WO2019010979A1 - 人参鉴别方法及系统 - Google Patents

人参鉴别方法及系统 Download PDF

Info

Publication number
WO2019010979A1
WO2019010979A1 PCT/CN2018/076399 CN2018076399W WO2019010979A1 WO 2019010979 A1 WO2019010979 A1 WO 2019010979A1 CN 2018076399 W CN2018076399 W CN 2018076399W WO 2019010979 A1 WO2019010979 A1 WO 2019010979A1
Authority
WO
WIPO (PCT)
Prior art keywords
ginseng
sample
terahertz
terahertz time
spectrum
Prior art date
Application number
PCT/CN2018/076399
Other languages
English (en)
French (fr)
Inventor
李�灿
丁庆
冯军正
Original Assignee
深圳市太赫兹系统设备有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹系统设备有限公司, 深圳市太赫兹科技创新研究院 filed Critical 深圳市太赫兹系统设备有限公司
Publication of WO2019010979A1 publication Critical patent/WO2019010979A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8466Investigation of vegetal material, e.g. leaves, plants, fruits

Definitions

  • the invention relates to the field of traditional Chinese medicine identification, in particular to a method and system for ginseng identification.
  • Ginseng is a valuable Chinese herbal medicine in China. It can be divided into red ginseng, white ginseng and Korean ginseng according to different origins, processing methods and colors. Because different kinds of ginseng have different nutritional values and medical effects due to different chemical active ingredients, the behavior of adult Chinese herbal medicines to adulterate and deceive consumers often occurs. The scientific and reliable identification method of ginseng has always been the focus of clinical medication and health care personnel. The problem.
  • a method for ginseng identification includes:
  • the terahertz absorption spectrum and the refractive index curve of the ginseng sample are determined according to the absorption coefficient and the refractive index, and the type of the ginseng sample is determined according to the terahertz absorption spectrum and the refractive index curve.
  • the terahertz time domain spectrum is measured by a terahertz time domain spectroscopy THz-TDS device; the terahertz time domain spectroscopy THz-TDS device comprises a femtosecond laser; the terahertz time domain spectrum
  • the acquisition methods include:
  • Nitrogen gas is introduced into the sample chamber in the terahertz time-domain spectroscopy THz-TDS device until the humidity of the sample chamber is reduced below 2%;
  • the terahertz time domain spectrum of the ginseng sample and the reference sample to be tested is obtained by using a terahertz time domain spectroscopy THz-TDS device.
  • the step of acquiring a terahertz time domain spectrum of the ginseng sample and the reference sample using the terahertz time domain spectroscopy THz-TDS device comprises:
  • the empty sample holder is placed in a sample chamber of a terahertz time-domain spectroscopy THz-TDS device, and a terahertz time domain spectrum of the air sample is collected as a terahertz time domain spectrum of the reference sample;
  • the ginseng sample was placed in the sample compartment, and the terahertz time domain spectrum of the ginseng sample was repeatedly collected and averaged as the terahertz time domain spectrum of the ginseng sample.
  • the step of obtaining a terahertz frequency domain spectrum of the ginseng sample and the reference sample according to the terahertz time domain spectrum comprises:
  • the terahertz time-domain spectrum of the ginseng sample and the reference sample is converted into a corresponding terahertz frequency domain spectrum by Fourier transform.
  • the step of obtaining the absorption coefficient and the refractive index of the ginseng sample according to the terahertz frequency domain spectrum comprises:
  • the ginseng sample is compared with the frequency domain spectrum of the reference sample, and the absorption coefficient and refractive index of the ginseng sample are calculated using the Fresnel formula.
  • the absorption coefficient of the ginseng sample is calculated as:
  • d is the thickness of the ginseng sample piece
  • is the terahertz frequency
  • ⁇ ( ⁇ ) is the terahertz absorption coefficient
  • n( ⁇ ) is the terahertz refractive index
  • ⁇ ( ⁇ ) is the reference sample and The amplitude ratio between ginseng samples.
  • the refractive index of the ginseng sample is calculated as:
  • d is the thickness of the ginseng sample piece
  • is the terahertz frequency
  • c is the speed of light in the vacuum
  • the ginseng sample is red ginseng or ginseng.
  • the terahertz time-domain spectroscopy THz-TDS device is a transmissive terahertz time-domain spectroscopy THz-TDS device.
  • a ginseng identification system includes:
  • Transmissive terahertz time-domain spectroscopy THz-TDS device for measuring terahertz time domain spectral data of ginseng samples
  • An electronic device for performing the ginseng identification method An electronic device for performing the ginseng identification method.
  • the above ginseng identification method and system use the terahertz time-domain spectroscopy THz-TDS device to measure the absorption spectrum and the refractive index curve of ginseng, and identify the type of ginseng by absorption spectrum and refractive index curve.
  • the method is simple and fast to operate, non-destructive to ginseng and more effective.
  • FIG. 1 is a flow chart of a method for identifying a ginseng according to an embodiment
  • FIG. 2 is a flow chart of an implementation method of step S100 in FIG. 1;
  • FIG. 3 is a flowchart of an implementation method of step S140 in FIG. 2;
  • FIG. 4 is a schematic structural diagram of a THz-TDS device of a terahertz time domain spectrum according to an embodiment
  • Figure 5 is a terahertz time domain spectrum of a red ginseng sample of an embodiment
  • Figure 6 is a terahertz absorption spectrum of a red ginseng sample of an embodiment
  • Figure 8 is a terahertz absorption spectrum of a Korean ginseng sample according to an embodiment
  • Figure 9 is a graph showing the terahertz refractive index of a red ginseng sample according to an embodiment
  • Figure 10 is a graph of the terahertz refractive index of a Korean ginseng sample of an embodiment.
  • 1 is a flow chart of a ginseng authentication method according to an embodiment, the method including the following.
  • Step S100 Acquire a terahertz time domain spectrum of the ginseng sample and the reference sample to be tested.
  • Many common Chinese medicinal materials such as ginseng have obvious characteristic absorption in the terahertz spectrum, while the characteristic absorption spectra (fingerprint spectrum) of different ginseng samples are different. Therefore, the characteristic absorption spectrum of the ginseng sample in the terahertz band can be utilized to analyze and identify the structure and type of the ginseng sample.
  • Step S200 Obtain a terahertz frequency domain spectrum of the ginseng sample and the reference sample according to the terahertz time domain spectrum.
  • the terahertz time-domain spectrum reflects the absorption of terahertz waves by samples at different time periods.
  • the terahertz frequency domain spectrum reflects the absorption of terahertz waves by different samples per unit time.
  • Step S300 Obtain an absorption coefficient and a refractive index of the ginseng sample according to the terahertz frequency domain spectrum.
  • Step S400 The terahertz absorption spectrum and the refractive index curve of the ginseng sample are determined according to the absorption coefficient and the refractive index, and the type of the ginseng sample is determined according to the terahertz absorption spectrum and the refractive index curve.
  • the above ginseng identification method and system obtain the terahertz absorption spectrum and the refractive index curve of the ginseng, and identify the ginseng type by using the terahertz absorption spectrum and the refractive index curve.
  • the method is simple and fast to operate, non-destructive to ginseng and more effective.
  • the terahertz time domain spectrum is measured by a terahertz time domain spectroscopy THz-TDS device.
  • Terahertz time-domain spectroscopy THz-TDS devices include femtosecond lasers.
  • step S100 includes the following.
  • Step S110 Turn on the femtosecond laser until the output power is stabilized, and calibrate the light collimation in the terahertz time-domain spectrum THz-TDS device.
  • Step S120 Preheating the terahertz time-domain spectroscopy THz-TDS device by using the laser emitted by the femtosecond laser.
  • Step S130 The nitrogen gas is input into the sample chamber in the THz-TDS device of the terahertz time domain spectrum until the humidity of the sample chamber is reduced to less than 2%.
  • Step S140 Acquire a terahertz time domain spectrum of the ginseng sample and the reference sample to be tested by using a terahertz time domain spectroscopy THz-TDS device.
  • the measurement parameter setting is performed through the terahertz spectroscopy software program panel before the sample (ginseng sample and reference sample) is tested.
  • the measurement parameters include the scan range parameter and the refraction range parameter of the terahertz pulse.
  • the terahertz spectra of the ginseng samples and the reference samples were measured in a single point slow sweep mode according to the set parameters.
  • step S140 includes the following.
  • Step S141 The empty sample holder is placed in a sample chamber of a terahertz time-domain spectroscopy THz-TDS device, and a terahertz time domain spectrum of the air sample is collected as a terahertz time domain spectrum of the reference sample.
  • Step S142 The ginseng sample is placed in the sample compartment, and the terahertz time domain spectrum of the ginseng sample is repeatedly collected and averaged as the terahertz time domain spectrum of the ginseng sample.
  • the ginseng sample before the ginseng sample is placed in the sample chamber, the ginseng sample needs to be treated as follows: a small ginseng sample is placed in a vacuum drying oven and dried for 4 hours; then the dried ginseng sample is weighed by an analytical balance. 250 mg, and pulverized with a pulverizer, ground into a fine powder with an agate mortar; finally pressed with a hydraulic jack and pressed at a pressure of 20 MPa for 2 minutes. Through the above treatment process, a ginseng sample having a clean and flat circular sheet finally obtained has a thickness of about 1 mm. In addition, it is also necessary to maintain the ambient temperature of the terahertz time-domain spectroscopy THz-TDS device from 23 ° C to 25 ° C. The sample compartment is filled with nitrogen and the humidity is less than 2%.
  • step S200 includes the following.
  • the terahertz time-domain spectrum of the ginseng sample and the reference sample is converted into a corresponding terahertz frequency domain spectrum by Fourier transform.
  • the terahertz pulse E sam (t) containing the ginseng sample information and the detection pulse E ref (t) of the reference sample information can be measured in the terahertz time domain spectrum, and then Fourier transforms are respectively performed to obtain them.
  • step S400 includes the following.
  • the ginseng sample is compared with the frequency domain spectrum of the reference sample, and the absorption coefficient and refractive index of the ginseng sample are calculated using the Fresnel formula.
  • the frequency domain spectrum of the ginseng sample can be expressed as a terahertz pulse E sam (t)
  • the frequency domain spectrum of the reference sample can be expressed as a detection pulse E ref (t)
  • their ratios are expressed as:
  • d is the thickness of the ginseng sample piece
  • is the terahertz frequency
  • ⁇ ( ⁇ ) is the terahertz absorption coefficient
  • n( ⁇ ) is the terahertz refractive index
  • ⁇ ( ⁇ ) is the reference sample and The amplitude ratio between ginseng samples.
  • the calculation formula of the refractive index of the ginseng sample can be obtained by using the Fresnel formula:
  • d is the thickness of the ginseng sample piece
  • is the terahertz frequency
  • c is the speed of light in the vacuum
  • the terahertz time-domain spectroscopy THz-TDS device is a transmissive terahertz time-domain spectroscopy THz-TDS device.
  • the transmissive terahertz time-domain spectroscopy THz-TDS device includes a femtosecond laser 100, a time delay control system 200, a terahertz wave generating device 300, a terahertz wave detecting device 400, and a common optical device.
  • Common optical components include: HWP (half-wave plate), CBS (beam splitter), short focusing lens (L1, L2, and L3), off-axis parabolic mirrors (PM1, PM2, PM3, and PM4), polarizer P, and a series of Mirror.
  • the femtosecond laser pulse emitted by the femtosecond laser 100 passes through the HWP (half-wave plate) and is divided into two beams perpendicular to each other by the CBS (beam splitter), wherein a strong beam passing through the CBS is used as the pump light. The reflected light beam is weaker as the probe light.
  • the pump light passes through the time delay system 200, is concentrated by the short focus lens L1, and is incident on the emission crystal GaAs (low temperature grown gallium arsenide photoconductive antenna) in the terahertz wave generating device 300 at an angle of 45°, through the light.
  • the rectification effect excitation generates a terahertz pulse, and the emitted terahertz pulse is collimated by a pair of off-axis parabolic mirrors PM1 and PM2, and focused onto a ginseng sample.
  • the terahertz pulse penetrates the sample and carries the ginseng sample information, and is subjected to another
  • the off-axis parabolic mirrors PM3 and PM4 are collimated and focused onto the detection crystal ZnTe (zinc-zinc electro-optic crystal) in the terahertz wave detecting device 400.
  • the probe light is incident on the terahertz wave detecting device 400 after passing through a series of mirrors and condensing through the short focus lens L2.
  • the polarizing plate P is struck on the high-resistance silicon Si, reflected by the high-resistance silicon Si, and passed through the susceptor-loaded terahertz pulse of the ginseng sample information to detect the crystal ZnTe.
  • Detecting crystal ZnTe produces a linear electro-optical effect under the action of a terahertz pulse electric field, detecting the change of the refractive index ellipsoid of the crystalline ZnTe, and changing the polarization state of the probe light by detecting the crystal ZnTe, thereby reflecting the magnitude of the terahertz electric field and Its change.
  • the detection crystal ZnTe does not have birefringence characteristics, the detection light does not change its polarization direction after detecting the crystal ZnTe, and the QWP (quarter wave plate) is adjusted so that the detection light passes through
  • the circularly polarized light, after passing through the WP (Wollaston prism), is split into two polarization components of vertical and equal intensity, and the two photodiodes D1 and D2 are used to detect the two polarization components of the probe light, respectively.
  • the terahertz pulse electric field will make the detection crystal ZnTe have birefringence characteristics, and the polarization direction of the probe light will be changed when the crystal ZnTe is detected, and become elliptically polarized light after passing through the QWP. After WP, it becomes two polarization components of different sizes, and the differential current is output after being detected by the photodiodes D1 and D2. Since the magnitude of the effect of detecting the ZnTe birefringence characteristic of the crystal is related to the intensity of the terahertz pulse, the magnitude of the differential current is proportional to the electric field strength of the terahertz pulse.
  • the measured weak differential current signal is amplified by a lock-in amplifier and input to a computer for further processing to obtain a terahertz time-domain spectrum of the ginseng sample.
  • the entire system described above is controlled by a computer through LabVIEW programming.
  • the above ginseng sample is red ginseng or ginseng.
  • the size of the red ginseng sample is, for example, 13 mm * 1.40 mm, that is, a diameter of 13 mm and a thickness of 1.40 mm.
  • the size of the Korean ginseng sample is, for example, 13 mm * 1.40 mm, that is, a diameter of 13 mm and a thickness of 1.39 mm.
  • the terahertz time-domain spectrum of the red ginseng sample was measured by the above-described transmissive terahertz time-domain spectroscopy THz-TDS device. The results of one example are shown in Fig. 5.
  • the terahertz of the reference sample air sample
  • Time domain spectrum Then, the terahertz time-domain spectra of the red ginseng sample and the reference sample are separately subjected to Fourier transform to obtain their terahertz frequency domain spectrum, and then the ratio of the red ginseng sample to the reference region's frequency domain spectrum is taken and the logarithm is used.
  • the formula can obtain the terahertz absorption spectrum of the red ginseng sample, and the result is shown in Fig. 6.
  • the terahertz time domain spectrum of Korean ginseng can also be obtained by the above method, as shown in FIG.
  • the terahertz absorption spectrum of Korean ginseng as shown in Figure 8.
  • Ginseng sample The position of the main absorption peak (frequency THz) Red ginseng 1.64, 1.76, 1.84, 1.94 Korean ginseng 1.64, 1.81, 1.94
  • the red absorption samples at 1.64 THz and 1.94 THz have a common absorption peak with the Korean ginseng sample.
  • the red ginseng sample has an absorption peak at 1.76 THz and 1.84 THz, and the Korean ginseng sample has no absorption peak; the 1.81 THz Korean ginseng sample has an absorption peak, and the red ginseng sample does not. Therefore, there is a significant difference between the terahertz absorption spectra of the two, which can be distinguished by the terahertz absorption spectrum of the two.
  • the terahertz refractive index curve of the red ginseng sample and the Korean ginseng sample can also be obtained by using the Fresnel formula, and the refractive index curves of the two are also significantly different, and the specific differences are shown in FIG. 9 and FIG. Shown.
  • Figure 9 is a terahertz refractive index curve of a red ginseng sample
  • Figure 10 is a terahertz refractive index curve of a Korean ginseng sample.
  • the terahertz refractive index of the red ginseng sample is slowly rising and relatively stable at the terahertz frequency range before 1.5 THz, while the terahertz refractive index of the Korean ginseng sample is decreasing, and the decreasing rate is relative to the red ginseng.
  • the rate of rise of the sample is large.
  • the terahertz refractive index of the red ginseng sample began to fluctuate and then continued to fluctuate.
  • the terahertz refractive index of the Korean ginseng sample showed a fluctuating downward trend, and the volatility was higher than that of the red ginseng.
  • the sample is large. Therefore, there is a large difference in the terahertz refractive index curves of the two, and the two ginsengs can be identified by comparing the terahertz refractive index curves.
  • a ginseng identification system includes: a transmissive terahertz time-domain spectroscopy THz-TDS device for measuring terahertz time-domain spectral data of a ginseng sample; and an electronic device for performing the ginseng identification method.
  • electronic equipment includes computer and terahertz spectrum (including time domain spectrum, frequency domain spectrum, absorption spectrum and refractive index) processing equipment.
  • the above ginseng identification method and system use the terahertz time-domain spectroscopy THz-TDS device to measure the absorption spectrum and the refractive index curve of ginseng, and identify the types of ginseng by absorption spectrum and refractive index curve.
  • the method is simple and fast to operate, non-destructive to ginseng and more effective.

Abstract

一种人参鉴别方法及系统。该方法包括:获取待测人参样品及参考样品的太赫兹时域谱(S100);根据太赫兹时域谱得到人参样品及参考样品的太赫兹频域谱(S200);根据太赫兹频域谱得到人参样品的吸收系数及折射率(S300);根据吸收系数及折射率作出人参样品的太赫兹吸收谱及折射率曲线,并根据太赫兹吸收谱及折射率曲线来确定人参样品的种类(S400)。该人参鉴别方法及系统,操作简单快速、对人参无损且更加有效。

Description

人参鉴别方法及系统 技术领域
本发明涉及中药鉴别领域,特别是涉及一种人参鉴别方法及系统。
背景技术
人参是我国的名贵中药材,其依据不同产地、加工方法、颜色等可划分为:红参、白参和高丽参等。由于不同种类人参因化学活性成分不同而导致其营养价值与医疗功效存在差异,名贵中药材掺假欺骗消费者的行为亦经常发生,制定科学可靠的人参的鉴别方法一直是临床用药及保健人员关注的问题。
传统的人参鉴别方式是性状鉴别。随着科学技术的发展,近代出现了鉴别中药材等复杂多组分混合物体系的分子标记法、高效液相色谱法等。然而,这些技术由于存在着操作步骤繁琐、工作量大、实验结果重复性差等缺点,难以在实际中得到应用。
发明内容
基于此,有必要提供一种人参鉴别方法及系统,能够有效的鉴别人参的种类。
一种人参鉴别方法包括:
获取待测人参样品及参考样品的太赫兹时域谱;
根据所述太赫兹时域谱得到所述人参样品及参考样品的太赫兹频域谱;
根据所述太赫兹频域谱得到所述人参样品的吸收系数及折射率;
根据所述吸收系数及折射率作出所述人参样品的太赫兹吸收谱及折射率曲线,并根据所述太赫兹吸收谱及折射率曲线来确定人参样品的种类。
在其中一个实施例中,所述太赫兹时域谱由太赫兹时域光谱THz-TDS装置测量得到;所述太赫兹时域光谱THz-TDS装置包括飞秒激光器;所述太赫兹时 域谱的获取方法包括:
打开所述飞秒激光器直至输出功率稳定后,校准所述太赫兹时域光谱THz-TDS装置中的光线准直情况;
利用飞秒激光器所发射的激光对太赫兹时域光谱THz-TDS装置进行预热处理;
将氮气输入太赫兹时域光谱THz-TDS装置中的样品仓中,直至所述样品仓的湿度降低到2%以下为止;
利用太赫兹时域光谱THz-TDS装置获取待测人参样品及参考样品的太赫兹时域谱。
在其中一个实施例中,所述利用太赫兹时域光谱THz-TDS装置获取待测人参样品及参考样品的太赫兹时域谱的步骤包括:
将空样品架放入太赫兹时域光谱THz-TDS装置的样品仓中,采集空气样品的太赫兹时域光谱,作为参考样品的太赫兹时域谱;
将人参样品放入所述样品仓,重复多次采集人参样品的太赫兹时域光谱并取平均值,作为人参样品的太赫兹时域谱。
在其中一个实施例中,所述根据太赫兹时域谱得到所述人参样品及参考样品的太赫兹频域谱的步骤包括:
通过傅里叶变换,将所述人参样品及参考样品的太赫兹时域谱转换为相应的太赫兹频域谱。
在其中一个实施例中,所述根据太赫兹频域谱得到所述人参样品的吸收系数及折射率的步骤包括:
将所述人参样品与参考样品的频域谱作比值,并利用菲涅尔公式,计算出所述人参样品的吸收系数及折射率。
在其中一个实施例中,所述人参样品的吸收系数计算公式为:
Figure PCTCN2018076399-appb-000001
其中,d为人参样品片的厚度,ω为太赫兹频率,α(ω)为所述的太赫兹吸收系数,n(ω)为所述的太赫兹折射率,ρ(ω)为参考样品与人参样品之间的振幅比。
在其中一个实施例中,所述人参样品的折射率的计算公式为:
Figure PCTCN2018076399-appb-000002
其中,d为人参样品片的厚度,ω为太赫兹频率,c为真空中的光速,
Figure PCTCN2018076399-appb-000003
分别为参照样品与人参样品之间的相位差。
在其中一个实施例中,所述人参样品为红参或高丽参。
在其中一个实施例中,所述太赫兹时域光谱THz-TDS装置为透射式太赫兹时域光谱THz-TDS装置。
一种人参鉴别系统包括:
透射式太赫兹时域光谱THz-TDS装置,用于测量人参样品的太赫兹时域光谱数据;
电子设备,用于执行所述的人参鉴别方法。
上述人参鉴别方法及系统,利用太赫兹时域光谱THz-TDS装置测定人参的吸收谱及折射率曲线,通过吸收谱及折射率曲线鉴别人参的种类。该方法操作简单快速、对人参无损且更加有效。
附图说明
图1为一实施例的人参鉴别方法流程图;
图2为图1中步骤S100的一种实现方法的流程图;
图3为图2中步骤S140的一种实现方法的流程图;
图4为一实施例的太赫兹时域光谱THz-TDS装置结构示意图;
图5为一实施例的红参样品的太赫兹时域谱;
图6为一实施例的红参样品的太赫兹吸收谱;
图7为一实施例的高丽参样品的太赫兹时域谱;
图8为一实施例的高丽参样品的太赫兹吸收谱;
图9为一实施例的红参样品的太赫兹折射率曲线图;
图10为一实施例的高丽参样品的太赫兹折射率曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。相反地,提供这些实施例的目的是使对本发明的内容公开更加透彻全面。
图1为一实施例的人参鉴别方法流程图,该方法包括以下内容。
步骤S100:获取待测人参样品及参考样品的太赫兹时域谱。人参等许多常见中药材在太赫兹光谱中存在明显的特征吸收,而不同人参样品的特征吸收谱(指纹谱)不同。因此,可利用人参样品在太赫兹波段的特征吸收谱,对人参样品的结构及其种类进行分析和鉴别。
步骤S200:根据所述太赫兹时域谱得到所述人参样品及参考样品的太赫兹频域谱。该太赫兹时域谱反映的是不同时间段样品对太赫兹波的吸收情况。该太赫兹频域谱反映的是单位时间内样品对不同波段太赫兹波的吸收情况。
步骤S300:根据所述太赫兹频域谱得到所述人参样品的吸收系数及折射率。
步骤S400:根据所述吸收系数及折射率作出所述人参样品的太赫兹吸收谱及折射率曲线,并根据所述太赫兹吸收谱及折射率曲线来确定人参样品的种类。
上述人参鉴别方法及系统,通过获取测定人参的太赫兹吸收谱及折射率曲线,并利用太赫兹吸收谱及折射率曲线鉴别人参的种类。该方法操作简单快速、对人参无损且更加有效。
在其中一个实施例中,太赫兹时域谱由太赫兹时域光谱THz-TDS装置测量得到。太赫兹时域光谱THz-TDS装置包括飞秒激光器。如图2所示,步骤S100包括以下内容。
步骤S110:打开飞秒激光器直至输出功率稳定后,校准太赫兹时域光谱THz-TDS装置中的光线准直情况。
步骤S120:利用飞秒激光器所发射的激光对太赫兹时域光谱THz-TDS装置进行预热处理。
步骤S130:将氮气输入太赫兹时域光谱THz-TDS装置中的样品仓中,直至 样品仓的湿度降低到2%以下为止。
步骤S140:利用太赫兹时域光谱THz-TDS装置获取待测人参样品及参考样品的太赫兹时域谱。
在本实施例中,进行样品(人参样品与参考样品)检测之前需通过太赫兹光谱系统软件程序面板进行测量参数设置。测量参数包括太赫兹脉冲的扫描范围参数和折射范围参数。根据所设置的参数,以单点慢扫模式测量人参样品及参考样品的太赫兹光谱。
在其中一个实施例中,如图3所示,步骤S140包括以下内容。
步骤S141:将空样品架放入太赫兹时域光谱THz-TDS装置的样品仓中,采集空气样品的太赫兹时域光谱,作为参考样品的太赫兹时域谱。
步骤S142:将人参样品放入样品仓,重复多次采集人参样品的太赫兹时域光谱并取平均值,作为人参样品的太赫兹时域谱。
在本实施例中,将人参样品放入样品仓前需要对人参样品进行如下处理:取一小块人参样品放置于真空干燥箱中干燥4小时;然后用分析天平称取干燥后的人参样品约250mg,并用粉碎机粉碎,用玛瑙研钵研磨成细粉末状;最后使用油压式千斤顶压制,并保持20MPa压力压制2分钟。通过上述处理过程,最终得到干净平整的圆形薄片的人参样品,其厚度约为1mm左右。另外,还需保持太赫兹时域光谱THz-TDS装置的环境温度为23℃~25℃。样品仓充氮气环境,且湿度小于2%。
在其中一个实施例中,步骤S200的实现方式包括以下内容。
通过傅里叶变换,将所述人参样品及参考样品的太赫兹时域谱转换为相应的太赫兹频域谱。具体地,在太赫兹时域谱中可测得含有人参样品信息的太赫兹脉冲E sam(t)和参考样品信息的探测脉冲E ref(t),然后分别对它们进行傅立叶变换,得到它们在太赫兹频域谱中的复值
Figure PCTCN2018076399-appb-000004
Figure PCTCN2018076399-appb-000005
在其中一个实施例中,步骤S400的实现方式包括以下内容。
将人参样品与参考样品的频域谱作比值,并利用菲涅尔公式,计算出所述人参样品的吸收系数及折射率。具体地,人参样品的频域谱可以表示为太赫兹脉冲E sam(t),参考样品的频域谱可以表示为探测脉冲E ref(t),它们的比值表示为:
Figure PCTCN2018076399-appb-000006
进一步地,将上述比值取对数,并利用菲涅尔公式,得到如下人参样品的吸收系数计算公式:
Figure PCTCN2018076399-appb-000007
其中,d为人参样品片的厚度,ω为太赫兹频率,α(ω)为所述的太赫兹吸收系数,n(ω)为所述的太赫兹折射率,ρ(ω)为参考样品与人参样品之间的振幅比。
具体地,利用菲涅尔公式可得到人参样品的折射率的计算公式:
Figure PCTCN2018076399-appb-000008
其中,d为人参样品片的厚度,ω为太赫兹频率,c为真空中的光速,
Figure PCTCN2018076399-appb-000009
分别为参照样品与人参样品之间的相位差。可以理解的,折射率是人参样品的固有属性,通过对比不同人参样品的太赫兹折射率差异,可以分析和确认人参样品的结构和种类。
在其中一个实施例中,如图4所示,太赫兹时域光谱THz-TDS装置为透射式太赫兹时域光谱THz-TDS装置。具体地,透射式太赫兹时域光谱THz-TDS装置包括:飞秒激光器100、时间延迟控制系统200、太赫兹波产生装置300、太赫兹波探测装置400及常用光学器件。常用光学器件包括:HWP(半波片)、CBS(分束镜)、短聚焦透镜(L1、L2和L3)、离轴抛物面镜(PM1、PM2、PM3和PM4)、偏振片P及一系列的反射镜。飞秒激光器100发出的飞秒激光脉冲经HWP(半波片)后被CBS(分束镜)分成偏振方向相互垂直的两束,其中透过CBS的较强的一束作为泵浦光,而反射的光强较弱的那束作为探测光。
一方面,泵浦光经过时间延迟系统200,被短聚焦透镜L1汇聚后以45°角入射到太赫兹波产生装置300中的发射晶体GaAs(低温生长的砷化镓光导天线)上,通过光整流效应激发产生太赫兹脉冲,发射出的太赫兹脉冲被一对离轴抛物面镜PM1和PM2准直、聚焦到人参样品上,太赫兹脉冲穿透样品后载有人参 样品信息,并被另一对离轴抛物面镜PM3和PM4准直、聚焦到太赫兹波探测装置400中的探测晶体ZnTe(碲化锌电光晶体)上。
另一方面,探测光经过一系列反射镜并经短聚焦透镜L2汇聚后入射至太赫兹波探测装置400。在太赫兹波探测装置400中经偏振片P打在高阻硅Si上,由高阻硅Si反射后与载有人参样品信息的太赫兹脉冲共线地通过探测晶体ZnTe。探测晶体ZnTe在太赫兹脉冲电场的作用下产生线性电光效应,探测晶体ZnTe的折射率椭球发生改变,使通过探测晶体ZnTe的探测光的偏振态发生改变,从而反映出太赫兹电场的大小及其变化情况。
具体地,当没有太赫兹脉冲信号时,由于探测晶体ZnTe不具有双折射特性,探测光通过探测晶体ZnTe后偏振方向不变,调整QWP(四分之一波片)使得探测光通过后变成圆偏振光,再经过WP(渥拉斯顿棱镜)后探测光被分成方向垂直、强度相等的两个偏振分量,两个光电二极管D1和D2分别用于检测探测光的这两个偏振分量。当太赫兹脉冲与探测光同时通过探测晶体ZnTe时,太赫兹脉冲电场将使得探测晶体ZnTe具有双折射特性,探测光通过探测晶体ZnTe时其偏振方向将被改变,经过QWP后变成椭圆偏振光,再经WP后变成大小不等的两个偏振分量,经光电二极管D1和D2检测后输出差分电流。由于探测晶体ZnTe双折射特性效应的大小与太赫兹脉冲的强度有关,所以差分电流的大小与太赫兹脉冲的电场强度成正比。最后将测量得到的微弱差分电流信号经锁相放大器放大后输入计算机进一步处理,得到人参样品的太赫兹时域谱。上述整个系统由计算机通过Lab VIEW编程控制。
具体地,上述人参样品为红参或高丽参。其中,红参样品的尺寸例如为:13mm*1.40mm,即直径为13毫米,厚度为1.40毫米。高丽参样品的尺寸例如为:13mm*1.40mm,即直径为13毫米,厚度为1.39毫米。
利用上述透射式太赫兹时域光谱THz-TDS装置测得红参样品的太赫兹时域谱,其中一种示例的结果如图5所示,同理可得到参考样品(空气样品)的太赫兹时域谱。然后分别对红参样品和参考样品的太赫兹时域谱进行傅立叶变换,得到它们的太赫兹频域谱,接着将红参样品与参考样品的频域谱作比值并取对数,利用菲涅尔公式可得到红参样品的太赫兹吸收谱,其结果如图6所示。
进一步地,利用上述方法同样可以得到高丽参的太赫兹时域谱,如图7所示。以及高丽参的太赫兹吸收谱,如图8所示。
进一步地,对比红参样品的太赫兹吸收谱(图6)和高丽参的太赫兹吸收谱(图8),它们的差异如下表1所示。
表1
人参样品 主要吸收峰的位置(频率THz)
红参 1.64、1.76、1.84、1.94
高丽参 1.64、1.81、1.94
由上表1与图6、图8可以看出,在1.64THz与1.94THz红参样品与高丽参样品具有共同的吸收峰。而在1.76THz与1.84THz处红参样品有吸收峰,高丽参样品没有;在1.81THz高丽参样品有吸收峰,红参样品没有。因此二者的太赫兹吸收谱存在着明显的差别,可以通过二者的太赫兹吸收谱加以区分。
在其中一个实施例中,利用菲涅尔公式还可以得到红参样品与高丽参样品的太赫兹折射率曲线,其二者的折射率曲线亦有明显的不同,具体差异如图9和图10所示。图9为红参样品的太赫兹折射率曲线,图10为高丽参样品的太赫兹折射率曲线。可以看出,在1.5THz之前的太赫兹频率范围,红参样品的太赫兹折射率呈缓慢上升趋势,相对稳定;而高丽参样品的太赫兹折射率则呈下降趋势,且下降速率相对红参样品的上升速率大。在1.5THz之后的太赫兹频率范围,红参样品的太赫兹折射率开始呈波动下降的趋势,然后又继续波动上升;而高丽参样品的太赫兹折射率呈波动下降趋势,波动程度比红参样品大。因此,二者的太赫兹折射率曲线存在较大差异,可以通过比较太赫兹折射率曲线来鉴别这两种人参。
在其中一个实施例中,一种人参鉴别系统包括:透射式太赫兹时域光谱THz-TDS装置,用于测量人参样品的太赫兹时域光谱数据;电子设备,用于执行所述的人参鉴别方法。其中,电子设备包括计算机及太赫兹光谱(包括时域谱、频域谱、吸收谱及折射率)处理设备。
上述人参鉴别方法及系统,利用太赫兹时域光谱THz-TDS装置测定人参的 吸收谱及折射率曲线,通过吸收谱及折射率曲线鉴别人参的种类。该方法操作简单快速、对人参无损且更加有效。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种人参鉴别方法,其特征在于,包括:
    获取待测人参样品及参考样品的太赫兹时域谱;
    根据所述太赫兹时域谱得到所述人参样品及参考样品的太赫兹频域谱;
    根据所述太赫兹频域谱得到所述人参样品的吸收系数及折射率;
    根据所述吸收系数及折射率作出所述人参样品的太赫兹吸收谱及折射率曲线,并根据所述太赫兹吸收谱及折射率曲线来确定人参样品的种类。
  2. 根据权利要求1所述的人参鉴别方法,其特征在于,所述太赫兹时域谱由太赫兹时域光谱THz-TDS装置测量得到;所述太赫兹时域光谱THz-TDS装置包括飞秒激光器;所述太赫兹时域谱的获取方法包括:
    打开所述飞秒激光器直至输出功率稳定后,校准所述太赫兹时域光谱THz-TDS装置中的光线准直情况;
    利用飞秒激光器所发射的激光对太赫兹时域光谱THz-TDS装置进行预热处理;
    将氮气输入太赫兹时域光谱THz-TDS装置中的样品仓中,直至所述样品仓的湿度降低到2%以下为止;
    利用太赫兹时域光谱THz-TDS装置获取待测人参样品及参考样品的太赫兹时域谱。
  3. 根据权利要求2所述的人参鉴别方法,其特征在于,所述利用太赫兹时域光谱THz-TDS装置获取待测人参样品及参考样品的太赫兹时域谱的步骤包括:
    将空样品架放入太赫兹时域光谱THz-TDS装置的样品仓中,采集空气样品的太赫兹时域光谱,作为参考样品的太赫兹时域谱;
    将人参样品放入所述样品仓,重复多次采集人参样品的太赫兹时域光谱并取平均值,作为人参样品的太赫兹时域谱。
  4. 根据权利要求1至3中任一项权利要求所述的人参鉴别方法,其特征在于,所述根据太赫兹时域谱得到所述人参样品及参考样品的太赫兹频域谱的步骤包括:
    通过傅里叶变换,将所述人参样品及参考样品的太赫兹时域谱转换为相应的太赫兹频域谱。
  5. 根据权利要求1至3中任一项权利要求所述的人参鉴别方法,其特征在于,所述根据太赫兹频域谱得到所述人参样品的吸收系数及折射率的步骤包括:
    将所述人参样品与参考样品的频域谱作比值,并利用菲涅尔公式,计算出所述人参样品的吸收系数及折射率。
  6. 根据权利要求5所述的人参鉴别方法,其特征在于,所述人参样品的吸收系数计算公式为:
    Figure PCTCN2018076399-appb-100001
    其中,d为人参样品片的厚度,ω为太赫兹频率,α(ω)为所述的太赫兹吸收系数,n(ω)为所述的太赫兹折射率,ρ(ω)为参考样品与人参样品之间的振幅比。
  7. 根据权利要求5所述的人参鉴别方法,其特征在于,所述人参样品的折射率的计算公式为:
    Figure PCTCN2018076399-appb-100002
    其中,d为人参样品片的厚度,ω为太赫兹频率,c为真空中的光速,
    Figure PCTCN2018076399-appb-100003
    分别为参照样品与人参样品之间的相位差。
  8. 根据权利要求1至3中任一项权利要求所述的人参鉴别方法,其特征在于,所述人参样品为红参或高丽参。
  9. 根据权利要求1至3中任一项权利要求所述的人参鉴别方法,其特征在于,所述太赫兹时域光谱THz-TDS装置为透射式太赫兹时域光谱THz-TDS装置。
  10. 一种人参鉴别系统,其特征在于,包括:
    透射式太赫兹时域光谱THz-TDS装置,用于测量人参样品的太赫兹时域光谱数据;
    电子设备,用于执行权利要求1至9中任一权利要求所述的人参鉴别方法。
PCT/CN2018/076399 2017-07-13 2018-02-12 人参鉴别方法及系统 WO2019010979A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710571135.7A CN107328736A (zh) 2017-07-13 2017-07-13 人参鉴别方法及系统
CN201710571135.7 2017-07-13

Publications (1)

Publication Number Publication Date
WO2019010979A1 true WO2019010979A1 (zh) 2019-01-17

Family

ID=60226999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076399 WO2019010979A1 (zh) 2017-07-13 2018-02-12 人参鉴别方法及系统

Country Status (2)

Country Link
CN (1) CN107328736A (zh)
WO (1) WO2019010979A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837900B2 (en) * 2018-04-18 2020-11-17 University Of Shanghai For Science And Technology Method for detecting notoginseng using terahertz technology

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328736A (zh) * 2017-07-13 2017-11-07 深圳市太赫兹系统设备有限公司 人参鉴别方法及系统
CN108181259A (zh) * 2017-12-28 2018-06-19 深圳市太赫兹科技创新研究院有限公司 当归样品的检测方法和系统
CN108226083A (zh) * 2017-12-28 2018-06-29 深圳市太赫兹科技创新研究院有限公司 隐性孔雀石绿的检测方法和系统
CN108344715A (zh) * 2018-02-06 2018-07-31 深圳市无牙太赫兹科技有限公司 基于atr模式的物质成分鉴别方法、装置和计算机设备
CN108132227A (zh) * 2018-03-13 2018-06-08 深圳市太赫兹科技创新研究院 萘普生胶囊剂的鉴别方法及系统
CN109030405A (zh) * 2018-05-25 2018-12-18 深圳市太赫兹科技创新研究院有限公司 基于太赫兹频段的电磁波检测冬虫夏草质量的方法
CN109444050A (zh) * 2018-09-14 2019-03-08 深圳市太赫兹科技创新研究院有限公司 玉石鉴别方法、装置、系统和存储介质
CN110108648B (zh) * 2019-04-30 2022-01-14 深圳市太赫兹科技创新研究院有限公司 一种陈皮的鉴别方法和鉴别系统
CN111751317A (zh) * 2020-07-09 2020-10-09 上海理工大学 利用太赫兹光谱技术测定绞股蓝成分的新方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2465896A (en) * 2007-01-29 2010-06-09 Teraview Ltd A Pharmaceutical Analysis Method and Apparatus
CN102621083A (zh) * 2012-03-08 2012-08-01 中国石油大学(北京) 一种基于太赫兹时域光谱测定岩石光学参数的方法及系统
CN103308473A (zh) * 2013-05-11 2013-09-18 浙江理工大学 利用太赫兹时域光谱技术鉴别竹麻纤维的方法
CN104007115A (zh) * 2014-05-28 2014-08-27 中国石油大学(北京) 一种利用太赫兹时域光谱技术检测珠宝结构的方法及系统
CN105004695A (zh) * 2015-07-22 2015-10-28 河南工业大学 利用THz-TDS技术检测酸性饮料中苯甲酸钠含量的方法
JP2016053528A (ja) * 2014-09-03 2016-04-14 国立大学法人京都大学 テラヘルツ波を用いた皮膚角層水分量の計測方法
CN106248610A (zh) * 2016-10-20 2016-12-21 中国石油大学(北京) 基于太赫兹时域光谱的动态、多点草品种鉴定与认证方法
CN107328736A (zh) * 2017-07-13 2017-11-07 深圳市太赫兹系统设备有限公司 人参鉴别方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116739A (zh) * 2010-12-16 2011-07-06 中国计量学院 一种杀虫剂农药的吸收系数和折射率的无损检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2465896A (en) * 2007-01-29 2010-06-09 Teraview Ltd A Pharmaceutical Analysis Method and Apparatus
CN102621083A (zh) * 2012-03-08 2012-08-01 中国石油大学(北京) 一种基于太赫兹时域光谱测定岩石光学参数的方法及系统
CN103308473A (zh) * 2013-05-11 2013-09-18 浙江理工大学 利用太赫兹时域光谱技术鉴别竹麻纤维的方法
CN104007115A (zh) * 2014-05-28 2014-08-27 中国石油大学(北京) 一种利用太赫兹时域光谱技术检测珠宝结构的方法及系统
JP2016053528A (ja) * 2014-09-03 2016-04-14 国立大学法人京都大学 テラヘルツ波を用いた皮膚角層水分量の計測方法
CN105004695A (zh) * 2015-07-22 2015-10-28 河南工业大学 利用THz-TDS技术检测酸性饮料中苯甲酸钠含量的方法
CN106248610A (zh) * 2016-10-20 2016-12-21 中国石油大学(北京) 基于太赫兹时域光谱的动态、多点草品种鉴定与认证方法
CN107328736A (zh) * 2017-07-13 2017-11-07 深圳市太赫兹系统设备有限公司 人参鉴别方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837900B2 (en) * 2018-04-18 2020-11-17 University Of Shanghai For Science And Technology Method for detecting notoginseng using terahertz technology

Also Published As

Publication number Publication date
CN107328736A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2019010979A1 (zh) 人参鉴别方法及系统
EP2015054B1 (en) Terahertz Time-Domain Spectroscopy in Attenuated-Total-Reflection
Naftaly Metrology issues and solutions in THz time-domain spectroscopy: Noise, errors, calibration
WO2018043438A1 (ja) 光学測定装置、光学測定方法、及び応力検査方法
US8107075B2 (en) Optical characteristic measuring apparatus and optical characteristics measuring method
Jin et al. Experimental measurements of water content in crude oil emulsions by terahertz time-domain spectroscopy
CN105716756B (zh) 一种光学材料微观应力空间分布的精确测量装置
US20130187050A1 (en) Drug evaluation method and drug evaluation device
JP5723643B2 (ja) 全反射分光計測方法
JP6682351B2 (ja) 光学解析装置及び光学解析方法
CN110927122A (zh) 一种基于干涉光谱的相位型spr检测装置及方法
KR102195132B1 (ko) 편광자 연속 회전 광량 측정 방법
CN104297202A (zh) 利用THz-TDS频域谱定量检测粮食中农药残留的方法
CN109781317B (zh) 光学玻璃应力检测系统及检测方法
Naciri et al. Fixed polarizer, rotating-polarizer and fixed analyzer spectroscopic ellipsometer: accurate calibration method, effect of errors and testing
TWI405959B (zh) 利用穿透式外差干涉術量測異方性物質之物理參數的裝置及方法
Kovalev et al. A wide-range spectroscopic ellipsometer with switching of orthogonal polarization states based on the MDR-41 monochromator
WO2019174427A1 (zh) 萘普生胶囊剂的鉴别方法及系统
CN208847653U (zh) 一种实时偏振敏感的太赫兹时域椭偏仪
CN113654996A (zh) 一种复合消色差波片相位延迟量测量装置和方法
JP5550521B2 (ja) 全反射分光計測装置
JP2019095249A (ja) 光学解析装置及び光学解析方法
CN109115690B (zh) 实时偏振敏感的太赫兹时域椭偏仪及光学常数测量方法
Jiang et al. Error analysis for repeatability enhancement of a dual-rotation Mueller matrix ellipsometer
US11585696B2 (en) Optical property evaluation apparatus and optical property evaluation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832100

Country of ref document: EP

Kind code of ref document: A1