WO2019015458A1 - Drx参数的指示方法、相关设备及系统 - Google Patents

Drx参数的指示方法、相关设备及系统 Download PDF

Info

Publication number
WO2019015458A1
WO2019015458A1 PCT/CN2018/093323 CN2018093323W WO2019015458A1 WO 2019015458 A1 WO2019015458 A1 WO 2019015458A1 CN 2018093323 W CN2018093323 W CN 2018093323W WO 2019015458 A1 WO2019015458 A1 WO 2019015458A1
Authority
WO
WIPO (PCT)
Prior art keywords
payload
user terminal
signal
pdcch
drx
Prior art date
Application number
PCT/CN2018/093323
Other languages
English (en)
French (fr)
Inventor
姜大洁
潘学明
丁昱
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/632,216 priority Critical patent/US11564282B2/en
Priority to EP18835774.3A priority patent/EP3657863A4/en
Publication of WO2019015458A1 publication Critical patent/WO2019015458A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method for indicating a discontinuous reception (DRX) parameter, a related device, and a system.
  • DRX discontinuous reception
  • the user terminal in order to save power consumption of the user terminal, the user terminal often uses a discontinuous reception mechanism for blind detection, for example, using a DRX blind detection physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • a DRX blind detection physical downlink control channel Physical Downlink Control Channel, PDCCH.
  • the current DRX parameters are all configured by the base station to the user terminal through high-level signaling, which results in poor flexibility of the DRX parameters.
  • the configuration of the DRX parameters by the operator is often fixed, and the DRX parameters are not flexibly adjusted according to different requirements of different services. In this way, the flexibility of the DRX parameter may result in a significant increase in the probability that the user terminal has no data when performing blind detection of the PDCCH, resulting in serious power consumption of the user terminal.
  • an embodiment of the present disclosure provides a method for indicating a DRX parameter, which is applied to a base station, and includes:
  • an embodiment of the present disclosure provides a method for indicating a DRX parameter, which is applied to a user terminal, and includes:
  • the payload is transmitted through a communication channel.
  • an embodiment of the present disclosure provides a base station, including:
  • a communication signal sending module configured to send the communication signal to the user terminal, or send the payload to the user terminal on a communication channel.
  • an embodiment of the present disclosure provides a user terminal, including:
  • a receiving module configured to receive a communication signal or a payload sent by the base station, where the communication signal or payload is used to indicate a DRX parameter
  • An obtaining module configured to acquire a DRX parameter of the communication signal or a payload indication
  • the payload is transmitted through a communication channel.
  • an embodiment of the present disclosure provides a base station, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the computer program to implement an embodiment of the present disclosure
  • the steps in the method for indicating the DRX parameters of the base station side are provided.
  • an embodiment of the present disclosure provides a user terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the processor implements the implementation of the disclosure when the computer program is executed.
  • the embodiment of the present disclosure provides a computer readable storage medium, where the computer program is stored, and when the computer program is executed by the processor, the steps in the method for indicating the DRX parameter of the base station side provided by the embodiment of the present disclosure are implemented. .
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer program is executed by the processor, and the method for indicating a DRX parameter of the user terminal side provided by the embodiment of the present disclosure is implemented. step.
  • an embodiment of the present disclosure provides an indication system for a DRX parameter, including a base station and a user terminal provided by an embodiment of the present disclosure.
  • FIG. 1 is a structural diagram of an indication system of a DRX parameter provided by an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for indicating a DRX parameter provided by an embodiment of the present disclosure
  • FIG. 3 is a second flowchart of a method for indicating a DRX parameter according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a working process of a user terminal according to an embodiment of the present disclosure
  • FIG. 5 is a second working flowchart of a user terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a third working flowchart of a user terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a third flowchart of a method for indicating a DRX parameter according to an embodiment of the present disclosure
  • FIG. 8 is a fourth working flowchart of a user terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a fifth working flowchart of a user terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a sixth flowchart of a working process of a user terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a third flowchart of a method for indicating a DRX parameter according to an embodiment of the present disclosure
  • FIG. 12 is a structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a second structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 14 is a structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 15 is a second structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 16 is a third structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 17 is a fourth structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 18 is a third structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 19 is a fifth structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 20 is a sixth structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 1 is a structural diagram of an indication system of a DRX parameter according to an embodiment of the present disclosure.
  • the user terminal 11 and the base station 12 are included, where the user equipment 11 (User Equipment, UE) may be a mobile phone. , Tablet PC, Laptop Computer, Personal Digital Assistant (PDA), Mobile Internet Device (MID) or Wearable Device, etc.
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • FIG. 1 is a structural diagram of an indication system of a DRX parameter according to an embodiment of the present disclosure.
  • the user equipment 11 User Equipment, UE
  • Tablet PC Tablet PC
  • Laptop Computer Personal Digital Assistant
  • MID Mobile Internet Device
  • Wearable Device etc.
  • the terminal side device it should be noted that the specific type of the user terminal 11 is not limited in the embodiment of the present disclosure.
  • the foregoing base station 12 may be a 5G base station (for example: gNB, 5G NR NB), or may be a 4G base station (for example, an eNB), or may be a 3G base station (for example, NB), or a network end device in a subsequent evolved communication version, or the like. Etc. It should be noted that the specific type of the base station 12 is not limited in the embodiment of the present disclosure.
  • FIG. 2 is a flowchart of a method for indicating a DRX parameter according to an embodiment of the present disclosure. The method is applied to a base station, as shown in FIG. 2, and includes the following steps:
  • Step 201 Generate a communication signal or payload, where the communication signal or payload is used to indicate a DRX parameter.
  • the communication signal may be a wake-up signal (WUS) or a sleep signal, and the communication signal indicates that the DRX parameter may be indicated by the indication information included in the communication signal, or may be the energy of the communication signal or The amplitude is indicated, or may be indicated by the payload of the communication signal, which is not limited in this embodiment of the present disclosure.
  • the foregoing DRX parameter may be a connected DRX (CDRX) parameter, but is not limited to the embodiment of the disclosure, for example, may also be a DRX parameter of other states.
  • CDRX connected DRX
  • the generating the communication signal may be determining a corresponding DRX parameter according to a service requirement of the user terminal or a communication scenario or a communication performance, etc., and generating a communication signal indicating the DRX parameter.
  • the DRX parameter corresponding to the user terminal can be indicated to the user terminal, so that the probability that the user terminal blindly detects the PDCCH to obtain data can be improved, so as to reduce the probability that the user terminal blindly detects the PDCCH but has no data, thereby achieving the purpose of saving power consumption of the user terminal.
  • Step 202 Send the communication signal to a user terminal, or send the payload to the user terminal on a communication channel.
  • the foregoing communication channel may be a PDCCH signal, and the payload may be referred to as a payload, and the payload may be a PDCCH signal dedicated to indicating a DRX parameter.
  • the foregoing payload may also be sent through other channels, for example, the communication channel may be a wake-up channel or a sleep channel, and the communication signal includes a wake-up signal or a sleep signal.
  • the wake-up channel may be a channel for transmitting a wake-up signal
  • the sleep channel may be a channel for transmitting a sleep signal.
  • the two channels may also be the same channel.
  • the DRX parameter can be indicated by the communication signal or the payload, so that the CDRX can be flexibly indicated to the user terminal.
  • the user terminal can be indicated according to the service requirement of the user terminal or the communication scenario of the user terminal.
  • the DRX parameter reduces the probability that the user terminal blindly detects the PDCCH but has no data to save power consumption of the user terminal.
  • a communication signal or payload is generated, the communication signal or payload is used to indicate a DRX parameter; the communication signal is transmitted to a user terminal, or the payload is transmitted to the user terminal on a communication channel. Since the DRX parameter is indicated by the communication signal or the payload, and the high-level signaling is used in the related art, the embodiment of the present disclosure can improve the flexibility of the DRX parameter, thereby saving power consumption of the user terminal.
  • FIG. 3 is a flowchart of a method for indicating a DRX parameter according to an embodiment of the present disclosure. The method is applied to a base station. The main difference between the embodiment and the embodiment shown in FIG. 2 is that the communication signal is a wake-up signal. Or sleep signal. As shown in Figure 3, the following steps are included:
  • Step 301 Generate a wake-up signal or a sleep signal or a payload, where the wake-up signal or the sleep signal or payload is used to indicate the DRX parameter.
  • the DRX parameter can be indicated to the user terminal by the wake-up signal or the sleep signal or the payload, it is not necessary to add additional signal transmission, so that the power consumption of the user terminal can be further saved.
  • Step 302 Send a wake-up signal or a sleep signal to the user terminal, or send the payload to the user terminal on a communication channel.
  • the communication channel comprises a wake-up channel or a sleep channel.
  • the DRX parameter includes: a duration of an on Duration Timer or a discontinuous reception (DRX) period.
  • the on Duration Timer may specify the number of consecutive subframes that need to be monitored from the start subframe of the DRX cycle, that is, the number of subframes that the user terminal continuously monitors during the activation period of the user terminal.
  • the above DRX cycle may be the effective period of the DRX.
  • the wake-up signal indicates that the user terminal wakes up
  • the information carried by the wake-up signal indicates the length of the duration timer of the user terminal UE, for example: two slot slots, subframes or mini-slots (mini-slot)
  • the horizontal axis represents time and the vertical axis represents the operating current of the user terminal.
  • the user terminal switches to the awake state (Ramp-up) in response to the wake-up signal, and blindly detects the PDCCH during the duration of the duration timer, where the blind detection PDCCH can be understood as Data & control channel processing.
  • the user terminal can receive the PDCCH signal within the time of the Inactivity Timer, and after the timer expires, the user terminal can switch to the sleep state (Ramp-down). Of course, the subsequent user terminal can also receive the sleep signal and continue to sleep.
  • the user terminal since the duration of the duration timer or the DRX period can be indicated to the user terminal by using the wake-up signal or the sleep signal, the user terminal can perform corresponding monitoring or blind detection according to the duration of the duration timer or the DRX period. Thereby, the power consumption of the user terminal is further saved.
  • the wake-up signal or the sleep signal indicates the DRX period
  • the indication may be performed by: the wake-up signal or the sleep signal or the payload is used to indicate that the user terminal adopts one cycle lower than the target DRX cycle.
  • the DRX cycle of the stage performs blind detection; or the wake-up signal or the sleep signal or payload is used to indicate that the user terminal performs blind detection using a DRX cycle one level higher than the target DRX cycle; or the wake-up signal or sleep
  • the signal or payload is used to indicate an RDX cycle used by the user terminal for blind detection; wherein the target DRX cycle is a DRX cycle that the user terminal is using.
  • 0 means that the period is one level lower than the DRX period being used
  • 1 means that the period is one level higher than the DRX period being used
  • the level here can be predefined, for example: 160ms It is a level, which may be 320 ms higher than 160 ms, and may be 640 ms, etc., one level higher than 320 ms, which is not limited in this embodiment.
  • the RDX period used by the user terminal to perform blind detection may be a specific RDX period indicating that the user terminal uses blind detection. For example, by 2 bits, 00 indicates that the DRX period is 160 ms, 01 indicates that the DRX period is 320 ms, and 10 indicates DRX. The period is 640 ms, and 11 indicates that the DRX period is 1280 ms.
  • the wake-up signal indicates that the user terminal wakes up, and the information carried by the wake-up signal indicates the DRX cycle of the user terminal, for example, by 1 bit, 0 means that the cycle is lower than the DRX cycle being used, 1 Indicates that a period higher than the DRX cycle being used is used; or 2 bits, 00 indicates that the DRX cycle is 160 ms, 01 indicates that the DRX cycle is 320 ms, 10 indicates that the DRX cycle is 640 ms, and 11 indicates that the DRX cycle is 1280 ms. As shown in FIG. 5, wherein: the horizontal axis in FIG.
  • the vertical axis represents the operating current of the user terminal.
  • the user terminal After receiving the wake-up signal, the user terminal switches to the awake state (Ramp-up) in response to the wake-up signal, and blindly detects the PDCCH in the time of the inactivity timer in the indicated DRX cycle, where The blind detection PDCCH here can be understood as data & control channel processing. Thereafter, the user terminal can receive the PDCCH signal within the time of the Inactivity Timer, and after the timer expires, the user terminal can switch to the sleep state (Ramp-down). Of course, the subsequent user terminal can also receive the sleep signal and continue to sleep.
  • the transmission overhead can be reduced to save transmission resources.
  • the RDX cycle used by the user terminal to perform blind detection may be used to flexibly and accurately indicate the RDX cycle used by the user terminal for blind detection, so as to improve the blind detection performance of the user terminal.
  • the DRX parameter includes at least one of a semi-persistent scheduling period, a semi-persistently scheduled resource, a duration of a DRX-inactivity timer, a period of a semi-persistent detection PDCCH, and a detection pattern of the PDCCH. (pattern).
  • the DRX inactivity timer may specify the number of consecutive subframes that are continuously in the active state after the user terminal successfully decodes a PDCCH indicating the initial uplink or downlink user data, that is, whenever the user terminal has initial data to be scheduled, The timer will restart once.
  • the wake-up signal indicates that the user terminal wakes up, and the information carried by the wake-up signal indicates the length of the DRX-inactivity Timer of the user terminal, for example, 20 ms, or indicates the period of semi-persistent detection of the PDCCH.
  • the PDCCH is detected once every 5 ms, or the period and/or resources indicating semi-persistent scheduling, for example, the period of semi-persistent scheduling is 10 ms, and the uplink or downlink resources of semi-persistent scheduling are physical resource blocks 4 to 9, or Indicates a PDCCH detection pattern, for example, the PDCCH detection pattern is 1011010101 every 10 ms, where 1 represents that the UE needs to detect the PDCCH, and 0 represents that the UE does not need to detect the PDCCH.
  • the horizontal axis represents time and the vertical axis represents the operating current of the user terminal
  • the DRX parameter is indicated in the wake-up signal (wherein FIG.
  • the PDCCH signal can be received within the time of the Inactivity Timer, and after the timer expires, the user terminal can switch to the sleep state (Ramp-down). Of course, the subsequent user terminal can also receive the sleep signal and continue to sleep. In this way, the user terminal does not need to blindly detect the PDCCH, that is, the process of blindly detecting the PDCCH can be reduced compared to FIG. 4 and FIG. 5.
  • the period of the non-persistent scheduling, the resource of the non-persistent scheduling, the duration of the DRX inactivity timer, the period of the non-persistent detection physical downlink control channel PDCCH, and the detection pattern of the PDCCH are indicated by the wake-up signal or the sleep signal.
  • the DRX parameter of at least one of the items is used, the power consumption of the user terminal can be further saved because the user terminal does not need to blindly detect the PDCCH.
  • the DRX parameters are applicable to regular slots and mini-slots.
  • the DRX parameter further includes at least one of: a duration of a retransmission timer, a period of a short DRX, and a duration of a short DRX timer; wherein the short DRX The period is shorter than the pre-specified duration.
  • the foregoing specified duration may be a base station designation, a user terminal designation, a user designation, or a protocol.
  • the embodiment of the present disclosure is not limited, for example, 60 ms or 120 ms, and the like.
  • DRX other than short DRX may be defined as long DRX or regular DRX.
  • At least one of a duration of a retransmission timer, a period of a short DRX, and a duration of a short DRX timer may be implemented by using a wake-up signal or a sleep signal, so that the user terminal may be blindly detected or monitored. It is easier to obtain data, reduce the probability that blind detection or monitoring process can not obtain data, and further save power consumption of the user terminal.
  • a wake-up signal or a sleep signal or a payload is generated, the wake-up signal or sleep signal or payload is used to indicate a DRX parameter; a wake-up signal or a sleep signal is sent to the user terminal or to the user terminal on the communication channel Send the payload. Since the DRX parameter is indicated by the wake-up signal or the sleep signal, and the high-level signaling is used in the related art, the embodiment of the present disclosure can improve the flexibility of the DRX parameter, thereby saving power consumption of the user terminal. And indicating the DRX parameter to the user terminal by using the wake-up signal or the sleep signal, so that no additional signal transmission is needed, so that the power consumption of the user terminal can be further saved.
  • FIG. 7 is a flowchart of a method for indicating a DRX parameter according to an embodiment of the present disclosure. The method is applied to a base station. The main difference between the embodiment and the embodiment shown in FIG. 2 is that the communication channel is a PDCCH. As shown in Figure 7, the following steps are included:
  • Step 701 Generate a payload, where the payload is used to indicate a DRX parameter.
  • the above-mentioned payload can be understood as a signal dedicated to indicating the DRX parameter.
  • the DRX parameter can be indicated by a payload to improve the flexibility of the DRX parameter, so as to reduce the blind detection of the PDCCH by the user terminal. The probability of data to save power consumption of the user terminal.
  • Step 702 Send the payload to the user terminal in a PDCCH.
  • the DRX parameter includes at least one of: a duration of an on Duration Timer, a first blind detection information, and a DRX cycle, where the first blind detection information is that the user terminal is The blind detection information used by the PDCCH is blindly detected during the duration of the duration timer.
  • the foregoing duration timer can be referred to in the embodiment of the present disclosure.
  • the corresponding description of the foregoing embodiment is not described herein, and the same beneficial effects can be achieved.
  • the user terminal Before sending the payload (which may also be referred to as a dedicated PDCCH signal), the user terminal may also send a wake-up signal, for example, the wake-up signal indicates that the user terminal wakes up, and then indicates the duration timer of the user terminal UE by the payload.
  • the length for example: two slot slots, subframes or mini-slots.
  • the wake-up signal may indicate a blind detection parameter of the payload, for example, indicating that the bandwidth fragment (BWP) occupied by the payload is a bandwidth segment of the second.
  • BWP bandwidth fragment
  • FIG. 8 wherein: in FIG. 8, the horizontal axis represents time and the vertical axis represents the operating current of the user terminal.
  • the user terminal After receiving the wake-up signal, the user terminal switches to the awake state (Ramp-up) in response to the wake-up signal, and blindly detects the payload according to the wake-up signal. Then, during the time duration timer, the PDCCH is blindly detected according to the DRX parameter indicated in the payload, where the blind detection PDCCH can be understood as data and control channel processing. Thereafter, the user terminal can receive the PDCCH signal within the time of the Inactivity Timer, and after the timer expires, the user terminal can switch to the sleep state (Ramp-down). Of course, the subsequent user terminal can also receive the sleep signal and continue to sleep.
  • the wake-up signal may not be sent.
  • the payload may also be used to wake up the user terminal.
  • the user terminal since at least one of the duration of the duration timer, the first blind detection parameter, and the DRX period can be indicated to the user terminal by the payload, the user terminal can follow the duration of the duration timer, first. At least one of the blind detection parameter and the DRX cycle performs corresponding monitoring or blind detection, thereby further saving power consumption of the user terminal.
  • the first blind detection information includes at least one of: a time interval between a start time of the duration timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the aggregation level of the PDCCH may be, for example, 1, 2, 4, or 8 control channel elements (CCEs), etc., which are not limited in this embodiment.
  • CCEs control channel elements
  • the search space of the PDCCH may be a common search space and/or a user-specific search space, etc., which is not limited in this embodiment.
  • the foregoing DCI format may be format 1 and format 3, or format 1 or format 3, etc., and the embodiment of the present disclosure is not limited thereto.
  • the time-frequency resource occupied by the PDCCH may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol index or other information of a time-frequency resource occupied by the PDCCH. Not limited.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the probability that the user terminal blindly detects the PDCCH but has no data in the duration of the duration timer may be further reduced, that is, the probability that the user terminal blindly detects the PDCCH is successfully improved, so as to further save Power consumption of the user terminal.
  • the payload indicating the DRX period may be indicated by: indicating, by the user terminal, blind detection by using a DRX period that is one level lower than a target DRX period; or The load is used to indicate that the user terminal performs blind detection using a DRX cycle one level higher than the target DRX cycle; or the payload is used to indicate an RDX cycle used by the user terminal for blind detection; wherein the target DRX The period is the DRX cycle that the user terminal is using.
  • 0 means that the period is one level lower than the DRX period being used
  • 1 means that the period is one level higher than the DRX period being used
  • the level here can be predefined, for example: 160ms It is a level, which may be 320 ms higher than 160 ms, and may be 640 ms, etc., one level higher than 320 ms, which is not limited in this embodiment.
  • the RDX period used by the user terminal to perform blind detection may be a specific RDX period indicating that the user terminal uses blind detection. For example, by 2 bits, 00 indicates that the DRX period is 160 ms, 01 indicates that the DRX period is 320 ms, and 10 indicates DRX. The period is 640 ms, and 11 indicates that the DRX period is 1280 ms.
  • the user terminal may further send a wake-up signal, for example, the wake-up signal indicates that the user terminal wakes up, and then indicates the DRX period of the user terminal by using the payload, such as by using 1 bit, 0 A period one level lower than the DRX cycle being used, 1 means that a period higher than the DRX cycle being used is used; or 2 bits, 00 indicates that the DRX cycle is 160 ms, 01 indicates that the DRX cycle is 320 ms, and 10 indicates that the DRX cycle is 640ms, 11 indicates that the DRX cycle is 1280ms.
  • the wake-up signal indicates that the user terminal wakes up, and then indicates the DRX period of the user terminal by using the payload, such as by using 1 bit, 0 A period one level lower than the DRX cycle being used, 1 means that a period higher than the DRX cycle being used is used; or 2 bits, 00 indicates that the DRX cycle is 160 ms, 01 indicates that the DRX cycle
  • the wake-up signal may indicate a blind detection parameter of the payload, for example, indicating that a bandwidth segment (BWP) occupied by the payload is a bandwidth segment of 2.
  • BWP bandwidth segment
  • FIG. 9 wherein: in FIG. 9, the horizontal axis represents time and the vertical axis represents the operating current of the user terminal.
  • the user terminal switches to the awake state (Ramp-up) in response to the wake-up signal, and blindly detects the payload according to the wake-up signal.
  • the PDCCH is blindly detected during the time of the Inactivity Timer in the DRX period of the payload indication, where the blind detection PDCCH can be understood as Data & Control channel processing.
  • the user terminal can receive the PDCCH signal within the time of the Inactivity Timer, and after the timer expires, the user terminal can switch to the sleep state (Ramp-down). Of course, the subsequent user terminal can also receive the sleep signal and continue to sleep.
  • the transmission overhead may be reduced to save transmission resources.
  • the RDX cycle used by the user terminal to perform blind detection may be used to flexibly and accurately indicate the RDX cycle used by the user terminal for blind detection, so as to improve the blind detection performance of the user terminal.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX-inactivity timer, a period of a semi-persistent detection PDCCH, and a detection pattern of a PDCCH.
  • second blind detection information includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX-inactivity timer, a period of a semi-persistent detection PDCCH, and a detection pattern of a PDCCH.
  • second blind detection information includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX-inactivity timer, a period of a semi-persistent detection PDCCH, and a detection pattern of a PDCCH.
  • second blind detection information
  • the second blind detection information is blind detection information used by the user terminal to blindly detect the PDCCH in the time of the DRX inactivity timer.
  • the user terminal may further send a wake-up signal, for example, the wake-up signal indicates that the user terminal wakes up, and then the DRX inactivity timer of the user terminal is indicated by the payload.
  • the length for example: 20ms, or the period indicating the semi-continuous detection of the PDCCH, for example, detecting the PDCCH every 5ms, or indicating the period and/or resources of the semi-persistent scheduling, for example, the period of the semi-persistent scheduling is 10ms, half
  • the continuously scheduled uplink or downlink resources are physical resource blocks 4 to 9, or indicate a PDCCH detection pattern, for example, as the PDCCH detection pattern every 10 ms is 1111010101, where 1 represents that the UE needs to detect the PDCCH, and 0 represents that the UE does not need to The PDCCH is detected.
  • the wake-up signal may indicate a blind detection parameter of the payload, for example, indicating that a bandwidth fragment (BWP) occupied by the PDCCH signal is a bandwidth segment of the third.
  • BWP bandwidth fragment
  • FIG. 10 wherein: in FIG. 10, the horizontal axis represents time and the vertical axis represents the operating current of the user terminal. Since the DRX parameter is indicated in the payload, the user terminal can receive the PDCCH signal within the time of the Inactivity Timer, and after the timer expires, the user terminal can switch to the sleep state (Ramp-down). Of course, the subsequent user terminal can also receive the sleep signal and continue to sleep. In this way, the user terminal does not need to blindly detect the PDCCH, that is, the process of blindly detecting the PDCCH can be reduced compared to FIG. 8 and FIG. 9.
  • the period of the non-persistent scheduling, the resource of the non-persistent scheduling, the duration of the DRX inactivity timer, the period of the non-persistent detection PDCCH, the detection pattern of the PDCCH, and the second blind detection are indicated by the payload.
  • the DRX parameter of at least one of the information is used, the power consumption of the user terminal can be further saved because the user terminal does not need to blindly detect the PDCCH.
  • the second blind detection information includes at least one of: a time interval between a start time of the DRX inactivity timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the second blind detection information may further reduce the probability that the user terminal blindly detects the PDCCH but has no data in the time of the DRX inactivity timer, that is, the probability that the user terminal blindly detects the PDCCH is successful, so as to further save Power consumption of the user terminal.
  • the method before the step of sending the communication signal to the user terminal, the method further includes: sending a wake-up signal to the user terminal, where the wake-up signal is used to indicate that the user terminal detects the valid load.
  • the user terminal by sending a wake-up signal to the user terminal before transmitting the payload signal, the user terminal is instructed to detect the payload, so that the user terminal can detect the payload in time to improve the performance of the user terminal.
  • the wake-up signal is further used to indicate blind detection information of the payload signal.
  • the wake-up signal is sent to the user terminal to indicate the blind detection information of the payload before the payload is transmitted, thereby improving the efficiency of the user terminal to obtain the payload, and further reducing the power consumption of the user terminal.
  • the blind detection information of the payload includes at least one of: a time interval between the payload and the wake-up signal, a time interval between the payload signal and a sleep signal, and the validity
  • the aggregation level of the load the type of search space of the payload, the DCI format that the payload needs to transmit, and the bandwidth fragment occupied by the payload.
  • the aggregation level of the foregoing payload may be, for example, 1, 2, 4, or 8 control channel elements (CCEs), etc., which are not limited in this embodiment.
  • CCEs control channel elements
  • the search space of the above-mentioned payload may be a public search space and/or a user-specific search space, etc., which is not limited in this embodiment.
  • the foregoing DCI format may be format 1 and format 3, or format 1 or format 3, etc., and the embodiment of the present disclosure is not limited thereto.
  • the time-frequency resource occupied by the payload may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol index or other information of a time-frequency resource occupied by the PDCCH.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the probability that the user terminal blindly detects the payload is further improved, so as to further save power consumption of the user terminal.
  • the time interval between the payload and the wake-up signal is pre-configured; or the time interval between the payload and the sleep signal is pre-configured.
  • the foregoing pre-configuration may be pre-defined by the protocol, or may be pre-negotiated by the base station and the user terminal, and the like.
  • the configuration may be preset, thereby saving transmission overhead to save transmission resources.
  • a payload is generated, the payload is used to indicate a DRX parameter; and a payload is transmitted to the user terminal at the PDCCH. Since the DRX parameter is indicated by the payload, the DRX parameter flexibility can be improved to reduce the probability that the user terminal blindly detects the PDCCH but has no data, thereby saving power consumption of the user terminal.
  • FIG. 11 is a flowchart of a method for indicating a DRX parameter according to an embodiment of the present disclosure. The method is applied to a user terminal. As shown in FIG. 11, the method includes the following steps:
  • Step 1101 Receive a communication signal or a payload sent by the base station, where the communication signal or payload is used to indicate a DRX parameter.
  • Step 1102 Obtain a DRX parameter of the communication signal or payload indication.
  • the payload is transmitted through a communication channel.
  • the DRX parameter for obtaining the communication signal or the payload indication may be: determining a DRX parameter of the communication signal or the payload indication according to a correspondence relationship between the pre-acquisition communication signal or the payload and the DRX parameter; or Corresponding relationship between the obtained indication information and the DRX parameter, determining a DRX parameter indicated by the indication information included in the communication signal or the payload; or may be identifying the indication content included in the communication signal or the payload, and identifying the DRX parameter indicated by the indication content
  • the embodiment of the present disclosure is not limited thereto.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • the DRX parameter includes: a duration of a duration timer or a DRX cycle.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection PDCCH, and a detection pattern of a PDCCH.
  • the wake-up signal or the sleep signal or the payload is used to indicate that the user terminal performs blind detection using a DRX cycle that is one level lower than the target DRX cycle; or the wake-up signal or the sleep signal or the payload is used for Instructing the user terminal to perform blind detection using a DRX cycle one level higher than the target DRX cycle; or the wake-up signal or sleep signal or payload is used to indicate an RDX cycle used by the user terminal for blind detection;
  • the target DRX cycle is the DRX cycle that the user terminal is using.
  • the DRX parameter further includes at least one of: a duration of a retransmission timer, a period of a short DRX, and a duration of a short DRX timer; wherein the period of the short DRX is shorter than a pre-pointing period.
  • the communication channel includes a PDCCH.
  • the DRX parameter includes at least one of: a duration of a duration timer, first blind detection information, and a DRX cycle, where the first blind detection information is that the user terminal is scheduled at the duration
  • the blind detection information used by the PDCCH is blindly detected in the time of the device.
  • the first blind detection information and the DRX cycle, refer to the corresponding description of the embodiment shown in FIG. 7, which is not described herein, and the same beneficial effects can be achieved.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection PDCCH, a detection pattern of a PDCCH, and a second blind detection information.
  • the second blind detection information is blind detection information used by the user terminal to blindly detect the PDCCH in the time of the DRX inactivity timer.
  • the method further includes: after the user terminal wakes up, blindly detecting the PDCCH according to the DRX parameter.
  • the duration of the wake-up signal or the sleep signal indicating duration timer or the DRX cycle, or the duration of the payload indicating duration timer, the first blind detection information, and the DRX cycle may be implemented.
  • the PDCCH may be blindly detected according to the indicated DRX parameter, so as to improve the probability that the user terminal blindly detects the PDCCH, and save the power consumption of the user terminal. For example: as shown in Figures 4, 5, 8, and 9.
  • the method further includes: after the user terminal wakes up, receiving the PDCCH signal according to the DRX parameter.
  • At least a period of a wake-up signal or a sleep signal indicating a non-persistent scheduling, a resource of a non-persistent scheduling, a duration of a discontinuous reception DRX inactivity timer, a period of a non-persistent detection PDCCH, and a detection pattern of a PDCCH may be implemented.
  • One, or the payload indicates a period of non-persistent scheduling, a resource of non-persistent scheduling, a duration of a DRX inactivity timer, a period of non-persistent detection of a physical downlink control channel PDCCH, a detection pattern of a PDCCH, and at least a second blind detection information
  • the DRX parameter is directly indicated according to the wake-up signal or the payload, and the PDCCH signal is received. After the PDCCH is awake, the number of blind detection PDCCHs can be reduced, so as to further save the power consumption of the user terminal. For example: as shown in Figure 6 and Figure 10.
  • the user terminal may not detect the PDCCH blindly, after the user terminal wakes up, receive according to the DRX parameter. Before the PDCCH signal, the user terminal does not perform data and control channel processing.
  • the payload is used to indicate that the user terminal performs blind detection by using a DRX cycle that is one level lower than the target DRX cycle; or the payload is used to indicate that the user terminal adopts one level higher than the target DRX cycle.
  • the DRX cycle is blindly detected; or the payload is used to indicate an RDX cycle used by the user terminal for blind detection; wherein the target DRX cycle is a DRX cycle that the user terminal is using.
  • the first blind detection information includes at least one of: a time interval between a start time of the duration timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the second blind detection information includes at least one of: a time interval between a start time of the DRX inactivity timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the method before the step of receiving a communication signal or a payload sent by the base station, the method further includes: receiving a wake-up signal sent by the base station; and receiving, by the receiving base station, a payload, including: responding to the wake-up signal And detecting the payload blindly according to the wake-up signal; wherein the wake-up signal is used to instruct the user terminal to detect the payload.
  • the responding to the wake-up signal and blindly detecting the payload according to the wake-up signal includes: responding to the wake-up signal, and according to the wake-up signal, the blind detection information of the payload And detecting the payload in a blind manner; wherein the wake-up signal is further used to indicate blind detection information of the payload.
  • the blind detection information of the payload includes at least one of the following:
  • the time interval between the payload and the wake-up signal is pre-configured; or the time interval between the payload and the sleep signal is pre-configured.
  • a communication signal or a payload sent by a base station is received, the communication signal or payload is used to indicate a DRX parameter, and a DRX parameter of the communication signal or payload indication is acquired; wherein the payload passes the communication Channel transmission. Since the DRX parameter is indicated by the communication signal or the payload, the embodiment of the present disclosure can improve the flexibility of the DRX parameter, thereby saving the power consumption of the user terminal, compared to the high-level signaling used in the related art.
  • FIG. 12 is a structural diagram of a base station according to an embodiment of the present disclosure, which can implement the details of the DRX parameter indication method in the method embodiment of FIG. 2 to FIG. 7, and achieve the same effect.
  • the base station 1200 includes: a generating module 1201 and a communication signal sending module 1202, wherein the generating module 1201 is connected to the communication signal sending module 1202, where:
  • a generating module 1201, configured to generate a communication signal or a payload, where the communication signal or payload is used to indicate a DRX parameter;
  • the communication signal sending module 1202 is configured to send the communication signal to the user terminal, or send the payload to the user terminal on a communication channel.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • the DRX parameter includes: a duration of a duration timer or a DRX cycle.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection physical downlink control channel PDCCH, and a detection pattern of a PDCCH.
  • the wake-up signal or the sleep signal or the payload is used to indicate that the user terminal performs blind detection by using a DRX cycle that is one level lower than the target DRX cycle;
  • the wake-up signal or the sleep signal or the payload is used to indicate that the user terminal performs blind detection using a DRX cycle one level higher than the target DRX cycle;
  • the wake-up signal or the sleep signal or the payload is used to indicate an RDX cycle adopted by the user terminal;
  • the target DRX cycle is a DRX cycle that the user terminal is using.
  • the DRX parameter further includes at least one of: a duration of a retransmission timer, a period of a short DRX, and a duration of a timer of the short DRX; wherein the period of the short DRX is shorter than a pre-specified duration.
  • the communication channel includes a PDCCH.
  • the DRX parameter includes at least one of: a duration of a duration timer, first blind detection information, and a DRX cycle, where the first blind detection information is that the user terminal is scheduled at the duration
  • the blind detection information used by the PDCCH is blindly detected in the time of the device.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection PDCCH, a detection pattern of a PDCCH, and a second blind detection information.
  • the second blind detection information is blind detection information used by the user terminal to blindly detect the PDCCH in the time of the DRX inactivity timer.
  • the payload is used to indicate that the user terminal performs blind detection by using a DRX cycle that is one level lower than the target DRX cycle; or the payload is used to indicate that the user terminal adopts a higher one than the target DRX cycle.
  • the DRX cycle of the level is blindly detected; or the payload is used to indicate the RDX cycle used by the user terminal for blind detection; wherein the target DRX cycle is a DRX cycle that the user terminal is using.
  • the first blind detection information includes at least one of: a time interval between a start time of the duration timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the downlink control information format of the transmission is DCI format, the bandwidth fragment occupied by the PDCCH, and the time-frequency resource occupied by the PDCCH.
  • the second blind detection information includes at least one of: a time interval between a start time of the DRX inactivity timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the base station 1200 further includes:
  • the wake-up signal sending module 1203 is configured to send a wake-up signal to the user terminal, where the wake-up signal is used to instruct the user terminal to detect the payload.
  • the wake-up signal is further used to indicate blind detection information of the payload.
  • the blind detection information of the payload includes at least one of: a time interval between the payload and the wake-up signal, a time interval between the payload signal and a sleep signal, and the validity
  • the aggregation level of the load the type of search space of the payload, the DCI format that the payload needs to transmit, and the bandwidth fragment occupied by the payload.
  • the time interval between the payload and the wake-up signal is pre-configured; or the time interval between the payload and the sleep signal is pre-configured.
  • a communication signal or payload is generated, the communication signal or payload is used to indicate a DRX parameter; the communication signal is transmitted to a user terminal, or the payload is transmitted to the user terminal on a communication channel. Since the DRX parameter is indicated by the communication signal or the payload, the embodiment of the present disclosure can improve the flexibility of the DRX parameter, thereby saving the power consumption of the user terminal, compared to the high-level signaling used in the related art.
  • FIG. 14 is a structural diagram of a user terminal according to an embodiment of the present disclosure, which can implement the details of the DRX parameter indication method in the method embodiment of FIG. 11 and achieve the same effect.
  • the user terminal 1400 includes: a receiving module 1401 and an obtaining module 1402, wherein the receiving module 1401 is connected to the obtaining module 1402, where:
  • the receiving module 1401 is configured to receive a communication signal or a payload sent by the base station, where the communication signal or payload is used to indicate a DRX parameter;
  • the obtaining module 1402 is configured to obtain the DRX parameter of the communication signal or the payload indication
  • the payload is transmitted through a communication channel.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • the DRX parameter includes: a duration of a duration timer or a DRX cycle.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection PDCCH, and a detection pattern of a PDCCH.
  • the wake-up signal or the sleep signal or the payload is used to indicate that the user terminal performs blind detection using a DRX cycle that is one level lower than the target DRX cycle; or the wake-up signal or the sleep signal or the payload is used for Instructing the user terminal to perform blind detection using a DRX cycle one level higher than the target DRX cycle; or the wake-up signal or sleep signal or payload is used to indicate an RDX cycle used by the user terminal for blind detection;
  • the target DRX cycle is the DRX cycle that the user terminal is using.
  • the DRX parameter further includes at least one of: a duration of a retransmission timer, a period of a short DRX, and a duration of a timer of the short DRX; wherein the period of the short DRX is shorter than a preset duration.
  • the communication channel includes a PDCCH.
  • the DRX parameter includes at least one of: a duration of a duration timer, first blind detection information, and a DRX cycle, where the first blind detection information is that the user terminal is scheduled at the duration
  • the blind detection information used by the PDCCH is blindly detected in the time of the device.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection PDCCH, a detection pattern of a PDCCH, and a second blind detection information.
  • the second blind detection information is blind detection information used by the user terminal to blindly detect the PDCCH in the time of the DRX inactivity timer.
  • the user terminal 1400 further includes:
  • the blind detection module 1403 is configured to blindly detect the PDCCH according to the DRX parameter after the user terminal wakes up.
  • the user terminal 1400 further includes:
  • the PDCCH signal receiving module 1404 is configured to receive a PDCCH signal according to the DRX parameter after the user terminal wakes up.
  • the payload is used to indicate that the user terminal performs blind detection by using a DRX cycle that is one level lower than the target DRX cycle; or the payload is used to indicate that the user terminal adopts a higher one than the target DRX cycle.
  • the DRX cycle of the level is blindly detected; or the payload is used to indicate the RDX cycle used by the user terminal for blind detection; wherein the target DRX cycle is a DRX cycle that the user terminal is using.
  • the first blind detection information includes at least one of: a time interval between a start time of the duration timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the second blind detection information includes at least one of: a time interval between a start time of the DRX inactivity timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the user terminal 1400 further includes:
  • the wake-up signal receiving module 1405 is configured to receive a wake-up signal sent by the base station
  • the receiving module 1401 is configured to respond to the wake-up signal and blindly detect the payload according to the wake-up signal; wherein the wake-up signal is used to instruct the user terminal to detect the payload.
  • the receiving module 1401 is configured to: responsive to the wake-up signal, and blindly detect the payload according to the blind detection information of the payload indicated by the wake-up signal; wherein the wake-up signal is further used to Blind detection information indicating the payload.
  • the blind detection information of the payload includes at least one of: a time interval between the payload and the wake-up signal, a time interval between the payload and the sleep signal, The aggregation level of the payload, the type of search space of the payload, the DCI format that the payload needs to transmit, and the bandwidth fragment occupied by the payload.
  • the time interval between the payload and the wake-up signal is pre-configured; or the time interval between the payload and the sleep signal is pre-configured.
  • a communication signal or a payload sent by a base station is received, the communication signal or payload is used to indicate a DRX parameter, and a DRX parameter of the communication signal or payload indication is acquired; wherein the payload passes the communication Channel transmission. Since the DRX parameter is indicated by the communication signal or the payload, the embodiment of the present disclosure can improve the flexibility of the DRX parameter, thereby saving the power consumption of the user terminal, compared to the high-level signaling used in the related art.
  • the embodiment of the present disclosure further provides a base station, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the computer program to implement the base station provided by the embodiment of the present disclosure
  • a base station including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the computer program to implement the base station provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure further provides a user terminal, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the computer program to implement the embodiment of the present disclosure.
  • a user terminal including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the computer program to implement the embodiment of the present disclosure.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, and when the computer program is executed by the processor, the steps in the method for indicating the DRX parameter of the base station side are implemented.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, and when the computer program is executed by the processor, the steps in the method for indicating the DRX parameter provided by the embodiment of the present disclosure are implemented.
  • FIG. 18 is a structural diagram of a base station according to an embodiment of the present disclosure, which can implement details of a method for indicating a DRX parameter in the method embodiment of FIG. 2 to FIG. 7, and achieve the same effect.
  • the base station 1800 includes: a processor 1801, a transceiver 1802, a memory 1803, and a bus interface, wherein:
  • the base station 1800 further includes: a computer program stored on the memory 1803 and operable on the processor 1801, when the computer program is executed by the processor 1801, the following steps are performed: generating a communication signal or a payload, A communication signal or payload is used to indicate a DRX parameter; the communication signal is transmitted to a user terminal, or the payload is transmitted to the user terminal on a communication channel.
  • the transceiver 1802 is configured to receive and transmit data under the control of the processor 1801, and the transceiver 1802 includes at least two antenna ports.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1801 and various circuits of memory represented by memory 1803.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1802 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1804 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1801 is responsible for managing the bus architecture and general processing, and the memory 1803 can store data used by the processor 1801 in performing operations.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • the DRX parameter includes: a duration of a duration timer or a discontinuous reception DRX cycle.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection physical downlink control channel PDCCH, and a detection pattern of a PDCCH.
  • the wake-up signal or the sleep signal or the payload is used to indicate that the user terminal performs blind detection using a DRX cycle that is one level lower than the target DRX cycle; or the wake-up signal or the sleep signal or the payload is used for Instructing the user terminal to perform blind detection using a DRX cycle one level higher than the target DRX cycle; or the wake-up signal or sleep signal or payload is used to indicate an RDX cycle adopted by the user terminal; wherein the target DRX The period is the DRX cycle that the user terminal is using.
  • the DRX parameter further includes at least one of: a duration of a retransmission timer, a period of a short DRX, and a duration of a timer of the short DRX; wherein the period of the short DRX is shorter than a pre-specified duration.
  • the communication channel includes a PDCCH.
  • the DRX parameter includes at least one of: a duration of a duration timer, first blind detection information, and a DRX cycle, where the first blind detection information is that the user terminal is scheduled at the duration
  • the blind detection information used by the PDCCH is blindly detected in the time of the device.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection PDCCH, a detection pattern of a PDCCH, and a second blind detection information.
  • the second blind detection information is blind detection information used by the user terminal to blindly detect the PDCCH in the time of the DRX inactivity timer.
  • the payload is used to indicate that the user terminal performs blind detection by using a DRX cycle that is one level lower than the target DRX cycle; or the payload is used to indicate that the user terminal adopts a higher one than the target DRX cycle.
  • the DRX cycle of the level is blindly detected; or the payload is used to indicate the RDX cycle used by the user terminal for blind detection; wherein the target DRX cycle is a DRX cycle that the user terminal is using.
  • the first blind detection information includes at least one of: a time interval between a start time of the duration timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the downlink control information format of the transmission is DCI format, the bandwidth fragment occupied by the PDCCH, and the time-frequency resource occupied by the PDCCH.
  • the second blind detection information includes at least one of: a time interval between a start time of the DRX inactivity timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the following steps may be implemented: sending a wake-up signal to the user terminal; wherein the wake-up signal is used to instruct the user terminal to detect the payload.
  • the wake-up signal is further used to indicate blind detection information of the payload.
  • the blind detection information of the payload includes at least one of: a time interval between the payload and the wake-up signal, a time interval between the payload signal and a sleep signal, and the validity
  • the aggregation level of the load the type of search space of the payload, the DCI format that the payload needs to transmit, and the bandwidth fragment occupied by the payload.
  • the time interval between the payload and the wake-up signal is pre-configured; or the time interval between the payload and the sleep signal is pre-configured.
  • a communication signal or payload is generated, the communication signal or payload is used to indicate a DRX parameter; the communication signal is transmitted to a user terminal, or the payload is transmitted to the user terminal on a communication channel. Since the DRX parameter is indicated by the communication signal or the payload, the embodiment of the present disclosure can improve the flexibility of the DRX parameter, thereby saving the power consumption of the user terminal, compared to the high-level signaling used in the related art.
  • FIG. 19 is a structural diagram of a user terminal provided by an implementation of the present disclosure, which can implement details of a method for indicating a DRX parameter in the method embodiment of FIG. 11, and achieve the same effect.
  • the user terminal 1900 includes at least one processor 1901, a memory 1902, at least one network interface 1904, and other user interfaces 1903.
  • the various components in user terminal 1900 are coupled together by a bus system 1905.
  • the bus system 1905 is used to implement connection communication between these components.
  • the bus system 1905 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 1905 in FIG.
  • the user interface 1903 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 1902 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the memory 1902 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 19021 and an application 19022.
  • the operating system 19021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application program 19022 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 19022.
  • the user terminal 1900 further includes: a computer program stored on the memory 1902 and operable on the processor 1901.
  • the computer program is executed by the processor 1901, the following steps are implemented: receiving a communication signal sent by the base station or validating a load, the communication signal or payload is used to indicate a DRX parameter; a DRX parameter to obtain the communication signal or payload indication; wherein the payload is transmitted over a communication channel.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the processor 1901 or implemented by the processor 1901.
  • the processor 1901 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1901 or an instruction in a form of software.
  • the processor 1901 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional computer readable storage medium of the art, such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the computer readable storage medium is located in a memory 1902, and the processor 1901 reads the information in the memory 1902 and performs the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • the DRX parameter includes: a duration of a duration timer or a DRX cycle.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection PDCCH, and a detection pattern of a PDCCH.
  • the wake-up signal or the sleep signal or the payload is used to indicate that the user terminal performs blind detection using a DRX cycle that is one level lower than the target DRX cycle; or the wake-up signal or the sleep signal or the payload is used for Instructing the user terminal to perform blind detection using a DRX cycle one level higher than the target DRX cycle; or the wake-up signal or sleep signal or payload is used to indicate an RDX cycle used by the user terminal for blind detection;
  • the target DRX cycle is the DRX cycle that the user terminal is using.
  • the DRX parameter further includes at least one of: a duration of a retransmission timer, a period of a short DRX, and a duration of a timer of the short DRX; wherein the period of the short DRX is shorter than a preset duration.
  • the communication channel includes a PDCCH.
  • the DRX parameter includes at least one of: a duration of a duration timer, first blind detection information, and a DRX cycle, where the first blind detection information is that the user terminal is scheduled at the duration
  • the blind detection information used by the PDCCH is blindly detected in the time of the device.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection PDCCH, a detection pattern of a PDCCH, and a second blind detection information.
  • the second blind detection information is blind detection information used by the user terminal to blindly detect the PDCCH in the time of the DRX inactivity timer.
  • the following steps are implemented: after the user terminal wakes up, the PDCCH is blindly detected according to the DRX parameter.
  • the following steps are implemented: after the user terminal wakes up, receiving the PDCCH signal according to the DRX parameter.
  • the payload is used to indicate that the user terminal performs blind detection by using a DRX cycle that is one level lower than the target DRX cycle; or the payload is used to indicate that the user terminal adopts one level higher than the target DRX cycle.
  • the DRX cycle is blindly detected; or the payload is used to indicate an RDX cycle used by the user terminal for blind detection; wherein the target DRX cycle is a DRX cycle that the user terminal is using.
  • the first blind detection information includes at least one of: a time interval between a start time of the duration timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the second blind detection information includes at least one of: a time interval between a start time of the DRX inactivity timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the following steps are performed: receiving a wake-up signal sent by the base station; responding to the wake-up signal, and blindly detecting the payload according to the wake-up signal; wherein the wake-up The signal is used to instruct the user terminal to detect the payload.
  • the following steps are implemented: in response to the wake-up signal, and blindly detecting the payload according to the blind detection information of the payload indicated by the wake-up signal; wherein The wake-up signal is also used to indicate blind detection information for the payload.
  • the blind detection information of the payload includes at least one of: a time interval between the payload and the wake-up signal, a time interval between the payload and the sleep signal, The aggregation level of the payload, the type of search space of the payload, the DCI format that the payload needs to transmit, and the bandwidth fragment occupied by the payload.
  • a time interval between the payload and the wake-up signal is pre-configured; or, a time interval between the payload and the sleep signal is pre-configured.
  • a communication signal or a payload sent by a base station is received, the communication signal or payload is used to indicate a DRX parameter, and a DRX parameter of the communication signal or payload indication is acquired; wherein the payload passes the communication Channel transmission. Since the DRX parameter is indicated by the communication signal or the payload, the embodiment of the present disclosure can improve the flexibility of the DRX parameter, thereby saving the power consumption of the user terminal, compared to the high-level signaling used in the related art.
  • FIG. 20 is a structural diagram of a user terminal according to an embodiment of the present disclosure.
  • the user terminal can implement the details of the DRX parameter indication method in the method embodiment of FIG. 11 and achieve the same effect.
  • the user terminal 2000 includes: a radio frequency (RF) circuit 2001, a memory 2002, an input unit 2003, a display unit 2004, a power supply 2005, a processor 2006, an audio circuit 2007, and a WiFi (Wireless Fidelity) module 2008. .
  • RF radio frequency
  • the input unit 2003 can be used to receive digital or character information input by the user, and generate signal input related to user setting and function control of the user terminal 2000.
  • the input unit 2003 may include a touch panel 20031.
  • the touch panel 20031 also referred to as a touch screen, can collect touch operations on or near the user (such as the user's operation on the touch panel 20031 using any suitable object or accessory such as a finger or a stylus), and according to the preset
  • the programmed program drives the corresponding connection device.
  • the touch panel 20031 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 2006 is provided and can receive commands from the processor 2006 and execute them.
  • the touch panel 20031 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 2003 may further include other input devices 20032, which may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 2004 can be used to display information input by the user or information provided to the user and various menu interfaces of the user terminal 2000.
  • the display unit 2004 may include a display panel 20041.
  • the display panel 20041 may be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 20031 can cover the display panel 20041 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 2006 to determine the type of the touch event, and then the processor 2006 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 2006 is a control center of the user terminal 2000, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 20020, and calling the second storage.
  • the data in the memory 20022 performs various functions and processing data of the user terminal 2000, thereby performing overall monitoring of the user terminal 2000.
  • processor 2006 may include one or more processing units.
  • the processor 2006 is configured to: receive a communication signal or a payload sent by the base station by calling a software program and/or a module stored in the first memory 20020 and/or data in the second memory 20022,
  • the communication signal or payload is used to indicate a DRX parameter; to obtain a DRX parameter of the communication signal or payload indication; wherein the payload is transmitted over a communication channel.
  • the communication signal includes a wake-up signal or a sleep signal
  • the communication channel includes a wake-up channel or a sleep channel.
  • the DRX parameter includes: a duration of a duration timer or a DRX cycle.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection PDCCH, and a detection pattern of a PDCCH.
  • the wake-up signal or the sleep signal or the payload is used to indicate that the user terminal performs blind detection using a DRX cycle that is one level lower than the target DRX cycle; or the wake-up signal or the sleep signal or the payload is used for Instructing the user terminal to perform blind detection using a DRX cycle one level higher than the target DRX cycle; or the wake-up signal or sleep signal or payload is used to indicate an RDX cycle used by the user terminal for blind detection;
  • the target DRX cycle is the DRX cycle that the user terminal is using.
  • the DRX parameter further includes at least one of: a duration of a retransmission timer, a period of a short DRX, and a duration of a timer of the short DRX; wherein the period of the short DRX is shorter than a preset duration.
  • the communication channel includes a PDCCH.
  • the DRX parameter includes at least one of: a duration of a duration timer, first blind detection information, and a DRX cycle, where the first blind detection information is that the user terminal is scheduled at the duration
  • the blind detection information used by the PDCCH is blindly detected in the time of the device.
  • the DRX parameter includes at least one of the following: a period of a semi-persistent scheduling, a resource of a semi-persistent scheduling, a duration of a DRX inactivity timer, a period of a semi-persistent detection PDCCH, a detection pattern of a PDCCH, and a second blind detection information.
  • the second blind detection information is blind detection information used by the user terminal to blindly detect the PDCCH in the time of the DRX inactivity timer.
  • the processor 2006 is further configured to: after the user terminal wakes up, according to the DRX Parameters, blind detection of PDCCH.
  • the processor 2006 is further configured to: after the user terminal wakes up, according to the DRX The parameter receives the PDCCH signal.
  • the payload is used to indicate that the user terminal performs blind detection by using a DRX cycle that is one level lower than the target DRX cycle; or the payload is used to indicate that the user terminal adopts one level higher than the target DRX cycle.
  • the DRX cycle is blindly detected; or the payload is used to indicate an RDX cycle used by the user terminal for blind detection; wherein the target DRX cycle is a DRX cycle that the user terminal is using.
  • the first blind detection information includes at least one of: a time interval between a start time of the duration timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the second blind detection information includes at least one of: a time interval between a start time of the DRX inactivity timer and the payload, an aggregation level of a PDCCH, a search space type of a PDCCH, and a PDCCH requirement.
  • the processor 2006 is further configured to: receive a wake-up signal sent by the base station by calling a software program and/or a module stored in the first memory 20020 and/or data in the second memory 20022; Awakening the signal, and blindly detecting the payload according to the wake-up signal; wherein the wake-up signal is used to instruct the user terminal to detect the payload.
  • the processor 2006 is further configured to: respond to the wake-up signal, and according to the wake-up signal, by calling a software program and/or a module stored in the first memory 20020 and/or data in the second memory 20022 And indicating the blind detection information of the payload, and blindly detecting the payload; wherein the wake-up signal is further used to indicate blind detection information of the payload.
  • the blind detection information of the payload includes at least one of: a time interval between the payload and the wake-up signal, a time interval between the payload and the sleep signal, The aggregation level of the payload, the type of search space of the payload, the DCI format that the payload needs to transmit, and the bandwidth fragment occupied by the payload.
  • a time interval between the payload and the wake-up signal is pre-configured; or, a time interval between the payload and the sleep signal is pre-configured.
  • a communication signal or a payload sent by a base station is received, the communication signal or payload is used to indicate a DRX parameter, and a DRX parameter of the communication signal or payload indication is acquired; wherein the payload passes the communication Channel transmission. Since the DRX parameter is indicated by the communication signal or the payload, the embodiment of the present disclosure can improve the flexibility of the DRX parameter, thereby saving the power consumption of the user terminal, compared to the high-level signaling used in the related art.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the portion of the technical solution of the present disclosure that contributes in essence or to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种DRX参数的指示方法、相关设备及系统,该方法包括:生成通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;向用户终端发送所述通信信号,或在通信信道向所述用户终端发送所述有效负荷。

Description

DRX参数的指示方法、相关设备及系统
相关申请的交叉引用
本申请主张在2017年7月20日在中国提交的中国专利申请号No.201710617115.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种非连续接收(Discontinuous Reception,DRX)参数的指示方法、相关设备及系统。
背景技术
通信系统中,为了节约用户终端的耗电,用户终端往往采用非连续接收机制进行盲检测,例如:采用DRX盲检测物理下行控制信道(Physical Downlink Control Channel,PDCCH)。然而,目前DRX参数均是基站通过高层信令配置给用户终端,这样就导致DRX参数的灵活性差。例如:运营商对DRX参数的配置往往是固定的,而不会随着不同业务的不同需求灵活调整DRX参数。这样由于DRX参数的灵活差,就可能会导致用户终端在进行盲检测PDCCH时,没有数据的概率大幅增加,导致用户终端耗电严重。
发明内容
第一方面,本公开实施例提供一种DRX参数的指示方法,应用于基站,包括:
生成通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;
向用户终端发送所述通信信号,或在通信信道向所述用户终端发送所述有效负荷。
第二方面,本公开实施例提供一种DRX参数的指示方法,应用于用户终端,包括:
接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;
获取所述通信信号或有效负荷指示的DRX参数;
其中,所述有效负荷通过通信信道发送。
第三方面,本公开实施例提供一种基站,包括:
生成模块,用于生成通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;
通信信号发送模块,用于向用户终端发送所述通信信号,或在通信信道向所述用户终端发送所述有效负荷。
第四方面,本公开实施例提供一种用户终端,包括:
接收模块,用于接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;
获取模块,用于获取所述通信信号或有效负荷指示的DRX参数;
其中,所述有效负荷通过通信信道发送。
第五方面,本公开实施例提供一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开实施例提供的基站侧的DRX参数的指示方法中的步骤。
第六方面,本公开实施例提供一种用户终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开实施例提供的用户终端侧的DRX参数的指示方法中的步骤。
第七方面,本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的基站侧的DRX参数的指示方法中的步骤。
第八方面,本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的用户终端侧的DRX参数的指示方法中的步骤。
第九方面,本公开实施例提供一种DRX参数的指示系统,包括本公开实施例提供的基站和的用户终端。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的DRX参数的指示系统的结构图;
图2是本公开实施例提供的DRX参数的指示方法的流程图之一;
图3是本公开实施例提供的DRX参数的指示方法的流程图之二;
图4是本公开实施例提供的用户终端的工作流程图之一;
图5是本公开实施例提供的用户终端的工作流程图之二;
图6是本公开实施例提供的用户终端的工作流程图之三;
图7是本公开实施例提供的DRX参数的指示方法的流程图之三;
图8是本公开实施例提供的用户终端的工作流程图之四;
图9是本公开实施例提供的用户终端的工作流程图之五;
图10是本公开实施例提供的用户终端的工作流程图之六;
图11是本公开实施例提供的DRX参数的指示方法的流程图之三;
图12是本公开实施例提供的基站的结构图之一;
图13是本公开实施例提供的基站的结构图之二;
图14是本公开实施例提供的用户终端的结构图之一;
图15是本公开实施例提供的用户终端的结构图之二;
图16是本公开实施例提供的用户终端的结构图之三;
图17是本公开实施例提供的用户终端的结构图之四;
图18是本公开实施例提供的基站的结构图之三;
图19是本公开实施例提供的用户终端的结构图之五;
图20是本公开实施例提供的用户终端的结构图之六。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1是本公开实施例提供的DRX参数的指示系统的结构图,如图1所示,包括用户终端11和基站12,其中,用户终端11(User Equipment,UE)可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定用户终端11的具体类型。上述基站12可以是5G基站(例如:gNB、5G NR NB),或者可以是4G基站(例如:eNB),或者可以是3G基站(例如:NB),或者后续演进通信版本中的网络端设备等等,需要说明的是,在本公开实施例中并不限定基站12的具体类型。
需要说明的是,上述用户终端11和基站12的具体功能将通过以下多个实施例进行具体描述。
请参见图2,图2是本公开实施例提供的DRX参数的指示方法的流程图,该方法应用于基站,如图2所示,包括以下步骤:
步骤201、生成通信信号或有效负荷(payload),所述通信信号或有效负荷用于指示DRX参数。
其中,上述通信信号可以是唤醒信号(wake-up signal,WUS)或者睡眠信号,而上述通信信号指示DRX参数可以是通过通信信号包括的指示信息进行指示,或者还可以是通过通信信号的能量或者幅度进行指示,或者还可以是通过通信信号的有效负荷进行指示,对此本公开实施例不作限定。可选的,上述DRX参数可以是连接态DRX(connected DRX,CDRX)参数,但对此本公开实施例不作限定,例如:还可以是其他状态的DRX参数。另外,上述生成通信信号可以是根据用户终端的业务需求或者通信场景或者通信性能等等,确定对应的DRX参数,并生成指示该DRX参数的通信信号。这样可以实现向用户终端指示用户终端对应的DRX参数,从而可以提高用户终端盲检测PDCCH获得数据的概率,以减少用户终端盲检测PDCCH但没有数据的概率,达到节约用户终端的耗电的目的。
步骤202、向用户终端发送所述通信信号,或在通信信道向所述用户终 端发送所述有效负荷。
其中,上述通信信道可以是PDCCH信号,而上述有效负荷(payload)可以称作有效负荷,该有效负荷可以是专用于指示DRX参数的PDCCH信号。当然,本公开实施例中,上述有效负荷还可以通过其他信道发送,例如:上述通信信道可以是唤醒信道或者睡眠信道,且上述通信信号包括唤醒信号或者睡眠信号。其中,唤醒信道可以是用于传输唤醒信号的信道,而睡眠信道可以是使用传输睡眠信号的信道,可选的,这两个信道也可以同为一个信道。
通过上述步骤,可以实现通过通信信号或者有效负荷指示DRX参数,从而可以实现灵活地向用户终端指示CDRX,例如:可以根据用户终端的业务需求,或者用户终端的通信场景等等向用户终端指示对应的DRX参数,从而减少用户终端盲检测PDCCH但没有数据的概率,以节约用户终端的耗电。
本公开实施例中,生成通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;向用户终端发送所述通信信号,或在通信信道向所述用户终端发送所述有效负荷。由于DRX参数通过通信信号或有效负荷指示,从而相比相关技术采用高层信令,本公开实施例可以提高DRX参数的灵活性,进而节约用户终端的耗电。
请参见图3,图3是本公开实施例提供的DRX参数的指示方法的流程图,该方法应用于基站,本实施例相比图2所示的实施例主要区别在于,通信信号为唤醒信号或者睡眠信号。如图3示,包括以下步骤:
步骤301、生成唤醒信号或者睡眠信号或有效负荷,所述唤醒信号或者睡眠信号或有效负荷用于指示DRX参数。
本公开实施例中,由于可以通过唤醒信号或者睡眠信号或有效负荷向用户终端指示DRX参数,这样不需要增加额外的信号传输,从而可以进一步节约用户终端的耗电。
步骤302、向用户终端发送唤醒信号或者睡眠信号,或在通信信道向所述用户终端发送所述有效负荷。
其中,通信信道包括唤醒信道或者睡眠信道。
可选的,所述DRX参数包括:持续时间定时器(on Duration Timer)的时长或者非连续接收(Discontinuous Reception,DRX)周期。
其中,持续时间定时器(on Duration Timer)可以指定从DRX周期(cycle)的起始子帧算起,需要监听PDCCH的连续子帧数,即用户终端激活期持续监听的子帧数。而上述DRX周期可以是DRX的有效周期。
以唤醒信号为例,唤醒信号指示用户终端醒过来,同时唤醒信号携带的信息指示用户终端UE的持续时间定时器的长度,例如:两个时隙slot、子帧或者微时隙(mini-slot),如图4所示,其中:图4中横轴表示时间,纵轴表示用户终端的工作电流。用户终端接收到上述唤醒信号后,用户终端响应该唤醒信号,切换到唤醒状态(Ramp-up),并在上述持续时间定时器的时间内盲检测PDCCH,其中,这里的盲检测PDCCH可以理解为数据和控制信道流程(Data&control channel processing)。之后,用户终端可以在静止定时器(Inactivity Timer)的时间内接收PDCCH信号,在该定时器超时后,用户终端可以切换到睡眠状态(Ramp-down)。当然,后续用户终端还可以接收到睡眠信号,继续保持睡眠状态。
本公开实施例中,由于可以通过唤醒信号或者睡眠信号向用户终端指示持续时间定时器的时长或者DRX周期,这样用户终端可以按照持续时间定时器的时长或者DRX周期进行相应的监听或者盲检测,从而进一步节约用户终端的耗电。
可选的,本公开实施例中,唤醒信号或者睡眠信号指示DRX周期,可以通过如下方式进行指示:所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
例如:通过1bit,0表示采用比正在使用的DRX周期低一级的周期,1表示采用比正在使用的DRX周期高一级的周期;其中,这里的级别可以是预先定义好的,例如:160ms是一个级别,比160ms高一个级别的可以是320ms,而比320ms高一级别可以是640ms等,对此本公开实施例不作限定。
而上述指示所述用户终端进行盲检测采用的RDX周期可以是,指示用户 终端盲检测采用的具体RDX周期,例如:通过2bits,00表示DRX周期是160ms,01表示DRX周期是320ms,10表示DRX周期是640ms,11表示DRX周期是1280ms。
例如:以唤醒信号为例,唤醒信号指示用户终端唤醒过来,同时该唤醒信号携带的信息指示用户终端的DRX周期,如通过1bit,0表示采用比正在使用的DRX周期低一级的周期,1表示采用比正在使用的DRX周期高一级的周期;或者通过2bits,00表示DRX周期是160ms,01表示DRX周期是320ms,10表示DRX周期是640ms,11表示DRX周期是1280ms。如图5所示,其中:图5中横轴表示时间,纵轴表示用户终端的工作电流。用户终端接收到上述唤醒信号后,用户终端响应该唤醒信号,切换为唤醒状态(Ramp-up),并在指示的DRX周期内的静止定时器(Inactivity Timer)的时间内盲检测PDCCH,其中,这里的盲检测PDCCH可以理解为数据和控制信道流程(Data&control channel processing)。之后,用户终端可以在静止定时器(Inactivity Timer)的时间内接收PDCCH信号,在该定时器超时后,用户终端可以切换到睡眠状态(Ramp-down)。当然,后续用户终端还可以接收到睡眠信号,继续保持睡眠状态。
本公开实施例中,通过指示比目标DRX周期高一级或者低一级的方式指示用户终端的DRX周期,可以减少传输开销,以节约传输资源。以及还可以通过指示所述用户终端进行盲检测采用的RDX周期,可以实现灵活、准确地指示用户终端盲检测采用的RDX周期,以提高用户终端的盲检测性能。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器(drx-Inactivity Timer)的时长、半持续检测PDCCH的周期和PDCCH的检测图案(pattern)。
其中,DRX静止定时器可以指定当用户终端成功解码一个指示初传的上行或下行用户数据的PDCCH后,持续位于激活态的连续子帧数,即每当用户终端有初传数据被调度,该定时器就重启一次。
以唤醒信号为例,唤醒信号指示用户终端醒过来,同时唤醒信号携带的信息指示用户终端的DRX静止定时器(drx-Inactivity Timer)的长度,例如:20ms,或者,指示半持续检测PDCCH的周期,例如:如每5ms检测一次PDCCH, 或者,指示半持续调度的周期和/或资源,例如:半持续调度的周期是10ms,半持续调度的上行或下行资源是物理资源块4到9,或者,指示PDCCH检测图案(pattern),例如:如每10ms的PDCCH检测pattern是1111010101,其中1代表UE需要检测PDCCH,0代表UE不需要检测PDCCH。如图6所示,其中,横轴表示时间,纵轴表示用户终端的工作电流,由于唤醒信号中指示了上述DRX参数(其中,图6以指示静止定时器的时长进行举例),从而用户终端可以在静止定时器(Inactivity Timer)的时间内接收PDCCH信号,在该定时器超时后,用户终端可以切换到睡眠状态(Ramp-down)。当然,后续用户终端还可以接收到睡眠信号,继续保持睡眠状态。这样用户终端可以不需要盲检测PDCCH,即相比图4和图5可以减少盲检测PDCCH这个过程。
可见,本公开实施例中,由于通过唤醒信号或者睡眠信号指示非持续调度的周期、非持续调度的资源、DRX静止定时器的时长、非持续检测物理下行控制信道PDCCH的周期和PDCCH的检测图案中的至少一项的DRX参数时,可以进一步节约用户终端的耗电,因为,用户终端可以不需要盲检测PDCCH。
需要说明的是,本公开实施例中,DRX参数均适用于常规的时隙(slot)和微时隙(mini-slot)。
可选的,所述DRX参数还包括如下至少一项:重传定时器(Retransmission Timer)的时长、短DRX的周期和短DRX的定时器(short Drx Timer)的时长;其中,所述短DRX的周期比预先指定的时长短。
其中,上述预先指定的时长可以是基站指定、用户终端指定、用户指定或者协议中指定,对此本公开实施例不作限定,例如:60ms或者120ms等等。另外,本公开实施例中,除短DRX之外的DRX可以定义为长DRX或者常规DRX。
本公开实施例中,可以实现通过唤醒信号或者睡眠信号指示重传定时器的时长、短DRX的周期和短DRX的定时器的时长中的至少一项,从而可以让用户终端在盲检测或者监听时更加容易获得数据,减少盲检测或者监听过程不能获得数据的概率,进一步节约用户终端的耗电。
本公开实施例中,生成唤醒信号或者睡眠信号或者有效负荷,所述唤醒信号或者睡眠信号或者有效负荷用于指示DRX参数;向用户终端发送唤醒信号或者睡眠信号或在通信信道向所述用户终端发送所述有效负荷。由于DRX参数通过唤醒信号或者睡眠信号指示,从而相比相关技术采用高层信令,本公开实施例可以提高DRX参数的灵活性,进而节约用户终端的耗电。以及通过唤醒信号或者睡眠信号向用户终端指示DRX参数,这样不需要增加额外的信号传输,从而可以进一步节约用户终端的耗电。
请参见图7,图7是本公开实施例提供的DRX参数的指示方法的流程图,该方法应用于基站,本实施例相比图2所示的实施例主要区别在于,通信信道为PDCCH。如图7示,包括以下步骤:
步骤701、生成有效负荷,所述有效负荷用于指示DRX参数。
其中,上述有效负荷可以理解为专用于指示DRX参数的信号,即本公开实施例中,可以实现通过一个有效负荷来指示DRX参数,以提高DRX参数灵活性,以减少用户终端盲检测PDCCH但没有数据的概率,以节约用户终端的耗电。
步骤702、在PDCCH向所述用户终端发送所述有效负荷。
可选的,所述DRX参数包括如下至少一项:持续时间定时器(on Duration Timer)的时长、第一盲检测信息和DRX周期;其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
其中,上述持续时间定时器可以参见本公开实施例中,上述实施方式的相应说明,此处不作赘述,且可以达到相同有益效果。
其中,在发送上述有效负荷(也可以称作专用PDCCH信号)之前,还可以向用户终端发送唤醒信号,例如:唤醒信号指示用户终端醒过来,再通过有效负荷指示用户终端UE的持续时间定时器的长度,例如:两个时隙slot、子帧或者微时隙(mini-slot)。可选的,唤醒信号可以指示有效负荷的盲检测参数,例如:指示该有效负荷所占用的带宽片段(Bandwidth parts,BWP)是2号带宽片段。如图8所示,其中:图8中横轴表示时间,纵轴表示用户终端的工作电流。用户终端接收到上述唤醒信号后,用户终端响应该唤醒信 号,切换为唤醒状态(Ramp-up),并根据唤醒信号盲检测有效负荷。之后,在上述持续时间定时器的时间内,根据有效负荷中指示的DRX参数盲检测PDCCH,其中,这里的盲检测PDCCH可以理解为数据和控制信道流程(Data&control channel processing)。之后,用户终端可以在静止定时器(Inactivity Timer)的时间内接收PDCCH信号,在该定时器超时后,用户终端可以切换到睡眠状态(Ramp-down)。当然,后续用户终端还可以接收到睡眠信号,继续保持睡眠状态。
需要说明的是,本公开实施例中,在发送有效负荷信号之前,是可以不发送唤醒信号,例如:上述有效负荷可以还用于唤醒用户终端。
本公开实施例中,由于可以通过有效负荷向用户终端指示持续时间定时器的时长、第一盲检测参数和DRX周期中的至少一项,这样用户终端可以按照持续时间定时器的时长、第一盲检测参数和DRX周期中的至少一项进行相应的监听或者盲检测,从而进一步节约用户终端的耗电。
可选的,所述第一盲检测信息包括如下至少一项:所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的下行控制信息格式(Downlink Control Information format,DCI format)、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
其中,上述PDCCH的聚合等级可以是如1、2、4或8个控制信道单元(Control channel element,CCE)等,对此本公开实施例不作限定。
而上述PDCCH的搜索空间可以是公共搜索空间和/或用户终端专用搜索空间等,对此本公开实施例不作限定。
而上述DCI format可以是format 1和format 3,或者format 1或者format 3、等,对此本公开实施例不作限定。
而上述PDCCH所占用的时频资源可以是,PDCCH所占用的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号索引(Symbol index)或者时频资源的其他信息,对此本公开实施例不作限定。
本公开实施例中,通过上述第一盲检测信息,可以进一步减少用户终端在持续时间定时器的时间内盲检测PDCCH但没有数据的概率,即提高用户 终端盲检测PDCCH成功的概率,以进一步节约用户终端的耗电。
可选的,所述有效负荷指示DRX周期,可以通过如下方式进行指示:所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者,所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者,所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
例如:通过1bit,0表示采用比正在使用的DRX周期低一级的周期,1表示采用比正在使用的DRX周期高一级的周期;其中,这里的级别可以是预先定义好的,例如:160ms是一个级别,比160ms高一个级别的可以是320ms,而比320ms高一级别可以是640ms等,对此本公开实施例不作限定。
而上述指示所述用户终端进行盲检测采用的RDX周期可以是,指示用户终端盲检测采用的具体RDX周期,例如:通过2bits,00表示DRX周期是160ms,01表示DRX周期是320ms,10表示DRX周期是640ms,11表示DRX周期是1280ms。
其中,在发送上述所述有效负荷之前,还可以向用户终端发送唤醒信号,例如:唤醒信号指示用户终端醒过来,再通过所述有效负荷指示用户终端的DRX周期,如通过1bit,0表示采用比正在使用的DRX周期低一级的周期,1表示采用比正在使用的DRX周期高一级的周期;或者通过2bits,00表示DRX周期是160ms,01表示DRX周期是320ms,10表示DRX周期是640ms,11表示DRX周期是1280ms。可选的,唤醒信号可以指示所述有效负荷的盲检测参数,例如:指示该所述有效负荷所占用的带宽片段(Bandwidth parts,BWP)是2号带宽片段。如图9所示,其中:图9中横轴表示时间,纵轴表示用户终端的工作电流。用户终端接收到上述唤醒信号后,用户终端响应该唤醒信号,切换为唤醒状态(Ramp-up),并根据唤醒信号盲检测所述有效负荷。之后,在所述有效负荷指示的DRX周期内的静止定时器(Inactivity Timer)的时间内盲检测PDCCH,其中,这里的盲检测PDCCH可以理解为数据和控制信道流程(Data&control channel processing)。之后,用户终端可以在静止定时器(Inactivity Timer)的时间内接收PDCCH信号,在该定时器超时后, 用户终端可以切换到睡眠状态(Ramp-down)。当然,后续用户终端还可以接收到睡眠信号,继续保持睡眠状态。
本公开实施例中,通过所述有效负荷指示比目标DRX周期高一级或者低一级的方式指示用户终端的DRX周期,可以减少传输开销,以节约传输资源。以及还可以通过指示所述用户终端进行盲检测采用的RDX周期,可以实现灵活、准确地指示用户终端盲检测采用的RDX周期,以提高用户终端的盲检测性能。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器(drx-Inactivity Timer)的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;
其中,所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
其中,上述DRX静止定时器可以参见本公开实施例中,上面实施方式的相应说明,此处不作赘述,且可以达到相同有益效果。
其中,在发送上述所述有效负荷之前,还可以向用户终端发送唤醒信号,例如:唤醒信号指示用户终端醒过来,再通过所述有效负荷指示用户终端的DRX静止定时器(drx-Inactivity Timer)的长度,例如:20ms,或者,指示半持续检测PDCCH的周期,例如:如每5ms检测一次PDCCH,或者,指示半持续调度的周期和/或资源,例如:半持续调度的周期是10ms,半持续调度的上行或下行资源是物理资源块4到9,或者,指示PDCCH检测图案(pattern),例如:如每10ms的PDCCH检测pattern是1111010101,其中1代表UE需要检测PDCCH,0代表UE不需要检测PDCCH。可选的,唤醒信号可以指示有效负荷的盲检测参数,例如:指示该PDCCH信号所占用的带宽片段(Bandwidth parts,BWP)是3号带宽片段。如图10所示,其中:图10中横轴表示时间,纵轴表示用户终端的工作电流。由于有效负荷中指示了上述DRX参数,从而用户终端可以在静止定时器(Inactivity Timer)的时间内接收PDCCH信号,在该定时器超时后,用户终端可以切换到睡眠状态(Ramp-down)。当然,后续用户终端还可以接收到睡眠信号,继续保持睡眠状态。这样用户终端可以不需要盲检测PDCCH,即相比图8和图9可以减少 盲检测PDCCH这个过程。
可见,本公开实施例中,由于通过所述有效负荷指示非持续调度的周期、非持续调度的资源、DRX静止定时器的时长、非持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息中的至少一项的DRX参数时,可以进一步节约用户终端的耗电,因为,用户终端可以不需要盲检测PDCCH。
可选的,所述第二盲检测信息包括如下至少一项:所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
其中,第二盲检测信息可以参见本公开实施例第二盲检测信息的相关说明,此处不作赘述。
本公开实施例中,通过上述第二盲检测信息,可以进一步减少用户终端在DRX静止定时器的时间内盲检测PDCCH但没有数据的概率,即提高用户终端盲检测PDCCH成功的概率,以进一步节约用户终端的耗电。
可选的,所述向用户终端发送所述通信信号的步骤之前,所述方法还包括:向所述用户终端发送唤醒信号;其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
其中,上述唤醒信号可以参见图8至图10所示的举例的唤醒信号。
本公开实施例中,通过在发送有效负荷信号之前,向用户终端发送唤醒信号,以指示用户终端检测有效负荷,从而可以实现用户终端及时地检测到有效负荷,以提高用户终端的性能。
可选的,所述唤醒信号还用于指示所述有效负荷信号的盲检测信息。
本公开实施例中,通过在发送有效负荷之前,向用户终端发送唤醒信号,以指示有效负荷的盲检测信息,从而提高用户终端获取有效负荷的效率,在进一步节约用户终端的耗电。
可选的,所述有效负荷的盲检测信息包括如下至少一项:所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷信号与睡眠信号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
其中,上述有效负荷的聚合等级可以是如1、2、4或8个控制信道单元(Control channel element,CCE)等,对此本公开实施例不作限定。
而上述有效负荷的搜索空间可以是公共搜索空间和/或用户终端专用搜索空间等,对此本公开实施例不作限定。
而上述DCI format可以是format 1和format 3,或者format 1或者format 3、等,对此本公开实施例不作限定。
而上述有效负荷所占用的时频资源可以是,PDCCH所占用的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号索引(Symbol index)或者时频资源的其他信息,对此本公开实施例不作限定。
本公开实施例中,通过上述有效负荷的盲检测信息,可以进一步提高用户终端盲检测有效负荷成功的概率,以进一步节约用户终端的耗电。
可选的,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;或者,所述有效负荷与睡眠信号之间的时间间隔为预先配置的。
其中,上述预先配置可以是协议预先规定,或者可以是基站与用户终端预先协商的等,对此本公开实施例不作限定。
本公开实施例中,由于有效负荷与所述唤醒信号之间的时间间隔,或者有效负荷与睡眠信号之间的时间间隔,可以预设配置,从而可以节约传输开销,以节约传输资源。
本公开实施例中,生成有效负荷,所述有效负荷用于指示DRX参数;在PDCCH向用户终端发送有效负荷。由于DRX参数通过有效负荷指示,从而可以提高DRX参数灵活性,以减少用户终端盲检测PDCCH但没有数据的概率,以节约用户终端的耗电。
请参见图11,图11是本公开实施例提供的DRX参数的指示方法的流程图,该方法应用于用户终端,如图11所示,包括以下步骤:
步骤1101、接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数。
其中,上述通信信号或有效负荷可以参见图2和图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
步骤1102、获取所述通信信号或有效负荷指示的DRX参数;
其中,所述有效负荷通过通信信道发送。
其中,上述获取所述通信信号或有效负荷指示的DRX参数可以是,根据预先获取通信信号或有效负荷与DRX参数的对应关系,确定通信信号或有效负荷指示的DRX参数;或者可以是,根据预先获取的指示信息与DRX参数的对应关系,确定通信信号或有效负荷包括的指示信息所指示的DRX参数;或者可以是识别上述通信信号或有效负荷包括的指示内容,识别该指示内容指示的DRX参数等,对此本公开实施例不作限定。
可选的,所述通信信号包括唤醒信号或者睡眠信号;所述通信信道包括唤醒信道或者睡眠信道。
其中,上述唤醒信号或者睡眠信号均可以参见图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述DRX参数包括:持续时间定时器的时长或者DRX周期。
其中,上述持续时间定时器的时长或者DRX周期均可以参见图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期和PDCCH的检测图案。
其中,上述DRX参数均可以参见图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
其中,上述唤醒信号或者睡眠信号均可以参见图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述DRX参数还包括如下至少一项:重传定时器的时长、短DRX的周期和短DRX的定时器的时长;其中,所述短DRX的周期比预先指 定时长短。
其中,上述DRX参数均可以参见图3所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述通信信道包括PDCCH。
其中,上述通信信道可以参见图7所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述DRX参数包括如下至少一项:持续时间定时器的时长、第一盲检测信息和DRX周期;其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
其中,上述持续时间定时器的时长、第一盲检测信息和DRX周期均可以参见图7所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;其中,所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
其中,上述DRX参数均可以参见图7所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,获取所述通信信号或有效负荷指示的DRX参数的步骤之后,所述方法还包括:在所述用户终端唤醒后,根据所述DRX参数,盲检测PDCCH。
本公开实施例中,可以实现在上述唤醒信号或者睡眠信号指示持续时间定时器的时长或者DRX周期时,或者上述有效负荷指示持续时间定时器的时长、第一盲检测信息和DRX周期中的至少一项时,可以根据指示的所述DRX参数,盲检测PDCCH,以提高用户终端盲检测PDCCH成功的概率,过到节约用户终端的耗电的目的。例如:如图4、图5、图8和图9所示。
可选的,所述获取所述通信信号或有效负荷指示的DRX参数的步骤之后,所述方法还包括:在所述用户终端唤醒后,根据所述DRX参数,接收PDCCH信号。
本公开实施例,可以实现在唤醒信号或者睡眠信号指示非持续调度的周 期、非持续调度的资源、非连续接收DRX静止定时器的时长、非持续检测PDCCH的周期和PDCCH的检测图案中的至少一项,或者有效负荷指示非持续调度的周期、非持续调度的资源、DRX静止定时器的时长、非持续检测物理下行控制信道PDCCH的周期、PDCCH的检测图案和第二盲检测信息中的至少一项时,直接根据唤醒信号或者有效负荷指示DRX参数,接收PDCCH信号,在唤醒后,接收PDCCH之前,可以减少盲检测PDCCH的次数,以达到进一步节约用户终端的耗电的目的。例如:如图6和图10所示。
另外,上述在所述用户终端唤醒之后,在根据所述DRX参数,接收PDCCH信号之前,所述用户终端不盲检测PDCCH可以是,在所述用户终端唤醒之后,在根据所述DRX参数,接收PDCCH信号之前,用户终端不进行数据和控制信道流程(Data&control channel processing)。
可选的,所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
其中,上述有效负荷可以参见图7所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述第一盲检测信息包括如下至少一项:所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
其中,上述第一盲检测信息可以参见图7所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述第二盲检测信息包括如下至少一项:所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
其中,上述第二盲检测信息可以参见图7所示的实施例的相应说明,此 处不作赘述,且可以达到相同有益效果。
可选的,所述接收基站发送的通信信号或有效负荷的步骤之前,所述方法还包括:接收所述基站发送的唤醒信号;所述接收基站发送的有效负荷,包括:响应所述唤醒信号,并根据所述唤醒信号,盲检测所述有效负荷;其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
其中,上述唤醒信号可以参见图7所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述响应所述唤醒信号,并根据所述唤醒信号,盲检测所述有效负荷,包括:响应所述唤醒信号,并根据所述唤醒信号指示的所述有效负荷的盲检测信息,盲检测所述有效负荷;其中,所述唤醒信号还用于指示所述有效负荷的盲检测信息。
其中,上述唤醒信号可以参见图7所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述有效负荷的盲检测信息包括如下至少一项:
所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷与所述睡眠信号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
其中,上述有效负荷的盲检测信息可以参见图7所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
可选的,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;或者,所述有效负荷与睡眠信号之间的时间间隔为预先配置的。
其中,上述时间间隔均可以参见图7所示的实施例的相应说明,此处不作赘述,且可以达到相同有益效果。
本公开实施例中,接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;获取所述通信信号或有效负荷指示的DRX参数;其中,所述有效负荷通过通信信道发送。由于DRX参数通过通信信号或者有效负荷指示,从而相比相关技术中采用高层信令,本公开实施例可以提高DRX参数的灵活性,进而节约用户终端的耗电。
请参见图12,图12是本公开实施例提供的基站的结构图,该基站能够实现图2至图7的方法实施例中的DRX参数指示方法的细节,并达到相同的效果。如图12所示,基站1200包括:生成模块1201和通信信号发送模块1202,其中,生成模块1201与通信信号发送模块1202连接,其中:
生成模块1201,用于生成通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;
通信信号发送模块1202,用于向用户终端发送所述通信信号,或在通信信道向所述用户终端发送所述有效负荷。
可选的,所述通信信号包括唤醒信号或者睡眠信号;所述通信信道包括唤醒信道或者睡眠信道。
可选的,所述DRX参数包括:持续时间定时器的时长或者DRX周期。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测物理下行控制信道PDCCH的周期和PDCCH的检测图案。
可选的,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;
或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;
或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用的RDX周期;
其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
可选的,所述DRX参数还包括如下至少一项:重传定时器的时长、短DRX的周期和短DRX的定时器的时长;其中,所述短DRX的周期比预先指定的时长短。
可选的,所述通信信道包括PDCCH。
可选的,所述DRX参数包括如下至少一项:持续时间定时器的时长、第一盲检测信息和DRX周期;其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续 调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;其中,所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
可选的,所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者,所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者,所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
可选的,所述第一盲检测信息包括如下至少一项:所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的下行控制信息格式DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
可选的,所述第二盲检测信息包括如下至少一项:所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
可选的,如图13所示,所述基站1200还包括:
唤醒信号发送模块1203,用于向所述用户终端发送唤醒信号;其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
可选的,所述唤醒信号还用于指示所述有效负荷的盲检测信息。
可选的,所述有效负荷的盲检测信息包括如下至少一项:所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷信号与睡眠信号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
可选的,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;或者,所述有效负荷与睡眠信号之间的时间间隔为预先配置的。
本公开实施例中,生成通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;向用户终端发送所述通信信号,或在通信信道向所述用户终端发送所述有效负荷。由于DRX参数通过通信信号或有效负荷指示,从 而相比相关技术中采用高层信令,本公开实施例可以提高DRX参数的灵活性,进而节约用户终端的耗电。
请参见图14,图14是本公开实施例的用户终端的结构图,该用户终端能够实现图11的方法实施例中的DRX参数的指示方法的细节,并达到相同的效果。如图14所示,用户终端1400包括:接收模块1401和获取模块1402,其中,接收模块1401和获取模块1402连接,其中:
接收模块1401,用于接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;
获取模块1402,用于获取所述通信信号或有效负荷指示的DRX参数;
其中,所述有效负荷通过通信信道发送。
可选的,所述通信信号包括唤醒信号或者睡眠信号;所述通信信道包括唤醒信道或者睡眠信道。
可选的,所述DRX参数包括:持续时间定时器的时长或者DRX周期。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期和PDCCH的检测图案。
可选的,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
可选的,所述DRX参数还包括如下至少一项:重传定时器的时长、短DRX的周期和短DRX的定时器的时长;其中,所述短DRX的周期比预先指定时长短。
可选的,所述通信信道包括PDCCH。
可选的,所述DRX参数包括如下至少一项:持续时间定时器的时长、第一盲检测信息和DRX周期;其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;其中,所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
可选的,如图15所示,所述用户终端1400还包括:
盲检测模块1403,用于在所述用户终端唤醒后,根据所述DRX参数,盲检测PDCCH。
可选的,如图16所示,所述用户终端1400还包括:
PDCCH信号接收模块1404,用于在所述用户终端唤醒后,根据所述DRX参数,接收PDCCH信号。
可选的,所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者,所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者,所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
可选的,所述第一盲检测信息包括如下至少一项:所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
可选的,所述第二盲检测信息包括如下至少一项:所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
可选的,如图17所示,所述用户终端1400还包括:
唤醒信号接收模块1405,用于接收所述基站发送的唤醒信号;
所述接收模块1401用于响应所述唤醒信号,并根据所述唤醒信号,盲检测所述有效负荷;其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
可选的,所述接收模块1401用于响应所述唤醒信号,并根据所述唤醒信 号指示的所述有效负荷的盲检测信息,盲检测所述有效负荷;其中,所述唤醒信号还用于指示所述有效负荷的盲检测信息。
可选的,所述有效负荷的盲检测信息包括如下至少一项:所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷与所述睡眠信号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
可选的,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;或者,所述有效负荷与睡眠信号之间的时间间隔为预先配置的。
本公开实施例中,接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;获取所述通信信号或有效负荷指示的DRX参数;其中,所述有效负荷通过通信信道发送。由于DRX参数通过通信信号或者有效负荷指示,从而相比相关技术中采用高层信令,本公开实施例可以提高DRX参数的灵活性,进而节约用户终端的耗电。
本公开实施例还提供一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开实施例提供的基站侧的DRX参数的指示方法中的步骤。
本公开实施例还提供一种用户终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开实施例提供的用户终端侧的DRX参数的指示方法中的步骤。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供基站侧的DRX参数的指示方法中的步骤。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的DRX参数的指示方法中的步骤。
参见图18,图18是本公开实施例提供的基站的结构图,该基站能够实现图2至图7的方法实施例中的DRX参数的指示方法的细节,并达到相同的效果。如图18所示,该基站1800包括:处理器1801、收发机1802、存储器1803和总线接口,其中:
在本公开实施例中,基站1800还包括:存储在存储器1803上并可在处理器1801上运行的计算机程序,计算机程序被处理器1801执行时实现如下步骤:生成通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;向用户终端发送所述通信信号,或在通信信道向所述用户终端发送所述有效负荷。
其中,收发机1802,用于在处理器1801的控制下接收和发送数据,所述收发机1802包括至少两个天线端口。
在图18中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1801代表的一个或多个处理器和存储器1803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1804还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1801负责管理总线架构和通常的处理,存储器1803可以存储处理器1801在执行操作时所使用的数据。
可选的,所述通信信号包括唤醒信号或者睡眠信号;所述通信信道包括唤醒信道或者睡眠信道。
可选的,所述DRX参数包括:持续时间定时器的时长或者非连续接收DRX周期。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测物理下行控制信道PDCCH的周期和PDCCH的检测图案。
可选的,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用的RDX周期;其中,所述目标DRX周期为 所述用户终端正在使用的DRX周期。
可选的,所述DRX参数还包括如下至少一项:重传定时器的时长、短DRX的周期和短DRX的定时器的时长;其中,所述短DRX的周期比预先指定的时长短。
可选的,所述通信信道包括PDCCH。
可选的,所述DRX参数包括如下至少一项:持续时间定时器的时长、第一盲检测信息和DRX周期;其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;其中,所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
可选的,所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者,所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者,所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
可选的,所述第一盲检测信息包括如下至少一项:所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的下行控制信息格式DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
可选的,所述第二盲检测信息包括如下至少一项:所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
可选的,计算机程序被处理器1801执行时还可实现如下步骤:向所述用户终端发送唤醒信号;其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
可选的,所述唤醒信号还用于指示所述有效负荷的盲检测信息。
可选的,所述有效负荷的盲检测信息包括如下至少一项:所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷信号与睡眠信号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
可选的,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;或者,所述有效负荷与睡眠信号之间的时间间隔为预先配置的。
本公开实施例中,生成通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;向用户终端发送所述通信信号,或在通信信道向所述用户终端发送所述有效负荷。由于DRX参数通过通信信号或有效负荷指示,从而相比相关技术中采用高层信令,本公开实施例可以提高DRX参数的灵活性,进而节约用户终端的耗电。
参见图19,图19是本公开实施提供的用户终端的结构图,该用户终端能够实现图11的方法实施例中的DRX参数的指示方法的细节,并达到相同的效果。如图19所示,用户终端1900包括:至少一个处理器1901、存储器1902、至少一个网络接口1904和其他用户接口1903。用户终端1900中的各个组件通过总线系统1905耦合在一起。可理解,总线系统1905用于实现这些组件之间的连接通信。总线系统1905除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图19中将各种总线都标为总线系统1905。
其中,用户接口1903可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等)。
可以理解,本公开实施例中的存储器1902可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器 (Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus DRAM,DRDRAM)。本文描述的系统和方法的存储器1902旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1902存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统19021和应用程序19022。
其中,操作系统19021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序19022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序19022中。
在本公开实施例中,用户终端1900还包括:存储在存储器1902上并可在处理器1901上运行的计算机程序,计算机程序被处理器1901执行时实现如下步骤:接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;获取所述通信信号或有效负荷指示的DRX参数;其中,所述有效负荷通过通信信道发送。
上述本公开实施例揭示的方法可以应用于处理器1901中,或者由处理器1901实现。处理器1901可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1901中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1901可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处 理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器1902,处理器1901读取存储器1902中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选的,所述通信信号包括唤醒信号或者睡眠信号;所述通信信道包括唤醒信道或者睡眠信道。
可选的,所述DRX参数包括:持续时间定时器的时长或者DRX周期。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期和PDCCH的检测图案。
可选的,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
可选的,所述DRX参数还包括如下至少一项:重传定时器的时长、短 DRX的周期和短DRX的定时器的时长;其中,所述短DRX的周期比预先指定时长短。
可选的,所述通信信道包括PDCCH。
可选的,所述DRX参数包括如下至少一项:持续时间定时器的时长、第一盲检测信息和DRX周期;其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
可选的,计算机程序被处理器1901执行时实现如下步骤:在所述用户终端唤醒后,根据所述DRX参数,盲检测PDCCH。
可选的,计算机程序被处理器1901执行时实现如下步骤:在所述用户终端唤醒后,根据所述DRX参数,接收PDCCH信号。
可选的,所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
可选的,所述第一盲检测信息包括如下至少一项:所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
可选的,所述第二盲检测信息包括如下至少一项:所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
可选的,计算机程序被处理器1901执行时实现如下步骤:接收所述基站发送的唤醒信号;响应所述唤醒信号,并根据所述唤醒信号,盲检测所述有 效负荷;其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
可选的,计算机程序被处理器1901执行时实现如下步骤:响应所述唤醒信号,并根据所述唤醒信号指示的所述有效负荷的盲检测信息,盲检测所述有效负荷;其中,所述唤醒信号还用于指示所述有效负荷的盲检测信息。
可选的,所述有效负荷的盲检测信息包括如下至少一项:所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷与所述睡眠信号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
可选的,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;或者,所述有效负荷与所述睡眠信号之间的时间间隔为预先配置的。
本公开实施例中,接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;获取所述通信信号或有效负荷指示的DRX参数;其中,所述有效负荷通过通信信道发送。由于DRX参数通过通信信号或者有效负荷指示,从而相比相关技术中采用高层信令,本公开实施例可以提高DRX参数的灵活性,进而节约用户终端的耗电。
参见图20,图20是本公开实施例提供的用户终端的结构图,该用户终端能够实现图11的方法实施例中的DRX参数的指示方法的细节,并达到相同的效果。如图20所示,用户终端2000包括:射频(Radio Frequency,RF)电路2001、存储器2002、输入单元2003、显示单元2004、电源2005、处理器2006、音频电路2007和WiFi(Wireless Fidelity)模块2008。
其中,输入单元2003可用于接收用户输入的数字或字符信息,以及产生与用户终端2000的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元2003可以包括触控面板20031。触控面板20031,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板20031上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板20031可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器2006,并能接收 处理器2006发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板20031。除了触控面板20031,输入单元2003还可以包括其他输入设备20032,其他输入设备20032可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元2004可用于显示由用户输入的信息或提供给用户的信息以及用户终端2000的各种菜单界面。显示单元2004可包括显示面板20041,可选的,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板20041。
应注意,触控面板20031可以覆盖显示面板20041,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器2006以确定触摸事件的类型,随后处理器2006根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器2006是用户终端2000的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器20020内的软件程序和/或模块,以及调用存储在第二存储器20022内的数据,执行用户终端2000的各种功能和处理数据,从而对用户终端2000进行整体监控。可选的,处理器2006可包括一个或多个处理单元。
在本公开实施例中,通过调用存储该第一存储器20020内的软件程序和/或模块和/或第二存储器20022内的数据,处理器2006用于:接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;获取所述通信信号或有效负荷指示的DRX参数;其中,所述有效负荷通过通信信 道发送。
可选的,所述通信信号包括唤醒信号或者睡眠信号;所述通信信道包括唤醒信道或者睡眠信道。
可选的,所述DRX参数包括:持续时间定时器的时长或者DRX周期。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期和PDCCH的检测图案。
可选的,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
可选的,所述DRX参数还包括如下至少一项:重传定时器的时长、短DRX的周期和短DRX的定时器的时长;其中,所述短DRX的周期比预先指定时长短。
可选的,所述通信信道包括PDCCH。
可选的,所述DRX参数包括如下至少一项:持续时间定时器的时长、第一盲检测信息和DRX周期;其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
可选的,所述DRX参数包括如下至少一项:半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
可选的,通过调用存储该第一存储器20020内的软件程序和/或模块和/或第二存储器20022内的数据,处理器2006还用于:在所述用户终端唤醒后,根据所述DRX参数,盲检测PDCCH。
可选的,通过调用存储该第一存储器20020内的软件程序和/或模块和/或第二存储器20022内的数据,处理器2006还用于:在所述用户终端唤醒后, 根据所述DRX参数,接收PDCCH信号。
可选的,所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
可选的,所述第一盲检测信息包括如下至少一项:所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
可选的,所述第二盲检测信息包括如下至少一项:所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
可选的,通过调用存储该第一存储器20020内的软件程序和/或模块和/或第二存储器20022内的数据,处理器2006还用于:接收所述基站发送的唤醒信号;响应所述唤醒信号,并根据所述唤醒信号,盲检测所述有效负荷;其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
可选的,通过调用存储该第一存储器20020内的软件程序和/或模块和/或第二存储器20022内的数据,处理器2006还用于:响应所述唤醒信号,并根据所述唤醒信号指示的所述有效负荷的盲检测信息,盲检测所述有效负荷;其中,所述唤醒信号还用于指示所述有效负荷的盲检测信息。
可选的,所述有效负荷的盲检测信息包括如下至少一项:所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷与所述睡眠信号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
可选的,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;或者,所述有效负荷与所述睡眠信号之间的时间间隔为预先配置的。
本公开实施例中,接收基站发送的通信信号或有效负荷,所述通信信号 或有效负荷用于指示DRX参数;获取所述通信信号或有效负荷指示的DRX参数;其中,所述有效负荷通过通信信道发送。由于DRX参数通过通信信号或者有效负荷指示,从而相比相关技术中采用高层信令,本公开实施例可以提高DRX参数的灵活性,进而节约用户终端的耗电。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可 以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (73)

  1. 一种非连续接收DRX参数的指示方法,应用于基站,包括:
    生成通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;
    向用户终端发送所述通信信号,或在通信信道向所述用户终端发送所述有效负荷。
  2. 根据权利要求1所述的方法,其中,所述通信信号包括唤醒信号或者睡眠信号;
    所述通信信道包括唤醒信道或者睡眠信道。
  3. 根据权利要求2所述的方法,其中,所述DRX参数包括:
    持续时间定时器的时长或者DRX周期。
  4. 如权利要求2所述的方法,其中,所述DRX参数包括如下至少一项:
    半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测物理下行控制信道PDCCH的周期和PDCCH的检测图案。
  5. 根据权利要求3所述的方法,其中,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;
    或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;
    或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用的RDX周期;
    其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
  6. 根据权利要求3所述的方法,其中,所述DRX参数还包括如下至少一项:
    重传定时器的时长、短DRX的周期和短DRX的定时器的时长;
    其中,所述短DRX的周期比预先指定的时长短。
  7. 根据权利要求1所述的方法,其中,所述通信信道包括PDCCH。
  8. 根据权利要求7所述的方法,其中,所述DRX参数包括如下至少一项:
    持续时间定时器的时长、第一盲检测信息和DRX周期;
    其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
  9. 根据权利要求8所述的方法,其中,所述DRX参数包括如下至少一项:
    半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;
    其中,所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
  10. 根据权利要求8所述的方法,其中,所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者
    所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者
    所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;
    其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
  11. 根据权利要求9所述的方法,其中,所述第一盲检测信息包括如下至少一项:
    所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的下行控制信息格式DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
  12. 根据权利要求9所述的方法,其中,所述第二盲检测信息包括如下至少一项:
    所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
  13. 根据权利要求7所述的方法,其中,所述在通信信道向所述用户终端发送所述有效负荷的步骤之前,所述方法还包括:
    向所述用户终端发送唤醒信号;
    其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
  14. 根据权利要求13所述的方法,其中,所述唤醒信号还用于指示所述有效负荷的盲检测信息。
  15. 根据权利要求14所述的方法,其中,所述有效负荷信号的盲检测信息包括如下至少一项:
    所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷信号与睡眠信号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
  16. 根据权利要求14所述的方法,其中,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;
    或者,所述有效负荷与睡眠信号之间的时间间隔为预先配置的。
  17. 一种DRX参数的指示方法,应用于用户终端,包括:
    接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;
    获取所述通信信号或有效负荷指示的DRX参数;
    其中,所述有效负荷通过通信信道发送。
  18. 根据权利要求17所述的方法,其中,所述通信信号包括唤醒信号或者睡眠信号;
    所述通信信道包括唤醒信道或者睡眠信道。
  19. 根据权利要求18所述的方法,其中,所述DRX参数包括:
    持续时间定时器的时长或者DRX周期。
  20. 如权利要求18所述的方法,其中,所述DRX参数包括如下至少一项:
    半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期和PDCCH的检测图案。
  21. 根据权利要求19所述的方法,其中,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;
    或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;
    或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;
    其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
  22. 根据权利要求19所述的方法,其中,所述DRX参数还包括如下至少一项:
    重传定时器的时长、短DRX的周期和短DRX的定时器的时长;
    其中,所述短DRX的周期比预先指定时长短。
  23. 根据权利要求17所述的方法,其中,所述通信信道包括PDCCH。
  24. 根据权利要求23所述的方法,其中,所述DRX参数包括如下至少一项:
    持续时间定时器的时长、第一盲检测信息和DRX周期;
    其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
  25. 根据权利要求23所述的方法,其中,所述DRX参数包括如下至少一项:
    半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;
    其中,所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
  26. 如权利要求19或24所述的方法,其中,所述获取所述通信信号或有效负荷指示的DRX参数的步骤之后,所述方法还包括:
    在所述用户终端唤醒后,根据所述DRX参数,盲检测PDCCH。
  27. 如权利要求20或25所述的方法,其中,所述获取所述通信信号或有效负荷指示的DRX参数的步骤之后,所述方法还包括:
    在所述用户终端唤醒后,根据所述DRX参数,接收PDCCH信号。
  28. 根据权利要求24所述的方法,其中,所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者
    所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者
    所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;
    其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
  29. 根据权利要求24所述的方法,其中,所述第一盲检测信息包括如下至少一项:
    所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
  30. 根据权利要求25所述的方法,其中,所述第二盲检测信息包括如下至少一项:
    所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
  31. 根据权利要求23所述的方法,其中,所述接收基站发送的通信信号或有效负荷的步骤之前,所述方法还包括:
    接收所述基站发送的唤醒信号;
    所述接收基站发送的有效负荷,包括:
    响应所述唤醒信号,并根据所述唤醒信号,盲检测所述有效负荷;
    其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
  32. 根据权利要求31所述的方法,其中,所述响应所述唤醒信号,并根据所述唤醒信号,盲检测所述有效负荷,包括:
    响应所述唤醒信号,并根据所述唤醒信号指示的所述有效负荷的盲检测信息,盲检测所述有效负荷;
    其中,所述唤醒信号还用于指示所述有效负荷的盲检测信息。
  33. 根据权利要求32所述的方法,其中,所述有效负荷的盲检测信息包括如下至少一项:
    所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷与睡眠信号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类 型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
  34. 根据权利要求32所述的方法,其中,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;
    或者,所述有效负荷与睡眠信号之间的时间间隔为预先配置的。
  35. 一种基站,包括:
    生成模块,用于生成通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;
    通信信号发送模块,用于向用户终端发送所述通信信号,或在通信信道向所述用户终端发送所述有效负荷。
  36. 根据权利要求35所述的基站,其中,所述通信信号包括唤醒信号或者睡眠信号;
    所述通信信道包括唤醒信道或者睡眠信道。
  37. 根据权利要求36所述的基站,其中,所述DRX参数包括:
    持续时间定时器的时长或者DRX周期。
  38. 如权利要求36所述的基站,其中,所述DRX参数包括如下至少一项:
    半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测物理下行控制信道PDCCH的周期和PDCCH的检测图案。
  39. 根据权利要求37所述的基站,其中,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;
    或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;
    或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用的RDX周期;
    其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
  40. 根据权利要求37或38所述的基站,其中,所述DRX参数还包括如下至少一项:
    重传定时器的时长、短DRX的周期和短DRX的定时器的时长;
    其中,所述短DRX的周期比预先指定的时长短。
  41. 根据权利要求35所述的基站,其中,所述通信信道包括PDCCH。
  42. 根据权利要求41所述的基站,其中,所述DRX参数包括如下至少一项:
    持续时间定时器的时长、第一盲检测信息和DRX周期;
    其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
  43. 根据权利要求42所述的基站,其中,所述DRX参数包括如下至少一项:
    半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;
    其中,所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
  44. 根据权利要求42所述的基站,其中,所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者
    所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者
    所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;
    其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
  45. 根据权利要求42所述的基站,其中,所述第一盲检测信息包括如下至少一项:
    所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的下行控制信息格式DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
  46. 根据权利要求43所述的基站,其中,所述第二盲检测信息包括如下至少一项:
    所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、 PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
  47. 根据权利要求41所述的基站,其中,所述基站还包括:
    唤醒信号发送模块,用于向所述用户终端发送唤醒信号;
    其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
  48. 根据权利要求47所述的基站,其中,所述唤醒信号还用于指示所述有效负荷的盲检测信息。
  49. 根据权利要求48所述的基站,其中,所述有效负荷的盲检测信息包括如下至少一项:
    所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷信号与睡眠信号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
  50. 根据权利要求48所述的基站,其中,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;
    或者,所述有效负荷与睡眠信号之间的时间间隔为预先配置的。
  51. 一种用户终端,包括:
    接收模块,用于接收基站发送的通信信号或有效负荷,所述通信信号或有效负荷用于指示DRX参数;
    获取模块,用于获取所述通信信号或有效负荷指示的DRX参数;
    其中,所述有效负荷通过通信信道发送。
  52. 根据权利要求51所述的用户终端,其中,所述通信信号包括唤醒信号或者睡眠信号;
    所述通信信道包括唤醒信道或者睡眠信道。
  53. 根据权利要求52所述的用户终端,其中,所述DRX参数包括:
    持续时间定时器的时长或者DRX周期。
  54. 如权利要求52所述的用户终端,其中,所述DRX参数包括如下至少一项:
    半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期和PDCCH的检测图案。
  55. 根据权利要求53所述的用户终端,其中,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;
    或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;
    或者,所述唤醒信号或者睡眠信号或者有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;
    其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
  56. 根据权利要求53或54所述的用户终端,其中,所述DRX参数还包括如下至少一项:
    重传定时器的时长、短DRX的周期和短DRX的定时器的时长;
    其中,所述短DRX的周期比预先指定时长短。
  57. 根据权利要求51所述的用户终端,其中,所述通信信道包括PDCCH。
  58. 根据权利要求57所述的用户终端,其中,所述DRX参数包括如下至少一项:
    持续时间定时器的时长、第一盲检测信息和DRX周期;
    其中,所述第一盲检测信息为所述用户终端在所述持续时间定时器的时间内盲检测PDCCH所使用的盲检测信息。
  59. 根据权利要求57所述的用户终端,其中,所述DRX参数包括如下至少一项:
    半持续调度的周期、半持续调度的资源、DRX静止定时器的时长、半持续检测PDCCH的周期、PDCCH的检测图案和第二盲检测信息;
    其中,所述第二盲检测信息为所述用户终端在所述DRX静止定时器的时间内盲检测PDCCH所使用的盲检测信息。
  60. 如权利要求53或58所述的用户终端,其中,所述用户终端还包括:
    盲检测模块,用于在所述用户终端唤醒后,根据所述DRX参数,盲检测PDCCH。
  61. 如权利要求54或59所述的用户终端,其中,所述用户终端还包括:
    PDCCH信号接收模块,用于在所述用户终端唤醒后,根据所述DRX参 数,接收PDCCH信号。
  62. 根据权利要求58所述的用户终端,其中,所述有效负荷用于指示所述用户终端采用比目标DRX周期低一级的DRX周期进行盲检测;或者
    所述有效负荷用于指示所述用户终端采用比目标DRX周期高一级的DRX周期进行盲检测;或者
    所述有效负荷用于指示所述用户终端进行盲检测采用的RDX周期;
    其中,所述目标DRX周期为所述用户终端正在使用的DRX周期。
  63. 根据权利要求58所述的用户终端,其中,所述第一盲检测信息包括如下至少一项:
    所述持续时间定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
  64. 根据权利要求59所述的用户终端,其中,所述第二盲检测信息包括如下至少一项:
    所述DRX静止定时器的开始时间与所述有效负荷之间的时间间隔、PDCCH的聚合等级、PDCCH的搜索空间类型、PDCCH需要传输的DCI format、PDCCH所占用的带宽片段和PDCCH所占用的时频资源。
  65. 根据权利要求57所述的用户终端,其中,所述用户终端还包括:
    唤醒信号接收模块,用于接收所述基站发送的唤醒信号;
    所述接收模块用于响应所述唤醒信号,并根据所述唤醒信号,盲检测所述有效负荷;
    其中,所述唤醒信号用于指示所述用户终端检测所述有效负荷。
  66. 根据权利要求65所述的用户终端,其中,所述接收模块用于响应所述唤醒信号,并根据所述唤醒信号指示的所述有效负荷的盲检测信息,盲检测所述有效负荷;
    其中,所述唤醒信号还用于指示所述有效负荷的盲检测信息。
  67. 根据权利要求66所述的用户终端,其中,所述有效负荷的盲检测信息包括如下至少一项:
    所述有效负荷与所述唤醒信号之间的时间间隔、所述有效负荷与睡眠信 号之间的时间间隔、所述有效负荷的聚合等级、所述有效负荷的搜索空间类型、所述有效负荷需要传输的DCI format和所述有效负荷所占用的带宽片段。
  68. 根据权利要求66所述的用户终端,其中,所述有效负荷与所述唤醒信号之间的时间间隔为预先配置的;
    或者,所述有效负荷与睡眠信号之间的时间间隔为预先配置的。
  69. 一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至16中任一项所述的DRX参数的指示方法中的步骤。
  70. 一种用户终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求17至34中任一项所述的DRX参数的指示方法中的步骤。
  71. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1至16中任一项所述的DRX参数的指示方法中的步骤。
  72. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求17至34中任一项所述的DRX参数的指示方法中的步骤。
  73. 一种DRX参数的指示系统,包括如权利要求35至50中任一项所述的基站和如权利要求51至68中任一项所述的用户终端;或者
    如权利要求69所述的基站和如权利要求70所述的用户终端。
PCT/CN2018/093323 2017-07-20 2018-06-28 Drx参数的指示方法、相关设备及系统 WO2019015458A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/632,216 US11564282B2 (en) 2017-07-20 2018-06-28 Discontinuous reception parameter indication method, relevant device and system
EP18835774.3A EP3657863A4 (en) 2017-07-20 2018-06-28 DRX RECEPTION PARAMETER INDICATION PROCESS, ASSOCIATED DEVICE AND SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710617115.9 2017-07-20
CN201710617115.9A CN109429310B (zh) 2017-07-20 2017-07-20 一种drx参数的指示方法、相关设备及系统

Publications (1)

Publication Number Publication Date
WO2019015458A1 true WO2019015458A1 (zh) 2019-01-24

Family

ID=65016300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093323 WO2019015458A1 (zh) 2017-07-20 2018-06-28 Drx参数的指示方法、相关设备及系统

Country Status (4)

Country Link
US (1) US11564282B2 (zh)
EP (1) EP3657863A4 (zh)
CN (1) CN109429310B (zh)
WO (1) WO2019015458A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756503A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种信号检测方法及设备
EP3913955A4 (en) * 2019-02-15 2022-02-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR DETECTING A PHYSICAL DOWNLINK CONTROL CHANNEL AND TERMINAL

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019084570A1 (en) * 2017-10-26 2019-05-02 Hyoungsuk Jeon BANDWIDTH PART INACTIVITY TIMER
WO2019183848A1 (zh) * 2018-03-28 2019-10-03 Oppo广东移动通信有限公司 监听pdcch的方法、终端设备和网络设备
CN109219116B (zh) * 2018-08-09 2022-05-31 华为技术有限公司 一种终端设备的休眠方法及装置
EP3840482A4 (en) * 2018-08-13 2021-09-01 Beijing Xiaomi Mobile Software Co., Ltd. WAKE-UP PROCESS, WAKE-UP DEVICE, ELECTRONIC DEVICE AND COMPUTER-READABLE STORAGE MEDIA
JP7158505B2 (ja) * 2018-09-26 2022-10-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ モバイルデバイス、ネットワークノード及び方法
WO2020077575A1 (zh) * 2018-10-17 2020-04-23 北京小米移动软件有限公司 带宽部分切换方法及装置
WO2020077628A1 (zh) * 2018-10-19 2020-04-23 北京小米移动软件有限公司 信道监听方法及装置
US11647460B2 (en) * 2018-12-26 2023-05-09 Mediatek Singapore Pte. Ltd. Method and apparatus for indicating power saving information in mobile communications
EP3927053B1 (en) * 2019-02-18 2023-09-06 Beijing Xiaomi Mobile Software Co., Ltd. Method, terminal storage medium for operating a drx timer
US11595891B2 (en) * 2019-03-14 2023-02-28 Qualcomm Incorporated Techniques for signaling go-to-sleep for multiple transmission/reception points
EP3949540B1 (en) * 2019-03-29 2024-01-24 Apple Inc. Physical downlink control channel based wake up signal
CN111867009B (zh) * 2019-04-25 2023-05-09 中国移动通信有限公司研究院 信息的指示方法、接收方法、网络设备及终端
CN113678513A (zh) * 2019-04-26 2021-11-19 Oppo广东移动通信有限公司 非连续接收的方法和设备
CN111867016B (zh) * 2019-04-30 2024-04-12 华为技术有限公司 一种通信方法以及通信装置
CN112118616A (zh) * 2019-06-20 2020-12-22 海信集团有限公司 一种终端盲解码的方法、终端及基站
CN115226190A (zh) * 2019-06-28 2022-10-21 华为技术有限公司 搜索空间的监测方法及装置
CN111294902B (zh) * 2019-07-05 2021-06-18 展讯通信(上海)有限公司 唤醒方法及装置、存储介质、终端
WO2021007868A1 (zh) * 2019-07-18 2021-01-21 Oppo广东移动通信有限公司 盲检pdcch的方法及相关设备
CN110521275B (zh) * 2019-07-19 2023-08-29 北京小米移动软件有限公司 监听处理、策略下发方法及装置、通信设备及存储
WO2021016958A1 (zh) * 2019-07-31 2021-02-04 北京小米移动软件有限公司 省电信号的参数动态变更方法、装置、终端和介质
EP4032345A1 (en) 2019-09-19 2022-07-27 Telefonaktiebolaget LM Ericsson (publ) Radio network node, user equipment and methods performed in a wireless communication network
DK3937441T3 (da) * 2019-09-29 2023-09-11 Guangdong Oppo Mobile Telecommunications Corp Ltd Fremgangsmåde til overvågning af opvågningssignal og elektronisk anordning
CN112584471B (zh) * 2019-09-30 2022-03-11 维沃移动通信有限公司 一种节能信号接收方法、发送方法、终端和网络设备
CN112752330B (zh) * 2019-10-31 2022-08-02 维沃移动通信有限公司 一种节能信号检测方法和终端
CN110945922B (zh) * 2019-11-12 2023-07-11 北京小米移动软件有限公司 省电信号的图案参数获取方法、装置、终端及存储介质
US20220295408A1 (en) * 2021-03-15 2022-09-15 Qualcomm Incorporated Power saving in sidelink

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932882A (zh) * 2011-08-10 2013-02-13 中兴通讯股份有限公司 一种非连续接收方法及系统
CN103391549A (zh) * 2012-05-10 2013-11-13 中兴通讯股份有限公司 一种不连续接收的动态配置方法、终端和基站
CN104363624A (zh) * 2009-05-08 2015-02-18 瑞典爱立信有限公司 无线电通信系统中用于支持dtx的方法和设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7197341B2 (en) * 2003-12-22 2007-03-27 Interdigital Technology Corporation Precise sleep timer using a low-cost and low-accuracy clock
CN101031152B (zh) * 2007-02-07 2010-05-26 重庆重邮信科通信技术有限公司 一种缩短移动用户终端在空闲模式下重选时延的方法
KR101600487B1 (ko) * 2011-04-18 2016-03-21 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치
US8942151B2 (en) 2011-04-29 2015-01-27 Blackberry Limited Receiving messages in connection with LTE wakeup
WO2012150822A2 (ko) * 2011-05-03 2012-11-08 엘지전자 주식회사 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
CN103402245B (zh) * 2013-07-24 2016-12-28 中国联合网络通信集团有限公司 一种非连续接收drx周期的配置方法、设备及系统
CN103889039B (zh) 2014-04-18 2017-05-10 大唐移动通信设备有限公司 基于非连续接收功能的省电方法及设备
US9872252B1 (en) * 2016-09-30 2018-01-16 Qualcomm Incorporated Discontinuous reception mode with multiple-stage wake-up
WO2016146147A1 (en) * 2015-03-13 2016-09-22 Huawei Technologies Co., Ltd. Apparatus and methods in a wireless communication network for discontinuous reception and data reception
US10231089B2 (en) * 2015-06-23 2019-03-12 Lg Electronics Inc. Method for managing area of terminal in wireless communication system and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363624A (zh) * 2009-05-08 2015-02-18 瑞典爱立信有限公司 无线电通信系统中用于支持dtx的方法和设备
CN102932882A (zh) * 2011-08-10 2013-02-13 中兴通讯股份有限公司 一种非连续接收方法及系统
CN103391549A (zh) * 2012-05-10 2013-11-13 中兴通讯股份有限公司 一种不连续接收的动态配置方法、终端和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3657863A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913955A4 (en) * 2019-02-15 2022-02-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR DETECTING A PHYSICAL DOWNLINK CONTROL CHANNEL AND TERMINAL
CN111756503A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种信号检测方法及设备
CN111756503B (zh) * 2019-03-29 2023-04-18 华为技术有限公司 一种信号检测方法及设备

Also Published As

Publication number Publication date
CN109429310B (zh) 2021-04-06
EP3657863A4 (en) 2020-08-05
US20200214078A1 (en) 2020-07-02
US11564282B2 (en) 2023-01-24
CN109429310A (zh) 2019-03-05
EP3657863A1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
WO2019015458A1 (zh) Drx参数的指示方法、相关设备及系统
US11800387B2 (en) Method for detecting downlink control channel, method for indicating downlink control channel, terminal and network side device
WO2019015457A1 (zh) 盲检测参数获取方法、相关设备及系统
WO2019128578A1 (zh) 控制信道监听方法、监听指示方法、终端及网络设备
WO2018137485A1 (zh) 上行数据的发送方法和接收方法、用户终端和网络侧设备
CN109474375B (zh) 一种资源调度方法、基站和终端
EP3609111B1 (en) Downlink control channel detection method, terminal, and base station
US20200068607A1 (en) Terminal scheduling method, terminal and base station
WO2018127000A1 (zh) 一种参考信号的指示方法、网络设备及终端设备
CN108809547B (zh) 一种数据传输方法、基站及终端
US11212748B2 (en) Method of monitoring RAR, method of sending RAR, devices thereof and system
WO2018228313A1 (zh) 信息传输方法、基站、移动终端及计算机可读存储介质
WO2018113721A1 (zh) 一种参考信号配置方法、网络侧设备和用户设备
WO2021218855A1 (zh) 下行接收触发方法、终端和网络侧设备
EP3672349A1 (en) Random access method, terminal, and base station
EP4132061A1 (en) Control channel detection method and device, and terminal, base station and storage medium
EP3606150A1 (en) Data transmission method, sending-end device and receiving-end device
US20230291521A1 (en) Signal transmission method and apparatus, and device and storage medium
WO2023083173A1 (zh) 资源处理方法、装置、通信设备及存储介质
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备
WO2019034102A1 (zh) 确定物理资源块绑定的大小的方法和用户终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018835774

Country of ref document: EP

Effective date: 20200220