WO2019015194A1 - 一种微纳米光场实时构建调制系统和方法 - Google Patents

一种微纳米光场实时构建调制系统和方法 Download PDF

Info

Publication number
WO2019015194A1
WO2019015194A1 PCT/CN2017/113093 CN2017113093W WO2019015194A1 WO 2019015194 A1 WO2019015194 A1 WO 2019015194A1 CN 2017113093 W CN2017113093 W CN 2017113093W WO 2019015194 A1 WO2019015194 A1 WO 2019015194A1
Authority
WO
WIPO (PCT)
Prior art keywords
light field
pattern
modulation
light
micro
Prior art date
Application number
PCT/CN2017/113093
Other languages
English (en)
French (fr)
Inventor
叶燕
许宜申
魏国军
吴尚亮
许峰川
谷雨
刘艳花
黄文彬
陈林森
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US16/628,549 priority Critical patent/US11327326B2/en
Publication of WO2019015194A1 publication Critical patent/WO2019015194A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0988Diaphragms, spatial filters, masks for removing or filtering a part of the beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/32Micromanipulators structurally combined with microscopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70408Interferometric lithography; Holographic lithography; Self-imaging lithography, e.g. utilizing the Talbot effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the invention relates to a micro-nano light field real-time construction modulation system and method, in particular to a real-time micro-nano light field real-time construction modulation system for spatial filtering or spatial filtering time-division multiplexing, multi-wavelet real-time, discrete and continuous modulation, which is applied to Micro-nanostructure processing, laser confocal microscopy, bioluminescence detection and micro-nanotopography.
  • Interference lithography or holographic lithography is a technique for efficiently preparing large-scale micro-nanostructures.
  • the micro-nanostructures prepared by interference lithography have a period determined by the wavelength and angle of the interference beam (the period size is proportional to the interference wavelength, It is inversely proportional to the sine of the angle of the interference beam; its orientation is determined by the wave vector of the interference beam; its fringe phase distribution is determined by the relative phase difference of the interference beam.
  • Interferometric lithography can be freely combined with other technologies such as evaporation, etching, etc., providing a basis for the application of micro/nanostructures in photonic crystals, biomedicine, and microelectronics.
  • the interference lithography system is divided into an Amplitude-splitting configurations interference system and a Wavefront-splitting configurations interference system. Both systems divide the incident light into two or more coherent lights through a beam splitting device to interfere.
  • a semi-transparent mirror, a prism, a grating, a diffraction mask, and a Lloyd's mirror are generally used as the spectroscopic device. Regardless of which spectroscopic device is used to achieve multi-beam interference, the structural parameters of the prepared micro-nanostructure are fixed values and cannot be changed in real time.
  • the period of the micro-nano structure can only be changed within a limited range, and the optical setting of the interferometric system in which the two parameters of the period and the orientation are changed in real time based on the gimbal mirror is very complicated.
  • patent US Patent 5,132,812 and its improved patents US Patent 5,262,879, US Patent 5,822,092 and US Patent 5,132,812 form three different spatial frequency grating pixels by three different sets of angles of the beam interference, thereby realizing Discrete modulation of the grating space frequency.
  • Chinese patents CN01134127.0, 200510095775.2, 200510095776.7, CN201010238377.2 and CN201010503788.X disclose a binary grating as a light splitting element, which realizes discrete modulation of space frequency by switching splitting gratings of different spatial frequencies.
  • new materials based on micro-nanostructures such as new color display, true color 3D display, and metasurface, require a real-time preparation of parameters such as period, orientation, duty cycle and even pattern for the lithography system.
  • the object of the present invention is to provide a real-time construction modulation system for micro-nano light field, which can be flexibly integrated into various lithography systems to realize real-time preparation of micro-nano structures, and can be integrated into various micro-systems to provide modulation. Structured light illumination.
  • the present invention provides the following technical solutions:
  • the embodiment of the present application discloses a micro-nano light field real-time construction modulation system, including a light source, a spatial filtering unit, a 4F optical system, and a light wave modulation unit, wherein the 4F optical system includes a first lens (group) sequentially disposed along the optical path and a second lens (group), the light wave modulation unit being disposed between the first lens (group) and a second lens (group), the light wave modulation unit separately modulating incident light or wavelet surface; the spatial filter unit Before or after the 4F optical system, the spatial filtering unit regulates at least one parameter of the incident light wave surface, the light wave modulation unit pixel selection, the pixel effective area, and the imaging surface light field spatial filtering, and generates a pattern and a pattern position on the back focal plane of the system. , the pattern area and the real-time adjustable light field distribution of the pattern structure parameters.
  • the pattern includes parameters such as pattern composition, pattern position, and pattern area size.
  • the pattern structure parameters include the period, orientation, phase or phase shift amount and duty cycle of the pattern.
  • the light field distribution is composed of single or multiple interference light fields.
  • the pattern composition, position, area size, and structural parameters of the pattern are real-time, discrete or synchronous, and continuously adjustable.
  • the light wave modulation unit is selected from any one of the following methods:
  • the light wave modulation unit is a single phase element, modulating incident light, defining/selecting an incident light field or an exit light field and/or a phase element displacement change, and/or rotation through a spatial filtering unit to achieve a pattern position, Pattern area and light field distribution with adjustable pattern structure parameters;
  • the light wave modulation unit is a spatial variable parameter phase element, and the phase element is composed of at least two sub-pixels with different structure distributions, and different sub-pixels are selected by the spatial filtering unit to realize light field modulation on each wavelet surface. And the light field distribution of different patterns, pattern positions and pattern areas is generated in the back focal plane of the system; the light field modulation of each wavelet surface is realized by time-space filtering, and/or displacement change of phase component components, and/or rotation And generating a light field distribution with adjustable structural parameters on the back focal plane of the system;
  • the light wave modulation unit is a spatial variable parameter phase element, and the phase element is composed of at least two sub-pixels with different structure distributions, and the light field modulation of each wavelet surface is realized by using different regions of the sub-pixels through the spatial filtering unit. And generating a light field distribution of different patterns, pattern positions, and pattern areas on the back focal plane of the system; realizing the light field of each wavelet surface by time-space filtering, and/or displacement change of the phase element components, and/or rotation Modulating and generating a light field distribution with adjustable structural parameters at the back focal plane of the system;
  • the light wave modulation unit is a spatial variable parameter phase element, and the phase element is composed of at least two sub-pixels with different structure distributions, and the light field modulation of each wavelet surface is realized by the sub-pixels to obtain a plurality of interference light fields.
  • the light wave modulation unit is a plurality of discrete sub-phase elements
  • the incident light field is defined/selected by the spatial filtering unit
  • the sub-phase elements are separately modulated on the incident light wave surface to obtain a plurality of interference light field outputs.
  • the light wave modulation unit is a plurality of discrete sub-phase elements, and different regions of the sub-phase elements are selected by the spatial filtering unit to obtain a plurality of interference light field outputs, thereby generating different patterns, pattern positions, and pattern areas.
  • the light wave modulation unit is a plurality of discrete sub-phase elements, and the light field modulation of the incident light wave surface is realized by each of the sub-phase elements to obtain a plurality of interference light field outputs, and the imaging surface is different by the spatial filtering unit. Interference of the choice of light field to produce a light field distribution that achieves different patterns, pattern locations, pattern areas; light field modulation of each wavelet surface by time-spaced filtering, and/or sub-phase element displacement changes, and/or rotation And the light field distribution with adjustable pattern structure parameters is generated on the back focal plane of the system.
  • the spatial filtering unit is selected from the group consisting of a pupil, a grayscale mask or a programmable spatial filtering unit.
  • the filtering of the spatial filtering unit includes, but is not limited to, a spatial filtering time division multiplexing manner.
  • the light source comprises a laser.
  • the present application also discloses a modulation method for constructing a modulation system in real time based on the micro-nano light field.
  • the spatial filtering unit realizes the selection of the incident photonic wave surface, the phase element region, and the imaging surface light field, realizing the real-time selection of the pattern, the pattern position and the pattern area.
  • the present invention utilizes a spatial filtering unit and a light wave modulating unit to select spatial filtering of an incident photonic wave surface, a phase element region, and an imaging surface light field, by spatial filtering, or time division spatial filtering, or time division multiplexing spatial filtering, Or the relative motion of the phase components to realize the real-time preparation of various complex micro-nano structures, and realize the real-time and continuous adjustment of its structural parameters.
  • the micro-nano light field real-time construction modulation system can be flexibly integrated into various microscopic systems. .
  • FIG. 1 is a real-time construction system of a micro-nano light field based on spatial filtering and single phase components according to Embodiment 1 of the present invention; wherein FIG. 1(a) and (b) are spatial filtering to select different incident wavelet planes, and the obtained The position of the pattern changes; Figure 1 (a), (c) is the spatial filtering to select different incident wavelet faces, the phase components are shifted, the pattern position is unchanged, and the corresponding space/base frequency is increased;
  • Embodiment 2 is a real-time construction system of a micro-nano light field based on spatial filtering and spatial variable-parameter phase components according to Embodiment 2 of the present invention
  • FIG. 3 is a real-time construction of a micro-nano light field based on spatial filtering and discrete phase components according to a third embodiment of the present invention
  • FIG. 3(a) is a real-time construction of a micro-nano light field based on spatial filtering
  • FIG. 3(b) spatial filtering Real-time modulation of the micro-nano light field with relative motion of the phase elements
  • Fig. 4 is a real-time construction system of a micro-nano light field based on spatial filtering and single phase elements in a specific embodiment 4 of the present invention.
  • Fig. 4(a) shows the pattern of the high-altitude/basic frequency of the imaging plane and its position filtering selection;
  • Fig. 4(b) The low-frequency/basic frequency, the pattern of the variable orientation of the imaging plane and its positional filtering selection.
  • Embodiment 1 Real-time construction system of micro-nano light field based on spatial filtering and single phase element
  • the micro-nano light field real-time construction modulation system in this embodiment is shown in FIG. 1.
  • the first lens (group) 1 and the second lens (group) are included.
  • the light wave modulating optical element 4 may be a binary optical element, a grating element, a hologram element or a Metasurface element.
  • the dotted line indicates the optical axis 3 of the 4F optical path system.
  • the light-wave modulating optical element 4 is a binary optical element that cancels 0-order light, it has positive and negative first-order diffracted lights. After the spatially filtered incident light, after the converging light of the first lens (group) 1 passes through the binary optical element 4, the positive and negative first-order diffracted lights are respectively formed on the back focal plane of the first lens (group) of the 4F optical path system. Two converging spots.
  • the light-wave modulating optical element 4 is a single-period micro-structure, its concentrated spot on the focal plane of the first lens (group) is symmetrical with respect to the optical axis. Then, the incident light at different positions provided by the spatial filter will be different in the coherent region of the imaging surface after passing through the first lens (group). As shown in Fig. 1 (a) and (b), after spatial filtering, the incident light and the size of the incident light at the two different positions on the imaging surface are different. If only the space frequency of the interference pattern is changed at the position of FIG. 1(a), the incident light wavelet surface can be changed by spatial filtering and the phase element 4 can be shifted horizontally along the optical axis position as shown in FIG. 1(c), so that the pattern is not changed. The distribution area only changes the pattern space frequency.
  • Embodiment 2 Micro-nano-light field real-time construction system based on spatial filtering and spatial variable parameter phase components
  • the micro-nano light field real-time construction modulation system in this embodiment is shown in FIG. 2.
  • the optical wave modulation optical component is a spatial variable parametric phase component
  • the spatial variable parametric phase component 5 is sequentially set up and down.
  • the pixels 50, 51, 52, 53, 54, and 55 are composed.
  • At least one of the sub-pixels 50, 51, 52, 53, 54, and 55 is one of a binary optical element, a grating element, a hologram element, or a Meta-surface element; the sub-pixel structures may be identical or completely different.
  • the spatially filtered incident light is divided into upper and lower beams as shown in FIG. 2, and is concentrated by the first lens (group) 1 and irradiated onto the phase element assembly 5. If the phase element sub-pixels 50-55 are binary optical elements having only positive and negative first-order diffracted lights, the diffracted light passes through the second lens (group) to form a plurality of beams of light, thereby realizing the imaging surface of the 4F system.
  • the spatially variable parametric light field distribution, the interference pattern and its distribution area are determined by the corresponding sub-pixels and the incident light provided by the spatial filtering.
  • Embodiment 3 Micro-nano light field real-time construction system based on spatial filtering and discrete phase components
  • the micro-nano light field real-time construction modulation system in this embodiment is shown in FIG. 3(a).
  • the sub-elements 60, 61, 62, and 63 constitute a light-wave modulating optical component group, which will be in the 4F optical path.
  • the concentrated light wave behind the first lens (group) is separately modulated into three sub-waves, sub-elements 60, 61, At least one of 62 and 63 is a binary optical element, a grating element, a hologram element or a super-surface element; the sub-elements 60, 61, 62 and 63 may be a periodic structure or a non-periodic structure; Elements 60, 61, 62 and 63 may be identical or different.
  • the spatially filtered incident light is concentrated by the first lens (group), and if the sub-element is a binary optical element that cancels 0-order light, it has positive and negative first-order diffracted light. Then, the corresponding diffracted light forms a plurality of outgoing lights on the focal plane of the second lens (group), thereby forming a spatially variable parametric light field distribution on the imaging surface of the system, as shown in FIG. 3(a), the interference pattern and its distribution area are The corresponding sub-pixel and spatial filtering provide the incident light.
  • the pattern space frequency can be changed only by shifting the sub-element 60 in the vertical direction and in the optical axis direction without changing the position and the size of the pattern;
  • the spatial filtering changes the incident light area and the translation sub-element 63, changing the pattern space frequency without changing the pattern position and area size;
  • the pattern and the pattern space frequency can be changed only by changing the positions of the sub-elements 61 and 62.
  • Embodiment 4 Real-time construction system of micro-nano light field based on spatial filtering and single phase component
  • the optical wave modulation optical component is a discrete sub-phase component 7, which can be a binary optical component, a grating component, or a hologram. Component or super-surface component.
  • the sub-phase element 7 is a binary optical element that cancels 0-order light, it has positive and negative first-order diffracted lights.
  • the incident parallel light is concentrated by the first lens (group) and is irradiated on the phase element, and the positive and negative first-order diffracted lights are concentrated by the second lens (group) and interfere on the imaging plane of the system.
  • the space filtering unit 8 is placed behind the system, as shown in Fig. 4(a), after obtaining a high space frequency pattern in the unblocked area, such as shifting and rotating the phase element 7, placing the spatial filtering unit 9 behind the system, blocking at that position
  • the region obtains a low spatial frequency, variable orientation pattern.
  • the system of the present invention uses a laser as a light source to generate pattern, pattern position and area, pattern period, orientation, duty cycle and other structural parameters in real time and continuously through a spatial filtering unit, a 4F optical path system, and an optical modulation device.
  • the modulated interference pattern is integrated into various lithography systems to prepare micro-nano patterns with different structural parameters in real-time on the positive and negative photoresist surfaces, providing a basis for new functional materials based on micro-nano structures.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种微纳米光场实时构建调制系统和方法,系统包括光源、空间过滤单元(8、9)、4F光学系统和光波调制单元(4),4F光学系统包括沿光路依次设置的第一透镜(组)(1)和第二透镜(组)(2),通过位相元件或位相元件组(5)实现对入射波面实时的调控,通过空间过滤单元(8、9)实现对入射光子波面、光波调制光学元器件像素选择、像素有效区域、成像面光场空间滤波等参数调控,最终利用空间滤波/空间分时滤波和/或位相元件的相对位置变化,实现图案、图案分布区域以及图案的空频、取向、占空比以及相位或相移量等结构参数的连续调制。这种系统可灵活集成于各种光刻或显微系统中,实现任意微纳米结构的实时写入和可调制微纳米结构光检测。

Description

一种微纳米光场实时构建调制系统和方法 技术领域
本发明涉及一种微纳米光场实时构建调制系统和方法,具体涉及空间滤波或空间滤波分时复用、多子波面实时、分立、连续调制的实时微纳米光场实时构建调制系统,应用于微纳米结构加工、激光共焦显微成像、生物荧光检测和微纳米形貌检测。
背景技术
干涉光刻或全息光刻是一种高效制备大幅面微纳米结构的技术,干涉光刻制备的微纳米结构,其周期由干涉光束的波长与夹角共同确定(周期大小与干涉波长成正比,与干涉光束夹角的正弦值成反比);其取向由干涉光束的波矢决定;其条纹位相分布由干涉光束的相对位相差决定。干涉光刻可与其他技术如蒸镀、刻蚀等自由组合,为微纳米结构在光子晶体、生物医学、微电子等领域的应用提供基础。
干涉光刻系统分为分振幅(Amplitude-splitting configurations)干涉系统和分波面(Wavefront-splitting configurations)干涉系统,两种系统均通过分光器件将入射光分为两束或两束以上相干光进行干涉,通常选用半透半反镜、棱镜、光栅、衍射掩膜以及Lloyd’s镜等作为分光器件。无论采用何种分光器件实现多光束干涉,其制备的微纳米结构的结构参数为固定值,不可实时变化。即使采用万向镜(gimbal mirror),也只能在有限的范围内改变微纳米结构的周期,而基于gimbal mirror实现周期和取向两种参数实时变化的干涉系统,其光学设置十分复杂。
为实现微纳米结构空频调制,专利U.S.patent 5,132,812及其改进专利U.S.patent 5,262,879、U.S.patent 5,822,092以及U.S.patent 5,132,812通过三组不同夹角的光束干涉形成了三种不同空频的光栅像素,实现了光栅空频的离散调制。中国专利CN01134127.0、200510095775.2、200510095776.7、 CN201010238377.2以及CN201010503788.X公开了一种以二元光栅作为分光元件,通过切换不同空频的分光光栅来实现空频的离散调制。
而目前基于微纳米结构的新材料,如新型颜色显示、真彩色3D显示以及超颖表面材料(metasurface),对光刻系统提出了周期、取向、占空比甚至图案等参数实时制备的需求。
发明内容
本发明的目的在于提供一种微纳米光场实时构建调制系统,可灵活集成于各种光刻系统中,实现微纳米结构的实时制备,亦可集成于各种显微系统中,提供可调制结构光照明。
为实现上述目的,本发明提供如下技术方案:
本申请实施例公开了一种微纳米光场实时构建调制系统,包括光源、空间过滤单元、4F光学系统和光波调制单元,所述4F光学系统包括沿光路依次设置的第一透镜(组)和第二透镜(组),所述光波调制单元设置于所述第一透镜(组)和第二透镜(组)之间,该光波调制单元对入射光或子波面分立调制;所述空间过滤单元位于4F光学系统之前或之后,该空间过滤单元对入射光波面、光波调制单元像素选择、像素有效区域、成像面光场空间滤波中至少一个参量调控,在系统的后焦面产生图案、图案位置、图案面积以及图案结构参数实时可调的光场分布。
优选的,在上述的微纳米光场实时构建调制系统中,所述图案包括图案构成、图案位置、图案面积大小等参数。所述图案结构参数包括图案的周期、取向、相位或相移量和占空比。
优选的,在上述的微纳米光场实时构建调制系统中,所述光场分布由单个或多个干涉光场组成。
优选的,在上述的微纳米光场实时构建调制系统中,所述图案构成、位置、面积大小、以及所述图案的结构参数实时、分立或同步、连续可调。
优选的,在上述的微纳米光场实时构建调制系统中,所述光波调制单元选自下述任一方式:
(a)、所述光波调制单元为单个位相元件,对入射光调制,通过空间过滤单元限定/选择入射光场或出射光场和/或位相元件位移变化、和/或旋转,实现图案位置、图案面积以及图案结构参数可调的光场分布;
(b)、所述光波调制单元为空间变参量位相元件,该位相元件至少由两个不同结构分布的子像素组成,通过空间过滤单元选用不同的子像素实现对各子波面的光场调制,并在系统的后焦面产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或位相元件组件位移变化、和/或旋转实现对各子波面的光场调制,并在系统的后焦面产生结构参数可调的光场分布;
(c)、所述光波调制单元为空间变参量位相元件,该位相元件至少由两个不同结构分布的子像素组成,通过空间过滤单元选用子像素的不同区域实现对各子波面的光场调制,并在系统的后焦面产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或位相元件组件位移变化、和/或旋转实现对各子波面的光场调制,并在系统的后焦面产生结构参数可调的光场分布;
(d)、所述光波调制单元为空间变参量位相元件,该位相元件至少由两个不同结构分布的子像素组成,通过子像素实现对各子波面的光场调制,获得多个干涉光场输出,通过空间过滤单元实现对成像面不同干涉光场的选择,从而产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或位相元件组件位移变化、和/或旋转实现对各子波面的光场调制,产生结构参数可调的光场分布;
(e)、所述光波调制单元为多个分立的子位相元件,通过空间过滤单元限定/选择入射光场,再经子位相元件对入射光子波面的分立调制,获得多个干涉光场输出,从而产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或子位相元件位移变化、和/或旋转实现对各子波面的光场调制,并在系统的后焦面产生图案、结构参数可调的光场分布;
(f)、所述光波调制单元为多个分立的子位相元件,通过空间过滤单元选择子位相元件的不同区域,获得多个干涉光场输出,从而产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或子位相元件位移 变化、和/或旋转实现对各子波面的光场调制,并在系统的后焦面产生图案、结构参数可调的光场分布;
(g)、所述光波调制单元为多个分立的子位相元件,通过各子位相元件实现对入射光子波面的光场调制,获得多个干涉光场输出,通过空间过滤单元实现对成像面不同干涉光场的选择,从而产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或子位相元件位移变化、和/或旋转实现对各子波面的光场调制,并在系统的后焦面产生图案结构参数可调的光场分布。
优选的,在上述的微纳米光场实时构建调制系统中,所述空间过滤单元选自光阑、灰度掩膜或可编程空间过滤单元。
优选的,在上述的微纳米光场实时构建调制系统中,所述空间过滤单元的滤波包括且不限于空间滤波的分时复用方式。
优选的,在上述的微纳米光场实时构建调制系统中,所述光源包括激光。
本申请还公开了基于所述的微纳米光场实时构建调制系统的调制方法。
与现有技术相比,本发明的优点在于:
(1)、空间过滤单元实现对入射光子波面、位相元件区域选择、成像面光场,实现图案、图案位置、图案面积的实时选择。
(2)、通过空间滤波和/或分时复用,实现图案、图案位置、图案面积的实时调制和/或结构参数的连续调制。
(3)、通过空间过滤单元、位相元件的平移和旋转,实现图案在单维度下结构参数的连续调制。
(4)、通过空间过滤单元、位相元件的平移和旋转,实现图案和/或图案结构参数的分立或同时连续调制。
总之,本发明利用空间过滤单元与光波调制单元,对入射光子波面、位相元件区域以及成像面光场等的空间滤波选择,通过空间滤波、或分时空间滤波、或分时复用空间滤波、或和位相元件的相对运动,实现各种复杂微纳米结构的实时制备,并实现其结构参数的实时、连续可调,微纳米光场实时构建调制系统可灵活集成于各种显微系统中。。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为本发明具体实施例1中基于空间滤波与单一位相元件的微纳米光场实时构建系统;其中图1(a)、(b)为空间滤波选定不同的入射子波面,所得图案的位置变化;图1(a)、(c)为空间滤波选定不同的入射子波面、位相元件平移后,图案位置不变,其对应空频/基频增大;
图2所示为本发明具体实施例2中基于空间滤波与空间变参量位相元件的微纳米光场实时构建系统;
图3所示为本发明具体实施例3中基于空间滤波与分立位相元件的微纳米光场实时构建;图3(a)基于空间滤波的微纳米光场实时构建;图3(b)空间滤波与位相元件的相对运动对微纳米光场的实时调制;
图4所示为本发明具体实施例4中基于空间滤波与单一位相元件的微纳米光场实时构建系统。图4(a)成像面高空频/基频的图案及其位置滤波选择;图4(b)成像面低空频/基频、变取向的图案及其位置滤波选择。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:基于空间滤波与单一位相元件的微纳米光场实时构建系统
本实施例中所述微纳米光场实时构建调制系统如图1所示,在4F光路系统(焦距f1、f1、f2、f2)中,包括第一透镜(组)1、第二透镜(组)1和光波调制光学元件4,光波调制光学元件4可以为二元光学元件、光栅元件、全息元件或超颖表面元件。其中虚线表示4F光路系统的光轴3。
在本实施例中,若光波调制光学元件4为消0级光的二元光学元件,具有正负一级衍射光。经空间滤波后的入射光,第一透镜(组)1后的会聚光经二元光学元件4后,其正负一级衍射光分别在4F光路系统的第一透镜(组)后焦面形成两个会聚光斑。
如光波调制光学元件4为单一周期微米结构,则其在第一透镜(组)后焦面的会聚光斑相对于光轴对称。则空间滤波器提供的不同位置的入射光,经第一透镜(组)后,在成像面的相干区域将不同。如图1(a)及(b)所示,经空间滤波后,两束不同位置的入射光,在成像面的干涉位置、面积大小不同。若需在如图1(a)位置仅改变干涉图案的空频,则可通过空间滤波改变入射光子波面以及沿光轴位置平移位相元件4后如图1(c)所示,从而不改变图案分布区域,仅改变图案空频。
实施例2:基于空间滤波与空间变参量位相元件的微纳米光场实时构建系统
本实施例中所述微纳米光场实时构建调制系统如图2所示,在4F光路系统中,光波调制光学元器件为空间变参量位相元件,空间变参量位相元件5由上下依次设置的子像素50、51、52、53、54和55组成。子像素50、51、52、53、54和55中至少一个是二元光学元件、光栅元件、全息元件或超颖表面元件的一种;子像素结构可以完全相同也可以完全不同。
经空间滤波后的入射光如图2所示,分为上下两束,经第一透镜(组)1会聚,照射在位相元件组件5上。若位相元件子像素50-55均为只存在正负一级衍射光的二元光学元件,则其衍射光经第二透镜(组)后形成多束光出射,从而在4F系统的成像面实现空间变参量光场分布,干涉图案及其分布区域由对应的子像素和空间滤波提供的入射光决定。
实施例3:基于空间滤波与分立位相元件的微纳米光场实时构建系统
本实施例中所述微纳米光场实时构建调制系统如图3(a)所示,在4F光路系统中,子元件60、61、62和63组成光波调制光学元器件组,将4F光路中第一透镜(组)后面的会聚光波分成三段子波分别调制,子元件60、61、 62和63中至少一个是二元光学元件、光栅元件、全息元件或超颖表面元件的一种;子元件60、61、62和63可以是周期性结构,亦可以为非周期性结构;子元件60、61、62和63可以完全相同,也可以不同。
在本实施例中,经空间滤波后的入射光经第一透镜(组)后会聚,若子元件均为消0级光的二元光学元件,具有正负一级衍射光。则其相应衍射光在第二透镜(组)后焦面形成多束出射光,从而在系统成像面形成空间变参量光场分布,如图3(a)所示,干涉图案及其分布区域由对应的子像素和空间滤波提供的入射光决定。
在本实施例中,如图3(b)所示,可仅通过在垂直和沿光轴方向平移子元件60,在不改变图案位置及面积大小的情况下,改变图案空频;可仅通过空间滤波改变入射光区域和平移子元件63,在不改变图案位置及面积大小的情况下,改变图案空频;可仅通过改变子元件61和62的位置,改变图案以及图案空频。
实施例4:基于空间滤波与单一位相元件的微纳米光场实时构建系统
本实施例中所述微纳米光场实时构建调制系统如图4所示,在4F光路系统中,光波调制光学元器件为分立的子位相元件7,可以为二元光学元件、光栅元件、全息元件或超颖表面元件。
在本实施例中,若子位相元件7为消0级光的二元光学元件,具有正负一级衍射光。入射平行光经第一透镜(组)会聚,照射在位相元件上,其正负一级衍射光会聚经第二透镜(组)后在系统成像面干涉。
在系统后方放置空间过滤单元8,如图4(a)所示,在未阻挡区域获得高空频图案,如平移和旋转位相元件7之后,在系统后方放置空间过滤单元9,则在该位阻挡区域获得低空频、变取向的图案。
综上所述,本发明系统用激光作为光源,通过空间过滤单元、4F光路系统和光学调制器件,产生图案、图案位置及面积、图案内周期、取向、占空比等结构参数实时、连续可调的干涉图案,集成于各种光刻系统,在正负光刻胶表面实时制备不同结构参数的微纳米图案,为基于微纳米结构的新型功能材料提供基础。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (9)

  1. 一种微纳米光场实时构建调制系统,其特征在于,包括光源、空间过滤单元、4F光学系统和光波调制单元,所述4F光学系统包括沿光路依次设置的第一透镜(组)和第二透镜(组),所述光波调制单元设置于所述第一透镜(组)和第二透镜(组)之间,该光波调制单元对入射光或子波面分立调制;所述空间过滤单元位于4F光学系统之前或之后,该空间过滤单元对入射光波面、光波调制单元像素选择、像素有效区域、成像面光场空间滤波中至少一个参量调控,在系统的后焦面产生图案、图案位置、图案面积以及图案结构参数实时可调的光场分布。
  2. 根据权利要求1所述的微纳米光场实时构建调制系统,其特征在于:所述图案包括图案构成、图案位置、图案面积大小等参数。所述图案结构参数包括图案的周期、取向、相位或相移量和占空比。
  3. 根据权利要求1所述的微纳米光场实时构建调制系统,其特征在于:所述光场分布由单个或多个干涉光场组成。
  4. 根据权利要求1所述的微纳米光场实时构建调制系统,其特征在于:所述图案构成、位置、面积大小、以及所述图案的结构参数实时、分立或同步、连续可调。
  5. 根据权利要求1至4任一所述的微纳米光场实时构建调制系统,其特征在于:所述光波调制单元选自下述任一方式:
    (a)、所述光波调制单元为单个位相元件,对入射光调制,通过空间过滤单元限定/选择入射光场或出射光场和/或位相元件位移变化、和/或旋转,实现图案位置、图案面积以及图案结构参数可调的光场分布;
    (b)、所述光波调制单元为空间变参量位相元件,该位相元件至少由两个不同结构分布的子像素组成,通过空间过滤单元选用不同的子像素实现对各子波面的光场调制,并在系统的后焦面产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或位相元件组件位移变化、和/或旋转实现对各子波面的光场调制,并在系统的后焦面产生结构参数可调的光场分布;
    (c)、所述光波调制单元为空间变参量位相元件,该位相元件至少由两个不同结构分布的子像素组成,通过空间过滤单元选用子像素的不同区域实 现对各子波面的光场调制,并在系统的后焦面产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或位相元件组件位移变化、和/或旋转实现对各子波面的光场调制,并在系统的后焦面产生结构参数可调的光场分布;
    (d)、所述光波调制单元为空间变参量位相元件,该位相元件至少由两个不同结构分布的子像素组成,通过子像素实现对各子波面的光场调制,获得多个干涉光场输出,通过空间过滤单元实现对成像面不同干涉光场的选择,从而产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或位相元件组件位移变化、和/或旋转实现对各子波面的光场调制,产生结构参数可调的光场分布;
    (e)、所述光波调制单元为多个分立的子位相元件,通过空间过滤单元限定/选择入射光场,再经子位相元件对入射光子波面的分立调制,获得多个干涉光场输出,从而产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或子位相元件位移变化、和/或旋转实现对各子波面的光场调制,并在系统的后焦面产生图案、结构参数可调的光场分布;
    (f)、所述光波调制单元为多个分立的子位相元件,通过空间过滤单元选择子位相元件的不同区域,获得多个干涉光场输出,从而产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或子位相元件位移变化、和/或旋转实现对各子波面的光场调制,并在系统的后焦面产生图案、结构参数可调的光场分布;
    (g)、所述光波调制单元为多个分立的子位相元件,通过各子位相元件实现对入射光子波面的光场调制,获得多个干涉光场输出,通过空间过滤单元实现对成像面不同干涉光场的选择,从而产生实现不同图案、图案位置、图案面积的光场分布;通过分时空间滤波、和/或子位相元件位移变化、和/或旋转实现对各子波面的光场调制,并在系统的后焦面产生图案结构参数可调的光场分布。
  6. 根据权利要求1至4任一所述的微纳米光场实时构建调制系统,其特征在于:所述空间过滤单元选自光阑、灰度掩膜或可编程空间过滤单元。
  7. 根据权利要求5所述的微纳米光场实时构建调制系统,其特征在于: 所述空间过滤单元的滤波包括且不限于空间滤波的分时复用方式。
  8. 根据权利要求1所述的微纳米光场实时构建调制系统,其特征在于:所述光源包括激光。
  9. 基于权利要求1至8任一所述的微纳米光场实时构建调制系统的调制方法。
PCT/CN2017/113093 2017-07-18 2017-11-27 一种微纳米光场实时构建调制系统和方法 WO2019015194A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/628,549 US11327326B2 (en) 2017-07-18 2017-11-27 Real-time micro/nano optical field generation and manipulation system/method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710587322.4 2017-07-18
CN201710587322.4A CN107229126A (zh) 2017-07-18 2017-07-18 一种微纳米光场实时构建调制系统和方法

Publications (1)

Publication Number Publication Date
WO2019015194A1 true WO2019015194A1 (zh) 2019-01-24

Family

ID=59957080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113093 WO2019015194A1 (zh) 2017-07-18 2017-11-27 一种微纳米光场实时构建调制系统和方法

Country Status (3)

Country Link
US (1) US11327326B2 (zh)
CN (1) CN107229126A (zh)
WO (1) WO2019015194A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114839771A (zh) * 2022-04-24 2022-08-02 北京理工大学 一种基于超颖表面的微型大视场局部放大光学系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814266B (zh) * 2019-03-07 2021-03-23 武汉邮电科学研究院有限公司 一种激光整形光学元件及其设计方法
CN112099121B (zh) * 2020-09-29 2022-07-22 北京华卓精科科技股份有限公司 基于4f系统的扫描干涉光刻系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073006A (en) * 1990-03-30 1991-12-17 The United States Of America As Represented By The Secretary Of The Air Force Compact 2f optical correlator
CN102865832A (zh) * 2012-09-18 2013-01-09 西安电子科技大学 基于相位恢复的4f镜面检测成像系统及其方法
CN204116710U (zh) * 2014-09-26 2015-01-21 江苏大学 一种两步衍射相位成像系统
CN105259666A (zh) * 2015-11-30 2016-01-20 南开大学 一种基于动态调控的焦场轨迹制作微结构的装置
CN105511074A (zh) * 2016-01-06 2016-04-20 苏州大学 实时变参量微纳米光场调制系统和干涉光刻系统
CN205942088U (zh) * 2016-01-06 2017-02-08 苏州大学 实时变参量微纳米光场调制与光刻系统
CN106842606A (zh) * 2017-04-06 2017-06-13 苏州苏大维格光电科技股份有限公司 一种光衍射器件及其制备方法和三维显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697191B2 (en) * 2004-07-15 2010-04-13 Danmarks Tekniske Universitet Generation of a desired three-dimensional electromagnetic field
CN101794024A (zh) * 2010-04-02 2010-08-04 上海理工大学 一种产生柱矢量光束的装置及方法
CN101893755B (zh) * 2010-07-06 2012-07-25 中国科学院西安光学精密机械研究所 使用四棱锥镜产生结构照明的荧光显微方法和装置
CN102073264B (zh) * 2010-11-19 2013-04-24 中山大学 分时复用计算全息三维显示系统及其显示方法
CN102183883B (zh) * 2011-05-17 2012-12-26 中山大学 多光束时分复用全息三维显示系统及其显示方法
CN105607267B (zh) * 2016-03-07 2017-11-17 东南大学 一种生成无衍射针型光场的装置
CN207301512U (zh) * 2017-07-18 2018-05-01 苏州大学 一种微纳米光场实时构建调制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073006A (en) * 1990-03-30 1991-12-17 The United States Of America As Represented By The Secretary Of The Air Force Compact 2f optical correlator
CN102865832A (zh) * 2012-09-18 2013-01-09 西安电子科技大学 基于相位恢复的4f镜面检测成像系统及其方法
CN204116710U (zh) * 2014-09-26 2015-01-21 江苏大学 一种两步衍射相位成像系统
CN105259666A (zh) * 2015-11-30 2016-01-20 南开大学 一种基于动态调控的焦场轨迹制作微结构的装置
CN105511074A (zh) * 2016-01-06 2016-04-20 苏州大学 实时变参量微纳米光场调制系统和干涉光刻系统
CN205942088U (zh) * 2016-01-06 2017-02-08 苏州大学 实时变参量微纳米光场调制与光刻系统
CN106842606A (zh) * 2017-04-06 2017-06-13 苏州苏大维格光电科技股份有限公司 一种光衍射器件及其制备方法和三维显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114839771A (zh) * 2022-04-24 2022-08-02 北京理工大学 一种基于超颖表面的微型大视场局部放大光学系统

Also Published As

Publication number Publication date
CN107229126A (zh) 2017-10-03
US11327326B2 (en) 2022-05-10
US20200218078A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US11440136B2 (en) Method and device for shaping radiation for laser processing
US10054859B2 (en) Real-time variable parameter micro-nano optical field modulation system and interference lithography system
Jesacher et al. Shadow effects in spiral phase contrast microscopy
JP3775250B2 (ja) レーザー加工方法及びレーザー加工装置
US11487094B2 (en) Optical system for spatiotemporal shaping the wavefront of the electric field of an input light beam to create three-dimensional illumination
JP2014522981A (ja) 空間光変調器を用いて物体の三次元座標を求める装置および方法
WO2019015194A1 (zh) 一种微纳米光场实时构建调制系统和方法
US11668961B2 (en) Optical arrangement for generating light field distributions and method for operating an optical arrangement
JP2011002698A (ja) 位相変調装置、及び位相変調装置を使った観察システム
WO2014103493A1 (ja) パターン化干渉光生成装置
Kapoor et al. Optical vortex array in spatially varying lattice
Zhou et al. Femtosecond multi-beam interference lithography based on dynamic wavefront engineering
CN105511074A (zh) 实时变参量微纳米光场调制系统和干涉光刻系统
Mikhaylov et al. Beam shaping using two spatial light modulators for ultrashort pulse laser ablation of metals
CN207301512U (zh) 一种微纳米光场实时构建调制系统
CN205942088U (zh) 实时变参量微纳米光场调制与光刻系统
Ulm et al. Spatial light modulator-based maskless laser lithography using Fourier filtering and focal shift
Bulanovs Digital holographic recording in amorphous chalcogenide films
Xue et al. Development of dielectric-film-based polarization modulation scheme for patterning highly uniform 2D array structures with periodic tunability
WO2016174262A1 (en) 3d light projection device
Hasler et al. SLM-based microscopy
Laskin et al. Applying field mapping refractive beam shapers to improve holographic techniques
KR20230088009A (ko) 공간광변조기를 이용한 3차원 구조 제조장치 및 3차원 구조 제조방법
EA031709B1 (ru) Микрооптическая система для формирования 2d изображений с кинематическими эффектами движения
Hayasaki et al. Spatial Beam Shaping with a Liquid-Crystal Spatial Light Modulator for Surface Micro-and Nanoprocessing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918022

Country of ref document: EP

Kind code of ref document: A1