WO2019010931A1 - 异形复合材料轴、其制备方法以及与金属法兰的连接方法 - Google Patents

异形复合材料轴、其制备方法以及与金属法兰的连接方法 Download PDF

Info

Publication number
WO2019010931A1
WO2019010931A1 PCT/CN2018/071650 CN2018071650W WO2019010931A1 WO 2019010931 A1 WO2019010931 A1 WO 2019010931A1 CN 2018071650 W CN2018071650 W CN 2018071650W WO 2019010931 A1 WO2019010931 A1 WO 2019010931A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
inflatable
inflatable mandrel
shaft
composite material
Prior art date
Application number
PCT/CN2018/071650
Other languages
English (en)
French (fr)
Inventor
李文博
Original Assignee
北京汽车集团有限公司
北京汽车研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京汽车集团有限公司, 北京汽车研究总院有限公司 filed Critical 北京汽车集团有限公司
Publication of WO2019010931A1 publication Critical patent/WO2019010931A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end

Definitions

  • the present disclosure relates to the field of composite shaft preparation technology, and in particular to a profiled composite shaft, a method of preparing the same, and a method of joining to a metal flange.
  • the carbon fiber composite shaft is mainly manufactured by a winding process.
  • a metal flange is required at the end.
  • connection through bolts and other connection methods, it is necessary to drill holes in the surface of carbon fiber, break the fiber continuity, and there is stress concentration at the joint point, which affects the product performance; through the embedded way, carbon fiber and flange
  • the connection is mainly fixed by resin, and the torsion resistance is weak.
  • a first object of the present disclosure is to provide a profiled composite material shaft and a preparation method thereof, which can prepare a profiled composite material shaft having protrusions, and the obtained composite material has high axial strength and good torsional resistance, and can pass through the convex structure. Connected to a metal flange.
  • a second object of the present disclosure is to provide a method of joining a composite shaft to a metal flange, which has high joint strength and a stable structure.
  • a first aspect of the present disclosure provides a method of preparing a profiled composite shaft including a hollow shaft body segment and an end joint section, the end joint section including the hollow shaft section a body extending axially and a fixing protrusion projecting radially from the body, the fixing protrusions being circumferentially spaced apart, the method comprising the steps of: (1) preparing a shaft with the profiled composite material a geometrically matching first inflatable mandrel having a protrusion that is geometrically matched to the fixed projection; (2) a second inflatable mandrel, the second The recessed portion formed between the inflatable mandrel and the adjacent two of the fixing projections is geometrically matched; (3) assembling the first inflatable mandrel with the plurality of the second inflatable mandrel as a mandrel body such that the second inflatable mandrel is filled between two of the protrusions adjacent to the first inflatable mandrel, and all of the protrusions and the second inflatable mandrel are external.
  • both ends of the hollow shaft body segment have the end connecting section.
  • the number of the fixing protrusions on each of the end connecting segments is 3-9.
  • the prepreg tape is wound on the surface of the mandrel body to form 2 to 8 layers of the wound layer.
  • the prepreg tape contains reinforcing fibers and a thermosetting resin, and the reinforcing fibers are at least one selected from the group consisting of carbon fibers, aramid fibers, ultrahigh molecular weight polyethylene fibers, basalt fibers, and glass fibers.
  • thermosetting resin is one or more selected from the group consisting of epoxy resins, phenol resins, polyimide resins, bismaleimide resins, polyurethane resins, and vinyl resins.
  • the method includes: in step (5), squeezing from the outer to the inner radial movement by the slider in the tooling and exhausting the second inflatable mandrel, the number of the sliders
  • the second inflatable mandrel is identical and the end geometry of the slider matches the second inflatable mandrel.
  • the preform is heat-cured at a temperature of 120-140 ° C and a curing time of 15-30 min.
  • a second aspect of the present disclosure provides a profiled composite shaft prepared using the method of the first aspect of the present disclosure.
  • a third aspect of the present disclosure provides a method of joining a composite shaft to a metal flange, the composite shaft being a profiled composite shaft provided by the second aspect of the disclosure, the method comprising: causing the profiled composite shaft The metal flange is inserted through the end connecting section.
  • the method for preparing a profiled composite material shaft of the present disclosure adopts a method of winding a prepreg tape on a chargeable and dischargeable mandrel and then heating and solidifying the molding, by providing a first inflatable mandrel in the shape of the molded body and helping to shape the protrusion. Positioning the second inflatable mandrel such that the prepreg tape is first wound on the mandrel in the inflated state, and then the second inflatable mandrel is squeezed to tension the prepreg tape and conform to the first shape having a convex shape Inflated mandrel surface.
  • the above-mentioned method can be used to prepare the profiled composite material shaft with protrusions, and the convex portion and the shaft body are reinforced by continuous prepreg tape winding, and the prepared composite material has high axial strength and good performance, and can pass the convex structure and the metal. Flange connection.
  • the method for connecting the metal flange and the composite shaft of the present disclosure adopts the above-mentioned special-shaped composite material shaft, and is inserted through the protrusions of the two ends of the shaft body which are matched with the shape of the metal flange hole, thereby avoiding the bolting and the like. Fiber continuity, defects affecting product performance, the method has high joint strength, stable structure and strong torsion resistance.
  • FIG. 1 is an assembled view of a profiled composite shaft and a metal flange of a particular embodiment of a profiled composite shaft provided by the present disclosure.
  • FIG. 2 is a schematic view of a mandrel body assembled from a first inflatable mandrel and a second inflatable mandrel according to an embodiment of the method for preparing a profiled composite shaft provided by the present disclosure.
  • FIG. 3 is a schematic view showing the structure of a metal flange of a specific embodiment of a method for connecting a metal flange and a composite shaft provided by the present disclosure.
  • FIG. 4 is a schematic view showing the structure of a slider in a tooling of a specific embodiment of a method for preparing a profiled composite shaft provided by the present disclosure.
  • FIG. 5 is a schematic view of a specific embodiment of a prior art method of joining a metal flange to a composite shaft.
  • a first aspect of the present disclosure provides a method of making a profiled composite shaft, as shown in Figure 1, the profiled composite shaft comprising a hollow shaft section 1 and an end joint section 2, the end joint section 2 comprising a hollow shaft section a body extending axially and a fixing protrusion 3 projecting radially from the body, the fixing protrusions 3 are circumferentially spaced apart, the method comprising the steps of: (1) preparing a geometrical shape with the profiled composite shaft a matching first inflatable mandrel having a first inflatable mandrel having a geometrically matching projection with the fixed projection 3; (2) preparing a second inflatable mandrel, the second inflatable mandrel and the adjacent two The recessed portions formed between the fixed protrusions are geometrically matched; (3) assembling the first inflatable mandrel and the plurality of second inflatable mandrels into a mandrel body, so that the second inflatable mandrel is filled in the first An inflated mandrel is adjacent between two protrusions, and all
  • the above-mentioned method of the present disclosure can prepare a profiled composite material shaft having a convex structure, and the convex portion and the shaft body are reinforced by continuous prepreg tape winding, and the prepared composite material has high axial strength and good performance, and can pass through the convexity.
  • the structure is connected to a metal flange.
  • the first inflatable mandrel and the profiled composite shaft are geometrically matched to mean that the first inflatable mandrel and the profiled composite have substantially the same size and shape, substantially the same shape, and substantially the same shape.
  • the shape of the first inflatable mandrel and the profiled composite shaft are substantially the same size, and it is more preferable that the size and shape of the cavity of the first inflatable mandrel and the profiled composite shaft are substantially the same to form a size. More precise profiled composite shafts.
  • the geometrically matching of the recessed portion formed between the second inflatable mandrel 6 and the adjacent two fixed projections refers to the second inflatable mandrel 6 and the fixed projection.
  • the radial height and the axial thickness are comparable, and the shape of the second inflatable mandrel 6 can be such that a continuous, non-void can be formed after filling the second inflatable mandrel 6 between all adjacent projections of the first inflatable mandrel 5.
  • the cylinder is comparable, and the shape of the second inflatable mandrel 6 can be such that a continuous, non-void can be formed after filling the second inflatable mandrel 6 between all adjacent projections of the first inflatable mandrel 5.
  • the “all protrusions and the outer end faces of the second inflation mandrel are substantially on the same circumferential surface” means the outer end faces of all the protrusions at the ends of the first inflation mandrel 5 and all the second inflation mandrel 6
  • the outer end faces are substantially equal in distance from the shaft and can form a cylinder coaxial with the first inflatable mandrel 5, the outer end faces of all the projections and the outer end faces of all the second inflatable mandrels 6 on the circumferential side of the cylinder on.
  • the inflatable mandrel can be of a conventional kind and material in the art, and the specific charging and discharging method can also be conventional in the art, as long as the mandrel in the inflated state can maintain a certain shape and strength to satisfy the winding. And the molding process needs it.
  • the shape and size of the fixing protrusion 3 are not particularly limited. As shown in FIG. 1, the shape and size of the fixing protrusion 3 for connecting the metal flange 4 match the connection hole of the metal flange 4. can.
  • the shape of the fixing protrusion 3 is preferably a T-like or rectangular-like protrusion, and the outer end surface of the fixing protrusion 3 is preferably a circular arc shape, and all the fixing protrusions 3 on the same circumference are preferably equal in height so that The end faces of all the fixing projections 3 on the circumference are on the same circumferential surface.
  • both ends of the hollow shaft body section may each have an end connection section.
  • the number of fixing protrusions on each end connecting section may be 3-9, preferably 4-8.
  • the prepreg tape (or prepreg) is conventional in the art and may contain reinforcing fibers and a thermosetting resin, which means impregnating continuous fibers or fabrics under a strictly controlled condition with a resin matrix (
  • a belt-like reinforcing fiber fabric is a composition of a resin matrix and a reinforcement.
  • the type of reinforcing fiber there is no particular requirement for the type of reinforcing fiber, and it may be a type of reinforcing fiber commonly used in the field of composite materials.
  • the reinforcing fiber may be selected from the group consisting of carbon fiber, ultra high molecular weight polyethylene fiber, aramid fiber, basalt fiber and glass fiber. One or several.
  • the above-mentioned reinforcing fibers have high strength, good woven properties, and good compatibility with thermosetting resins.
  • the thermosetting resin may be a thermosetting resin commonly used in the field of composite materials, for example, the thermosetting resin may be selected from the group consisting of epoxy resins, polyurethane resins, silicone resins, phenol resins, polyimide resins, and double horses. One or more of the imide resins.
  • the above-mentioned thermosetting resin monomers have suitable viscosity, good stability after molding, and high strength, which are advantageous for improving the overall strength of the composite shaft.
  • the method of winding the prepreg tape on the surface of the mandrel body may be conventional in the art, and the prepreg tape may be one or more layers, for example, 1 to 9 layers.
  • the prepreg tape may be wound on the surface of the mandrel body to form 2 to 8 layers of prepreg tape winding layer.
  • the thickness and strength of the prepreg tape wound layer on the surface of the mandrel body are suitable, and the film thickness can be more effectively Reinforce the profiled composite shaft.
  • the tooling can be a conventional forming tool for preform molding in the art, and in the preparation method according to the present disclosure, the method of squeezing and venting the second inflation mandrel in step (5) is not particularly Limitation, in a preferred embodiment of the present disclosure, as shown in FIG. 4, the second inflatable mandrel may be exhausted by an outer to inner radial movement of the slider in the tooling, wherein the slider The number can be the same as the second inflatable mandrel, and the end geometry of the slider can be matched to the second inflatable mandrel. After clamping, the slider moves radially inward from the initial position.
  • the end of the slider abuts the prepreg winding layer of the outer end surface of the second inflatable mandrel, and the second inflatable mandrel moves with the slider.
  • the gas inside is gradually discharged, and the prepreg winding layer of the outer end surface of the second inflation mandrel is squeezed by the slider to be tensioned until the slider moves to the end position of the second inflation mandrel, and the slider is close to the slider.
  • the end surface of the end face is close to the surface of the end connecting section, and the gas in the second inflatable mandrel is almost completely drained, and the prepreg wrap layer is attached to the end face and the end of the slider along the surface shape of the first inflatable mandrel. Between the body surfaces of the connecting segments.
  • a second aspect of the present disclosure provides a profiled composite shaft prepared using the method of the first aspect of the present disclosure.
  • the profiled composite has a high axial strength and can be used to connect to the metal flange by means of a fixing projection.
  • a third aspect of the present disclosure provides a method of joining a composite shaft to a metal flange, the composite shaft being the profiled composite shaft provided by the second aspect of the disclosure, the method comprising: passing the profiled composite shaft through the end joint section Plugged into the metal flange.
  • the method for connecting the metal flange and the composite shaft of the present disclosure adopts the above-mentioned special-shaped composite material shaft, and is inserted through the protrusions of the two ends of the shaft body which are matched with the shape of the metal flange hole, thereby avoiding the bolting and the like. Fiber continuity, defects affecting product performance, the method has high joint strength, stable structure and strong torsion resistance.
  • the present disclosure is further illustrated by the following examples, but the present disclosure is not limited thereby.
  • the prepreg tape was wound on a horizontal high-precision winding machine manufactured by Lianyungang Weide Composite Materials Co., Ltd.
  • the method for determining the maximum torque of the joint structure includes: mounting the metal flange on the fixed composite shaft body, then fixing the composite shaft body, applying a torsional force to the metal flange, and testing the shaft body and the metal flange connection position to be damaged maximum Torque.
  • the present embodiment is used to explain the method for preparing a profiled composite shaft of the present disclosure and the method for connecting a metal flange to a composite shaft.
  • the shape of the profiled composite shaft is as shown in FIG. 1 , including the hollow shaft section 1 and the end joints at both ends.
  • the number of the fixing projections 3 on each of the end connecting segments 2 is four, and the shape of the mandrel body assembled by the first inflatable mandrel 5 and the second inflatable mandrel 6 is as shown in FIG.
  • the first inflatable mandrel 5 and the eight second inflatable mandrels 6 of the illustrated shape are respectively processed and assembled into the mandrel body shown in Fig. 2, and the prepreg tape (purchased from SGL, brand number SIGRAFILCT50-4.0) /240-E100) Wrap around the surface of the mandrel and wrap 4 layers to obtain a preform.
  • the preform is placed on the forming tool, and the slider is pushed by the hydraulic machine while being squeezed from the outer to the inner radial motion, and the gas in all the second inflatable mandrel 6 is exhausted, and the slider is pressed to the bottom to load the product with the tool. It is placed in an oven for heat curing at a temperature of 120-140 ° C and a curing time of 15-30 min.
  • the product is taken out of the oven, then the slider is retracted and the product is removed from the tooling, the second inflatable mandrel with the purged gas is removed, and the first inflatable mandrel is exhausted from the cavity of the molded part.
  • the body was taken out to obtain the profiled composite shaft of the present example.
  • the end joint portion of the profiled composite shaft was inserted into the metal flange shown in Fig. 3, and the maximum torque of the joint structure was measured to be 452 N ⁇ m.
  • This embodiment is for explaining the method for preparing a profiled composite shaft of the present disclosure and the method for joining a metal flange to a composite shaft, and adopts the same preparation method as that of Embodiment 1, except that the fixing on each end connecting section is performed.
  • the number of the projections was six, and the profiled composite shaft of the present embodiment was obtained.
  • the end joint of the profiled composite shaft was inserted into a metal flange matching the joint hole, and the maximum torque of the joint structure was determined to be 643 N ⁇ m.
  • This embodiment is for explaining the method for preparing a profiled composite shaft of the present disclosure and the method for joining a metal flange to a composite shaft, and adopts the same preparation method as that of Embodiment 1, except that the substrate is pitch-based carbon fiber prepreg.
  • the material Mitsubishi Liyang Co., model DIALEAD HYEJ56M80QD was obtained to obtain the profiled composite shaft of the present embodiment.
  • the end joint portion of the profiled composite shaft was inserted into the metal flange shown in Fig. 3, and the maximum torque of the joint structure was measured to be 416 N ⁇ m.
  • This embodiment is used to explain the method for preparing a profiled composite shaft of the present disclosure and the method for joining a metal flange to a composite shaft, and adopts the same preparation method as that of Embodiment 1, except that the number of layers of the prepreg tape is 3 The layer of the profiled composite material of this example was obtained.
  • the end joint portion of the profiled composite shaft was inserted into the metal flange shown in Fig. 3, and the maximum torque of the joint structure was measured to be 337 N ⁇ m.
  • This comparative example is used to illustrate the connection method between the metal flange and the composite shaft different from the present disclosure.
  • the carbon fiber composite hollow shaft is connected to the metal flange through 4 bolts, and the maximum connection structure is determined.
  • the torque is 214 N ⁇ m.
  • the present comparative example is used to explain the connection method of the metal flange and the composite shaft different from the present disclosure, and the carbon fiber composite hollow shaft without the fixed convex structure is placed in the mold together with the metal flange shown in FIG.
  • the film was heat-cured by the same conditions as in Example 1, and the four connection holes of the metal flange were joined by a cured resin, and the maximum torque of the connection structure was measured to be 292 N ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Ocean & Marine Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

一种异形复合材料轴、其制备方法以及与金属法兰的连接方法。该制备方法采用在可充放气芯轴上缠绕预浸带然后固化成型的方法,通过设置成型第一充气芯轴和第二充气芯轴并使预浸带先在充气状态下的芯轴上进行缠绕,然后挤压第二充气芯轴以使预浸带张紧并贴合于第一充气芯轴表面。该方法能够制备具有凸起的异形复合材料轴,且凸起部位与轴主体为通过连续预浸带缠绕进行增强,制备得到的复合材料轴强度高、性能好、能够与金属法兰连接。金属法兰与复合材料轴的连接方法通过异形复合材料轴体两端的凸起与金属法兰连接孔进行插接,避免了螺栓等连接方式影响产品性能的缺陷,该方法连接强度高、结构稳固且抗扭能力强。

Description

异形复合材料轴、其制备方法以及与金属法兰的连接方法 技术领域
本公开涉及复合材料轴制备技术领域,具体地,涉及一种异形复合材料轴、其制备方法以及与金属法兰的连接方法。
背景技术
碳纤维复合材料轴主要采用缠绕工艺制造,为实现与金属件的连接,需在端部安装金属法兰。安装金属法兰主要有两种方式,一种是在碳纤维轴上钻孔然后使用螺栓或铆钉连接,一种是在碳纤维轴固化成型前,将法兰预埋在碳纤维预成型件内,树脂固化后形成整体。
两种连接方法的主要缺点:通过螺栓等连接方式,需在碳纤维表面钻孔,破坏纤维连续性,并且在连接点位置存在应力集中,影响产品性能;通过预埋方式连接,碳纤维与法兰之间主要靠树脂进行连接固定,抗扭能力较弱。
发明内容
本公开的第一个目的是提供一种异形复合材料轴及其制备方法,该方法能够制备具有凸起的异形复合材料轴,得到的复合材料轴强度高抗扭性能好,能够通过凸起结构与金属法兰连接。
本公开的第二个目的是提供一种复合材料轴与金属法兰的连接方法,该方法连接强度高、结构稳固。
为了实现上述目的,本公开的第一方面提供一种制备异形复合材料轴的方法,该异形复合材料轴包括空心轴体段和末端连接段,所述末端连接段包括由所述空心轴体段向轴向延伸出的本体和从所述本体上径向突出的 固定凸起,所述固定凸起沿周向间隔分布,该方法包括如下步骤:(1)制备与所述异形复合材料轴在几何形状上相匹配的第一充气芯轴,所述第一充气芯轴具有与所述固定凸起在几何形状上相匹配的突出部;(2)制备第二充气芯轴,所述第二充气芯轴与相邻的两个所述固定凸起之间形成的凹陷部位在几何形状上相匹配;(3)使所述第一充气芯轴与多个所述第二充气芯轴组装为芯轴体,以使所述第二充气芯轴填充于所述第一充气芯轴相邻的两个所述突出部之间,且所有所述突出部和所述第二充气芯轴的外端面大致处于同一圆周面上;(4)在所述芯轴体表面缠绕预浸带以形成与所述芯轴体的表层在几何形状上相匹配的至少一层预浸带缠绕层,得到预成型件;(5)将所述预成型件置于工装中,挤压并使所述第二充气芯轴排气,以使所述第二充气芯轴占据的空间得以释放并使所述预浸带缠绕层具有与第一充气芯轴表面相匹配的几何形状;(6)将预成型件加热固化成型,打开所述工装使所述第一充气芯轴排气并取出所述第一充气芯轴和所述第二充气芯轴,得到所述异形复合材料轴。
可选地,所述空心轴体段的两端均具有所述末端连接段。
可选地,每个所述末端连接段上的所述固定凸起的个数为3~9个。
可选地,步骤(4)中,在所述芯轴体表面缠绕预浸带以形成2~8层所述缠绕层。
可选地,所述预浸带含有增强纤维和热固性树脂,所述增强纤维为选自碳纤维、芳纶纤维、超高分子量聚乙烯纤维、玄武岩纤维和玻璃纤维中的至少一种。
可选地,所述热固性树脂为选自环氧树脂、酚醛树脂、聚酰亚胺树脂、双马来酰亚胺树脂、聚氨酯树脂和乙烯基树脂中的一种或几种。
可选地,该方法包括:步骤(5)中,通过所述工装内的滑块由外至内径向运动挤压并使所述第二充气芯轴排气,所述滑块的个数与所述第二充 气芯轴相同,所述滑块的端部几何形状与所述第二充气芯轴相匹配。
可选地,所述预成型件加热固化成型的温度为120-140℃,固化时间为15-30min。
本公开的第二方面提供采用本公开第一方面所述的方法制备得到的异形复合材料轴。
本公开的第三方面提供一种复合材料轴与金属法兰的连接方法,所述复合材料轴为本公开的第二方面提供的异形复合材料轴,该方法包括:使所述异形复合材料轴通过所述末端连接段与所述金属法兰插接。
通过上述技术方案,本公开的异形复合材料轴制备方法采用在可充放气芯轴上缠绕预浸带然后加热固化成型的方法,通过设置成型主体形状的第一充气芯轴和帮助成型凸起位置的第二充气芯轴,使预浸带先在充气状态下的芯轴上进行缠绕,然后挤压第二充气芯轴以使预浸带张紧并贴合于具有凸起形状的第一充气芯轴表面。采用上述方法能够制备具有凸起的异形复合材料轴,且凸起部位与轴主体为通过连续预浸带缠绕进行增强,制备得到的复合材料轴强度高、性能好,能够通过凸起结构与金属法兰连接。本公开的金属法兰与复合材料轴的连接方法采用上述异形复合材料轴,通过轴体两端设置的与金属法兰孔形状配合的凸起进行插接,避免了螺栓等连接方式钻孔破坏纤维连续性、影响产品性能的缺陷,该方法连接强度高、结构稳固且抗扭能力强。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限 制。在附图中:
图1是本公开提供的异形复合材料轴的一种具体实施方式的异形复合材料轴与金属法兰的装配图。
图2是本公开提供的制备异形复合材料轴的方法的一种具体实施方式的第一充气芯轴与第二充气芯轴组装得到的芯轴体的示意图。
图3是本公开提供的金属法兰与复合材料轴的连接方法的一种具体实施方式的金属法兰结构示意图。
图4是本公开提供的制备异形复合材料轴的方法一种具体实施方式的工装内的滑块结构示意图。
图5是现有技术的金属法兰与复合材料轴的连接方法的一种具体实施方式示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,使用的方位词如“上、下”通常是指装置在正常使用状态下的“上”和“下”。“内、外”是指针对装置轮廓而言的。
本公开的第一方面提供一种制备异形复合材料轴的方法,如图1所示,该异形复合材料轴包括空心轴体段1和末端连接段2,末端连接段2包括由空心轴体段1向轴向延伸出的本体和从本体上径向突出的固定凸起3,固定凸起3沿周向间隔分布,该方法包括如下步骤:(1)制备与异形复合材料轴在几何形状上相匹配的第一充气芯轴,第一充气芯轴具有与固定凸起3在几何形状上相匹配的突出部;(2)制备第二充气芯轴,第二充气芯轴与相 邻的两个固定凸起之间形成的凹陷部位在几何形状上相匹配;(3)使第一充气芯轴与多个第二充气芯轴组装为芯轴体,以使第二充气芯轴填充于第一充气芯轴相邻的两个突出部之间,且所有突出部和第二充气芯轴的外端面大致处于同一圆周面上;(4)在芯轴体表面缠绕预浸带以形成与芯轴体的表层在几何形状上相匹配的至少一层预浸带缠绕层,得到预成型件;(5)将预成型件置于工装中,挤压并使第二充气芯轴排气,以使第二充气芯轴占据的空间得以释放并使预浸带缠绕层具有与第一充气芯轴表面相匹配的几何形状;(6)将预成型件加热固化成型后,打开工装使第一充气芯轴排气并取出第一充气芯轴和第二充气芯轴,得到异形复合材料轴。
采用本公开的上述方法能够制备具有凸起结构的异形复合材料轴,且凸起部位与轴主体为通过连续预浸带缠绕进行增强,制备得到的复合材料轴强度高、性能好,能够通过凸起结构与金属法兰连接。
根据本公开,第一充气芯轴与异形复合材料轴在几何形状上相匹配指的是第一充气芯轴与异形复合材料轴大小和形状都基本相同、大小基本相同形状相似、形状基本相同大小不同几种情况,优选地,第一充气芯轴与异形复合材料轴的形状基本相同大小不同,更优选第一充气芯轴与异形复合材料轴的腔体大小和形状都基本相同,以成型尺寸更精确的异形复合材料轴。如图2所示,所述的第二充气芯轴6与相邻的两个固定凸起之间形成的凹陷部位在几何形状上相匹配指的是第二充气芯轴6与固定凸起的径向高度和轴向厚度相当,且第二充气芯轴6的形状可以使得在第一充气芯轴5的所有相邻的突出部之间填充了第二充气芯轴6后能够形成连续无空隙的圆柱体。所述的“所有突出部和第二充气芯轴的外端面大致处于同一圆周面上”是指位于第一充气芯轴5端部的所有突出部的外端面与所有第二充气芯轴6的外端面与轴的距离大致相等,且能组成一个与第一充气芯轴5同轴的圆柱体,所有突出部的外端面与所有第二充气芯轴6的外端面处于该圆柱体 的圆周侧面上。
根据本公开,充气芯轴可以为本领域的常规种类和材质,具体的充放气方法也可以为本领域常规的,只要保证充气状态下的芯轴能够保持一定的形状和强度,以满足缠绕和成型工艺需要即可。
根据本公开,固定凸起3的形状和大小没有特别的限制,如图1所示,用于连接金属法兰4的固定凸起3的形状和大小与金属法兰4的连接孔相匹配即可。为了便于成型,固定凸起3的形状优选为类T形或类矩形凸起,固定凸起3的外端面优选为圆弧形,同一圆周上的所有固定凸起3优选为高度相等,以使该圆周上的所有固定凸起3的端面处于同一圆周面上。
根据本公开,为了在异形复合材料轴两端连接金属法兰,空心轴体段的两端可以均具有末端连接段。进一步地,为了增强固定凸起与金属法兰的连接强度,每个末端连接段上的固定凸起的个数可以为3~9个,优选为4~8个。
在根据本公开的制备方法中,预浸带(或称预浸料)为本领域常规的,可以含有增强纤维和热固性树脂,是指用树脂基体在严格控制的条件下浸渍连续纤维或织物(尤指带状增强纤维织物),制成树脂基体与增强体的组合物。其中,增强纤维的种类没有特别的要求,可以为复合材料领域常用的增强纤维种类,例如,增强纤维可以为选自碳纤维、超高分子量聚乙烯纤维、芳纶纤维、玄武岩纤维和玻璃纤维中的一种或几种。上述种类的增强纤维强度高、可编织性好,且与热固性树脂的相容性较好。
在根据本公开的方法中,热固性树脂可以为复合材料领域常用的热固性树脂,例如,热固性树脂可以为选自环氧树脂、聚氨酯树脂、有机硅树脂、酚醛树脂、聚酰亚胺树脂和双马来酰亚胺树脂中的一种或几种。上述种类的热固性树脂单体粘度适宜、成型后稳定性好、强度高,有利于提高复合材料轴的整体强度。
在根据本公开的制备方法中,步骤(4)中,在芯轴体表面缠绕预浸带的方法可以为本领域常规的,预浸带可以为一层或多层,例如为1~9层,优选情况下,可以在芯轴体表面缠绕预浸带以形成2~8层预浸带缠绕层,此时,芯轴体表面的预浸带缠绕层的厚度和强度适宜,可以更有效地对异形复合材料轴进行补强。
根据本公开,工装可以为本领域常规的用于预成型件成型的成型工装,在根据本公开的制备方法中,步骤(5)中挤压并使第二充气芯轴排气的方法没有特别的限制,在本公开优选的一种具体实施方式中,如图4所示,可以通过工装内的滑块由外至内径向运动挤压并使第二充气芯轴排气,其中,滑块的个数可以与第二充气芯轴相同,滑块的端部几何形状可以与第二充气芯轴相匹配。合模后,滑块由初始位置径向向内运动,运动过程中,滑块端部抵顶第二充气芯轴外端面的预浸带缠绕层,随着滑块运动,第二充气芯轴内的气体逐渐排出,第二充气芯轴外端面的预浸带缠绕层被滑块挤压而张紧,直至滑块运动至其端部与第二充气芯轴的初始位置接近重合,滑块的端面与末端连接段的本体表面接近紧贴,此时第二充气芯轴内的气体几乎完全排净,预浸带缠绕层沿第一充气芯轴表面形状贴合于滑块的端面与末端连接段的本体表面之间。
本公开的第二方面提供采用本公开第一方面所述的方法制备得到的异形复合材料轴。该异形复合材料轴强度高,可以用于通过固定凸起与金属法兰连接。
本公开的第三方面提供一种复合材料轴与金属法兰的连接方法,复合材料轴为本公开的第二方面提供的异形复合材料轴,该方法包括:使异形复合材料轴通过末端连接段与金属法兰插接。本公开的金属法兰与复合材料轴的连接方法采用上述异形复合材料轴,通过轴体两端设置的与金属法兰孔形状配合的凸起进行插接,避免了螺栓等连接方式钻孔破坏纤维连续 性、影响产品性能的缺陷,该方法连接强度高、结构稳固且抗扭能力强。
以下通过实施例进一步说明本公开,但是本公开并不因此而受到任何限制。在下述实施例和对比例中,预浸带缠绕在连云港唯德复合材料公司生产的卧式高精度缠绕机上完成。测定连接结构的最大扭矩的方法包括:将金属法兰安装于固定复合材料轴体上,然后固定复合材料轴体,对金属法兰施加扭转力,测试轴体与金属法兰连接位置破坏时最大力矩。
实施例1
本实施例用于说明本公开的异形复合材料轴制备方法和金属法兰与复合材料轴的连接方法,异形复合材料轴的形状如图1所示,包括空心轴体段1和两端的末端连接段2,每个末端连接段2上的固定凸起3的个数为4个,由第一充气芯轴5和第二充气芯轴6组装形成的芯轴体的形状如图2所示。
分别加工得到图示形状的第一充气芯轴5和8个第二充气芯轴6并将其组装成图2所示的芯轴体,将预浸带(购自SGL,牌号为SIGRAFILCT50-4.0/240-E100)缠绕在芯轴体表面,缠绕4层,得到预成型件。
将上述预成型件置于成型工装上,使用液压机推动滑块同时由外至内径向运动挤压并使所有的第二充气芯轴6内气体排净,滑块压至底部后将产品随工装放入烘箱内进行加热固化,温度120-140℃,固化时间15-30min。
树脂固化后将产品从烘箱内取出,然后滑块退回并将产品从工装取下,取下已排净气体的第二充气芯轴,将第一充气芯轴经排气后从成型件的腔体中取出,得到本实施例的异形复合材料轴。
将该异形复合材料轴的末端连接部与图3所示的金属法兰插接,测定该连接结构的最大扭矩为452N·m。
实施例2
本实施例用于说明本公开的异形复合材料轴制备方法和金属法兰与复合材料轴的连接方法,采用与实施例1相同的制备方法,所不同的是,每个末端连接段上的固定凸起的个数为6个,得到本实施例的异形复合材料轴。
将该异形复合材料轴的末端连接部与连接孔匹配的金属法兰插接,测定该连接结构的最大扭矩为643N·m。
实施例3
本实施例用于说明本公开的异形复合材料轴制备方法和金属法兰与复合材料轴的连接方法,采用与实施例1相同的制备方法,所不同的是,基材为沥青基碳纤维预浸料(三菱丽阳公司,型号DIALEAD HYEJ56M80QD),得到本实施例的异形复合材料轴。
将该异形复合材料轴的末端连接部与图3所示的金属法兰插接,测定该连接结构的最大扭矩为416N·m。
实施例4
本实施例用于说明本公开的异形复合材料轴制备方法和金属法兰与复合材料轴的连接方法,采用与实施例1相同的制备方法,所不同的是,预浸带缠绕层数为3层,得到本实施例的异形复合材料轴。
将该异形复合材料轴的末端连接部与图3所示的金属法兰插接,测定该连接结构的最大扭矩为337N·m。
对比例1
本对比例用于说明与本公开不同的金属法兰与复合材料轴的连接方法,如图5所示,将碳纤维复合材料空心轴通过4个螺栓与金属法兰连接,测定该连接结构的最大扭矩为214N·m。
对比例2
本对比例用于说明与本公开不同的金属法兰与复合材料轴的连接方法,将无固定凸起结构的碳纤维复合材料空心轴与如图3所示的金属法兰一同放入模具中,通过与实施例1相同的条件加热固化成型,金属法兰的四个连接孔处通过固化树脂连接,测定该连接结构的最大扭矩为292N·m。
由实施例1-4与对比例1-2的最大扭矩数据可以看出,采用本公开的复合材料轴的制备方法制备得到的复合材料轴与金属法兰连接简便快捷,连接结构强度高、抗扭转性强。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本发明所公开的内容。

Claims (10)

  1. 一种制备异形复合材料轴的方法,其特征在于,该异形复合材料轴包括空心轴体段和末端连接段,所述末端连接段包括由所述空心轴体段向轴向延伸出的本体和从所述本体上径向突出的固定凸起,所述固定凸起沿周向间隔分布,该方法包括如下步骤:
    (1)制备与所述异形复合材料轴在几何形状上相匹配的第一充气芯轴,所述第一充气芯轴具有与所述固定凸起在几何形状上相匹配的突出部;
    (2)制备第二充气芯轴,所述第二充气芯轴与相邻的两个所述固定凸起之间形成的凹陷部位在几何形状上相匹配;
    (3)使所述第一充气芯轴与多个所述第二充气芯轴组装为芯轴体,以使所述第二充气芯轴填充于所述第一充气芯轴相邻的两个所述突出部之间,且所有所述突出部和所述第二充气芯轴的外端面大致处于同一圆周面上;
    (4)在所述芯轴体表面缠绕预浸带以形成与所述芯轴体的表层在几何形状上相匹配的至少一层预浸带缠绕层,得到预成型件;
    (5)将所述预成型件置于工装中,挤压并使所述第二充气芯轴排气,以使所述第二充气芯轴占据的空间得以释放并使所述预浸带缠绕层具有与第一充气芯轴表面相匹配的几何形状;
    (6)将预成型件加热固化成型后,打开所述工装使所述第一充气芯轴排气并取出所述第一充气芯轴和所述第二充气芯轴,得到所述异形复合材料轴。
  2. 根据权利要求1所述的方法,其特征在于,所述空心轴体段的两端均具有所述末端连接段。
  3. 根据权利要求1或2所述的方法,其特征在于,每个所述末端连接段上的所述固定凸起的个数为3~9个。
  4. 根据权利要求1所述的方法,其特征在于,步骤(4)中,在所述芯轴体表面缠绕预浸带以形成2~8层所述预浸带缠绕层。
  5. 根据权利要求1所述的方法,其特征在于,所述预浸带含有增强纤维和热固性树脂,所述增强纤维为选自碳纤维、芳纶纤维、超高分子量聚乙烯纤维、玄武岩纤维和玻璃纤维中的至少一种。
  6. 根据权利要求5所述的方法,其特征在于,所述热固性树脂为选自环氧树脂、酚醛树脂、聚酰亚胺树脂、双马来酰亚胺树脂、聚氨酯树脂和乙烯基树脂中的一种或几种。
  7. 根据权利要求1所述的方法,其特征在于,该方法包括:步骤(5)中,通过所述工装内的滑块由外至内径向运动挤压并使所述第二充气芯轴排气,所述滑块的个数与所述第二充气芯轴相同,所述滑块的端部几何形状与所述第二充气芯轴相匹配。
  8. 根据权利要求1所述的方法,其特征在于,所述预成型件加热固化成型的温度为120-140℃,固化时间为15-30min。
  9. 采用权利要求1~8中任意一项所述的方法制备得到的异形复合材料轴。
  10. 一种复合材料轴与金属法兰的连接方法,其特征在于,所述复合材料轴为权利要求9所述的异形复合材料轴,该方法包括:使所述异形复合材料轴通过所述末端连接段与所述金属法兰插接。
PCT/CN2018/071650 2017-07-11 2018-01-05 异形复合材料轴、其制备方法以及与金属法兰的连接方法 WO2019010931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710561575.4A CN107399091B (zh) 2017-07-11 2017-07-11 异形复合材料轴、其制备方法以及与金属法兰的连接方法
CN201710561575.4 2017-07-11

Publications (1)

Publication Number Publication Date
WO2019010931A1 true WO2019010931A1 (zh) 2019-01-17

Family

ID=60405374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071650 WO2019010931A1 (zh) 2017-07-11 2018-01-05 异形复合材料轴、其制备方法以及与金属法兰的连接方法

Country Status (2)

Country Link
CN (1) CN107399091B (zh)
WO (1) WO2019010931A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113942250A (zh) * 2021-10-15 2022-01-18 浙江吉利控股集团有限公司 汽车尾翼的制备方法及汽车尾翼
CN116001306A (zh) * 2022-12-26 2023-04-25 中车永济电机有限公司 转子碳纤维复材端箍成型工装及制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107399091B (zh) * 2017-07-11 2019-09-06 北京汽车集团有限公司 异形复合材料轴、其制备方法以及与金属法兰的连接方法
CN109780044A (zh) * 2019-01-22 2019-05-21 中国船舶重工集团公司第七0三研究所 一种带金属法兰的纤维增强树脂基复合材料传动轴
CN110450397B (zh) * 2019-09-16 2021-04-13 湖北三江航天红阳机电有限公司 一种锥形舱段布带缠绕成型装置和成型方法
CN110886747B (zh) * 2019-12-06 2021-09-17 中国科学院长春光学精密机械与物理研究所 一种碳纤维复合材料杆接头
CN111288090B (zh) * 2020-02-06 2022-07-26 湖北文理学院 复合材料传动轴连接结构
CN112434389A (zh) * 2020-11-23 2021-03-02 上海纳铁福传动系统有限公司 汽车传动轴、变直径轴管及其弯曲振动频率优化方法
CN114770820A (zh) * 2022-03-16 2022-07-22 西北工业大学 用于固体火箭发动机壳体的全复合材料分体式芯模及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0192505A1 (fr) * 1985-01-28 1986-08-27 AEROSPATIALE Société Nationale Industrielle Procédé pour la solidarisation d'un élément à l'extrémité d'un tube de matériau composite et dispositif ainsi obtenu
US20040227393A1 (en) * 2001-02-13 2004-11-18 Campagnolo, S.R.L. Method for producing a bicycle wheel rim, apparatus for implementing the method and bicycle wheel rim obtained thereby
WO2009022643A1 (ja) * 2007-08-10 2009-02-19 Toyota Jidosha Kabushiki Kaisha 繊維強化樹脂製筒部材の製造方法
WO2014013161A1 (fr) * 2012-07-16 2014-01-23 Snecma Procédé de fabrication d'un carter de turbomachine dans un matériau composite et carter associé
CN104626603A (zh) * 2013-11-13 2015-05-20 嘉豪(天津)复合材料有限公司 碳纤维车架的制作方法及成型模具
CN105904742A (zh) * 2016-04-25 2016-08-31 大连理工大学 一种全复合材料壳体的缠绕成型方法
CN205956234U (zh) * 2016-08-04 2017-02-15 安阳全丰航空植保科技股份有限公司 一种油动无人机离合器与主轴的连接机构
CN106863835A (zh) * 2017-01-11 2017-06-20 北京汽车集团有限公司 中空车辆零部件的成型方法及中空车辆零部件和汽车
CN107399091A (zh) * 2017-07-11 2017-11-28 北京汽车集团有限公司 异形复合材料轴、其制备方法以及与金属法兰的连接方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436095C (zh) * 2006-06-06 2008-11-26 天津工业大学 密封橡胶气囊阳模的制造方法及树脂传递模塑成型的新方法
DE102007015909A1 (de) * 2007-04-02 2008-10-09 Mt Aerospace Ag Verfahren zur Herstellung faserverstärkter Hohlkörper
CN101837537B (zh) * 2009-03-20 2012-01-18 李世鹏 具有内导管的碳纤维车架的成型方法
US9248587B2 (en) * 2012-07-05 2016-02-02 General Electric Company Apparatus for manufacturing a flanged composite component and methods of manufacturing the same
US9162396B2 (en) * 2012-10-12 2015-10-20 The Boeing Company Method for forming fuselage stringers
JP6073499B2 (ja) * 2012-12-28 2017-02-01 コンポジテンス ゲーエムベーハーCompositence GmbH 二つのステップで三次元繊維ファブリック及び繊維製の構造部品プリフォームを製造するための方法及び装置
CN103407173B (zh) * 2013-07-30 2015-10-21 北京航空航天大学 一种纤维增强树脂基复合材料机翼的整体成型方法
CN104527093A (zh) * 2014-11-12 2015-04-22 上海迪诺克新材料科技有限公司 一种制作碳纤维管件制品的新工艺
CN105216342B (zh) * 2015-11-09 2018-03-06 吉林大学 车用碳纤维复合材料帽型梁制备方法及模具
CN105690803B (zh) * 2016-01-15 2018-01-16 厦门市豪尔新材料股份有限公司 一种复合材料真空热膨胀成型工艺
CN106545566B (zh) * 2016-12-15 2019-03-15 重庆亿煊新材料科技有限公司 复合材料传动轴及该复合材料传动轴的成型工艺
CN106863840B (zh) * 2017-04-18 2019-07-23 浙江理工大学 基于可充放气/液芯轴套的编织纤维增强结构件制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0192505A1 (fr) * 1985-01-28 1986-08-27 AEROSPATIALE Société Nationale Industrielle Procédé pour la solidarisation d'un élément à l'extrémité d'un tube de matériau composite et dispositif ainsi obtenu
US20040227393A1 (en) * 2001-02-13 2004-11-18 Campagnolo, S.R.L. Method for producing a bicycle wheel rim, apparatus for implementing the method and bicycle wheel rim obtained thereby
WO2009022643A1 (ja) * 2007-08-10 2009-02-19 Toyota Jidosha Kabushiki Kaisha 繊維強化樹脂製筒部材の製造方法
WO2014013161A1 (fr) * 2012-07-16 2014-01-23 Snecma Procédé de fabrication d'un carter de turbomachine dans un matériau composite et carter associé
CN104626603A (zh) * 2013-11-13 2015-05-20 嘉豪(天津)复合材料有限公司 碳纤维车架的制作方法及成型模具
CN105904742A (zh) * 2016-04-25 2016-08-31 大连理工大学 一种全复合材料壳体的缠绕成型方法
CN205956234U (zh) * 2016-08-04 2017-02-15 安阳全丰航空植保科技股份有限公司 一种油动无人机离合器与主轴的连接机构
CN106863835A (zh) * 2017-01-11 2017-06-20 北京汽车集团有限公司 中空车辆零部件的成型方法及中空车辆零部件和汽车
CN107399091A (zh) * 2017-07-11 2017-11-28 北京汽车集团有限公司 异形复合材料轴、其制备方法以及与金属法兰的连接方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113942250A (zh) * 2021-10-15 2022-01-18 浙江吉利控股集团有限公司 汽车尾翼的制备方法及汽车尾翼
CN113942250B (zh) * 2021-10-15 2024-06-04 浙江吉利控股集团有限公司 汽车尾翼的制备方法及汽车尾翼
CN116001306A (zh) * 2022-12-26 2023-04-25 中车永济电机有限公司 转子碳纤维复材端箍成型工装及制备方法

Also Published As

Publication number Publication date
CN107399091A (zh) 2017-11-28
CN107399091B (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2019010931A1 (zh) 异形复合材料轴、其制备方法以及与金属法兰的连接方法
US6132323A (en) Thermoplastic/thermoset hybrid golf club shafts and methods of manufacturing the same
US5259901A (en) Method for constructing an inflatable mandrel
US8906489B2 (en) Method for producing a fibre composite component for aviation and spaceflight
EP2047971B1 (en) Method for manufacturing beams of fiber-reinforced composite material
US10927883B2 (en) Composite joint assembly
US20080157418A1 (en) Methods for fabricating composite structures with flanges having tethered corners
US4684423A (en) Method fabricating a collapsible mandrel structure to be used in manufacturing reinforced hollow tanks
US20080160314A1 (en) Tethered corners and flanges and articles comprising the same
CN114103168B (zh) 一种制备复合材料曲面蜂窝结构件的模具及该结构件的制备方法
US10823213B2 (en) Composite joint assembly
WO2020174696A1 (ja) 動力伝達軸に用いられる管体の製造方法
KR102354945B1 (ko) 가요성 튜브와 프리프레그를 이용한 복합재 다관절 중공 구조물을 성형하는 방법
US10400855B2 (en) Methods of coupling a flywheel rim and a shaft
US8647457B2 (en) Method of manufacturing rubber lined composite pressure vessels
WO1996007533A1 (en) Method of making composite product of tubular structure using clamshell mold
JP2005024095A5 (zh)
JP2016185637A (ja) タイヤ加硫用内型
FR2814118A1 (fr) Appui de soutien de bande de roulement
TWI715442B (zh) 輪框之製作方法
CN112895233B (zh) 一种固体火箭发动机燃烧室壳体成型方法
JP7497646B2 (ja) エアレスタイヤの製造方法
US11745538B2 (en) Bicycle rim made of composite material with wings having reinforced structure
JPS613732A (ja) フイラメントワインデイング成形方法
TWI694013B (zh) 複合材輪圈與複合材輪圈製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832210

Country of ref document: EP

Kind code of ref document: A1