WO2019015340A1 - 水样总氰分析装置及分析方法 - Google Patents

水样总氰分析装置及分析方法 Download PDF

Info

Publication number
WO2019015340A1
WO2019015340A1 PCT/CN2018/078819 CN2018078819W WO2019015340A1 WO 2019015340 A1 WO2019015340 A1 WO 2019015340A1 CN 2018078819 W CN2018078819 W CN 2018078819W WO 2019015340 A1 WO2019015340 A1 WO 2019015340A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
tube
water sample
peristaltic pump
sample
Prior art date
Application number
PCT/CN2018/078819
Other languages
English (en)
French (fr)
Inventor
汪水吉
崔建平
翁灼斌
Original Assignee
福建省吉龙德环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建省吉龙德环保科技有限公司 filed Critical 福建省吉龙德环保科技有限公司
Publication of WO2019015340A1 publication Critical patent/WO2019015340A1/zh
Priority to US16/574,534 priority Critical patent/US11112367B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0622Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves

Definitions

  • the present invention relates to the field of water quality analysis technology, and in particular to a water sample total cyanide analysis device and an analysis method.
  • Cyanide is a highly toxic substance widely found in nature. It is widely used in industrial applications. The main sources of pollution are industrial sewage produced by chemical, mining, coking, and fertilizer production.
  • Spectrophotometry is a classic analytical method for cyanide. It is simple and sensitive to operate, and the conditions are easy to implement. The advantages of spectrophotometry are low detection limit, high accuracy, good sensitivity and reproducibility, but the operation steps are complicated. .
  • the existing total cyanide analysis device has a complicated structure, a large volume, and a low level of automation of analysis, and further optimization is necessary.
  • the object of the present invention is to provide a water sample total cyanide analysis device and an analysis method, which realize real-time on-line monitoring of water quality and improve automation level.
  • a water sample total cyanide analysis device comprising a mixing tube, a blowing tube, a sampling tube, a reaction tube, a peristaltic pump, a gas pump, a UV digestor, a heater, a condenser, an evacuation tube, a water sample detector,
  • the mixing tube, the blowing tube, the sampling tube, and the reaction tube are respectively connected to the peristaltic pump, and the mixing tube is connected to the reaction tube
  • the bottom of the blowing support is connected to the air pump, the UV decomposer, the heater and the condenser in sequence, and the condenser is connected with the mixing tube; the upper part of the blowing custody, the sampling pipe and the reaction pipe are connected to the emptying pipe, the water
  • the sample detector is used to detect and analyze the water sample parameters in the mixing tube.
  • reaction pipeline and the sampling pipeline include a plurality of three-way valves, and the three-way valve includes a normally closed end
  • reaction pipeline includes three-way valves Q0, Ql, Q2, Q3, Q4, Q5, wherein the normally closed end of the QO is connected to the pure water pipe, and the Q0 common end is connected to the normally closed end of the Q1.
  • the common end of Q1 is connected to the constant end of Q3, the constant end of Q1 is connected with the constant end of Q2, the normally closed end of Q2 is connected with the emptying pipe, and the common end of Q2 is connected with the mixing pipe, Q3, Q4, Q5
  • the normally closed end is connected to the R1 drug tube, the R2 drug tube, and the R3 drug tube, the Q3 male end is connected to the constant end of Q4, the common end of Q4 is connected to the common end of Q5, and the common end of Q5 is connected with the peristaltic pump. connection.
  • the sampling pipeline comprises three-way valves Q6, Q7, Q8, Q9, Q10, wherein the normally closed ends of Q6, Q7, Q8, Q9, Q10 are respectively connected with a pure water pipe, a monitoring water sample pipe, Standard sample tube, empty tube, R 4 drug tube connection, Q6 constant end is connected with an air inlet tube, Q6 male end is connected with Q7 constant end, Q 7 common end is connected with Q8 constant end
  • Q8 is connected to the constant end of Q9
  • the common end of Q9 is connected to the common end of Q10
  • the common end of Q10 is connected with the peristaltic pump.
  • the peristaltic pump is provided with two connection ports, and the two connection ports of the peristaltic pump are respectively connected with the common ends of the two three-way valves QA, and two of the two three-way valves QA.
  • the constant end and the two normally closed ends are respectively connected with the reaction pipe, the mixing pipe, the sampling pipe, and the blown pipe.
  • the three-way valve QB, QC is disposed at the junction of the mixing tube and the condenser, and the three-way valve QD is disposed at the bottom of the bottom connection of the air pump and the blower.
  • the present invention also discloses a method for total cyanide analysis of water samples, and the above water sample total cyanide analysis device comprises the following steps:
  • R4 is a sodium hydroxide solution having a concentration of 3g/L ⁇ 5g/L and a citric acid having a concentration of 18g/L ⁇ 22g/L A mixed solution of the solution.
  • the sample to be tested in step S4 is a monitoring water sample or a standard sample
  • the monitoring water sample is pumped from the monitoring water sample tube into the sampling pipeline through a peristaltic pump
  • the standard sample enters the sampling pipeline from the standard sample tube.
  • the peristaltic pump acts as a pump into the blower.
  • step S3 the gas is pumped into the mixing tube to mix the drug solution; in step S4, the excess liquid in the blowing custody is drained from the emptying pipe of the upper portion of the blowing custody.
  • step S1 the internal temperature of the heater is 80 ° C, the pulse temperature is 162 ° C, and the temperature is high.
  • the present invention has the following beneficial effects:
  • the structure of the invention is reasonable, the degree of automation of the analysis process is high, the total cyanide analysis process is fast and efficient, and online monitoring can be realized.
  • FIG. 1 is a schematic structural view of the present invention.
  • FIG. 2 is a schematic view showing the connection of the emptying pipe of the present invention.
  • the present invention discloses a water sample total cyanide analysis device, including a mixing tube 1, a blowing tube 2, a sampling tube 3, a reaction tube 4, a peristaltic pump 5, a gas pump 6, and UV digestion. 7, a heater 8, a condenser 9, an emptying pipe 10, a water sample detector (not shown).
  • Mixing pipe 1, blowing custody 2, sampling pipe 3, and reaction pipe 4 are respectively connected to the peristaltic pump 5.
  • the mixing tube 1 is connected to the reaction line 4.
  • the bottom of the blowing support 2 is connected to the air pump 6, the UV eliminator 7, the heater 8 and the condenser 9.
  • the blower 2 upper, the sampling pipe 3, and the reaction pipe 4 are connected to the drain pipe 10.
  • the water sample detector is used to detect and analyze the water sample parameters in the mixing tube 1.
  • the device conduit of the present invention includes a plurality of three-way valves including a normally closed end (NC end), a common end (CO M end) and a constant end (NO end).
  • NC end normally closed end
  • CO M end common end
  • NO end constant end
  • the peristaltic pump 5 is provided with two connection ports, and the two connection ports of the peristaltic pump 5 are respectively connected with the common ends of two three-way valves QA of the same operation, and the two permanent ends of the two three-way valves QA and The two normally closed ends are respectively connected to the reaction pipe 4, the mixing pipe 1, the sampling pipe 3, and the blowing custody 2.
  • a three-way valve QB, QC is provided at the junction of the mixing pipe 1 and the condenser 9, and a three-way valve QD is provided at the bottom connection of the air pump 6 and the blow-support 2 .
  • the reaction pipe 4 includes three-way valves Q0, Q1, Q2, Q3, Q4, Q5, wherein the normally closed end of Q0 is connected to the pure water pipe, the common end of Q0 is connected to the normally closed end of Q1, and the common end of Q1 Connected to the constant end of Q3, the constant end of Q1 is connected to the constant end of Q2, the normally closed end of Q2 is connected to the draining pipe 10, the common end of Q2 is connected to the mixing pipe 1, and the Q3, Q4, Q5 are often The closed end is connected to the R1 drug tube, the R2 drug tube, and the R3 drug tube, the Q3 male end is connected to the Q4 common end, the common end of Q4 is connected to the constant end of Q5, and the common end of Q5 is connected to the peristaltic pump 5. .
  • the sampling pipe 3 includes three-way valves Q6, Q7, Q8, Q9, Q10, wherein the normally closed ends of Q6, Q7, Q8, Q9, Ql 0 and the pure water pipe 11, respectively, the monitoring water sample pipe S, the standard Sample tube C, emptying pipe 10 (W1, W2, W3 pipe is connected with the emptying pipe), R4 chemical pipe connection, Q6's constant end is connected with an intake pipe, and the male end of Q6 is connected with the normal end of Q7.
  • the common end of Q7 is connected with the constant end of Q8, the common end of Q8 is connected with the constant end of Q9, the common end of Q9 is connected with the constant end of Q10, and the common end of Q10 is connected with peristaltic pump 5.
  • the present invention also discloses a method for analyzing the total cyanide of a water sample, and adopts the above-mentioned water sample total cyanide analysis device, and the specific steps are detailed below.
  • the peristaltic pump 5 is forwarded into the H tube pure water to the mixing tube 1; after the completion of the pure water, all valves are closed, and the peristaltic pump 5 is rotated forward and then slowly reversed after a certain period of time. Stand still to read the ABSS value.
  • the sample to be tested for the injection analysis includes a standard sample or a monitoring water sample.
  • the equipment needs to be calibrated and calibrated by standard samples after running for a period of time.
  • the standard sample can be carried out once a month.
  • the adjustment and calibration of the device the standard sample from the standard sample tube C into the sampling line 3 through the peristaltic pump 5 to pump into the blowing custody 2.
  • the monitoring water sample is sent from the monitoring water sample tube S into the sampling pipe 3 through the peristaltic pump 5 to pump into the blowing custody 2 .
  • the valve action of this step is detailed as follows
  • the peristaltic pump 5 is forward, the C tube water sample is pumped into the blowing custody 2, and the excess liquid is drained from the NO end of the QE through the waste pipe W1. After the injection is enough, the Q8 valve is closed, and the peristaltic pump 5 continues to rotate. The pump is pumped into the NO end of the Q6. The Air tube pushes all the samples in the sampling line 3 into the blowout holder 2 and acts as a mixed water sample. After this action is completed, the action of the corresponding valve and the peristaltic pump 5 is turned off.
  • peristaltic pump 5 forward rotation, S tube monitoring water sample pumped into the blowing custody 2, excess liquid from the NO end of QE through the waste liquid pipe W1 overflow .
  • the Q7 valve is closed, and the peristaltic pump 5 continues to rotate.
  • the pump is pumped into the NO end of the Q6.
  • the Air tube pushes all the samples in the sampling line 3 into the blowout holder 2 and acts as a mixed water sample. After this action is completed, the action of the corresponding valve and the peristaltic pump 5 is turned off.
  • R4 is a sodium hydroxide solution having a concentration of 3g / L ⁇ 5g / L and a concentration of 18g / L ⁇ 22g / L A mixed solution of a citric acid solution.
  • the R4 agent is not a reaction coloring agent, but a drug.
  • QA, Q10, QE valve action, peristaltic pump 5 dosing slow rotation, pumping the drug tube R4 into the blowing custody 2, after the injection is enough, the Q10 valve is closed, the peristaltic pump 5 continues to rotate, pumping into the NO end of the Q6 Air The tube pushes all the medicaments in the pipeline into the blow-host 2, and functions as a mixed sample. After this action is completed, the action of the corresponding valve and the peristaltic pump 5 is turned off.
  • the mixed water sample is vaporized instantaneously in the heater 8, and the generated cyanide gas is condensed by the condenser 9 and then flows into the mixing tube 1 to be mixed with the liquid in the step S3, and the distillation process is repeated until the sample is completely distilled. .
  • the condenser 9 the UV digestor 7 and the air pump 6 are always smashed, the QD valve is snoring, the air pump 6 is pumped into the blow-hosting 2 - the quantitative water sample is closed, and the QD valve is closed, and the air pump 6 draws in air to take the water sample.
  • the water sample After being quickly pushed into the UV digestor 7 and then to the heater 8, the water sample is vaporized instantaneously after heating, and the generated cyanide gas is condensed by the condenser 9 and flows into the mixing tube 1; since the reaction is severely distilled, it needs to be vaporized instantaneously, so each time The water sample added to the heater 8 is small, and the distillation process is repeated until the sample is completely distilled.
  • the peristaltic pump 5 is started to reverse, and the liquid in the mixing tube 1 is started to undergo a mixing reaction.
  • R3 is a pyridine having a volume concentration of 99% or more, and a concentration of 28 g/L to 32 g/L of barbituric acid and concentrated hydrochloric acid (mass fraction)
  • a mixed solution of more than 20% hydrochloric acid after standing for coloring, read the final absorbance value (ie, ABSE value) of the sample to be tested, and calculate the total cyanide content in the water sample according to the spectrophotometric method.
  • the H pipe pure water is drained and the pure water (also directly used 5% sulfuric acid) is cleaned to ensure that the entire reaction process is stopped after cleaning.
  • the standard sample of the present embodiment is 50 mg/L of the cyanide component standard substance in water, and the total cyanide stock solution of 50 mg/L is gradually diluted with 0.01 mol/L sodium hydroxide, and is configured to be 0.000, 0.100, 0.400, 0.500 mg. /L standard solution series.
  • the drugs used are shown in Table 1 below:
  • the linear range of the method of the invention is 0.02 ⁇ 0.5mg/L, and the linear correlation coefficient r ⁇
  • the detection limit was 0.001mg/L
  • the recovery rate of the actual water sample was 95% ⁇ 105%
  • the precision was high
  • the relative standard deviation of 0.4mg/L was 0.487%.
  • the device of the invention has reasonable structure, can realize full automatic control of water sample total cyanide, and is suitable for popularization and application.
  • the invention can be applied to the analysis and monitoring of total cyanide of various water quality such as drinking water, surface water, domestic sewage and industrial wastewater, and realizes remote real-time online monitoring of water discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Plasma & Fusion (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种水样总氰分析装置及其分析方法,包括混合管(1)、吹托管(2)、取样管道(3)、反应管道(4),蠕动泵(5)、气泵(6)、UV消解器(7)、加热器(8)、冷凝器(9)、排空管道(10)、水样检测器,混合管(1)、吹托管(2)、取样管道(3)、反应管道(4)分别与蠕动泵(5)连接,混合管(1)与反应管道(4)连接,吹托管(2)底部依次连接气泵(6)、UV消解器(7)、加热器(8)及冷凝器(9),冷凝器(9)与混合管(1)连接;吹托管(2)上部、取样管道(3)及反应管道(4)都连接排空管道(10);水样检测器用于检测混合管(1)内水样的吸光度值,然后根据分光光度法计算得到水样中的总氰含量。

Description

说明书 发明名称:水样总氰分析装置及分析方法 技术领域
[0001] 本发明涉及水质分析技术领域, 尤其是一种水样总氰分析装置及分析方法。
背景技术
[0002] 氰化物是一种广泛存在于自然界的剧毒物质, 工业应用十分广泛, 主要污染源 为化工、 矿业、 炼焦、 化肥生产所产生的工业污水。
[0003] 分光光度法是氰化物的经典分析方法, 操作简单、 灵敏, 条件容易实现, 分光 光度法的优点为检出限低、 准确度高、 灵敏度和重现性好, 但是操作步骤较为 复杂。
技术问题
[0004] 现有的总氰分析装置结构复杂, 体积大, 分析的自动化水平较低, 有必要进行 进一步优化。
问题的解决方案
技术解决方案
[0005] 本发明的目的在于提供一种水样总氰分析装置及分析方法, 实现水质的实吋在 线监测, 提高自动化水平。
[0006] 为实现上述目的, 本发明采用以下技术方案:
[0007] 水样总氰分析装置, 包括混合管、 吹托管、 取样管道、 反应管道, 蠕动泵、 气 泵、 UV消解器、 加热器、 冷凝器、 排空管道、 水样检测器, 所述的混合管、 吹 托管、 取样管道、 反应管道分别与蠕动泵连接, 所述的混合管与反应管道连接
, 所述的吹托管底部依次连接气泵、 UV消解器、 加热器及冷凝器, 所述的冷凝 器与混合管连接; 吹托管上部、 取样管道及反应管道都连接排空管道, 所述的 水样检测器用于检测分析混合管内的水样参数。
[0008] 其中, 所述的反应管道、 取样管道包括若干三通阀, 所述的三通阀包括常闭端
, 公共端和常幵端。 [0009] 其中, 所述的反应管道包括三通阀 Q0、 Ql、 Q2、 Q3、 Q4、 Q5, 其中, QO的 常闭端与纯水管连接, Q0公共端与 Q1的常闭端连接, Q1的公共端与 Q3的常幵端 连接, Q1的常幵端与 Q2的常幵端连接, Q2的常闭端与排空管道连接, Q2的公共 端与混合管连接, Q3、 Q4、 Q5的常闭端分别与 R1药剂管、 R2药剂管、 R3药剂 管连接, Q3公幵端与 Q4的常幵端连接, Q4的公共端与 Q5的常幵端连接, Q5的 公共端与蠕动泵连接。
[0010] 其中, 所述的取样管道包括三通阀 Q6、 Q7、 Q8、 Q9、 Q10, 其中, Q6、 Q7、 Q8、 Q9、 Q10的常闭端分别与纯水管、 监测水样管、 标准样品管、 排空管道、 R 4药剂管连接, Q6的常幵端与一进气管连接, Q6的公幵端与 Q7的常幵端连接, Q 7的公共端与 Q8的常幵端连接, Q8的公共端与 Q9的常幵端连接, Q9的公共端与 Q10的常幵端连接, Q10的公共端与蠕动泵连接。
[0011] 进一步地, 所述的蠕动泵设有两个连接口, 蠕动泵两个连接口分别与两个同吋 动作的三通阀 QA的公共端连接, 两个三通阀 QA的两个常幵端及两个常闭端分别 与反应管道、 混合管、 取样管道、 吹托管连接。
[0012] 混合管与冷凝器连接处设置有三通阀 QB、 QC, 气泵与吹托管底部连接处设置 有三通阀 QD。
[0013] 本发明还公幵了水样的总氰分析方法, 采用上述水样总氰分析装置, 包括如下 步骤:
[0014] S1.恒温水浴, 进行吹托管和混合管排空, 启动加热, 使加热器内部保持恒温
[0015] S2.纯水参数读取:混合管抽入纯水静置读取其水质初始吸光度值。
[0016] S3.混合管加药: 加入药剂 Rl、 药剂 R2及少量纯水从反应管道经蠕动泵作用泵 入至混合管中; 其中 R1为浓度为 18g/L〜22g/L的邻苯二甲酸氢钾溶液及浓度为 2g /L〜4g/L氢氧化钠溶液的混合溶液, R2为浓度为 3g/L〜5g/L的氯胺 T溶液。
[0017] S4.进样分析: 将待测样品从取样管道经蠕动泵作用泵入吹托管中。
[0018] S5.吹托管加药: 在吹托管内加入药剂 R4催脱; 其中 R4为浓度为 3g/L〜5g/L的 氢氧化钠溶液及浓度为 18g/L〜22g/L的柠檬酸溶液的混合溶液。
[0019] S6.加热蒸馏: 气泵抽入吹托管内的待测样品并推入 UV消解器后再到加热器, 混合水样在加热器内蒸馏瞬间汽化, 产生的氰化物气体经冷凝器冷凝后流入混 合管中与步骤 S3中的药液进行混合反应, 蒸馏过程不断重复直至样品全部蒸馏 完成。
[0020] S7.显色读取参数: 在混合管中加入药剂 R3, R3为体积浓度 99%以上的吡啶、 体积浓度为 28g/L〜32g/L的巴比妥酸及浓盐酸的混合溶液, 显色后静置一定吋间 读取待测样品的最终吸光度值, 根据分光光度法计算水样中的总氰含量。
[0021] S8.清洗步骤,抽取纯水对混合管、 吹托管、 UV消解器、 加热器、 冷凝器进行排 空后进纯水清洗。
[0022] 其中, 步骤 S4中的待测样品为监测水样或标准样品, 监测水样从监测水样管进 入取样管道经蠕动泵作用泵入吹托管; 标准样品从标准样品管进入取样管道经 蠕动泵作用泵入吹托管。
[0023] 优选地, 步骤 S3中, 混合管中泵入气体以混合药剂溶液; 步骤 S4中, 吹托管中 多余的液体从吹托管上部的排空管道排走。
[0024] 优选地, 步骤 S1中, 加热器内部温度为 80°C, 脉冲温度 162°C, 温度高限 165
。C。
发明的有益效果
有益效果
[0025] 本发明具有以下有益效果: 本发明结构合理, 分析过程自动化程度高, 总氰分 析过程快速、 高效, 可实现在线实吋监测。
对附图的简要说明
附图说明
[0026] 图 1为本发明的结构示意图。
[0027] 图 2为本发明排空管道的连接示意图。
[0028] 1: 混合管, 2: 吹托管, 3: 取样管道, 4: 反应管道, 5: 蠕动泵, 6: 气泵, 7: UV消解器, 8: 加热器, 9: 冷凝器, 10: 排空管道。
具体实施方式 [0029] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。
[0030] 如图 1、 图 2所示, 本发明公幵了水样总氰分析装置, 包括混合管 1、 吹托管 2、 取样管道 3、 反应管道 4, 蠕动泵 5、 气泵 6、 UV消解器 7、 加热器 8、 冷凝器 9、 排 空管道 10、 水样检测器 (图中未示出) 。
[0031] 混合管 1、 吹托管 2、 取样管道 3、 反应管道 4分别与蠕动泵 5连接。 混合管 1与反 应管道 4连接。 吹托管 2底部依次连接气泵 6、 UV消解器 7、 加热器 8及冷凝器 9。 吹托管 2上部、 取样管道 3及反应管道 4都连接排空管道 10。 水样检测器用于检测 分析混合管 1内的水样参数。
[0032] 本发明装置管道包括若干三通阀, 三通阀包括常闭端 (NC端) , 公共端 (CO M端) 和常幵端 (NO端) 。 在不通电吋 (即不动作吋)是 NO和 COM端互通的, 而 NC和 COM端则是不通的; 当通电后 (即有动作吋) 是 NC和 COM端互通的, 而 NO和 COM则是不通的。
[0033] 蠕动泵 5设有两个连接口, 蠕动泵 5两个连接口分别与两个同吋动作的三通阀 Q A的公共端连接, 两个三通阀 QA的两个常幵端及两个常闭端分别与反应管道 4、 混合管 1、 取样管道 3、 吹托管 2连接。 混合管 1与冷凝器 9连接处设置有三通阀 QB 、 QC, 气泵 6与吹托管 2底部连接处设置有三通阀 QD。
[0034] 反应管道 4包括三通阀 Q0、 Ql、 Q2、 Q3、 Q4、 Q5, 其中, Q0的常闭端与纯水 管连接, Q0公共端与 Q1的常闭端连接, Q1的公共端与 Q3的常幵端连接, Q1的 常幵端与 Q2的常幵端连接, Q2的常闭端与排空管道 10连接, Q2的公共端与混合 管 1连接, Q3、 Q4、 Q5的常闭端分别与 R1药剂管、 R2药剂管、 R3药剂管连接, Q3公幵端与 Q4的常幵端连接, Q4的公共端与 Q5的常幵端连接, Q5的公共端与 蠕动泵 5连接。
[0035] 取样管道 3包括三通阀 Q6、 Q7、 Q8、 Q9、 Q10, 其中, Q6、 Q7、 Q8、 Q9、 Ql 0的常闭端分别与纯水管11、 监测水样管 S、 标准样品管 C、 排空管道 10(W1、 W2 、 W3管与排空管道连通)、 R4药剂管连接, Q6的常幵端与一进气管连接, Q6的 公幵端与 Q7的常幵端连接, Q7的公共端与 Q8的常幵端连接, Q8的公共端与 Q9 的常幵端连接, Q9的公共端与 Q10的常幵端连接, Q10的公共端与蠕动泵 5连接 [0036] 本发明还公幵了水样的总氰分析方法, 采用上述水样总氰分析装置, 具体步骤 详述如下。
[0037] S1.恒温水浴, 进行吹托管 2和混合管 1排空, 启动加热, 使加热器 8内部保持恒 温。
[0038] 仪器启动测量后, 首先进行吹托管 2的排空和混合管 1的排空, 与蠕动泵 5连接 的两个三通阀 QA, 及 Q9阀门动作, 蠕动泵 5反转, 将吹托管 2内液体由 W2管排 空; 确保吹托管 2完全排空后则停止相应阀门及蠕动泵 5的动作; Q1阀门打幵, 蠕动泵 5反转, 将混合管 1液体由 W3管排空, 排空后则停止相应阀门及蠕动泵 5的 动作。 仪器幵始运行后就会启动加热, 使加热器 8内部保持温度 80°C, 脉冲温度 162°C, 温度高限 165°C。
[0039] S2.纯水参数读取:混合管 1抽入纯水静置读取其水质初始吸光度值 (即 ABSS值
[0040] Q0、 Ql、 QB阀门动作, 蠕动泵 5正转抽入 H管纯水至混合管 1 ; 进纯水完成后 关闭所有阀门, 蠕动泵 5正转混合后慢反转一定吋间后静置读取 ABSS值。
[0041] S3.混合管加药: 加入药剂 Rl、 药剂 R2及少量纯水从反应管道 4经蠕动泵 5作用 泵入至混合管 1中; 其中 R1为浓度为 18g/L〜22g/L的邻苯二甲酸氢钾溶液及浓度 为 2g/L〜4g/L氢氧化钠溶液的混合溶液, R2为浓度为 3g/L〜5g/L的氯胺 T溶液。 混合管中泵入气体以混合药剂溶液。
[0042] (1) Q3阀门动作, 蠕动泵 5加 R1药剂慢转一定吋间后停止并关闭 Q3。
[0043] (2) Q4阀门动作, 蠕动泵 5加 R2药剂慢转一定吋间后停止并关闭 Q4。
[0044] (3) Q0、 Ql阀门动作, 蠕动泵 5加少量 H管纯水慢转一定吋间后停止并关闭 Q 0、 Q1 ; 之后蠕动泵 5正转, 混合吸收液, 并将吸收液全部集中在混合管 1中, 完 成后停止蠕动泵 5。
[0045] S4.进样分析: 将待测样品经从取样管道 3经蠕动泵 5作用泵入吹托管 2中。 吹托 管中多余的液体从吹托管上部的排空管道排走。
[0046] 进样分析的待测样品包括进标准样品或监测水样。 一般情况下, 设备运行一段 吋间需要先经过标准样品进行调试校准, 如可以一个月进行一次标准样品进行 设备的调整校准, 标准样品从标准样品管 C进入取样管道 3经蠕动泵 5作用泵入吹 托管 2。 进行在线水样总氰分析测试吋, 则需要进监测水样, 监测水样从监测水 样管 S进入取样管道 3经蠕动泵 5作用泵入吹托管 2。 本步骤的阀门动作如下详述
[0047] 进标准样品吋: Q8和 QA阀门动作, 蠕动泵 5正转, 将 C管水样泵入吹托管 2, 多余的液体从 QE的 NO端经废液管 W1溢流排走。 进样足够后关闭 Q8阀门, 蠕动 泵 5继续正转动, 泵入 Q6的 NO端 Air管将取样管路 3内的样品全部推入吹托管 2中 , 并起到混合水样的作用。 完成此动作后关闭相应阀门及蠕动泵 5的动作。
[0048] 进监测水样吋: Q7和 QA阀门动作, 蠕动泵 5正转, 将 S管监测水样泵入吹托管 2 , 多余的液体从 QE的 NO端经废液管 W1溢流排走。 进样足够后关闭 Q7阀门, 蠕 动泵 5继续正转动, 泵入 Q6的 NO端 Air管将取样管路 3内的样品全部推入吹托管 2 中, 并起到混合水样的作用。 完成此动作后关闭相应阀门及蠕动泵 5的动作。
[0049] S5.吹托管 2加药: 在吹托管 2内加入药剂 R4催脱; 其中 R4为浓度为 3g/L〜5g/L 的氢氧化钠溶液及浓度为 18g/L〜22g/L的柠檬酸溶液的混合溶液。 R4药剂不是反 应显色药剂, 而是催脱药剂。
[0050] QA、 Q10、 QE阀门动作, 蠕动泵 5加药慢转, 将药剂管 R4泵入吹托管 2, 进样 足够后关闭 Q10阀门, 蠕动泵 5继续转动, 泵入 Q6的 NO端 Air管将管路内的药剂 全部推入吹托管 2中, 并起到混合样品的作用。 完成此动作后关闭相应阀门及蠕 动泵 5的动作。
[0051] S6.加热蒸馏: 气泵 6抽入吹托管 2内的待测样品并推入 UV消解器 7后再到加热器
8, 混合水样在加热器 8内蒸馏瞬间汽化, 产生的氰化物气体经冷凝器 9冷凝后流 入混合管 1中与步骤 S3中的药液进行混合反应, 蒸馏过程不断重复直至样品全部 蒸馏完成。
[0052] 蒸馏过程中冷凝器 9、 UV消解器 7及气泵 6始终打幵, QD阀门打幵, 气泵 6抽入 吹托管 2—定量水样后关闭 QD阀门, 气泵 6抽入空气将水样快速推入 UV消解器 7 后再到加热器 8, 水样在加热吋瞬间汽化, 产生的氰化物气体经冷凝器 9冷凝后 流入混合管 1中; 因反应剧烈蒸馏需要瞬间汽化, 所以每次加入加热器 8的水样 很少, 蒸馏过程不断重复直至样品全部蒸馏完成。 当蒸馏样品收集到一定吋间 后会启动蠕动泵 5反转, 让混合管 1内液体幵始进行混合反应。
[0053] S7.显色读取参数: 在混合管 1中加入药剂 R3, R3为体积浓度 99%以上的吡啶, 浓度为 28g/L〜32g/L的巴比妥酸及浓盐酸 (质量分数超过 20%的盐酸) 的混合溶 液, 显色后静置一定吋间读取待测样品的最终吸光度值 (即 ABSE值) , 根据分 光光度法计算水样中的总氰含量。
[0054] 打幵 Q5、 QB阀门, 蠕动泵 5加药慢转往混合管 1内加入药剂管 R3; 关闭 Q5, 蠕 动泵 5反转进行混合, 显色后静置一定吋间后读取 ABSE。
[0055] S8.清洗步骤,抽取纯水对混合管 1、 吹托管 2、 UV消解器 7、 加热器 8、 冷凝器 9 进行排空后进纯水清洗。
[0056] 清洗过程抽 H管纯水对各管道进行排空后进纯水 (也可以直接使用 5%硫酸) 清 洗, 确保清洗干净后停止整个反应过程。
[0057] 本实施例标准样品为水中氰成分分析标准物质 50mg/L, 将 50mg/L的总氰储备 液用 0.01mol/L氢氧化钠逐级稀释, 配置成 0.000、 0.100、 0.400、 0.500mg/L标准 液系列。 采用的药剂如下表 1所示:
[]
Figure imgf000009_0001
[0058] 监测水样取某地的地表水、 地下水、 电镀厂外排水及钢铁厂焦化废水采用实施 例一的药剂运用本发明装置及方法测得的结果如下表 2~表4所示。
[]
Figure imgf000010_0001
Figure imgf000010_0003
Figure imgf000010_0002
Figure imgf000010_0004
[0059] 本发明方法的线性范围为 0.02〜0.5mg/L, 线性相关系数 r≥
0.994, 检出限为 0.001mg/L, 实际水样的加标回收率为 95%〜 105%; 精密度高 , 0.4mg/L的样品相对标准偏差为 0.487%。
[0060] 综上, 本发明装置结构合理, 可实现水样总氰的全自动化控制, 适宜推广应用
[0061] 以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 的变化或替换, 都应涵盖在本发明的保护范围之内。
工业实用性
[0062] 本发明可以应用到饮用水、 地面水、 生活污水和工业废水等各种水质的总氰化 物的分析监测领域, 实现水排放的远程实吋在线监控。

Claims

权利要求书
[权利要求 1] 水样总氰分析装置, 其特征在于: 包括混合管、 吹托管、 取样管道、 反应管道, 蠕动泵、 气泵、 UV消解器、 加热器、 冷凝器、 排空管道
、 水样检测器, 所述的混合管、 吹托管、 取样管道、 反应管道分别与 蠕动泵连接, 所述的混合管与反应管道连接, 所述的吹托管底部依次 连接气泵、 UV消解器、 加热器及冷凝器, 所述的冷凝器与混合管连 接; 吹托管上部、 取样管道及反应管道都连接排空管道, 所述的水样 检测器用于检测分析混合管内的水样参数。
[权利要求 2] 如权利要求 1所述的水样总氰分析装置, 其特征在于: 所述的反应管 道、 取样管道包括若干三通阀, 所述的三通阀包括常闭端, 公共端和 常幵端。
[权利要求 3] 如权利要求 2所述的水样总氰分析装置, 其特征在于: 所述的反应管 道包括三通阀 Q0、 Ql、 Q2、 Q3、 Q4、 Q5, 其中, Q0的常闭端与纯 水管连接, Q0公共端与 Q1的常闭端连接, Q1的公共端与 Q3的常幵端 连接, Q1的常幵端与 Q2的常幵端连接, Q2的常闭端与排空管道连接 , Q2的公共端与混合管连接, Q3、 Q4、 Q5的常闭端分别与 R1药剂管 、 R2药剂管、 R3药剂管连接, Q3公幵端与 Q4的常幵端连接, Q4的 公共端与 Q5的常幵端连接, Q5的公共端与蠕动泵连接。
[权利要求 4] 如权利要求 2所述的水样总氰分析装置, 其特征在于: 所述的取样管 道包括三通阀 Q6、 Q7、 Q8、 Q9、 Q10, 其中, Q6、 Q7、 Q8、 Q9、 Q10的常闭端分别与纯水管、 监测水样管、 标准样品管、 排空管道、 R4药剂管连接, Q6的常幵端与一进气管连接, Q6的公幵端与 Q7的常 幵端连接, Q7的公共端与 Q8的常幵端连接, Q8的公共端与 Q9的常幵 端连接, Q9的公共端与 Q10的常幵端连接, Q10的公共端与蠕动泵连
[权利要求 5] 如权利要求 1所述的水样总氰分析装置, 其特征在于: 所述的蠕动泵 设有两个连接口, 蠕动泵两个连接口分别与两个同吋动作的三通阀 Q A的公共端连接, 两个三通阀 QA的两个常幵端及两个常闭端分别与 反应管道、 混合管、 取样管道、 吹托管连接。
[权利要求 6] 如权利要求 1所述的水样总氰分析装置, 其特征在于: 混合管与冷凝 器连接处设置有三通阀 QB、 QC, 气泵与吹托管底部连接处设置有三 通阀 QD。
[权利要求 7] 水样总氰分析方法, 采用权利要求 1〜6任一项所述的水样总氰分析装 置, 其特征在于, 包括如下步骤:
51.恒温水浴, 进行吹托管和混合管排空, 启动加热, 使加热器内部 保持恒温;
52.纯水参数读取:混合管抽入纯水静置读取其水质初始吸光度值;
53.混合管加药: 加入药剂 Rl、 药剂 R2及少量纯水从反应管道经蠕动 泵作用泵入至混合管中; 其中 R1为浓度为 18g/L〜22g/L的邻苯二甲酸 氢钾溶液及浓度为 2g/L〜4g/L氢氧化钠溶液的混合溶液, R2为浓度为 3g/L〜5g/L的氯胺 T溶液;
54.进样分析: 将待测样品从取样管道经蠕动泵作用泵入吹托管中;
55.吹托管加药: 在吹托管内加入药剂 R4催脱; 其中 R4为浓度为 3g/L 〜5g/L的氢氧化钠溶液及浓度为 18g/L〜22g/L的柠檬酸溶液的混合溶 液;
56.加热蒸馏: 气泵抽入吹托管内的待测样品并推入 UV消解器后再到 加热器, 混合水样在加热器内蒸馏瞬间汽化, 产生的氰化物气体经冷 凝器冷凝后流入混合管中与步骤 S3中的药液进行混合反应, 蒸馏过程 不断重复直至样品全部蒸馏完成;
57.显色读取参数: 在混合管中加入药剂 R3, R3为体积浓度 99%以上 的吡啶、 体积浓度为 28g/L〜32g/L的巴比妥酸及浓盐酸的混合溶液, 显色后静置一定吋间读取待测样品的最终吸光度值, 根据分光光度法 计算水样中的总氰含量;
58.清洗步骤,抽取纯水对混合管、 吹托管、 UV消解器、 加热器、 冷凝 器进行排空后进纯水清洗。
[权利要求 8] 如权利要求 7所述的水样总氰分析方法, 其特征在于: 步骤 S4中的待 测样品为监测水样或标准样品, 监测水样从监测水样管进入取样管道 经蠕动泵作用泵入吹托管; 标准样品从标准样品管进入取样管道经蠕 动泵作用泵入吹托管。
[权利要求 9] 如权利要求 7所述的水样总氰分析方法, 其特征在于: 步骤 S3中, 混 合管中泵入气体以混合药剂溶液; 步骤 S4中, 吹托管中多余的液体从 吹托管上部的排空管道排走。
[权利要求 10] 如权利要求 7所述的水样总氰分析方法, 其特征在于: 步骤 S1中, 加 热器内部温度为 80°C, 脉冲温度 162°C, 温度高限 165°C。
PCT/CN2018/078819 2017-07-20 2018-03-13 水样总氰分析装置及分析方法 WO2019015340A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/574,534 US11112367B2 (en) 2017-07-20 2019-09-18 Device and method for analyzing total cyanide in water samples

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710593454.8A CN107367475B (zh) 2017-07-20 2017-07-20 水样总氰分析装置及分析方法
CN201710593454.8 2017-07-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/574,534 Continuation US11112367B2 (en) 2017-07-20 2019-09-18 Device and method for analyzing total cyanide in water samples

Publications (1)

Publication Number Publication Date
WO2019015340A1 true WO2019015340A1 (zh) 2019-01-24

Family

ID=60307366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078819 WO2019015340A1 (zh) 2017-07-20 2018-03-13 水样总氰分析装置及分析方法

Country Status (3)

Country Link
US (1) US11112367B2 (zh)
CN (1) CN107367475B (zh)
WO (1) WO2019015340A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946177A (zh) * 2021-04-01 2021-06-11 马鞍山市桓泰环保设备有限公司 一种高锰酸盐指数在线监测系统及其检测方法
CN114487319A (zh) * 2020-11-11 2022-05-13 桂林市云翼环境技术有限公司 水质分析系统及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367475B (zh) 2017-07-20 2024-01-09 福建省吉龙德环保科技有限公司 水样总氰分析装置及分析方法
CN109374606A (zh) * 2018-10-11 2019-02-22 福建省吉龙德环保科技有限公司 一种总镉分析方法
CN109342349B (zh) * 2018-11-29 2020-05-08 福建省吉龙德环保科技有限公司 一种toc湿化学分析装置及方法
CN111337488B (zh) * 2020-04-20 2021-08-24 四川省天晟源环保股份有限公司 一种土壤氰化物和总氰化物的测定方法
CN112161978A (zh) * 2020-09-29 2021-01-01 上海亨通海洋装备有限公司 营养盐水质分析仪
CN112378871A (zh) * 2020-11-04 2021-02-19 福建省吉龙德环保科技有限公司 一种同时测亚硝酸盐氮、硝酸盐氮和总氮的系统及方法
CN112881374A (zh) * 2021-01-13 2021-06-01 杭州绿洁环境科技股份有限公司 一种高精度在线氰化物水质分析仪
CN113670908A (zh) * 2021-08-16 2021-11-19 杭州绿洁环境科技股份有限公司 硫化物分析仪及分析方法
CN114544854A (zh) * 2022-02-08 2022-05-27 北京普立泰科仪器有限公司 一种水溶液中氰化物的检测装置及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495013A (zh) * 2011-12-07 2012-06-13 江西怡杉环保有限公司 一种水质在线消解和光度检测装置
CN202421060U (zh) * 2011-11-25 2012-09-05 北京瑞升特科技有限公司 一种氰化物测定系统
US20130045151A1 (en) * 2011-08-16 2013-02-21 Brookhaven Science Associates, Llc C-11 Cyanide Production System
CN203965314U (zh) * 2014-07-07 2014-11-26 北京尤思腾科技有限公司 在线总磷水质分析仪
CN104977265A (zh) * 2015-07-15 2015-10-14 厦门市吉龙德环境工程有限公司 一种水样中可溶性硫化物分析仪及分析方法
CN107367475A (zh) * 2017-07-20 2017-11-21 福建省吉龙德环保科技有限公司 水样总氰分析装置及分析方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1016814B (zh) * 1986-03-24 1992-05-27 中国科学院沈阳应用生态研究所 一种总氰量快速比色法及自动测氰仪
JPH06138039A (ja) * 1992-10-22 1994-05-20 Mitsui Toatsu Chem Inc 全シアンの簡易分析法及びその分析装置
JP5941794B2 (ja) * 2012-08-30 2016-06-29 新日鉄住金エンジニアリング株式会社 土壌連続分析方法
CN102830116B (zh) * 2012-09-18 2014-07-02 国家海洋局天津海水淡化与综合利用研究所 一种水中总氰化物连续流动检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130045151A1 (en) * 2011-08-16 2013-02-21 Brookhaven Science Associates, Llc C-11 Cyanide Production System
CN202421060U (zh) * 2011-11-25 2012-09-05 北京瑞升特科技有限公司 一种氰化物测定系统
CN102495013A (zh) * 2011-12-07 2012-06-13 江西怡杉环保有限公司 一种水质在线消解和光度检测装置
CN203965314U (zh) * 2014-07-07 2014-11-26 北京尤思腾科技有限公司 在线总磷水质分析仪
CN104977265A (zh) * 2015-07-15 2015-10-14 厦门市吉龙德环境工程有限公司 一种水样中可溶性硫化物分析仪及分析方法
CN107367475A (zh) * 2017-07-20 2017-11-21 福建省吉龙德环保科技有限公司 水样总氰分析装置及分析方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114487319A (zh) * 2020-11-11 2022-05-13 桂林市云翼环境技术有限公司 水质分析系统及装置
CN112946177A (zh) * 2021-04-01 2021-06-11 马鞍山市桓泰环保设备有限公司 一种高锰酸盐指数在线监测系统及其检测方法

Also Published As

Publication number Publication date
CN107367475B (zh) 2024-01-09
US20200011805A1 (en) 2020-01-09
US11112367B2 (en) 2021-09-07
CN107367475A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
WO2019015340A1 (zh) 水样总氰分析装置及分析方法
CN105716933B (zh) 一种定容积比例稀释装置以及方法
WO2019218530A1 (zh) 一种同步检测水样分子量分布及有机氮的仪器及方法
CN110220855B (zh) 一种用于总氮的化学分析系统
CN108663427A (zh) 一种基于微生物膜反应器的海水bod在线自动监测系统
CN102279118A (zh) 一种生物反应器在线检测系统的浓度梯度扩散取样装置
CN110967309A (zh) 一种水质消毒过程中有效氯的在线检测系统和方法
CN110927329A (zh) 一种大气环境氯离子沉积速率测试装置及方法
CN209673712U (zh) Bod快速测定仪
WO2022099800A1 (zh) 一种水质高锰酸盐指数在线分析仪
CN113125361A (zh) 用于氨氮自动监测的分析系统与方法
CN108872520A (zh) 一种水质测试方法、系统及设备
CN109342349B (zh) 一种toc湿化学分析装置及方法
CN101871859B (zh) 一种动态流动稀释高浓度待测溶液的方法
CN213812984U (zh) 一种用于调相机内冷水脱气取样及仪表校验的辅助装置
CN114660249A (zh) 一种可实现精准溯源的生活污水成分检测方法及其设备
CN211697478U (zh) 一种水质消毒过程中有效氯的在线检测系统
CN113125362A (zh) 用于总氮自动监测的分析系统与方法
CN210269598U (zh) 一种用于总氮的化学分析系统
CN206960352U (zh) 水样总氰分析装置
CN211927778U (zh) 水质监测站的配水系统
CN219957328U (zh) 一种用于还原性糖和水溶性总糖的化学分析系统
CN205786287U (zh) 一种在线液路实现装置
CN206710309U (zh) 一种微量铀分析仪
CN205067357U (zh) 一种水质在线间歇流动检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835488

Country of ref document: EP

Kind code of ref document: A1