WO2019011045A1 - 一种乳化超稠油的水基降粘剂及其制备方法 - Google Patents

一种乳化超稠油的水基降粘剂及其制备方法 Download PDF

Info

Publication number
WO2019011045A1
WO2019011045A1 PCT/CN2018/085285 CN2018085285W WO2019011045A1 WO 2019011045 A1 WO2019011045 A1 WO 2019011045A1 CN 2018085285 W CN2018085285 W CN 2018085285W WO 2019011045 A1 WO2019011045 A1 WO 2019011045A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
parts
viscosity
heavy oil
oil
Prior art date
Application number
PCT/CN2018/085285
Other languages
English (en)
French (fr)
Inventor
孙德军
朱亚超
王茂鑫
卫鹏程
周建华
Original Assignee
山东大学
寿光新海能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学, 寿光新海能源技术有限公司 filed Critical 山东大学
Priority to US16/622,356 priority Critical patent/US11268012B2/en
Publication of WO2019011045A1 publication Critical patent/WO2019011045A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/28Friction or drag reducing additives

Definitions

  • the invention relates to a water-based viscosity reducing agent for reducing the viscosity of an ultra-heavy oil for improving oil recovery, and a preparation method of the viscosity reducing agent, and belongs to the technical field of petroleum exploitation.
  • Heavy oil can be divided into ordinary heavy oil, extra heavy oil and super heavy oil according to viscosity and relative density.
  • the viscosity of super heavy oil is above 50,000 mPa ⁇ s, and the relative density is greater than 0.98 (130 API).
  • crude oil viscosity is usually below 400 mPa ⁇ s for mining and transportation.
  • the methods of viscosity reduction commonly used in heavy oil exploitation at home and abroad include: thinning oil method, heating method, heavy oil upgrading and viscosity reduction, and chemical agent viscosity reduction method.
  • thinning oil method heating method, heavy oil upgrading and viscosity reduction, and chemical agent viscosity reduction method.
  • Adding thin oil to reduce viscosity there are disadvantages such as shortage of thin oil and high price; heating and viscosity reduction consumes a lot of heat energy, and there is high energy loss and economic loss; the application range of modified viscosity reduction is narrow; chemical viscosity reduction includes Oil-soluble and water-soluble viscosity-reducing technology, the mechanism of oil-soluble viscosity reduction technology is clear, the selectivity is strong, it is difficult to develop a wide range of viscosity-reducing agents, and it only weakens the overlapping accumulation of wax crystals and colloidal asphaltenes.
  • the stability of the structure does not completely “break up” the aggregates, so the viscosity reduction ability is limited, but the water-soluble viscosity reduction technology has a relatively wide range of use (including oil layer mining, wellbore viscosity reduction, pipeline transportation, etc.), and the process is simple. Low cost and easy to implement.
  • CN 101845298 B discloses a method for reducing viscosity by using microorganisms.
  • the disadvantage is that it is difficult to treat colloid and asphaltene which are complicated in structure, and is easily deactivated in a high temperature and high salt formation environment.
  • US Patent No. 9453157 reports the use of glycerophospholipids, vegetable oils, diluents (kerosene, diesel, aromatic solvents, light crude oil, naphtha and gasoline) and auxiliaries (alcohols) as thickener viscosity reducers.
  • the disadvantage of the method is that the consumption of light crude oil is as high as 40% by weight.
  • US 20010042911 reports a heavy oil viscosity reducer. Although the concentration of the main heavy oil is reduced to about 200 mPa ⁇ s when the concentration of the main agent is 0.5 wt%, it is not suitable for the asphaltene-containing and high-quality rubber. Heavy oil reduces viscosity.
  • the invention provides a water-based viscosity reducer for emulsified ultra-heavy oil with low cost, safety and good viscosity-reducing effect, and provides a simple preparation method of the viscosity-reducing agent.
  • the water-based viscosity reducer of the emulsified extra heavy oil of the present invention comprises, as a component of 100 parts by weight, 0.7-4 parts of a surfactant, 0-10 parts of an oil phase, and the balance being an aqueous phase.
  • the surfactant comprises a super amphiphilic emulsifier and a fatty alcohol polyoxyethylene ether sulfate, the mass ratio of which is 1:4-4:1, preferably 1:1.
  • the super amphiphilic emulsifier is a super amphiphilic emulsifier in the responsive super amphiphilic emulsifier, emulsion and preparation method thereof disclosed in Chinese Patent Publication No. CN 105542149A.
  • the oil phase is toluene, xylene, mixed benzene, diesel, paraffin oil or gas oil.
  • the aqueous phase may be water, or a NaCl solution having a concentration of not more than 30 g/L, or a CaCl 2 solution having a concentration of not more than 2 g/L, or a mixed solution of NaCl and CaCl 2 , and a concentration of NaCl in the mixed solution. Not more than 30g / L, the concentration of CaCl 2 is not more than 2g / L.
  • the preparation method of the above water-based viscosity reducing agent is:
  • 0.7 parts by weight of the surfactant, 0-10 parts of the oil phase are weighed in an amount of 100 parts by weight, and the balance is an aqueous phase, and the mixture is uniformly stirred at room temperature to form a water-based viscosity reducing agent of the emulsified super heavy oil.
  • the stirring speed is 200-500 rpm, and the stirring time is 15-30 minutes.
  • the water-based viscosity reducer of the emulsified ultra-heavy oil prepared by the invention utilizes the synergistic effect produced by the compounding of the surfactant to greatly improve the overall surface activity, can significantly reduce the oil-water interfacial tension, so after stirring at a certain temperature, The surfactant is adsorbed around the oil beads to form a mixed interface film, which prevents the oil beads from re-polymerizing and greatly reduces the intramolecular friction, forming an O/W emulsion, so that the viscosity of the ultra-heavy oil is reduced by up to 99.99%;
  • the water-based viscosity reducing agent does not contain alkali, and is particularly suitable for emulsification and viscosity reduction in alkali-sensitive formations.
  • the water-based viscosity reducer of the invention has the characteristics of low cost, safety and simple preparation, and can effectively improve the recovery of ultra-heavy oil.
  • Figure 1 is a schematic illustration of a sample of a water-based viscosity reducing agent prepared in the present invention.
  • Figure 2 is a schematic representation of a 50 °C heavy oil sample.
  • Fig. 3 is a schematic view showing the effect of emulsification and viscosity reduction of the super heavy oil of the present invention.
  • the following components were weighed out in an amount of 100 parts by weight, 2 parts of super amphiphilic emulsifier, 2 parts of fatty alcohol polyoxyethylene ether sulfate, 10 parts of paraffin oil, and 86 parts of deionized water. The mixture was placed in a reactor and mixed uniformly, and stirred at 300 rpm for 20 minutes at room temperature to form a water-based viscosity reducing agent.
  • Heavy oil sample viscosity 2429091 Viscosity of heavy oil emulsion (mPa ⁇ s) 57.6 Viscosity reduction rate (%) 99.99
  • the following components 0.14 parts of super amphiphilic emulsifier, 0.56 parts of fatty alcohol polyoxyethylene ether sulfate, 2 parts of toluene, and 97.3 parts of a NaCl solution (aqueous solution) having a concentration of 20 g/L were weighed out in an amount of 100 parts by weight. The mixture was placed in a reactor and mixed uniformly, and stirred at 200 rpm for 30 minutes at room temperature to form a water-based viscosity reducing agent.
  • Heavy oil sample viscosity (mPa ⁇ s) 959530 Viscosity of heavy oil emulsion (mPa ⁇ s) 82.2 Viscosity reduction rate (%) 99.99
  • Heavy oil sample viscosity (mPa ⁇ s) 959530 Viscosity of heavy oil emulsion (mPa ⁇ s) 74 Viscosity reduction rate (%) 99.99
  • the following components were weighed out in 100 parts by weight, 1 part of super amphiphilic emulsifier, 2 parts of fatty alcohol polyoxyethylene ether sulfate, 7 parts of gas-made oil, and a CaCl 2 solution having a concentration of 0.5 g/L. Share.
  • the mixture was placed in a reactor and mixed uniformly, and stirred at 300 rpm for 20 minutes at room temperature to form a water-based viscosity reducing agent.
  • Heavy oil sample viscosity (mPa ⁇ s) 2429091 Viscosity of heavy oil emulsion (mPa ⁇ s) 107.4 Viscosity reduction rate (%) 99.99
  • the following components were weighed out in terms of 100 parts by weight, 1.5 parts of super amphiphilic molecules, 1.5 parts of fatty alcohol polyoxyethylene ether sulfate, 5 parts of xylene, and 93 parts of well water. The mixture was placed in a reactor and mixed uniformly, and stirred at 400 rpm for 20 minutes at room temperature to form a water-based viscosity reducing agent.
  • Heavy oil sample viscosity 2429091 Viscosity of heavy oil emulsion (mPa ⁇ s) 83.4 Viscosity reduction rate (%) 99.99
  • the following components were weighed out in an amount of 100 parts by weight, 0.5 parts of super amphiphilic emulsifier, 0.5 part of fatty alcohol polyoxyethylene ether sulfate, and 99 parts of tap water, without oil phase.
  • the mixture was placed in a reactor and mixed uniformly, and stirred at 300 rpm for 20 minutes at room temperature to form a water-based viscosity reducing agent.
  • the following components were weighed out in an amount of 100 parts by weight, 0.5 parts of super amphiphilic emulsifier, 0.5 parts of fatty alcohol polyoxyethylene ether sulfate, and 93 parts of NaCl solution having a concentration of 5 g/L, without adding an oil phase.
  • the mixture was placed in a reactor and mixed uniformly, and stirred at 400 rpm for 20 minutes at room temperature to form a water-based viscosity reducing agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Cosmetics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Colloid Chemistry (AREA)

Abstract

一种乳化超稠油的水基降粘剂及其制备方法,该降粘剂以100重量份计,包含如下组分,表面活性剂0.7-4份,油相0-10份,余量为水相;其制备方法是:将表面活性剂、油相和水相在室温下搅拌混合均匀,即形成乳化超稠油的水基降粘剂。本发明利用表面活性剂的复配产生的协同增效作用大大提高了整体的表面活性,能显著降低油水界面张力,所以在一定温度下经过搅拌,表面活性剂吸附于油珠周围,形成混合界面膜,防止油珠重新聚并,大大减弱了分子内摩擦力,形成了O/W型乳状液,使得超稠油粘度降低幅度高达99.99%;并且本水基降粘剂不含碱,特别适用于碱敏地层乳化降粘,具有成本低、安全和制备简单等特点,能够有效提高超稠油采收率。

Description

一种乳化超稠油的水基降粘剂及其制备方法 技术领域
本发明涉及一种用于提高采收率的降低超稠油粘度的水基降粘剂,以及该降粘剂的制备方法,属于石油开采技术领域。
背景技术
稠油根据粘度及相对密度可分为普通稠油、特稠油和超稠油,其中超稠油粘度在50000mPa·s以上,相对密度大于0.98(130API)。根据现有研究,原油粘度通常在400mPa·s以下才能进行开采和输送。
目前国内外在稠油开采中常用的降粘方法有:掺稀油法、加热法、稠油改质降粘及化学药剂降粘法。掺稀油降粘存在稀油短缺及价格昂贵等不利因素;加热降粘则要消耗大量的热能,存在着较高的能量损耗和经济损失;改质降粘适用范围较窄;化学降粘包括油溶性和水溶性降粘技术,油溶性降粘技术的作用机理尚明确,选择性强,难以开发出适用范围广的降粘剂,而且只是削弱了蜡晶、胶质沥青质层状重叠堆积结构的稳固性,并未完全“拆散”聚集体,因而降粘能力有限,但水溶性降粘技术使用范围相对较宽(包括油层开采、井筒降粘、管道输送等领域),同时工艺简单,成本较低,易于实现。
目前国内外稠油降粘技术的应用实例较多,例如中国专利文献CN103032056B公开的一种使用掺稀原油降粘的方法,虽然降粘前塔河油田TH12329井50℃粘度为1800000mPa·s,降粘后井口稠油50℃粘度在800mPa·s以下,但是掺稀比达到0.73:1,鉴于稠油与稀油在价格等方面存在的差异,此掺稀油降粘存在经济方面的损失。
CN 101845298 B公开的一种使用微生物降粘的方法,缺点是对结构复杂的胶质和沥青质处理难度较大,且在高温和高盐的地层环境下容易失活。
美国专利文献US 9453157报道了一种用甘油磷脂、植物油、稀释剂(煤油、柴油、芳香族溶剂、轻质原油、石脑油和汽油)和助剂(醇类)作为稠油降粘剂的方法,缺点是轻质原油消耗量大,高达40wt%。
US 20010042911报道了一种稠油降粘剂,虽然主剂浓度为0.5wt%时,可将普通稠油的粘度降到200mPa·s左右,但并不适合含沥青质、胶质量较高的超稠油降粘。
发明内容
本发明针对现有降粘剂存在的不足,提供一种成本低、安全、降粘效果好的乳化超稠油的水基降粘剂,同时提供一种该降粘剂过程简单的制备方法。
本发明的乳化超稠油的水基降粘剂,以100重量份计,包含如下组分,表面活性剂0.7-4份,油相0-10份,余量为水相。
所述表面活性剂包含超两亲分子乳化剂和脂肪醇聚氧乙烯醚硫酸钠,二者质量比为 1:4-4:1,优选1:1。所述超两亲分子乳化剂为中国专利文献CN 105542149A公开的《具有响应性的超两亲分子乳化剂、乳状液及其制备方法》中的超两亲分子乳化剂。
所述油相为甲苯、二甲苯、混苯、柴油、石蜡油或气制油。
所述水相可以是水,或者是浓度不大于30g/L的NaCl溶液,或者是浓度不大于2g/L的CaCl 2溶液,或者是NaCl和CaCl 2的混合溶液,该混合溶液中NaCl的浓度不大于30g/L,CaCl 2的浓度不大于2g/L。
上述水基降粘剂的制备方法是:
以100重量份计,称取表面活性剂0.7-4份,油相0-10份,余量为水相,室温下搅拌混合均匀,即形成乳化超稠油的水基降粘剂。搅拌转速为以200-500转/分钟,搅拌时间15-30分钟。
本发明制备的乳化超稠油的水基降粘剂利用表面活性剂的复配产生的协同增效作用大大提高了整体的表面活性,能显著降低油水界面张力,所以在一定温度下经过搅拌,表面活性剂吸附于油珠周围,形成混合界面膜,防止油珠重新聚并,大大减弱了分子内摩擦力,形成了O/W型乳状液,使得超稠油粘度降低幅度高达99.99%;并且本水基降粘剂不含碱,特别适用于碱敏地层乳化降粘。本发明的水基降粘剂具有成本低、安全和制备简单等特点,能够有效提高超稠油采收率。
附图说明
图1是本发明中制备的水基降粘剂的样品示意图。
图2是50℃稠油样品示意图。
图3是本发明超稠油乳化降粘效果示意图。
具体实施方式
实施例1
以100重量份计,分别称取如下组分,超两亲分子乳化剂2份,脂肪醇聚氧乙烯醚硫酸钠2份,石蜡油10份,去离子水86份。依次放入反应器中混合均匀,室温下以300转/分钟的转速搅拌20分钟,即可形成水基降粘剂。
乳化降粘效果测试:
(1)将超稠油在50℃的恒温水浴中恒温1小时,搅拌去除其中的游离水和气泡,测定超稠油在50℃的初始粘度μ 0
(2)在烧杯中加入超稠油和水基降粘剂,二者质量比固定为2:1,放入80℃的恒温水浴中,恒温1小时,调节转速为500转/分,在恒温条件下搅拌20分钟,制备稠油乳液,测定稠油乳液在50℃时的粘度μ。
(3)降粘率按照下式计算:
Figure PCTCN2018085285-appb-000001
结果如下表所示:
稠油样品粘度(mPa·s) 2429091
稠油乳液粘度(mPa·s) 57.6
降粘率(%) 99.99
实施例2
以100重量份计,分别称取如下组分,超两亲分子乳化剂0.14份,脂肪醇聚氧乙烯醚硫酸钠0.56份,甲苯2份,浓度20g/L的NaCl溶液(水溶液)97.3份。依次放入反应器中混合均匀,室温下以200转/分钟的转速搅拌30分钟,即可形成水基降粘剂。
按照实施例1的方法考察水基降粘剂的降粘效果,数据如下:
稠油样品粘度(mPa·s) 959530
稠油乳液粘度(mPa·s) 53.9
降粘率(%) 99.99
实施例3
以100重量份计,分别称取如下组分,超两亲分子乳化剂1.6份,脂肪醇聚氧乙烯醚硫酸钠0.4份,柴油3份,NaCl和CaCl 2的混合溶液95份,混合溶液中NaCl含量30g/L,CaCl 2含量2g/L。依次放入反应器中混合均匀,室温下以500转/分钟的转速搅拌15分钟,即可形成水基降粘剂。
按照实施例1的方法考察水基降粘剂的降粘效果,数据如下:
稠油样品粘度(mPa·s) 959530
稠油乳液粘度(mPa·s) 82.2
降粘率(%) 99.99
实施例4
以100重量份计,分别称取如下组分,超两亲分子乳化剂2份,脂肪醇聚氧乙烯醚硫酸钠1份,混苯2份,NaCl和CaCl 2的混合溶液97份,混合溶液中NaCl含量15g/L,CaCl 2含量1g/L。依次放入反应器中混合均匀,室温下以400转/分钟的转速搅拌20分钟,即可形成水基降粘剂。
按照实施例1的方法考察水基降粘剂的降粘效果,数据如下:
稠油样品粘度(mPa·s) 959530
稠油乳液粘度(mPa·s) 74
降粘率(%) 99.99
实施例5
以100重量份计,分别称取如下组分,超两亲分子乳化剂1份,脂肪醇聚氧乙烯醚硫酸钠2份,气制油7份,浓度为0.5g/L的CaCl 2溶液90份。依次放入反应器中混合均匀,室温下以300转/分钟的转速搅拌20分钟,即可形成水基降粘剂。
按照实施例1的方法考察水基降粘剂的降粘效果,数据如下:
稠油样品粘度(mPa·s) 2429091
稠油乳液粘度(mPa·s) 107.4
降粘率(%) 99.99
实施例6
以100重量份计,分别称取如下组分,超两亲分子1.5份,脂肪醇聚氧乙烯醚硫酸钠1.5份,二甲苯5份,井水93份。依次放入反应器中混合均匀,室温下以400转/分钟的转速搅拌20分钟,即可形成水基降粘剂。
按照实施例1的方法考察水基降粘剂的降粘效果,数据如下:
稠油样品粘度(mPa·s) 2429091
稠油乳液粘度(mPa·s) 83.4
降粘率(%) 99.99
实施例7
以100重量份计,分别称取如下组分,超两亲分子乳化剂0.5份,脂肪醇聚氧乙烯醚硫酸钠0.5份,自来水99份,不加油相。依次放入反应器中混合均匀,室温下以300转/分钟的转速搅拌20分钟,即可形成水基降粘剂。
乳化降粘效果测试:
(1)将超稠油在50℃的恒温水浴中恒温1小时,搅拌去除其中的游离水和气泡,测定超稠油在50℃的初始粘度μ0;
(2)在烧杯中加入超稠油和水基降粘剂,二者质量比固定为7:3,放入50℃的恒温水浴中,恒温1小时,调节转速为500转/分,在恒温条件下搅拌20分钟,制备稠油乳液,测定稠油乳液在50℃时的粘度μ。
(3)降粘率按照下式计算:
Figure PCTCN2018085285-appb-000002
结果如下表所示:
稠油样品粘度(mPa·s) 343845
稠油乳液粘度(mPa·s) 15.4
降粘率(%) 99.99
实施例8
以100重量份计,分别称取如下组分,超两亲分子乳化剂0.5份,脂肪醇聚氧乙烯醚硫酸钠0.5份,浓度为5g/L的NaCl溶液93份,不加油相。依次放入反应器中混合均匀,室温下以400转/分钟的转速搅拌20分钟,即可形成水基降粘剂。
按照实施例7的方法考察水基降粘剂的降粘效果,数据如下:
稠油样品粘度(mPa·s) 376554
稠油乳液粘度(mPa·s) 17.5
降粘率(%) 99.99

Claims (7)

  1. 一种乳化超稠油的水基降粘剂,其特征是:以100重量份计,包含如下组分,表面活性剂0.7-4份,油相0-10份,余量为水相。
  2. 根据权利要求1所述的乳化超稠油的水基降粘剂,其特征是:所述表面活性剂包含超两亲分子乳化剂和脂肪醇聚氧乙烯醚硫酸钠,二者质量比为1:4-4:1。
  3. 根据权利要求1所述的乳化超稠油的水基降粘剂,其特征是:所述表面活性剂包含超两亲分子乳化剂和脂肪醇聚氧乙烯醚硫酸钠,二者质量比为1:1。
  4. 根据权利要求1所述的乳化超稠油的水基降粘剂,其特征是:所述油相为甲苯、二甲苯、混苯、柴油、石蜡油或气制油。
  5. 根据权利要求1所述的乳化超稠油的水基降粘剂,其特征是:所述水相是水,或者是浓度不大于30g/L的NaCl溶液,或者是浓度不大于2g/L的CaCl 2溶液,或者是NaCl和CaCl 2的混合溶液,该混合溶液中NaCl的浓度不大于30g/L,CaCl 2的浓度不大于2g/L。
  6. 一种权利要求1-5所述任一种乳化超稠油的水基降粘剂的制备方法,其特征是:以100重量份计,称取表面活性剂0.7-4份,油相0-10份,余量为水相,室温下搅拌混合均匀,即形成乳化超稠油的水基降粘剂。
  7. 根据权利要求6所述的所述乳化超稠油的水基降粘剂的制备方法,其特征是:所述搅拌转速为以200-500转/分钟,搅拌时间15-30分钟。
PCT/CN2018/085285 2017-07-10 2018-05-02 一种乳化超稠油的水基降粘剂及其制备方法 WO2019011045A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/622,356 US11268012B2 (en) 2017-07-10 2018-05-02 Water-based viscosity reducer for emulsifying ultra-heavy oil and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710558109.0A CN107236530B (zh) 2017-07-10 2017-07-10 一种乳化超稠油的水基降粘剂及其制备方法
CN201710558109.0 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019011045A1 true WO2019011045A1 (zh) 2019-01-17

Family

ID=59991104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085285 WO2019011045A1 (zh) 2017-07-10 2018-05-02 一种乳化超稠油的水基降粘剂及其制备方法

Country Status (3)

Country Link
US (1) US11268012B2 (zh)
CN (1) CN107236530B (zh)
WO (1) WO2019011045A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004881A (zh) * 2019-12-20 2021-06-22 中国石油天然气股份有限公司 纳米乳液组合物、纳米乳液及其制备方法、压裂液用阻凝降黏剂及其制备方法
CN113666866A (zh) * 2021-08-26 2021-11-19 山东新港化工有限公司 稠油冷采吞吐用双亲型渗透分散剂及其制备方法和应用
CN115725285A (zh) * 2021-08-27 2023-03-03 中国石油天然气股份有限公司 一种稠油降粘型修井液及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236530B (zh) * 2017-07-10 2019-01-04 山东大学 一种乳化超稠油的水基降粘剂及其制备方法
CN107338118B (zh) * 2017-07-10 2018-10-23 山东大学 一种含油污泥用乳液型水基清洗剂及其制备方法和使用方法
CN107936937B (zh) * 2017-11-28 2020-06-16 中国石油化工股份有限公司 一种用于稠油开采的细小乳状液及其制备方法
CN110452676B (zh) * 2018-05-08 2022-01-04 中国石油化工股份有限公司 用于降低稠油粘度的组合物和稠油降粘剂及其制备方法和应用及稠油降粘的方法
CN111075414B (zh) * 2018-10-22 2022-07-05 中国石油化工股份有限公司 一种浅层中高渗超稠油油藏有效动用工艺
CN111777317B (zh) * 2020-07-01 2022-10-21 遵义市菲科环保科技有限公司 一种降低油泥砂固化物粘度的组合物及其制备方法和应用
CN112175601A (zh) * 2020-12-03 2021-01-05 山东新港化工有限公司 普通稠油冷采用低张力稠油降粘洗油剂及其制备方法和应用
CN113136192A (zh) * 2021-04-06 2021-07-20 西安石油大油气科技有限公司 开采石油用空气泡沫驱油的低腐蚀性起泡剂及其制备方法
CN113278147B (zh) * 2021-05-28 2022-07-08 山东大学 一种末端修饰支化聚酰胺改性物稠油降粘剂的制备方法及应用
CN113881414B (zh) * 2021-09-29 2023-04-14 宁波锋成先进能源材料研究院有限公司 一种双亲氧化石墨烯稠油降粘剂的制备方法和应用
CN114183107A (zh) * 2021-12-03 2022-03-15 中国石油大学(华东) 一种环保型稠油降粘冷采的方法
CN115010333B (zh) * 2022-06-27 2023-09-15 郑州大学 一种含油污泥清洗液及含油污泥的处理方法
US11649397B1 (en) 2022-07-27 2023-05-16 Saudi Arabian Oil Company Polyaromatic hydrocarbon-based host-guest complex for heavy crude oil viscosity reduction
CN116120908B (zh) * 2023-04-18 2023-06-20 西南石油大学 一种超稠油乳化降黏微乳液的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619209A (zh) * 2009-07-31 2010-01-06 中国石油化工股份有限公司胜利油田分公司采油工艺研究院 酰胺基磺酸钠作为油田用添加剂的新用途及其组合体
US20140238679A1 (en) * 2013-02-28 2014-08-28 Board Of Regents, The University Of Texas System Transport of heavy oil
CN105542149A (zh) * 2016-01-25 2016-05-04 山东大学 具有响应性的超两亲分子乳化剂、乳状液及其制备方法
CN105670592A (zh) * 2016-03-29 2016-06-15 江南大学 一种稠油乳化剂及其制备方法
CN106520102A (zh) * 2015-09-11 2017-03-22 中国石油化工股份有限公司 用于降低稠油粘度的组合物和稠油降粘剂及制备方法和稠油降粘方法和稠油油藏开采方法
CN107236530A (zh) * 2017-07-10 2017-10-10 山东大学 一种乳化超稠油的水基降粘剂及其制备方法
CN107338118A (zh) * 2017-07-10 2017-11-10 山东大学 一种含油污泥用乳液型水基清洗剂及其制备方法和使用方法
CN107474814A (zh) * 2017-08-02 2017-12-15 山东大学 一种乳液型油基泥浆清洗液及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330450A (en) * 1979-10-15 1982-05-18 Diamond Shamrock Corporation Amphoteric water-in-oil self-inverting polymer emulsion
US4505828A (en) * 1979-10-15 1985-03-19 Diamond Shamrock Chemicals Company Amphoteric water-in-oil self-inverting polymer emulsion
CA2127743A1 (en) * 1993-07-20 1995-01-21 Jerry S. Neely Method and composition for enhancing hydrocarbon production from wells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619209A (zh) * 2009-07-31 2010-01-06 中国石油化工股份有限公司胜利油田分公司采油工艺研究院 酰胺基磺酸钠作为油田用添加剂的新用途及其组合体
US20140238679A1 (en) * 2013-02-28 2014-08-28 Board Of Regents, The University Of Texas System Transport of heavy oil
CN106520102A (zh) * 2015-09-11 2017-03-22 中国石油化工股份有限公司 用于降低稠油粘度的组合物和稠油降粘剂及制备方法和稠油降粘方法和稠油油藏开采方法
CN105542149A (zh) * 2016-01-25 2016-05-04 山东大学 具有响应性的超两亲分子乳化剂、乳状液及其制备方法
CN105670592A (zh) * 2016-03-29 2016-06-15 江南大学 一种稠油乳化剂及其制备方法
CN107236530A (zh) * 2017-07-10 2017-10-10 山东大学 一种乳化超稠油的水基降粘剂及其制备方法
CN107338118A (zh) * 2017-07-10 2017-11-10 山东大学 一种含油污泥用乳液型水基清洗剂及其制备方法和使用方法
CN107474814A (zh) * 2017-08-02 2017-12-15 山东大学 一种乳液型油基泥浆清洗液及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004881A (zh) * 2019-12-20 2021-06-22 中国石油天然气股份有限公司 纳米乳液组合物、纳米乳液及其制备方法、压裂液用阻凝降黏剂及其制备方法
CN113666866A (zh) * 2021-08-26 2021-11-19 山东新港化工有限公司 稠油冷采吞吐用双亲型渗透分散剂及其制备方法和应用
CN113666866B (zh) * 2021-08-26 2023-03-14 山东新港化工有限公司 稠油冷采吞吐用双亲型渗透分散剂及其制备方法和应用
CN115725285A (zh) * 2021-08-27 2023-03-03 中国石油天然气股份有限公司 一种稠油降粘型修井液及其制备方法

Also Published As

Publication number Publication date
CN107236530A (zh) 2017-10-10
US11268012B2 (en) 2022-03-08
CN107236530B (zh) 2019-01-04
US20200199441A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
WO2019011045A1 (zh) 一种乳化超稠油的水基降粘剂及其制备方法
DK178905B1 (en) Stabilizing emulsified acids for carbonate acidizing
US20210115324A1 (en) Insatiability emulsification and viscosity system with controlled viscosity and its application in water-driven reservoir
US3710865A (en) Method of fracturing subterranean formations using oil-in-water emulsions
CN106398675B (zh) 乳化降粘剂及其制备方法和应用以及稠油乳化降粘的方法
WO2022047904A1 (zh) 一种纳米活性剂体系及其制备方法和应用
US10407606B2 (en) High temperature viscoelastic surfactant (VES) fluids comprising nanoparticle viscosity modifiers
CN112266775A (zh) 一种原位纳米乳化剂的制备及油藏应用方法
CN103265816B (zh) 钻井液用低软化点乳化沥青及其制备方法
CN111607372A (zh) 一种用于稠油开采的生物纳米制剂及其制备方法和应用
CN100366702C (zh) 一种抗高温、低摩阻油包酸乳状液
CN105112038A (zh) 一种伴蒸汽用稠油乳化降粘剂及其制备方法、使用方法
CN112143473B (zh) 一种乳状液调驱剂及其制备方法
US3799267A (en) Hydraulic fracturing method using benzoic acid to further increase the viscosity of liquid hydrocarbon
CN113881414B (zh) 一种双亲氧化石墨烯稠油降粘剂的制备方法和应用
JP2530420B2 (ja) 粘性粗製炭化水素の緩衝液中エマルジョン及びその形成方法並びに輸送方法
CN108865096A (zh) 一种稠油开采高效复合降粘剂
CN113528109B (zh) 一种降粘剂、制备方法及其应用
CN109777470A (zh) 一种油泥处理破乳剂
CN110129019B (zh) 一种用于三次采油的纳米驱油剂及其制备方法
CN115584256B (zh) 一种酸化压裂用耐高温高盐助排剂及其制备方法
CN107502319A (zh) 一种环保型钻井液用润滑剂及制备方法
Reis et al. Evaluation of w/o emulsion stability in function of oil polarity: a study using asphaltenes C3I in kerosene
CN108467716A (zh) 一种油基清蜡剂
Hendrickson et al. Soap-Oil Systems for Formation Fracturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831352

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/07/2020)