WO2019010862A1 - 液化天然气船用梯度增强绝热材料及其短流程制备方法 - Google Patents

液化天然气船用梯度增强绝热材料及其短流程制备方法 Download PDF

Info

Publication number
WO2019010862A1
WO2019010862A1 PCT/CN2017/107524 CN2017107524W WO2019010862A1 WO 2019010862 A1 WO2019010862 A1 WO 2019010862A1 CN 2017107524 W CN2017107524 W CN 2017107524W WO 2019010862 A1 WO2019010862 A1 WO 2019010862A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradient
flame retardant
polyether polyol
thermal insulation
glass fiber
Prior art date
Application number
PCT/CN2017/107524
Other languages
English (en)
French (fr)
Inventor
张洪斌
孙小伟
蔡志祥
韦越
位元元
谢燕萍
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2019010862A1 publication Critical patent/WO2019010862A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the invention relates to a thermal insulation material and a preparation method thereof, in particular to a gradient-enhanced thermal insulation material for a B-type liquid cargo tank of a liquefied natural gas carrier and a short-flow preparation method thereof, and belongs to the technical field of thermal insulation material preparation.
  • Liquefied natural gas is an ultra-low temperature liquid that cools natural gas whose main component is methane to about -163 °C. Natural gas liquefaction can greatly save storage and transportation space and costs. LNG is recognized as a clean energy source because it emits less nitrogen oxides and sulfur dioxide. LNG ships are the main means of transportation for LNG, and the thermal insulation performance and safety of the cargo tank containment system is one of the important indicators for the qualification of LNG ships. Due to the large temperature range of the LNG ship's cargo tank during operation (temperature difference can reach above 200 °C), if the thermal insulation performance and safety of the cargo tank are not good, it will cause higher evaporation rate of LNG and also make the pressure in the tank. Raised, endangering navigation safety. Therefore, high-performance insulation materials need to be installed in the cargo tank.
  • Rigid polyurethane foam is widely used in the insulation system of LNG ships due to its low thermal conductivity.
  • the breaking strength of PUR is low, and the low temperature resistance of ordinary PUR is also poor.
  • the national standard GB50264 "Design Specification for Industrial Equipment and Pipeline Thermal Insulation Engineering" limits the recommended temperature for PUR to -65 ⁇ 80 °C. Therefore, PUR is destroyed by low fracture toughness and low temperature stability in an ultra-low temperature environment of -163 °C.
  • the PUR used in LNG ships will generate large thermal stress during service. The magnitude of thermal stress mainly depends on the difference between the thermal expansion coefficient of the material and the temperature change.
  • the thermal insulation structure of the cargo tank may fall off due to the difference in expansion at the time of temperature change.
  • the above phenomenon will cause damage to the adiabatic system, weaken its thermal insulation performance and shorten the service life. Therefore, how to solve the problem of insulation system damage caused by excessive thermal stress of the thermal insulation material and the difference in thermal expansion coefficient of the material is one of the problems to be solved.
  • the Chinese Patent Application Publication No. CN101120068B discloses a connection method using a heating pad between a second gas barrier and a heat insulating plate.
  • the method solves the problem that the bond strength of the adhesive between the second gas barrier and the heat insulating plate changes greatly with temperature change, it does not take into account that PUR will generate large shrinkage stress and PUR and metal at low temperature.
  • CN106516017A discloses a method of constructing an insulation system using a composite foam glass plate and a PUR plate to prepare an LNG marine insulation panel.
  • the heat insulating composite board can effectively avoid the damage of the thermal insulation layer caused by the difference of the expansion coefficient of the thermal insulation material, and can reduce the thermal stress change caused by the temperature difference change of the PUR board.
  • this method requires the use of an adhesive to bond the PUR plate to the surface of the foamed glass plate.
  • the PUR plate still has a large shrinkage stress near the low temperature, and may cause cracks in long-term service.
  • the multi-layer composite also makes the preparation process cumbersome, so that the thermal insulation material cannot be directly processed by one-step method.
  • the addition of glass fiber can effectively enhance the mechanical properties of the thermal insulation material, thereby reducing the adverse effects of thermal stress.
  • the addition of the glass fiber causes the thermal insulation property of the material to decrease, and the thermal conductivity of the material increases as the amount of the glass fiber increases.
  • Functionally graded material (Functionally Graded Materials)
  • the first to solve the problem of the spacecraft engine wall side of the spacecraft must withstand higher than 2000 ° C high temperature, the other side must withstand the problem of ultra-low temperature liquid hydrogen cooling (Kieback) B, Neubrand A, Riedel H. Processing techniques for functionally graded Materials.
  • the technical problem to be solved by the present invention is to provide an LNG for the problem of damage to the adiabatic system caused by the excessive thermal stress of the thermal insulation material and the difference in thermal expansion coefficient of the material existing in the LNG ship insulation system.
  • the characteristic is that the material has two kinds of gradient structures. One is that the polyurethane foam has a density gradient due to the influence of gravity in the one-step foaming process; the other is that by adjusting the foaming speed, the foam forms more bottom glass fibers and less top glass fibers. Gradient glass fiber content structure.
  • the present invention provides a LNG marine gradient-enhanced thermal insulation material and a short-flow preparation method thereof.
  • the specific technical solutions are as follows:
  • the invention discloses a gradient enhanced thermal insulation material for marine LNG, the components comprising polyether polyol, polyisocyanate, foaming agent, foam stabilizer, catalyst, flame retardant and continuous glass fiber mat.
  • the mass ratio of the polyether polyol to the polyisocyanate is from 100:140 to 160.
  • the mass ratio of the polyether polyol to the blowing agent is from 100:25 to 50.
  • the mass ratio of the polyether polyol to the foam stabilizer is 100: 1.5 to 2.
  • the catalyst comprises a tertiary amine catalyst and an organotin catalyst, the mass ratio of the polyether polyol to the tertiary amine catalyst is 100:0.2, and the mass ratio of the polyether polyol to the organotin catalyst is 100:0.9-1.
  • the flame retardant comprises a bromine-based flame retardant and a lanthanide flame retardant
  • the mass ratio of the polyether polyol to the bromine-based flame retardant is 100:80-85
  • the mass ratio of the polyether polyol to the lanthanide flame retardant It is 100:20 ⁇ 25.
  • the mass ratio of the polyether polyol to the continuous glass fiber mat is 100:10-40.
  • the polyether polyol uses sucrose as a starting agent, and the sucrose hydroxyl value is 480-500 mgKOH/g.
  • polyisocyanate is polymethylene polyphenyl polyisocyanate
  • polymethylene polyphenyl polyisocyanate functionality is 2.6 to 3.1
  • NCO mass fraction is 30.0% to 32.0%.
  • the foaming agent is an HFC-based foaming agent, preferably a hydrogenated fluoroalkane (HFC) foaming agent 1,1,1,3,3-pentafluorobutane HFC-365mfc.
  • HFC hydrogenated fluoroalkane
  • the foam stabilizer is a polyether-modified silicon-based surfactant containing a Si-C structure.
  • the bromine-based flame retardant is environmentally friendly decabromodiphenylethane
  • the antimony-based flame retardant is antimony trioxide
  • the average particle diameter is 0.7 ⁇ m.
  • the surface of the glass fiber bundle in the continuous glass fiber mat is surface-modified with an sizing agent and a silane coupling agent.
  • the gradient-enhanced thermal insulation material has a density of 70 to 130 kg/m 3 and a limiting oxygen index of more than 30%.
  • the invention also discloses a preparation method of a gradient enhanced thermal insulation material for LNG marine, comprising the following steps:
  • Step 1 The polyether polyol, the flame retardant powder and the continuous glass fiber mat are dried in a blast drying oven at 90 ° C for 24 h, and then cooled to room temperature for use.
  • Step 2 After the step 1 is processed, the spare continuous glass fiber mat is cut into a shape suitable for the mold and evenly laid on the bottom of the mold.
  • the flame retardant includes a bromine-based flame retardant and a lanthanide flame retardant, a polyether polyol and a bromine.
  • the mass ratio of the flame retardant, the lanthanide flame retardant and the continuous glass fiber mat is 100:80 ⁇ 85:20 ⁇ 25:20 ⁇ 40.
  • Step 3 adding a foam stabilizer, a tertiary amine catalyst, an organotin catalyst, a bromine flame retardant, a lanthanide flame retardant and a foaming agent to the polyether polyol, stirring uniformly, and then adding the polyisocyanate Stir well, then pour into the mold for molding foaming to obtain cast mold blank, polyether polyol, foam stabilizer, tertiary amine catalyst, organotin catalyst, bromine flame retardant, lanthanide flame retardant,
  • the mass ratio of the blowing agent to the polyisocyanate is 100:1.5 ⁇ 2:0.2:0.9 ⁇ 1:80 ⁇ 85:20 ⁇ 25:25 ⁇ 50:140 ⁇ 160.
  • Step 4 The cast mold blank is placed in a blast drying oven and aged at 70 ° C for 24 h.
  • Step 5 After the aging is completed, the casting mold blank is demolded to obtain a foam material, and then the skin of the foam material is cut off by a high-speed cutter to obtain a gradient-enhanced heat insulating material for the LNG ship, and the density of the heat insulating material is 70-130 kg/m. 3 , the limiting oxygen index is greater than 30%.
  • the molded foaming mold is made of stainless steel, and a mold release agent is applied to the surface of the mold.
  • the invention is a near-final and short-flow production preparation process, and the cross-sectional dimension of the material preparation is as close as possible to the shape and size of the cross-section of the final use material under the premise of ensuring performance.
  • the near-final production process realizes one-step direct molding preparation, and the integrated processing avoids the multi-layer composite of the insulation boards and shortens the production process.
  • the production process simplifies the process and improves the production efficiency. By achieving short-flow continuous production, the material trimming amount and subsequent processing steps are minimized, the probability of surface defects of the thermal insulation board is reduced, and the production cost is saved.
  • the preparation method provided by the invention is a near-final production process, and has the characteristics of short process, saving glass fiber, low cost, simple production, integrated molding, and good comprehensive performance of the product.
  • the gradient enhanced thermal insulation material of the LNG ship provided by the invention has the advantages of good reinforcement effect and excellent performance, and can inhibit the expansion of defects in the material interface and the interior.
  • the glass fiber content is lower in the part where the thermal stress of the material is high, and the glass fiber content is lower in the part where the thermal stress is small, so that the amount of the glass fiber is greatly reduced, thereby making the overall thermal insulation property of the material.
  • the impact of fiberglass addition is minimized and material preparation costs are reduced.
  • FIG. 1 is a schematic view of a heat insulating system according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic view showing the destruction of a conventional PUR under thermal stress
  • Figure 3 is a schematic view of a thermal insulation material prepared by a preferred embodiment of the present invention under thermal stress.
  • FIG. 1 is a schematic view of a thermal insulation system according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic view showing the destruction of a conventional PUR under thermal stress
  • FIG. 3 is a preferred embodiment of the present invention.
  • the prepared thermal insulation material is schematic under the action of thermal stress.
  • 1 is the main screen wall
  • 2 is the long bolt
  • 3 is the secondary screen wall
  • 4 is the continuous glass fiber felt reinforced polyurethane foam board
  • 5 is the continuous glass fiber felt
  • 6 is the water blocking layer
  • 7 is the protective layer
  • 8 is the nut And sealing gasket
  • 9 is a prior art main screen wall
  • 10 is a prior art long bolt
  • 11 is a prior art secondary screen wall
  • 12 is a crack appearing in the prior art polyurethane foam
  • 13 is a prior art polyurethane foam board
  • 14 is a prior art water blocking layer
  • 15 is a prior art protective layer
  • 16 is a prior art nut and sealing gasket.
  • raw materials polyether polyol, polymethylene polyphenyl polyisocyanate, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide, foam stabilizer, HFC-365mfc, continuous glass mat 5.
  • the mass ratio of raw materials used is: 100:150:0.2:0.9:84:21:1.5:40:10.
  • Step 1 The polyether polyol, decabromodiphenylethane powder, antimony trioxide powder and continuous glass fiber mat 5 were dried in a blast drying oven at 90 ° C for 24 h, and then cooled to room temperature for use.
  • Step 2 After the step 1 is processed, the spare continuous glass fiber mat 5 is cut into a shape suitable for the mold and evenly spread on the bottom of the mold.
  • Step 3 Add foam stabilizer, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide and HFC-365mfc to the polyether polyol, mix well, and then add more quickly.
  • the methylene polyphenyl polyisocyanate was stirred for 30 to 50 s, and then poured into a mold which was spread with a continuous glass fiber mat 5 to be molded and foamed to obtain a cast mold blank.
  • Step 4 After molding the foaming reaction for 20 minutes, the mold is placed in a blast drying oven and aged at 70 ° C for 24 hours, the foam material is released after demolding, and then the skin of the foam material is cut off using a high speed cutter to obtain LNG. Marine gradient enhanced insulation.
  • raw materials polyether polyol, polymethylene polyphenyl polyisocyanate, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide, foam stabilizer, HFC-365mfc, continuous glass mat 5.
  • the mass ratio of raw materials used is: 100:150:0.2:0.9:84:21:1.5:40:20.
  • Step 1 The polyether polyol, decabromodiphenylethane powder, antimony trioxide powder and continuous glass fiber mat 5 were dried in a blast drying oven at 90 ° C for 24 h, and then cooled to room temperature for use.
  • Step 2 After the step 1 is processed, the spare continuous glass fiber mat 5 is cut into a shape suitable for the mold and evenly spread on the bottom of the mold.
  • Step 3 Add foam stabilizer, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide and HFC-365mfc to the polyether polyol, mix well, and then add more quickly.
  • the methylene polyphenyl polyisocyanate was stirred for 30 to 50 s, and then poured into a mold which was spread with a continuous glass fiber mat 5 to be molded and foamed to obtain a cast mold blank.
  • Step 4 After molding the foaming reaction for 20 minutes, the mold is placed in a blast drying oven and aged at 70 ° C for 24 hours, the foam material is released after demolding, and then the skin of the foam material is cut off using a high speed cutter to obtain LNG. Marine gradient enhanced insulation.
  • raw materials polyether polyol, polymethylene polyphenyl polyisocyanate, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide, foam stabilizer, HFC-365mfc, continuous glass mat 5.
  • the mass ratio of raw materials used is: 100:150:0.2:0.9:84:21:1.5:45:40.
  • Step 1 The polyether polyol, decabromodiphenylethane powder, antimony trioxide powder and continuous glass fiber mat 5 were dried in a blast drying oven at 90 ° C for 24 h, and then cooled to room temperature for use.
  • Step 2 After the step 1 is processed, the spare continuous glass fiber mat 5 is cut into a shape suitable for the mold and evenly spread on the bottom of the mold.
  • Step 3 Add foam stabilizer, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide and HFC-365mfc to the polyether polyol, mix well, and then add more quickly.
  • the methylene polyphenyl polyisocyanate was stirred for 30 to 50 s, and then poured into a mold which was spread with a continuous glass fiber mat 5 to be molded and foamed to obtain a cast mold blank.
  • Step 4 After molding the foaming reaction for 20 minutes, the mold is placed in a blast drying oven and aged at 70 ° C for 24 hours, the foam material is released after demolding, and then the skin of the foam material is cut off using a high speed cutter to obtain LNG. Marine gradient enhanced insulation.
  • raw materials polyether polyol, polymethylene polyphenyl polyisocyanate, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide, foam stabilizer, HFC-365mfc, continuous glass mat 5.
  • the mass ratio of raw materials used is: 100:150:0.2:0.9:84:21:1.5:30:10.
  • Step 1 The polyether polyol, decabromodiphenylethane powder, antimony trioxide powder and continuous glass fiber mat 5 were dried in a blast drying oven at 90 ° C for 24 h, and then cooled to room temperature for use.
  • Step 2 After the step 1 is processed, the spare continuous glass fiber mat 5 is cut into a shape suitable for the mold and evenly spread on the bottom of the mold.
  • Step 3 Add foam stabilizer, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide and HFC-365mfc to the polyether polyol, mix well, and then add more quickly.
  • the methylene polyphenyl polyisocyanate was stirred for 30 to 50 s, and then poured into a mold which was spread with a continuous glass fiber mat 5 to be molded and foamed to obtain a cast mold blank.
  • Step 4 After molding the foaming reaction for 20 minutes, the mold is placed in a blast drying oven and aged at 70 ° C for 24 hours, the foam material is released after demolding, and then the skin of the foam material is cut off using a high speed cutter to obtain LNG. Marine gradient enhanced insulation.
  • raw materials polyether polyol, polymethylene polyphenyl polyisocyanate, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide, foam stabilizer, HFC-365mfc, continuous glass mat 5.
  • the mass ratio of raw materials used is: 100:150:0.2:0.9:84:21:1.5:25:20.
  • Step 1 The polyether polyol, decabromodiphenylethane powder, antimony trioxide powder and continuous glass fiber mat 5 were dried in a blast drying oven at 90 ° C for 24 h, and then cooled to room temperature for use.
  • Step 2 After the step 1 is processed, the spare continuous glass fiber mat 5 is cut into a shape suitable for the mold and evenly spread on the bottom of the mold.
  • Step 3 Add foam stabilizer, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide and HFC-365mfc to the polyether polyol, mix well, and then add more quickly.
  • the methylene polyphenyl polyisocyanate was stirred for 30 to 50 s, and then poured into a mold which was spread with a continuous glass fiber mat 5 to be molded and foamed to obtain a cast mold blank.
  • Step 4 After molding the foaming reaction for 20 minutes, the mold is placed in a blast drying oven and aged at 70 ° C for 24 hours, the foam material is released after demolding, and then the skin of the foam material is cut off using a high speed cutter to obtain LNG. Marine gradient enhanced insulation.
  • raw materials polyether polyol, polymethylene polyphenyl polyisocyanate, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide, foam stabilizer, HFC-365mfc, continuous glass mat 5.
  • the mass ratio of raw materials used is: 100:150:0.2:0.9:84:21:1.5:25:40.
  • Step 1 The polyether polyol, decabromodiphenylethane powder, antimony trioxide powder and continuous glass fiber mat 5 were dried in a blast drying oven at 90 ° C for 24 h, and then cooled to room temperature for use.
  • Step 2 After the step 1 is processed, the spare continuous glass fiber mat 5 is cut into a shape suitable for the mold and evenly spread on the bottom of the mold.
  • Step 3 Add foam stabilizer, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide and HFC-365mfc to the polyether polyol, mix well, and then add more quickly.
  • the methylene polyphenyl polyisocyanate was stirred for 30 to 50 s, and then poured into a mold which was spread with a continuous glass fiber mat 5 to be molded and foamed to obtain a cast mold blank.
  • Step 4 After molding the foaming reaction for 20 minutes, the mold is placed in a blast drying oven and aged at 70 ° C for 24 hours, the foam material is released after demolding, and then the skin of the foam material is cut off using a high speed cutter to obtain LNG. Marine gradient enhanced insulation.
  • a comparative embodiment is provided.
  • the continuous glass fiber mat 5 is not used in the comparative example.
  • raw materials polyether polyol, polymethylene polyphenyl polyisocyanate, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide, foam stabilizer, HFC-365mfc
  • the mass ratio of raw materials used is: 100:150:0.2:0.9:84:21:1.5:40.
  • Preparation steps the polyether polyol, decabromodiphenylethane powder and antimony trioxide powder were placed in a blast drying oven at 90 ° C for 24 h, and cooled to room temperature for use.
  • the HFC-365mfc, the tertiary amine catalyst, the organotin catalyst, decabromodiphenylethane, antimony trioxide and the foam stabilizer are weighed according to the formula, added to the polyether polyol, stirred uniformly, and then rapidly added to the methylene group.
  • Polyphenyl polyisocyanate stirred for 30 ⁇ 50s, poured into a square mold and molded foamed to obtain a cast mold blank; after 20 minutes of reaction, the mold was placed in a blast drying oven and aged at 70 ° C for 24 h, and then demolded. Gradient reinforcement material.
  • raw materials polyether polyol, polymethylene polyphenyl polyisocyanate, tertiary amine catalyst, organotin catalyst, decabromodiphenylethane, antimony trioxide, foam stabilizer, HFC-365mfc
  • the mass ratio of raw materials used is: 100:150:0.2:0.9:84:21:1.5:30.
  • Preparation steps the polyether polyol, decabromodiphenylethane powder and antimony trioxide powder were placed in a blast drying oven at 90 ° C for 24 h, and cooled to room temperature for use.
  • the HFC-365mfc, the tertiary amine catalyst, the organotin catalyst, decabromodiphenylethane, antimony trioxide and the foam stabilizer are weighed according to the formula, added to the polyether polyol, stirred uniformly, and then rapidly added to the methylene group.
  • Polyphenyl polyisocyanate stirred for 30 ⁇ 50s, poured into a square mold and molded foamed to obtain a cast mold blank; after 20 minutes of reaction, the mold was placed in a blast drying oven and aged at 70 ° C for 24 h, and then demolded. Gradient reinforcement material.
  • samples of different continuous glass mat contents were defined as samples taken along the gradient direction of the LNG marine gradient insulating material.
  • the method for evaluating the performance of the gradient reinforcing material of the present invention is estimated as follows (the sample is taken from different parts of the gradient direction of the gradient insulating material):
  • the gradient reinforcement material is cut to 50mm in length, 50mm in width and 50mm in height. The sample is measured and recorded for its mass and volume and tested in accordance with GB/T6343-2009.
  • Compressive performance Tested according to GB/T8813-2008, the test instrument is Zwick-Z010 Universal material testing machine, Zwick/Roell, Germany. Cut the gradient reinforcement into 50mm ⁇ 50mm ⁇ 50mm The cube, tested at a compression rate of 5 mm/min, was stopped when compressed until the thickness of the sample became 85% of the initial thickness.
  • the compressive strength is defined as the value of the maximum compressive stress before deformation of 10%.
  • test instrument is Zwick-Z010 Universal material testing machine, Zwick/Roell, Germany. Test method according to ASTM D1623-09 It is stipulated that the gradient-enhanced material is cut and polished into a specific dumbbell-shaped sample, and the tensile rate at the test is 1.3 mm/min.
  • Limiting oxygen index LOI The test instrument is JF-3 oxygen index instrument, Nanjing Jiangning Analytical Instrument Co., Ltd. Test method according to GB/T The requirements of 2406.2-2009 require that the gradient reinforcement be made of 130mm ⁇ 10mm ⁇ 10mm The spline is placed in the position to be tested. After the instrument is calibrated, adjust the nitrogen and oxygen mixed gas flow ratio, and test the sample to maintain the concentration of oxygen required for combustion in the gas flow, which is the limiting oxygen index of the material.
  • the test instrument is a horizontal burning tester, Nanjing Jiangning Analytical Instrument Co., Ltd. Test method according to GB/T8332-2008
  • the gradient reinforcement material is first made into a 150 mm ⁇ 25 mm ⁇ 13 mm spline, 25 mm near the ignition end. Lined.
  • the spline is ignited according to the standard regulations, and the burning distance of the sample and the self-extinguishing time are recorded. Each sample was tested 5 times and the results were averaged.
  • Thermal insulation performance Cut the gradient reinforcement material into 300mm, 300mm wide and 50mm high samples according to ASTM C518 Or ISO 8301, the thermal conductivity of the heat-resistant thermal conductivity meter HFM436 of Germany's NETZSCH is tested. The measurement temperature is set to 25 °C and the temperature difference between the upper and lower plates is set to 20 °C.
  • the gradient reinforcement material is cut to a length of 30mm, a width of 30mm, and a height of 60mm.
  • the sample measured and recorded its mass and volume, tested according to GB/T 10799-2008, the test instrument is ULTRAPYC 1200e automatic true density open / closed porosity analyzer, Conta, USA.
  • the test pressure is 3Psi, the mode is set to multiple tests, and the single sample is tested 6 times, taking the value within 1% of the error.
  • Linear expansion coefficient The gradient reinforcement material was cut and sanded into a cylindrical sample of 5 mm in diameter and 25 mm in length, and in accordance with ASTM E228 or DIN 51045-1, tested with NETZSCH Expedis Supreme, with a test temperature range of -170 to +20 °C and a test load of 10 mN.
  • Continuous glass fiber felt 5 content test The calcination method was used to quantitatively study the distribution of glass fiber in the gradient reinforcement material, and the gradient enhancement material was cut into 3 pieces of 3 ⁇ 3 ⁇ 3cm small pieces, which were weighed and recorded separately. Its quality. It is calcined in a muffle furnace at 800 ° C under an air atmosphere for 3 hours, and the calcined relatively bright glass fiber is recovered. The mass is weighed on the analytical balance, divided by the mass of the sample before calcination, and the average value of the results is obtained three times to obtain the content of the glass fiber in the sample.
  • Example 3 the sample of Example 3 having a glass fiber content of 9.7% was most effective.
  • the compressive strength in the thickness direction was increased from 0.58 MPa to 0.75 MPa, which was increased by 29%; the compressive modulus in the thickness direction was increased from 20.50 MPa to 27.27 MPa, which was increased by 33%.
  • the tensile strength in the thickness direction is increased from 0.72 MPa to 1.23 MPa, which is 71%; the tensile strength in the vertical thickness direction is increased from 0.71 MPa to 1.45 MPa, which is increased by 104%; and the tensile modulus in the thickness direction is increased from 18 MPa to 35 MPa.
  • Example 6 Increased by 94%; tensile modulus in the vertical thickness direction increased from 16MPa to 52MPa, an increase of 225%. This shows that the continuous glass fiber mat 5 has a better reinforcing effect on the vertical thickness direction of the gradient heat insulating material.
  • Example 6 the sample of Example 6 having a glass fiber content of 9.5% had the best reinforcing effect.
  • the compressive strength in the thickness direction was increased from 1.21 MPa to 1.91 MPa, which was increased by 58%; the compressive modulus in the thickness direction was increased from 31.60 MPa to 47.12 MPa, an increase of 49%.
  • the tensile strength in the thickness direction is increased from 1.32 MPa to 2.28 MPa, which is 73% higher; the tensile strength in the vertical thickness direction is increased from 1.30 MPa to 2.82 MPa, which is increased by 117%; the tensile modulus in the thickness direction is increased from 34 MPa to 85 MPa.
  • the lift modulus is increased by 150%; the tensile modulus in the vertical thickness direction is increased from 32 MPa to 126 MPa, an increase of 294%. It is indicated that the continuous glass fiber mat 5 has a better reinforcing effect on the high-density gradient heat insulating material.
  • improvements in mechanical properties, particularly tensile properties can also inhibit the expansion of defects in the material interface and interior.
  • the mechanical strength of the side with high glass fiber content and density will be higher.
  • the surface is mounted at a low temperature of -163 ° C, and the side with low glass fiber content and low density is oriented toward normal temperature, as shown in Fig. 2 and Fig. 3, so that the portion of the PUR near the low temperature is at the shrinkage stress and LNG is less susceptible to damage under sloshing and enhances the stability of the adiabatic system.
  • the addition of glass fiber also increases the toughness and mechanical strength of PUR, which greatly reduces the influence of thermal stress and uneven deformation caused by temperature gradient, and prolongs the service life of the adiabatic system.
  • the addition of glass fiber usually increases the thermal conductivity of PUR with the increase of glass fiber content, while the thermal insulation material prepared by gradient enhancement method can ensure the mechanical strengthening effect, because it is only in the part with large thermal stress of the material.
  • the fiber content is high and the glass fiber content is low in the part with small thermal stress, and the amount of glass fiber is greatly reduced, so that the overall thermal insulation performance of the material is minimized by the addition of the glass fiber, and the material preparation cost is also reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

一种液化天然气船用梯度增强绝热材料及其短流程制备方法,绝热材料组分包括聚醚多元醇、多异氰酸酯、发泡剂、泡沫稳定剂、叔胺类催化剂、有机锡类催化剂、溴系阻燃剂、锑系阻燃剂和连续玻璃纤维毡,绝热材料密度为70~130kg/m 3,极限氧指数大于30%,制备过程包括干燥、制模、模压发泡、熟化、脱模、表皮切割等环节。

Description

液化天然气船用梯度增强绝热材料及其短流程制备方法
技术领域
本发明涉及绝热材料及其制备方法,具体涉及一种液化天然气船B型液货舱用的梯度增强绝热材料及其短流程制备方法,属于绝热材料制备技术领域。
背景技术
液化天然气(LNG)是将主要成分为甲烷的天然气冷却至约-163°C的超低温液体。天然气液化后可以大大节约储运空间和成本。由于LNG燃烧时释放的氮氧化物和二氧化硫较少,因此被公认为一种清洁能源。LNG船是液化天然气的主要运输工具,其中液货舱围护系统的绝热性能及安全性是LNG船是否合格的重要指标之一。由于LNG船液货舱在运行过程中温度交变范围大(温差可达200°C以上),若液货舱绝热性能和安全性不佳,会造成LNG较高的蒸发率,也会使舱内压力升高,危及航行安全。因此,液货舱内需要安装高性能的绝热材料。
硬质聚氨酯泡沫(PUR)因其导热系数低而被广泛用于LNG船的绝热系统。但由于密度低,PUR的断裂强度较低,普通PUR耐低温性也较差,国家标准GB50264《工业设备及管道绝热工程设计规范》中将PUR推荐使用温度限定为-65~80°C。因此,PUR在-163°C的超低温环境下会因低的断裂韧性和低温稳定性而发生破坏。此外,用于LNG船的PUR在服役过程中会产生较大热应力,热应力的大小主要取决于材料热胀系数差和温度变化的幅度。当PUR用于LNG船液货舱绝热系统时,靠近罐体低温处的收缩应力大,受到LNG晃动冲击的影响也大(Kim M H, Lee S M, Lee J M, et al. Fatigue strength assessment of MARK-III type LNG cargo containment system. Ocean Engineering, 2010, 37(14): 1243-1252;Chun M S, Kim M H, Kim W S, et al. Experimental investigation on the impact behavior of membrane-type LNG carrier insulation system. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 901-907),因而可能易于出现裂纹,导致保温效果大为降低;同时,当PUR所处环境温度在-163°C到室温或者更高温度之间时,由于PUR的高绝热性使PUR板两侧温度不同,板内存在温差大的温度梯度,使得PUR内部产生大的热应力,在温度循环和船舶晃动时易被损坏;加之,由于PUR线膨胀系数随温度变化大,PUR板两边温度不同,线膨胀系数也不同,PUR会产生不均匀形变,这也会导致泡沫内产生较大热应力。此外,由于PUR与次屏壁金属板以及粘合剂的热膨胀系数不同,在温度交变时,液货舱绝热结构会因膨胀差异而脱落破坏。上述现象会导致绝热系统损坏,减弱其绝热性能、缩短服役寿命。因此,如何解决因绝热材料热应力过大和材料热膨胀系数差异引起的绝热系统损坏问题是目前亟待解决的问题之一。
公告号为CN101120068B的中国专利申请公开了一种在第二气体障壁与绝热板之间利用加热垫的连接方法。该方法虽然解决了第二气体障壁与绝热板之间粘合剂的粘结强度随着温度改变变化较大的问题,但是并没有考虑到PUR在低温处会产生较大收缩应力和PUR与金属线膨胀系数差异的问题。因此,为了防止PUR板收缩产生裂纹,劣化PUR板的绝热性能,延长绝热层的服役寿命,需要对现有技术的PUR绝热板进行改进。公布号为CN106516017A的中国专利申请公开了一种采用复合泡沫玻璃板和PUR板来制备LNG船用绝热板的绝热系统构造方法。该绝热复合板能有效避免因绝热材料膨胀系数差异而导致的绝热层损坏问题,并能减小PUR板由温差变化导致的热应力变化。但该方法需采用粘合剂将PUR板粘接在泡沫玻璃板表面,PUR板靠近低温处仍存在收缩应力大,长期服役可能产生裂纹的问题。另外多层复合也使得制备工艺繁琐,使得保温材料不能采用一步法直接加工成型。
玻璃纤维的添加可以有效增强保温材料的力学性能,从而降低热应力的不利影响。然而,由于玻璃纤维自身导热系数高,玻璃纤维的加入会使得材料绝热性能下降,材料的导热系数随玻璃纤维添加量的增加而增加。功能梯度材料(Functionally Graded Materials),最先是为解决航天飞机发动机燃烧室器壁一侧须承受大于2000°C高温,另一侧需承受超低温液氢冷却的问题而提出的新概念材料(Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials. Materials Science and Engineering: A, 2003, 362(1): 81-106),指的是在材料的制备过程中,釆用先进的复合技术,使材料的结构和组成等微观方面沿着特定方向呈现连续的梯度变化,从而使材料的宏观性能也在同一方向呈现连续的梯度变化,以适应不同环境,实现某种特殊功能的非均质、目标性强的多功能新型材料。本发明基于梯度增强法,一体化加工成型PUR绝热材料,在通过加入玻璃纤维来实现力学性能增强目的的同时,可最大限度地减少玻璃纤维加入所引起的绝热性能下降和制造成本上升的影响。目前,尚未有采用复合玻璃纤维进行梯度增强的方法来制备绝热材料,以解决上述LNG船B型液货舱用PUR绝热板存在问题的报道。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是针对LNG船绝热系统中存在的因绝热材料热应力过大和材料热膨胀系数差异引起的绝热系统损坏问题,提供了一种用于LNG船的梯度增强绝热材料及其制备方法。其特点是材料存在两种梯度结构,一是在一步发泡工艺中由于重力的影响使得聚氨酯泡沫存在密度梯度;二是通过调节发泡速度,使得泡沫形成底部玻璃纤维多,顶部玻璃纤维少的梯度玻璃纤维含量结构。
为实现上述目的,本发明提供了一种LNG船用梯度增强绝热材料及其短流程制备方法。具体技术方案如下:
本发明公开了一种LNG船用梯度增强绝热材料,组分包括聚醚多元醇、多异氰酸酯、发泡剂、泡沫稳定剂、催化剂、阻燃剂和连续玻璃纤维毡。
进一步地,聚醚多元醇与多异氰酸酯质量比为100:140~160。
进一步地,聚醚多元醇与发泡剂质量比为100:25~50。
进一步地,聚醚多元醇与泡沫稳定剂质量比为100:1.5~2。
进一步地,催化剂包括叔胺类催化剂和有机锡类催化剂,聚醚多元醇与叔胺类催化剂质量比为100:0.2,聚醚多元醇与有机锡类催化剂质量比为100:0.9~1。
进一步地,阻燃剂包括溴系阻燃剂和锑系阻燃剂,聚醚多元醇与溴系阻燃剂质量比为100:80~85,聚醚多元醇与锑系阻燃剂质量比为100:20~25。
进一步地,聚醚多元醇与连续玻璃纤维毡质量比为100:10~40。
进一步地,聚醚多元醇以蔗糖为起始剂,蔗糖羟值为480~500 mgKOH/g。
进一步地,多异氰酸酯为多亚甲基多苯基多异氰酸酯,多亚甲基多苯基多异氰酸酯官能度为2.6~3.1,NCO质量分数为30.0%~32.0%。
进一步地,发泡剂为HFC类发泡剂,优选为氢化氟烷烃(HFC)发泡剂1,1,1,3,3-五氟丁烷HFC-365mfc。
进一步地,泡沫稳定剂为聚醚改性的含Si-C结构的硅类表面活性剂。
进一步地,溴系阻燃剂为环境友好型的十溴二苯乙烷,锑系阻燃剂为三氧化二锑,平均粒径为0.7μm。
进一步地,连续玻璃纤维毡中玻璃纤维束表面经浸润剂和硅烷偶联剂进行了表面改性。
进一步地,梯度增强绝热材料密度为70~130kg/m3,极限氧指数大于30%。
本发明还公开了一种LNG船用梯度增强绝热材料的制备方法,包括如下步骤:
步骤一:将聚醚多元醇、阻燃剂粉末和连续玻璃纤维毡置于鼓风干燥箱中90°C条件下干燥24h,然后降温至室温备用。
步骤二:将步骤一处理后备用的连续玻璃纤维毡裁剪成适合模具的形状后均匀平铺在模具底部,阻燃剂包括溴系阻燃剂和锑系阻燃剂,聚醚多元醇、溴系阻燃剂、锑系阻燃剂和连续玻璃纤维毡的质量比为100:80~85:20~25:20~40。
步骤三:将泡沫稳定剂、叔胺类催化剂、有机锡类催化剂、溴系阻燃剂、锑系阻燃剂和发泡剂加入到聚醚多元醇中混合,搅拌均匀,然后再加入多异氰酸酯,搅拌均匀,然后倒入模具中进行模压发泡,得到浇筑模坯,聚醚多元醇、泡沫稳定剂、叔胺类催化剂、有机锡类催化剂、溴系阻燃剂、锑系阻燃剂、发泡剂和多异氰酸酯的质量比为100:1.5~2:0.2:0.9~1:80~85:20~25:25~50:140~160。
步骤四:将浇筑模坯放入鼓风干燥箱,在70°C条件条件下熟化24h。
步骤五:熟化结束后,对浇筑模坯进行脱模,得到泡沫材料,然后,使用高速切割机切除所述泡沫材料的表皮,得到LNG船用梯度增强绝热材料,绝热材料密度为70~130kg/m3,极限氧指数大于30%。
进一步地,模压发泡模具为不锈钢材质,在模具表面涂有脱模剂。
本发明为近终形、短流程生产制备工艺,使材料制备时的截面尺寸,在保证性能的前提下,尽量接近了最终使用材料截面的形状和尺寸。与采用复合的方式将不同保温板粘合制备复合保温板的生产工艺相比,近终形生产工艺实现了一步法直接模压制备,一体化的加工成型避免了保温板的多层复合,缩短了生产工艺流程,简化了工艺环节,提高了生产效率,通过实现短流程连续化生产,尽量减少了材料切边量和后续加工环节,减低了保温板表面缺陷产生的几率,节约了生产成本。
本发明的有益效果:
1、本发明提供的制备方法为近终形生产工艺,具有流程短、节约玻璃纤维、成本低、生产简便、一体化成型、产品综合性能好的特点。
2、与现有的LNG船的绝热材料相比,本发明提供的LNG船的梯度增强绝热材料增强效果佳,性能优异,可抑制材料界面和内部可能存在缺陷的扩展。
3、在绝热系统温度变化时,可避免出现因膨胀差异导致绝热层脱落损坏的现象,绝热系统的稳定性好,延长了绝热系统的服役寿命。
4、在能保证力学增强效果的同时,由于只是在材料热应力大的部位玻纤含量高而在热应力小的部位玻纤含量较低,玻纤用量大为降低,从而使得材料整体保温性能受玻纤加入的影响降到了最低,也减少了材料制备成本。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1为本发明一个较佳实施例的绝热系统的示意图;
图2为现有的PUR在热应力下破坏示意图;
图3为本发明一个较佳实施例制备的绝热材料在热应力作用下示意图。
具体实施方式
下面结合附图以及具体实施例进一步详细描述本发明。应理解,实施方式只是为了举例说明本发明,而非以任何形式限制发明的范围。
如图1-图3所示,图1为本发明的一个较佳实施例的绝热系统的示意图,图2为现有的PUR在热应力下破坏示意图,图3为本发明一个较佳实施例制备的绝热材料在热应力作用下示意图。其中,1为主屏壁,2为长螺栓,3为次屏壁,4为连续玻璃纤维毡增强聚氨酯泡沫板,5为连续玻璃纤维毡,6为阻水层,7为保护层,8为螺母及密封垫圈,9为现有技术主屏壁,10为现有技术长螺栓,11为现有技术次屏壁,12为现有技术聚氨酯泡沫中出现的裂纹,13为现有技术聚氨酯泡沫板,14为现有技术阻水层,15为现有技术保护层,16为现有技术螺母及密封垫圈。
实施例1:
选用原材料:聚醚多元醇、多亚甲基多苯基多异氰酸酯、叔胺催化剂、有机锡催化剂、十溴二苯乙烷、三氧化二锑、泡沫稳定剂、HFC-365mfc、连续玻璃纤维毡5。
选用原材料的质量比:100:150:0.2:0.9:84:21:1.5:40:10。
步骤一:将聚醚多元醇、十溴二苯乙烷粉末、三氧化二锑粉末和连续玻璃纤维毡5置于鼓风干燥箱中90°C条件下干燥24h,然后降温至室温备用。
步骤二:将步骤一处理后备用的连续玻璃纤维毡5裁剪成适合模具的形状后均匀平铺在模具底部。
步骤三:将泡沫稳定剂、叔胺类催化剂、有机锡类催化剂、十溴二苯乙烷、三氧化二锑和HFC-365mfc加入到聚醚多元醇中混合,搅拌均匀,然后再迅速加入多亚甲基多苯基多异氰酸酯,搅拌30~50s,然后倒入平铺有连续玻璃纤维毡5的模具中模压发泡,得到浇筑模坯。
步骤四:模压发泡反应20分钟后,将模具放入鼓风干燥箱中70°C条件下熟化24h,脱模后泡沫材料,然后,使用高速切割机切除所述泡沫材料的表皮,得到LNG船用梯度增强绝热材料。
实施例2:
选用原材料:聚醚多元醇、多亚甲基多苯基多异氰酸酯、叔胺催化剂、有机锡催化剂、十溴二苯乙烷、三氧化二锑、泡沫稳定剂、HFC-365mfc、连续玻璃纤维毡5。
选用原材料的质量比:100:150:0.2:0.9:84:21:1.5:40:20。
步骤一:将聚醚多元醇、十溴二苯乙烷粉末、三氧化二锑粉末和连续玻璃纤维毡5置于鼓风干燥箱中90°C条件下干燥24h,然后降温至室温备用。
步骤二:将步骤一处理后备用的连续玻璃纤维毡5裁剪成适合模具的形状后均匀平铺在模具底部。
步骤三:将泡沫稳定剂、叔胺类催化剂、有机锡类催化剂、十溴二苯乙烷、三氧化二锑和HFC-365mfc加入到聚醚多元醇中混合,搅拌均匀,然后再迅速加入多亚甲基多苯基多异氰酸酯,搅拌30~50s,然后倒入平铺有连续玻璃纤维毡5的模具中模压发泡,得到浇筑模坯。
步骤四:模压发泡反应20分钟后,将模具放入鼓风干燥箱中70°C条件下熟化24h,脱模后泡沫材料,然后,使用高速切割机切除所述泡沫材料的表皮,得到LNG船用梯度增强绝热材料。
实施例3:
选用原材料:聚醚多元醇、多亚甲基多苯基多异氰酸酯、叔胺催化剂、有机锡催化剂、十溴二苯乙烷、三氧化二锑、泡沫稳定剂、HFC-365mfc、连续玻璃纤维毡5。
选用原材料的质量比:100:150:0.2:0.9:84:21:1.5:45:40。
步骤一:将聚醚多元醇、十溴二苯乙烷粉末、三氧化二锑粉末和连续玻璃纤维毡5置于鼓风干燥箱中90°C条件下干燥24h,然后降温至室温备用。
步骤二:将步骤一处理后备用的连续玻璃纤维毡5裁剪成适合模具的形状后均匀平铺在模具底部。
步骤三:将泡沫稳定剂、叔胺类催化剂、有机锡类催化剂、十溴二苯乙烷、三氧化二锑和HFC-365mfc加入到聚醚多元醇中混合,搅拌均匀,然后再迅速加入多亚甲基多苯基多异氰酸酯,搅拌30~50s,然后倒入平铺有连续玻璃纤维毡5的模具中模压发泡,得到浇筑模坯。
步骤四:模压发泡反应20分钟后,将模具放入鼓风干燥箱中70°C条件下熟化24h,脱模后泡沫材料,然后,使用高速切割机切除所述泡沫材料的表皮,得到LNG船用梯度增强绝热材料。
实施例4:
选用原材料:聚醚多元醇、多亚甲基多苯基多异氰酸酯、叔胺催化剂、有机锡催化剂、十溴二苯乙烷、三氧化二锑、泡沫稳定剂、HFC-365mfc、连续玻璃纤维毡5。
选用原材料的质量比:100:150:0.2:0.9:84:21:1.5:30:10。
步骤一:将聚醚多元醇、十溴二苯乙烷粉末、三氧化二锑粉末和连续玻璃纤维毡5置于鼓风干燥箱中90°C条件下干燥24h,然后降温至室温备用。
步骤二:将步骤一处理后备用的连续玻璃纤维毡5裁剪成适合模具的形状后均匀平铺在模具底部。
步骤三:将泡沫稳定剂、叔胺类催化剂、有机锡类催化剂、十溴二苯乙烷、三氧化二锑和HFC-365mfc加入到聚醚多元醇中混合,搅拌均匀,然后再迅速加入多亚甲基多苯基多异氰酸酯,搅拌30~50s,然后倒入平铺有连续玻璃纤维毡5的模具中模压发泡,得到浇筑模坯。
步骤四:模压发泡反应20分钟后,将模具放入鼓风干燥箱中70°C条件下熟化24h,脱模后泡沫材料,然后,使用高速切割机切除所述泡沫材料的表皮,得到LNG船用梯度增强绝热材料。
实施例5:
选用原材料:聚醚多元醇、多亚甲基多苯基多异氰酸酯、叔胺催化剂、有机锡催化剂、十溴二苯乙烷、三氧化二锑、泡沫稳定剂、HFC-365mfc、连续玻璃纤维毡5。
选用原材料的质量比:100:150:0.2:0.9:84:21:1.5:25:20。
步骤一:将聚醚多元醇、十溴二苯乙烷粉末、三氧化二锑粉末和连续玻璃纤维毡5置于鼓风干燥箱中90°C条件下干燥24h,然后降温至室温备用。
步骤二:将步骤一处理后备用的连续玻璃纤维毡5裁剪成适合模具的形状后均匀平铺在模具底部。
步骤三:将泡沫稳定剂、叔胺类催化剂、有机锡类催化剂、十溴二苯乙烷、三氧化二锑和HFC-365mfc加入到聚醚多元醇中混合,搅拌均匀,然后再迅速加入多亚甲基多苯基多异氰酸酯,搅拌30~50s,然后倒入平铺有连续玻璃纤维毡5的模具中模压发泡,得到浇筑模坯。
步骤四:模压发泡反应20分钟后,将模具放入鼓风干燥箱中70°C条件下熟化24h,脱模后泡沫材料,然后,使用高速切割机切除所述泡沫材料的表皮,得到LNG船用梯度增强绝热材料。
实施例6:
选用原材料:聚醚多元醇、多亚甲基多苯基多异氰酸酯、叔胺催化剂、有机锡催化剂、十溴二苯乙烷、三氧化二锑、泡沫稳定剂、HFC-365mfc、连续玻璃纤维毡5。
选用原材料的质量比:100:150:0.2:0.9:84:21:1.5:25:40。
步骤一:将聚醚多元醇、十溴二苯乙烷粉末、三氧化二锑粉末和连续玻璃纤维毡5置于鼓风干燥箱中90°C条件下干燥24h,然后降温至室温备用。
步骤二:将步骤一处理后备用的连续玻璃纤维毡5裁剪成适合模具的形状后均匀平铺在模具底部。
步骤三:将泡沫稳定剂、叔胺类催化剂、有机锡类催化剂、十溴二苯乙烷、三氧化二锑和HFC-365mfc加入到聚醚多元醇中混合,搅拌均匀,然后再迅速加入多亚甲基多苯基多异氰酸酯,搅拌30~50s,然后倒入平铺有连续玻璃纤维毡5的模具中模压发泡,得到浇筑模坯。
步骤四:模压发泡反应20分钟后,将模具放入鼓风干燥箱中70°C条件下熟化24h,脱模后泡沫材料,然后,使用高速切割机切除所述泡沫材料的表皮,得到LNG船用梯度增强绝热材料。
为更好的体现本发明的技术效果,提供对比实施例如下,对比例中未使用连续玻璃纤维毡5。
对比例1:
选用原材料:聚醚多元醇、多亚甲基多苯基多异氰酸酯、叔胺催化剂、有机锡催化剂、十溴二苯乙烷、三氧化二锑、泡沫稳定剂、HFC-365mfc
选用原材料的质量比:100:150:0.2:0.9:84:21:1.5:40。
制备步骤:将聚醚多元醇、十溴二苯乙烷粉末和三氧化二锑粉末放入鼓风干燥箱在90°C条件下干燥24h,冷却到室温待用。将HFC-365mfc、叔胺催化剂、有机锡催化剂、十溴二苯乙烷、三氧化二锑和泡沫稳定剂按照配方称量后加入到聚醚多元醇中搅拌均匀,然后迅速加入多亚甲基多苯基多异氰酸酯,搅拌30~50s后倒入方形模具中模压发泡,得到浇筑模坯;反应20分钟后将模具放入鼓风干燥箱中70°C条件下熟化24h,然后脱模得到梯度增强材料。
对比例2:
选用原材料:聚醚多元醇、多亚甲基多苯基多异氰酸酯、叔胺催化剂、有机锡催化剂、十溴二苯乙烷、三氧化二锑、泡沫稳定剂、HFC-365mfc
选用原材料的质量比:100:150:0.2:0.9:84:21:1.5:30。
制备步骤:将聚醚多元醇、十溴二苯乙烷粉末和三氧化二锑粉末放入鼓风干燥箱在90°C条件下干燥24h,冷却到室温待用。将HFC-365mfc、叔胺催化剂、有机锡催化剂、十溴二苯乙烷、三氧化二锑和泡沫稳定剂按照配方称量后加入到聚醚多元醇中搅拌均匀,然后迅速加入多亚甲基多苯基多异氰酸酯,搅拌30~50s后倒入方形模具中模压发泡,得到浇筑模坯;反应20分钟后将模具放入鼓风干燥箱中70°C条件下熟化24h,然后脱模得到梯度增强材料。
在以上实施例或对比例中,将不同连续玻纤毡含量的试样定义为沿着LNG船用梯度绝热材料的梯度方向取得的试样。本发明对于梯度增强材料性能评方法估如下(样品取自梯度绝热材料梯度方向的不同部位):
表观密度:将梯度增强材料切割成长50mm,宽50mm,高50mm 的样品,测量并记录其质量和体积,并按照GB/T6343-2009 进行测试。
压缩性能:按照GB/T8813-2008 进行测试,测试仪器为Zwick-Z010 万能材料实验机,德国Zwick/Roell公司。将梯度增强材料切割成50mm×50mm×50mm 的立方体,测试压缩速率为5mm/min,当压缩至样品的厚度变为初始厚度的85%时停止测试。压缩强度定义为形变10%前的最大压缩应力对于的值。
拉伸性能测试:测试仪器为Zwick-Z010 万能材料试验机,德国Zwick/Roell公司。测试方法依照ASTM D1623-09 的规定,将梯度增强材料切割打磨成特定的哑铃状样品,测试时拉伸速率为1.3mm/min。
极限氧指数LOI:测试仪器为JF-3 型氧指数仪,南京江宁分析仪器有限公司。测试方法按照GB/T 2406.2-2009 中的规定要求,需将梯度增强材料制130mm×10mm×10mm 的样条,放入待测位置。仪器校正完毕后,调节其氮、氧混合气流配比,测试样品在气流中刚好维持燃烧时所需的氧气的浓度,即为材料的极限氧指数。
水平燃烧测试:测试仪器为水平燃烧测定仪,南京江宁分析仪器有限公司。测试方法按照GB/T8332-2008 测定,先将梯度增强材料制成150mm×25mm×13mm 的样条,在靠近点燃一端的25mm 处划线。按照标准的规定点燃样条,记录样品的燃烧距离以及自熄时间。每个样品重复测试5 次,结果取平均值。
绝热性能:将梯度增强材料切割成长300mm,宽300mm,高50mm 的样品,按照ASTM C518 或ISO 8301,使用德国耐驰公司的热流导热仪HFM436测试其导热系数,测量时将测试温度设为25°C,上下板温差设为20°C。
闭孔率:将梯度增强材料切割成长30mm,宽30mm,高60mm 的样品,测量并记录其质量和体积,按照GB/T 10799-2008 进行测试,测试仪器为ULTRAPYC 1200e全自动真密度开/闭孔率分析仪,美国康塔公司。测试压力为3Psi,模式设为多次测试,单个样品重复测试6 次,取误差1%内的值。
线膨胀系数:将梯度增强材料切割并用砂纸打磨成成直径为5mm,长度为25mm的圆柱形样品,并按照ASTM E228或DIN 51045-1,使用NETZSCH Expedis Supreme进行测试,测试温度范围为-170~+20°C,测试负载为10mN。
连续玻璃纤维毡5含量测试:采用了煅烧法来定量的研究玻纤在梯度增强材料中的分布情况,将梯度增强材料切割成3×3×3cm的小块样品3块,分别称量并记录其质量。在马弗炉中800°C、空气氛围条件下煅烧3h,回收煅烧完较为光亮的玻纤。在分析天平上分别称其质量,除以煅烧前样品的质量,取3次结果平均值,即可得到样品中玻纤的含量。
实施例和对比例制备的绝热材料的性能数据评估如下表:
性能 对比例 1 实施例 1 实施例 2 实施例 3 对比例 2 实施例 4 实施例 5 实施例 6
表观密度 ( kg/m3 70.2 70.0 71.1 78.0 114 118 121 124
样品玻纤含量 0 2.0% 4.5% 9.7% 0 2.3% 4.3% 9.5%
LOI 30.1 30.1 30.2 30.2 30.1 30.1 30.1 30.2
水平燃烧距离 ( mm) 0 0 0 0 0 0 0 0
自熄时间 (s) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
导热系数 (mW/K·m , 25°C) 23.7 24.2 24.5 24.7 25.5 26.4 26.3 26.5
闭孔率( % ) 96.10 94.84 93.70 93.21 96.21 95.38 94.81 94.05
线膨胀系数 (10-6mm/mm/oC) (+20oC~-170oC) 68.12 64.27 60.43 57.68 40.23 34.67 29.56 24.21
压缩强度 (MPa) 厚度方向 0.58 0.67 0.70 0.75 1.21 1.48 1.63 1.91
压缩模量 (MPa) 厚度方向 20.50 23.37 25.22 27.27 31.60 38.55 41.08 47.12
拉伸强度 (MPa) 厚度方向 0.72 0.80 0.94 1.23 1.32 1.52 1.86 2.28
垂直厚度方向 0.71 0.87 1.26 1.45 1.30 1.69 2.34 2.82
杨氏模量 (MPa) 厚度方向 18 22 31 35 34 62 76 85
垂直厚度方向 16 34 52 61 32 77 100 126
性能评估数据显示:
1、在实施实例1-3中,玻纤含量9.7%的实施实例3的样品增强效果最佳。与对比例1相比,厚度方向的压缩强度从0.58MPa提升到了0.75MPa,提升29%;厚度方向的压缩模量从20.50MPa提升到了27.27MPa,提升33%。厚度方向的拉伸强度从0.72MPa提升到1.23MPa,提升71%;垂直厚度方向的拉伸强度从0.71MPa提升到1.45MPa,提升104%;厚度方向的拉伸模量从18MPa提升到35MPa,提升94%;垂直厚度方向的拉伸模量从16MPa提升到52MPa,提升225%。这说明连续玻璃纤维毡5对梯度绝热材料垂直厚度方向的增强效果更好。在实施实例4-6中,玻纤含量9.5%的实施实例6的样品增强效果最好。与对比例2相比,厚度方向的压缩强度从1.21MPa提升到了1.91MPa,提升58%;厚度方向的压缩模量从31.60MPa提升到了47.12MPa,提升49%。厚度方向的拉伸强度从1.32MPa提升到2.28MPa,提升73%;垂直厚度方向的拉伸强度从1.30MPa提升到2.82MPa,提升117%;厚度方向的拉伸模量从34MPa提升到85MPa,提升150%;垂直厚度方向的拉伸模量从32MPa提升到126MPa,提升294%。说明连续玻璃纤维毡5对高密度的梯度绝热材料的增强效果更好。此外,力学性能,特别是拉伸性能的提高还可抑制材料界面和内部可能存在缺陷的扩展。
2、由于玻纤的加入使得PUR的线膨胀系数减小,且PUR板玻纤含量和密度高的一侧线膨胀系数更低,将该面朝向次屏壁金属壁安装,会使泡沫与金属的线膨胀系数(以304不锈钢在-50°C为例,其热膨胀系数约为16*10-6mm/mm/°C,且随温度变化不大)差异有所减小,因而在绝热系统温度变化时,可避免出现因膨胀差异导致绝热层脱落损坏的现象。可以看到,当材料密度为70kg/m3左右时,随着连续玻璃纤维毡5含量的增加,材料的线膨胀系数不断减小,从对比例1中的68.12*10-6mm/mm/°C减小到了实施例3中的57.68*10-6mm/mm/°C;当材料密度为115kg/m3左右时,随着连续玻璃纤维毡5含量的增加,材料的线膨胀系数从对比例2中的40.23*10-6mm/mm/°C减小到了实施例6中的24.21*10-6mm/mm/°C。因此,玻纤的加入可以显著增强PUR板的力学性能。由于PUR板存在梯度密度和梯度玻纤含量,玻纤含量和密度高的一侧力学强度会更高。将该面朝向-163°C的罐体低温处安装,将玻纤含量低和密度低的一侧朝向常温处,如图2和图3所示,使得PUR靠近低温处的部分在收缩应力和LNG晃动冲击下更不易被破坏,增强了绝热系统的稳定性。同时,玻纤的加入还使得PUR的韧性和力学强度增大,使得温度梯度产生的热应力和不均匀形变的影响大为减小,延长了绝热系统的服役寿命。
3、玻纤的加入通常会使PUR的导热系数随玻纤含量增加而上升,而采用梯度增强法制备的保温材料,在能保证力学增强效果的同时,由于只是在材料热应力大的部位玻纤含量高而在热应力小的部位玻纤含量较低,玻纤用量大为降低,从而使得材料整体保温性能受玻纤加入的影响降到了最低,也减少了材料制备成本。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种LNG船用梯度增强绝热材料,其特征在于,
    组分包括聚醚多元醇、多异氰酸酯、发泡剂、泡沫稳定剂、催化剂、阻燃剂和连续玻璃纤维毡;
    所述聚醚多元醇与所述多异氰酸酯质量比为100:140~160;
    所述聚醚多元醇与所述发泡剂质量比为100:25~50;
    所述聚醚多元醇与所述泡沫稳定剂质量比为100:1.5~2;
    所述催化剂包括叔胺类催化剂和有机锡类催化剂,所述聚醚多元醇与所述叔胺类催化剂质量比为100:0.2,所述聚醚多元醇与所述有机锡类催化剂质量比为100:0.9~1;
    所述阻燃剂包括溴系阻燃剂和锑系阻燃剂,所述聚醚多元醇与所述溴系阻燃剂质量比为100:80~85,所述聚醚多元醇与所述锑系阻燃剂质量比为100:20~25;
    所述聚醚多元醇与所述连续玻璃纤维毡质量比为100:10~40。
  2. 如权利要求1所述的一种LNG船用梯度增强绝热材料,其特征在于,所述聚醚多元醇以蔗糖为起始剂,所述蔗糖羟值为480~500 mgKOH/g。
  3. 如权利要求1所述的一种LNG船用梯度增强绝热材料,其特征在于,所述多异氰酸酯为多亚甲基多苯基多异氰酸酯,所述多亚甲基多苯基多异氰酸酯官能度为2.6~3.1,NCO质量分数为30.0%~32.0%。
  4. 如权利要求1所述的一种LNG船用梯度增强绝热材料,其特征在于,所述发泡剂为HFC类发泡剂。
  5. 如权利要求1所述的一种LNG船用梯度增强绝热材料,其特征在于,所述泡沫稳定剂为聚醚改性的含Si-C结构的硅类表面活性剂。
  6. 如权利要求1所述的一种LNG船用梯度增强绝热材料,其特征在于,所述溴系阻燃剂为环境友好型的十溴二苯乙烷,所述锑系阻燃剂为三氧化二锑,平均粒径为0.7μm。
  7. 如权利要求1所述的一种LNG船用梯度增强绝热材料,其特征在于,所述连续玻璃纤维毡中玻璃纤维束表面经浸润剂和硅烷偶联剂进行了表面改性。
  8. 如权利要求1所述的一种LNG船用梯度增强绝热材料,其特征在于,所述梯度增强绝热材料密度为70~130kg/m3,极限氧指数大于30%。
  9. 如权利要求1~8任一所述一种LNG船用梯度增强绝热材料的短流程制备方法,其特征在于,包括如下步骤:
    步骤一:将所述聚醚多元醇、所述阻燃剂粉末和所述连续玻璃纤维毡置于鼓风干燥箱中90°C条件下干燥24h,然后降温至室温备用;
    步骤二:将步骤一处理后备用的所述连续玻璃纤维毡裁剪成适合模具的形状后均匀平铺在模具底部,所述阻燃剂包括所述溴系阻燃剂和所述锑系阻燃剂,所述聚醚多元醇、所述溴系阻燃剂、所述锑系阻燃剂和所述连续玻璃纤维毡的质量比为100:80~85:20~25:10~40;
    步骤三:将所述泡沫稳定剂、所述叔胺类催化剂、所述有机锡类催化剂、所述溴系阻燃剂、所述锑系阻燃剂和所述发泡剂加入到所述聚醚多元醇中混合,搅拌均匀,然后再加入所述多异氰酸酯,搅拌均匀,然后倒入所述模具中进行模压发泡,得到浇筑模坯,所述聚醚多元醇、所述泡沫稳定剂、所述叔胺类催化剂、所述有机锡类催化剂、所述溴系阻燃剂、所述锑系阻燃剂、所述发泡剂和所述多异氰酸酯的质量比为100:1.5~2:0.2:0.9~1:80~85:20~25:25~50:140~160;
    步骤四:将所述浇筑模坯放入鼓风干燥箱,在70°C条件条件下熟化;
    步骤五:所述熟化结束后,对所述浇筑模坯进行脱模,得到泡沫材料,然后,使用高速切割机切除所述泡沫材料的表皮,得到LNG船用梯度增强绝热材料。
  10. 如权利要求9所述的一种LNG船用梯度增强绝热材料的短流程制备方法,其特征在于,步骤五中所述LNG船用梯度增强绝热材料密度为70~130kg/m3,极限氧指数大于30%。
PCT/CN2017/107524 2017-07-11 2017-10-24 液化天然气船用梯度增强绝热材料及其短流程制备方法 WO2019010862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710562862.7 2017-07-11
CN201710562862.7A CN107459617A (zh) 2017-07-11 2017-07-11 一种lng船用梯度增强绝热材料及其短流程制备方法

Publications (1)

Publication Number Publication Date
WO2019010862A1 true WO2019010862A1 (zh) 2019-01-17

Family

ID=60546316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107524 WO2019010862A1 (zh) 2017-07-11 2017-10-24 液化天然气船用梯度增强绝热材料及其短流程制备方法

Country Status (2)

Country Link
CN (1) CN107459617A (zh)
WO (1) WO2019010862A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108264754B (zh) * 2017-12-29 2021-01-01 美瑞新材料股份有限公司 一种具有密度梯度的热塑性聚氨酯弹性体发泡材料及其制备方法
CN111574673A (zh) * 2020-06-03 2020-08-25 湖南省普瑞达内装材料有限公司 一种环保型导热聚氨酯泡棉及其制备方法、及胶带
CN112816392A (zh) * 2021-03-11 2021-05-18 厦门厦钨新能源材料股份有限公司 晶态物质的闭孔孔隙率的分析测试方法
CN113861661A (zh) * 2021-09-28 2021-12-31 浙江联洋新材料股份有限公司 一种纤维增强高分子硬质泡沫及其生产工艺
CN117261374A (zh) * 2023-09-28 2023-12-22 洛阳双瑞橡塑科技有限公司 一种lng船用复合材料型层压木及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1834130A (zh) * 2005-03-04 2006-09-20 气体运输技术公司 玻璃纤维增强的聚氨酯/聚异氰脲酸酯泡沫塑料
CN101578312A (zh) * 2007-01-09 2009-11-11 巴斯夫欧洲公司 用于液化天然气罐绝热的水发泡硬质泡沫
CN101781395A (zh) * 2010-03-30 2010-07-21 上海交通大学 硬质聚氨酯绝热保温发泡材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104829812B (zh) * 2015-05-06 2017-10-17 上海交通大学 一种阻燃型硬质聚氨酯绝热泡沫材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1834130A (zh) * 2005-03-04 2006-09-20 气体运输技术公司 玻璃纤维增强的聚氨酯/聚异氰脲酸酯泡沫塑料
CN101578312A (zh) * 2007-01-09 2009-11-11 巴斯夫欧洲公司 用于液化天然气罐绝热的水发泡硬质泡沫
CN101781395A (zh) * 2010-03-30 2010-07-21 上海交通大学 硬质聚氨酯绝热保温发泡材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, JUNKUN: "Effects of the Composite Flame Retardant on the Properties of Rigid Polyurethane Foams Blown by HFC-365mfc", POLYURETHANE INDUSTRY, vol. 30, no. 4, 28 August 2015 (2015-08-28) *

Also Published As

Publication number Publication date
CN107459617A (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
WO2019010862A1 (zh) 液化天然气船用梯度增强绝热材料及其短流程制备方法
US20210371592A1 (en) Aerogel compositions and manufacturing thereof
Chang et al. Effects of crystallization on the high-temperature mechanical properties of a glass sealant for solid oxide fuel cell
Zhang et al. Development of a novel bio-inspired cement-based composite material to improve the fire resistance of engineering structures
CN112955313A (zh) 高温聚合物气凝胶复合材料
Liu et al. Fiber-reinforced alumina-carbon core-shell aerogel composite with heat-induced gradient structure for thermal protection up to 1800° C
EP1632538B1 (en) Cryogenetic insulation
Zhong et al. Experimental research on the dynamic compressive properties of lightweight slag based geopolymer
Zeng et al. Characterization of mechanical behavior and mechanism of hybrid fiber reinforced cementitious composites after exposure to high temperatures
CN108948324A (zh) 一种电热地暖保温板及其制备方法
Yazici et al. Development of a polymer based syntactic foam for high temperature applications
Gu et al. Experimental investigation into dynamic mechanical properties and explosion responses of polyurea elastomer
CN104403083A (zh) 高密度保冷管托用pir材料及其制备方法
JP2958285B2 (ja) 断熱性耐火物
KR100465384B1 (ko) 난연성 단열패널의 제조공정 시스템
Yang et al. Effect of high temperature on residual splitting strength of desert sand concrete
Černý et al. Rheological behaviour and thermal dilation effects of alumino-silicate adhesives intended for joining of high-temperature resistant sandwich structures
KR100832103B1 (ko) 흡음용 우레탄 폼 시이트의 제조방법
Ge et al. Preparation and properties of anti-insulation integrated phenolic resin composites
CN114634606B (zh) 一种岩棉-聚氨酯复合阻燃保温材料及其制备方法和应用
Zhang et al. Study on thermal and mechanical properties of EPDM insulation
TWI818816B (zh) 用於容納儲能設備之櫃體
JPH0416058Y2 (zh)
MINGXIANG Fire resistance of ultra-high strength concrete filled steel tubular columns
Lee et al. Physical and mechanical characteristics of polyurethane foam insulators blown by HFC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17917510

Country of ref document: EP

Kind code of ref document: A1