WO2019012619A1 - Heat source unit - Google Patents

Heat source unit Download PDF

Info

Publication number
WO2019012619A1
WO2019012619A1 PCT/JP2017/025382 JP2017025382W WO2019012619A1 WO 2019012619 A1 WO2019012619 A1 WO 2019012619A1 JP 2017025382 W JP2017025382 W JP 2017025382W WO 2019012619 A1 WO2019012619 A1 WO 2019012619A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air heat
source unit
heat
heat exchangers
Prior art date
Application number
PCT/JP2017/025382
Other languages
French (fr)
Japanese (ja)
Inventor
洋太 前間
隆宏 秋月
拓也 伊藤
祐二 垂水
靖 大越
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1918060.3A priority Critical patent/GB2577431B/en
Priority to PCT/JP2017/025382 priority patent/WO2019012619A1/en
Priority to JP2019529367A priority patent/JP6824410B2/en
Publication of WO2019012619A1 publication Critical patent/WO2019012619A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0266Particular core assemblies, e.g. having different orientations or having different geometric features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to an air conditioner and a heat source unit constituting a heat pump water heater.
  • An air conditioner and a heat pump water heater include a heat source unit having an air heat exchanger.
  • the air heat exchanger has a plurality of heat transfer tubes and a plurality of fins. Inside the heat transfer tube, a refrigerant that exchanges heat with the air supplied to the heat source unit flows.
  • the fins are configured in combination with the heat transfer tubes to increase the efficiency of heat exchange between the refrigerant and the air.
  • the heat source unit described in Patent Document 1 includes a copper circular tube as a heat transfer tube and an aluminum fin as a fin.
  • the heat transfer tube of the air heat exchanger described in Patent Document 1 is a circular tube, the contact area with the air supplied to the heat source unit is small. Therefore, many circular tubes are required to achieve high capacity heat exchange performance. Therefore, there are concerns that the number of rows of air heat exchangers mounted on the heat source unit is increased, and the manufacturing cost is increased. In other words, depending on the number of circular tubes mounted, the desired heat exchange performance may not be obtained.
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a heat source unit capable of obtaining high heat exchange performance without increasing the number of heat transfer tubes.
  • the heat source unit according to the present invention is a heat source unit including a plurality of heat exchangers having a plurality of fins and a plurality of flat tubes, and a rectangular parallelepiped machine room, wherein the plurality of heat exchangers are the machine room Among the plurality of heat exchangers, the pair of heat exchangers disposed opposite to each other along the short direction of the machine chamber have end portions on the side far from the machine chamber. The interval is inclined to be larger than the interval between the ends closer to the machine room.
  • the heat source unit according to the present invention since a flat tube is used for the heat transfer tube of the air heat exchanger, the surface area with which the air supplied to the heat source unit is in contact is larger than when a circular tube is used. Therefore, the heat exchange area is secured the same as the heat exchange area when using a circular tube for the heat transfer tube of the air heat exchanger with a smaller number of heat transfer tubes than when the circular tube is used for the heat transfer tube of the air heat exchanger. The cost of manufacturing the heat source unit can be reduced. Further, since the heat exchanger of the heat source unit according to the present invention is inclined, condensation water generated during heating operation does not stay in the flat portion of the flat tube.
  • the occurrence of icing in the heat exchanger during the heating operation can be prevented, and the heating operation can be performed while maintaining high heat exchange performance.
  • FIG. 2 is a side view of the heat source unit of the first embodiment.
  • FIG. 2 is a perspective view of a machine room of the heat source unit of the first embodiment.
  • FIG. 5 is a view schematically showing the arrangement of the air heat exchanger in the heat source unit of the first embodiment.
  • FIG. 2 is a view schematically showing a configuration of an air heat exchanger of the heat source unit of the first embodiment.
  • FIG. 6 is a view schematically showing the air heat exchanger according to Embodiment 1 cut along the line BB in FIG. 5 and viewed in the arrow direction. It is a figure for demonstrating the effect at the time of using a flat tube for an air heat exchanger.
  • FIG. 10 is a diagram for explaining the effect of the modification of the first embodiment. It is a figure showing typically a heat source exchanger at the time of seeing a heat source unit concerning Embodiment 2 of the present invention from the top. It is a figure which shows typically the state which injected water from the water spray nozzle to the air heat exchanger of Embodiment 2.
  • FIG. 10 is a diagram for explaining the effect of the modification of the first embodiment. It is a figure showing typically a heat source exchanger at the time of seeing a heat source unit concerning Embodiment 2 of the present invention from the top. It is a figure which shows typically the state which injected water from the water spray nozzle to the air heat exchanger of Embodiment 2.
  • FIG. 10 is a diagram for explaining the effect of the modification of the first embodiment. It is a figure showing typically a heat source exchanger at the time of seeing a heat source unit concerning Embodiment 2 of the present invention from the top. It is a figure which shows typically the state which injected water from the water spray
  • FIG. 21 is a side view of the heat source unit of the seventh embodiment.
  • FIG. 24 schematically shows an arrangement of the air heat exchanger in the heat source unit according to the seventh embodiment. It is a figure which shows typically a heat-source exchanger at the time of seeing the heat-source unit which concerns on Embodiment 8 of this invention from a top.
  • FIG. 1 is a perspective view of a heat source unit according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view of the heat source unit of the first embodiment.
  • FIG. 3 is a perspective view of a machine chamber of the heat source unit according to the first embodiment.
  • FIG. 4: is a figure which shows typically arrangement
  • FIG. FIG. 2 shows the heat source unit from the direction of arrow A in FIG.
  • FIG. 3 shows the machine room from the opposite side of the side shown in FIG.
  • FIG. 4 shows a plurality of air heat exchangers from above the heat source unit.
  • the heat source unit 100 according to the first embodiment is used as a heat source device of a chiller device.
  • a heat transfer fluid such as water or antifreeze liquid is supplied from a use side unit (not shown) to the heat source unit 100, and the heat transfer fluid is cooled or heated in the heat source unit 100 and supplied to the use side unit. .
  • a heat transfer fluid By circulating the heat transfer fluid in this manner, cold heat or heat is supplied to the use side unit.
  • the heat source unit 100 includes four air heat exchangers 1A, an air heat exchanger 1B, an air heat exchanger 1C, an air heat exchanger 1D, and a rectangular parallelepiped machine room 4, which constitute a refrigeration cycle on the heat source side.
  • Fan 5A, fan 5B, fan 5C, and fan 5D are a first heat exchanger of the present invention
  • the air heat exchanger 1B is a second heat exchanger of the present invention
  • the air heat exchanger 1C is a third heat exchange of the present invention
  • the air heat exchanger 1D is the fourth heat exchanger of the present invention.
  • a ceiling frame 60 is provided above the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D.
  • the sky frame 60 is provided with the above-mentioned fan 5A, fan 5B, fan 5C, and fan 5D.
  • the fan 5A, the fan 5B, the fan 5C, and the fan 5D are each covered with a fan guard (not shown).
  • the space which the machine room 4 occupies in FIG. 1 is shown by the dotted line.
  • the machine room 4 has an underframe 41, four portals, four intermediate columns, and an upper beam 44.
  • the four portals are a portal 42A, a portal 42B, a portal 42C, and a portal 42D.
  • the four middle columns are a middle column 43A, a middle column 43B, a middle column 43C, and a middle column 43D.
  • the underframe 41 is a plate-like member having a rectangular shape.
  • the portals 42A, the portals 42B, the portals 42C, and the portals 42D are provided to extend in the direction orthogonal to the underframe 41 at the four corners of the underframe 41.
  • the intermediate column 43A and the intermediate column 43B are provided at an interval between the portal column 42A and the portal column 42C in the longitudinal direction of the underframe 41.
  • the intermediate column 43C and the intermediate column 43D are provided at an interval between the portal column 42B and the portal column 42D in the longitudinal direction of the underframe 41.
  • the intermediate column 43A, the intermediate column 43B, the intermediate column 43C, and the intermediate column 43D are provided to extend in the direction orthogonal to the underframe 41.
  • the upper beam 44 is provided on the portals 42A, the portals 42B, the portals 42C, and the portals 42D, and the intermediate columns 43A, 43B, 43C, and 43D.
  • a plurality of element devices are installed in the machine room 4.
  • the plurality of devices installed in the machine room 4 include the water-side heat exchanger 3, the compressor 31 forming the refrigerant circuit, and the control panel 32.
  • the air heat exchangers 1A, 1B, 1C, and 1D may be collectively referred to as the air heat exchanger 1.
  • the portals 42A, the portals 42B, the portals 42C, and the portals 42D may be collectively referred to as portals 42.
  • the middle pillar 43A, the middle pillar 43B, the middle pillar 43C, and the middle pillar 43D may be collectively referred to as a middle pillar 43.
  • the distance between the end parts far from the machine room 4 is close to the machine room 4. It is inclined to be larger than the distance between the side ends. That is, the air heat exchanger 1A and the air heat exchanger 1B are inclined to form a V when viewed from the side of the heat source unit 100.
  • the air heat exchanger 1C and the air heat exchanger 1D which face each other in the short direction of the machine room 4 are similarly inclined so as to be V-shaped.
  • the inclination angle ⁇ of the air heat exchanger 1A is 65 degrees to 80 degrees.
  • the inclination angles of the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D are the same.
  • the upper beam 44 of the machine room 4 is provided with a base 10.
  • the base 10 is supported by a portal post 42 and an intermediate post 43.
  • the base 10 is provided with a plurality of rubber sheets 13.
  • the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D are disposed on the base 10 with the rubber sheet 13 interposed therebetween.
  • air heat exchanger 1A, air heat exchanger 1B, air heat exchanger 1C, and air heat exchanger 1D are inclined in the above-mentioned mode.
  • a side panel 50 is provided between the air heat exchanger 1A and the air heat exchanger 1C.
  • a side panel 51 is provided between the air heat exchanger 1A and the air heat exchanger 1B.
  • a side panel (not shown) similar to the side panel 50 is provided between the air heat exchanger 1B and the air heat exchanger 1D. Further, a side panel (not shown) similar to the side panel 51 is provided between the air heat exchanger 1C and the air heat exchanger 1D.
  • FIG. 5 is a diagram schematically showing a configuration of the air heat exchanger of the heat source unit of the first embodiment.
  • FIG. 6 is a view schematically showing the air heat exchanger in the direction of the arrow by cutting the air heat exchanger at the position of line BB in FIG.
  • the air heat exchanger 1 is a parallel flow type heat exchanger, and includes a pair of headers 9, a plurality of aluminum flat tubes 7, and a plurality of corrugated fins 8.
  • the plurality of aluminum flat tubes 7 are disposed between the pair of headers 9, and both ends thereof are connected to the headers 9. Between the pair of headers 9, the plurality of aluminum flat tubes 7 are arranged in parallel with an interval, and the respective flat portions face each other.
  • the corrugated fins 8 are provided between opposing flat portions of the plurality of aluminum flat tubes 7.
  • the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D are flat in the aluminum flat tube 7 when viewed from the direction orthogonal to the aluminum flat tube 7. It is bent at an angle of 90 degrees at one position offset from the longitudinal center to one end. That is, when viewed from one end of the header 9, the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D have an L shape.
  • the air heat exchanger 1A and the air heat exchanger 1B face each other along the short direction of the machine room 4, and the air heat exchanger 1C and the air heat exchanger 1D face each other along the short direction of the machine room 4. doing.
  • the air heat exchanger 1A and the air heat exchanger 1C are juxtaposed along the longitudinal direction of the machine chamber 4, and the air heat exchanger 1B and the air heat exchanger 1D are juxtaposed along the longitudinal direction of the machine chamber 4 It is done. Further, the short side 1AS of the air heat exchanger 1A and the short side 1BS of the air heat exchanger 1B face each other along the short direction of the machine chamber 4, and the short side 1CS of the air heat exchanger 1C and the air The short side 1DS of the heat exchanger 1D is opposed along the short direction of the machine room 4.
  • the long side 1AL of the air heat exchanger 1A and the long side 1CL of the air heat exchanger 1C are juxtaposed along the longitudinal direction of the machine chamber 4, and the long side 1BL of the air heat exchanger 1B and the air heat
  • the long side portions 1DL of the exchanger 1D are juxtaposed along the longitudinal direction of the machine room 4. Therefore, the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D constitute a rectangular frame as a whole.
  • the heat source unit 100 of the first embodiment is arranged such that the flow direction of the supplied air intersects the long side of the aluminum flat tube 7 of the air heat exchanger 1. Therefore, the supplied air is guided between the opposing flat portions of the plurality of aluminum flat tubes 7 and flows along the width direction orthogonal to the longitudinal direction in the aluminum flat tubes 7.
  • FIG. 7 is a figure for demonstrating the effect at the time of using a flat tube for an air heat exchanger.
  • the flow of air supplied to the heat source unit 100 is indicated by an arrow.
  • the heat transfer tube of the air heat exchanger 1 is the aluminum flat tube 7
  • the air supplied to the heat source unit 100 is in the width direction orthogonal to the longitudinal direction in the aluminum flat tube 7. Flow along.
  • the surface area of the air supplied to the heat source unit 100 in contact with the aluminum flat tube 7 is larger than that in the case where a heat transfer tube is a circular tube.
  • heat is generated when the heat transfer tube of the air heat exchanger is used with a smaller number of heat transfer tubes than when the heat transfer tube of the air heat exchanger is used with a circular tube.
  • the same heat exchange area as the exchange area can be secured. As a result, the manufacturing cost of the heat source unit 100 can be reduced.
  • FIG. 8 is a figure for demonstrating the effect at the time of making an air heat exchanger incline and arrange
  • the air heat exchangers 1 opposed in the lateral direction of the machine room 4 are inclined to be V-shaped. Therefore, according to the first embodiment, as shown in FIG. 8, the dew condensation water 16 does not stay in the flat portion of the aluminum flat tube 7 but flows down in the vertical direction. As a result, it is possible to prevent the occurrence of freezing in the air heat exchanger 1 during the heating operation, and it is possible to perform the heating operation while maintaining high heat exchange performance.
  • FIG. 9 and FIG. 10 are diagrams schematically showing modifications of the arrangement of the air heat exchanger.
  • the air heat exchanger 1 is bent in an L shape, and the long side extends in the longitudinal direction of the machine chamber 4 and the short side extends in the short direction of the machine chamber 4. It is not limited to this.
  • the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D may be configured. That is, corner 1AF of air heat exchanger 1A, corner 1BF of air heat exchanger 1B, corner 1CF of air heat exchanger 1C, and corner 1DF of air heat exchanger 1D are each greater than 90 degrees. Let it be an angle.
  • the long side 1AL of the air heat exchanger 1A and the long side 1CL of the air heat exchanger 1C are juxtaposed along the longitudinal direction of the machine chamber 4, and the long side 1BL of the air heat exchanger 1B and the air heat exchanger 1D
  • the long side portions 1DL are juxtaposed along the longitudinal direction of the machine room 4.
  • the short sides 1AS, 1BS, 1CS, and 1DS of the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D intersect the short direction of the machine room 4.
  • the corner 1AG may be bent at an obtuse angle at the center in the longitudinal direction of the aluminum flat tube 7.
  • the corner 1BG of the air heat exchanger 1B, the corner 1CG of the air heat exchanger 1C, and the corner 1DG of the air heat exchanger 1D have the same configuration.
  • Exchange 1D is arranged.
  • FIG. 11 is a diagram for explaining the effect of the modification of the first embodiment.
  • FIG. 11 shows a cross section of the fin-and-tube type air heat exchanger cut at the same position as the line BB in FIG.
  • the air heat exchanger 110 has a plate-like fin 180 and an aluminum flat tube 170.
  • the aluminum flat tube 170 penetrates the fin 180.
  • FIG. 11 by arranging the air heat exchanger 110 as described above, the condensed water 16 generated during the heating operation does not stay on the surface of the flat tube of the aluminum flat tube 170, The same effect as described above can be obtained.
  • FIG. 12 is a diagram schematically showing the heat source exchanger when the heat source unit according to Embodiment 2 of the present invention is viewed from above.
  • the same components as the components of the first embodiment are given the same reference numerals as in FIGS. 1 to 11.
  • the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D are arranged in the same manner as the embodiment shown in FIG. There is.
  • the heat source unit 200 has two water sprinkling pipes 18 and a plurality of water sprinkling nozzles 19.
  • the water sprinkling pipe 18 is made of resin.
  • the water sprinkling pipe 18 and the water sprinkling nozzle 19 face each other between the air heat exchanger 1A and the air heat exchanger 1B facing in the short direction of the machine room 4 and along the short direction of the machine room 4 It is disposed between the air heat exchanger 1C and the air heat exchanger 1D.
  • the water injection piping 18 and the plurality of water injection nozzles 19 It is arranged inside the rectangular space formed by the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D.
  • the two water spray pipes 18 are disposed parallel to each other along the longitudinal direction of the machine room 4.
  • the plurality of water spray nozzles 19 are attached to two water spray pipes 18 toward the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D.
  • the water supplied to the water sprinkling pipe 18 is injected to the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D through the water sprinkling nozzle 19.
  • FIG. 13 is a figure which shows typically the state which injected water from the water spray nozzle to the air heat exchanger.
  • the chiller device on which the heat source unit 200 is mounted is performing a cooling operation, it is difficult to obtain the cooling performance of the heat source unit 200 in an environment where the outside air temperature exceeds 35 ° C. Ru.
  • water sprinkling operation water is supplied to the water sprinkling pipe 18 and the supplied water is jetted from the water sprinkling nozzle 19 to the air heat exchanger 1.
  • a water droplet 20 hits the end on the side where the is placed.
  • the air heat exchanger 1 is disposed to be inclined in a V shape, and the flat aluminum tube 7 is inclined as shown in FIG. Therefore, the water droplet 20 which hits the end on the side where the water spray piping 18 is arranged among the both ends of the aluminum flat tube 7 flows in the flat part of the aluminum flat tube 7 and is vertical from the opposite end Dripping in the direction.
  • the water droplets 20 that hit the end of the aluminum flat tube 7 on the side where the water spray piping 18 is disposed is the opposite side of the aluminum flat tube 7 It hangs down in the vertical direction without flowing to the end of the.
  • the water droplets 20 flow through the flat portion of the aluminum flat tube 7, it is possible to obtain a higher water sprinkling effect compared to the case where the air heat exchanger 1 is not inclined.
  • the cooling performance of the unit 200 can be further enhanced.
  • the air heat exchanger 1 of the second embodiment is a parallel flow type heat exchanger, it is not limited to this.
  • the above-described water sprinkling pipe 18 and water sprinkling nozzle 19 may be provided in a heat source unit having a fin-and-tube type air heat exchanger similar to the air heat exchanger of FIG.
  • FIG. 14 is a figure which shows typically the state which injected water from the water spray nozzle to the air heat exchanger of the modification of Embodiment 2.
  • FIG. FIG. 14 shows a cross section cut at the same position as the line BB in FIG.
  • FIG. 15 is a view schematically showing a short side portion of the air heat exchanger.
  • FIG. 15 shows the short side 1DS of the air heat exchanger 1D of FIG. 4 in the direction of the arrow C.
  • the short side 1DS is bent at an angle of 90 degrees with respect to the long side 1DL, and is along the short direction of the machine chamber 4. Therefore, since the inclination direction of the air heat exchanger 1D and the longitudinal direction of the corrugated fins 8 of the short side 1DS of the air heat exchanger 1D coincide with each other, dew condensation water generated during heating operation is corrugated as shown in FIG. It may stay in the valleys of the fins 8.
  • the air heat exchanger 1A, the air heat exchanger 1B, and the air heat exchanger 1C are the same applies to the air heat exchanger 1A, the air heat exchanger 1B, and the air heat exchanger 1C.
  • the longitudinal direction of the corrugated fins 8 of the short side portion 1DS of the air heat exchanger 1D is the same as that of the air heat exchanger 1D. It will intersect with the direction of inclination. Therefore, the dew condensation water which flowed in into the valley part of corrugate fin 8 of short side part 1DS falls without staying by falling because air heat exchanger 1D inclines. The same applies to the air heat exchanger 1A, the air heat exchanger 1B, and the air heat exchanger 1C.
  • FIG. 16 is a view schematically showing a mode of welding of the corrugated fins in the air heat exchanger of the third embodiment.
  • FIG. 16 schematically shows the air heat exchanger 1 of the third embodiment in the direction of the arrows by cutting it at the position of the line DD in FIG.
  • the corrugated fins 8 are provided to be inclined with respect to the longitudinal direction of the aluminum flat tube 7. The corrugated fins 8 are welded to the aluminum flat tube 7.
  • dew condensation water generated in the heating operation does not stay in the flat portion of the aluminum flat tube 7 nor in the valley portion of the corrugated fin 8 and the air heat exchanger 1 in the heating operation Can prevent the occurrence of icing more effectively. Therefore, heating operation can be performed while maintaining high heat exchange performance.
  • the corrugated fins 8 of the air heat exchanger 1 are configured such that the center in the lateral direction is higher than the ends in the lateral direction.
  • the air heat exchanger configured in this way is bent at an angle of 90 degrees as shown in FIG. 4 and is disposed obliquely as shown in FIG. Then, in the short side portion of the air heat exchanger, the position of the central portion in the lateral direction of the corrugated fin is positioned higher than the positions of the both ends in the lateral direction.
  • the condensed water flowing into the valleys of the corrugated fins at the short side of the air heat exchanger flows out of the corrugated fins without staying in the valleys. Therefore, the same effect as the third embodiment can be obtained.
  • Embodiment 5 An opening is formed in the corrugated fin 8 of the air heat exchanger 1 similar to the air heat exchanger 1 described above.
  • the opening is formed in a size that does not affect the heat exchange efficiency of the corrugated fin.
  • the air heat exchanger 1 configured as described above is bent at an angle of 90 degrees as shown in FIG. 4 and is disposed inclined as shown in FIG. In the short side of the air heat exchanger, dew condensation water generated during heating operation falls vertically from the opening of the corrugated fin. Therefore, the same effect as the third embodiment can be obtained.
  • the corrugated fins of the air heat exchanger similar to the above-described air heat exchanger 1 are subjected to water repellent finish.
  • the air heat exchanger configured in this way is bent at an angle of 90 degrees as shown in FIG. 4 and is disposed obliquely as shown in FIG. In the short side of the air heat exchanger, condensation water generated during heating operation can be repelled. Therefore, the same effect as the third embodiment can be obtained.
  • FIG. 17 is a perspective view of a heat source unit according to Embodiment 7 of the present invention.
  • FIG. 18 is a side view of the heat source unit of the seventh embodiment.
  • FIG. 19 is a diagram schematically showing the arrangement of the air heat exchanger in the heat source unit of the seventh embodiment.
  • FIG. 18 shows the heat source unit from the direction of arrow C in FIG.
  • FIG. 19 shows a plurality of air heat exchangers from above the heat source unit.
  • FIGS. 17 to 19 the same components as the components of the first embodiment are denoted by the same reference numerals as those in FIGS.
  • the heat source unit 300 includes four air heat exchangers 301A, an air heat exchanger 301B, an air heat exchanger 301C, an air heat exchanger 301D, and a rectangular parallelepiped machine room 4, which constitute a refrigeration cycle on the heat source side.
  • Fan 5A, fan 5B, fan 5C, and fan 5D The air heat exchanger 301A is a first heat exchanger of the present invention
  • the air heat exchanger 301B is a second heat exchanger of the present invention
  • the air heat exchanger 301C is a third heat exchange of the present invention
  • the air heat exchanger 301D is the fourth heat exchanger of the present invention.
  • the air heat exchangers 301A, 301B, 301C, and 301D may be collectively referred to as the air heat exchanger 301.
  • the air heat exchanger 301 is a parallel flow type heat exchanger, and includes a pair of headers, a plurality of aluminum flat tubes, and a plurality of corrugated fins.
  • the specific configuration is the same as that of the air heat exchanger 1 of the first embodiment described with reference to FIG. That is, the plurality of aluminum flat tubes are disposed between the pair of headers, and both ends thereof are connected to the headers. Between a pair of headers, a plurality of aluminum flat tubes are arranged in parallel at intervals, and respective flat portions face each other.
  • the corrugated fins are provided between the opposing flat portions of the plurality of aluminum flat tubes.
  • a side panel 310 is provided between the air heat exchanger 301A and the air heat exchanger 301C.
  • a side panel 311 is provided between the air heat exchanger 301A and the air heat exchanger 301B.
  • a side panel (not shown) similar to the side panel 310 is provided between the air heat exchanger 301B and the air heat exchanger 301D.
  • a side panel (not shown) similar to the side panel 311 is provided between the air heat exchanger 301C and the air heat exchanger 301D.
  • a blocking panel 312 is provided between the air heat exchanger 301A and the side panel 311.
  • a blocking panel 312 is provided between the air heat exchanger 301 B and the side panel 311.
  • a closing panel (not shown) similar to the closing panel 312 is provided between the air heat exchanger 301C and the side panel between the air heat exchanger 301C and the air heat exchanger 301D.
  • a closing panel (not shown) similar to the closing panel 312 is provided between the air heat exchanger 301D and the side panel between the air heat exchanger 301C and the air heat exchanger 301D.
  • the side panel 311 and the closing panel 312 are omitted in FIG.
  • the distance between the end parts far from the machine room 4 is closer to the machine room 4 It is inclined to be larger than the distance between the ends. That is, the air heat exchanger 301A and the air heat exchanger 301B are inclined to form a V when viewed from the side of the heat source unit 300.
  • the air heat exchanger 301C and the air heat exchanger 301D which face each other in the short direction of the machine room 4 are also inclined to be V-shaped similarly.
  • the inclination angle ⁇ of the air heat exchanger 301A is 65 degrees to 80 degrees.
  • the inclination angles of the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D are the same.
  • the air heat exchanger 301 has a flat plate shape and is orthogonal to the aluminum flat tube. It is not bent when viewed from the direction.
  • the air heat exchanger 301A and the air heat exchanger 301B face each other along the short direction of the machine room 4, and the air heat exchanger 301C and the air heat exchanger 301D face each other along the short direction of the machine room 4. doing.
  • the air heat exchanger 301A and the air heat exchanger 301C are juxtaposed along the longitudinal direction of the machine room 4, and the air heat exchanger 301B and the air heat exchanger 301D are juxtaposed along the longitudinal direction of the machine room .
  • the heat source unit 300 according to Embodiment 7 is disposed such that the flow direction of the supplied air intersects the long side of the flat aluminum tube of the air heat exchanger 1. Be done. Therefore, the supplied air is guided between the opposing flat portions of the plurality of aluminum flat tubes, and flows along the width direction orthogonal to the longitudinal direction in the aluminum flat tubes.
  • an aluminum flat tube is used for the air heat exchanger 301. Therefore, the heat exchange area is secured the same as the heat exchange area when using a circular tube for the heat transfer tube of the air heat exchanger with a smaller number of heat transfer tubes than when the circular tube is used for the heat transfer tube of the air heat exchanger. can do. As a result, the manufacturing cost of the heat source unit 300 can be reduced.
  • the air heat exchangers 301 opposed in the lateral direction of the machine room 4 are inclined to be V-shaped. Therefore, according to the seventh embodiment, the dew condensation water generated during the heating operation does not stay in the flat portion of the aluminum flat tube, but flows down in the vertical direction. As a result, it is possible to prevent the occurrence of icing in the air heat exchanger 301 during the heating operation, and it is possible to perform the heating operation while maintaining high heat exchange performance.
  • the air heat exchanger 301 of the seventh embodiment is not bent when viewed from the direction orthogonal to the aluminum flat tube. In other words, no bending process is required in the manufacture of the air heat exchanger 301. Therefore, manufacture of the air heat exchanger 301 is easy.
  • FIG. 20 is a view schematically showing a heat source exchanger when the heat source unit according to Embodiment 8 of the present invention is viewed from above.
  • the same components as those of the second embodiment and the seventh embodiment are denoted by the same reference numerals as those in FIGS. 12 and 17-19.
  • the air heat exchanger 301A, the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D are arranged in the same manner as the manner shown in FIG. There is. Further, the air heat exchanger 301A, the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D are disposed obliquely as in FIG.
  • the water sprinkling pipe 18 and the water sprinkling nozzle 19 face each other between the air heat exchanger 301A and the air heat exchanger 301B facing in the short direction of the machine room 4 and along the short direction of the machine room 4 It is disposed between the air heat exchanger 301C and the air heat exchanger 301D. That is, as in the second embodiment, the sprinkle piping 18 and the plurality of sprinkle nozzles 19 are formed of the air heat exchanger 301A, the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D. It is disposed inside the space of shape.
  • the two water spray pipes 18 are disposed parallel to each other along the longitudinal direction of the machine room 4.
  • the plurality of water spray nozzles 19 are attached to two water spray pipes 18 toward the air heat exchanger 301A, the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D.
  • the water supplied to the water sprinkling pipe 18 is injected to the air heat exchanger 301A, the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D through the water sprinkling nozzle 19.
  • the water sprinkling pipe 18 is A drop of water falls on the end of the side where it is placed.
  • the air heat exchanger 301 is disposed to be inclined in a V-shape, and the flat aluminum tube is also inclined. Therefore, the water drop which hit the end on the side where the water distribution piping is arranged among the both ends of the aluminum flat tube flows through the flat part of the aluminum flat tube and drops in the vertical direction from the opposite end. . Therefore, as in the second embodiment, a higher water sprinkling effect can be obtained as compared with the case where the air heat exchanger 1 is not inclined, and the cooling performance of the heat source unit 400 can be further enhanced.
  • air heat exchangers 301 of the seventh embodiment and the eighth embodiment are parallel flow type heat exchangers, they are not limited to this.
  • a fin and tube type heat exchanger may be used as an air heat exchanger, in which a plurality of plate-like fins are disposed between a pair of headers, and an aluminum flat tube penetrates the plurality of fins.
  • 1 air heat exchanger 1A air heat exchanger, 1AE corner, 1AF corner, 1AG corner, 1AL long side, 1AS short side, 1B air heat exchanger, 1BE corner, 1BF corner, 1BG corner Part, 1BL long side, 1BS short side, 1C air heat exchanger, 1CE corner, 1CF corner, 1CG corner, 1CL long side, 1CS short side, 1D air heat exchanger, 1DE corner, 1DF corner, 1DG corner, 1DL long side, 1DS short side, 3 water side heat exchanger, 4 machine room, 5A fan, 5B fan, 5C fan, 5D fan, 7 aluminum flat tube, 8 corrugated fin, 9 header, 10 base, 13 rubber sheet, 16 dew condensation water, 18 water sprinkling piping, 19 water sprinkling nozzle, 20 water drops, 31 compressor, 32 control board, 41 frame, 2 portals, 42A portal columns, 42B portal columns, 42C portal columns, 42D portal columns, 43 intermediate columns, 43A intermediate columns, 43B intermediate columns, 43C intermediate columns, 43

Abstract

This heat source unit is provided with: a plurality of heat exchangers (1A-1D), each having a plurality of fins and a plurality of flat tubes; and a rectangular machine chamber (4). The heat exchangers (1A-1D) are provided above the machine chamber (4). A pair of heat exchangers (1A, 1B) facing each other among the heat exchangers (1A-1D), said pair of heat exchangers being disposed in the short-side direction of the machine chamber (4), are tilted such that the interval between the end portions thereof on the side far from the machine chamber (4) is larger than the interval between the end portions thereof on the side close to the machine chamber (4).

Description

熱源ユニットHeat source unit
 本発明は、空気調和装置及びヒートポンプ給湯装置を構成する熱源ユニットに関するものである。 The present invention relates to an air conditioner and a heat source unit constituting a heat pump water heater.
 空気調和装置及びヒートポンプ給湯装置は、空気熱交換器を有する熱源ユニットを備えている。空気熱交換器は、複数の伝熱管と複数のフィンとを有している。伝熱管の内部には、熱源ユニットに供給される空気との間で熱交換する冷媒が流される。フィンは、冷媒と空気との熱交換の効率を上げるために、伝熱管と組み合わせて構成されている。特許文献1に記載の熱源ユニットは、伝熱管として銅円管を備え、フィンとしてアルミフィンを備えている。 An air conditioner and a heat pump water heater include a heat source unit having an air heat exchanger. The air heat exchanger has a plurality of heat transfer tubes and a plurality of fins. Inside the heat transfer tube, a refrigerant that exchanges heat with the air supplied to the heat source unit flows. The fins are configured in combination with the heat transfer tubes to increase the efficiency of heat exchange between the refrigerant and the air. The heat source unit described in Patent Document 1 includes a copper circular tube as a heat transfer tube and an aluminum fin as a fin.
国際公開第2016/171177号International Publication No. 2016/171177
 特許文献1に記載の空気熱交換器の伝熱管は円管であるため、熱源ユニットに供給される空気との接触面積は小さい。従って、大容量の熱交換性能を達成するためには、多くの円管が必要とされる。そのため、熱源ユニットに搭載する空気熱交換器の列数が多くなり、製造コストが高くなることが懸念される。換言すると、搭載する円管の数によっては、所望の熱交換性能が得られない可能性がある。 Since the heat transfer tube of the air heat exchanger described in Patent Document 1 is a circular tube, the contact area with the air supplied to the heat source unit is small. Therefore, many circular tubes are required to achieve high capacity heat exchange performance. Therefore, there are concerns that the number of rows of air heat exchangers mounted on the heat source unit is increased, and the manufacturing cost is increased. In other words, depending on the number of circular tubes mounted, the desired heat exchange performance may not be obtained.
 本発明は、上記のような課題を解決するためになされたものであり、伝熱管の数を増加することなく高い熱交換性能を得られる熱源ユニットを提供することを目的とする。 The present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a heat source unit capable of obtaining high heat exchange performance without increasing the number of heat transfer tubes.
 本発明に係る熱源ユニットは、複数のフィンと複数の扁平管とを有する複数の熱交換器と、直方体状の機械室とを備える熱源ユニットであって、前記複数の熱交換器は前記機械室の上部に設けられ、前記複数の熱交換器のうち、前記機械室の短手方向に沿って対向して配置されている一対の熱交換器は、前記機械室から遠い側の端部同士の間隔が、前記機械室に近い側の端部同士の間隔よりも大きくなるよう傾斜しているものである。 The heat source unit according to the present invention is a heat source unit including a plurality of heat exchangers having a plurality of fins and a plurality of flat tubes, and a rectangular parallelepiped machine room, wherein the plurality of heat exchangers are the machine room Among the plurality of heat exchangers, the pair of heat exchangers disposed opposite to each other along the short direction of the machine chamber have end portions on the side far from the machine chamber. The interval is inclined to be larger than the interval between the ends closer to the machine room.
 本発明に係る熱源ユニットには、空気熱交換器の伝熱管に扁平管が使用されているため、円管を使用した場合に比べ、熱源ユニットに供給される空気が接触する表面積が大きい。従って、空気熱交換器の伝熱管に円管を使用した場合と比べ少ない数の伝熱管で、空気熱交換器の伝熱管に円管を使用した場合の熱交換面積と同じ熱交換面積を確保することができ、熱源ユニットの製造コストを削減することができる。また、本発明に係る熱源ユニットの熱交換器は傾斜しているため、暖房運転時に発生する結露水は扁平管の平坦部に滞留することはない。従って、暖房運転時の熱交換器に氷結が発生することが防止でき、高い熱交換性能を維持して暖房運転を行うことができる。以上のように、本発明によれば、伝熱管の数の増加を抑え、かつ高い熱交換性能を有する熱源ユニットが得られる。 In the heat source unit according to the present invention, since a flat tube is used for the heat transfer tube of the air heat exchanger, the surface area with which the air supplied to the heat source unit is in contact is larger than when a circular tube is used. Therefore, the heat exchange area is secured the same as the heat exchange area when using a circular tube for the heat transfer tube of the air heat exchanger with a smaller number of heat transfer tubes than when the circular tube is used for the heat transfer tube of the air heat exchanger. The cost of manufacturing the heat source unit can be reduced. Further, since the heat exchanger of the heat source unit according to the present invention is inclined, condensation water generated during heating operation does not stay in the flat portion of the flat tube. Therefore, the occurrence of icing in the heat exchanger during the heating operation can be prevented, and the heating operation can be performed while maintaining high heat exchange performance. As described above, according to the present invention, it is possible to obtain a heat source unit having high heat exchange performance while suppressing the increase in the number of heat transfer tubes.
本発明の実施の形態1に係る熱源ユニットの斜視図である。It is a perspective view of a heat source unit concerning Embodiment 1 of the present invention. 実施の形態1の熱源ユニットの側面図である。FIG. 2 is a side view of the heat source unit of the first embodiment. 実施の形態1の熱源ユニットの機械室の斜視図である。FIG. 2 is a perspective view of a machine room of the heat source unit of the first embodiment. 実施の形態1の熱源ユニットにおける空気熱交換器の配置を模式的に示す図である。FIG. 5 is a view schematically showing the arrangement of the air heat exchanger in the heat source unit of the first embodiment. 実施の形態1の熱源ユニットの空気熱交換器の構成を模式的に示す図である。FIG. 2 is a view schematically showing a configuration of an air heat exchanger of the heat source unit of the first embodiment. 実施の形態1の空気熱交換器を図5の線B-Bの位置で切断し、矢印方向から模式的に示す図である。FIG. 6 is a view schematically showing the air heat exchanger according to Embodiment 1 cut along the line BB in FIG. 5 and viewed in the arrow direction. 空気熱交換器に扁平管を使用した場合の効果を説明するための図である。It is a figure for demonstrating the effect at the time of using a flat tube for an air heat exchanger. 空気熱交換器を傾斜させて配置した場合の効果を説明するための図である。It is a figure for demonstrating the effect at the time of making an air heat exchanger incline and arrange | positioning. 空気熱交換器の配置の変形例を模式的に示す図である。It is a figure which shows typically the modification of arrangement | positioning of an air heat exchanger. 空気熱交換器の配置の変形例を模式的に示す図である。It is a figure which shows typically the modification of arrangement | positioning of an air heat exchanger. 実施の形態1の変形例の効果を説明するための図である。FIG. 10 is a diagram for explaining the effect of the modification of the first embodiment. 本発明の実施の形態2に係る熱源ユニットを上から見た場合の熱源交換器を模式的に示す図である。It is a figure showing typically a heat source exchanger at the time of seeing a heat source unit concerning Embodiment 2 of the present invention from the top. 実施の形態2の空気熱交換器に散水ノズルから水を噴射した状態を模式的に示す図である。It is a figure which shows typically the state which injected water from the water spray nozzle to the air heat exchanger of Embodiment 2. FIG. 実施の形態2の変形例の空気熱交換器に散水ノズルから水を噴射した状態を模式的に示す図である。It is a figure which shows typically the state which injected water from the water nozzle to the air heat exchanger of the modification of Embodiment 2. FIG. 空気熱交換器の短辺部を模式的に示す図である。It is a figure which shows the short side part of an air heat exchanger typically. 実施の形態3の空気熱交換器におけるコルゲートフィンの溶接の態様を模式的に示す図である。It is a figure which shows typically the aspect of welding of the corrugated fin in the air heat exchanger of Embodiment 3. FIG. 本発明の実施の形態7に係る熱源ユニットの斜視図である。It is a perspective view of the heat-source unit which concerns on Embodiment 7 of this invention. 実施の形態7の熱源ユニットの側面図である。FIG. 21 is a side view of the heat source unit of the seventh embodiment. 実施の形態7の熱源ユニットにおける空気熱交換器の配置を模式的に示す図である。FIG. 24 schematically shows an arrangement of the air heat exchanger in the heat source unit according to the seventh embodiment. 本発明の実施の形態8に係る熱源ユニットを上から見た場合の熱源交換器を模式的に示す図である。It is a figure which shows typically a heat-source exchanger at the time of seeing the heat-source unit which concerns on Embodiment 8 of this invention from a top.
 以下に、本発明における熱源ユニットの実施の形態を図面に基づいて詳細に説明する。尚、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさは実際の装置とは異なる場合がある。 Hereinafter, an embodiment of a heat source unit in the present invention will be described in detail based on the drawings. The present invention is not limited by the embodiments described below. Moreover, in the following drawings, the size of each component may differ from the actual device.
実施の形態1.
 図1は、本発明の実施の形態1に係る熱源ユニットの斜視図である。図2は、実施の形態1の熱源ユニットの側面図である。図3は、実施の形態1の熱源ユニットの機械室の斜視図である。図4は、実施の形態1の熱源ユニットにおける空気熱交換器の配置を模式的に示す図である。図2は、熱源ユニットを図1の矢印Aの方向から示している。図3は、図2に示す側面の反対側の側面から機械室を示している。図4は、複数の空気熱交換器を熱源ユニットの上方から示している。本実施の形態1の熱源ユニット100は、チラー装置の熱源装置として利用されるものである。チラー装置において、不図示の利用側ユニットから熱源ユニット100に水若しくは不凍液等の伝熱流体が供給され、その伝熱流体は、熱源ユニット100において冷却又は加熱され、利用側ユニットに送給される。このように伝熱流体を循環させることにより、利用側ユニットに冷熱又は温熱が供給される。
Embodiment 1
FIG. 1 is a perspective view of a heat source unit according to Embodiment 1 of the present invention. FIG. 2 is a side view of the heat source unit of the first embodiment. FIG. 3 is a perspective view of a machine chamber of the heat source unit according to the first embodiment. FIG. 4: is a figure which shows typically arrangement | positioning of the air heat exchanger in the heat-source unit of Embodiment 1. FIG. FIG. 2 shows the heat source unit from the direction of arrow A in FIG. FIG. 3 shows the machine room from the opposite side of the side shown in FIG. FIG. 4 shows a plurality of air heat exchangers from above the heat source unit. The heat source unit 100 according to the first embodiment is used as a heat source device of a chiller device. In the chiller apparatus, a heat transfer fluid such as water or antifreeze liquid is supplied from a use side unit (not shown) to the heat source unit 100, and the heat transfer fluid is cooled or heated in the heat source unit 100 and supplied to the use side unit. . By circulating the heat transfer fluid in this manner, cold heat or heat is supplied to the use side unit.
 熱源ユニット100は、熱源側の冷凍サイクルを構成する4つの空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dと、直方体状の機械室4と、4つのファン5A、ファン5B、ファン5C、及びファン5Dとを有している。空気熱交換器1Aは本発明の第1の熱交換器であり、空気熱交換器1Bは本発明の第2の熱交換器であり、空気熱交換器1Cは本発明の第3の熱交換器であり、空気熱交換器1Dは本発明の第4の熱交換器である。 The heat source unit 100 includes four air heat exchangers 1A, an air heat exchanger 1B, an air heat exchanger 1C, an air heat exchanger 1D, and a rectangular parallelepiped machine room 4, which constitute a refrigeration cycle on the heat source side. Fan 5A, fan 5B, fan 5C, and fan 5D. The air heat exchanger 1A is a first heat exchanger of the present invention, the air heat exchanger 1B is a second heat exchanger of the present invention, and the air heat exchanger 1C is a third heat exchange of the present invention And the air heat exchanger 1D is the fourth heat exchanger of the present invention.
 空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dの上方には天枠60が設けられている。天枠60には、上述のファン5A、ファン5B、ファン5C、及びファン5Dが設けられている。ファン5A、ファン5B、ファン5C、及びファン5Dは、それぞれ不図示のファンガードで覆われている。 A ceiling frame 60 is provided above the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D. The sky frame 60 is provided with the above-mentioned fan 5A, fan 5B, fan 5C, and fan 5D. The fan 5A, the fan 5B, the fan 5C, and the fan 5D are each covered with a fan guard (not shown).
 図1において機械室4が占める空間は点線で示されている。機械室4は、台枠41と、4本の門柱と、4本の中間柱と、上部梁44とを有している。4本の門柱は、門柱42A、門柱42B、門柱42C、及び門柱42Dである。4本の中間柱は、中間柱43A、中間柱43B、中間柱43C、及び中間柱43Dである。台枠41は長方形を有する板状の部材である。門柱42A、門柱42B、門柱42C、及び門柱42Dは、台枠41の4つの角部において、台枠41と直交する方向に延びるよう設けられている。中間柱43A及び中間柱43Bは、台枠41の長手方向において、門柱42Aと門柱42Cとの間に、間隔をあけて設けられている。中間柱43C及び中間柱43Dは、台枠41の長手方向において、門柱42Bと門柱42Dとの間に、間隔をあけて設けられている。中間柱43A、中間柱43B、中間柱43C、及び中間柱43Dは、台枠41と直交する方向に延びるよう設けられている。上部梁44は、門柱42A、門柱42B、門柱42C、及び門柱42D、並びに中間柱43A、中間柱43B、中間柱43C、及び中間柱43Dの上に設けられている。機械室4には複数の要素機器が設置されている。機械室4に設置されている複数の機器には、水側熱交換器3、冷媒回路を構成する圧縮機31、及び制御盤32が含まれている。尚、以降の説明において、空気熱交換器1A、1B、1C、及び1Dを総称して空気熱交換器1という場合がある。また、門柱42A、門柱42B、門柱42C、及び門柱42Dを総称して門柱42という場合がある。また、中間柱43A、中間柱43B、中間柱43C、及び中間柱43Dを総称して中間柱43という場合がある。 The space which the machine room 4 occupies in FIG. 1 is shown by the dotted line. The machine room 4 has an underframe 41, four portals, four intermediate columns, and an upper beam 44. The four portals are a portal 42A, a portal 42B, a portal 42C, and a portal 42D. The four middle columns are a middle column 43A, a middle column 43B, a middle column 43C, and a middle column 43D. The underframe 41 is a plate-like member having a rectangular shape. The portals 42A, the portals 42B, the portals 42C, and the portals 42D are provided to extend in the direction orthogonal to the underframe 41 at the four corners of the underframe 41. The intermediate column 43A and the intermediate column 43B are provided at an interval between the portal column 42A and the portal column 42C in the longitudinal direction of the underframe 41. The intermediate column 43C and the intermediate column 43D are provided at an interval between the portal column 42B and the portal column 42D in the longitudinal direction of the underframe 41. The intermediate column 43A, the intermediate column 43B, the intermediate column 43C, and the intermediate column 43D are provided to extend in the direction orthogonal to the underframe 41. The upper beam 44 is provided on the portals 42A, the portals 42B, the portals 42C, and the portals 42D, and the intermediate columns 43A, 43B, 43C, and 43D. A plurality of element devices are installed in the machine room 4. The plurality of devices installed in the machine room 4 include the water-side heat exchanger 3, the compressor 31 forming the refrigerant circuit, and the control panel 32. In the following description, the air heat exchangers 1A, 1B, 1C, and 1D may be collectively referred to as the air heat exchanger 1. In addition, the portals 42A, the portals 42B, the portals 42C, and the portals 42D may be collectively referred to as portals 42. Further, the middle pillar 43A, the middle pillar 43B, the middle pillar 43C, and the middle pillar 43D may be collectively referred to as a middle pillar 43.
 さらに、図2に示すように、機械室4の短手方向において対向する空気熱交換器1Aと空気熱交換器1Bは、機械室4から遠い側の端部同士の間隔が機械室4に近い側の端部同士の間隔よりも大きくなるよう傾けられている。すなわち、空気熱交換器1Aと空気熱交換器1Bは、熱源ユニット100の側方からみたときV字を形成するよう傾けられている。機械室4の短手方向において対向する空気熱交換器1Cと空気熱交換器1Dも、同様にV字状となるよう傾けられている。本実施の形態1では、空気熱交換器1Aの傾斜角度αは65度~80度である。空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dの傾斜角度も同様である。 Furthermore, as shown in FIG. 2, in the air heat exchanger 1A and the air heat exchanger 1B facing each other in the short direction of the machine room 4, the distance between the end parts far from the machine room 4 is close to the machine room 4. It is inclined to be larger than the distance between the side ends. That is, the air heat exchanger 1A and the air heat exchanger 1B are inclined to form a V when viewed from the side of the heat source unit 100. The air heat exchanger 1C and the air heat exchanger 1D which face each other in the short direction of the machine room 4 are similarly inclined so as to be V-shaped. In the first embodiment, the inclination angle α of the air heat exchanger 1A is 65 degrees to 80 degrees. The inclination angles of the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D are the same.
 図3に示すように、機械室4の上部梁44にはベース10が設けられている。ベース10は、門柱42及び中間柱43により支持されている。ベース10には複数のゴムシート13が設けられている。空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dは、ゴムシート13を介してベース10に配置されている。そして、空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dは、上述の態様で傾斜している。空気熱交換器1Aと空気熱交換器1Cとの間には側面パネル50が設けられている。空気熱交換器1Aと空気熱交換器1Bとの間には側面パネル51が設けられている。尚、空気熱交換器1Bと空気熱交換器1Dとの間にも側面パネル50と同様の側面パネル(図示省略)が設けられている。また、空気熱交換器1Cと空気熱交換器1Dとの間には側面パネル51と同様の側面パネル(図示省略)が設けられている。 As shown in FIG. 3, the upper beam 44 of the machine room 4 is provided with a base 10. The base 10 is supported by a portal post 42 and an intermediate post 43. The base 10 is provided with a plurality of rubber sheets 13. The air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D are disposed on the base 10 with the rubber sheet 13 interposed therebetween. And air heat exchanger 1A, air heat exchanger 1B, air heat exchanger 1C, and air heat exchanger 1D are inclined in the above-mentioned mode. A side panel 50 is provided between the air heat exchanger 1A and the air heat exchanger 1C. A side panel 51 is provided between the air heat exchanger 1A and the air heat exchanger 1B. A side panel (not shown) similar to the side panel 50 is provided between the air heat exchanger 1B and the air heat exchanger 1D. Further, a side panel (not shown) similar to the side panel 51 is provided between the air heat exchanger 1C and the air heat exchanger 1D.
 図5は、実施の形態1の熱源ユニットの空気熱交換器の構成を模式的に示す図である。図6は、空気熱交換器を図5の線B-Bの位置で切断し、矢印方向から模式的に示す図である。図5に示すように、空気熱交換器1はパラレルフロー型の熱交換器であり、一対のヘッダ9と、複数のアルミ扁平管7と、複数のコルゲートフィン8とを有している。複数のアルミ扁平管7は一対のヘッダ9の間に配設されており、その両端部はヘッダ9に接続されている。一対のヘッダ9の間において、複数のアルミ扁平管7は間隔をあけて平行に配置されており、それぞれの平坦部が対向している。コルゲートフィン8は、複数のアルミ扁平管7の対向する平坦部の間に設けられている。 FIG. 5 is a diagram schematically showing a configuration of the air heat exchanger of the heat source unit of the first embodiment. FIG. 6 is a view schematically showing the air heat exchanger in the direction of the arrow by cutting the air heat exchanger at the position of line BB in FIG. As shown in FIG. 5, the air heat exchanger 1 is a parallel flow type heat exchanger, and includes a pair of headers 9, a plurality of aluminum flat tubes 7, and a plurality of corrugated fins 8. The plurality of aluminum flat tubes 7 are disposed between the pair of headers 9, and both ends thereof are connected to the headers 9. Between the pair of headers 9, the plurality of aluminum flat tubes 7 are arranged in parallel with an interval, and the respective flat portions face each other. The corrugated fins 8 are provided between opposing flat portions of the plurality of aluminum flat tubes 7.
 図4に示すように、空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dは、アルミ扁平管7に直交する方向からみたとき、アルミ扁平管7の長手方向の中央から一方の端部にオフセットした一箇所の位置で90度の角度で折り曲げられている。すなわち、空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dは、ヘッダ9の一方の端部からみたとき、L字を呈している。空気熱交換器1Aと空気熱交換器1Bは、機械室4の短手方向に沿って対向し、空気熱交換器1Cと空気熱交換器1Dは、機械室4の短手方向に沿って対向している。また、空気熱交換器1Aと空気熱交換器1Cは、機械室4の長手方向に沿って並置され、空気熱交換器1Bと空気熱交換器1Dは、機械室4の長手方向に沿って並置されている。さらに、空気熱交換器1Aの短辺部1ASと空気熱交換器1Bの短辺部1BSは、機械室4の短手方向に沿って対向し、空気熱交換器1Cの短辺部1CSと空気熱交換器1Dの短辺部1DSは、機械室4の短手方向に沿って対向している。また、空気熱交換器1Aの長辺部1ALと空気熱交換器1Cの長辺部1CLは、機械室4の長手方向に沿って並置され、空気熱交換器1Bの長辺部1BLと空気熱交換器1Dの長辺部1DLは、機械室4の長手方向に沿って並置されている。従って、空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dは、全体として長方形の枠を構成している。そして、90度に曲げられた、空気熱交換器1Aの角部1AE、空気熱交換器1Bの角部1BE、空気熱交換器1Cの角部1CE、及び空気熱交換器1Dの角部1DEが長方形の角部に位置している。 As shown in FIG. 4, the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D are flat in the aluminum flat tube 7 when viewed from the direction orthogonal to the aluminum flat tube 7. It is bent at an angle of 90 degrees at one position offset from the longitudinal center to one end. That is, when viewed from one end of the header 9, the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D have an L shape. The air heat exchanger 1A and the air heat exchanger 1B face each other along the short direction of the machine room 4, and the air heat exchanger 1C and the air heat exchanger 1D face each other along the short direction of the machine room 4. doing. Further, the air heat exchanger 1A and the air heat exchanger 1C are juxtaposed along the longitudinal direction of the machine chamber 4, and the air heat exchanger 1B and the air heat exchanger 1D are juxtaposed along the longitudinal direction of the machine chamber 4 It is done. Further, the short side 1AS of the air heat exchanger 1A and the short side 1BS of the air heat exchanger 1B face each other along the short direction of the machine chamber 4, and the short side 1CS of the air heat exchanger 1C and the air The short side 1DS of the heat exchanger 1D is opposed along the short direction of the machine room 4. The long side 1AL of the air heat exchanger 1A and the long side 1CL of the air heat exchanger 1C are juxtaposed along the longitudinal direction of the machine chamber 4, and the long side 1BL of the air heat exchanger 1B and the air heat The long side portions 1DL of the exchanger 1D are juxtaposed along the longitudinal direction of the machine room 4. Therefore, the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D constitute a rectangular frame as a whole. The corner 1AE of the air heat exchanger 1A, the corner 1BE of the air heat exchanger 1B, the corner 1CE of the air heat exchanger 1C, and the corner 1DE of the air heat exchanger 1D, which are bent at 90 degrees, Located at the corner of the rectangle.
 本実施の形態1の熱源ユニット100は、供給される空気の流れの方向が空気熱交換器1のアルミ扁平管7の長辺部と交差するよう、配置される。従って、供給される空気は、複数のアルミ扁平管7の対向する平坦部の間に導かれ、アルミ扁平管7において長手方向と直交する幅方向に沿って流れることとなる。 The heat source unit 100 of the first embodiment is arranged such that the flow direction of the supplied air intersects the long side of the aluminum flat tube 7 of the air heat exchanger 1. Therefore, the supplied air is guided between the opposing flat portions of the plurality of aluminum flat tubes 7 and flows along the width direction orthogonal to the longitudinal direction in the aluminum flat tubes 7.
 図7は、空気熱交換器に扁平管を使用した場合の効果を説明するための図である。図7中、熱源ユニット100に供給される空気の流れを矢印で示している。上述のように本実施の形態1では、空気熱交換器1の伝熱管はアルミ扁平管7であり、熱源ユニット100に供給される空気は、アルミ扁平管7において長手方向と直交する幅方向に沿って流れる。図7に示すように、熱源ユニット100に供給される空気がアルミ扁平管7に接触する表面積は、伝熱管に円管を使用した場合と比べて大きい。従って、本実施の形態1によれば、空気熱交換器の伝熱管に円管を使用した場合と比べ少ない数の伝熱管で、空気熱交換器の伝熱管に円管を使用した場合の熱交換面積と同じ熱交換面積を確保することができる。その結果、熱源ユニット100の製造コストを削減することができる。 FIG. 7 is a figure for demonstrating the effect at the time of using a flat tube for an air heat exchanger. In FIG. 7, the flow of air supplied to the heat source unit 100 is indicated by an arrow. As described above, in the first embodiment, the heat transfer tube of the air heat exchanger 1 is the aluminum flat tube 7, and the air supplied to the heat source unit 100 is in the width direction orthogonal to the longitudinal direction in the aluminum flat tube 7. Flow along. As shown in FIG. 7, the surface area of the air supplied to the heat source unit 100 in contact with the aluminum flat tube 7 is larger than that in the case where a heat transfer tube is a circular tube. Therefore, according to the first embodiment, heat is generated when the heat transfer tube of the air heat exchanger is used with a smaller number of heat transfer tubes than when the heat transfer tube of the air heat exchanger is used with a circular tube. The same heat exchange area as the exchange area can be secured. As a result, the manufacturing cost of the heat source unit 100 can be reduced.
 図8は、空気熱交換器を傾斜させて配置した場合の効果を説明するための図である。空気熱交換器の伝熱管に扁平管を使用した場合、暖房運転時に発生する結露水が、扁平管の平坦部に滞留することが考えられる。本実施の形態1では、機械室4の短手方向において対向する空気熱交換器1は、V字状となるよう傾けられている。従って、本実施の形態1によれば、図8に示すように、結露水16はアルミ扁平管7の平坦部に滞留することはなく、鉛直方向へ垂れ流される。その結果、暖房運転時の空気熱交換器1に氷結が発生することが防止でき、高い熱交換性能を維持して暖房運転を行うことができる。 FIG. 8 is a figure for demonstrating the effect at the time of making an air heat exchanger incline and arrange | positioning. When a flat tube is used for the heat transfer tube of the air heat exchanger, it is conceivable that dew condensation water generated at the time of heating operation is retained at the flat portion of the flat tube. In the first embodiment, the air heat exchangers 1 opposed in the lateral direction of the machine room 4 are inclined to be V-shaped. Therefore, according to the first embodiment, as shown in FIG. 8, the dew condensation water 16 does not stay in the flat portion of the aluminum flat tube 7 but flows down in the vertical direction. As a result, it is possible to prevent the occurrence of freezing in the air heat exchanger 1 during the heating operation, and it is possible to perform the heating operation while maintaining high heat exchange performance.
 図9及び図10は、空気熱交換器の配置の変形例を模式的に示す図である。本実施の形態1では、空気熱交換器1はL字状態に曲げられ、長辺部が機械室4の長手方向に延び、短辺部が機械室4の短手方向に延びているが、これに限るものではない。図9に示すように、空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dを構成してもよい。すなわち、空気熱交換器1Aの角部1AF、空気熱交換器1Bの角部1BF、空気熱交換器1Cの角部1CF、及び空気熱交換器1Dの角部1DFを、それぞれ90度よりも大きい角度とする。空気熱交換器1Aの長辺部1ALと空気熱交換器1Cの長辺部1CLは機械室4の長手方向に沿って並置され、空気熱交換器1Bの長辺部1BLと空気熱交換器1Dの長辺部1DLは機械室4の長手方向に沿って並置されている。空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dの短辺部1AS、1BS、1CS、及び1DSは機械室4の短手方向と交差している。 FIG. 9 and FIG. 10 are diagrams schematically showing modifications of the arrangement of the air heat exchanger. In the first embodiment, the air heat exchanger 1 is bent in an L shape, and the long side extends in the longitudinal direction of the machine chamber 4 and the short side extends in the short direction of the machine chamber 4. It is not limited to this. As shown in FIG. 9, the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D may be configured. That is, corner 1AF of air heat exchanger 1A, corner 1BF of air heat exchanger 1B, corner 1CF of air heat exchanger 1C, and corner 1DF of air heat exchanger 1D are each greater than 90 degrees. Let it be an angle. The long side 1AL of the air heat exchanger 1A and the long side 1CL of the air heat exchanger 1C are juxtaposed along the longitudinal direction of the machine chamber 4, and the long side 1BL of the air heat exchanger 1B and the air heat exchanger 1D The long side portions 1DL are juxtaposed along the longitudinal direction of the machine room 4. The short sides 1AS, 1BS, 1CS, and 1DS of the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D intersect the short direction of the machine room 4.
 また、図10に示すように、空気熱交換器1Aをアルミ扁平管7に直交する方向からみたとき、アルミ扁平管7の長手方向の中央において、角部1AGが鈍角となるよう折曲げてもよい。空気熱交換器1Bの角部1BG、空気熱交換器1Cの角部1CG、及び空気熱交換器1Dの角部1DGも同様の構成を有している。そして、角部1AG、角部1BG、角部1CG、及び角部1DGが熱源ユニット100の外方を向くよう、空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dは配置されている。 Further, as shown in FIG. 10, even when the air heat exchanger 1A is viewed from the direction orthogonal to the aluminum flat tube 7, the corner 1AG may be bent at an obtuse angle at the center in the longitudinal direction of the aluminum flat tube 7. Good. The corner 1BG of the air heat exchanger 1B, the corner 1CG of the air heat exchanger 1C, and the corner 1DG of the air heat exchanger 1D have the same configuration. Then, the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat so that the corner 1AG, the corner 1BG, the corner 1CG, and the corner 1DG face outward of the heat source unit 100. Exchange 1D is arranged.
 本実施の形態1の空気熱交換器1はパラレルフロー型の熱交換器であるが、これに限るものではない。一対のヘッダ9の間に複数の板状のフィンが配置され、アルミ扁平管が複数のフィンを貫通しているフィンアンドチューブ型の熱交換器を、空気熱交換器として用いてもよい。図11は、実施の形態1の変形例の効果を説明するための図である。図11は、フィンアンドチューブ型の空気熱交換器を図5の線B-Bと同様の位置で切断した断面を示している。空気熱交換器110は、板状のフィン180とアルミ扁平管170を有している。アルミ扁平管170はフィン180を貫通している。図11に示すように、空気熱交換器110を上述のように傾斜して配置することにより、暖房運転時に発生する結露水16がアルミ扁平管170の扁平管の表面に滞留することはなく、上述と同様の効果が得られる。 Although the air heat exchanger 1 of the first embodiment is a parallel flow type heat exchanger, it is not limited thereto. A fin and tube type heat exchanger may be used as an air heat exchanger, in which a plurality of plate-like fins are disposed between a pair of headers 9 and an aluminum flat tube penetrates the plurality of fins. FIG. 11 is a diagram for explaining the effect of the modification of the first embodiment. FIG. 11 shows a cross section of the fin-and-tube type air heat exchanger cut at the same position as the line BB in FIG. The air heat exchanger 110 has a plate-like fin 180 and an aluminum flat tube 170. The aluminum flat tube 170 penetrates the fin 180. As shown in FIG. 11, by arranging the air heat exchanger 110 as described above, the condensed water 16 generated during the heating operation does not stay on the surface of the flat tube of the aluminum flat tube 170, The same effect as described above can be obtained.
実施の形態2.
 図12は、本発明の実施の形態2に係る熱源ユニットを上から見た場合の熱源交換器を模式的に示す図である。実施の形態1の構成要素と同様の構成要素には、図1~図11と同一の符号が付されている。本実施の形態2の熱源ユニット200において、空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dは、図9に示す態様と同様の態様で配置されている。熱源ユニット200は、2本の散水配管18と複数の散水ノズル19とを有している。散水配管18は樹脂製である。散水配管18と散水ノズル19は、機械室4の短手方向に沿って対向している空気熱交換器1Aと空気熱交換器1Bとの間、及び機械室4の短手方向に沿って対向している空気熱交換器1Cと空気熱交換器1Dとの間に配置されている。換言すると、散水配管18と複数の散水ノズル19は、空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dで形成されている矩形状の空間の内部に配設されている。2本の散水配管18は、機械室4の長手方向に沿って、互いに平行に配置されている。複数の散水ノズル19は、空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dへ向けて2本の散水配管18に取り付けられている。散水配管18に供給される水は、散水ノズル19を介して空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dへ噴射される。
Second Embodiment
FIG. 12 is a diagram schematically showing the heat source exchanger when the heat source unit according to Embodiment 2 of the present invention is viewed from above. The same components as the components of the first embodiment are given the same reference numerals as in FIGS. 1 to 11. In the heat source unit 200 according to the second embodiment, the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D are arranged in the same manner as the embodiment shown in FIG. There is. The heat source unit 200 has two water sprinkling pipes 18 and a plurality of water sprinkling nozzles 19. The water sprinkling pipe 18 is made of resin. The water sprinkling pipe 18 and the water sprinkling nozzle 19 face each other between the air heat exchanger 1A and the air heat exchanger 1B facing in the short direction of the machine room 4 and along the short direction of the machine room 4 It is disposed between the air heat exchanger 1C and the air heat exchanger 1D. In other words, inside the rectangular space formed by the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D, the water injection piping 18 and the plurality of water injection nozzles 19 It is arranged. The two water spray pipes 18 are disposed parallel to each other along the longitudinal direction of the machine room 4. The plurality of water spray nozzles 19 are attached to two water spray pipes 18 toward the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D. The water supplied to the water sprinkling pipe 18 is injected to the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D through the water sprinkling nozzle 19.
 図13は、空気熱交換器に散水ノズルから水を噴射した状態を模式的に示す図である。熱源ユニット200が搭載されるチラー装置が冷房運転をしているとき、外気温度が35度を超すような環境では、熱源ユニット200の冷却性能を得ることが困難であるため、散水運転が実行される。散水運転の実行時、散水配管18に水が供給され、供給された水が散水ノズル19から空気熱交換器1に噴射されると、アルミ扁平管7の一方の両端部のうち、散水配管18が配置されている側の端部に水滴20が当たる。本実施の形態2では、実施の形態1と同様、空気熱交換器1はV字状態に傾斜して配置されており、図13に示すようにアルミ扁平管7は傾斜している。従って、アルミ扁平管7の一方の両端部のうち、散水配管18が配置されている側の端部に当たった水滴20は、アルミ扁平管7の平坦部を流れ、反対側の端部から鉛直方向に垂れ落ちる。 FIG. 13: is a figure which shows typically the state which injected water from the water spray nozzle to the air heat exchanger. When the chiller device on which the heat source unit 200 is mounted is performing a cooling operation, it is difficult to obtain the cooling performance of the heat source unit 200 in an environment where the outside air temperature exceeds 35 ° C. Ru. When the water sprinkling operation is performed, water is supplied to the water sprinkling pipe 18 and the supplied water is jetted from the water sprinkling nozzle 19 to the air heat exchanger 1. A water droplet 20 hits the end on the side where the is placed. In the second embodiment, as in the first embodiment, the air heat exchanger 1 is disposed to be inclined in a V shape, and the flat aluminum tube 7 is inclined as shown in FIG. Therefore, the water droplet 20 which hits the end on the side where the water spray piping 18 is arranged among the both ends of the aluminum flat tube 7 flows in the flat part of the aluminum flat tube 7 and is vertical from the opposite end Dripping in the direction.
 空気熱交換器1が傾斜していない場合、アルミ扁平管7の一方の両端部のうち、散水配管18が配置されている側の端部に当たった水滴20は、アルミ扁平管7の反対側の端部には流れずに鉛直方向に垂れ落ちる。これに対し、本実施の形態2によれば、水滴20がアルミ扁平管7の平坦部を流れるため、空気熱交換器1が傾斜していない場合と比べ高い散水効果を得ることができ、熱源ユニット200の冷却性能をより高めることができる。 When the air heat exchanger 1 is not inclined, the water droplets 20 that hit the end of the aluminum flat tube 7 on the side where the water spray piping 18 is disposed is the opposite side of the aluminum flat tube 7 It hangs down in the vertical direction without flowing to the end of the. On the other hand, according to the second embodiment, since the water droplets 20 flow through the flat portion of the aluminum flat tube 7, it is possible to obtain a higher water sprinkling effect compared to the case where the air heat exchanger 1 is not inclined. The cooling performance of the unit 200 can be further enhanced.
 本実施の形態2の空気熱交換器1はパラレルフロー型の熱交換器であるが、これに限るものではない。図11の空気熱交換器と同様のフィンアンドチューブ型の空気熱交換器を有する熱源ユニットに上述の散水配管18と散水ノズル19を設けてもよい。図14は、実施の形態2の変形例の空気熱交換器に散水ノズルから水を噴射した状態を模式的に示す図である。図14は、図5の線B-Bと同様の位置で切断した断面を示している。空気熱交換器110を上述のように傾斜させることにより、散水ノズル19から噴射され、アルミ扁平管7の両端部のうち散水配管18が配置されている側の端部に当たった水滴20は、アルミ扁平管7の平坦部を流れ、反対側の端部から鉛直方向に垂れ落ちる。従って、この変形例においても、上述と同様の効果が得られる。 Although the air heat exchanger 1 of the second embodiment is a parallel flow type heat exchanger, it is not limited to this. The above-described water sprinkling pipe 18 and water sprinkling nozzle 19 may be provided in a heat source unit having a fin-and-tube type air heat exchanger similar to the air heat exchanger of FIG. FIG. 14: is a figure which shows typically the state which injected water from the water spray nozzle to the air heat exchanger of the modification of Embodiment 2. FIG. FIG. 14 shows a cross section cut at the same position as the line BB in FIG. By tilting the air heat exchanger 110 as described above, the water droplets 20 which are jetted from the water spray nozzle 19 and hit the end of the aluminum flat tube 7 on the side where the water spray piping 18 is disposed are It flows through the flat part of the aluminum flat tube 7 and drops from the opposite end in the vertical direction. Therefore, also in this modification, the same effect as described above can be obtained.
実施の形態3.
 図15は、空気熱交換器の短辺部を模式的に示す図である。図15は、図4の空気熱交換器1Dの短辺部1DSを矢印Cの方向から示している。上述のように、空気熱交換器1Dは、短辺部1DSが長辺部1DLに対し90度の角度で折り曲げられ、機械室4の短手方向に沿っている。従って、空気熱交換器1Dの傾斜方向と、空気熱交換器1Dの短辺部1DSのコルゲートフィン8の長手方向が一致するため、暖房運転時に発生する結露水は図15に示すように、コルゲートフィン8の谷部に滞留する可能性がある。空気熱交換器1A、空気熱交換器1B、及び空気熱交換器1Cにおいても状況は同様である。
Third Embodiment
FIG. 15 is a view schematically showing a short side portion of the air heat exchanger. FIG. 15 shows the short side 1DS of the air heat exchanger 1D of FIG. 4 in the direction of the arrow C. As described above, in the air heat exchanger 1D, the short side 1DS is bent at an angle of 90 degrees with respect to the long side 1DL, and is along the short direction of the machine chamber 4. Therefore, since the inclination direction of the air heat exchanger 1D and the longitudinal direction of the corrugated fins 8 of the short side 1DS of the air heat exchanger 1D coincide with each other, dew condensation water generated during heating operation is corrugated as shown in FIG. It may stay in the valleys of the fins 8. The same applies to the air heat exchanger 1A, the air heat exchanger 1B, and the air heat exchanger 1C.
 これに対し、図9若しくは図10のように、空気熱交換器1Dが構成されている場合、空気熱交換器1Dの短辺部1DSのコルゲートフィン8の長手方向は、空気熱交換器1Dの傾斜方向と交差することになる。従って、空気熱交換器1Dが傾斜していることにより、短辺部1DSのコルゲートフィン8の谷部に流入した結露水は、滞留すること無く流れ落ちる。空気熱交換器1A、空気熱交換器1B、及び空気熱交換器1Cにおいても状況は同様である。 On the other hand, as shown in FIG. 9 or FIG. 10, when the air heat exchanger 1D is configured, the longitudinal direction of the corrugated fins 8 of the short side portion 1DS of the air heat exchanger 1D is the same as that of the air heat exchanger 1D. It will intersect with the direction of inclination. Therefore, the dew condensation water which flowed in into the valley part of corrugate fin 8 of short side part 1DS falls without staying by falling because air heat exchanger 1D inclines. The same applies to the air heat exchanger 1A, the air heat exchanger 1B, and the air heat exchanger 1C.
 そこで、本実施の形態3では、空気熱交換器1を図4に示すように90度の角度で折り曲げた場合でも、短辺部に結露水が滞留しないようコルゲートフィン8を構成する。図16は、実施の形態3の空気熱交換器におけるコルゲートフィンの溶接の態様を模式的に示す図である。図16は、本実施の形態3の空気熱交換器1を図15の線D-Dの位置で切断し矢印の方向から模式的に示している。本実施の形態3において、コルゲートフィン8は、アルミ扁平管7の長手方向に対して傾斜して設けられている。コルゲートフィン8は、アルミ扁平管7に溶接されている。このように構成された空気熱交換器1を図4に示すように90度の角度で折曲げて、図2に示すように傾斜して配置すると、空気熱交換器1の短辺部において、コルゲートフィン8の短手方向の両端部の位置は、垂直方向において差が生じる。従って、空気熱交換器1の短辺部のコルゲートフィン8の谷部に流入する結露水は、谷部に滞留することなく、コルゲートフィン8の外部に流れ出る。本実施の形態3によれば、暖房運転時に発生する結露水はアルミ扁平管7の平坦部にも、コルゲートフィン8の谷部にも滞留することはなく、暖房運転時の空気熱交換器1における氷結の発生をより効果的に防止できる。従って、高い熱交換性能を維持しながら暖房運転を行うことができる。 Therefore, in the third embodiment, even when the air heat exchanger 1 is bent at an angle of 90 degrees as shown in FIG. 4, the corrugated fins 8 are configured so that condensation water does not stay in the short side portion. FIG. 16 is a view schematically showing a mode of welding of the corrugated fins in the air heat exchanger of the third embodiment. FIG. 16 schematically shows the air heat exchanger 1 of the third embodiment in the direction of the arrows by cutting it at the position of the line DD in FIG. In the third embodiment, the corrugated fins 8 are provided to be inclined with respect to the longitudinal direction of the aluminum flat tube 7. The corrugated fins 8 are welded to the aluminum flat tube 7. When the air heat exchanger 1 configured as described above is bent at an angle of 90 degrees as shown in FIG. 4 and is disposed inclined as shown in FIG. 2, in the short side portion of the air heat exchanger 1, The positions of both ends in the lateral direction of the corrugated fins 8 have a difference in the vertical direction. Accordingly, the condensed water flowing into the valley portion of the corrugated fin 8 at the short side portion of the air heat exchanger 1 flows out of the corrugated fin 8 without staying in the valley portion. According to the third embodiment, dew condensation water generated in the heating operation does not stay in the flat portion of the aluminum flat tube 7 nor in the valley portion of the corrugated fin 8 and the air heat exchanger 1 in the heating operation Can prevent the occurrence of icing more effectively. Therefore, heating operation can be performed while maintaining high heat exchange performance.
実施の形態4.
 空気熱交換器1のコルゲートフィン8を、短手方向の中央部が短手方向の両端部より高くなるよう構成する。このように構成された空気熱交換器を図4に示すように90度の角度で折曲げて、図2に示すように傾斜して配置する。そうすると、空気熱交換器の短辺部において、コルゲートフィンの短手方向の中央部の位置は、短手方向の両端部の位置よりも高い位置に位置づけられる。その結果、空気熱交換器の短辺部のコルゲートフィンの谷部に流入する結露水は、谷部に滞留することなく、コルゲートフィンの外部に流れ出る。従って、実施の形態3と同様の効果が得られる。
Fourth Embodiment
The corrugated fins 8 of the air heat exchanger 1 are configured such that the center in the lateral direction is higher than the ends in the lateral direction. The air heat exchanger configured in this way is bent at an angle of 90 degrees as shown in FIG. 4 and is disposed obliquely as shown in FIG. Then, in the short side portion of the air heat exchanger, the position of the central portion in the lateral direction of the corrugated fin is positioned higher than the positions of the both ends in the lateral direction. As a result, the condensed water flowing into the valleys of the corrugated fins at the short side of the air heat exchanger flows out of the corrugated fins without staying in the valleys. Therefore, the same effect as the third embodiment can be obtained.
実施の形態5.
 上述の空気熱交換器1と同様の空気熱交換器1のコルゲートフィン8に開口部を形成する。この開口部は、コルゲートフィンによる熱交換効率に影響しない程度の大きさで形成される。このように構成された空気熱交換器1を図4に示すように90度の角度で折曲げて、図2に示すように傾斜して配置する。空気熱交換器の短辺部において、暖房運転時に発生する結露水はコルゲートフィンの開口部から鉛直方向に落下する。従って、実施の形態3と同様の効果が得られる。
Embodiment 5
An opening is formed in the corrugated fin 8 of the air heat exchanger 1 similar to the air heat exchanger 1 described above. The opening is formed in a size that does not affect the heat exchange efficiency of the corrugated fin. The air heat exchanger 1 configured as described above is bent at an angle of 90 degrees as shown in FIG. 4 and is disposed inclined as shown in FIG. In the short side of the air heat exchanger, dew condensation water generated during heating operation falls vertically from the opening of the corrugated fin. Therefore, the same effect as the third embodiment can be obtained.
実施の形態6.
 上述の空気熱交換器1と同様の空気熱交換器のコルゲートフィンに撥水加工を施す。このように構成された空気熱交換器を図4に示すように90度の角度で折曲げて、図2に示すように傾斜して配置する。空気熱交換器の短辺部において、暖房運転時に発生する結露水をはじくことができる。従って、実施の形態3と同様の効果が得られる。
Sixth Embodiment
The corrugated fins of the air heat exchanger similar to the above-described air heat exchanger 1 are subjected to water repellent finish. The air heat exchanger configured in this way is bent at an angle of 90 degrees as shown in FIG. 4 and is disposed obliquely as shown in FIG. In the short side of the air heat exchanger, condensation water generated during heating operation can be repelled. Therefore, the same effect as the third embodiment can be obtained.
実施の形態7.
 図17は、本発明の実施の形態7に係る熱源ユニットの斜視図である。図18は、実施の形態7の熱源ユニットの側面図である。図19は、実施の形態7の熱源ユニットにおける空気熱交換器の配置を模式的に示す図である。図18は、熱源ユニットを図1の矢印Cの方向から示している。図19は、複数の空気熱交換器を熱源ユニットの上方から示している。図17~図19において、実施の形態1の構成要素と同様の構成要素には図1~図4と同一の符号を付している。熱源ユニット300は、熱源側の冷凍サイクルを構成する4つの空気熱交換器301A、空気熱交換器301B、空気熱交換器301C、及び空気熱交換器301Dと、直方体状の機械室4と、4つのファン5A、ファン5B、ファン5C、及びファン5Dとを有している。空気熱交換器301Aは本発明の第1の熱交換器であり、空気熱交換器301Bは本発明の第2の熱交換器であり、空気熱交換器301Cは本発明の第3の熱交換器であり、空気熱交換器301Dは本発明の第4の熱交換器である。尚、以降の説明において、空気熱交換器301A、301B、301C、及び301Dを総称して空気熱交換器301という場合がある。
Embodiment 7
FIG. 17 is a perspective view of a heat source unit according to Embodiment 7 of the present invention. FIG. 18 is a side view of the heat source unit of the seventh embodiment. FIG. 19 is a diagram schematically showing the arrangement of the air heat exchanger in the heat source unit of the seventh embodiment. FIG. 18 shows the heat source unit from the direction of arrow C in FIG. FIG. 19 shows a plurality of air heat exchangers from above the heat source unit. In FIGS. 17 to 19, the same components as the components of the first embodiment are denoted by the same reference numerals as those in FIGS. The heat source unit 300 includes four air heat exchangers 301A, an air heat exchanger 301B, an air heat exchanger 301C, an air heat exchanger 301D, and a rectangular parallelepiped machine room 4, which constitute a refrigeration cycle on the heat source side. Fan 5A, fan 5B, fan 5C, and fan 5D. The air heat exchanger 301A is a first heat exchanger of the present invention, the air heat exchanger 301B is a second heat exchanger of the present invention, and the air heat exchanger 301C is a third heat exchange of the present invention And the air heat exchanger 301D is the fourth heat exchanger of the present invention. In the following description, the air heat exchangers 301A, 301B, 301C, and 301D may be collectively referred to as the air heat exchanger 301.
 空気熱交換器301は、パラレルフロー型の熱交換器であり、一対のヘッダと、複数のアルミ扁平管と、複数のコルゲートフィンとを有している。具体的な構成は、図5を参照して説明した実施の形態1の空気熱交換器1と同様である。すなわち、複数のアルミ扁平管は一対のヘッダの間に配設されており、その両端部はヘッダに接続されている。一対のヘッダの間において、複数のアルミ扁平管は間隔をあけて平行に配置されており、それぞれの平坦部が対向している。コルゲートフィンは、複数のアルミ扁平管の対向する平坦部の間に設けられている。 The air heat exchanger 301 is a parallel flow type heat exchanger, and includes a pair of headers, a plurality of aluminum flat tubes, and a plurality of corrugated fins. The specific configuration is the same as that of the air heat exchanger 1 of the first embodiment described with reference to FIG. That is, the plurality of aluminum flat tubes are disposed between the pair of headers, and both ends thereof are connected to the headers. Between a pair of headers, a plurality of aluminum flat tubes are arranged in parallel at intervals, and respective flat portions face each other. The corrugated fins are provided between the opposing flat portions of the plurality of aluminum flat tubes.
 空気熱交換器301Aと空気熱交換器301Cとの間には側面パネル310が設けられている。空気熱交換器301Aと空気熱交換器301Bとの間には側面パネル311が設けられている。尚、空気熱交換器301Bと空気熱交換器301Dとの間にも側面パネル310と同様の側面パネル(図示省略)が設けられている。また、空気熱交換器301Cと空気熱交換器301Dとの間には側面パネル311と同様の側面パネル(図示省略)が設けられている。空気熱交換器301Aと側面パネル311との間には、塞ぎパネル312が設けられている。同様に、空気熱交換器301Bと側面パネル311との間には、塞ぎパネル312が設けられている。空気熱交換器301Cと空気熱交換器301Dとの間の側面パネルと、空気熱交換器301Cとの間には、塞ぎパネル312と同様の塞ぎパネル(図示省略)が設けられている。空気熱交換器301Cと空気熱交換器301Dとの間の側面パネルと、空気熱交換器301Dとの間には、塞ぎパネル312と同様の塞ぎパネル(図示省略)が設けられている。尚、図18において側面パネル311及び塞ぎパネル312は省略されている。 A side panel 310 is provided between the air heat exchanger 301A and the air heat exchanger 301C. A side panel 311 is provided between the air heat exchanger 301A and the air heat exchanger 301B. A side panel (not shown) similar to the side panel 310 is provided between the air heat exchanger 301B and the air heat exchanger 301D. Further, a side panel (not shown) similar to the side panel 311 is provided between the air heat exchanger 301C and the air heat exchanger 301D. A blocking panel 312 is provided between the air heat exchanger 301A and the side panel 311. Similarly, a blocking panel 312 is provided between the air heat exchanger 301 B and the side panel 311. A closing panel (not shown) similar to the closing panel 312 is provided between the air heat exchanger 301C and the side panel between the air heat exchanger 301C and the air heat exchanger 301D. A closing panel (not shown) similar to the closing panel 312 is provided between the air heat exchanger 301D and the side panel between the air heat exchanger 301C and the air heat exchanger 301D. The side panel 311 and the closing panel 312 are omitted in FIG.
 図18に示すように、機械室4の短手方向において対向する空気熱交換器301Aと空気熱交換器301Bは、機械室4から遠い側の端部同士の間隔が機械室4に近い側の端部同士の間隔よりも大きくなるよう傾けられている。すなわち、空気熱交換器301Aと空気熱交換器301Bは、熱源ユニット300の側方からみたときV字を形成するよう傾けられている。機械室4の短手方向において対向する空気熱交換器301Cと空気熱交換器301Dも、同様にV字状となるよう傾けられている。本実施の形態7では、空気熱交換器301Aの傾斜角度βは65度~80度である。空気熱交換器301B、空気熱交換器301C、及び空気熱交換器301Dの傾斜角度も同様である。 As shown in FIG. 18, in the air heat exchanger 301A and the air heat exchanger 301B facing each other in the short direction of the machine room 4, the distance between the end parts far from the machine room 4 is closer to the machine room 4 It is inclined to be larger than the distance between the ends. That is, the air heat exchanger 301A and the air heat exchanger 301B are inclined to form a V when viewed from the side of the heat source unit 300. The air heat exchanger 301C and the air heat exchanger 301D which face each other in the short direction of the machine room 4 are also inclined to be V-shaped similarly. In the seventh embodiment, the inclination angle β of the air heat exchanger 301A is 65 degrees to 80 degrees. The inclination angles of the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D are the same.
 図19に示すように、空気熱交換器301は、上述の実施の形態1及び実施の形態2の空気熱交換器1と異なり、平板状の形状を有しており、アルミ扁平管に直交する方向からみたとき、折り曲げられていない。空気熱交換器301Aと空気熱交換器301Bは、機械室4の短手方向に沿って対向し、空気熱交換器301Cと空気熱交換器301Dは、機械室4の短手方向に沿って対向している。空気熱交換器301Aと空気熱交換器301Cは、機械室4の長手方向に沿って並置され、空気熱交換器301Bと空気熱交換器301Dは、機械室の長手方向に沿って並置されている。 As shown in FIG. 19, unlike the air heat exchanger 1 of the above-mentioned Embodiment 1 and Embodiment 2, the air heat exchanger 301 has a flat plate shape and is orthogonal to the aluminum flat tube. It is not bent when viewed from the direction. The air heat exchanger 301A and the air heat exchanger 301B face each other along the short direction of the machine room 4, and the air heat exchanger 301C and the air heat exchanger 301D face each other along the short direction of the machine room 4. doing. The air heat exchanger 301A and the air heat exchanger 301C are juxtaposed along the longitudinal direction of the machine room 4, and the air heat exchanger 301B and the air heat exchanger 301D are juxtaposed along the longitudinal direction of the machine room .
 本実施の形態7の熱源ユニット300は、実施の形態1の熱源ユニット100と同様、供給される空気の流れの方向が空気熱交換器1のアルミ扁平管の長辺部と交差するよう、配置される。従って、供給される空気は、複数のアルミ扁平管の対向する平坦部の間に導かれ、アルミ扁平管において長手方向と直交する幅方向に沿って流れることとなる。 Similar to the heat source unit 100 according to Embodiment 1, the heat source unit 300 according to Embodiment 7 is disposed such that the flow direction of the supplied air intersects the long side of the flat aluminum tube of the air heat exchanger 1. Be done. Therefore, the supplied air is guided between the opposing flat portions of the plurality of aluminum flat tubes, and flows along the width direction orthogonal to the longitudinal direction in the aluminum flat tubes.
 本実施の形態7によれば、空気熱交換器301にアルミ扁平管が用いられている。従って、空気熱交換器の伝熱管に円管を使用した場合と比べ少ない数の伝熱管で、空気熱交換器の伝熱管に円管を使用した場合の熱交換面積と同じ熱交換面積を確保することができる。その結果、熱源ユニット300の製造コストを削減することができる。また、本実施の形態7によれば、機械室4の短手方向において対向する空気熱交換器301は、V字状となるよう傾けられている。従って、本実施の形態7によれば、暖房運転時に発生する結露水はアルミ扁平管の平坦部に滞留することはなく、鉛直方向へ垂れ流される。その結果、暖房運転時の空気熱交換器301に氷結が発生することが防止でき、高い熱交換性能を維持して暖房運転を行うことができる。 According to the seventh embodiment, an aluminum flat tube is used for the air heat exchanger 301. Therefore, the heat exchange area is secured the same as the heat exchange area when using a circular tube for the heat transfer tube of the air heat exchanger with a smaller number of heat transfer tubes than when the circular tube is used for the heat transfer tube of the air heat exchanger. can do. As a result, the manufacturing cost of the heat source unit 300 can be reduced. Further, according to the seventh embodiment, the air heat exchangers 301 opposed in the lateral direction of the machine room 4 are inclined to be V-shaped. Therefore, according to the seventh embodiment, the dew condensation water generated during the heating operation does not stay in the flat portion of the aluminum flat tube, but flows down in the vertical direction. As a result, it is possible to prevent the occurrence of icing in the air heat exchanger 301 during the heating operation, and it is possible to perform the heating operation while maintaining high heat exchange performance.
 さらに、本実施の形態7の空気熱交換器301は、アルミ扁平管に直交する方向からみたとき、折り曲げられていない。換言すると、空気熱交換器301の製造において曲げ工程を必要としない。従って、空気熱交換器301の製造が容易である。 Furthermore, the air heat exchanger 301 of the seventh embodiment is not bent when viewed from the direction orthogonal to the aluminum flat tube. In other words, no bending process is required in the manufacture of the air heat exchanger 301. Therefore, manufacture of the air heat exchanger 301 is easy.
実施の形態8.
 図20は、本発明の実施の形態8に係る熱源ユニットを上から見た場合の熱源交換器を模式的に示す図である。実施の形態2及び実施の形態7の構成要素と同様の構成要素には図12、図17~図19と同一の符号が付されている。本実施の形態8の熱源ユニット400において、空気熱交換器301A、空気熱交換器301B、空気熱交換器301C、及び空気熱交換器301Dは、図19に示す態様と同様の態様で配置されている。また、空気熱交換器301A、空気熱交換器301B、空気熱交換器301C、及び空気熱交換器301Dは、図18と同様、傾斜して配置されている。
Eighth Embodiment
FIG. 20 is a view schematically showing a heat source exchanger when the heat source unit according to Embodiment 8 of the present invention is viewed from above. The same components as those of the second embodiment and the seventh embodiment are denoted by the same reference numerals as those in FIGS. 12 and 17-19. In the heat source unit 400 of the eighth embodiment, the air heat exchanger 301A, the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D are arranged in the same manner as the manner shown in FIG. There is. Further, the air heat exchanger 301A, the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D are disposed obliquely as in FIG.
 散水配管18と散水ノズル19は、機械室4の短手方向に沿って対向している空気熱交換器301Aと空気熱交換器301Bとの間、及び機械室4の短手方向に沿って対向している空気熱交換器301Cと空気熱交換器301Dとの間に配置されている。すなわち、実施の形態2と同様、散水配管18と複数の散水ノズル19は、空気熱交換器301A、空気熱交換器301B、空気熱交換器301C、及び空気熱交換器301Dで形成されている矩形状の空間の内部に配設されている。2本の散水配管18は、機械室4の長手方向に沿って、互いに平行に配置されている。複数の散水ノズル19は、空気熱交換器301A、空気熱交換器301B、空気熱交換器301C、及び空気熱交換器301Dへ向けて2本の散水配管18に取り付けられている。散水配管18に供給される水は、散水ノズル19を介して空気熱交換器301A、空気熱交換器301B、空気熱交換器301C、及び空気熱交換器301Dへ噴射される。 The water sprinkling pipe 18 and the water sprinkling nozzle 19 face each other between the air heat exchanger 301A and the air heat exchanger 301B facing in the short direction of the machine room 4 and along the short direction of the machine room 4 It is disposed between the air heat exchanger 301C and the air heat exchanger 301D. That is, as in the second embodiment, the sprinkle piping 18 and the plurality of sprinkle nozzles 19 are formed of the air heat exchanger 301A, the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D. It is disposed inside the space of shape. The two water spray pipes 18 are disposed parallel to each other along the longitudinal direction of the machine room 4. The plurality of water spray nozzles 19 are attached to two water spray pipes 18 toward the air heat exchanger 301A, the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D. The water supplied to the water sprinkling pipe 18 is injected to the air heat exchanger 301A, the air heat exchanger 301B, the air heat exchanger 301C, and the air heat exchanger 301D through the water sprinkling nozzle 19.
 散水運転の実行時、散水配管18に水が供給され、供給された水が散水ノズル19から空気熱交換器301に噴射されると、アルミ扁平管の一方の両端部のうち、散水配管18が配置されている側の端部に水滴が当たる。本実施の形態8では、実施の形態7と同様、空気熱交換器301はV字状態に傾斜して配置されており、アルミ扁平管も傾斜している。従って、アルミ扁平管の一方の両端部のうち、散水配管が配置されている側の端部に当たった水滴は、アルミ扁平管の平坦部を流れ、反対側の端部から鉛直方向に垂れ落ちる。従って、実施の形態2と同様、空気熱交換器1が傾斜していない場合と比べ高い散水効果を得ることができ、熱源ユニット400の冷却性能をより高めることができる。 At the time of execution of the water sprinkling operation, when water is supplied to the water sprinkling pipe 18 and the supplied water is jetted from the water sprinkling nozzle 19 to the air heat exchanger 301, the water sprinkling pipe 18 is A drop of water falls on the end of the side where it is placed. In the eighth embodiment, as in the seventh embodiment, the air heat exchanger 301 is disposed to be inclined in a V-shape, and the flat aluminum tube is also inclined. Therefore, the water drop which hit the end on the side where the water distribution piping is arranged among the both ends of the aluminum flat tube flows through the flat part of the aluminum flat tube and drops in the vertical direction from the opposite end. . Therefore, as in the second embodiment, a higher water sprinkling effect can be obtained as compared with the case where the air heat exchanger 1 is not inclined, and the cooling performance of the heat source unit 400 can be further enhanced.
 実施の形態7及び実施の形態8の空気熱交換器301はパラレルフロー型の熱交換器であるが、これに限るものではない。一対のヘッダの間に複数の板状のフィンが配置され、アルミ扁平管が複数のフィンを貫通しているフィンアンドチューブ型の熱交換器を、空気熱交換器として用いてもよい。 Although the air heat exchangers 301 of the seventh embodiment and the eighth embodiment are parallel flow type heat exchangers, they are not limited to this. A fin and tube type heat exchanger may be used as an air heat exchanger, in which a plurality of plate-like fins are disposed between a pair of headers, and an aluminum flat tube penetrates the plurality of fins.
 1 空気熱交換器、1A 空気熱交換器、1AE 角部、1AF 角部、1AG 角部、1AL 長辺部、1AS 短辺部、1B 空気熱交換器、1BE 角部、1BF 角部、1BG 角部、1BL 長辺部、1BS 短辺部、1C 空気熱交換器、1CE 角部、1CF 角部、1CG 角部、1CL 長辺部、1CS 短辺部、1D 空気熱交換器、1DE 角部、1DF 角部、1DG 角部、1DL 長辺部、1DS 短辺部、3 水側熱交換器、4 機械室、5A ファン、5B ファン、5C ファン、5D ファン、7 アルミ扁平管、8 コルゲートフィン、9 ヘッダ、10 ベース、13 ゴムシート、16 結露水、18 散水配管、19 散水ノズル、20 水滴、31 圧縮機、32 制御盤、41 台枠、42 門柱、42A 門柱、42B 門柱、42C 門柱、42D 門柱、43 中間柱、43A 中間柱、43B 中間柱、43C 中間柱、43D 中間柱、44 上部梁、50 側面パネル、51 側面パネル、60 天枠、100 熱源ユニット、110 空気熱交換器、170 アルミ扁平管、180 フィン、200 熱源ユニット、300 熱源ユニット、301 空気熱交換器、301A 空気熱交換器、301B 空気熱交換器、301C 空気熱交換器、301D 空気熱交換器、310 側面パネル、311 側面パネル、312 塞ぎパネル。 1 air heat exchanger, 1A air heat exchanger, 1AE corner, 1AF corner, 1AG corner, 1AL long side, 1AS short side, 1B air heat exchanger, 1BE corner, 1BF corner, 1BG corner Part, 1BL long side, 1BS short side, 1C air heat exchanger, 1CE corner, 1CF corner, 1CG corner, 1CL long side, 1CS short side, 1D air heat exchanger, 1DE corner, 1DF corner, 1DG corner, 1DL long side, 1DS short side, 3 water side heat exchanger, 4 machine room, 5A fan, 5B fan, 5C fan, 5D fan, 7 aluminum flat tube, 8 corrugated fin, 9 header, 10 base, 13 rubber sheet, 16 dew condensation water, 18 water sprinkling piping, 19 water sprinkling nozzle, 20 water drops, 31 compressor, 32 control board, 41 frame, 2 portals, 42A portal columns, 42B portal columns, 42C portal columns, 42D portal columns, 43 intermediate columns, 43A intermediate columns, 43B intermediate columns, 43C intermediate columns, 43D intermediate columns, 44 upper beams, 50 side panels, 51 side panels, 60 sky frames , 100 heat source unit, 110 air heat exchanger, 170 aluminum flat tube, 180 fin, 200 heat source unit, 300 heat source unit, 301 air heat exchanger, 301A air heat exchanger, 301B air heat exchanger, 301C air heat exchanger , 301D Air Heat Exchanger, 310 Side Panels, 311 Side Panels, 312 Closed Panels.

Claims (12)

  1.  複数のフィンと複数の扁平管とを有する複数の熱交換器と、直方体状の機械室とを備える熱源ユニットであって、
     前記複数の熱交換器は前記機械室の上部に設けられ、
     前記複数の熱交換器のうち、前記機械室の短手方向に沿って対向して配置されている一対の熱交換器は、前記機械室から遠い側の端部同士の間隔が、前記機械室に近い側の端部同士の間隔よりも大きくなるよう傾斜している熱源ユニット。
    A heat source unit comprising: a plurality of heat exchangers having a plurality of fins and a plurality of flat tubes; and a rectangular parallelepiped machine room,
    The plurality of heat exchangers are provided at the top of the machine room,
    Among the plurality of heat exchangers, in the pair of heat exchangers disposed opposite to each other along the short direction of the machine chamber, the distance between the end portions far from the machine chamber is the machine chamber A heat source unit which is inclined so as to be larger than the distance between the end portions on the near side.
  2.  前記複数の熱交換器は第1の熱交換器と第2の熱交換器と第3の熱交換器と第4の熱交換器とを含んでおり、
     前記第1の熱交換器と前記第2の熱交換器は、前記機械室の短手方向に沿って対向し、前記第3の熱交換器と前記第4の熱交換器は、前記機械室の短手方向に沿って対向し、前記第1の熱交換器と前記第3の熱交換器は、前記機械室の長手方向に沿って並置され、前記第2の熱交換器と前記第4の熱交換器は、前記機械室の長手方向に沿って並置されている請求項1に記載の熱源ユニット。
    The plurality of heat exchangers include a first heat exchanger, a second heat exchanger, a third heat exchanger, and a fourth heat exchanger.
    The first heat exchanger and the second heat exchanger face each other along the short direction of the machine chamber, and the third heat exchanger and the fourth heat exchanger are the machine chamber. And the first heat exchanger and the third heat exchanger are juxtaposed along the longitudinal direction of the machine chamber, and the second heat exchanger and the fourth heat exchanger are The heat source unit according to claim 1, wherein the heat exchangers of (1) are juxtaposed along the longitudinal direction of the machine chamber.
  3.  前記第1~第4の熱交換器は、前記扁平管に直交する方向からみたとき長手方向の一箇所で折り曲げられている請求項2に記載の熱源ユニット。 The heat source unit according to claim 2, wherein the first to fourth heat exchangers are bent at one place in a longitudinal direction when viewed from a direction orthogonal to the flat tube.
  4.  前記第1~第4の熱交換器は、前記扁平管に直交する方向からみたとき、長辺部と短辺部とを有するよう90度の角度で折り曲げられており、
     前記第1の熱交換器の前記短辺部と前記第2の熱交換器の前記短辺部は、前記機械室の短手方向に沿って対向し、
     前記第3の熱交換器の前記短辺部と前記第4の熱交換器の前記短辺部は、前記機械室の短手方向に沿って対向し、
     前記第1の熱交換器の前記長辺部と前記第3の熱交換器の前記長辺部は、前記機械室の長手方向に沿って並置され、
     前記第2の熱交換器の前記長辺部と前記第4の熱交換器の前記長辺部は、前記機械室の長手方向に沿って並置されている請求項3に記載の熱源ユニット。
    The first to fourth heat exchangers are bent at an angle of 90 degrees so as to have a long side portion and a short side portion when viewed in a direction orthogonal to the flat tube,
    The short side of the first heat exchanger and the short side of the second heat exchanger face each other along the short direction of the machine chamber,
    The short side of the third heat exchanger and the short side of the fourth heat exchanger face each other along the short direction of the machine chamber,
    The long side portion of the first heat exchanger and the long side portion of the third heat exchanger are juxtaposed along the longitudinal direction of the machine chamber,
    The heat source unit according to claim 3, wherein the long side portion of the second heat exchanger and the long side portion of the fourth heat exchanger are juxtaposed along the longitudinal direction of the machine chamber.
  5.  前記第1~第4の熱交換器は、前記扁平管に直交する方向からみたとき、長辺部と短辺部とを有するよう90度よりも大きい角度で折り曲げられており、
     前記第1の熱交換器の前記長辺部と前記第3の熱交換器の前記長辺部は、前記機械室の長手方向に沿って並置され、
     前記第2の熱交換器の前記長辺部と前記第4の熱交換器の前記長辺部は、前記機械室の長手方向に沿って並置されている請求項3に記載の熱源ユニット。
    The first to fourth heat exchangers are bent at an angle larger than 90 degrees so as to have a long side portion and a short side portion when viewed in a direction orthogonal to the flat tube,
    The long side portion of the first heat exchanger and the long side portion of the third heat exchanger are juxtaposed along the longitudinal direction of the machine chamber,
    The heat source unit according to claim 3, wherein the long side portion of the second heat exchanger and the long side portion of the fourth heat exchanger are juxtaposed along the longitudinal direction of the machine chamber.
  6.  前記第1~第4の熱交換器は、前記扁平管に直交する方向からみたとき、長手方向の中央で折り曲げられた角部を有し、
     前記第1~第4の熱交換器は、それぞれ、前記角部が前記熱源ユニットの外方を向くよう配置されている請求項3に記載の熱源ユニット。
    The first to fourth heat exchangers have corner portions bent at the center in the longitudinal direction when viewed from the direction orthogonal to the flat tube,
    The heat source unit according to claim 3, wherein each of the first to fourth heat exchangers is arranged such that the corner portion faces the outside of the heat source unit.
  7.  前記第1~第4の熱交換器は、平板状の形状を有している請求項2に記載の熱源ユニット。 The heat source unit according to claim 2, wherein the first to fourth heat exchangers have a flat plate shape.
  8.  さらに、散水配管と前記散水配管に取り付けられている散水ノズルとを備え、
     前記散水配管と前記散水ノズルは、前記機械室の短手方向において対向している前記一対の熱交換器の間に配置されている請求項1に記載の熱源ユニット。
    Furthermore, it comprises a water spray pipe and a water spray nozzle attached to the water spray pipe,
    The heat source unit according to claim 1, wherein the water sprinkling pipe and the water sprinkling nozzle are disposed between the pair of heat exchangers facing each other in the short direction of the machine room.
  9.  前記複数の熱交換器はパラレルフロー型の熱交換器であり、前記複数のフィンはコルゲートフィンであって、前記コルゲートフィンは、前記扁平管の長手方向に対して傾斜して設けられている請求項1に記載の熱源ユニット。 The plurality of heat exchangers are parallel flow type heat exchangers, the plurality of fins are corrugated fins, and the corrugated fins are provided to be inclined with respect to the longitudinal direction of the flat tube. The heat source unit according to Item 1.
  10.  前記複数の熱交換器はパラレルフロー型の熱交換器であり、前記複数のフィンはコルゲートフィンであって、前記コルゲートフィンは、短手方向の中央部が短手方向の両端部より高くなるよう構成されている請求項1に記載の熱源ユニット。 The plurality of heat exchangers are parallel flow type heat exchangers, the plurality of fins are corrugated fins, and the corrugated fins are formed such that the central part in the lateral direction is higher than the both ends in the lateral direction The heat source unit according to claim 1 configured.
  11.  前記複数の熱交換器はパラレルフロー型の熱交換器であり、前記複数のフィンはコルゲートフィンであって、前記コルゲートフィンに開口部が形成されている請求項1に記載の熱源ユニット。 The heat source unit according to claim 1, wherein the plurality of heat exchangers are parallel flow type heat exchangers, the plurality of fins are corrugated fins, and an opening is formed in the corrugated fins.
  12.  前記複数の熱交換器はパラレルフロー型の熱交換器であり、前記複数のフィンはコルゲートフィンであって、前記コルゲートフィンは撥水加工が施されている請求項1に記載の熱源ユニット。 The heat source unit according to claim 1, wherein the plurality of heat exchangers are parallel flow type heat exchangers, the plurality of fins are corrugated fins, and the corrugated fins are subjected to a water repellent finish.
PCT/JP2017/025382 2017-07-12 2017-07-12 Heat source unit WO2019012619A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1918060.3A GB2577431B (en) 2017-07-12 2017-07-12 Heat source unit
PCT/JP2017/025382 WO2019012619A1 (en) 2017-07-12 2017-07-12 Heat source unit
JP2019529367A JP6824410B2 (en) 2017-07-12 2017-07-12 Heat source unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025382 WO2019012619A1 (en) 2017-07-12 2017-07-12 Heat source unit

Publications (1)

Publication Number Publication Date
WO2019012619A1 true WO2019012619A1 (en) 2019-01-17

Family

ID=65001993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025382 WO2019012619A1 (en) 2017-07-12 2017-07-12 Heat source unit

Country Status (3)

Country Link
JP (1) JP6824410B2 (en)
GB (1) GB2577431B (en)
WO (1) WO2019012619A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024403A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit
WO2023188010A1 (en) * 2022-03-29 2023-10-05 三菱電機株式会社 Refrigeration cycle device
WO2023199426A1 (en) * 2022-04-13 2023-10-19 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020208710A1 (en) * 2020-07-13 2022-01-13 Mahle International Gmbh Heat exchanger, fuel cell arrangement and method
FR3112845B1 (en) * 2020-07-24 2022-08-19 Jacir Dry or adiabatic air-cooled condenser including a refrigerant leak containment system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107482U (en) * 1982-01-09 1983-07-21 三菱重工業株式会社 Heat exchanger
JPH04244592A (en) * 1991-01-28 1992-09-01 Mitsubishi Heavy Ind Ltd Heat exchanger
JPH0783591A (en) * 1993-09-14 1995-03-28 Nippondenso Co Ltd Heat exchanger
JPH10339587A (en) * 1997-06-10 1998-12-22 Nippon Light Metal Co Ltd Heat exchanger
JP2004340504A (en) * 2003-05-16 2004-12-02 Mitsubishi Heavy Ind Ltd Outdoor unit for air conditioning and air conditioner comprising the same
JP2006010150A (en) * 2004-06-24 2006-01-12 Daikin Ind Ltd Auxiliary cooling system and outdoor machine of air conditioner
JP2010216798A (en) * 2009-02-23 2010-09-30 Daikin Ind Ltd Outdoor unit and refrigerating device
WO2011005986A2 (en) * 2009-07-10 2011-01-13 Johnson Controls Technology Company Multichannel heat exchanger with differing fin spacing
JP2015117875A (en) * 2013-12-18 2015-06-25 日本軽金属株式会社 Parallel flow type heat exchanger and its process of manufacture
JP2016133248A (en) * 2015-01-19 2016-07-25 株式会社デンソー Heat exchanger
WO2016171177A1 (en) * 2015-04-21 2016-10-27 三菱電機株式会社 Heat source unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244592B2 (en) * 2002-08-12 2009-03-25 トヨタ自動車株式会社 Hydraulic control device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107482U (en) * 1982-01-09 1983-07-21 三菱重工業株式会社 Heat exchanger
JPH04244592A (en) * 1991-01-28 1992-09-01 Mitsubishi Heavy Ind Ltd Heat exchanger
JPH0783591A (en) * 1993-09-14 1995-03-28 Nippondenso Co Ltd Heat exchanger
JPH10339587A (en) * 1997-06-10 1998-12-22 Nippon Light Metal Co Ltd Heat exchanger
JP2004340504A (en) * 2003-05-16 2004-12-02 Mitsubishi Heavy Ind Ltd Outdoor unit for air conditioning and air conditioner comprising the same
JP2006010150A (en) * 2004-06-24 2006-01-12 Daikin Ind Ltd Auxiliary cooling system and outdoor machine of air conditioner
JP2010216798A (en) * 2009-02-23 2010-09-30 Daikin Ind Ltd Outdoor unit and refrigerating device
WO2011005986A2 (en) * 2009-07-10 2011-01-13 Johnson Controls Technology Company Multichannel heat exchanger with differing fin spacing
JP2015117875A (en) * 2013-12-18 2015-06-25 日本軽金属株式会社 Parallel flow type heat exchanger and its process of manufacture
JP2016133248A (en) * 2015-01-19 2016-07-25 株式会社デンソー Heat exchanger
WO2016171177A1 (en) * 2015-04-21 2016-10-27 三菱電機株式会社 Heat source unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024403A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit
JPWO2021024403A1 (en) * 2019-08-07 2021-12-23 三菱電機株式会社 Chilling unit
JP7224475B2 (en) 2019-08-07 2023-02-17 三菱電機株式会社 chilling unit
WO2023188010A1 (en) * 2022-03-29 2023-10-05 三菱電機株式会社 Refrigeration cycle device
WO2023199426A1 (en) * 2022-04-13 2023-10-19 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP6824410B2 (en) 2021-02-03
GB2577431A (en) 2020-03-25
JPWO2019012619A1 (en) 2020-02-06
GB201918060D0 (en) 2020-01-22
GB2577431B (en) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2019012619A1 (en) Heat source unit
EP2593741B1 (en) Evaporative heat exchange apparatus with finned elliptical tube coil assembly
US20120103583A1 (en) Heat exchanger and fin for the same
EP3650798B1 (en) Heat exchanger
WO2014091782A1 (en) Flat tube heat exchange apparatus, and outdoor unit for air conditioner provided with same
JPWO2015025702A1 (en) Heat exchanger, air conditioner, refrigeration cycle apparatus, and heat exchanger manufacturing method
US11054192B2 (en) Heat exchanger and air conditioner
US11175053B2 (en) Heat exchanger, refrigeration cycle device, and air-conditioning apparatus
WO2018056209A1 (en) Heat exchanger
US20160245594A1 (en) Heat exchanger with louvered fins
WO2019004139A1 (en) Heat exchanger
WO2017135442A1 (en) Heat exchanger
WO2017158795A1 (en) Heat exchanger and air conditioner
JP2012026615A (en) Outdoor unit, and refrigeration cycle apparatus with the same
JP2009150621A (en) Heat exchanger and air-conditioner
JP6104378B2 (en) Air conditioner
KR100497429B1 (en) Fin & flat tube type Heat exchanger and Evaporator using the same
US20190293355A1 (en) Microchannel-type aluminum heat exchanger and method of manufacturing the same
KR102078275B1 (en) Heat exchanger for air conditioner
JPWO2021161439A5 (en)
KR101280452B1 (en) Heat exchanger
JP7006376B2 (en) Heat exchanger
KR200305987Y1 (en) Fin & flat tube type Heat exchanger and Evaporator using the same
WO2019207805A1 (en) Heat exchanger and air conditioner with same
JP2019152372A (en) Heat exchanger, outdoor unit, refrigeration cycle device, and manufacturing method of heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529367

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201918060

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170712

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917735

Country of ref document: EP

Kind code of ref document: A1