user terminal is sequence 2, the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 2, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection on other Bandwidth parts. If the sequence detected blindly by the user terminal is sequence 3, the user terminal does not blindly detect the paging signal or PDCCH to continue to sleep.
  • the sequence detection result corresponds to the time-frequency resource that the user terminal needs to detect, to further reduce the power consumption of the blind detection of the PDCCH by the user terminal as an example: the wake-up signal or the sleep signal is sent through a sequence, and the user terminal detects the wake-up signal or the sleep signal sequence.
  • the sequence that is generated is sequence 1, which represents that the time-frequency resource that the user terminal needs to detect is the wake-up signal or the first OFDM symbol of the subframe in which the sleep signal is located, and the user terminal performs blind detection according to the information. If the blind detection fails, then blind detection can be attempted on other OFDM symbols (combinations).
  • the time-frequency resource that the user terminal needs to detect is the wake-up signal or the first two OFDM symbols of the subframe in which the sleep signal is located, and the user terminal performs blind detection according to the information. If the blind detection fails, then blind detection can be attempted on other OFDM symbols (combinations). If the sequence detected by the user terminal is sequence 3, the user terminal does not blindly detect the paging signal or PDCCH to continue to sleep.
  • the sequence detection result corresponds to the time interval between the PDCCH and the corresponding wake-up signal or the sleep signal, to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent through the sequence, and the user terminal wakes up by detecting
  • the sequence detected by the sequence of the signal or sleep signal is sequence 1, which represents the time interval between the PDCCH that the user terminal needs to detect and the corresponding wake-up signal or sleep signal is X ms. If the sequence detected by the user terminal is sequence 2, the time interval between the PDCCH that the user terminal needs to detect and the corresponding wake-up signal or sleep signal is Y ms. If the sequence detected by the user terminal is sequence 3, the user terminal does not blindly detect the paging signal or PDCCH to continue to sleep.
  • the sequence detection result corresponds to multiple blind detection parameters (for example, aggregation level and bandwidth segment) to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is sent through the sequence, and the user terminal wakes up by detecting
  • the sequence detected by the sequence of the signal or sleep signal is sequence 1, which means that the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 1 and the aggregation level is 1. If the sequence detected by the user terminal is sequence 2, the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 1 and the aggregation level is 2. If the sequence detected by the user terminal is sequence 3, the user terminal does not blindly detect the paging signal or the PDCCH, and continues to sleep.
  • the step of detecting the communication signal or the communication channel to obtain the detection result includes: performing channel decoding on the communication signal or the payload of the communication channel to obtain a payload detection result; and obtaining the detection result corresponding to the
  • the step of blindly detecting the parameter includes: obtaining a blind detection parameter corresponding to the payload detection result.
  • the above-mentioned transmission by a digital signal payload means that the corresponding blind detection parameter is indicated by a communication signal or a coded payload of the communication channel.
  • the above payload detection result may be a specific bit, that is, different bits correspond to different blind detection parameters.
  • the detection result of the payload corresponds to the PDCCH aggregation level to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is transmitted by a 2-bit payload, and 2 bits are detected. If yes, the PDCCH aggregation level that the user terminal needs to detect is 4 or 8. The user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection based on other aggregation levels. If the detected 2 bit is 10, the PDCCH aggregation level that the user terminal needs to detect is 2, and the user terminal performs blind detection according to the information. If the blind detection fails, the blind detection may be performed according to other aggregation levels.
  • the PDCCH aggregation level that the user terminal needs to detect is 1, and the user terminal performs blind detection according to the information. If the blind detection fails, it may try to perform blind detection according to other aggregation levels; if the detected 2bit is 00, the user terminal does not blindly detect the paging signal or PDCCH, and continues to sleep.
  • the search space type that the user terminal corresponding to the payload detection result needs to detect to further reduce the power consumption of the PDCCH of the user terminal blindly detecting the wake-up signal or the sleep signal transmission is a 2-bit payload, and the detection of 2 bits is 11.
  • the search space that needs to be detected on behalf of the user terminal is the search space 1, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection based on other search spaces. If the detected 2bit is 10, the search space that the user terminal needs to detect is the search space 2, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection based on other search spaces.
  • the search space that the user terminal needs to detect is the search space 3, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection based on other search spaces. If the detected 2bit is 00, the user terminal does not blindly detect the paging signal or the PDCCH, and continues to sleep.
  • the DCI format that the user terminal needs to detect is detected by the payload to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is transmitted by a 2-bit payload, and the detected 2 bits is 11,
  • the DCI format that the user terminal needs to detect is DCI format 1, and the user terminal performs blind detection according to the information. If blind detection fails, you can try to blindly detect other DCI formats. If the detected 2bit is 10, the DCI format that the user terminal needs to detect is DCI format 3, and the user terminal performs blind detection according to the information. If blind detection fails, you can try to blindly detect other DCI formats.
  • the DCI format that the user terminal needs to detect is DCI format 1 and DCI format 3, and the user terminal performs blind detection according to the information. If the blind detection fails, you can try to blindly detect other DCI formats. If the detected 2bit is 00, the user terminal does not blindly detect the paging signal or PDCCH and continues to sleep.
  • the bandwidth detection result corresponding to the bandwidth segment (Bandwidth parts) that the user terminal needs to detect is used to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal transmission is a 2it payload, and the detection is detected.
  • the 2bit is 11, which means that the Bandwidth parts to be detected by the user terminal are Bandwidth parts 1, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection on other Bandwidth parts. If the detected 2bit is 10, the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 2, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection on other Bandwidth parts.
  • the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 3, and the user terminal performs blind detection according to the information. If blind detection fails, you can try blind detection on other Bandwidth parts. If the detected 2bit is 00, the user terminal does not blindly detect the paging signal or PDCCH to continue to sleep.
  • the effective load detection result corresponds to the time-frequency resource that the user terminal needs to detect, so as to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal is transmitted by a 2-bit payload, if the detected 2bit is 11.
  • the time-frequency resource that the user terminal needs to detect is the wake-up signal or the first OFDM symbol of the subframe in which the sleep signal is located, and the user terminal performs blind detection according to the information. If the blind detection fails, then blind detection can be attempted on other OFDM symbols (combinations).
  • the time-frequency resource that the user terminal needs to detect is the wake-up signal or the first two OFDM symbols of the subframe in which the sleep signal is located, and the user terminal performs blind detection according to the information. If the blind detection fails, then blind detection can be attempted on other OFDM symbols (combinations). If the detected 2bit is 01, the time-frequency resource that the user terminal needs to detect is the wake-up signal or the first three OFDM symbols of the subframe in which the sleep signal is located, and the user terminal performs blind detection according to the information. If the blind detection fails, then blind detection can be attempted on other OFDM symbols (combinations). If the detected 2bit is 00, the user terminal does not blindly detect the paging signal or PDCCH to continue to sleep.
  • the wake-up signal or the sleep signal is transmitted by a 2-bit payload. If the detected 2bit is 11, the time interval between the PDCCH that the user terminal needs to detect and the corresponding wake-up signal or sleep signal is X ms. If the detected 2 bit is 10, the time interval between the PDCCH that the user terminal needs to detect and the corresponding wake-up signal or sleep signal is Y ms. If the detected 2bit is 01, the time interval between the PDCCH that the user terminal needs to detect and the corresponding wake-up signal or sleep signal is Z ms. If the detected 2bit is 00, the user terminal does not blindly detect the paging signal or PDCCH to continue to sleep.
  • the validity detection result corresponds to multiple blind detection parameters (for example, aggregation level and bandwidth segment) to further reduce the power consumption of the PDCCH of the user terminal blindly detecting: the wake-up signal or the sleep signal transmission is a 2-bit payload. If the detected 2bit is 11, the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 1 and the aggregation level is 1. If the detected 2bit is 10, the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 1 and the aggregation level is 2. If the detected 2bit is 01, the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 2 and the aggregation level is 1. If the detected 2bit is 00, the user terminal does not blindly detect the paging signal or the PDCCH, and continues to sleep.
  • the detected 2bit is 11
  • the Bandwidth parts that the user terminal needs to detect are Bandwidth parts 1 and the aggregation level is 1.
  • the detected 2bit is 10
  • the corresponding one or more blind detection parameters may be acquired, the probability of successful detection of the blind detection of the user terminal is improved, and the power consumption of the user terminal is saved.
  • the step of detecting the communication signal or the communication channel to obtain the detection result includes: performing sequence detection on the communication signal or the communication channel to obtain a detection sequence; performing channel decoding on the communication signal or the payload of the communication channel, Obtaining a result of the payload detection; the step of acquiring the blind detection parameter corresponding to the detection result, comprising: acquiring a blind detection parameter corresponding to the validity detection result.
  • the above communication signal or communication channel can be understood as being transmitted in a manner combining a digital signal payload (sequence + digital signal payload).
  • the sequence detection result and the payload detection result can be detected.
  • the two detection results can be referred to the corresponding description of the previous embodiment, and are not described herein again, and the same effective effect can be achieved.
  • the method further includes: synchronizing using the detection sequence.
  • the step may be performed by performing sequence detection on the communication signal or the communication channel to obtain the detection sequence, or may be performed after performing sequence detection on the communication signal or the communication channel to obtain the detection sequence.
  • the example is not limited.
  • the foregoing synchronization may be time synchronization, or other synchronization between the user terminal and the base station, which is not limited in this embodiment.
  • the synchronization and blind detection parameters can be simultaneously acquired by using a communication signal or a communication channel, so as to reduce signaling transmission and save transmission resources.
  • the blind detection parameter includes at least one of the following:
  • the wake-up signal or the sleep signal may be corresponding to the one or more blind detection parameters, so that the user terminal can detect the PDCCH more accurately and improve the probability of successful blind detection, and Further saving power consumption of the user terminal.
  • the method further includes:
  • Step 303 Perform PDCCH blind detection by using the blind detection parameter.
  • the PDCCH is detected by the PDCCH in the step 303, and the PDCCH signal sent by the base station is obtained, which can reduce the power consumption of the PDCCH by the user terminal to save the power consumption of the user terminal.
  • the step of performing the PDCCH blind detection by using the blind detection parameter includes: performing PDCCH blind detection according to the aggregation level of the PDCCH; or performing PDCCH blind detection according to the search space type of the PDCCH; Or performing PDCCH blind detection according to the DCI format; or performing PDCCH blind detection on the bandwidth segment; or performing PDCCH blind detection on the time-frequency resource; or according to time between the PDCCH and the wake-up signal PDCCH blind detection is performed at intervals, or PDCCH blind detection is performed according to a time interval between the PDCCH and the sleep signal.
  • a plurality of blind detection parameters may be used in combination, for example, according to the aggregation level of the PDCCH and the PDCCH search. Performing PDCCH blind detection on the spatial type, or performing PDCCH blind detection on the time-frequency resource in the bandwidth segment; or performing PDCCH blind detection according to the DCI format on the time-frequency resource in the bandwidth segment, etc., where Not listed one by one.
  • the user terminal performs the blind detection by using the blind detection parameter, so that the probability that the user terminal blindly detects the PDCCH is improved, and the power consumption of the user terminal can be further saved.
  • the method further includes: if the PDCCH blind detection fails, performing PDCCH by using blind detection parameters other than the blind detection parameter Blind detection.
  • the blind detection parameter other than the blind detection parameter may be a blind detection parameter acquired by the user terminal in advance, or may be a blind detection parameter calculated or derived based on the blind detection parameter.
  • the success probability of the blind detection of the PDCCH by the user terminal may be further improved by the foregoing steps.
  • the communication signal or the communication channel is detected to obtain a detection result; and the blind detection parameter corresponding to the detection result is acquired; wherein the communication signal includes a wake-up signal or a sleep signal, and the communication channel includes a wake-up channel. Or a sleep channel; using the blind detection parameter to perform PDCCH blind detection. In this way, the power consumption of the user terminal is saved by reducing the power consumption of the PDCCH by the user terminal.
  • FIG. 4 is a flowchart of a method for acquiring blind detection parameters according to an embodiment of the present disclosure. As shown in FIG. 4, the method includes the following steps:
  • Step 401 Determine a blind detection parameter of the user terminal.
  • Step 402 Send a communication signal to the user terminal, and/or send a payload to the user terminal on the communication channel, so that the user terminal detects the communication signal or the communication channel, and obtains a detection result. And obtaining blind detection parameters corresponding to the detection result.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel
  • the communication signal or the payload corresponds to the blind detection parameter
  • the blind detection parameter includes a blind detection parameter of the PDCCH.
  • the step of sending a communication signal to the user terminal, and/or transmitting a payload to the user terminal on the communication channel includes: sending an OOK correspondence to the user terminal by using an OOK method.
  • the step of sending an OOK corresponding to the user terminal by using an OOK method includes: sending an OOK corresponding to the user terminal by using an OOK manner on at least one resource unit.
  • the step of sending a communication signal to the user terminal, and/or sending a payload to the user terminal on the communication channel includes: using an orthogonal sequence method or a quasi-orthogonal sequence method or a random sequence method Sending a communication signal to the user terminal
  • the step of sending a communication signal to the user terminal, and/or transmitting a payload to the user terminal on the communication channel includes: by using an encoded digital signal payload manner, on a communication channel The user terminal sends a payload.
  • the step of sending a communication signal to the user terminal, and/or transmitting a payload to the user terminal on a communication channel includes: transmitting a communication signal to the user terminal, and transmitting a communication channel to the user terminal The user terminal transmits a payload; wherein the communication signal includes a signal sequence.
  • the signal sequence is used for synchronization by the user terminal, and the payload is used to indicate the blind detection parameter.
  • the blind detection parameter includes at least one of the following: an aggregation level of the PDCCH, a search space type of the PDCCH, a DCI format that the PDCCH needs to transmit, a bandwidth fragment occupied by the PDCCH, a time-frequency resource occupied by the PDCCH, and a PDCCH and a PDCCH.
  • an aggregation level of the PDCCH a search space type of the PDCCH
  • a DCI format that the PDCCH needs to transmit a bandwidth fragment occupied by the PDCCH, a time-frequency resource occupied by the PDCCH, and a PDCCH and a PDCCH.
  • determining a blind detection parameter of the user terminal transmitting a communication signal to the user terminal or transmitting a signal to the user terminal on a communication channel, so that the user terminal is to the communication signal or the communication channel Performing detection, obtaining a detection result, and acquiring a blind detection parameter corresponding to the detection result; wherein the communication signal includes a wake-up signal or a sleep signal, the communication channel includes a wake-up channel or a sleep channel, and the communication signal or the The signals transmitted by the communication channel all correspond to the blind detection parameters. In this way, the corresponding blind detection parameters can be flexibly indicated to the user terminal, so that the number of blind detections can be reduced, thereby saving power consumption of the user terminal.
  • FIG. 5 is a structural diagram of a user terminal according to an embodiment of the present disclosure.
  • the base station can implement the details of the blind detection parameter acquisition method in the method embodiment of FIG. 2 to FIG. 3, and achieve the same effect.
  • the user terminal 500 includes: a detection module 501 and an acquisition module 502, wherein the detection module 501 is connected to the acquisition module 502, where:
  • the detecting module 501 is configured to detect a communication signal or a communication channel to obtain a detection result
  • the obtaining module 502 is configured to obtain a blind detection parameter corresponding to the detection result
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • the blind detection parameter includes a blind detection parameter of the PDCCH.
  • the detecting module 501 is configured to perform state detection on a communication signal or a communication channel to obtain a state detection result, where the communication signal or the communication channel is sent by using an ON/OFF keying OOK mode.
  • the user terminal 500 further includes:
  • the first blind detection module 503 is configured to perform PDCCH blind detection if the state detection result is an on state
  • the first sleep retention module 504 is configured to maintain a sleep state if the state detection result is a closed state.
  • the detecting module 501 is configured to perform state detection on the communication signal or the communication channel on the at least one resource unit, to obtain a state detection result, where the state detection result includes performing state detection on the at least one resource unit. the result of;
  • the acquiring module 502 is configured to acquire a blind detection parameter corresponding to the state detection result, and a detection state corresponding to the state detection result, where the detection state includes an awake state or a sleep state.
  • the detecting module 501 is configured to detect a communication signal or a communication channel sequence to obtain a sequence detection result
  • the acquiring module 502 is configured to obtain a blind detection parameter corresponding to the sequence detection result, where the communication signal or the communication channel is sent by using an orthogonal sequence manner, a quasi-orthogonal sequence manner, or a random sequence manner.
  • the user terminal 500 further includes:
  • the second blind detection module 505 is configured to perform PDCCH blind detection if the sequence detection result is a preset sequence
  • the second sleep maintaining module 506 is configured to maintain a sleep state if the sequence detection result is not the preset sequence.
  • the detecting module 501 is configured to perform channel decoding on a payload of a communication signal or a communication channel to obtain a payload detection result.
  • the obtaining module 502 is configured to obtain a blind detection parameter corresponding to the payload detection result.
  • the detecting module 501 includes:
  • the detecting unit 5011 is configured to perform sequence detection on the communication signal or the communication channel to obtain a detection sequence.
  • the decoding unit 5012 is configured to perform channel decoding on the payload of the communication signal or the communication channel to obtain a payload detection result
  • the obtaining module 502 is configured to obtain a blind detection parameter corresponding to the payload detection result.
  • the user terminal 500 further includes:
  • the synchronization module 507 is configured to perform synchronization using the detection sequence.
  • the blind detection parameter includes at least one of the following:
  • the user terminal 500 further includes:
  • the third blind detection module 508 is configured to perform PDCCH blind detection by using the blind detection parameter.
  • the third blind detection module 508 is configured to perform PDCCH blind detection according to an aggregation level of the PDCCH;
  • the third blind detection module 508 is configured to perform PDCCH blind detection according to the search space type of the PDCCH.
  • the third blind detection module 508 is configured to perform PDCCH blind detection according to the DCI format; or
  • the third blind detection module 508 is configured to perform PDCCH blind detection on the bandwidth segment; or
  • the third blind detection module 508 is configured to perform PDCCH blind detection on the time-frequency resource; or
  • the third blind detection module 508 is configured to perform PDCCH blind detection according to a time interval between the PDCCH and the wake-up signal; or
  • the third blind detection module 508 is configured to perform PDCCH blind detection according to a time interval between the PDCCH and the sleep signal.
  • the user terminal 500 further includes:
  • the fourth blind detection module 509 is configured to perform PDCCH blind detection by using a blind detection parameter other than the blind detection parameter if the PDCCH blind detection fails.
  • the communication signal or the communication channel is detected to obtain a detection result; and the blind detection parameter corresponding to the detection result is acquired; wherein the communication signal includes a wake-up signal or a sleep signal, and the communication channel includes a wake-up channel. Or sleep channel.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel. Or sleep channel.
  • FIG. 12 is a structural diagram of a base station according to an embodiment of the present disclosure, which can implement the details of the blind detection parameter acquisition method in the method embodiment of FIG. 4, and achieve the same effect.
  • the base station 1200 includes: a determining module 1201 and a sending module 1202, wherein the determining module 1201 is connected to the sending module 1202, where:
  • a determining module 1201, configured to determine a blind detection parameter of the user terminal
  • the sending module 1202 is configured to send a communication signal to the user terminal, and/or send a payload to the user terminal on the communication channel, so that the user terminal detects the communication signal or the communication channel, Obtaining a detection result, and obtaining a blind detection parameter corresponding to the detection result;
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel
  • the communication signal or the payload corresponds to the blind detection parameter
  • the blind detection parameter includes a blind detection parameter of the PDCCH.
  • the sending module 1202 is configured to send an OOK corresponding signal to the user terminal by using an OOK manner.
  • the sending module 1202 is configured to send an OOK corresponding signal to the user terminal by using an OOK manner on the at least one resource unit.
  • the sending module 1202 is configured to send a communication signal to the user terminal by using an orthogonal sequence manner, a quasi-orthogonal sequence manner, or a random sequence manner.
  • the sending module 1202 is configured to send a payload to the user terminal on the communication channel by using the encoded digital signal payload mode.
  • the sending module 1202 is configured to send a communication signal to the user terminal, and send a payload to the user terminal on a communication channel;
  • the communication signal comprises a sequence of signals.
  • the signal sequence is used for synchronization by the user terminal, and the payload is used to indicate the blind detection parameter.
  • the blind detection parameter includes at least one of the following:
  • determining a blind detection parameter of the user terminal transmitting a communication signal to the user terminal or transmitting a signal to the user terminal on a communication channel, so that the user terminal is to the communication signal or the communication channel Performing detection, obtaining a detection result, and acquiring a blind detection parameter corresponding to the detection result; wherein the communication signal includes a wake-up signal or a sleep signal, the communication channel includes a wake-up channel or a sleep channel, and the communication signal or the The signals transmitted by the communication channel all correspond to the blind detection parameters. In this way, the corresponding blind detection parameters can be flexibly indicated to the user terminal, so that the number of blind detections can be reduced, thereby saving power consumption of the user terminal.
  • the embodiment of the present disclosure further provides a user terminal, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the computer program to implement the embodiment of the present disclosure.
  • a user terminal including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the computer program to implement the embodiment of the present disclosure.
  • the embodiment of the present disclosure further provides a base station, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the computer program to implement the base station provided by the embodiment of the present disclosure The steps in the blind detection parameter acquisition method of the side.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is executed, and when the computer program is executed by the processor, the steps in the method for acquiring the blind detection parameter on the user terminal side provided by the embodiment of the present disclosure are implemented.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, wherein the computer program is executed by the processor to implement the steps in the base station side blind detection parameter acquisition method provided by the embodiment of the present disclosure.
  • FIG. 13 is a structural diagram of a user terminal according to an implementation of the present disclosure, which can implement the details of the blind detection parameter acquisition method in the method embodiments of FIG. 2 and FIG. 3, and achieve the same effect.
  • the user terminal 1300 includes at least one processor 1301, a memory 1302, at least one network interface 1304, and other user interfaces 1303.
  • the various components in user terminal 1300 are coupled together by a bus system 1305.
  • the bus system 1305 is used to implement connection communication between these components.
  • the bus system 1305 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as the bus system 1305 in FIG.
  • the user interface 1303 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 1302 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the memory 1302 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 13021 and an application 13022.
  • the operating system 13021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 13022 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 13022.
  • the user terminal 1300 further includes: a computer program stored on the memory 1302 and operable on the processor 1301, when the computer program is executed by the processor 1301, the following steps are performed: detecting a communication signal or a communication channel Obtaining a detection result; obtaining a blind detection parameter corresponding to the detection result; wherein the communication signal comprises a wake-up signal or a sleep signal, and the communication channel comprises a wake-up channel or a sleep channel.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the processor 1301 or implemented by the processor 1301.
  • the processor 1301 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1301 or an instruction in a form of software.
  • the processor 1301 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional computer readable storage medium of the art, such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the computer readable storage medium is located in a memory 1302, and the processor 1301 reads the information in the memory 1302 and performs the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the blind detection parameter includes a blind detection parameter of the PDCCH.
  • the following steps may be implemented: performing state detection on the communication signal or the communication channel to obtain a state detection result; wherein the communication signal or the communication channel is controlled by OOK Way to send.
  • the following steps may be implemented: if the state detection result is the on state, the PDCCH blind detection is performed; and if the state detection result is the off state, the sleep state is maintained.
  • the following steps may be implemented: performing status detection on the communication signal or the communication channel on the at least one resource unit, to obtain a status detection result, where the status detection result is included in the at least a result of performing state detection on a resource unit; acquiring a blind detection parameter corresponding to the state detection result, and a detection state corresponding to the state detection result, where the detection state includes an awake state or a sleep state.
  • the following steps may be implemented: detecting a communication signal or a communication channel sequence to obtain a sequence detection result; acquiring a blind detection parameter corresponding to the sequence detection result; wherein the communication signal Or the communication channel is transmitted by an orthogonal sequence method or a quasi-orthogonal sequence method or a random sequence method.
  • the following steps may be implemented: if the sequence detection result is a preset sequence, perform PDCCH blind detection; if the sequence detection result is not the preset sequence, Stay asleep.
  • the following steps may be implemented: performing channel decoding on the payload of the communication signal or the communication channel to obtain a payload detection result; and acquiring a blind detection parameter corresponding to the payload detection result.
  • the following steps may be implemented: performing sequence detection on the communication signal or the communication channel to obtain a detection sequence; performing channel decoding on the communication signal or the payload of the communication channel to obtain a payload detection result. Obtaining a blind detection parameter corresponding to the payload detection result.
  • the computer program when executed by the processor 1301, may also implement the step of synchronizing using the detection sequence.
  • the blind detection parameter includes at least one of the following: an aggregation level of the PDCCH, a search space type of the PDCCH, a DCI format that the PDCCH needs to transmit, a bandwidth fragment occupied by the PDCCH, a time-frequency resource occupied by the PDCCH, and a PDCCH and a PDCCH.
  • an aggregation level of the PDCCH a search space type of the PDCCH
  • a DCI format that the PDCCH needs to transmit a bandwidth fragment occupied by the PDCCH, a time-frequency resource occupied by the PDCCH, and a PDCCH and a PDCCH.
  • the following step may be further implemented: performing PDCCH blind detection by using the blind detection parameter.
  • the following steps may be performed: performing PDCCH blind detection according to the aggregation level of the PDCCH; or performing PDCCH blind detection according to the search space type of the PDCCH; or DCI format, performing PDCCH blind detection; or performing PDCCH blind detection on the bandwidth segment; or performing PDCCH blind detection on the time-frequency resource; or performing PDCCH according to a time interval between the PDCCH and the wake-up signal Blind detection; or performing PDCCH blind detection according to a time interval between the PDCCH and the sleep signal.
  • the following steps may be implemented: if the PDCCH blind detection fails, the blind detection parameter other than the blind detection parameter is used to perform PDCCH blind detection.
  • the communication signal or the communication channel is detected to obtain a detection result; and the blind detection parameter corresponding to the detection result is acquired; wherein the communication signal includes a wake-up signal or a sleep signal, and the communication channel includes a wake-up channel. Or sleep channel.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel. Or sleep channel.
  • FIG. 14 is a structural diagram of a user terminal according to an embodiment of the present disclosure, which can implement the details of the blind detection parameter acquisition method in the method embodiments of FIG. 2 and FIG. 3, and achieve the same effect.
  • the user terminal 1400 includes: a radio frequency (RF) circuit 1401, a memory 1402, an input unit 1403, a display unit 1404, a power supply 1405, a processor 1406, an audio circuit 1407, and a WiFi (Wireless Fidelity) module 1408. .
  • RF radio frequency
  • the input unit 1403 can be configured to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the user terminal 1400.
  • the input unit 1403 may include a touch panel 14031.
  • the touch panel 14031 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using a finger, a stylus, or the like on any suitable object or accessory on the touch panel 14031), and according to the preset The programmed program drives the corresponding connection device.
  • the touch panel 14031 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1406 is provided and can receive commands from the processor 1406 and execute them.
  • the touch panel 14031 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1403 may further include other input devices 14032.
  • the other input devices 14032 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 1404 can be used to display information input by the user or information provided to the user and various menu interfaces of the user terminal 1400.
  • the display unit 1404 can include a display panel 14041.
  • the display panel 14041 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 14031 can cover the display panel 14041 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 1406 to determine the type of the touch event, and then the processor 1406 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 1406 is a control center of the user terminal 1400, which connects various parts of the entire mobile phone using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 14014, and calling the second storage.
  • the data in the memory 14022 performs various functions and processing data of the user terminal 1400, thereby performing overall monitoring of the user terminal 1400.
  • processor 1406 can include one or more processing units.
  • the processor 1406 is configured to: detect the communication signal or the communication channel, and obtain a detection result; obtaining a blind detection parameter corresponding to the detection result; wherein the communication signal comprises a wake-up signal or a sleep signal, and the communication channel comprises a wake-up channel or a sleep channel.
  • the blind detection parameter includes a blind detection parameter of the PDCCH.
  • the processor 1406 is further configured to: perform status detection on the communication signal or the communication channel to obtain a status by calling a software program and/or a module stored in the first memory 14014 and/or data in the second memory 14022. The detection result; wherein the communication signal or the communication channel is sent by an on/off keying OOK mode.
  • the processor 1406 is further configured to: if the status detection result is the on state, by performing a call to store the software program and/or the module in the first memory 14014 and/or the data in the second memory 14022 PDCCH blind detection; if the state detection result is off state, the sleep state is maintained.
  • the processor 1406 is further configured to: on the at least one resource unit, the communication signal or the communication Performing state detection on the channel, and obtaining a state detection result, where the state detection result includes a result of performing state detection on the at least one resource unit; acquiring a blind detection parameter corresponding to the state detection result, and corresponding to the state detection result A status is detected, the detected status including an awake state or a sleep state.
  • the processor 1406 is further configured to: detect a communication signal or a communication channel sequence to obtain a sequence detection by calling a software program and/or a module stored in the first memory 14014 and/or data in the second memory 14022. a result of obtaining a blind detection parameter corresponding to the sequence detection result; wherein the communication signal or the communication channel is sent by an orthogonal sequence method or a quasi-orthogonal sequence method or a random sequence method.
  • the processor 1406 is further configured to: if the sequence detection result is a preset sequence, The PDCCH blind detection is performed; if the sequence detection result is not the preset sequence, the sleep state is maintained.
  • the processor 1406 is further configured to: perform channel decoding on the payload of the communication signal or the communication channel by calling the software program and/or the module stored in the first memory 14014 and/or the data in the second memory 14022. Obtaining a payload detection result; obtaining a blind detection parameter corresponding to the payload detection result.
  • the processor 1406 is further configured to perform sequence detection on the communication signal or the communication channel by calling the software program and/or the module stored in the first memory 14014 and/or the data in the second memory 14022. a sequence; performing channel decoding on a payload of the communication signal or the communication channel to obtain a payload detection result; and acquiring a blind detection parameter corresponding to the payload detection result.
  • the processor 1406 is further configured to perform synchronization using the detection sequence by calling a software program and/or a module stored in the first memory 14014 and/or data in the second memory 14022.
  • the aggregation level of the PDCCH, the search space type of the PDCCH, the DCI format that the PDCCH needs to transmit the bandwidth fragment occupied by the PDCCH, the time-frequency resource occupied by the PDCCH, and the time between the PDCCH and the wake-up signal or the wake-up channel Interval, time interval between the PDCCH and the sleep signal or the sleep channel.
  • the processor 1406 is further configured to: perform PDCCH blind detection by using the blind detection parameter by calling a software program and/or a module stored in the first memory 14014 and/or data in the second memory 14022.
  • the processor 1406 is further configured to perform PDCCH blind detection according to the aggregation level of the PDCCH by calling the software program and/or the module and/or the data in the second memory 14022. Or performing PDCCH blind detection according to the search space type of the PDCCH; or performing PDCCH blind detection according to the DCI format; or performing PDCCH blind detection on the bandwidth segment; or performing PDCCH blindness on the time-frequency resource; Detecting; or performing PDCCH blind detection according to a time interval between the PDCCH and the wake-up signal; or performing PDCCH blind detection according to a time interval between the PDCCH and the sleep signal.
  • the processor 1406 is further configured to: if the PDCCH blind detection fails, use the blind Blind detection parameters other than the detection parameters are used for PDCCH blind detection.
  • the communication signal or the communication channel is detected to obtain a detection result; and the blind detection parameter corresponding to the detection result is acquired; wherein the communication signal includes a wake-up signal or a sleep signal, and the communication channel includes a wake-up channel. Or sleep channel.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel. Or sleep channel.
  • FIG. 15 is a structural diagram of a base station according to an embodiment of the present disclosure, which can implement the details of the blind detection parameter acquisition method in the method embodiment of FIG. 4, and achieve the same effect.
  • the base station 1500 includes: a processor 1501, a transceiver 1502, a memory 1503, and a bus interface, wherein:
  • the base station 1500 further includes: a computer program stored on the memory 1503 and operable on the processor 1501.
  • the computer program is executed by the processor 1501 to perform the following steps: determining a blind detection parameter of the user terminal; Transmitting, by the user terminal, a communication signal, and/or transmitting a payload to the user terminal on a communication channel, so that the user terminal detects the communication signal or the communication channel, obtains a detection result, and acquires a location a blind detection parameter corresponding to the detection result; wherein the communication signal includes a wake-up signal or a sleep signal, the communication channel includes a wake-up channel or a sleep channel, and the communication signal or the payload is associated with the blind detection parameter correspond.
  • the transceiver 1502 is configured to receive and transmit data under the control of the processor 1501, and the transceiver 1502 includes at least two antenna ports.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1501 and various circuits of memory represented by memory 1503.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1502 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1504 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1501 is responsible for managing the bus architecture and general processing, and the memory 1503 can store data used by the processor 1501 when performing operations.
  • the blind detection parameter includes a blind detection parameter of the PDCCH.
  • the following steps may be implemented: sending a communication signal to the user terminal or sending a signal to the user terminal on a communication channel by using an OOK method.
  • the following step may be further implemented: sending an OOK corresponding signal to the user terminal by using an OOK manner on the at least one resource unit.
  • the following steps may be implemented: sending a communication signal to the user terminal by using an orthogonal sequence method or a quasi-orthogonal sequence method or a random sequence method.
  • the following step may be further implemented: sending a payload to the user terminal on the communication channel by using the encoded digital signal payload mode.
  • the computer program when executed by the processor 1501, may further implement the steps of: transmitting a communication signal to the user terminal, and transmitting a payload to the user terminal on a communication channel; wherein the communication signal comprises a signal sequence.
  • the signal sequence is used for synchronization by the user terminal, and the payload is used to indicate the blind detection parameter.
  • the blind detection parameter includes at least one of the following: an aggregation level of the PDCCH, a search space type of the PDCCH, a DCI format that the PDCCH needs to transmit, a bandwidth fragment occupied by the PDCCH, a time-frequency resource occupied by the PDCCH, and a PDCCH and a PDCCH.
  • an aggregation level of the PDCCH a search space type of the PDCCH
  • a DCI format that the PDCCH needs to transmit a bandwidth fragment occupied by the PDCCH, a time-frequency resource occupied by the PDCCH, and a PDCCH and a PDCCH.
  • determining a blind detection parameter of the user terminal transmitting a communication signal to the user terminal or transmitting a signal to the user terminal on a communication channel, so that the user terminal is to the communication signal or the communication channel Performing detection, obtaining a detection result, and acquiring a blind detection parameter corresponding to the detection result; wherein the communication signal includes a wake-up signal or a sleep signal, the communication channel includes a wake-up channel or a sleep channel, and the communication signal or the The signals transmitted by the communication channel all correspond to the blind detection parameters. In this way, the corresponding blind detection parameters can be flexibly indicated to the user terminal, so that the number of blind detections can be reduced to save power consumption of the user terminal.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the portion of the technical solution of the present disclosure that contributes in essence or to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种盲检测参数获取方法、相关设备及系统,该方法包括:对通信信号或者通信信道进行检测,得到检测结果;获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。

Description

盲检测参数获取方法、相关设备及系统
相关申请的交叉引用
本申请主张在2017年7月20日在中国提交的中国专利申请号No.201710616857.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种盲检测参数获取方法、相关设备及系统。
背景技术
通信系统中,用户终端在一些场景中会对基站下发的信号进行盲检测,例如:对物理下行控制信道(Physical Downlink Control Channel,PDCCH)进行盲检测,以获取基站发送的PDCCH信号。然而,目前用户终端需要进行最高44次盲检测时,这样盲检测的处理复杂度很高,导致用户终端耗电严重。
发明内容
第一方面,本公开实施例提供一种盲检测参数获取方法,应用于用户终端,包括:
对通信信号或者通信信道进行检测,得到检测结果;
获取所述检测结果对应的盲检测参数;
其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。
第二方面,本公开实施例提供一种盲检测参数获取方法,应用于基站,包括:
确定用户终端的盲检测参数;
向所述用户终端发送通信信号或者在通信信道向所述用户终端发送信号,以使所述用户终端对所述通信信号或者所述通信信道进行检测,得到检测结 果,并获取所述检测结果对应的盲检测参数;
其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道,且所述通信信号或者所述通信信道发送的信号均与所述盲检测参数对应。
第三方面,本公开实施例提供一种用户终端,包括:
检测模块,用于对通信信号或者通信信道进行检测,得到检测结果;
获取模块,用于获取所述检测结果对应的盲检测参数;
其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。
第四方面,本公开实施例提供一种基站,包括:
确定模块,用于确定用户终端的盲检测参数;
发送模块,用于向所述用户终端发送通信信号或者在通信信道向所述用户终端发送信号,以使所述用户终端对所述通信信号或者所述通信信道进行检测,得到检测结果,并获取所述检测结果对应的盲检测参数;
其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道,且所述通信信号或者所述通信信道发送的信号均与所述盲检测参数对应。
第五方面,本公开实施例提供一种用户终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开实施例提供的用户终端侧的盲检测参数获取方法中的步骤。
第六方面,本公开实施例提供一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开实施例提供的基站侧的盲检测参数获取方法中的步骤。
第七方面,本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的用户终端侧的盲检测参数获取方法中的步骤。
第八方面,本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的基站侧的 盲检测参数获取方法中的步骤。
第九方面,本公开实施例提供一种盲检测参数获取系统,包括本公开实施例提供的用户终端和基站。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的盲检测参数获取系统的结构图;
图2是本公开实施例提供的盲检测参数获取方法的流程图之一;
图3是本公开实施例提供的盲检测参数获取方法的流程图之二;
图4是本公开实施例提供的盲检测参数获取方法的流程图之三;
图5是本公开实施例提供的用户终端的结构图之一;
图6是本公开实施例提供的用户终端的结构图之二;
图7是本公开实施例提供的用户终端的结构图之三;
图8是本公开实施例提供的用户终端的结构图之四;
图9是本公开实施例提供的用户终端的结构图之五;
图10是本公开实施例提供的用户终端的结构图之六;
图11是本公开实施例提供的用户终端的结构图之七;
图12是本公开实施例提供的基站的结构图之一;
图13是本公开实施例提供的用户终端的结构图之八;
图14是本公开实施例提供的用户终端的结构图之九;
图15是本公开实施例提供的基站的结构图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1是本公开实施例提供的盲检测参数获取系统的结构图,如图1所示,包括用户终端11和基站12,其中,用户终端11(User Equipment,UE)可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定用户终端11的具体类型。上述基站12可以是5G基站(例如:gNB、5G NR NB),或者可以是4G基站(例如:eNB),或者可以是3G基站(例如:NB)等等,需要说明的是,在本公开实施例中并不限定基站12的具体类型。
需要说明的是,上述用户终端11和基站12的具体功能将通过以下多个实施例进行具体描述。
请参见图2,图2是本公开实施例提供的盲检测参数获取方法的流程图,该方法应用于用户终端,如图2所示,包括以下步骤:
步骤201、对通信信号或者通信信道进行检测,得到检测结果。
其中,上述检测可以是检测唤醒信号(wake-up signal,WUS)或者睡眠信号的能量、电平、序列内容、有效负荷(payload)或者指示信息等等,以得到相应的检测结果。另外,对上述通信信道进行检测,可以是对基站在通信信道发送有效负荷进行检测,当然,本公开实施例对此不作限定。
步骤202、获取所述检测结果对应的盲检测参数。
其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。
其中,上述唤醒信道可以是用于传输唤醒信号的信道,而上述睡眠信道可以是用于传输睡眠信号的信道。可选的,这两个信道可以是属于同一个信道。另外,上述唤醒信号或者睡眠信号可以是基站发送的。
上述获取所述检测结果对应的盲检测参数可以是,获取上述检测结果指示的盲检测参数,或者可以是,获取上述检测结果包括的盲检测参数等,对此本公开实施例不作限定。另外,上述盲检测参数可以包括PDCCH的盲检测参数,当然,本公开实施例对此不作限定,例如:还可以是其他信道的盲 检测参数。
本公开实施例中,通过对通信信号或者通信信道进行检测获取对应的盲检测参数,从而可以减少用户终端盲检测的次数,以降低用户终端盲检测的功耗,达到节约用户终端的耗电的目的。
本公开实施例中,对通信信号或者通信信道进行检测,得到检测结果;获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。这样通过通信信号或者通信信道可以灵活地获取到盲检测参数,从而可以降低盲检测的次数,以节约用户终端的耗电。
请参见图3,图3是本公开实施例提供的盲检测参数获取方法的流程图,该方法应用于用户终端,本实施例与图2所示的实施例相比主要区别在于,增加了使用盲检测参数,进行PDCCH盲检测的步骤。如图3所示,包括以下步骤:
步骤301、对通信信号或者通信信道进行检测,得到检测结果。
其中,上述检测可以是检测唤醒信号或者睡眠信号的能量、电平、序列内容、有效负荷(payload)或者指示信息等等,以得到相应的检测结果。
步骤302、获取所述检测结果对应的盲检测参数。
其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。
本公开实施例中,在睡眠信道是未检测到或者检测到为0的信号时,可以表示检测到睡眠信号。
本公开实施例中,检测结果对应的盲检测参数可以是预先获取的检测结果与盲检测参数的对应关系中指示盲检测参数,或者可以是检测结果中指示信息所指示的盲检测参数等等,对此本公开实施例不作限定。
可选的,所述盲检测参数包括PDCCH的盲检测参数。
本公开实施例中,可以实现通过唤醒信号或者睡眠信号获取PDCCH的盲检测参数,从而可以降低盲检测PDCCH的次数,达到节约用户终端的耗电的目的。
可选的,所述对通信信号或者通信信道进行检测,得到检测结果的步骤, 包括:对通信信号或者通信信道进行状态检测,得到状态检测结果;其中,所述通信信号或者所述通信信道通过启闭键控OOK方式发送。
其中,上述状态检测可以是检测通信信号或者通信信道的开启(on)状态或者关闭(off)状态,例如:可以是通过基于非相关的能量或者电平检测状态,若能量或者电平为非0时,则可以确定为开启状态,若能量或者电平为0时,则可以确定为关闭状态。另外,这里的唤醒信号或者睡眠信号可以是OOK对应信号,即通过OOK对应信号来表示唤醒信号或者睡眠信号,当然,也可以表示有效负荷。
本公开实施例中,通过上述状态检测结果可以获取该状态检测结果指示的盲检测参数,例如:状态检测结果为开启状态时,则可以确定盲检测参数包括聚合等级1、公共搜索空间和下行控制信息格式(Downlink Control Information format,DCI format)1等等。这样可以实现获取盲检测参数时,用户终端与基站之前不需要传输额外的信号,且唤醒信号和睡眠信号也不需要携带额外的信息,就可以指示对应的盲检测参数,从而达到降低传输开销,节约传输资源的目的。
可选的,所述对通信信号或者通信信道进行状态检测,得到状态检测结果的步骤之后,所述方法还包括:若所述状态检测结果为开启状态,则进行PDCCH盲检测;若所述状态检测结果为关闭状态,则保持睡眠状态。
本公开实施例中,可以实现若状态检测结果为开启状态,则后续进行PDCCH盲检测,即接收PDCCH,若为关闭状态,则保持睡眠状态,具体可以是继续睡眠,即在接收到上述唤醒信号或者睡眠信号之前为睡眠状态。可选的,若状态检测结果为开启状态,则可以理解接收到唤醒信号,若状态检测结果为关闭状态,则可以理解为接收到睡眠信号,或者也可以理解为未接收到信号,因为,此时检测到的结果可能是能量或者电平为0。
本公开实施例中,通过上述状态检测结果可以实现用户终端及时唤醒或者睡眠,以节约用户终端的功耗。
可选的,所述对通信信号或者通信信道进行状态检测,得到状态检测结果的步骤,包括:在至少一个资源单元上,对通信信号或者通信信道进行状态检测,得到状态检测结果,所述状态检测结果包括在所述至少一个资源单 元上进行状态检测的结果;所述获取所述检测结果对应的盲检测参数的步骤,包括:获取所述状态检测结果对应的盲检测参数,以及所述状态检测结果对应的检测状态,所述检测状态包括唤醒状态或者睡眠状态。
其中,在至少一个资源单元上进行状态检测,这样可以获取到至少一个状态检测结果,即每个资源单元上均会得到一个检测结果,之后,可以确定这至少一个检测结果指示的盲检测参数。且在确定盲检测参数的同时,还可以确定是唤醒状态或者睡眠状态,即通过一次检测确定两个盲检测参数,以及确定唤醒状态或者睡眠状态,从而可以节约传输资源。
以状态检测结果对应PDCCH聚合等级,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号在两个资源单元上通过OOK的方式发送,若用户终端在两个资源单元上都检测到开启(on)状态,代表用户终端需要检测的PDCCH聚合等级为4或8,用户终端按照该信息进行盲检测。当然,如果盲检测失败,则可以尝试根据其他聚合等级进行盲检测。若用户终端在两个资源单元先后检测到开启(on)状态和关闭(off)状态,代表PDCCH聚合等级为2,用户终端按照该信息进行盲检测。当然,如果盲检测失败,则可以尝试根据其他聚合等级进行盲检测。若用户终端在两个资源单元先后检测到关闭(off)状态和开启(on)状态,代表PDCCH聚合等级为1,用户终端按照该信息进行盲检测。当然,如果盲检测失败,则可以尝试根据其他聚合等级进行盲检测。若用户终端在两个资源单元先后检测到关闭(off)状态和关闭(off)状态,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠,即两个资源单元先后检测到关闭(off)状态和关闭(off)状态,则表示睡眠信号,其余包括至少一个开启(on)状态,则确定为唤醒信号。
以状态检测结果对应的用户终端需要检测的搜索空间类型,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号在两个资源单元上通过OOK的方式发送,则两个资源单元上都检测到开启(on)状态,代表用户终端需要检测的搜索空间为搜索空间1(例如:公共搜索空间),用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他搜索空间进行盲检测。若用户终端在两个资源单元先后检测到开启(on)状态和 关闭(off)状态,代表用户终端需要检测的搜索空间为搜索空间2(例如:用户终端专用搜索空间1),用户终端按照该信息进行盲检测。如果检测失败,则可以尝试根据其他搜索空间进行盲检测。若用户终端在两个资源单元先后检测到关闭(off)状态和开启(on)状态,则代表用户终端需要检测的搜索空间为搜索空间3(如用户终端专用搜索空间2),用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他搜索空间进行盲检测。若用户终端在两个资源单元先后检测到关闭(off)状态和关闭(off)状态,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠。
以状态检测结果对应用户终端需要检测的DCI format,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号在两个资源单元上通过OOK的方式发送,若用户终端在两个资源单元上都检测到开启(on)状态,代表用户终端需要检测的DCI format为DCI format 1,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试盲检测其他DCI format。若用户终端在两个资源单元先后检测到开启(on)状态和关闭(off)状态,代表用户终端需要检测的DCI format为DCI format 3,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试盲检测其他DCI format。若用户终端在两个资源单元先后检测到关闭(off)状态和开启(on)状态,代表用户终端需要检测的DCI format为DCI format 1和DCI format 3,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试盲检测其他DCI format。若用户终端在两个资源单元先后检测到关闭(off)状态和关闭(off)状态,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠。
以状态检测结果对应用户终端需要检测的带宽片段(Bandwidth parts),以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号在两个资源单元上通过OOK的方式发送,若用户终端在两个资源单元上都检测到开启(on)状态,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 1,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他Bandwidth parts上进行盲检测。若用户终端在两个资源单元先后检测到开启(on)状态和关闭(off)状态,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 2,用户终端按照该信息进行盲检测。如果盲检测失败,则 可以尝试在其他Bandwidth parts上进行盲检测。若用户终端两个资源单元先后检测到关闭(off)状态和开启(on)状态,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 3,用户终端按照该信息进行盲检测。如果盲检测失败,则尝试在其他Bandwidth parts上进行盲检测。若用户终端在两个资源单元先后检测到关闭(off)状态和关闭(off)状态,则用户终端不盲检测寻呼(Paging)信号或PDCCH,以继续休眠。
以状态检测结果对应用户终端需要检测的时频资源,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号在两个资源单元上通过OOK的方式发送,则两个资源单元上都检测到开启(on)状态,代表UE需要检测的时频资源为唤醒信号或者睡眠信号所在子帧的第一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他OFDM符号(组合)上进行盲检测。若用户终端在两个资源单元先后检测到开启(on)状态和关闭(off)状态,代表用户终端需要检测的时频资源为唤醒信号或者睡眠信号所在子帧的前2个OFDM符号,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他OFDM符号(组合)上进行盲检测。若用户终端在两个资源单元先后检测到关闭(off)状态和开启(on)状态,代表用户终端需要检测的时频资源为唤醒信号或者睡眠信号所在子帧的前3个OFDM符号,UE按照该信息进行盲检测。如果盲测失败,则可以尝试在其他OFDM符号(组合)上进行盲检测。若用户终端在两个资源单元先后检测到关闭(off)状态和关闭(off)状态,则用户终端不盲检测寻呼(Paging)信号或PDCCH,以继续休眠。
以状态检测结果对应PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或睡眠信号在两个资源单元上通过OOK的方式发送,若用户终端在两个资源单元上都检测到开启(on)状态,代表用户终端需要检测的PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔为X ms,其中,X为大于0的整数。若用户终端两个资源单元先后检测到开启(on)状态和关闭(off)状态,代表用户终端需要检测的PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔为Y  ms,其中,Y为大于0的整数。若用户终端在两个资源单元先后检测到关闭(off)状态和开启(on)状态,代表用户终端需要检测的PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔为Z ms,其中,Z为大于0的整数。若用户终端在两个资源单元先后检测到关闭(off)状态和关闭(off)状态,则用户终端不盲检测寻呼(Paging)信号或PDCCH,以继续休眠。
以状态检测结果对应多个盲检测参数(例如:聚合等级和带宽片段),以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号在两个资源单元上通过OOK的方式发送,若用户终端在两个资源单元上都检测到开启(on)状态,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 1且聚合等级为1。若用户终端在两个资源单元先后检测到开启(on)状态和关闭(off)状态,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 1且聚合等级为2。若用户终端两个资源单元先后检测到关闭(off)状态和开启(on)状态,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 2且聚合等级为1。若用户终端在两个资源单元先后检测到关闭(off)状态和关闭(off)状态,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠。
本公开实施例中,通过在至少一个资源单元上检测通信信号或者通信信道,可以获取对应的一个或者多个盲检测参数,提高用户终端盲检测的成功概率,以减少盲检测的次数,节约用户终端的耗电。
可选的,所述对通信信号或者通信信道进行检测,得到检测结果的步骤,包括:对通信信号或者通信信道序列检测,得到序列检测结果;所述获取所述检测结果对应的盲检测参数的步骤,包括:获取所述序列检测结果对应的盲检测参数;其中,所述通信信号或者通信信道通过正交序列方式或者准正交序列方式或者随机序列方式发送。
其中,上述序列检测可以是通信信号或者通信信道可以是通过序列相关操作进行检测,以检测到通信信号或者通信信道的序列检测结果。且,在本公开实施例中,对通信信号或者通信信道包括信号序列的长度不作限定,例如:可以是1、2、4或者8比特等等。
本公开实施例中,可以实现通过通信信号或者通信信道的序列表示对应 的盲检测参数,从而可以提高盲检测参数的灵活性,以进一步减少用户终端盲检测的次数。
可选的,所述对通信信号或者通信信道进行序列检测,得到序列检测结果的步骤之后,所述方法还包括:若所述序列检测结果为预设序列,则进行PDCCH盲检测;若所述序列检测结果不为所述预设序列,则保持睡眠状态。
其中,上述预设序列可以是用户终端预先配置好的,或者可以是用户终端接收基站发送序列,或者协议预先定义的序列,对此本公开实施例不作限定。例如:上述预设序列可以为序列M或者ZadeOff-chu序列等其他序列。
本公开实施例中,可以实现若序列检测结果为预设序列,则进行PDCCH盲检测,即后续接收PDCCH,否则,用户终端继续睡眠。从而可以本公开实施例中,通过上述状态检测结果可以实现用户终端及时接收PDCCH或者睡眠,以节约用户终端的功耗。
以序列检测结果对应PDCCH聚合等级,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号通过序列的方式发送,若用户终端通过检测唤醒信号或者睡眠信号的序列检测出来的序列是序列1,代表用户终端需要检测的PDCCH聚合等级为4或8,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他聚合等级进行盲检测。若用户终端检测出来的序列是序列2,代表用户终端需要检测的PDCCH聚合等级为1或2,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他聚合等级进行盲检测。若用户终端检测出来的序列是序列3,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠。
以序列检测结果对应的用户终端需要检测的搜索空间类型,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号通过序列的方式发送,若用户终端通过检测唤醒信号或者睡眠信号的序列检测出来的序列是序列1,代表用户终端需要检测的搜索空间为搜索空间1,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他搜索空间进行盲检测。若用户终端检测出来的序列是序列2,代表用户终端需要检测的搜索空间为搜索空间2,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他搜索空间进行盲检测。若用户终端检测出来的序列是序列 3,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠。
以序列检测结果对应用户终端需要检测的DCI format,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号通过序列的方式发送,用户终端通过检测唤醒信号或者睡眠信号序列检测出来的序列是序列1,代表用户终端需要检测的DCI format为DCI format 1,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试盲检测其他DCI format。若用户终端检测出来的序列是序列2,代表用户终端需要检测的DCI format为DCI format 3,UE按照该信息进行盲检测。如果盲检测失败,则可以尝试盲检测其他DCI format。若用户终端检测出来的序列是序列3,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠。
以序列检测结果对应用户终端需要检测的带宽片段(Bandwidth parts),以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号通过序列的方式发送,若用户终端通过检测唤醒信号或者睡眠信号的序列检测出来的序列是序列1,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 1,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他Bandwidth parts上进行盲检测。若用户终端检测出来的序列是序列2,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 2,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他Bandwidth parts上进行盲检测。若用户终端盲检测出来的序列是序列3,则用户终端不盲检测寻呼(Paging)信号或PDCCH,以继续休眠。
以序列检测结果对应用户终端需要检测的时频资源,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号通过序列的方式发送,用户终端通过检测唤醒信号或者睡眠信号序列检测出来的序列是序列1,代表用户终端需要检测的时频资源为唤醒信号或者睡眠信号所在子帧的第一个OFDM符号,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他OFDM符号(组合)上进行盲检测。若用户终端检测出来的序列是序列2,代表用户终端需要检测的时频资源为唤醒信号或者睡眠信号所在子帧的前2个OFDM符号,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他OFDM符号(组合)上进行盲检测。若用户终端检测 出来的序列是序列3,则用户终端不盲检测寻呼(Paging)信号或PDCCH,以继续休眠。
以序列检测结果对应PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或睡眠信号通过序列的方式发送,用户终端通过检测唤醒信号或睡眠信号的序列检测出来的序列是序列1,代表用户终端需要检测的PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔为X ms。若用户终端检测出来的序列是序列2,代表用户终端需要检测的PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔为Y ms。若用户终端检测出来的序列是序列3,则用户终端不盲检测寻呼(Paging)信号或PDCCH,以继续休眠。
以序列检测结果对应多个盲检测参数(例如:聚合等级和带宽片段),以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号通过序列的方式发送,用户终端通过检测唤醒信号或者睡眠信号的序列检测出来的序列是序列1,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 1且聚合等级为1。若用户终端检测出来的序列是序列2,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 1且聚合等级为2。若用户终端检测出来的序列是序列3,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠。
可选的,所述对通信信号或者通信信道进行检测,得到检测结果的步骤,包括:对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;所述获取所述检测结果对应的盲检测参数的步骤,包括:获取所述有效负荷检测结果对应的盲检测参数。
其中,上述通过数字信号有效负荷(payload)方式发送,可以是指通过通信信号或者通信信道的经过编码的有效负荷(payload)表示对应的盲检测参数。上述有效负荷检测结果可以是具体的比特,即不同的比特对应不同的盲检测参数。
以有效负荷(或者称作有用信息)检测结果对应PDCCH聚合等级,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号传输的是2bit有效负荷(payload),则检测到2bit是11,代表用户终端需要检 测的PDCCH聚合等级为4或8,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他聚合等级进行盲检测。若检测到的2bit是10,代表用户终端需要检测的PDCCH聚合等级为2,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他聚合等级进行盲检测;若检测到的2bit是01,代表用户终端需要检测的PDCCH聚合等级为1,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他聚合等级进行盲检测;若检测到的2bit是00,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠。
以有效负荷检测结果对应的用户终端需要检测的搜索空间类型,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号传输的是2bit有效负荷(payload),则检测到2bit是11,代表用户终端需要检测的搜索空间为搜索空间1,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他搜索空间进行盲检测。若检测到的2bit是10,代表用户终端需要检测的搜索空间为搜索空间2,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他搜索空间进行盲检测。若检测到的2bit是01,代表用户终端需要检测的搜索空间为搜索空间3,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试根据其他搜索空间进行盲检测。若检测到的2bit是00,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠。
以有效负荷检测对应用户终端需要检测的DCI format,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号传输的是2bit有效负荷(payload),则检测到的2bit是11,代表用户终端需要检测的DCI format为DCI format 1,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试盲检测其他DCI format。若检测到的2bit是10,代表用户终端需要检测的DCI format为DCI format 3,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试盲检测其他DCI format。若检测到的2bit是01,代表用户终端需要检测的DCI format为DCI format 1和DCI format 3,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试盲检测其他DCI format;若检测到的2bit是00,则用户终端不盲检测寻呼(Paging)信号或PDCCH, 继续休眠。
以有效负荷检测结果对应用户终端需要检测的带宽片段(Bandwidth parts),以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号传输的是2it有效负荷(payload),则检测到2bit是11,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 1,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他Bandwidth parts上进行盲检测。若检测到的2bit是10,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 2,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他Bandwidth parts上进行盲检测。若检测到的2bit是01,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 3,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他Bandwidth parts上进行盲检测。若检测到的2bit是00,则用户终端不盲检测寻呼(Paging)信号或PDCCH,以继续休眠。
以有效负荷检测结果对应用户终端需要检测的时频资源,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号传输的是2bit有效负荷(payload),若检测到的2bit是11,代表用户终端需要检测的时频资源为唤醒信号或者睡眠信号所在子帧的第一个OFDM符号,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他OFDM符号(组合)上进行盲检测。若检测到的2bit是10,代表用户终端需要检测的时频资源为唤醒信号或者睡眠信号所在子帧的前2个OFDM符号,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他OFDM符号(组合)上进行盲检测。若检测到的2bit是01,代表用户终端需要检测的时频资源为唤醒信号或者睡眠信号所在子帧的前3个OFDM符号,用户终端按照该信息进行盲检测。如果盲检测失败,则可以尝试在其他OFDM符号(组合)上进行盲检测。若检测到的2bit是00,则用户终端不盲检测寻呼(Paging)信号或PDCCH,以继续休眠。
以有效负荷检测结果对应PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔,以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或睡眠信号传输的是2bit有效负荷(payload),若检测到的2bit是11,代表用 户终端需要检测的PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔为X ms。若检测到的2bit是10,代表用户终端需要检测的PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔为Y ms。若检测到的2bit是01,代表用户终端需要检测的PDCCH与对应的唤醒信号或睡眠信号之间的时间间隔为Z ms。若检测到的2bit是00,则用户终端不盲检测寻呼(Paging)信号或PDCCH,以继续休眠。
以有效负荷检测结果对应多个盲检测参数(例如:聚合等级和带宽片段),以进一步降低用户终端盲检测PDCCH的功耗为例:唤醒信号或者睡眠信号传输的是2bit有效负荷(payload),若检测到的2bit是11,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 1且聚合等级为1。若检测到的2bit是10,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 1且聚合等级为2。若检测到的2bit是01,代表用户终端需要检测的Bandwidth parts为Bandwidth parts 2且聚合等级为1。若检测到的2bit是00,则用户终端不盲检测寻呼(Paging)信号或PDCCH,继续休眠。
本公开实施例中,通过检测通信信号或者通信信道的有效负荷,可以获取对应的一个或者多个盲检测参数,提高用户终端盲检测的成功概率,节约用户终端的耗电。
可选的,所述对通信信号或者通信信道进行检测,得到检测结果的步骤,包括:对通信信号或者通信信道进行序列检测,得到检测序列;对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;所述获取所述检测结果对应的盲检测参数的步骤,包括:获取所述有效负荷检测结果对应的盲检测参数。
其中,上述通信信号或者通信信道可以是理解为采用序列结合数字信号有效负荷(序列+数字信号有效负荷)的方式发送。且可以检测到序列检测结果和有效负荷检测结果,其中,这两个检测结果可以参见前面实施方式的相应说明,此处不作赘述,且可以达到相同的有效效果。
可选的,所述方法还包括:使用所述检测序列进行同步。
其中,该步骤可以是与对通信信号或者通信信道进行序列检测,得到检测序列同时进行的,或者可以在是对通信信号或者通信信道进行序列检测, 得到检测序列之后执行的,对此本公开实施例不作限定。
其中,上述同步可以是时间同步,或者用户终端与基站之间的其他同步,对此本公开实施例不作限定。通过上述同步可以实现,采用通信信号或者通信信道同时实现同步和盲检测参数的获取,以减少信令的传输,节约传输资源。
可选的,本公开实施例中,盲检测参数包括如下至少一项:
PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
其中,上述盲检测参数与检测结果的对应关系,可以参见上面描述的多个实施方式,此处不作赘述。
本公开实施例中,通过上述盲检测参数可以实现唤醒信号或者睡眠信号与上述一个或者多个盲检测参数对应,从而可以让用户终端更加精确地盲检测PDCCH,提高盲检测成功的概率,且可以进一步节约用户终端的耗电。
可选的,所述获取所述检测结果对应的盲检测参数的步骤之后,所述方法还包括:
步骤303、使用所述盲检测参数,进行PDCCH盲检测。
通过步骤303可以实现对PDCCH进行盲检测,得到基站下发的PDCCH信号,可以降低用户终端盲检测PDCCH的功耗,以节约用户终端的耗电。
可选的,所述使用所述盲检测参数,进行PDCCH盲检测的步骤,包括:按照所述PDCCH的聚合等级,进行PDCCH盲检测;或者按照所述PDCCH的搜索空间类型,进行PDCCH盲检测;或者按照所述DCI format,进行PDCCH盲检测;或者在所述带宽片段进行PDCCH盲检测;或者在所述时频资源上进行PDCCH盲检测;或者按照所述PDCCH与所述唤醒信号之间的时间间隔,进行PDCCH盲检测;或者按照所述PDCCH与所述睡眠信号之间的时间间隔,进行PDCCH盲检测。
其中,这里是以按照其中的某一个盲检测参数进行举例说明,本公开实施例中,还可以是采用多个盲检测参数结合实现,例如:按照所述PDCCH 的聚合等级和所述PDCCH的搜索空间类型,进行PDCCH盲检测;或者在带宽片段中的上述时频资源上进行PDCCH盲检测;或者在带宽片段中的上述时频资源上按照所述DCI format,进行PDCCH盲检测等等,此处不一一列出。
本公开实施例中,用户终端使用上述盲检测参数进行盲检测,从而可以提高用户终端盲检测PDCCH成功的概率,且可以进一步节约用户终端的耗电。
可选的,所述使用所述盲检测参数,进行PDCCH盲检测的步骤之后,所述方法还包括:若PDCCH盲检测失败,则使用除所述盲检测参数之外的盲检测参数,进行PDCCH盲检测。
其中,上述盲检测参数之外的盲检测参数可以是,用户终端预先获取的盲检测参数,或者可以是基于上述盲检测参数计算或者推导的盲检测参数。
本公开实施例中,通过上述步骤可以进一步提高用户终端盲检测PDCCH的成功概率。
本公开实施例中,对通信信号或者通信信道进行检测,得到检测结果;获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道;使用所述盲检测参数,进行PDCCH盲检测。这样通过降低用户终端盲检测PDCCH的功耗,以节约用户终端的耗电。
请参见图4,图4是本公开实施例提供的盲检测参数获取方法的流程图,如图4所示,包括以下步骤:
步骤401、确定用户终端的盲检测参数。
其中,上述盲检测参数可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
步骤402、向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷,以使所述用户终端对所述通信信号或者所述通信信道进行检测,得到检测结果,并获取所述检测结果对应的盲检测参数。
其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道,且所述通信信号或者所述有效负荷均与所述盲检测参 数对应。
其中,上述检测结果、通信信号和通信信道均可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述盲检测参数包括PDCCH的盲检测参数。
其中,上述PDCCH的盲检测参数可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷的步骤,包括:通过OOK方式,向所述用户终端发送OOK对应。
其中,上述发送方式可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述通过OOK方式,向所述用户终端发送OOK对应的步骤,包括:在至少一个资源单元上,通过OOK方式,向所述用户终端发送OOK对应。
其中,上述发送方式可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷的步骤,包括:通过正交序列方式或者准正交序列方式或者随机序列方式,向所述用户终端发送通信信号
其中,上述发送方式可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷的步骤,包括:通过经过编码的数字信号有效负荷方式,在通信信道向所述用户终端发送有效负荷。
其中,上述发送方式可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷的步骤,包括:向所述用户终端发送通信信号,以及在通信信道向所述用户终端发送有效负荷;其中,所述通信信号包括信号序 列。
其中,上述发送方式可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述信号序列用于所述用户终端进行同步,所述有效负荷用于指示所述盲检测参数。
其中,上述同步可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述盲检测参数包括如下至少一项:PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
其中,上述盲检测参数可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
本公开实施例中,确定用户终端的盲检测参数;向所述用户终端发送通信信号或者在通信信道向所述用户终端发送信号,以使所述用户终端对所述通信信号或者所述通信信道进行检测,得到检测结果,并获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道,且所述通信信号或者所述通信信道发送的信号均与所述盲检测参数对应。这样可以灵活地向用户终端指示对应的盲检测参数,从而可以降低盲检测的次数,以节约用户终端的耗电。
请参见图5,图5是本公开实施例提供的用户终端的结构图,该基站能够实现图2至图3的方法实施例中的盲检测参数获取方法的细节,并达到相同的效果。如图5所示,用户终端500包括:检测模块501和获取模块502,其中,检测模块501与获取模块502连接,其中:
检测模块501,用于对通信信号或者通信信道进行检测,得到检测结果;
获取模块502,用于获取所述检测结果对应的盲检测参数;
其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。
可选的,所述盲检测参数包括PDCCH的盲检测参数。
可选的,所述检测模块501用于对通信信号或者通信信道进行状态检测,得到状态检测结果;其中,所述通信信号或者所述通信信道通过启闭键控OOK方式发送。
可选的,如图6所示,用户终端500还包括:
第一盲检测模块503,用于若所述状态检测结果为开启状态,则进行PDCCH盲检测;
第一睡眠保持模块504,用于若所述状态检测结果为关闭状态,则保持睡眠状态。
可选的,所述检测模块501用于在至少一个资源单元上,对通信信号或者通信信道进行状态检测,得到状态检测结果,所述状态检测结果包括在所述至少一个资源单元上进行状态检测的结果;
所述获取模块502用于获取所述状态检测结果对应的盲检测参数,以及所述状态检测结果对应的检测状态,所述检测状态包括唤醒状态或者睡眠状态。
可选的,所述检测模块501用于对通信信号或者通信信道序列检测,得到序列检测结果;
所述获取模块502用于获取所述序列检测结果对应的盲检测参数;其中,所述通信信号或者通信信道通过正交序列方式或者准正交序列方式或者随机序列方式发送。
可选的,如图7所示,所述用户终端500还包括:
第二盲检测模块505,用于若所述序列检测结果为预设序列,则进行PDCCH盲检测;
第二睡眠保持模块506,用于若所述序列检测结果不为所述预设序列,则保持睡眠状态。
可选的,所述检测模块501用于对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;
所述获取模块502用于获取所述有效负荷检测结果对应的盲检测参数。
可选的,如图8所示,所述检测模块501包括:
检测单元5011,用于对通信信号或者通信信道进行序列检测,得到检测 序列;
解码单元5012,用于对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;
所述获取模块502用于获取所述有效负荷检测结果对应的盲检测参数。
可选的,如图9所示,所述用户终端500还包括:
同步模块507,用于使用所述检测序列进行同步。
可选的,所述盲检测参数包括如下至少一项:
PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
可选的,如图10所示,所述用户终端500还包括:
第三盲检测模块508,用于使用所述盲检测参数,进行PDCCH盲检测。
可选的,所述第三盲检测模块508用于按照所述PDCCH的聚合等级,进行PDCCH盲检测;或者
所述第三盲检测模块508用于按照所述PDCCH的搜索空间类型,进行PDCCH盲检测;或者
所述第三盲检测模块508用于按照所述DCI format,进行PDCCH盲检测;或者
所述第三盲检测模块508用于在所述带宽片段进行PDCCH盲检测;或者
所述第三盲检测模块508用于在所述时频资源上进行PDCCH盲检测;或者
所述第三盲检测模块508用于按照所述PDCCH与所述唤醒信号之间的时间间隔,进行PDCCH盲检测;或者
所述第三盲检测模块508用于按照所述PDCCH与所述睡眠信号之间的时间间隔,进行PDCCH盲检测。
可选的,如图11所示,所述用户终端500还包括:
第四盲检测模块509,用于若PDCCH盲检测失败,则使用除所述盲检测 参数之外的盲检测参数,进行PDCCH盲检测。
本公开实施例中,对通信信号或者通信信道进行检测,得到检测结果;获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。这样通过通信信号或者通信信道可以灵活地获取到盲检测参数,从而可以降低盲检测的次数,以节约用户终端的耗电。
请参见图12,图12是本公开实施例提供的基站的结构图,该基站能够实现图4的方法实施例中的盲检测参数获取方法的细节,并达到相同的效果。如图12所示,基站1200包括:确定模块1201和发送模块1202,其中,确定模块1201与发送模块1202连接,其中:
确定模块1201,用于确定用户终端的盲检测参数;
发送模块1202,用于向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷,以使所述用户终端对所述通信信号或者所述通信信道进行检测,得到检测结果,并获取所述检测结果对应的盲检测参数;
其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道,且所述通信信号或者所述有效负荷均与所述盲检测参数对应。
可选的,所述盲检测参数包括PDCCH的盲检测参数。
可选的,所述发送模块1202用于通过OOK方式,向所述用户终端发送OOK对应信号。
可选的,所述发送模块1202用于在至少一个资源单元上,通过OOK方式,向所述用户终端发送OOK对应信号。
可选的,所述发送模块1202用于通过正交序列方式或者准正交序列方式或者随机序列方式,向所述用户终端发送通信信号。
可选的,所述发送模块1202用于通过经过编码的数字信号有效负荷方式,在通信信道向所述用户终端发送有效负荷。
可选的,所述发送模块1202用于向所述用户终端发送通信信号,以及在通信信道向所述用户终端发送有效负荷;
其中,所述通信信号包括信号序列。
可选的,所述信号序列用于所述用户终端进行同步,所述有效负荷用于指示所述盲检测参数。
可选的,所述盲检测参数包括如下至少一项:
PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
本公开实施例中,确定用户终端的盲检测参数;向所述用户终端发送通信信号或者在通信信道向所述用户终端发送信号,以使所述用户终端对所述通信信号或者所述通信信道进行检测,得到检测结果,并获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道,且所述通信信号或者所述通信信道发送的信号均与所述盲检测参数对应。这样可以灵活地向用户终端指示对应的盲检测参数,从而可以降低盲检测的次数,以节约用户终端的耗电。
本公开实施例还提供一种用户终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开实施例提供的用户终端侧的盲检测参数获取方法中的步骤。
本公开实施例还提供一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开实施例提供的基站侧的盲检测参数获取方法中的步骤。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的用户终端侧的盲检测参数获取方法中的步骤。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现本公开实施例提供的基站侧的盲检测参数获取方法中的步骤。
参见图13,图13是本公开实施提供的用户终端的结构图,该用户终端能够实现图2和图3的方法实施例中的盲检测参数获取方法的细节,并达到相同的效果。如图13所示,用户终端1300包括:至少一个处理器1301、存 储器1302、至少一个网络接口1304和其他用户接口1303。用户终端1300中的各个组件通过总线系统1305耦合在一起。可理解,总线系统1305用于实现这些组件之间的连接通信。总线系统1305除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图13中将各种总线都标为总线系统1305。
其中,用户接口1303可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等)。
可以理解,本公开实施例中的存储器1302可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus DRAM,DRDRAM)。本文描述的系统和方法的存储器1302旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1302存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统13021和应用程序13022。
其中,操作系统13021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序13022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序 13022中。
在本公开实施例中,用户终端1300还包括:存储在存储器1302上并可在处理器1301上运行的计算机程序,计算机程序被处理器1301执行时实现如下步骤:对通信信号或者通信信道进行检测,得到检测结果;获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。
上述本公开实施例揭示的方法可以应用于处理器1301中,或者由处理器1301实现。处理器1301可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1301中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1301可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器1302,处理器1301读取存储器1302中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来 实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选的,所述盲检测参数包括PDCCH的盲检测参数。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:对通信信号或者通信信道进行状态检测,得到状态检测结果;其中,所述通信信号或者所述通信信道通过启闭键控OOK方式发送。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:若所述状态检测结果为开启状态,则进行PDCCH盲检测;若所述状态检测结果为关闭状态,则保持睡眠状态。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:在至少一个资源单元上,对通信信号或者通信信道进行状态检测,得到状态检测结果,所述状态检测结果包括在所述至少一个资源单元上进行状态检测的结果;获取所述状态检测结果对应的盲检测参数,以及所述状态检测结果对应的检测状态,所述检测状态包括唤醒状态或者睡眠状态。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:对通信信号或者通信信道序列检测,得到序列检测结果;获取所述序列检测结果对应的盲检测参数;其中,所述通信信号或者通信信道通过正交序列方式或者准正交序列方式或者随机序列方式发送。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:若所述序列检测结果为预设序列,则进行PDCCH盲检测;若所述序列检测结果不为所述预设序列,则保持睡眠状态。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;获取所述有效负荷检测结果对应的盲检测参数。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:对通信信号或者通信信道进行序列检测,得到检测序列;对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;获取所述有效负荷检测结果对应的盲检测参数。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:使用所述 检测序列进行同步。
可选的,所述盲检测参数包括如下至少一项:PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:使用所述盲检测参数,进行PDCCH盲检测。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:按照所述PDCCH的聚合等级,进行PDCCH盲检测;或者按照所述PDCCH的搜索空间类型,进行PDCCH盲检测;或者按照所述DCI format,进行PDCCH盲检测;或者在所述带宽片段进行PDCCH盲检测;或者在所述时频资源上进行PDCCH盲检测;或者按照所述PDCCH与所述唤醒信号之间的时间间隔,进行PDCCH盲检测;或者按照所述PDCCH与所述睡眠信号之间的时间间隔,进行PDCCH盲检测。
可选的,计算机程序被处理器1301执行时还可实现如下步骤:若PDCCH盲检测失败,则使用除所述盲检测参数之外的盲检测参数,进行PDCCH盲检测。
本公开实施例中,对通信信号或者通信信道进行检测,得到检测结果;获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。这样通过通信信号或者通信信道可以灵活地获取到盲检测参数,从而可以降低盲检测的次数,以节约用户终端的耗电。
参见图14,图14是本公开实施例提供的用户终端的结构图,该用户终端能够实现图2和图3的方法实施例中的盲检测参数获取方法的细节,并达到相同的效果。如图14所示,用户终端1400包括:射频(Radio Frequency,RF)电路1401、存储器1402、输入单元1403、显示单元1404、电源1405、处理器1406、音频电路1407和WiFi(Wireless Fidelity)模块1408。
其中,输入单元1403可用于接收用户输入的数字或字符信息,以及产生与用户终端1400的用户设置以及功能控制有关的信号输入。具体地,本公开 实施例中,该输入单元1403可以包括触控面板14031。触控面板14031,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板14031上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板14031可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器1406,并能接收处理器1406发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板14031。除了触控面板14031,输入单元1403还可以包括其他输入设备14032,其他输入设备14032可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元1404可用于显示由用户输入的信息或提供给用户的信息以及用户终端1400的各种菜单界面。显示单元1404可包括显示面板14041,可选的,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板14041。
应注意,触控面板14031可以覆盖显示面板14041,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器1406以确定触摸事件的类型,随后处理器1406根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器1406是用户终端1400的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器14014内的软件 程序和/或模块,以及调用存储在第二存储器14022内的数据,执行用户终端1400的各种功能和处理数据,从而对用户终端1400进行整体监控。可选的,处理器1406可包括一个或多个处理单元。
在本公开实施例中,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406用于:对通信信号或者通信信道进行检测,得到检测结果;获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。
可选的,所述盲检测参数包括PDCCH的盲检测参数。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406还用于:对通信信号或者通信信道进行状态检测,得到状态检测结果;其中,所述通信信号或者所述通信信道通过启闭键控OOK方式发送。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406还用于:若所述状态检测结果为开启状态,则进行PDCCH盲检测;若所述状态检测结果为关闭状态,则保持睡眠状态。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406还用于:在至少一个资源单元上,对通信信号或者通信信道进行状态检测,得到状态检测结果,所述状态检测结果包括在所述至少一个资源单元上进行状态检测的结果;获取所述状态检测结果对应的盲检测参数,以及所述状态检测结果对应的检测状态,所述检测状态包括唤醒状态或者睡眠状态。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406还用于:对通信信号或者通信信道序列检测,得到序列检测结果;获取所述序列检测结果对应的盲检测参数;其中,所述通信信号或者通信信道通过正交序列方式或者准正交序列方式或者随机序列方式发送。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/ 或第二存储器14022内的数据,处理器1406还用于:若所述序列检测结果为预设序列,则进行PDCCH盲检测;若所述序列检测结果不为所述预设序列,则保持睡眠状态。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406还用于:对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;获取所述有效负荷检测结果对应的盲检测参数。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406还用于:对通信信号或者通信信道进行序列检测,得到检测序列;对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;获取所述有效负荷检测结果对应的盲检测参数。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406还用于:使用所述检测序列进行同步。
可选的,PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406还用于:使用所述盲检测参数,进行PDCCH盲检测。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406还用于:按照所述PDCCH的聚合等级,进行PDCCH盲检测;或者按照所述PDCCH的搜索空间类型,进行PDCCH盲检测;或者按照所述DCI format,进行PDCCH盲检测;或者在所述带宽片段进行PDCCH盲检测;或者在所述时频资源上进行PDCCH盲检测;或者按照所述PDCCH与所述唤醒信号之间的时间间隔,进行PDCCH盲检测;或者按照所述PDCCH与所述睡眠信号之间的时间间隔,进行PDCCH盲检测。
可选的,通过调用存储该第一存储器14014内的软件程序和/或模块和/或第二存储器14022内的数据,处理器1406还用于:若PDCCH盲检测失败,则使用除所述盲检测参数之外的盲检测参数,进行PDCCH盲检测。
本公开实施例中,对通信信号或者通信信道进行检测,得到检测结果;获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。这样通过通信信号或者通信信道可以灵活地获取到盲检测参数,从而可以降低盲检测的次数,以节约用户终端的耗电。
参见图15,图15是本公开实施例提供的基站的结构图,该基站能够实现图4的方法实施例中的盲检测参数获取方法的细节,并达到相同的效果。如图15所示,该基站1500包括:处理器1501、收发机1502、存储器1503和总线接口,其中:
在本公开实施例中,基站1500还包括:存储在存储器1503上并可在处理器1501上运行的计算机程序,计算机程序被处理器1501执行时实现如下步骤:确定用户终端的盲检测参数;向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷,以使所述用户终端对所述通信信号或者所述通信信道进行检测,得到检测结果,并获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道,且所述通信信号或者所述有效负荷均与所述盲检测参数对应。
其中,收发机1502,用于在处理器1501的控制下接收和发送数据,所述收发机1502包括至少两个天线端口。
在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1501代表的一个或多个处理器和存储器1503代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1502可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1504还可以是能够外接内接需要设备的接口, 连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1501负责管理总线架构和通常的处理,存储器1503可以存储处理器1501在执行操作时所使用的数据。
可选的,所述盲检测参数包括PDCCH的盲检测参数。
可选的,计算机程序被处理器1501执行时还可实现如下步骤:通过OOK方式,向所述用户终端发送通信信号或者在通信信道向所述用户终端发送信号。
可选的,计算机程序被处理器1501执行时还可实现如下步骤:在至少一个资源单元上,通过OOK方式,向所述用户终端发送OOK对应信号。
可选的,计算机程序被处理器1501执行时还可实现如下步骤:通过正交序列方式或者准正交序列方式或者随机序列方式,向所述用户终端发送通信信号。
可选的,计算机程序被处理器1501执行时还可实现如下步骤:通过经过编码的数字信号有效负荷方式,在通信信道向所述用户终端发送有效负荷。
可选的,计算机程序被处理器1501执行时还可实现如下步骤:向所述用户终端发送通信信号,以及在通信信道向所述用户终端发送有效负荷;其中,所述通信信号包括信号序列。
可选的,所述信号序列用于所述用户终端进行同步,所述有效负荷用于指示所述盲检测参数。
可选的,所述盲检测参数包括如下至少一项:PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
本公开实施例中,确定用户终端的盲检测参数;向所述用户终端发送通信信号或者在通信信道向所述用户终端发送信号,以使所述用户终端对所述通信信号或者所述通信信道进行检测,得到检测结果,并获取所述检测结果对应的盲检测参数;其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道,且所述通信信号或者所述通信信道发送的信号均与所述盲检测参数对应。这样可以灵活地向用户终端指示对应的 盲检测参数,从而可以降低盲检测的次数,以节约用户终端的耗电。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存 储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (51)

  1. 一种盲检测参数获取方法,应用于用户终端,包括:
    对通信信号或者通信信道进行检测,得到检测结果;
    获取所述检测结果对应的盲检测参数;
    其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道。
  2. 根据权利要求1所述的方法,其中,所述盲检测参数包括物理下行控制信道PDCCH的盲检测参数。
  3. 根据权利要求1所述的方法,其中,所述对通信信号或者通信信道进行检测,得到检测结果的步骤,包括:
    对通信信号或者通信信道进行状态检测,得到状态检测结果;
    其中,所述通信信号或者所述通信信道通过启闭键控OOK方式发送。
  4. 根据权利要求3所述的方法,其中,所述对通信信号或者通信信道进行状态检测,得到状态检测结果的步骤之后,所述方法还包括:
    若所述状态检测结果为开启状态,则进行PDCCH盲检测;
    若所述状态检测结果为关闭状态,则保持睡眠状态。
  5. 如权利要求3所述的方法,其中,所述对通信信号或者通信信道进行状态检测,得到状态检测结果的步骤,包括:
    在至少一个资源单元上,对通信信号或者通信信道进行状态检测,得到状态检测结果,所述状态检测结果包括在所述至少一个资源单元上进行状态检测的结果;
    所述获取所述检测结果对应的盲检测参数的步骤,包括:
    获取所述状态检测结果对应的盲检测参数,以及所述状态检测结果对应的检测状态,所述检测状态包括唤醒状态或者睡眠状态。
  6. 根据权利要求1所述的方法,其中,所述对通信信号或者通信信道进行检测,得到检测结果的步骤,包括:
    对通信信号或者通信信道序列检测,得到序列检测结果;
    所述获取所述检测结果对应的盲检测参数的步骤,包括:
    获取所述序列检测结果对应的盲检测参数;
    其中,所述通信信号或者通信信道通过正交序列方式或者准正交序列方式或者随机序列方式发送。
  7. 根据权利要求6所述的方法,其中,所述对通信信号或者通信信道进行序列检测,得到序列检测结果的步骤之后,所述方法还包括:
    若所述序列检测结果为预设序列,则进行PDCCH盲检测;
    若所述序列检测结果不为所述预设序列,则保持睡眠状态。
  8. 根据权利要求1所述的方法,其中,所述对通信信号或者通信信道进行检测,得到检测结果的步骤,包括:
    对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;
    所述获取所述检测结果对应的盲检测参数的步骤,包括:
    获取所述有效负荷检测结果对应的盲检测参数。
  9. 根据权利要求1所述的方法,其中,所述对通信信号或者通信信道进行检测,得到检测结果的步骤,包括:
    对通信信号或者通信信道进行序列检测,得到检测序列;
    对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;
    所述获取所述检测结果对应的盲检测参数的步骤,包括:
    获取所述有效负荷检测结果对应的盲检测参数。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    使用所述检测序列进行同步。
  11. 根据权利要求1至9中任一项所述的方法,其中,所述盲检测参数包括如下至少一项:
    PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的下行控制信息格式DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
  12. 根据权利要求11所述的方法,其中,所述获取所述检测结果对应的 盲检测参数的步骤之后,所述方法还包括:
    使用所述盲检测参数,进行PDCCH盲检测。
  13. 根据权利要求12所述的方法,其中,所述使用所述盲检测参数,进行PDCCH盲检测的步骤,包括:
    按照所述PDCCH的聚合等级,进行PDCCH盲检测;或者
    按照所述PDCCH的搜索空间类型,进行PDCCH盲检测;或者
    按照所述DCI format,进行PDCCH盲检测;或者
    在所述带宽片段进行PDCCH盲检测;或者
    在所述时频资源上进行PDCCH盲检测;或者
    按照所述PDCCH与所述唤醒信号之间的时间间隔,进行PDCCH盲检测;或者
    按照所述PDCCH与所述睡眠信号之间的时间间隔,进行PDCCH盲检测。
  14. 根据权利要求12所述的方法,其中,所述使用所述盲检测参数,进行PDCCH盲检测的步骤之后,所述方法还包括:
    若PDCCH盲检测失败,则使用除所述盲检测参数之外的盲检测参数,进行PDCCH盲检测。
  15. 一种盲检测参数获取方法,应用于基站,包括:
    确定用户终端的盲检测参数;
    向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷,以使所述用户终端对所述通信信号或者所述通信信道进行检测,得到检测结果,并获取所述检测结果对应的盲检测参数;
    其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道,且所述通信信号或者所述有效负荷均与所述盲检测参数对应。
  16. 根据权利要求15所述的方法,其中,所述盲检测参数包括PDCCH的盲检测参数。
  17. 根据权利要求15所述的方法,其中,所述向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷的步骤,包括:
    通过OOK方式,向所述用户终端发送OOK对应信号。
  18. 根据权利要求17所述的方法,其中,所述通过OOK方式,向所述用户终端发送OOK对应信号的步骤,包括:
    在至少一个资源单元上,通过OOK方式,向所述用户终端发送OOK对应。
  19. 根据权利要求15所述的方法,其中,所述向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷的步骤,包括:
    通过正交序列方式或者准正交序列方式或者随机序列方式,向所述用户终端发送通信信号。
  20. 根据权利要求15所述的方法,其中,所述向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷的步骤,包括:
    通过经过编码的数字信号有效负荷方式,在通信信道向所述用户终端发送有效负荷。
  21. 根据权利要求15所述的方法,其中,所述向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷的步骤,包括:
    向所述用户终端发送通信信号,以及在通信信道向所述用户终端发送有效负荷;
    其中,所述通信信号包括信号序列。
  22. 根据权利要求21所述的方法,其中,所述信号序列用于所述用户终端进行同步,所述有效负荷用于指示所述盲检测参数。
  23. 根据权利要求15至22中任一项所述的方法,其中,所述盲检测参数包括如下至少一项:
    PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
  24. 一种用户终端,包括:
    检测模块,用于对通信信号或者通信信道进行检测,得到检测结果;
    获取模块,用于获取所述检测结果对应的盲检测参数;
    其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤 醒信道或者睡眠信道。
  25. 根据权利要求24所述的用户终端,其中,所述盲检测参数包括PDCCH的盲检测参数。
  26. 根据权利要求24所述的用户终端,其中,所述检测模块用于对通信信号或者通信信道进行状态检测,得到状态检测结果;
    其中,所述通信信号或者所述通信信道通过启闭键控OOK方式发送。
  27. 根据权利要求26所述的用户终端,其中,所述用户终端还包括:
    第一盲检测模块,用于若所述状态检测结果为开启状态,则进行PDCCH盲检测;
    第一睡眠保持模块,用于若所述状态检测结果为关闭状态,则保持睡眠状态。
  28. 如权利要求26所述的用户终端,其中,所述检测模块用于在至少一个资源单元上,对通信信号或者通信信道进行状态检测,得到状态检测结果,所述状态检测结果包括在所述至少一个资源单元上进行状态检测的结果;
    所述获取模块用于获取所述状态检测结果对应的盲检测参数,以及所述状态检测结果对应的检测状态,所述检测状态包括唤醒状态或者睡眠状态。
  29. 根据权利要求24所述的用户终端,其中,所述检测模块用于对通信信号或者通信信道序列检测,得到序列检测结果;
    所述获取模块用于获取所述序列检测结果对应的盲检测参数;
    其中,所述通信信号或者通信信道通过正交序列方式或者准正交序列方式或者随机序列方式发送。
  30. 根据权利要求29所述的用户终端,其中,所述用户终端还包括:
    第二盲检测模块,用于若所述序列检测结果为预设序列,则进行PDCCH盲检测;
    第二睡眠保持模块,用于若所述序列检测结果不为所述预设序列,则保持睡眠状态。
  31. 根据权利要求24所述的用户终端,其中,所述检测模块用于对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;
    所述获取模块用于获取所述有效负荷检测结果对应的盲检测参数。
  32. 根据权利要求24所述的用户终端,其中,所述检测模块包括:
    检测单元,用于对通信信号或者通信信道进行序列检测,得到检测序列;
    解码单元,用于对通信信号或者通信信道的有效负荷进行信道解码,得到有效负荷检测结果;
    所述获取模块用于获取所述有效负荷检测结果对应的盲检测参数。
  33. 根据权利要求32所述的用户终端,其中,所述用户终端还包括:
    同步模块,用于使用所述检测序列进行同步。
  34. 根据权利要求24至33中任一项所述的用户终端,其中,所述盲检测参数包括如下至少一项:
    PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
  35. 根据权利要求34所述的用户终端,其中,所述用户终端还包括:
    第三盲检测模块,用于使用所述盲检测参数,进行PDCCH盲检测。
  36. 根据权利要求35所述的用户终端,其中,所述第三盲检测模块用于按照所述PDCCH的聚合等级,进行PDCCH盲检测;或者
    所述第三盲检测模块用于按照所述PDCCH的搜索空间类型,进行PDCCH盲检测;或者
    所述第三盲检测模块用于按照所述DCI format,进行PDCCH盲检测;或者
    所述第三盲检测模块用于在所述带宽片段进行PDCCH盲检测;或者
    所述第三盲检测模块用于在所述时频资源上进行PDCCH盲检测;或者
    所述第三盲检测模块用于按照所述PDCCH与所述唤醒信号之间的时间间隔,进行PDCCH盲检测;或者
    所述第三盲检测模块用于按照所述PDCCH与所述睡眠信号之间的时间间隔,进行PDCCH盲检测。
  37. 根据权利要求35所述的用户终端,其中,所述用户终端还包括:
    第四盲检测模块,用于若PDCCH盲检测失败,则使用除所述盲检测参 数之外的盲检测参数,进行PDCCH盲检测。
  38. 一种基站,包括:
    确定模块,用于确定用户终端的盲检测参数;
    发送模块,用于向所述用户终端发送通信信号,和/或,在通信信道向所述用户终端发送有效负荷,以使所述用户终端对所述通信信号或者所述通信信道进行检测,得到检测结果,并获取所述检测结果对应的盲检测参数;
    其中,所述通信信号包括唤醒信号或者睡眠信号,所述通信信道包括唤醒信道或者睡眠信道,且所述通信信号或者所述有效负荷均与所述盲检测参数对应。
  39. 根据权利要求38所述的基站,其中,所述盲检测参数包括PDCCH的盲检测参数。
  40. 根据权利要求38所述的基站,其中,所述发送模块用于通过OOK方式,向所述用户终端发送OOK对应信号。
  41. 根据权利要求40所述的基站,其中,所述发送模块用于在至少一个资源单元上,通过OOK方式,向所述用户终端发送OOK对应信号。
  42. 根据权利要求38所述的基站,其中,所述发送模块用于通过正交序列方式或者准正交序列方式或者随机序列方式,向所述用户终端发送通信信号。
  43. 根据权利要求38所述的基站,其中,所述发送模块用于通过经过编码的数字信号有效负荷方式,在通信信道向所述用户终端发送有效负荷。
  44. 根据权利要求38所述的基站,其中,所述发送模块用于向所述用户终端发送通信信号,以及在通信信道向所述用户终端发送有效负荷;
    其中,所述通信信号包括信号序列。
  45. 根据权利要求44所述的基站,其中,所述信号序列用于所述用户终端进行同步,所述有效负荷用于指示所述盲检测参数。
  46. 根据权利要求38至45中任一项所述的基站,其中,所述盲检测参数包括如下至少一项:
    PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段、PDCCH所占用的时频资源、PDCCH与 所述唤醒信号或唤醒信道之间的时间间隔、PDCCH与所述睡眠信号或睡眠信道之间的时间间隔。
  47. 一种用户终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至14中任一项所述的盲检测参数获取方法中的步骤。
  48. 一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求15至23中任一项所述的盲检测参数获取方法中的步骤。
  49. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1至14中任一项所述的盲检测参数获取方法中的步骤。
  50. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求15至23中任一项所述的盲检测参数获取方法中的步骤。
  51. 一种盲检测参数获取系统,包括如权利要求24至37中任一项所述的用户终端和如权利要求38至46中任一项所述的基站;或者
    如权利要求47所述的用户终端和如权利要求48所述的基站。
PCT/CN2018/093321 2017-07-20 2018-06-28 盲检测参数获取方法、相关设备及系统 WO2019015457A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/632,495 US11418283B2 (en) 2017-07-20 2018-06-28 Blind detection parameter acquisition method, relevant device and system
EP18834827.0A EP3657862A4 (en) 2017-07-20 2018-06-28 PROCESS FOR ACQUIRING A BLIND DETECTION PARAMETER, ASSOCIATED DEVICE AND SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710616857.X 2017-07-20
CN201710616857.XA CN109286968B (zh) 2017-07-20 2017-07-20 一种盲检测参数获取方法、相关设备及系统

Publications (1)

Publication Number Publication Date
WO2019015457A1 true WO2019015457A1 (zh) 2019-01-24

Family

ID=65016262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093321 WO2019015457A1 (zh) 2017-07-20 2018-06-28 盲检测参数获取方法、相关设备及系统

Country Status (4)

Country Link
US (1) US11418283B2 (zh)
EP (1) EP3657862A4 (zh)
CN (1) CN109286968B (zh)
WO (1) WO2019015457A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119256A (ko) * 2018-02-15 2020-10-19 소니 주식회사 웨이크 업 신호 후보 표시자
CN110581755B (zh) * 2018-06-11 2022-07-26 大唐移动通信设备有限公司 一种下行控制信道检测方法、终端和网络侧设备
CN111417177B (zh) * 2019-01-07 2022-04-08 大唐移动通信设备有限公司 一种节能信号的传输方法、检测方法和设备
CN111278027B (zh) * 2019-02-02 2021-11-30 维沃移动通信有限公司 节能信号检测方法、资源确定方法及相关设备
WO2020163985A1 (zh) * 2019-02-11 2020-08-20 北京小米移动软件有限公司 信道监听方法及装置
CN111614434B (zh) * 2019-02-25 2021-08-31 华为技术有限公司 搜索空间的盲检方法及通信装置
CN112087790B (zh) * 2019-06-14 2022-07-29 海信集团有限公司 应用于物联网的控制信道检测方法、装置及存储介质
CN114025417A (zh) * 2019-07-05 2022-02-08 展讯通信(上海)有限公司 进入睡眠的方法及装置、存储介质、用户设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104866A (zh) * 2010-04-30 2011-06-22 电信科学技术研究院 一种pdcch cc搜索空间的确定方法和设备
CN103298123A (zh) * 2013-05-27 2013-09-11 大唐移动通信设备有限公司 一种载波聚合辅载波激活与去激活方法及装置
CN104869578A (zh) * 2014-02-26 2015-08-26 中国电信股份有限公司 物理下行控制信道盲检测方法、装置和用户设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124444A1 (zh) * 2009-04-27 2010-11-04 华为技术有限公司 信息发射与接收的方法和设备
CN102104666B (zh) 2009-12-17 2014-03-26 深圳富泰宏精密工业有限公司 应用跳转预测系统及方法
WO2012149319A1 (en) * 2011-04-29 2012-11-01 Research In Motion Limited Receiving messages in connection with lte wakeup
EP2621242A1 (en) * 2012-01-26 2013-07-31 Panasonic Corporation Improved discontinuous reception operation with additional wake up opportunities
WO2013180521A1 (ko) * 2012-05-31 2013-12-05 엘지전자 주식회사 제어 신호 송수신 방법 및 이를 위한 장치
WO2015130005A1 (ko) * 2014-02-26 2015-09-03 엘지전자 주식회사 Fdd 반이중 통신에서 pdcch 모니터링 방법 및 그 단말
CN104219036B (zh) * 2014-09-30 2017-11-14 北京北方烽火科技有限公司 Epdcch盲检测方法、资源映射方法及装置
CN110603861B (zh) * 2017-05-04 2023-04-21 Oppo广东移动通信有限公司 无线通信方法和设备
US11564170B2 (en) * 2017-05-04 2023-01-24 Ipla Holdings Inc. Wake up signals operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104866A (zh) * 2010-04-30 2011-06-22 电信科学技术研究院 一种pdcch cc搜索空间的确定方法和设备
CN103298123A (zh) * 2013-05-27 2013-09-11 大唐移动通信设备有限公司 一种载波聚合辅载波激活与去激活方法及装置
CN104869578A (zh) * 2014-02-26 2015-08-26 中国电信股份有限公司 物理下行控制信道盲检测方法、装置和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3657862A4 *

Also Published As

Publication number Publication date
CN109286968B (zh) 2020-07-28
EP3657862A4 (en) 2020-07-29
EP3657862A1 (en) 2020-05-27
CN109286968A (zh) 2019-01-29
US11418283B2 (en) 2022-08-16
US20200204292A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
WO2019015458A1 (zh) Drx参数的指示方法、相关设备及系统
WO2019015457A1 (zh) 盲检测参数获取方法、相关设备及系统
CN111278092B (zh) 一种信道监听方法、终端及网络设备
WO2019128578A1 (zh) 控制信道监听方法、监听指示方法、终端及网络设备
WO2018082543A1 (zh) 下行控制信道的检测方法、指示方法、终端及网络侧设备
US11973620B2 (en) Downlink control channel detection method, terminal and base station
WO2018127000A1 (zh) 一种参考信号的指示方法、网络设备及终端设备
CN112533232B (zh) 一种节能信号监听时刻的确定方法、配置方法及相关设备
WO2020143523A1 (zh) 天线面板控制方法、终端设备及网络侧设备
WO2019179317A1 (zh) 信息传输方法、终端及网络设备
US20200068607A1 (en) Terminal scheduling method, terminal and base station
CN111277381B (zh) 物理下行控制信道监听、监听配置方法、终端及网络设备
CN108809547B (zh) 一种数据传输方法、基站及终端
AU2021272214B2 (en) Information sending method, resource processing method, apparatus, and electronic device
KR20220086630A (ko) 세컨더리 셀(Scell) 휴면 지시 처리 방법, 단말기 및 네트워크 기기
WO2018113721A1 (zh) 一种参考信号配置方法、网络侧设备和用户设备
KR20210137188A (ko) 전송 방법, 네트워크 장치 및 단말
WO2021218855A1 (zh) 下行接收触发方法、终端和网络侧设备
KR102591574B1 (ko) 하향 링크 제어 정보의 수신 방법, 전송 방법, 단말 및 네트워크측 장치
JP7148046B2 (ja) リソース割り当て、リソース使用方法、ユーザ機器及びネットワーク側機器
KR102589486B1 (ko) 업링크 전송 방법 및 단말
EP2566259B1 (en) Method and apparatus for configuring ping interval in a portable terminal
EP3606150A1 (en) Data transmission method, sending-end device and receiving-end device
WO2023083173A1 (zh) 资源处理方法、装置、通信设备及存储介质
WO2023208185A1 (zh) 信号传输方法、终端及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018834827

Country of ref document: EP

Effective date: 20200220