WO2019015257A1 - 变频器的控制电路、变频器和微波炉 - Google Patents

变频器的控制电路、变频器和微波炉 Download PDF

Info

Publication number
WO2019015257A1
WO2019015257A1 PCT/CN2017/119313 CN2017119313W WO2019015257A1 WO 2019015257 A1 WO2019015257 A1 WO 2019015257A1 CN 2017119313 W CN2017119313 W CN 2017119313W WO 2019015257 A1 WO2019015257 A1 WO 2019015257A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
frequency converter
resistor
collector
control circuit
Prior art date
Application number
PCT/CN2017/119313
Other languages
English (en)
French (fr)
Inventor
黎青海
覃承勇
郑年重
艾军亮
Original Assignee
广东美的厨房电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的厨房电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的厨房电器制造有限公司
Publication of WO2019015257A1 publication Critical patent/WO2019015257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the field of household appliances, and in particular to a control circuit, a frequency converter and a microwave oven of a frequency converter.
  • the prior art realizes the control of the switch tube 101 (IGBT) through the synchronous detection circuit.
  • the voltage of the point A is sampled by the resistor 1 and the resistor 2, and then filtered by the capacitor 3 and input to the negative terminal of the comparator 4;
  • the resistor 5 and the resistor 6 sample the collector 102 voltage of the switch transistor 101, and then filter it through the capacitor 7 and input it to the positive terminal of the comparator 4.
  • FIG. 2 when the collector 102 of the switch transistor 101 samples the voltage waveform x and The sampling voltage waveform y of point A is equal at m point, and the output voltage of comparator 4 is inverted to become a high level.
  • the switching transistor 101 After detecting this point, it is delayed by a fixed time t0, and then the switching transistor 101 is turned on. Therefore, the length of the delay time t0 is very important, t0 is too short, and the voltage of the collector 102 of the switch tube 101 is turned on again after it has not reached zero, which will result in a serious hard switch, which will cause the switching loss of the switch tube 101 to increase. If the heat is large, the switch 101 will eventually be damaged. If t0 is set too long, there will be a period of idle time. During this process, the parasitic inductance of the transformer and the junction capacitance of the switch 101 will generate a large resonance peak. The reverse current also causes the switch tube 101 to generate a large amount of heat, which is inefficient.
  • the invention needs to provide a control circuit, a frequency converter and a microwave oven of the frequency converter.
  • the control circuit of the frequency converter includes a rectifier circuit and an inverter circuit, the inverter circuit is connected to the rectifier circuit, the inverter circuit includes a switch tube and a switch circuit, and the switch circuit includes a sampling circuit And a differential detection circuit, wherein an input end of the sampling circuit is connected to a collector of the switch tube to collect a voltage waveform of a collector of the switch tube, and an input end of the differential detection circuit and an output of the sampling circuit Connecting a phase to detect a real-time slope of a voltage waveform of a collector of the switching transistor, an output of the differential detecting circuit being coupled to a base of the switching transistor for voltage according to a collector of the switching transistor The real-time slope of the waveform controls the conduction state of the switching transistor.
  • the sampling circuit can collect the voltage waveform of the collector of the switching tube
  • the differential detecting circuit can detect the real-time slope of the voltage waveform of the collector of the switching tube, and can be based on the switching tube
  • the real-time slope of the collector voltage waveform controls the conduction state of the switching tube, so that the precision of controlling the conduction time of the switching tube can be improved, so that the switching tube can keep working in a better working state, which can effectively reduce
  • the switching loss of the switching tube can also improve the overall efficiency of the inverter with the control circuit of the frequency converter.
  • the rectifier circuit is coupled to an alternating current source for converting alternating current to direct current, and the inverter circuit is configured to convert the direct current into alternating current.
  • the rectifier circuit includes a rectifier bridge.
  • the switch transistor is a switch transistor.
  • control circuit includes a filter circuit electrically connected to the rectifier circuit and the inverter circuit, and the filter circuit includes a filter connected to an emitter of the switch tube Capacitor, the inverter circuit includes a resonant capacitor connected to a collector of the switching transistor.
  • the filter circuit includes a filter capacitor and a filter inductor, the filter inductor is connected in series with the filter capacitor, and the inverter circuit includes a primary winding and a secondary winding, the primary winding One end is connected to one end of the resonant capacitor, and the other end of the primary winding is connected to the other end of the resonant capacitor and the collector of the switch tube and the input end of the sampling circuit, the secondary winding and the The voltage doubler rectifier circuit is connected, and the voltage doubler rectifier circuit is connected to the magnetron.
  • the differential detection circuit controls the switch to be turned on when the absolute value of the real-time slope of the voltage waveform of the collector of the switch tube is less than or equal to a preset slope value, the preset The slope value includes zero.
  • the differential detection circuit controls the switch to be turned on, and the preset voltage value includes zero.
  • the sampling circuit includes a first resistor and a second resistor connected in series, and an input end of the sampling circuit is connected to a collector of the switch tube through an end of the first resistor to collect a voltage waveform of a collector of the switching transistor, wherein an output end of the sampling circuit is connected to an input end of the differential detecting circuit through an other end of the first resistor and an end of the second resistor, the second The other end of the resistor is grounded.
  • the differential detection circuit includes a first capacitor, a third resistor, and an operational amplifier circuit, and an input end of the differential detection circuit passes through one end of the first capacitor and a positive phase of the operational amplifier circuit An input is coupled to an output of the sampling circuit to detect a real-time slope of a voltage waveform of a collector of the switching transistor, the other end of the first capacitor is coupled to a negative phase input of the operational amplifier circuit and One end of the third resistor is connected, the third resistor is connected in parallel between the negative phase input end of the operational amplifier circuit and the output end of the operational amplifier circuit, and the output end of the differential detection circuit passes through the operational amplifier An output of the circuit and the other end of the first resistor are coupled to a base of the switch tube for controlling a conduction state of the switch tube according to a real-time slope of a voltage waveform of a collector of the switch tube.
  • the differential detection circuit includes a feedback capacitor coupled in parallel with the third resistor, the feedback capacitor being coupled in parallel at a negative phase input of the operational amplifier circuit and the operational amplifier circuit Between the outputs.
  • the differential detecting circuit includes an input resistor, and an input end of the differential detecting circuit is connected to an output end of the sampling circuit through one end of the input resistor, and the other end of the input resistor is One end of the first capacitor is connected to a non-inverting input terminal of the operational amplifier circuit.
  • the differential detection circuit includes a first pass resistance, and a non-inverting input of the operational amplifier circuit is coupled to an output of the sampling circuit through the first pass resistance, the first A resistor is coupled in parallel with the first capacitor.
  • the differential detection circuit includes a second pass resistance, one end of the second pass resistor is coupled to the first pass resistor and a non-inverting input of the op amp circuit, the Second, ground the other end of the resistor.
  • the frequency converter according to an embodiment of the present invention includes the control circuit of the frequency converter according to any of the above embodiments.
  • the sampling circuit can collect the voltage waveform of the collector of the switching tube
  • the differential detecting circuit can detect the real-time slope of the voltage waveform of the collector of the switching tube, and can be based on the collector of the switching tube
  • the real-time slope of the voltage waveform controls the conduction state of the switching tube, so that the precision of controlling the conduction time of the switching tube can be improved, so that the switching tube can keep working in a better working state, which can effectively reduce the switching tube Switching losses can also increase the overall efficiency of the frequency converter with the control circuitry of the frequency converter.
  • a microwave oven according to an embodiment of the present invention includes the frequency converter described in any of the above embodiments.
  • the sampling circuit can collect the voltage waveform of the collector of the switching tube
  • the differential detecting circuit can detect the real-time slope of the voltage waveform of the collector of the switching tube, and can be based on the collector of the switching tube
  • the real-time slope of the voltage waveform controls the conduction state of the switching tube, which can improve the precision of controlling the conduction time of the switching tube, so that the switching tube can keep working in a better working state, which can effectively reduce the switching of the switching tube
  • the loss can also increase the overall efficiency of the frequency converter with the control circuit of the frequency converter.
  • FIG. 1 is a circuit diagram of a frequency converter of a prior art embodiment.
  • FIG. 2 is a voltage waveform diagram of a switching tube of a control circuit of a frequency converter according to a prior art embodiment.
  • FIG. 3 is a circuit diagram of a frequency converter according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a control circuit of a frequency converter according to an embodiment of the present invention.
  • Fig. 5 is a voltage waveform diagram of a switching tube of a control circuit of an inverter according to an embodiment of the present invention.
  • Control circuit 10 rectifier circuit 11, rectifier bridge 111, inverter circuit 12, resonant capacitor 121, primary winding 122, secondary winding 123, switching transistor 13, collector 131, base 132, emitter 133, sampling circuit 15.
  • the AC power source 101 the voltage doubler rectifier circuit 102, and the magnetron 20.
  • the control circuit 10 of the frequency converter includes a rectifier circuit 11 and an inverter circuit 12.
  • the inverter circuit 12 is connected to the rectifier circuit 11.
  • the inverter circuit 12 includes a switching tube 13 and a switching circuit.
  • the switching circuit includes a sampling circuit 15 and a differential detecting circuit 16.
  • the input terminal 151 of the sampling circuit 15 is connected to the collector 131 of the switching transistor 13 to collect the voltage waveform of the collector 131 of the switching transistor 13.
  • the input terminal 161 of the differential detecting circuit 16 is connected to the output terminal 152 of the sampling circuit 15 to detect the real-time slope of the voltage waveform of the collector 131 of the switching transistor 13.
  • the output terminal 162 of the differential detecting circuit 16 is connected to the base 132 of the switching transistor 13 for controlling the conduction state of the switching transistor 13 in accordance with the real-time slope of the voltage waveform of the collector 131 of the switching transistor 13.
  • the sampling circuit 15 can collect the voltage waveform of the collector 131 of the switching tube 13
  • the differential detecting circuit 16 can detect the real-time voltage waveform of the collector 131 of the switching tube 13
  • the slope is controlled, and the conduction state of the switching tube 13 can be controlled according to the real-time slope of the voltage waveform of the collector 131 of the switching tube 13, so that the accuracy of controlling the timing of the conduction of the switching tube 13 can be improved, so that the switching tube 13 can be maintained.
  • the operation is in a better working state, which can effectively reduce the switching loss of the switching tube 13, thereby improving the overall efficiency of the inverter having the control circuit 10 of the frequency converter.
  • control circuit 10 of the frequency converter can be applied to a frequency converter of a microwave oven.
  • the rectifier circuit 11 is connected to the AC power source 101 for converting AC power into DC power.
  • the inverter circuit 12 is for converting the above-described direct current into alternating current.
  • the rectifier circuit 11 can include a rectifier bridge 111.
  • the switching circuit is used to control the on and off of the switching tube 13.
  • the switch circuit can turn on the switch tube 13.
  • the sampling circuit 15 can collect the voltage waveform of the collector 131 of the switch tube 13, and can transmit the signal of the voltage waveform of the collector 131 of the collected switch 13 to the differential detection circuit through the output terminal 152 of the sampling circuit 15. 16 for signal detection.
  • the differential detecting circuit 16 can control the conduction state of the switching tube 13 in accordance with the detected real-time slope of the voltage waveform of the collector 131 of the switching tube 13.
  • the differential detecting circuit 16 can control the switch tube 13 to be turned on or off again based on the detected real-time slope of the voltage waveform of the collector 131 of the switch tube 13.
  • This control method for controlling the conduction state of the switching tube 13 is not only highly accurate, but also simplifies the control circuit 10 by simply collecting the voltage waveform of the collector 131 of the switching tube 13 (compared with the prior art) A circuit for additionally detecting the voltage at point A is provided), and the cost of the control circuit 10 is lowered.
  • the differential detecting circuit 16 is for real-time monitoring of the slope of the voltage waveform of the collector 131 of the switching transistor 13, that is, detecting the real-time slope of the voltage waveform of the collector 131 of the switching transistor 13.
  • the real-time slope of the voltage waveform of the collector 131 of the switching transistor 13 is associated with the voltage of the collector 131 of the switching transistor 13. For example, in the example shown in FIG. 5, in the voltage waveform diagram c, when the real-time slope of the voltage waveform of the collector 131 of the switching transistor 13 is zero, the voltage of the collector 131 of the switching transistor 13 is U1.
  • the switch tube 13 is a switch transistor.
  • control circuit 10 includes a filter circuit 17.
  • the filter circuit 17 is electrically connected to the rectifier circuit 11 and the inverter circuit 12.
  • the filter circuit 17 includes a filter capacitor 171 connected to the emitter 133 of the switch tube 13.
  • the inverter circuit 12 also includes a resonant capacitor 121.
  • the resonant capacitor 121 is connected to the collector 131 of the switching transistor 13.
  • the filter circuit 17 can effectively suppress and prevent interference of a specific band frequency.
  • the filter circuit 17 includes a filter capacitor 171 and a filter inductor 172.
  • the filter inductor 172 is connected in series with the filter capacitor 171.
  • the inverter circuit 12 also includes a primary winding 122 and a secondary winding 123.
  • One end of the primary winding 122 is connected to one end of the resonant capacitor 121, and the other end of the primary winding 122 is connected to the other end of the resonant capacitor 121 and the collector 131 of the switching transistor 13 and the input terminal 151 of the sampling circuit 15.
  • the secondary winding 123 is connected to the voltage doubler rectifier circuit 102, wherein the voltage doubler rectifier circuit 102 can be connected to the magnetron 20.
  • the differential detection circuit 16 controls the switching transistor 13 to be turned on when the absolute value of the real-time slope of the voltage waveform of the collector 131 of the switching transistor 13 is less than or equal to the preset slope value.
  • the switching tube 13 when the absolute value of the real-time slope of the voltage waveform of the collector 131 of the switching transistor 13 is less than or equal to the preset slope value, the switching tube 13 is in an on state.
  • the switch tube 13 can be in an on state, which enables the switch tube to be realized in a more precise manner.
  • the control of the switching time of 13 can further improve the accuracy of controlling the timing at which the switching transistor 13 is turned on.
  • the foregoing preset slope value may be set according to a specific situation.
  • the preset slope value may be set to be small (eg, the preset slope value is close to zero), thereby enabling the switch tube 13 to be in a conducting state when the excitation is discharged or nearly discharged. The switching loss of the switching transistor 13 can be further effectively reduced.
  • the differential detection circuit 16 controls the switching transistor 13 to be turned on when the real-time slope of the voltage waveform of the collector 131 of the switching transistor 13 is zero.
  • the differential detection circuit 16 controls the switching transistor 13 to be turned on when the voltage value of the collector 131 of the switching transistor 13 is less than or equal to a preset voltage value.
  • the differential detection circuit 16 can detect the real-time slope corresponding to the voltage of the collector 131 of the switch tube 13 at this time, thereby making the switch tube 13 is in the on state. In this way, each time the voltage value of the collector 131 of the switch tube 13 is less than or equal to the preset voltage value, the switch tube 13 can be in an on state, so that the switching time of the switch tube 13 can be controlled in a more precise manner. Therefore, the accuracy of controlling the timing at which the switching tube 13 is turned on can be further improved.
  • the foregoing preset voltage value may be set according to a specific situation.
  • the preset voltage value may be set to be small (eg, the preset voltage value is close to zero), thereby enabling the switching transistor 13 to have a lower voltage at the collector 131 of the switching transistor 13 (eg, voltage) When it is equal to zero or close to zero, it is in a conducting state. At this time, the conduction switch 13 does not generate a serious hard switch, so that the switching loss of the switching tube 13 can be effectively reduced, thereby prolonging the service life of the switching tube 13.
  • the differential detecting circuit 16 controls the switching transistor 13 to be turned on when the voltage value of the collector 131 of the switching transistor 13 is equal to zero.
  • the sampling circuit 15 includes a first resistor 153 and a second resistor 154 in series.
  • the input terminal 151 of the sampling circuit 15 is connected to the collector 131 of the switching transistor 13 through one end of the first resistor 153 to collect the voltage waveform of the collector 131 of the switching transistor 13.
  • the output terminal 152 of the sampling circuit 15 is connected to the input terminal 161 of the differential detecting circuit 16 through the other end of the first resistor 153 and one end of the second resistor 154.
  • the other end of the second resistor 154 is grounded to protect the sampling circuit 15.
  • the differential detection circuit 16 includes a first capacitor 163, a third resistor 164, and an op amp circuit 165.
  • the input terminal 161 of the differential detecting circuit 16 is connected to the output terminal 152 of the sampling circuit 15 through one end of the first capacitor 163 and the non-inverting input terminal 1651 of the operational amplifier circuit 165 to detect the real-time voltage waveform of the collector 131 of the switching transistor 13. Slope.
  • the other end of the first capacitor 163 is connected to the negative phase input terminal 1652 of the operational amplifier circuit 165 and one end of the third resistor 164.
  • the third resistor 164 is connected in parallel between the negative phase input terminal 1652 of the operational amplifier circuit 165 and the output terminal 1653 of the operational amplifier circuit 165.
  • the output terminal 162 of the differential detecting circuit 16 is connected to the base 132 of the switching transistor 13 through the output terminal 1653 of the operational amplifier circuit 165 and the other end of the first resistor 153 for voltage waveform according to the collector 131 of the switching transistor 13.
  • the real-time slope controls the conduction state of the switching tube 13.
  • the circuit configuration of the differential detecting circuit 16 is simplified in this way, and the slope shape of the voltage waveform of the collector 131 of the switching transistor 13 can be effectively monitored in real time.
  • the differential detection circuit 16 includes a feedback capacitor 166.
  • Feedback capacitor 166 is coupled in parallel with third resistor 164.
  • Feedback capacitor 166 is coupled in parallel between negative input terminal 1652 of op amp circuit 165 and output terminal 1653 of op amp circuit 165.
  • the setting of the feedback capacitor 166 enables the signal of the voltage waveform of the collector 131 of the switching transistor 13 detected by the differential detecting circuit 16 to generate a phase shift of a large angle (for example, 90 degrees), thereby ensuring the stability of the differential detecting circuit 16. .
  • the differential detection circuit 16 includes an input resistor 167.
  • the input terminal 161 of the differential detecting circuit 16 is connected to the output terminal 152 of the sampling circuit 15 through one end of the input resistor 167.
  • the other end of the input resistor 167 is connected to one end of the first capacitor 163 and the non-inverting input terminal 1651 of the operational amplifier circuit 165.
  • the setting of the input resistor 167 can further cause the signal of the voltage waveform of the collector 131 of the switching transistor 13 detected by the differential detecting circuit 16 to generate a phase shift of a large angle (for example, 90 degrees), thereby further ensuring the differential detecting circuit 16 system. Stability, which improves the stability of the entire system.
  • the differential detection circuit 16 includes a first pass resistance 168.
  • the non-inverting input 1651 of the op amp circuit 165 is coupled to the output 152 of the sampling circuit 15 via a first pass resistor 168.
  • the first through resistor 168 is in parallel with the first capacitor 163.
  • the setting of the first pass resistance 168 can limit the bias current of the differential detection circuit 16 system, which in turn reduces the effect of the bias current on the differential detection circuit 16 system.
  • the differential detection circuit 16 includes a second pass resistance 169.
  • One end of the second through resistor 169 is coupled to the first pass resistor 168 and the non-inverting input terminal 1651 of the op amp circuit 165.
  • the other end of the second through resistor 169 is grounded.
  • the provision of the first pass resistance 168 can further limit the bias current of the differential detection circuit 16 system, which in turn can further reduce the effect of the bias current on the differential detection circuit 16 system, thereby improving the stability of the overall system.
  • the voltage waveform diagram a, the voltage waveform diagram b, and the voltage waveform diagram c represent voltage waveform diagrams of the collector 131 of the switch tube 13 of the switch tube 13 under different operating states, wherein the abscissa t represents Time, the ordinate U represents the voltage.
  • the value of the resistance of the load of the control circuit 10 in the operating state shown in the voltage waveform diagram a is smaller than the value of the resistance of the load of the control circuit 10 in the operating state shown in the voltage waveform diagram c, and is at a voltage
  • the value of the resistance of the load of the control circuit 10 in the operating state shown in the waveform diagram c is smaller than the value of the resistance of the load of the control circuit 10 in the operating state shown in the voltage waveform diagram b.
  • the switch tube 13 When the switch tube 13 is in the operating state shown in the voltage waveform diagram a, the load of the control circuit 10 is small. At this time, the absolute value of the real-time slope of the voltage waveform of the collector 131 of the switch tube 13 may be less than or equal to a preset slope value (the magnitude of the preset slope value may be set to be close to zero) or at the collector of the switch tube 13. When the real-time slope of the voltage waveform of 131 is zero, the switching transistor 13 is controlled to be turned on or turned on again by the differential detecting circuit 16.
  • the conduction mode of the above-mentioned control switch tube 13 can be set according to specific conditions.
  • the absolute value of the real-time slope of the voltage waveform of the collector 131 of the switch tube 13 may be less than or equal to a preset slope value (the magnitude of the preset slope value may be set to be close to zero) or at the collector of the switch tube 13.
  • the real-time slope of the voltage waveform of 131 is zero or when the value of the voltage of the collector 131 of the switching transistor 13 is less than or equal to the preset voltage value or when the value of the voltage of the collector 131 of the switching transistor 13 is equal to zero
  • the differential detection is performed.
  • the circuit 16 controls the switching tube 13 to be turned on or turned on again.
  • the conduction mode of the above-mentioned control switch tube 13 can be set according to specific conditions.
  • the absolute value of the real-time slope of the voltage waveform of the collector 131 of the switch tube 13 may be less than or equal to a preset slope value (the magnitude of the preset slope value may be set to be close to zero) or at the collector of the switch tube 13.
  • the real-time slope of the voltage waveform of 131 is zero or when the value of the voltage of the collector 131 of the switching transistor 13 is less than or equal to the preset voltage value or when the value of the voltage of the collector 131 of the switching transistor 13 is equal to zero
  • the differential detection is performed.
  • the circuit 16 controls the switching tube 13 to be turned on or turned on again.
  • the conduction mode of the above-mentioned control switch tube 13 can be set according to specific conditions.
  • the frequency converter according to an embodiment of the present invention includes the control circuit 10 of the frequency converter according to any of the above embodiments.
  • the sampling circuit 15 can collect the voltage waveform of the collector 131 of the switching tube 13
  • the differential detecting circuit 16 can detect the real-time slope of the voltage waveform of the collector 131 of the switching tube 13, and can The conduction state of the switching tube 13 is controlled according to the real-time slope of the voltage waveform of the collector 131 of the switching tube 13, so that the accuracy of controlling the timing of the conduction of the switching tube 13 can be improved, so that the switching tube 13 can be kept operating better.
  • the working state can effectively reduce the switching loss of the switching tube 13, thereby improving the overall efficiency of the inverter having the control circuit 10 of the frequency converter.
  • the frequency converter of the embodiment of the present invention can be applied to a microwave oven.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

一种变频器的控制电路(10)、变频器和微波炉。控制电路(10)包括整流电路(11)及逆变电路(12),逆变电路(12)与整流电路(11)相连接,逆变电路(12)包括开关管(13)及开关电路。开关电路包括采样电路(15)及微分检测电路(16),采样电路(15)的输入端(151)与开关管(13)的集电极(131)相连接以采集开关管(13)的集电极(131)的电压波形。微分检测电路(16)的输入端(161)与采样电路(15)的输出端(152)相连接以检测开关管(13)的集电极(131)的电压波形的实时斜率,微分检测电路(16)的输出端(162)与开关管(13)的基极(132)相连接以用于根据开关管(13)的集电极(131)的电压波形的实时斜率控制开关管(13)的导通状态,从而提高控制开关管(13)的导通的时刻的精准度。

Description

变频器的控制电路、变频器和微波炉
优先权信息
本申请请求2017年07月21日向中国国家知识产权局提交的、专利申请号为201710600112.4的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及家用电器领域,尤其是涉及一种变频器的控制电路、变频器和微波炉。
背景技术
现有技术通过同步检测电路实现开关管101(IGBT)的控制,如图1所示,由电阻1和电阻2取样A点电压,然后通过电容3滤波后输入到比较器4的负端;由电阻5和电阻6取样开关管101的集电极102电压,然后通过电容7滤波后输入到比较器4的正端,如图2所示,当开关管101的集电极102取样电压波形图x和A点的取样电压波形图y在m点相等,比较器4的输出电压发生翻转变为高电平,检测到此点后,在延迟一个固定时间t0,然后驱动开关管101导通。因此延迟的时间t0的长短就很重要,t0太短,开关管101的集电极102电压还没到零就再次开通,就会产生较严重的硬开关,将导致开关管101开关损耗增大,发热量较大,最终就会导致开关管101损坏;而t0设置的太长,就会有一段空闲时间,在此过程中变压器的寄生电感和开关管101的结电容会产生较大的谐振尖峰反向电流,同样会导致开关管101产生大量热量,效率降低。
发明内容
本发明需要提供一种变频器的控制电路、变频器和微波炉。
本发明实施方式的变频器的控制电路包括整流电路及逆变电路,所述逆变电路与所述整流电路相连接,所述逆变电路包括开关管及开关电路,所述开关电路包括采样电路及微分检测电路,所述采样电路的输入端与所述开关管的集电极相连接以采集所述开关管的集电极的电压波形,所述微分检测电路的输入端与所述采样电路的输出端相连接以检测所述开关管的集电极的电压波形的实时斜率,所述微分检测电路的输出端与所述开关管的基极相连接以用于根据所述开关管的集电极的电压波形的实时斜率控制所述开关管的导通状态。
在本发明实施方式的变频器的控制电路中,由于采样电路能够采集开关管的集电极的电压波形,并且微分检测电路能够检测开关管的集电极的电压波形的实时斜率,并且 能够根据开关管的集电极的电压波形的实时斜率控制开关管的导通状态,这样能够提高控制开关管的导通的时刻的精准度,从而使得开关管能够保持工作在较佳的工作状态,这样能够有效降低开关管的开关损耗,从而还可提高具有变频器的控制电路的变频器整体的效率。
在某些实施方式中,所述整流电路与交流电源连接,用于将交流电变换成直流电,所述逆变电路用于将所述直流电变换成为交流电。
在某些实施方式中,所述整流电路包括整流桥。
在某些实施方式中,所述开关管为开关三极管。
在某些实施方式中,所述控制电路包括滤波电路,所述滤波电路电性连接所述整流电路及所述逆变电路,所述滤波电路包括与所述开关管的发射极相连接的滤波电容,所述逆变电路包括谐振电容,所述谐振电容与所述开关管的集电极相连接。
在某些实施方式中,所述滤波电路包括滤波电容及滤波电感,所述滤波电感与所述滤波电容串联,所述逆变电路包括初级绕线和次级绕线,所述初级绕线的一端连接所述谐振电容的一端,所述初级绕线的另一端连接所述谐振电容的另一端和所述开关管的集电极及所述采样电路的输入端,所述次级绕线与所述倍压整流电路连接,所述倍压整流电路连接磁控管。
在某些实施方式中,在所述开关管的集电极的电压波形的实时斜率的绝对值小于或等于预设斜率值时,所述微分检测电路控制所述开关管导通,所述预设斜率值包括零。
在某些实施方式中,在所述开关管的集电极的电压值小于或等于预设电压值时,所述微分检测电路控制所述开关管导通,所述预设电压值包括零。
在某些实施方式中,所述采样电路包括串联的第一电阻和第二电阻,所述采样电路的输入端通过所述第一电阻的一端与所述开关管的集电极相连接以采集所述开关管的集电极的电压波形,所述采样电路的输出端通过所述第一电阻的另一端及所述第二电阻的一端与所述微分检测电路的输入端相连接,所述第二电阻的另一端接地。
在某些实施方式中,所述微分检测电路包括第一电容、第三电阻及运放电路,所述微分检测电路的输入端通过所述第一电容的一端及所述运放电路的正相输入端与所述采样电路的输出端相连接以检测所述开关管的集电极的电压波形的实时斜率,所述第一电容的另一端与所述运放电路的负相输入端及所述第三电阻的一端相连接,所述第三电阻并联在所述运放电路的负相输入端与所述运放电路的输出端之间,所述微分检测电路的输出端通过所述运放电路的输出端及所述第一电阻的另一端与所述开关管的基极相 连接以用于根据所述开关管的集电极的电压波形的实时斜率控制所述开关管的导通状态。
在某些实施方式中,所述微分检测电路包括反馈电容,所述反馈电容与所述第三电阻并联,所述反馈电容并联在所述运放电路的负相输入端与所述运放电路的输出端之间。
在某些实施方式中,所述微分检测电路包括输入电阻,所述微分检测电路的输入端通过所述输入电阻的一端与所述采样电路的输出端相连接,所述输入电阻的另一端与所述第一电容的一端及所述运放电路的正相输入端相连接。
在某些实施方式中,所述微分检测电路包括第一通过电阻,所述运放电路的正相输入端通过所述第一通过电阻与所述采样电路的输出端相连接,所述第一通过电阻与所述第一电容并联。
在某些实施方式中,所述微分检测电路包括第二通过电阻,所述第二通过电阻的一端与所述第一通过电阻及所述运放电路的正相输入端相连接,所述第二通过电阻的另一端接地。
本发明实施方式的变频器包括上述任一实施方式所述的变频器的控制电路。
在本发明实施方式的变频器中,由于采样电路能够采集开关管的集电极的电压波形,并且微分检测电路能够检测开关管的集电极的电压波形的实时斜率,并且能够根据开关管的集电极的电压波形的实时斜率控制开关管的导通状态,这样能够提高控制开关管的导通的时刻的精准度,从而使得开关管能够保持工作在较佳的工作状态,这样能够有效降低开关管的开关损耗,从而还可提高具有变频器的控制电路的变频器整体的效率。
本发明实施方式的微波炉包括上述任一实施方式所述的变频器。
在本发明实施方式的微波炉中,由于采样电路能够采集开关管的集电极的电压波形,并且微分检测电路能够检测开关管的集电极的电压波形的实时斜率,并且能够根据开关管的集电极的电压波形的实时斜率控制开关管的导通状态,这样能够提高控制开关管的导通的时刻的精准度,从而使得开关管能够保持工作在较佳的工作状态,这样能够有效降低开关管的开关损耗,从而还可提高具有变频器的控制电路的变频器整体的效率。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得 明显和容易理解,其中:
图1是现有技术实施方式的变频器的电路示意图。
图2是现有技术实施方式的变频器的控制电路的开关管的电压波形图。
图3是本发明实施方式的变频器的电路示意图。
图4是本发明实施方式的变频器的控制电路的模块示意图。
图5是本发明实施方式的变频器的控制电路的开关管的电压波形图。
主要元件符号说明:
控制电路10、整流电路11、整流桥111、逆变电路12、谐振电容121、初级绕线122、次级绕线123、开关管13、集电极131、基极132、发射极133、采样电路15、输入端151、输出端152、第一电阻153、第二电阻154、微分检测电路16、输入端161、输出端162、第一电容163、第三电阻164、运放电路165、正相输入端1651、负相输入端1652、输出端1653、反馈电容166、输入电阻167、第一通过电阻168、第二通过电阻169、滤波电路17、滤波电容171、滤波电感172;
交流电源101、倍压整流电路102、磁控管20。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请一并参阅图2~图5,本发明实施方式的变频器的控制电路10包括整流电路11及逆变电路12。逆变电路12与整流电路11相连接。
逆变电路12包括开关管13及开关电路。开关电路包括采样电路15及微分检测电路16。采样电路15的输入端151与开关管13的集电极131相连接以采集开关管13的集电极131的电压波形。微分检测电路16的输入端161与采样电路15的输出端152相连接以检测开关管13的集电极131的电压波形的实时斜率。微分检测电路16的输出端162与开关管13的基极132相连接以用于根据开关管13的集电极131的电压波形的实时斜率控制开关管13的导通状态。
在本发明实施方式的变频器的控制电路10中,由于采样电路15能够采集开关管13的集电极131的电压波形,并且微分检测电路16能够检测开关管13的集电极131的电压波形的实时斜率,并且能够根据开关管13的集电极131的电压波形的实时斜率控制 开关管13的导通状态,这样能够提高控制开关管13的导通的时刻的精准度,从而使得开关管13能够保持工作在较佳的工作状态,这样能够有效降低开关管13的开关损耗,从而还可提高具有变频器的控制电路10的变频器整体的效率。
需要说明的是,本发明实施方式的变频器的控制电路10可应用于微波炉的变频器中。整流电路11与交流电源101连接,用于将交流电变换成直流电。逆变电路12用于将上述直流电变换成为交流电。在一些例子中,整流电路11可包括整流桥111。
再有,开关电路用于控制开关管13的通断。在整流电路11与交流电源101接通后,开关电路便能够使得开关管13导通。然后,采样电路15便能够采集开关管13的集电极131的电压波形,并且能够通过采样电路15的输出端152将采集后的开关管13的集电极131的电压波形的信号传输至微分检测电路16以进行信号检测。然后,微分检测电路16能够根据检测到的开关管13的集电极131的电压波形的实时斜率控制开关管13的导通状态。也就是说,微分检测电路16能够根据检测到的开关管13的集电极131的电压波形的实时斜率控制开关管13再次导通或关闭。这种控制开关管13的导通状态的控制方式不仅精度较高,并且由于只需采集开关管13的集电极131的电压波形,这样简化了控制电路10(与现有的技术相比不需要设置额外检测A点的电压的电路),并降低了控制电路10的成本。
另外,微分检测电路16用于对开关管13的集电极131的电压波形的斜率进行实时监测,即检测开关管13的集电极131的电压波形的实时斜率。开关管13的集电极131的电压波形的实时斜率与开关管13的集电极131的电压相关联。例如,在图5所示的例子中,在电压波形图c中,在开关管13的集电极131的电压波形的实时斜率为零时,开关管13的集电极131的电压为U1。
在本发明实施方式中,开关管13为开关三极管。
在某些实施方式中,控制电路10包括滤波电路17。滤波电路17电性连接整流电路11及逆变电路12。滤波电路17包括与开关管13的发射极133相连接的滤波电容171。逆变电路12还包括谐振电容121。谐振电容121与开关管13的集电极131相连接。
如此,滤波电路17可有效抑制和防止特定波段频率的干扰。
具体地,滤波电路17包括滤波电容171及滤波电感172。滤波电感172与滤波电容171串联。逆变电路12还包括初级绕线122和次级绕线123。初级绕线122的一端连接谐振电容121的一端,初级绕线122的另一端连接谐振电容121的另一端和开关管13的集电极131及采样电路15的输入端151。次级绕线123与倍压整流电路102连接,其中倍压整流电路102可连接磁控管20。
在某些实施方式中,在开关管13的集电极131的电压波形的实时斜率的绝对值小 于或等于预设斜率值时,微分检测电路16控制开关管13导通。
如此,在开关管13的集电极131的电压波形的实时斜率的绝对值小于或等于预设斜率值时,开关管13处于导通状态。这样每次在开关管13的集电极131的电压波形的实时斜率的绝对值小于或等于预设斜率值时,开关管13便能够处于导通状态,这样能够以较精确的方式实现对开关管13的开关时间的控制,从而能够进一步提高控制开关管13的导通的时刻的精准度。
需要说明的是,上述预设斜率值可根据具体情况进行设置。例如,在一些例子中,可将上述预设斜率值设置的较小(例如预设斜率值接近零),从而可使得开关管13能够在励磁放完或接近放完时处于导通状态,从而能够进一步有效降低开关管13的开关损耗。
当然,可以理解,在另一些例子中,在开关管13的集电极131的电压波形的实时斜率为零时,微分检测电路16控制开关管13导通。
在某些实施方式中,在开关管13的集电极131的电压值小于或等于预设电压值时,微分检测电路16控制开关管13导通。
如此,在开关管13的集电极131的电压值小于或等于预设电压值时,微分检测电路16能够检测到此时开关管13的集电极131的电压所对应的实时斜率,从而使得开关管13处于导通状态。这样每次在开关管13的集电极131的电压值小于或等于预设电压值时,开关管13便能够处于导通状态,这样能够以较精确的方式实现对开关管13的开关时间的控制,从而能够进一步提高控制开关管13的导通的时刻的精准度。
需要说明的是,上述预设电压值可根据具体情况进行设置。例如,在一些例子中,可将上述预设电压值设置的较小(例如预设电压值接近零),从而可使得开关管13能够在开关管13的集电极131的电压较低(例如电压等于零或接近零)处于导通状态,这时导通开关管13便不会产生较严重的硬开关,从而能够有效降低开关管13的开关损耗,从而可延长开关管13的使用寿命。
当然,可以理解,在另一些例子中,在开关管13的集电极131的电压值等于零时,微分检测电路16控制开关管13导通。
在某些实施方式中,采样电路15包括串联的第一电阻153和第二电阻154。采样电路15的输入端151通过第一电阻153的一端与开关管13的集电极131相连接以采集开关管13的集电极131的电压波形。采样电路15的输出端152通过第一电阻153的另一端及第二电阻154的一端与微分检测电路16的输入端161相连接。第二电阻154的另一端接地,可对采样电路15起保护作用。
在某些实施方式中,微分检测电路16包括第一电容163、第三电阻164及运放电路 165。微分检测电路16的输入端161通过第一电容163的一端及运放电路165的正相输入端1651与采样电路15的输出端152相连接以检测开关管13的集电极131的电压波形的实时斜率。第一电容163的另一端与运放电路165的负相输入端1652及第三电阻164的一端相连接。第三电阻164并联在运放电路165的负相输入端1652与运放电路165的输出端1653之间。微分检测电路16的输出端162通过运放电路165的输出端1653及第一电阻153的另一端与开关管13的基极132相连接以用于根据开关管13的集电极131的电压波形的实时斜率控制开关管13的导通状态。
如此,这样简化了微分检测电路16的电路结构,并能够对开关管13的集电极131的电压波形的斜率形进行有效的实时监测。
在某些实施方式中,微分检测电路16包括反馈电容166。反馈电容166与第三电阻164并联。反馈电容166并联在运放电路165的负相输入端1652与运放电路165的输出端1653之间。
如此,反馈电容166的设置能够使得微分检测电路16检测到的开关管13的集电极131的电压波形的信号产生较大角度(例如90度)的相移,从而保证微分检测电路16的稳定性。
在某些实施方式中,微分检测电路16包括输入电阻167。微分检测电路16的输入端161通过输入电阻167的一端与采样电路15的输出端152相连接。输入电阻167的另一端与第一电容163的一端及运放电路165的正相输入端1651相连接。
如此,输入电阻167的设置能够进一步使得微分检测电路16检测到的开关管13的集电极131的电压波形的信号产生较大角度(例如90度)的相移,从而进一步保证微分检测电路16系统的稳定性,从而提升整个系统的稳定性。
在某些实施方式中,微分检测电路16包括第一通过电阻168。运放电路165的正相输入端1651通过第一通过电阻168与采样电路15的输出端152相连接。第一通过电阻168与第一电容163并联。
如此,第一通过电阻168的设置可限制微分检测电路16系统的偏置电流,继而减小偏置电流对微分检测电路16系统的影响。
在某些实施方式中,微分检测电路16包括第二通过电阻169。第二通过电阻169的一端与第一通过电阻168及运放电路165的正相输入端1651相连接。第二通过电阻169的另一端接地。
如此,第一通过电阻168的设置能够进一步限制微分检测电路16系统的偏置电流,继而能够进一步减小偏置电流对微分检测电路16系统的影响,从而提升整个系统的稳定性。
在图5所示的例子中,电压波形图a、电压波形图b和电压波形图c表示开关管13在不同工作状态下的开关管13的集电极131的电压波形图,其中横坐标t表示时间,纵坐标U表示电压。再有,处于电压波形图a所示的工作状态下的控制电路10的负载的电阻的值小于处于电压波形图c所示的工作状态下的控制电路10的负载的电阻的值,而处于电压波形图c所示的工作状态下的控制电路10的负载的电阻的值小于处于电压波形图b所示的工作状态下的控制电路10的负载的电阻的值。
当开关管13处于电压波形图a所示的工作状态时,控制电路10的负载较小。这时可在开关管13的集电极131的电压波形的实时斜率的绝对值小于或等于预设斜率值(预设斜率值的大小可设置成接近于零)时或者在开关管13的集电极131的电压波形的实时斜率为零时,通过微分检测电路16控制开关管13导通或再次导通。上述控制开关管13的导通方式可根据具体情况进行设置。
当开关管13处于电压波形图b所示的工作状态时,控制电路10的负载较大,并且控制电路10处于较佳的工作状态。这时可在开关管13的集电极131的电压波形的实时斜率的绝对值小于或等于预设斜率值(预设斜率值的大小可设置成接近于零)时或者在开关管13的集电极131的电压波形的实时斜率为零时或者在开关管13的集电极131的电压的值小于或等于预设电压值时或者在开关管13的集电极131的电压的值等于零时,通过微分检测电路16控制开关管13导通或再次导通。上述控制开关管13的导通方式可根据具体情况进行设置。
当开关管13处于电压波形图c所示的工作状态时,控制电路10的负载适中,并且控制电路10处于更佳的工作状态。这时可在开关管13的集电极131的电压波形的实时斜率的绝对值小于或等于预设斜率值(预设斜率值的大小可设置成接近于零)时或者在开关管13的集电极131的电压波形的实时斜率为零时或者在开关管13的集电极131的电压的值小于或等于预设电压值时或者在开关管13的集电极131的电压的值等于零时,通过微分检测电路16控制开关管13导通或再次导通。上述控制开关管13的导通方式可根据具体情况进行设置。
本发明实施方式的变频器包括上述任一实施方式所述的变频器的控制电路10。
在本发明实施方式的变频器中,由于采样电路15能够采集开关管13的集电极131的电压波形,并且微分检测电路16能够检测开关管13的集电极131的电压波形的实时斜率,并且能够根据开关管13的集电极131的电压波形的实时斜率控制开关管13的导通状态,这样能够提高控制开关管13的导通的时刻的精准度,从而使得开关管13能够保持工作在较佳的工作状态,这样能够有效降低开关管13的开关损耗,从而还可提高具有变频器的控制电路10的变频器整体的效率。
需要说明的是,本发明实施方式的变频器可应用于微波炉中。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种变频器的控制电路,所述控制电路包括整流电路及逆变电路,所述逆变电路与所述整流电路相连接,其特征在于,所述逆变电路包括开关管及开关电路,所述开关电路包括采样电路及微分检测电路,所述采样电路的输入端与所述开关管的集电极相连接以采集所述开关管的集电极的电压波形,所述微分检测电路的输入端与所述采样电路的输出端相连接以检测所述开关管的集电极的电压波形的实时斜率,所述微分检测电路的输出端与所述开关管的基极相连接以用于根据所述开关管的集电极的电压波形的实时斜率控制所述开关管的导通状态。
  2. 如权利要求1所述的变频器的控制电路,其特征在于,所述整流电路与交流电源连接,用于将交流电变换成直流电,所述逆变电路用于将所述直流电变换成为交流电。
  3. 如权利要求2所述的变频器的控制电路,其特征在于,所述整流电路包括整流桥。
  4. 如权利要求1所述的变频器的控制电路,其特征在于,所述开关管为开关三极管。
  5. 如权利要求1所述的变频器的控制电路,其特征在于,所述控制电路包括滤波电路,所述滤波电路电性连接所述整流电路及所述逆变电路,所述滤波电路包括与所述开关管的发射极相连接的滤波电容,所述逆变电路包括谐振电容,所述谐振电容与所述开关管的集电极相连接。
  6. 如权利要求5所述的变频器的控制电路,其特征在于,所述滤波电路包括滤波电容及滤波电感,所述滤波电感与所述滤波电容串联,所述逆变电路包括初级绕线和次级绕线,所述初级绕线的一端连接所述谐振电容的一端,所述初级绕线的另一端连接所述谐振电容的另一端和所述开关管的集电极及所述采样电路的输入端,所述次级绕线与所述倍压整流电路连接,所述倍压整流电路连接磁控管。
  7. 如权利要求1所述的变频器的控制电路,其特征在于,在所述开关管的集电极的电压波形的实时斜率的绝对值小于或等于预设斜率值时,所述微分检测电路控制所述开关管导通,所述预设斜率值包括零。
  8. 如权利要求1所述的变频器的控制电路,其特征在于,在所述开关管的集电极的 电压值小于或等于预设电压值时,所述微分检测电路控制所述开关管导通,所述预设电压值包括零。
  9. 如权利要求1所述的变频器的控制电路,其特征在于,所述采样电路包括串联的第一电阻和第二电阻,所述采样电路的输入端通过所述第一电阻的一端与所述开关管的集电极相连接以采集所述开关管的集电极的电压波形,所述采样电路的输出端通过所述第一电阻的另一端及所述第二电阻的一端与所述微分检测电路的输入端相连接,所述第二电阻的另一端接地。
  10. 如权利要求1所述的变频器的控制电路,其特征在于,所述微分检测电路包括第一电容、第三电阻及运放电路,所述微分检测电路的输入端通过所述第一电容的一端及所述运放电路的正相输入端与所述采样电路的输出端相连接以检测所述开关管的集电极的电压波形的实时斜率,所述第一电容的另一端与所述运放电路的负相输入端及所述第三电阻的一端相连接,所述第三电阻并联在所述运放电路的负相输入端与所述运放电路的输出端之间,所述微分检测电路的输出端通过所述运放电路的输出端及所述第一电阻的另一端与所述开关管的基极相连接以用于根据所述开关管的集电极的电压波形的实时斜率控制所述开关管的导通状态。
  11. 如权利要求10所述的变频器的控制电路,其特征在于,所述微分检测电路包括反馈电容,所述反馈电容与所述第三电阻并联,所述反馈电容并联在所述运放电路的负相输入端与所述运放电路的输出端之间。
  12. 如权利要求11所述的变频器的控制电路,其特征在于,所述微分检测电路包括输入电阻,所述微分检测电路的输入端通过所述输入电阻的一端与所述采样电路的输出端相连接,所述输入电阻的另一端与所述第一电容的一端及所述运放电路的正相输入端相连接。
  13. 如权利要求12所述的变频器的控制电路,其特征在于,所述微分检测电路包括第一通过电阻,所述运放电路的正相输入端通过所述第一通过电阻与所述采样电路的输出端相连接,所述第一通过电阻与所述第一电容并联。
  14. 如权利要求13所述的变频器的控制电路,其特征在于,所述微分检测电路包括 第二通过电阻,所述第二通过电阻的一端与所述第一通过电阻及所述运放电路的正相输入端相连接,所述第二通过电阻的另一端接地。
  15. 一种变频器,其特征在于,包括如权利要求1-14任一项所述的变频器的控制电路。
  16. 一种微波炉,其特征在于,包括权利要求15所述的变频器。
PCT/CN2017/119313 2017-07-21 2017-12-28 变频器的控制电路、变频器和微波炉 WO2019015257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710600112.4A CN107248811B (zh) 2017-07-21 2017-07-21 变频器的控制电路和变频器
CN201710600112.4 2017-07-21

Publications (1)

Publication Number Publication Date
WO2019015257A1 true WO2019015257A1 (zh) 2019-01-24

Family

ID=60014089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119313 WO2019015257A1 (zh) 2017-07-21 2017-12-28 变频器的控制电路、变频器和微波炉

Country Status (2)

Country Link
CN (1) CN107248811B (zh)
WO (1) WO2019015257A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107248811B (zh) * 2017-07-21 2019-07-26 广东美的厨房电器制造有限公司 变频器的控制电路和变频器
CN108258916A (zh) * 2018-01-15 2018-07-06 淮阴师范学院 一种变频器及其控制电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185466A (zh) * 2011-05-24 2011-09-14 杭州矽力杰半导体技术有限公司 一种应用于反激式变换器的驱动电路、驱动方法以及应用其的准谐振软开关反激式变换器
CN102832792A (zh) * 2012-08-24 2012-12-19 矽力杰半导体技术(杭州)有限公司 一种源极驱动控制电路及其控制方法
WO2014128274A2 (fr) * 2013-02-22 2014-08-28 Technofan Capteur électronique de température pour mesurer la température de jonction d'un interrupteur électronique de puissance en fonctionnement et procédé de mesure de la température de la jonction par ce capteur électronique
CN107248811A (zh) * 2017-07-21 2017-10-13 广东美的厨房电器制造有限公司 变频器的控制电路和变频器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3614395B2 (ja) * 2001-11-20 2005-01-26 コーセル株式会社 リンギング矯正回路
JP4247048B2 (ja) * 2003-06-05 2009-04-02 株式会社小糸製作所 直流電圧変換回路
JP4451718B2 (ja) * 2004-06-04 2010-04-14 株式会社山武 電源装置および電源供給方法
CN102340911B (zh) * 2010-12-30 2013-08-07 矽力杰半导体技术(杭州)有限公司 一种led驱动器的控制电路及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185466A (zh) * 2011-05-24 2011-09-14 杭州矽力杰半导体技术有限公司 一种应用于反激式变换器的驱动电路、驱动方法以及应用其的准谐振软开关反激式变换器
CN102832792A (zh) * 2012-08-24 2012-12-19 矽力杰半导体技术(杭州)有限公司 一种源极驱动控制电路及其控制方法
WO2014128274A2 (fr) * 2013-02-22 2014-08-28 Technofan Capteur électronique de température pour mesurer la température de jonction d'un interrupteur électronique de puissance en fonctionnement et procédé de mesure de la température de la jonction par ce capteur électronique
CN107248811A (zh) * 2017-07-21 2017-10-13 广东美的厨房电器制造有限公司 变频器的控制电路和变频器

Also Published As

Publication number Publication date
CN107248811A (zh) 2017-10-13
CN107248811B (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
KR102612384B1 (ko) Pwm 커패시터 제어
KR102057136B1 (ko) 전자기 가열 제어 회로 및 전자기 가열 디바이스
US9473017B2 (en) Control circuit, control method used in PFC circuit and power source system thereof
JP6210938B2 (ja) 非接触型電圧検出装置
CN110677013A (zh) 反激变换器的控制方法及装置
WO2024007555A1 (zh) 一种应用于隔离变换器的励磁电流无损采样电路
CN108696131A (zh) 控制装置及控制方法
JP6230561B2 (ja) 沿面放電素子駆動用電源回路
WO2019015257A1 (zh) 变频器的控制电路、变频器和微波炉
JP6353142B2 (ja) 沿面放電素子駆動用電源回路
JP6184436B2 (ja) 沿面放電素子駆動用電源回路
US9788368B2 (en) Induction heating generator and an induction cooking hob
CN113890368B (zh) Llc谐振电路及其控制电路和控制方法
Yang et al. Analysis and design of Class-E power amplifiers at any duty ratio in frequency domain
TW200414826A (en) Full wave sense amplifier and lamp tube driving device incorporating the same
CN100464484C (zh) 一种功率因数预校正电源
CN114221451A (zh) 用于无线电能传输系统的品质因素确定设备和方法
Lim et al. Analysis and control of synchronous rectification for MHz class-E resonant rectifier with load variation
CN114696605A (zh) 升降压变换器及其电感电流采样电路
JP6373460B2 (ja) 沿面放電素子駆動用電源回路
CN206585782U (zh) 一种微波炉电源电路及微波炉
TW201251512A (en) Ballast with control device for controlling the open-circuit voltage
CN207589213U (zh) 电磁炉
CN106922044A (zh) 一种微波炉电源电路及微波炉
KR102063106B1 (ko) 증폭기 및 그 증폭기의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 13/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17918635

Country of ref document: EP

Kind code of ref document: A1