WO2019010743A1 - 3d打印离子体智能莫霍井钻井完井方法 - Google Patents

3d打印离子体智能莫霍井钻井完井方法 Download PDF

Info

Publication number
WO2019010743A1
WO2019010743A1 PCT/CN2017/096856 CN2017096856W WO2019010743A1 WO 2019010743 A1 WO2019010743 A1 WO 2019010743A1 CN 2017096856 W CN2017096856 W CN 2017096856W WO 2019010743 A1 WO2019010743 A1 WO 2019010743A1
Authority
WO
WIPO (PCT)
Prior art keywords
drilling
pipe
section
intelligent
cementing
Prior art date
Application number
PCT/CN2017/096856
Other languages
English (en)
French (fr)
Inventor
张发旺
张笑寒
Original Assignee
张发旺
张笑寒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张发旺, 张笑寒 filed Critical 张发旺
Publication of WO2019010743A1 publication Critical patent/WO2019010743A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/06Arrangements for treating drilling fluids outside the borehole
    • E21B21/063Arrangements for treating drilling fluids outside the borehole by separating components

Definitions

  • the invention relates to the field of additive manufacturing and deep earth drilling technology, and more particularly to a 3D printed ion body intelligent Moho well drilling and completion method.
  • Scientific drilling is a scientific project that has developed rapidly in recent decades. It can roughly divide the world's scientific drilling into two periods: scientific drilling before ICDP and scientific drilling after ICDP.
  • ICDP International Continental Scientific Drilling Program
  • DSDP Deep Sea Drilling Project
  • KTB German Federal Deep Drilling Program
  • Ocean Science Drilling The Integrated Ocean Drilling Program (IODP) is an international marine research program with the primary purpose of exploring seafloor sediments and rocks and recording earth history and structural information and monitoring the seabed environment. It builds on the success of the early Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP), which not only validate the seafloor expansion and plate tectonics, but also in paleoceanography, through drilling the ocean floor. High-resolution stratigraphy, marine geochemistry, global climate change, geological tectonic and lithospheric studies, deep-sea biosphere, submarine hydrothermal fluids, and seabed deposits have made remarkable achievements, enabling humans not only to understand the history of the earth and global processes. A revolutionary change, the understanding of earth science has risen from the initial isolated lithosphere to the Earth system science.
  • the total thermal energy inside the Earth is about 170 million times the global coal reserves.
  • the amount of heat lost from the Earth's interior through the earth's surface is equivalent to the heat generated by the burning of 100 billion barrels of oil.
  • the temperature of the core is 6000 ° C, and the temperature of the Moho surface (about 35 Km underground, about 5 Km underground) is about 900-1000 ° C.
  • the ground temperature increases with the increase of depth, and the average temperature increase rate of geothermal is about 3 °C / 100 meters. There are differences in geothermal warming rates in different regions.
  • geothermal resources have been highly valued by countries around the world as a national energy strategy.
  • Conventional high-temperature geothermal resources are limited by geological conditions and exist in dry hot rocks of 3-30Km underground.
  • dry heat can be developed in any region to a certain depth.
  • Rock, so dry hot rock is also known as a ubiquitous resource.
  • EGS Enhanced Geothermal System
  • the use of EGS (Enhanced Geothermal System) technology to develop dry hot rock geothermal resources is a forward-looking world-leading technology, designed to drill two 4,000 m (or deeper) deep wells hundreds of meters apart, using "fracturing" technology between the two wells Create connected artificial fractures, then inject cold water from one well, and produce high-temperature steam and hot water for geothermal power generation in the other well. Since 2011, France, Germany, Australia and the United States have successively implemented the pilot operation of the commercial operation of the megawatt EGS power station.
  • the EGS has solved the limitation of the conventional high-temperature geothermal resources.
  • the future of the 21st century geothermal energy in the United States will be completed in the United States in 2050. 100 million kilowatts of installed capacity. China has designed a 15% US indicator to achieve 15 million kilowatts of dry hot rock EGS power generation by 2050.
  • Geothermal energy can be exploited at any time due to weather, and the average utilization efficiency of geothermal power generation is 73%, which is 5.4 times that of solar photovoltaic power generation and 3.6 times that of wind power generation. Therefore, international energy experts generally believe that geothermal utilization is expected by 2100. It will account for 30% to 80% of the world's energy.
  • geothermal energy can be used in geothermal power generation, industrial drying, refrigeration and air conditioning, heating, medical bathing, greenhouses, aquaculture, and agricultural irrigation.
  • ultra-deep well drilling oil and gas field mining or geothermal energy mining
  • main equipment includes drill bit, manifold, drill pipe, solid control, mud and power. Due to the high underground temperature of the ultra-deep well, the mud performance is affected, the mechanical strength of the drill pipe is high, and the mechanical drilling speed is slow.
  • ultra high pressure high speed jet rock breaking technology rotary drilling technology, ion high temperature melting drilling technology, ion channel drilling technology, laser drilling technology and even nuclear drilling Technology, etc.
  • the above method can improve the rock breaking efficiency.
  • the object of the present invention is to provide a 3D printing ion body intelligent Moho well drilling method, which can greatly shorten the drilling cycle (design drilling speed, ie, well formation speed 30-150 m / h), and improve drilling depth (10000-50000 meters) Expand the diameter of the borehole (30-100cm), reduce drilling costs, extend the service life of the drill, reduce drilling accidents and risks, ensure the quality of drilling and well formation, and exploit underground thermal energy and scarce resources.
  • the present invention adopts the following technical solutions:
  • a 3D printed ionomer intelligent Moho well drilling and completion method includes the following steps: first constructing a drilling platform according to a selected drilling position according to geophysical exploration, then installing drilling equipment to start a drilling process; and the drilling equipment includes intelligent control Processing center, mud water cuttings and the like and its mixture pumping system, well pipe, intelligent well pipe lifting and fixing system, manifold system integration, downhole drilling and reaming cementing intelligent actuator, the drilling equipment also includes a ground 3D printer system Integrated, adiabatic and cooling protection system, the well pipe is a well pipe printed by a 3D printer, and the slurry and cuttings generated by the drilling are discharged by the mud water cuttings and the mixture pumping system thereof, and the well is drilled by the hole drilling and cementing intelligently.
  • Drilling is carried out; the entire drilling equipment system is protected by adiabatic and cooling protection system; ground 3D printer system integration, mud and water cuttings and its mixture pumping system, intelligent well pipe lifting and fixing system, manifold system integration and intelligent control processing center
  • the ground equipment is on the drilling platform; the manifold system integrates the lowermost end and the downhole drilling and reaming
  • the utility model can be connected with a common joint of the actuator body, and the public joint can be automatically disconnected from the underground drilling and reaming cementing intelligent actuator by electromagnetic control; the manifold system is integrated through the well pipe and the ground 3D printer system. Integrated, the upper end is supported by a sling bracket.
  • the entire 3D printing ion body intelligent Moho well drilling and completion method is operated by 5 3D printers, including: 3D printing nozzle I, 3D printing nozzle II, plugging system nozzle, ion body melting cementing, ion gun cementing, Ion-type reaming nozzles, ion drilling and high-pressure gas nozzles all have the characteristics of a general 3D printer; the intelligent well pipe lifting and fixing system is based on the drilling conditions of the down hole drilling and reaming intelligent actuator - drilling, plugging, Melt cementing, spray cementing, reaming and ground 3D printer system integrated printing, intelligently fixed and lifted the well pipe printed by 3D printer.
  • the 3D printer system integrates a nozzle system, a remelting section, a crystallization section and a cooling section of the mold system and a 3D printing melt injection system; when the well pipe structure is a single pipe, the inner tube of the mold, the inner layer of the inner tube mold, The inner tube mold outer layer, the inner tube mold and the mold beam are integrated, and the mold is two concentric cylindrical sleeves of different sizes; when the well tube structure is a casing, the inner tube of the mold is the well tube and the inner tube The inner layer of the tube mold, the outer layer of the inner tube mold, the inner tube mold, the inner tube and the outer tube, the outer tube mold inner layer, the outer tube mold outer layer, the outer tube of the sleeve and the mold beam are integrated, and the mold cavity is Two hollow concentric cylindrical sleeves of different sizes, the mold is four concentric cylindrical sleeves of different sizes, the upper end is integrally fixed by a beam, and the lower end is suspended; the inner tube mold and the outer tube mold are respectively located in the cooler The upper end
  • the cooler sleeve is composed of an inner wall of the sleeve, a cooling air chamber, an outer wall of the sleeve, a sealing cover on the cooler sleeve and a lower sealing cover; the inner and outer walls of the cooler have different holes of different sizes, corresponding to the crystallization section and the cooling section respectively.
  • the cooler is a one-way ultra-low temperature air-conditioning; the 3D printing melt-jet system includes: a 3D printing nozzle I and a 3D printing nozzle II, which are located above the mold system and can be integrated or separated, and can work simultaneously according to the workflow.
  • the metal liquid sprayed by the 3D printing nozzle I can be melted by means of ions, lasers, etc.;
  • the well pipe structure to be printed the well pipe is a single pipe or a casing, and one side has one or two, respectively, on both sides 2 or 4 printing nozzles, corresponding to the mold slot from the inside to the outside;
  • the printing nozzle II is a plasma torch, laser or electron beam generator method;
  • the well pipe structure to be printed the well pipe can be a single pipe or a sleeve Tube, one or two on one side, 2 or 4 print nozzles on both sides, corresponding to the mold slot from the inside out; when the print head I stops working, the metal liquid in the mold solidifies, print spray Head II is used to re-melt the already solidified metal section in the mold.
  • Muddy rock cuttings and other mixture pumping systems include: ground high vacuum suction, pumping and corresponding processing equipment, pumping manifold, underground suction hole and downhole drilling and reaming cementing intelligent actuator integrated suction device; pumping tube The sink is composed of pipes, corresponding joints and valves; and the suction device integrated with the underground drilling and reaming cementing intelligent actuator is composed of a bottom surface of the upper hollow cylinder and a side of the middle cylinder, that is, a vacuum insulation and a cooling layer.
  • the opening is integrally connected, and the rectangular suction pipe passes through the side of the cylindrical body of the casing.
  • the inhalation device is integrated with the entire drilling actuator.
  • the entire suction port is a hollow cylinder.
  • a wireless air pressure sensor, a humidity sensor, and a temperature sensor are installed at appropriate positions in the suction port and the inner cavity.
  • the intelligent well pipe lifting and fixing system comprises: a bracket, a balancing device and an automatic clamping alternate lifting device;
  • the bracket and the balancing device comprise a bracket base, a bracket beam and an automatic balancing device installed on the bracket base;
  • the automatic clamping alternate lifting device is two pairs Cross-type automatic clamping alternate lifting device, including bracket beam, cable, hydraulic or other power lifting boom, tension sensor, clamping device, clamping device hydraulic or other power sliding arm and its intelligent control system; hydraulic lifting The lower end of the boom is fixedly connected with the bracket beam, the upper end of the hydraulic lifting boom is connected with the upper end of the cable, the lower end of the cable is connected with the clamping device, and the two ends of the hydraulic pushing arm of the clamping device are respectively fixedly connected with the clamping device and the hydraulic lifting arm;
  • the clamping device comprises a nail body and a servo, a nail, a clamping device concave body, a clamping device protrusion, a clamping device fixture, an air bag, a pressure sensor
  • the body has a groove corresponding to the protrusion of the clamp at both ends of the concave portion of the clamping device and the protrusion of the clamping device, and the width of the groove body satisfies the fixture without the airbag being filled and filled with high pressure gas.
  • the displacement generated; in the clamped state of the clamping device, the innermost layer is the clamped steel pipe, which in turn is the clamp, the airbag, and the clamp device concave and convex body; after the clamp device is in conformity with the concave and convex body, under the action of the nail server
  • the concave-convex body of the clamping device can not be loosened;
  • the upper and lower ends of the clamping device have a hollow circle at the upper and lower ends;
  • the bottom of the concave-convex body of the clamping device has a hole for airbag ventilation
  • the pipe passes through, and the air bag is connected with a vent pipe and an air compressor, and the air bag is equipped with a pressure sensor;
  • the side of the convex portion of the protrusion of the clamping device has a nail hole corresponding to the nail;
  • the nail body and the server thereof The utility model is composed of a nail, a nail body and a servo; the nail body has a
  • the well pipe printed by the 3D printer includes: a well pipe sample tube which is printed by a 3D printer and integrated with an upper end of a down hole drilling and reaming cementing intelligent actuator, and a well pipe which is jet printed by the 3D printing nozzle I; When the tube is used, a hole is formed in the top side of the outer tube.
  • the manifold system integration includes: pumping system, plugging system, plasma working gas system, ultra-low temperature air-conditioning system, high-pressure gas system and its reel, servo, cable, signal transmission line, sling, etc. and its reel and its server
  • the manifold system integrates the outer protective layer and the winding equipment, the common joint, the plurality of changing tubes, and the wiring robot;
  • the integrated manifold of the manifold system includes: pumping pipes, cables, signal wires, plugging pipes, high-pressure air pipes Road, ion working gas pipeline, ultra-low temperature cooling pipeline, sling, manifold system integrated protective layer;
  • plugging manifold system includes: plugging 3D printer, plugging pipeline, plugging pipeline reel and its server, plugging Feeding equipment, plugging materials, pipe changeover robots, plugging pipe sinks are made of pipes and corresponding joints and valves that can withstand certain pressure, high temperature resistance and toughness and hardness.
  • the plugging and feeding equipment meets the sealing 3D.
  • the injection pressure of the printer nozzle has the characteristics of water-based or dry rapid solidification and certain hardness after the 3D plugged printer nozzle is ejected; the plasma working gas system, the high-pressure gas system and the ultra-low temperature air-conditioning system are all connected by the manifold and the pipeline.
  • Pipe and corresponding joints, valves; plasma working gas is argon, nitrogen, oxygen or air, or a mixed gas of at least two of them;
  • the high-pressure gas sprayed by the downhole nozzle of the high-pressure gas system can spray the rock layer which is just in a molten state into a powder, and the ultra-low temperature cold gas pipeline has a certain heat dissipation performance;
  • cable, signal transmission line, sling They are composed of their corresponding reels and servos and are synchronized with other manifold systems.
  • the cables are divided into AC cables and DC pulse cables.
  • the AC cables are connected to the wireless charging devices in the underground drilling and reaming intelligent actuators.
  • the pulse cable is directly connected with the ion generator of the drilling execution section and the ion generator of the molten cementing or reaming section in the well drilling and reaming cementing intelligent actuator; the signal transmission line and the down hole drilling and reaming cementing intelligence
  • the wireless transmission central processor in the actuator is connected; the sling is fixed to the end of the underground common joint, and there are common joints fixed to the sling at regular intervals, all the manifold systems and the materials, cables and signal transmission lines
  • the weight is all carried by the sling; the common joint is used to connect all pipes, cables, signal wires, slings, etc. in the well pipe drilled underground.
  • manifold system integrated outer protective layer and winding equipment including: manifold system integrated outer protective layer, 3D printer system integration above the closing device, coil winding server, winding turntable, silicon Aluminium acupuncture blanket coil; aluminum silicate needle-punched blanket coil is a coil with high temperature resistance, good toughness, high tensile strength and insulation.
  • the closing device is above the winding equipment, according to various pipes, cables and signals.
  • the manifold system is integrated in the inner section of the underground drilling and reaming cementing intelligent actuator, and is enclosed in the tubular pipeline inside the underground drilling and reaming cementing intelligent actuator.
  • the order of joints of all manifold systems on both sides of the reel is: when the pipeline is continued, first close the outlet valve such as feeding, air supply or pumping equipment, then close the drilling side valve, disconnect the pipeline; replace it with a new pipeline reel Then, connect the joints on both sides of the reel and open the valves on both sides of the reel, and finally open the valve for air supply, feeding and pumping equipment, and carry out normal drilling construction.
  • the above operations are all corresponding robot operations.
  • the underground borehole reaming cementing intelligent actuator includes: shell, drilling actuator ion or laser or electron beam or nucleus high temperature and high pressure drilling execution section, pumping system suction section, 3D printing plugging section, ion body melt spraying cementing Or reaming section, central processing unit, information acquisition and storage processing, power supply, signal line and various detection equipment assembly sections, well pipe foundation section, light source; housing by vacuum or insulation layer and cooling protection layer system, bottom tungsten alloy nozzle, The high-pressure air nozzle is constructed; the vacuum or the heat insulation layer and the cooling protection layer are closely connected and are integrated with the vertical cylindrical pipe inside the entire underground drilling and reaming cementing intelligent actuator, and the two are different in size.
  • the drum is composed of one body, and the upper end has a cover integrally connected with the same shape;
  • the cooling protection layer system is composed of a refrigeration device, a refrigerant supply pipe, a refrigerant return pipe, a cubic refrigerant cavity of the assembly section, a plugging section and melting.
  • the cavity is a low-temperature refrigerant that is introduced; above or inside the refrigerant chamber of the assembly section, the branch pipe and the refrigerant supply pipe are connected from the refrigerant supply pipe to the refrigerant cavity of the assembly section, and the refrigerant fills the entire cavity; the refrigerant cavity in the assembly section At the bottom of the refrigerant supply pipe, there is a branch pipe connecting the refrigerant return pipe and the bottom of the cubic refrigerant cavity; the supply pipe and the plugging section below the bottom of the refrigerant chamber of the assembly section and the top of the molten cementing or reaming section have a retractable and blocking section a refrigerant branch pipe communicating with the refrigerant chamber of the molten cementing or reaming section;
  • the corresponding holes are equipped with high temperature insulation sealing cover; various wireless sensors and panoramic cameras, various wireless sensors and panoramic views are installed on the side or top or bottom of each section of the housing.
  • the camera is installed in a tubular heat pipe connected to the refrigerant chamber.
  • the inner side of the heat pipe is sealed with the refrigerant chamber, and the outside of the heat pipe passes through the vacuum layer; the inner side of the heat pipe is slightly inclined upward;
  • the underground hole drilling and reaming intelligent actuator ion body Or high temperature and high pressure drilling execution sections such as laser or electron beam or nucleus include: ion generator system or laser or Nuclear or other beamlet system temperature, high-pressure air system, various wireless sensors and the panoramic camera;
  • the plasma generator system comprising: a plurality of plasma generator and its cooling system, DC pulse power supply, plasma work Gas, various sensors;
  • ion generator consists of heat pipe cathode, cylindrical anode, cathode anode insulated heat insulation bracket, nozzle, tangential ion working gas inlet pipe and passage, DC pulse power supply;
  • heat pipe cathode is composed of heat pipe condensation end,
  • the heat pipe is composed of a heat pipe, a heat pipe core and an evaporation end; the evaporation end of the heat pipe is made of
  • the heat pipe cathode condensation end has an insulating coating, the anode is cylindrical, the heat pipe cathode and anode are respectively fixed to the outer casing of the upper and lower cooling chambers through the insulating bracket, and the anode side has a small hole at a suitable position for the DC pulse power supply and Cathode connection;
  • the cooling source of the cooling system of the ion generator system adopts the suction system of the pumping system in the cooling protection system and the refrigerant of the cubic refrigerant chamber of the drilling execution section;
  • the bottom surface of the refrigerant chamber has several grooves, the heat pipe cathode The condensing end passes through the bottom of the drilling section of the drilling chamber and is immersed in the refrigerant in the groove, on the anode side or
  • the side has a pipe for introducing the working gas of the ion body, the ring-shaped cavity formed by the anode and the cathode of the heat pipe is an ion working gas channel, the
  • wireless panoramic camera wireless infrared range finder
  • pumping system suction section that is muddy rock cuttings and its mixture pumping system and downhole drilling and reaming cementing intelligent actuator integrated into the inhalation device
  • 3D printing blocking section by vacuum Insulation, cooling protection system, intelligent lifting or retreating system, intelligent rotating system, retractable cover, pipeline, retractable pipe, nozzle, plugged pipe wireless charging electric flow regulating valve, various wireless sensors, panoramic camera
  • 3D printing seal The vacuum insulation and cooling protection system of the blocking section is a relatively independent system, which is a hollow cylinder. It can be intelligently lifted and rotated, and its refrigerant supply pipe and refrigerant return pipe can be retracted. The length of the telescopic expansion is consistent with the lifting height and the rotating length.
  • the intelligent lifting system consists of a pumping section housing, a number of lifting or advancing wireless charging motors located in the casing of the pumping section or Wireless charging servo, lifting or advancing bracket, tray; wireless charging lifting or advancing motor or wireless charging servo is located on the bottom surface of the pumping section housing and fixed, the transmission is gear or hydraulic transmission; the lower end of the bracket and the lifting or advancing motor or servo The device is fixedly connected, the upper end of the bracket is connected with the tray, the middle of the bracket passes through the pumping section shell and can be moved up and down or the entire downhole drilling and reaming cementing intelligent actuator can move back and forth when horizontally placed; the intelligent rotating system is made up of a ring located on the plane of the tray a guide rail, a plurality of wireless charging drive motors or wireless charging servos on the bottom surface of the clogging section and a transmission mechanism thereof, a plurality of brackets at the lower end which are freely slidable at the upper end and the bottom surface of the cas
  • the lower retractable outer cover has a lower end fixedly connected to the periphery of the top surface of the pumping section, and the upper end is closely connected with the periphery of the lower bottom surface of the sealing section by a plurality of circumferentially sliding lifting rings;
  • the upper end of the upper retractable cover is closely connected with the clogging section and the upper surface of the upper surface of the fused spray coating cementing section, and is slidably connected by a plurality of sliding slings along the circumference, and the upper end is fixedly connected to the lower surface of the outer casing of the package section; the blocking section and the ion body
  • the melt-spraying cementing or reaming section shares a casing, and the plugging pipe in the plugging section and the top surface of the ion-melt-spraying cementing section casing to the lower surface of the assembly section is a retractable high-temperature resistant and high-pressure pipe;
  • the appropriate position of the inner horizontal sealing pipe is equipped with a wireless charging electric
  • melt-spraying cementing or reaming section consisting of vacuum insulation, cooling protection system, intelligent lifting or advancing system, intelligent rotating system, retractable outer cover, several ion generator systems or ion spray systems, various types of wireless sensors, panoramic cameras;
  • the melt-spraying cementing or reaming section is closely integrated with the plugging section and shares an adiabatic cooling protection system, intelligent lifting or advancing system, intelligent rotating system, and retractable outer cover.
  • the cold source is the plugging section and the ion melt spraying.
  • the refrigerant in the cooling chamber at the top of the cementing or reaming section is a common ion spray gun when it is an ion spray system; the ion generator or the ion spray gun is a circular arc shape, and the upper end and the ion body are melted and sprayed to cement or expand.
  • the hole section is fixedly connected to the top surface of the outer casing of the plugging section, and the lower end of the nozzle is horizontally passed through the outer casing and sealed and fixed to the outer casing.
  • a plurality of nozzles form a circular nozzle line; the gap between the ion working gas pipeline and the DC pulse power line under the assembly section outer casing and the ion melt-melting cementing section outer casing is scalable, and the retractable length is satisfied.
  • the clogging section and the ion-fusion melt-spraying cementing section up and down, the forward and reverse rotation of 180 degrees;
  • information acquisition and storage processing, power supply, signal line and various detection equipment assembly sections include: cavity composed of the outer casing, information collection and storage The processor and the transmission signal line, the power supply and the wireless charging device thereof, and the various detecting devices;
  • the cylindrical cavity formed by the outer casing has a plurality of suitable holes on the outer side thereof for mounting various components and devices, and There is a corresponding insulated sealing cover;
  • the basic section of the well pipe includes: a common joint and a basic well pipe integrated with the underground hole expanding and cementing intelligent actuator;
  • the power line and the transmission line are connected with the common joint through the reserved cylindrical hole;
  • the upper joint connected with the common joint is a joint that can be automatically pulled out by electromagnetic control;
  • the basic well pipe is a smart actuator for drilling and reaming with the down hole
  • the well pipe, the lower part of the basic well pipe is directly connected with the upper
  • N round holes or square holes there are N round holes or square holes in the position; when the well pipe is a casing, N round holes or square holes are opened at the upper end of the inner pipe and the upper end of the underground drilling intelligent actuator; and the lower end of the inner pipe outer pipe Both are connected with the upper end of the underground drilling and reaming cementing intelligent actuator and sealed, and the cavity between the inner and outer tubes communicates with the inner tube through the bottom hole of the inner tube, and the outer side of the outer tube is provided with a hole;
  • Intelligent control processing center includes: ground 3D printer system integration, cooling protection system, muddy rock cuttings, etc. and its mixture pumping system, wisdom Intelligent control system capable of well pipe lifting and fixing system, manifold system integration, underground drilling and hole expanding cementing intelligent actuator; each intelligent control system has its own independent control liquid crystal display system and is controlled and displayed by the central intelligent control center .
  • All underground equipment, functional sections, and manifolds are equipped with wireless sensors and wireless panoramic cameras.
  • the ground equipment, functional sections, and manifolds are equipped with wireless or wired sensors and panoramic cameras with corresponding functions.
  • the information is transmitted to the central intelligent control center; the components such as the sensor and the camera are installed in the tubular heat pipe and sealed, and the tubular heat pipe is composed of the condensation end, the outer side of the heat pipe, the inner side of the heat pipe, the heat pipe core, and the heat pipe evaporation end;
  • the tubular heat pipe passes through the vacuum insulation layer to reach the inner side of the cooling cavity and is sealed;
  • a hollow ring is arranged on the outer side of the heat pipe type camera, the ring cross section is square, and the inner side surface of the ring has a plurality of small deflation tilting toward the mirror surface of the camera.
  • the outer side of the ring is connected to the ventilating small tube I and the ventilating small tube II.
  • a micro wireless charging, a high pressure normally closed electromagnetic valve and an identification sensor, an automatic control module, a ventilating small tube II and a high pressure gas are installed between the two ventilating small tubes. Pipeline connectivity.
  • the drilling process is to place the underground drilling reaming and cementing intelligent actuator in the drilling position, and the lower end joint of the manifold system is connected, and the upper end of the basic well pipe of the drilling reaming and cementing intelligent actuator is inserted into the mold.
  • the top of the melting section is clamped and fixed by the intelligent well pipe lifting and fixing system; the 3D printing nozzle II is opened, and the metal section at the top of the basic well pipe is remelted.
  • the 3D printing nozzle II is automatically closed, and the 3D printing is started.
  • the nozzle I performs metal liquid injection, that is, printing the well pipe; at the same time, the mold cooling system and the downhole cooling system, the downhole drilling and reaming and cementing intelligent actuator are automatically opened for drilling, manifold system integration, mudstone cuttings, etc.
  • the pumping system is also automatically opened while drilling; with drilling, the intelligent well pipe lifting and fixing system alternately lifts and clamps the well pipe; when drilling a certain depth, it is necessary to continue connecting various pipes, cables, signal wires and slings.
  • the continuation robot automatically switches, and the water vapor, soil debris and the like extracted by the pumping system and the mixture thereof are harmlessly treated and cleaned by the ground processing equipment.
  • Vertical or horizontal drilling is carried out in the high temperature of 300-1000 °C in the deep earth.
  • the underground drilling and reaming intelligent actuator is placed horizontally, and the hole drilling and cementing intelligent actuator is drilled in the well.
  • the inner cavity of the assembly section and the inner cavity above the pumping section are provided with a driving motor or a servo and a transmission mechanism and are sealed and insulated, and the traveling mode is forward or backward by wheel or crawler or walking.
  • the drilling platform When drilling in the ocean and deep seabed, the drilling platform is an offshore drilling platform. On the offshore drilling platform, according to the diameter of the borehole, a casing with a certain depth below the sea floor is first placed, and then the drilling is started according to the land method. .
  • the present invention does not have a drill pipe in the true sense, and the steel pipe of the well pipe or the bare hole drilled by the 3D printer is the drill pipe.
  • the drill rods of traditional mechanical drilling are subjected to a large torque, which requires high requirements on the drill pipe.
  • the drill pipe vibrates, and the surrounding rock collapses easily, and the drill hole is easily inclined. Also need to prevent stuck drills.
  • the invention adopts mud water cuttings and the like and its mixture pumping system, and the mud water and cuttings generated by the drilling are pumped to the ground through high negative pressure.
  • the conventional drilling method uses a mud circulation method to transport cuttings to the ground.
  • it is an ultra-deep well or Mohoo well, when the underground temperature is 300-1000 °C, the physical and chemical properties of the mud will change and cannot be recycled. At the same time, it needs to be spray-proof, leak-proof and collapse-proof.
  • the invention adopts ion (3000-30000 ° C) or high temperature and high pressure gas (above 40 Mp) combined with rock breaking technology such as laser or electron beam, the drilling speed is fast and the efficiency is high, and the designed drilling speed is 50-150 m/h.
  • the traditional drilling method uses mechanical drilling or mechanical, high-pressure water jet combined drilling and drilling, and the overall rock-breaking efficiency is low. It is also proposed to use ion or laser or electron beam or nuclear rock breaking, because there is no corresponding supporting technology such as advanced The ion cooling technology has no commercial application in practice.
  • the invention adopts ion body (3000-30000 ° C) melt cementing and ion spray coating cementing, high cementing efficiency, saving drilling cost, safety and reliability.
  • the traditional cementing method mostly uses casing, which increases the cost and the efficiency is low.
  • the invention adopts the ion reaming technology, and the diameter of the reaming hole can be freely 30-100 cm.
  • the method of increasing the drill bit is used to ream the hole, the diameter of the reaming is limited, and the drilling cycle and cost are greatly increased.
  • the invention adopts a plugging system and ion spraying to block aquifers and cracks, improve drilling speed and protect water resources.
  • the traditional drilling method also needs to prevent leakage and collapse.
  • the invention adopts the drilling reaming cementing intelligent actuator technology, can automatically identify the lithology, and intelligently adjust the high pressure gas injection pressure and the ion body temperature according to the melting points of various rock layers to reduce the drilling cost.
  • the underground borehole reaming cementing intelligent actuator of the invention adopts the heat insulation and cooling technology, and all the electronic components, the motor and the like which are not resistant to high temperature are in the heat insulating and cooling protection cavity. Therefore, the underground borehole reaming and cementing intelligent actuator can work normally under the high temperature environment of 300-1000 °C, so the drilling can reach the 10,000-40000 m Moho interface (ie Moho well). Traditional drilling methods cannot be equipped with cooling protection.
  • Figure 1 is a system diagram of the present invention.
  • Figure 2 is a structural view of the mold.
  • Figure 3 is a cross-sectional view of a single tube mold.
  • Figure 4 is a top cross-sectional view of the casing mold.
  • Figure 5 is a cross-sectional view of the casing mold.
  • Figure 6 is a structural view of a casing mold and a cooler.
  • Figure 7 is a cross-sectional view of the cooler hollow cylindrical sleeve.
  • Figure 8 is an external view of the cooler sleeve.
  • Figure 9 is a structural diagram of a mold system and a 3D print head.
  • Figure 10 is a schematic diagram of the 3D printing operation of a single tube mold.
  • Figure 11 is a schematic diagram of the 3D printing operation of the casing mold.
  • Figure 12 is a schematic diagram of the 3D printing remelting operation of a single tube mold.
  • Figure 13 is a schematic diagram of the 3D printing remelting operation of the casing mold.
  • Fig. 14 is a structural view of a muddy rock chip and the like and a mixture pumping system thereof.
  • Figure 15 is a cross-sectional view of the inhalation device integrated with the underground borehole reaming cementing smart actuator.
  • Figure 16 is a cross-sectional view of the inhalation device integrated with the underground borehole reaming cementing smart actuator.
  • Figure 17 is a schematic view showing the side opening of the pumping pipe.
  • Figure 18 is a plan view of the drilling stand base.
  • Figure 19 is a cross-sectional view of the axis of the intelligent automatic clamping and alternating lifting device.
  • Figure 20 is a cross-sectional view of the clamping device in a clamped state.
  • Figure 21 is a cross-sectional view of the lower end of the clamping device in a clamped state.
  • Figure 22 is a side elevational view of the projection of the clamping device.
  • Figure 23 is a structural view of a through nail body.
  • Figure 24 is a perspective view of a through body.
  • Figure 25 is a cross-sectional view of a single tube printed by a 3D printer.
  • Figure 26 is a cross-sectional view of a sleeve printed by a 3D printer.
  • Figure 27 is an integrated cross-sectional view of the manifold system.
  • Figure 28 is a diagram of the integrated system of the manifold system.
  • Figure 29 is a cross-sectional view of the integrated manifold of the manifold system.
  • Figure 30 is a schematic diagram of the pipe continuation.
  • Figure 31 is a cross-sectional view of the integrated manifold of the manifold system.
  • Figure 32 is a schematic diagram of the integrated protective layer winding of the manifold system.
  • Figure 33 is a structural diagram of an underground borehole reaming cementing intelligent actuator.
  • Figure 34 is a system diagram of an underground borehole reaming cementing intelligent actuator system.
  • Figure 35 is a schematic diagram of the cooling protection layer of the underground borehole reaming cementing intelligent actuator.
  • Figure 36 is a schematic diagram of a heat pipe type cathode ion generator.
  • Figure 37 is a structural view of a heat pipe type ion cathode.
  • Figure 38 is a cross-sectional view showing the structure of an ion body and a high pressure gas nozzle.
  • Figure 39 is a side view of a single tube of a well pipe sample pipe.
  • Figure 40 is a cross-sectional view of the well tube sample tube sleeve.
  • Figure 41 shows the installation of various sensors and cameras.
  • Figure 42 is a schematic view of a cylindrical heat pipe.
  • Figure 43 is a schematic view showing the installation of a heat pipe, a camera, and a self-cleaning device.
  • Figure 44 is a schematic diagram of the camera self-cleaning device.
  • 3D Printing Ion Body Intelligent Moho Well Drilling and Completion Method includes the following steps and equipment: first construct a drilling platform 7 according to the selected drilling location according to geological exploration, then install drilling equipment to start the drilling process.
  • the drilling equipment is integrated by the ground 3D printer system, muddy rock cuttings and other mixture pumping system 2, intelligent well pipe lifting and fixing system 3, 3D printer printed well pipe 4, manifold system integration 5, underground Drilling and reaming cementing intelligent actuator 6, drilling platform 7, intelligent control processing center 8, and so on.
  • the drilling equipment passes through the geotechnical layer 10 to form a well wall 9.
  • Ground 3D printer system integration 1 mud and water cuttings and its mixture pumping system 2, intelligent well pipe lifting and fixing system 3, manifold system integration 5 and intelligent control processing center 8 ground equipment are all on the drilling platform 7.
  • the downhole drilling and reaming cementing intelligent actuator 6 is located at the lowest part of the well, and the upper part of the underground drilling and reaming cementing intelligent actuator 6 is a well pipe sample tube connected with it, and the upper end of the reducting pipe sample pipe is adopted.
  • the 3D printer prints or otherwise forms the well pipe 4, and the well pipe 4 and the well pipe sample pipe are connected to be printed by the remelting 3D printer, maintaining the metallurgical performance and strength, no weld seam, and no corrosion.
  • the lowermost end of the manifold system integration 5 is connected to the common joint of the body of the downhole drilling and reaming cementing intelligent actuator 6, which has the function of integrating the manifold system 5 and the downhole drilling and reaming by electromagnetic control or the like.
  • the intelligent actuator 6 is automatically disconnected, and when the drilling is completed, the manifold system integration 5 can be reclaimed for secondary use.
  • the underground drilling and reaming cementing intelligent actuator 6 is not retracted after drilling, and is used for one-time use, except for bare wells.
  • the manifold system integrates 5 wells 4 and 3D printer system integration 1 through 3D printer printing or other methods, the upper end of which is supported by a sling suspension.
  • the intelligent well pipe lifting and fixing system 3 is based on the drilling conditions of the underground drilling and reaming cementing intelligent actuator 6 - drilling, plugging, melting cementing, spraying cementing, reaming and ground 3D printer system integration 1 printing situation,
  • the well tube 4 printed by the 3D printer performs intelligent fixed lifting.
  • 3D printing nozzle I 3D printing nozzle II
  • plugging system nozzle ion body melting cementing, ion gun cementing , ion reaming nozzle, ion drilling nozzle and high pressure gas nozzle.
  • All 3D printer parts have the characteristics of general 3D printers, electronic parts: system board, main board, motor drive board, temperature control board; mechanical parts: motor, bracket, synchronization device, etc.; software part: firmware, host computer program, etc.
  • the 3D printer system integration includes: a mold system and a 3D printing melt injection system.
  • the mold system includes: nozzle segments 1-1, remelting segments 1-2, crystallization segments 1-3, cooling segments 1-4, and a cooling system.
  • the mold is composed of the inner pipe of the mold, that is, the well pipe cavity 1-5, the inner pipe mold inner layer 1-6, the inner pipe mold outer layer 7-1, the inner pipe.
  • Mold 1-8 the mold beam is integrated with 1-12.
  • the mold is two concentric cylinder sleeves of different sizes. The upper end is integrated and fixed by the beam, and the lower end is suspended. As shown in Fig.
  • the mold when the well pipe structure is a casing, the mold is composed of the inner pipe of the mold, that is, the well pipe cavity 1-5, the inner pipe mold inner layer 1-6, the inner pipe mold outer layer 7-1, the inner pipe. Mold 1-8, inner tube and outer tube sandwich 1-9 (cylinder cavity), outer tube mold inner layer 1-10, outer tube mold outer layer 1-11, casing outer tube 1-28 and mold beam integration
  • the composition of 1-12, the mold cavity is two hollow concentric cylinder sleeves of different sizes, the mold is four concentric cylinder sleeves of different sizes, the upper end is integrated and fixed by the beam, and the lower end is suspended.
  • the inner tube mold 1-8 is located in the interlayer of the cooler sleeves I1-4 and the cooler sleeves II1-5, and the outer tube molds 1-28 are located in the cooler sleeves II1-15 and In the interlayer of the cooler sleeves III1-16, the upper end is fixed by the cold air ducts 1-13 in the beam integration 1-12, and the lower end is suspended.
  • a number of high temperature resistant wireless temperature sensors 1-23 are mounted at appropriate locations in the mold, cooler sleeve, and beam assembly 1-12.
  • the beam integration 1-12 is used to secure the mold, the cooler and the pipe 1-13 into the cold air.
  • the beam integration 1-12 is a common beam of the mold and the cooler, and there are pipes 1-13 for introducing ultra-low temperature air inside. As shown in Fig.
  • the cooler sleeve is composed of the inner wall of the sleeve 1-17, the cooling air chamber 1-18, the outer wall of the sleeve 1-19, the sealing cover 1-20 of the cooler sleeve and the lower sealing cover. .
  • the cooler is unidirectionally introduced into the ultra-low temperature air (air). While ensuring the process cooling, the cooling gas is no longer recovered and is directly discharged into the atmosphere to reduce the ambient temperature.
  • the entire mold system can be made from metal powder or other ultra-high temperature resistant materials by laser melting or electron beam melting or other 3D printing or other methods.
  • the mold performance is not affected by the temperature of the molten steel, and the inner surface of the mold is smooth, which facilitates the smooth decline of the steel pipe after the molten steel and the condensation forming.
  • the cooling equipment of the cooler is an ultra-low temperature refrigeration equipment, and the cooling capacity satisfies the metallurgical performance cooling and environmental cooling requirements of the 3D printing well pipe.
  • the 3D printing melt-jet system comprises: a 3D printing nozzle I1-25 and a 3D printing nozzle II1-26, which are located above the mold system and can be integrated or separated according to the workflow II. They can work at the same time and can automatically switch to work alone.
  • the metal liquid sprayed by the 3D printing nozzle 1 can be a high temperature electric furnace or a coking coal furnace or Oxygen acetylene furnace or plasma arc furnace, laser, electron beam generator I1-24, etc. are melted.
  • the well pipe can be a single pipe or a casing, one or two on one side, and two or four printing nozzles on both sides, corresponding to the mold groove from the inside to the outside.
  • the material for printing the well pipe is carbon steel or alloy steel powder or wire.
  • the 3D print head II is composed of a plasma, a laser, an electron beam generator II1-27, and a print head II1-26.
  • the well pipe can be a single pipe or a casing, one or two on one side, and 4 or 6 printing nozzles on both sides, corresponding to the mold groove from the inside to the outside.
  • the print head I stops working, the metal liquid in the mold solidifies.
  • the print head II provides an ultra-high temperature heat source for remelting the solidified metal section in the mold.
  • the muddy rock cuttings and the like and its mixture pumping system include: ground high vacuum suction, pumping and corresponding processing equipment 2-3, pumping The delivery pipe 2-2, the inhalation device 2-1 integrated with the underground hole drilling and reaming cementing intelligent actuator.
  • the ground negative pressure pumping device and corresponding processing equipment have a sufficiently high negative pressure to pump water (steam), soil, cuttings and mixtures thereof from the bottom of the 2000-400 m borehole to the ground, and Water, cuttings dust, high temperature mixed gas, and mixture are treated harmlessly.
  • Pumping manifold 2-4 high temperature is not lower than 1200 °C.
  • the pipe is composed of pipes and corresponding joints, valves, etc., which are made of materials which are capable of withstanding the corresponding pressure and having toughness and hardness, which are determined by their physical and chemical properties, and which are sealed and connected in a conventional manner.
  • the suction device integrated with the underground borehole reaming and cementing intelligent actuator in the underground borehole is composed of the bottom surface 2-10 of the upper hollow cylinder which is connected, and the side of the middle cylinder is vacuum insulated.
  • the suction port 2-9 and its enclosed hollow cylinder suction chamber 2-6 are composed.
  • the outer side of the rectangular parallelepiped suction pipe is a rectangular suction port 2-9, and the inner rectangular opening is integrally connected with the pumping pipe semi-cylindrical opening 2-16, and the rectangular parallelepiped suction pipe passes through the side of the outer cylinder.
  • 2-15 is the side edge of the side opening of the pumping pipe.
  • the inhalation device 2-1 is integrated with the entire downhole borehole reaming cementing intelligent actuator.
  • the entire suction port is a hollow cylinder.
  • Sensors such as a wireless air pressure sensor 2-12, a wireless humidity sensor 2-13, and a wireless temperature sensor 2-14 are mounted in the suction port and the inner cavity.
  • the intelligent well pipe lifting and fixing system comprises: a bracket and a balance device and an automatic clamping alternate lifting device.
  • the bracket and the balancing device include: a bracket base 3-1, a bracket beam 3-2, and an automatic balancing device 3-3 mounted on the bracket base, which are fixed by wire bonding or welding. As shown in Fig.
  • the automatic clamping alternate lifting device is a pair of cross-type automatic clamping alternate lifting devices, including: bracket beam 3-2, cable 3-4, hydraulic or other power lifting boom 3-5 , tension sensor 3-6, clamping device 3-7, clamping device hydraulic or other power sliding arm 3-8 and its intelligent control system.
  • the lower end of the hydraulic lifting boom 3-5 is fixedly connected with the bracket beam 3-2
  • the upper end of the hydraulic lifting boom 3-5 is connected with the upper end of the cable 3-4
  • the lower end of the cable 3-4 is connected with the clamping device 3-7
  • the clamp The two ends of the hydraulic device sliding arm 3-8 are respectively fixedly connected with the clamping device 3-7 and the hydraulic lifting arm 3-5.
  • the clamping device comprises: a nail body and its servo 3-9, a nail 3-10, a clamping device concave body 3-11, a clamping device protrusion 3-12, clamping Device fixture 3-13, airbag 3-14, pressure sensor, and the like.
  • the clamping device concave body 3-11, the clamping device convex body 3-12 have a cubic shape, the middle side is a semi-cylindrical groove, and the upper and lower sides are covered.
  • there are two protrusions 3-15 of different sizes at both ends of the clamp which are corresponding to the clamp protrusions at the concave ends of the clamping device and the protrusions of the clamping device.
  • the groove 3-16 the width of the groove body, satisfies the displacement generated by the clamp when the airbag is not inflated and filled with high pressure gas.
  • the innermost layer is the clamped well pipe 4, which in turn is a clamp, an airbag, and a clamp device asperity.
  • the nail penetrates under the action of the nail servo, and the concave and convex parts of the clamping device cannot be loosened after the airbag is filled with the high pressure gas.
  • the upper and lower ends of the clamping device have a hollow circle when they are anastomosed.
  • the bottom of the concave and convex body of the clamping device has a hole 3-20 so that the air bag ventilation pipe 3-22 passes through, and the air pipe is connected with the air pipe 3-22 and the air compressor 3-21, and the air bag is equipped with a pressure sensor or the like.
  • the side surface of the convex portion of the protrusion of the clamping device has a nail hole 3-17 corresponding to the through nail.
  • the nail body and its server 3-9 are composed of a nail 3-10, a nail body 3-18, and a server 3-19; there are several distributions on the nail body 3-18.
  • the servo power can be a servo motor or an automatic hydraulic transmission.
  • the entire gravitational force of the well pipe is carried by the bottom of the clamping device in the clamped state.
  • the intelligent control system prints the well pipe according to the drilling and reaming intelligent actuator drilling in the well and the 3D printer prints the well pipe.
  • the device descends with the well tubular and, when lowered to the predetermined position, the other pair of clamping devices rises to a predetermined height and simultaneously clamps the well tubular while the clamping device releases the well tubular and begins to rise. This alternately raises and lowers the well pipe.
  • the well pipe printed by the 3D printer includes: a well pipe sample tube printed by a 3D printer and integrated with an upper end of the downhole drilling intelligent actuator, and a well pipe sprayed by the 3D printing nozzle I.
  • the well tubular sample tube is as described with the drilling actuator.
  • the metal liquid sprayed by the 3D printing head I can be a high temperature electric furnace or a coking coal furnace or an oxygen acetylene furnace or a plasma arc furnace, a laser, an electron beam generator 1-24, and the like.
  • the well pipe can be a single pipe or a casing according to the designed well structure. When the well pipe is a casing, the outer side of the outer pipe is provided with a hole 4-2.
  • the manifold system integration includes: sludge water chip and other mixture pumping system 2, plugging system, plasma working gas system, ultra-low temperature air system, high pressure gas (air) system and other manifold system and its reel and server; Cables, signal transmission lines, slings, etc. and their reels and their servers; manifold systems integrate external protective layers and winding equipment, common joints, several changeover tubes, wiring robots, etc.
  • the integrated manifold of the manifold system includes: pumping manifold 2-2, cable, signal line, etc. 5-1, plugging manifold 5.2, high-pressure air duct 3-5, ion working gas Pipe 5-4, ultra-low temperature cooling pipe 5-5, ion spray powder pipe 5-6, manifold system integrated protective layer 5-7, sling 5-8, etc., they are tightly protected according to their respective diameters and shapes Packaged together with the sling centered.
  • the pumping system manifold as described in the slurry water cuttings and the mixture pumping system thereof, includes a pumping pipe reel 5-13, a pumping pipe reel server 5-14, and a pumping device 5-15. As shown in FIG.
  • the plugging manifold system includes: blocking 3D printer 6-3, plugging the manifold 5-2, plugging the coil reel 5-16 and its server 5-17, and blocking the feeding device 5 —18. Plugging materials, pipe replacement, and robots.
  • the plugged 3D printer is described in the plugging section of the drilling actuator.
  • Blocking The manifold 5.2 consists of a pipe made of a material capable of withstanding a certain pressure, high temperature resistance and toughness and hardness, and corresponding joints, valves, etc., which are sealed in a conventional manner.
  • the plugging and feeding device is a common feeding device and is fed with a certain pressure to meet the injection pressure of the nozzle of the 3D printer.
  • the plugging material has the characteristics of rapid solidification and a certain hardness after being sprayed out of the nozzle of the 3D plugging printer, and is mainly used for sealing cracks of the aquifer and filling the depression of the rock soil, so as not to affect the normal. Drilling progress and well formation speed. As shown in FIG.
  • the plasma working gas system, the high-pressure gas system, and the ultra-low temperature air-conditioning system are all composed of a manifold, a pipe reel, a servo, a gas supply device, a gas-making or a gas storage device; Chemically determined to be able to withstand the corresponding pressure, resistance to the corresponding high temperature or ultra-low temperature, and the toughness, hardness of the material manufacturing pipeline and the corresponding joints, valves, etc., they are sealed in a conventional manner.
  • the plasma working gas may be argon gas, nitrogen gas, oxygen gas, air, or the like, and a mixed gas thereof, and the plasma working gas system includes an acetylene pipe reel 5-22, an acetylene pipe reel server 5-23, Acetylene storage tank or acetylene bottle 5-24, oxygen pipeline reel 5-28, oxygen pipeline reel servo 5-29, oxygen storage tank or oxygen cylinder 5-30.
  • the high-pressure gas system includes a high-pressure air pipe reel 5-25, a high-pressure air pipe reel servo 5-26, an air compressor 5-27; and a high-pressure gas ejected from the downhole nozzle can automatically be based on lithology, hardness Or the melting point adjusts the injection pressure to spray the rock layer just in the molten state into a powder.
  • the ultra-low temperature air-conditioning system comprises ultra-low temperature pipeline reel 5-19, ultra-low temperature pipeline reel servo 5-20, ultra-low temperature refrigeration equipment or cold source 5-21; the cooling medium is non-toxic, harmless and environmentally friendly.
  • the medium with high boiling point and specific heat capacity; the ultra-low temperature and cooling capacity released by the ultra-low temperature air-conditioning system is sufficient to meet the underground hole drilling and cementing intelligent actuator and its components (plasma heat pipe cathode and anode cooling, probe, sensor, camera, etc.), line
  • the design drilling task is completed without affecting the work due to high temperature or shortening its service life.
  • the ultra-low temperature air-conditioning pipeline should have a certain heat-dissipating performance, and the amount of cold emitted can be sufficient in the high-temperature environment of the ultra-deep well without affecting the integrated normal operation of the manifold system.
  • all the above-mentioned pipe reels and their servos are configured according to the respective diameters, pressures, functions and the like of the pipes to ensure that the various pipes are simultaneously descended with the drilling speed.
  • the cable, signal transmission line, sling 5-8, etc. are composed of their corresponding reels and servers and are synchronized with other manifold systems.
  • the cable and signal transmission line include cable signal transmission cable reel 5-11, cable signal transmission cable reel servo 5-12, cable is divided into AC and DC pulse cable, AC cable and underground drill hole reaming cementing intelligent actuator wireless
  • the charging devices 6-48 are connected.
  • the DC pulse cable is directly connected to the ion generator of the drilling section and the ion generator of the molten cementing or reaming section in the downhole drilling and reaming intelligent actuator.
  • the signal transmission line is connected to a wireless transmission central processor in the downhole drilling and reaming intelligent actuator.
  • the slings 5-8 are fixedly connected with the most common joints at the bottom of the well. At a certain distance, there are common joints fixed with the slings. All the manifold systems and the materials, cables and signal transmission lines are all carried by the slings to avoid The manifold system and other fractures ensure the integrated safety of the manifold system.
  • the common joint body 5-0 is a common joint for connecting all pipes, cables, signal wires, slings, etc. in the well pipe printed by the 3D printer in the underground borehole, and all the joints can be disassembled.
  • a number of changeover pipes, wiring robots, etc. mean that the disassembly and renewal of various types of pipes, cables, signal lines, and slings are operated by corresponding specialized robots.
  • each pipe or cable, signal line, and sling has a corresponding valve or joint 5-35 at both ends.
  • the order of joints of all manifold systems on both sides of the reel is: when the pipeline is continued, first close the outlet valve such as feeding, air supply or pumping equipment, then close the drilling side valve, disconnect the pipeline; replace it with a new pipeline reel , connect the joints on both sides of the reel in turn and open the valves on both sides of the reel, and finally open the valve for air supply, feeding and pumping equipment for normal drilling construction.
  • the connection method of the common connector is the same.
  • the above operations are all corresponding robot operations.
  • the manifold system integrates the outer protective layer and the winding equipment and assembly including: the manifold system integrated outer protective layer 5-7, the 3D printer system integrated upper closing device 5-31, the coil winding device 5-32 , winding turntable 5-33, aluminum silicate acupuncture blanket coil material 5-34 and so on.
  • Materials such as aluminum silicate needle punching blankets are coils with high temperature resistance, good toughness, high tensile strength, heat insulation and insulation.
  • the mouthpiece refers to the above-mentioned winding device, according to various pipes, cables, signal lines, slings, etc. according to their respective orientation and shape, with the drilling, the integration of the manifold system is collected and collected. Tight device.
  • the well pipe and manifold system printed by the 3D printer is integrated in the center of the turntable.
  • the turntable is rotated by the automatic intelligent turntable servo, and the aluminum silicate acupuncture is under the action of the coil winding servo.
  • the coils and other coils are automatically integrated with the speed-winding manifold system, and are tightened and tightly packed to become an integrated protective layer of the manifold system.
  • the manifold system Since the entire manifold system is integrated into pressure, strip and live working, especially the plugging system and the pumping system, the diameter of the pipeline is large, and the resistance along the path is also large through the reel. Therefore, its power equipment and pipelines are The quality requirements of joints and valves are very high, and the corresponding requirements must be met. High-pressure gas systems also have high requirements for the quality of their manifolds to ensure they can withstand the corresponding pressures.
  • the manifold system is integrated into the internal section of the drilling actuator and is enclosed within a tubular conduit inside the drilling actuator.
  • the plugging system only plays a corresponding role in the aquifer. When it is dry hot rock (automatic identification of the borehole drilling and reaming intelligent actuator), the manifold of the plugging system can be cancelled.
  • the underground borehole reaming cementing intelligent actuator comprises: a casing, a drilling actuator ion or a laser or electron beam or a nuclear high temperature and high pressure drilling execution section 6-1, and a pumping system inhalation device 2 —1,3D printing blocking section 6—3, ionic melt-spraying cementing and reaming section 6—4, central processing unit, information acquisition and storage processing, power supply, signal line and various detection equipment assembly sections 6-5, well Pipe base section, light source, etc.
  • the outer casing is composed of a vacuum or heat insulating layer 6-32 and a cooling protective layer 6-31, a bottom tungsten alloy nozzle 6-25, and a high pressure air nozzle.
  • the vacuum or heat insulating layer 6-32 and the cooling protective layer 6-31 are closely connected and integrated with the vertical cylindrical pipe inside the drilling actuator, and the two are connected by a plurality of drums of different sizes.
  • the composition has a cover that is connected to the upper end and has the same shape. As shown in Fig.
  • the cooling protective layer system 6-31 is composed of a refrigerating device, a refrigerant supply pipe 6-6, a refrigerant return pipe 6-7, a cylindrical refrigerant chamber 6-9 of the assembly section, a plugging section and a molten cementing well. Or the cylindrical refrigerant chamber 6-12 of the reaming section, the suction section of the pumping system and the cylindrical refrigerant chamber 6-14 of the drilling section and its inlet and outlet nozzles.
  • the inner cavity of the cooling protective layer is a low-temperature refrigerant that is introduced. The amount of refrigerant and refrigerant temperature that is introduced can be automatically adjusted and satisfied according to the requirements of underground ambient temperature, heat pipe cooling, various manifolds, electronic components, and various detecting devices.
  • the branch pipe 6-8 is introduced from the refrigerant supply pipe 6-6 and the cylindrical refrigerant is assembled near the refrigerant supply pipe 6-6.
  • the cavity 6-9 is connected, and the refrigerant fills the entire cavity; in the bottom of the cylindrical refrigerant chamber 6-9 of the assembly section, the refrigerant return pipe 6-7 is connected with the branch pipe 6-10 of the refrigerant medium bottom at the bottom of the refrigerant supply pipe 6-6.
  • the top 6-6 of the bottom of the cylindrical refrigerant chamber 6-9 and the top of the plugging section and the molten cementing or reaming section 6-12 have a retractable and plugging section and a molten cementing or reaming section.
  • the refrigerant chamber 6-12 is connected to the refrigerant branch pipe 6-11; in the plugging section and the molten cementing or reaming section 6-12, the inner bottom is close to the refrigerant return pipe 6-7, and there is a return pipe and a plugging section and melting.
  • the retractable refrigerant branch pipe 6-11 and the return branch pipe 6-13 are resistant to ultra-low temperature and ultra-high pressure.
  • the refrigerant supply pipe 6-6 is provided in communication with the suction section of the pumping system and the refrigerant chamber 6-15 of the drilling execution section.
  • the refrigerant branch pipe 6-14; the refrigerant return pipe 6 in the suction section of the pumping system and the bottom of the refrigerant chamber 6-16 of the drilling execution section has a refrigerant return pipe 6-7 and a refrigerant return pipe 6 of the pumping system suction section and the drilling execution section refrigerant cavity 6-16.
  • both the refrigerant supply pipe 6-6 and the return pipe 6-7 are in a cylindrical pipe located at the center of the drilling actuator.
  • the lower end of the refrigerant supply pipe 6-6 directly reaches the suction section of the pumping system and the top of the drilling execution section 6-15, and the refrigerant return pipe 6-7 directly reaches the suction section of the pumping system and the bottom of the refrigerant chamber 6-16 of the drilling execution section.
  • a plurality of holes are formed in a suitable position on the side of the equipment assembly section 6-5 of the outer casing for assembling various components, power sources, various detecting devices, and the corresponding holes are provided with a high temperature resistant heat insulating sealing cover. 6-56.
  • Various wireless sensors and panoramic cameras are mounted on the side or top or bottom of each section of the casing.
  • Various wireless sensors and panoramic cameras are mounted in a cylindrical heat pipe connected to the refrigerant chamber. The inside of the heat pipe is sealed to the refrigerant chamber, and the outside of the heat pipe is connected. Pass through the vacuum layer.
  • the inside of the heat pipe that is, the condensation end, is slightly inclined upward. Specific examples are heat pipe sensors and heat pipe cameras.
  • the bottom tungsten alloy nozzles 6-25, high pressure air nozzles are described in the drilling actuator execution section.
  • the high temperature and high pressure drilling execution section of the drilling actuator ion or laser or electron beam or nucleus includes: ion generator system or high temperature system such as laser or electron beam or nucleus, high pressure air system, various wireless sensors. And panoramic heat pipe cameras, etc.
  • the ion generator system includes: a plurality of ion generators and a cooling system thereof, a DC pulse power source, an ion working gas, and various Sensors, etc.
  • the ion generator is composed of a heat pipe cathode 6-22, a cylindrical anode 6-21, a cathode anode insulating heat insulating bracket 6-19, a nozzle 6-25, a tangential ion working gas inlet pipe 6-20. And the working gas channel 6-24, DC pulse power supply 5-1 and so on.
  • the heat pipe cathode has the characteristics of a conventional heat pipe, and is composed of a heat pipe condensation end 6-26, a heat pipe ⁇ 6-27, a heat pipe core 6-28, and an evaporation end 6-29.
  • the evaporation end 6-29 of the heat pipe cathode is made of tungsten or other high temperature resistant, cauterizing metal or alloy.
  • the heat pipe cathode tungsten 6-23 or other high temperature resistant and cauterized metal is embedded in the heat pipe evaporation end.
  • the end of the heat pipe cathode tungsten 6-23 is long enough to ablate when it is cauterized, but it does not affect its discharge jet, the heat pipe cathode
  • the continuous use time of tungsten is not less than 10,000 hours.
  • the heat pipe cathode and anode are made of copper or other metals or alloys.
  • the condenser end of the heat pipe has an insulating coating.
  • the anode is cylindrical, and the cathode and anode of the heat pipe are respectively fixed to the outer casing of the upper and lower cooling chambers through the insulating brackets 6-19.
  • a small hole is formed at a suitable position on one side of the anode so that the DC pulse power source is connected to the cathode.
  • the cooling source of the cooling system of the ion generator system uses the suction system of the pumping system in the cooling protection system and the refrigerant in the cylindrical refrigerant chamber of the drilling execution section.
  • the bottom surface of the refrigerant chamber 6-16 has a plurality of grooves 6-18, and the heat pipe cathode condensation end 6-26 passes through the bottom of the drilling execution section refrigerant chamber 6-16 and is immersed in the refrigerant of the grooves 6-18.
  • a pipe 6-20 for introducing an ion working gas is provided on one or both sides of the anode.
  • the ring-shaped cavity formed by the anode and the cathode of the heat pipe is an ion working gas channel 6-24.
  • the lower port of the anode is an ion nozzle 6-25.
  • a plurality of ion nozzles are sprayed outward on the outermost circumference to form a flared shape.
  • High-pressure air systems include: ultra-high pressure air compressors, manifolds, nozzles and intelligent control systems. In order to improve rock breaking efficiency and reduce ion working time and strength, ultra-high pressure (greater than 40Mpa) air rock breaking technology is adopted to improve the efficiency of well formation or drilling.
  • the ion body, the high pressure air injection pipe and the nozzle pass through the bottom cooling protection layer 6-31 and the vacuum insulation layer 6-32, and the ion nozzle 6-25 and the high pressure air nozzle 6-30 are evenly distributed. . And the outermost circumferential ion nozzles are sprayed to the outside at an angle, and the sprayed The ion beam is in the shape of a bell mouth.
  • the outermost surface cooling protection layer 6-31 and the vacuum heat insulating layer 6-32 are equipped with a detecting component such as a wireless panoramic camera 6-57 and a wireless infrared range finder 6-58.
  • the suction section of the pumping system that is, the mudstone cuttings and the like, and the mixture pumping system thereof are integrated with the downhole drilling and reaming cementing intelligent actuator.
  • the 3D printing blocking section 6-3 is composed of vacuum insulation 6-32, cooling protection system 6-31, intelligent lifting or advancing and retracting system, intelligent rotating system, retractable outer cover 6-2, pipeline 6-43, Retractable pipe 6-47, nozzle, plugged pipe wireless charging electric flow regulating valve 6-42, various types of wireless sensors, panoramic camera and so on.
  • the cooling protective layer 6-31 and the vacuum heat insulating layer 6-32 of the 3D printing blocking section 6-3 are a separate system, which is a hollow cylinder which can be lifted and rotated.
  • the refrigerant supply pipe 6-11 and the refrigerant return pipe 6-13 are resistant to high pressure, ultra-low temperature, and are retractable, and the length of the telescopic is consistent with the lifting height.
  • the intelligent lifting system consists of a pumping section 2-1 outer casing, a plurality of lifting or advancing wireless charging motors or wireless charging servos 6-36 located in the casing of the pumping section 2-1, and a lifting or horizontal well working condition advance and retreat bracket. 6-37, the tray consists of 6-38.
  • the wireless charging lift or horizontal well working condition advance/reverse motor or wireless charging servo is located on the bottom surface of the pumping section 2-1 and fixed, and the transmission can be driven by gear or hydraulic or other methods.
  • the lower end of the bracket is fixedly connected to the advancing or retracting motor or servo at the appropriate position of the lifting or horizontal well working condition, the upper end is connected with the tray, the middle part passes through the pumping section 2-1 outer casing and can move up and down or the whole downhole drilling hole reaming cementing intelligent actuator water It can move back and forth when the well is in working condition.
  • the intelligent rotating system consists of a circular guide rail 6-39 located on the plane of the tray, a plurality of wireless charging drive motors or wireless charging servos located on the bottom surface of the clogging section and its transmission mechanism 6-41, and several lower ends.
  • the utility model can freely slide the bracket 6-40 fixed at the upper end and the bottom surface of the outer casing, and the bearing between the outer side surface of the hollow cylinder of the clogging segment outer casing and the tubular pipe.
  • the wireless charging drive motor or the wireless charging servo 6-41 is fixed to the bottom surface of the occlusion section 6-3, and is driven by a gear or a belt or the like to drive the lower end of the bracket 6-40 and the entire clogging section and the ionic melt-spraying cementing section. , freely rotate along the circular guide rails 6-39 above the trays 6-38.
  • the retractable outer cover has a cylindrical shape and is divided into an upper retractable outer cover 6-2 and a lower retractable outer cover 6-2.
  • the lower telescopic cover 6-2-2 has a lower end fixedly connected to the periphery of the top surface of the pumping section 2-1, and the upper end is closely connected with the periphery of the lower bottom surface of the blocking section 6-3 by a plurality of circumferentially sliding lifting rings.
  • the upper end of the retractable cover 6-2-1 is closely connected with the occlusion section and the periphery of the upper surface of the ionic melt-spraying cementing section casing by a plurality of circumferentially sliding slings, and the upper end is fixedly connected with the lower surface of the outer casing of the package section 6-5.
  • the retractable cover is made of a material that is resistant to high temperatures and toughness.
  • the plugging pipe in the plugging section and the top surface of the ion-melt-spraying cementing section casing to the lower surface of the assembly section is resistant to high temperature and high pressure.
  • Retractable pipe 6-47. Connect in the usual way.
  • a wireless charging electric flow regulating valve 6-42 is installed at a suitable position of the horizontal blocking pipe of the inner cavity of the plugging section, and the outermost part of the horizontal blocking pipe is a sealing material nozzle.
  • the various types of wireless sensors and panoramic cameras are a plurality of sensors for temperature, humidity, pressure, flow rate, and panoramic cameras.
  • the ionic melt-spraying cementing or reaming section consists of a cooling protective layer 6-31, a vacuum insulation layer 6-32, a smart lifting or advancing system, an intelligent rotating system, and a retractable outer casing 6-2. It consists of an ion generator system or an ion spray system, various types of wireless sensors, and a panoramic camera.
  • the ionic melt-melting cementing or reaming section is closely integrated with the plugging section and shares an adiabatic cooling protection system, intelligent lifting or advancing system, intelligent rotating system, and retractable outer cover, such as plugging section. description of.
  • the cold source is a refrigerant for the plugging section and the ion cooling spray coating cementing or the top cooling chamber of the reaming section, and the mounting method is as described in the ion generator.
  • the plurality of ion generator systems are as described above for the ion generator. When it is an ion spray system, it is a common ion spray gun based on the ion generator. As shown in Fig.
  • the ion generator or the ion spray gun has a circular arc shape, and the upper end is fixedly connected with the ion body by melt-spraying cementing or the reaming section and the top surface of the outer casing of the plugging section, and the lower end is the nozzle 6- 44 is horizontally passed through the outer casing and sealed to the outer casing.
  • a plurality of nozzles 6-44 form a circular arc nozzle line.
  • the gap between the ion working gas pipeline and the DC pulse power line under the assembly section outer casing and the ion melt-spraying cementing section outer casing is scalable, and the retractable length satisfies the blocking section and the ion melt-spraying cementing section. The need to move up and down, forward and reverse 180 degrees.
  • the information collection and storage processing, the power supply, the signal line, and various detection equipment assembly sections include: a cavity composed of a casing, an information acquisition and storage processor 6-49, a transmission signal line thereof, a power supply, and wireless charging thereof.
  • Devices, various detection equipment 6-52 such as pressure, temperature, humidity, precious metals, diamonds, natural gas, seismographs, instruments for scientific research, etc.
  • the cylindrical cavity composed of the outer casing has a plurality of suitable holes on the outer side for mounting various components, equipment and signal transmitting and receiving devices 6-52, and has a corresponding heat insulating sealing cover 6-56.
  • 6-33 is the working gas pipeline
  • 6-34 is the DC pulse cable
  • 6-35 is the hollow cylindrical cavity outer wall
  • 6-45 is the cementing hole expansion section ion heat pipe cathode
  • 6-46 is cementing reaming
  • 6-50 is the cable
  • 6-51 is the refrigerant groove
  • 6-54 is the ion spray powder feeding pipe
  • 6-55 is the cylindrical cavity wall of the plugging reaming section.
  • the well pipe foundation section includes: a common joint and a well pipe sample pipe integrated with the underground borehole reaming and cementing intelligent actuator.
  • Said well The common joint of the lower hole drilling and reaming cementing intelligent actuator, all the pipes below the common joint of the pipeline are integrated with the underground drilling and reaming cementing intelligent actuator, and the power line and transmission line pass through the reserved cylinder.
  • the holes are connected to the common joint. All upper connectors that are connected to the common connector are solenoid-controlled connectors that are automatically pulled out.
  • the well pipe sample pipe 4 is a well pipe integrated with the underground hole drilling and reaming intelligent actuator, and the length thereof is suitable.
  • the lower part of the well pipe sample pipe 4 is directly integrated with the upper end of the down hole drilling and reaming cementing intelligent actuator 6 and sealed; when the well pipe is a single pipe, the bottom and the downhole drilling hole reaming cementing intelligent actuator 6 are the most There are N round holes or square holes 4-1 at the appropriate position at the upper end connection; when the well pipe is a casing, the bottom of the inner pipe and the upper hole of the down hole drill hole cementing intelligent actuator are at the appropriate position on the upper side.
  • the housing and internal structure of the entire borehole reaming and cementing intelligent actuator are all made in the factory by 3D printer printing or other methods except for the components to be installed later.
  • the vacuum layer or the heat insulating layer is printed by a 3D printer, leaving a hole to be sealed after being vacuumed or added with a heat insulating material.
  • the cooling layer cavity is printed by a 3D printer, and corresponding sealing holes are left for installing various heat pipe components.
  • the light source is an energy-saving strong light source such as a wired or wireless LED installed in a casing of a borehole drilling and cementing intelligent actuator in a downhole, and is used for a downhole camera or internal illumination. It also has the same self-cleaning function as the camera.
  • the intelligent control processing center includes: ground 3D printer system integration, cooling protection system, mud water cuttings and other mixture pumping system, intelligent well pipe lifting and fixing system, manifold system integration, downhole drilling and reaming cementing intelligent actuator and other intelligence Control System.
  • Each intelligent control system has its own independent control liquid crystal display system and is controlled and displayed by the central intelligent control center.
  • the intelligent control processing center is located in the ground control center computer room.
  • Wireless sensors and wireless panoramic cameras with corresponding functions are installed in all underground equipment, functional sections and manifolds.
  • Ground equipment, function segments, and manifolds are equipped with wireless or wired sensors and panoramic cameras with corresponding functions.
  • the collected information is transmitted to the central intelligent control center.
  • various sensors, cameras and other components installed in the underground intelligent drilling actuator and the ground 3D printing function are components such as a heat pipe type sensor 8.1 and a heat pipe type camera 8-2.
  • the heat pipe has a cylindrical shape and has the characteristics of a general heat pipe, and is composed of a cylindrical heat pipe condensation end 8-4, a heat pipe outer side surface 8-5, a heat pipe inner side surface 8-6, and a heat pipe core 8-7.
  • the heat pipe evaporation end 8-8 is composed.
  • the specific shape can be adjusted according to the shape of components such as sensors and cameras. Components such as sensors and cameras are enclosed in a cylindrical heat pipe.
  • the tubular heat pipe passes through the vacuum insulation layer to reach the inner side surface 8-3 of the cooling chamber, but is not directly in contact with the refrigerant.
  • the contact surface of the refrigerant chamber is also cylindrical and closed inside. The refrigerant and the heat pipe are radiated and contacted with heat.
  • a hollow ring 8-9 is mounted on the outer side of the heat pipe type camera, and the ring has a square cross section.
  • the inner side of the ring has a plurality of venting holes that are inclined toward the mirror surface of the camera.
  • the external access ventilation tube I8-11, the ventilation tube II8-12, the ventilation tube I8-11, the ventilation tube II8-12 are equipped with micro wireless charging, high pressure normally closed electromagnetic valve and identification sensor, automatic control module 8 —10, Ventilation tubule II8-12 is connected to the high pressure gas pipeline.
  • the recognition sensor automatically recognizes, opens the electromagnetic valve and cleans the camera.
  • the drilling platform 7 When drilling for a single pipe or casing in the land, after drilling the selected drilling position according to the geophysical exploration, the drilling platform 7 is constructed. After all the drilling equipment, materials and control systems reach the preset position and are installed and prepared, the underground drilling hole is expanded.
  • the hole cementing intelligent actuator 6 is placed in the drilling position, and is connected with the lower end joint of the manifold system, and the upper end of the well pipe sample tube of the underground drilling reaming cementing intelligent actuator 6 is inserted into the top of the remelting section of the mold system. It is clamped and fixed by the intelligent well pipe lifting and fixing system 3; the 3D printer nozzle II is opened, and the metal section at the top of the well pipe sample tube is remelted.
  • the 3D printer nozzle II When the metal section is melted, the 3D printer nozzle II is automatically closed, and the 3D printer nozzle is automatically turned on.
  • I carry out metal liquid injection, that is, print the well pipe; at the same time, the mold cooling system and the downhole cooling system, and the downhole drilling and reaming cementing intelligent actuator 6 are automatically opened for drilling.
  • other equipment such as manifold system and pumping system are automatically turned on as drilling.
  • the intelligent well pipe lifting and fixing system 3 alternately lifts and fixes the well pipe; when drilling a certain depth, it is necessary to continue to connect various pipes, cables, signal wires, slings, etc. Pick up.
  • the water vapor, soil debris, and the like extracted by the pumping system are harmlessly treated and cleaned by the surface treatment equipment.
  • the metal section of the top of the well pipe is re-melted according to the opening of the 3D printer nozzle II.
  • the 3D printer nozzle II is automatically closed. Turn on the 3D printer nozzle I for metal liquid injection, that is, continue to print the well pipe and drill.
  • the groundwater instantaneously evaporates due to the temperature of the ionic body at 3000-30000 ° C, and is pumped to the ground with the pumping pipe.
  • the soil layer also instantly becomes dry soil, and the high temperature air and ionic body temperature above 40 Mp. Under the dual action of the gas, it is also instantaneously sprayed as powder and pumped to the ground with the pumping pipe.
  • traditional casing cementing can be used, or the ion body melting cementing on the side of the underground drilling and reaming intelligent actuator 6 can be used, that is, the surrounding rock is soiled and cemented (according to the camera information, intelligence Suihua).
  • the rock layer When the drill layer is rich in water and soil layers, rock layers and cracks, under the double action of 3000-3000 ° C ion body temperature and high pressure gas above 40 Mp, the rock layer is sprayed as powder immediately with the pumping pipe in the state just before the melting. To the ground; the water also evaporates and is pumped to the surface with the pumping pipe.
  • the plugging material of the plugging system of the underground drilling and reaming intelligent actuator 6 is used for high-pressure jet sealing of the water outlet or crack. Because the sealing material has the characteristics of water-based or dry rapid condensation and certain toughness and strength, it achieves the purpose of sealing water seepage and cementing.
  • the ion body melting cementing on the side of the downhole drilling and reaming intelligent actuator 6 can still be used, that is, the surrounding rock is soiled and cemented.
  • the ion melting function of the side of the well drilling and reaming intelligent actuator 6 can be converted into an ion spray gun for ion-spraying and sealing. Blocking and cementing. Ion spray can form a dense, tough coating and ensure that groundwater is not lost. According to the geophysical report, when the groundwater is too rich, it can also be drilled and expanded by bare holes. After drilling into the dry hot rock layer (without water), the casing is cut by the traditional method. After the water layer is sealed, press The above method is used for drilling.
  • the plugging material of the plugging system of the underground hole drilling and cementing intelligent actuator 6 is used for high-pressure jet sealing of the crack.
  • the ion body melting and cementing on the side of the underground drilling and reaming intelligent actuator 6 is still adopted, that is, the surrounding rock is soiled and cemented. It can also be used with an ion gun to achieve optimum cementing.
  • drilling can continue, unlike conventional drilling, where work is stopped due to floor drain or the project fails.
  • the drilling platform 7 When drilling for bare ground in the land (without the well pipe), after the selected drilling position, the drilling platform 7 is constructed, and various drilling equipments (except for the 3D printing and automatic clamping lifting system), materials, and control systems reach the preset position.
  • the downhole drilling and reaming intelligent actuator 6 After installation and preparation, the downhole drilling and reaming intelligent actuator 6 is placed in the drilling position, and the upper end of the well pipe sample pipe of the underground drilling reaming cementing intelligent actuator 6 is docked with the lowermost joint of the manifold system.
  • the steel sling non-rotatable is responsible for the full weight of the underground drilling and reaming cementing intelligent actuator 6 and the manifold, and according to the intelligent control system, the lifting and lowering of the hole drilling and cementing intelligent actuator 6 is controlled.
  • the drilling diameter can be free within the range of 20-100cm. select.
  • the diameter of the drill hole is large, such as the exploitation of scarce resources in the deep part of the earth, on the basis of the original bare hole drilling, the ion body melting reaming cementing section on the side of the down hole drilling and reaming intelligent actuator 66 is used. Reaming or expanding the diameter of the downhole drilling and reaming intelligent actuator 6 to the diameter of the hole to be drilled.
  • the downhole drilling and reaming cementing intelligent actuator 6 is horizontally placed, and above the inner cavity and the pumping section of the assembly section of the well drilling and reaming cementing intelligent actuator 6
  • the inner cavity is equipped with a drive motor or servo and a transmission mechanism and is sealed to be insulated, and is carried forward or backward by wheel or crawler or walking.
  • the invention has the beneficial effects that the Mohujing drilling can be carried out by using the invention, and the internal structure and composition of the earth can be scientifically detected; in the structural geology, the deep structure and evolution of the ball can be studied, the geophysical detection results can be checked, and the crust can be studied. Deep fluid and its role, explore the impact of large meteorite impact and biological cluster extinction; in the development and utilization of resources and energy, can better study basin evolution, metallogenic theory, oil and gas genesis and gas hydrate, investigate and develop deep heat; In environmental science, we can better study the causes of earthquakes, improve earthquake prediction, volcanic eruption mechanism, geological disaster warning, study the evolution of the Earth's climate, and explore the history of life evolution.
  • the invention patent 3D printing ion body intelligent Moho well drilling and completion method can be called: opening the key to exploring the deep mysteries of the earth and exploiting the deep resources of the earth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

一种3D打印离子体智能莫霍井钻井完井方法,包括如下步骤:建设钻井平台(7),安装钻井设备,开始钻井。钻井设备包括3D打印机系统集成(1)、泥水岩屑等及其混合物抽送系统(2)、智能井管升降固定系统(3)、3D打印机打印的井管(4)、管汇系统集成(5)、井下钻孔扩孔固井智能执行器(6)、钻井平台(7)、智能控制处理中心(8)。其中井管为3D打印机打印,抽送系统排出泥浆及岩屑等,离子体钻井执行器实施钻井,地下设备有绝热及冷却保护,该钻井方法由3D打印喷头Ⅰ(1-25)、3D打印喷头Ⅱ(1-26)、封堵系统喷头、离子体熔融固井、喷枪固井、扩孔、钻孔喷头、高压气体喷头协同作业,智能井管升降固定系统对3D打印机打印的井管进行智能固定、升降。可在陆地、深海实施钻井。

Description

3D打印离子体智能莫霍井钻井完井方法 技术领域
本发明涉及增材制造及地球深部钻探技术领域,更具体地说涉及3D打印离子体智能莫霍井钻井完井方法。
背景技术
在冷战的60年代,随着太空竞赛不断升温,另一项竞赛也慢慢展开,这就是地心争夺战。美苏尝试着钻到所谓的莫霍界面(即地球外壳与地幔之间的界线“Mohorovicic Discontinuity”,它是通常呈现固体形态的外壳和充满岩浆的地幔之间的一个理论性分界线)。
世界上首个深部勘探计划莫霍界面勘探是美国提出的,二十世纪60年代开始,主要是把莫霍面钻透,在地学上能有个明显的突破。但是因为高昂的经费以及高难的技术,该计划在一九九六年宣布告终。而在一九九六年的六月,一项对海底上部的地壳进行揭示的长期勘探计划由开始美国实施,也就是对世界各个大洋进行浅层次钻孔,主要对沉积岩采样和采集岩芯。共在各个大洋钻孔92口,所取的岩芯的长度9500米之多。科学工作者通过科学研究对大陆的漂移以及海底的扩张这两个假说进行了验证,构建了板块理论,建立了古海洋理论,对海底的高原形成以及海洋地壳的结构进行了解密;实证了气候的演变周期以及地球上环境突变的事件,对大陆周围深层流体作用进行了分析研究;海底的深部也有着生物圈,并且海底还有可燃冰天然气和水结合的产物,这些都给地球学科带来了巨大的突破。刚开始这个计划只有美国执行,后来慢慢的多国参与变成了国际性质的计划。这项计划结束是在一九八三年的十一月。该项计划和人类的登月球计划在二十世纪六十年代被称为人类的两大历史壮举。
在美国推出这项力图达到这个深度的钻探项目后,前苏联也加入到这场钻出世界上最深的洞的竞赛中。迪安·杜恩在《地球科学》一书中写道:“在1960年到1962年间,太空竞赛期间经济利益与国家自信心结合,促使前苏联科学家计划钻出一个“俄国超深钻井(Russian Mohole)”,这样做的目的是,赶在美国钻探项目之前到达地球外壳与地幔之间的界线。”将钻探地点选在人迹罕至的科拉半岛,在这里钻出有史以来最深的洞,洞深超过7英里(约11.22公里)。俄国钻了15年多,最终钻到地壳内部约12262米深处,这项世界纪录至今未被打破(世界之最而列入吉尼斯纪录大全)。
科学钻探是最近几十年才飞速发展的科学工程,大致可以将世界科学钻探分为两个时期:ICDP之前的科学钻探和ICDP之后的科学钻探.ICDP(International Continental Scientific Drilling Program)成立于1996年2月,德国、美国和中国作为第一批成员,成为ICDP的发起国,总部设在德国波茨坦,目前已有15个成员国.在ICDP成立之前,世界各国都已经有了科学钻探的探索.如美国的莫霍面计划(Mohole project)、深海钻探计划(Deep Sea Drilling Project,DSDP),苏联在全国范围内开展的大陆科学钻探,德国的“联邦德国大陆深钻计划(KTB)”,法国、英国、加拿大、日本、瑞典、瑞士等国也都有科学钻探的实施.各国的科学钻探比较分散,加之科学钻探是一种成本极高、风险极大、技术及其复杂的科学工程,各国在实施过程中会遇到很多困难,由此制约了钻探施工和成果获取。ICDP的成立为科学钻探降低风险和成本,装备技术的交流和共享、科学成果的交流和共享都起到了良好的促进作用。目前科学钻探已经实施了湖泊钻探项目、陨石撞击和生物灭绝事件的科学钻探项目、研究火山和地热的钻探项目、断层带科学钻探项目等22个科学钻探项目,取得了大量的科学资料,极大促进了地质学及相关技术的发展。
大洋科学钻探:IODP(Integrated Ocean Drilling Program,即综合大洋钻探计划)是一个以探索海底沉积物和岩石所记录的有关地球历史和结构信息、监测海底环境为主要目的国际性海洋研究计划。它建立在早期的深海钻探计划(DSDP)和大洋钻探计划(ODP)成功的基础上,这两个计划通过对大洋海底的钻探,不仅验证了海底扩张和板块构造学说,而且在古海洋学、高分辨率地层学、海洋地球化学、全球气候变化、地质构造与岩石圈研究、深海生物圈、海底热液以及海底矿床领域取得了举世瞩目的成就,使人类不仅对地球历史和全球过程的认识发生了革命性的变化,更对地球科学的认识从最初孤立的岩石圈上升到了地球系统科学。
2015年12月5日,一个由12个国家的科学家组成的科考团队乘坐决心号”大洋科学钻探船,在西南印度洋亚特兰蒂斯浅滩的地方,开始了人类科学史上具有里程碑意义的科考行动——大洋钻探。根据本轮大洋科考的规划,“决心号”大洋科学钻探船的最终目标就是钻穿地壳,“触摸”地幔。
福克斯说:“地球学有一个‘望远镜’:深层钻探和地球深处探测!我们充分利用这个望远镜,超越目前面临的种种限制,以便探寻地球科学的新领域。” 能源是每个国家的命脉,二战后的几次中东战争、海湾战争、中国目前面临的东海、南海问题、一路一带几乎都有能源的影子。
地球内部的总热能量,约为全球煤炭储量的1.7亿倍。每年从地球内部经地表散失的热量,相当于1000亿桶石油燃烧产生的热量。地核的温度达6000℃,莫霍面(陆地地下约35Km,大洋地下约5Km)的温度约900-1000℃。地表常温层(距地面约15米)以下约15公里范围内,地温随深度增加而增高,地热平均增温率约为3℃/100米。不同地区地热增温率有差异。
鉴于世界范围内的能源短缺,地热资源受到世界各国的高度重视而作为国家能源战略。常规的高温地热资源受地质条件制约分布有限,而存于地下3-30Km的干热岩,从理论上讲,随着地球向深部的地热增温,任何地区达到一定深度都可以开发出干热岩,因此干热岩又被称为是无处不在的资源。
利用EGS(增强地热系统)技术开发干热岩地热资源是前瞻性的世界前沿技术,设计相距数百米钻两个4000米(或更深)的深井,用“压裂”技术在两井之间造出连通的人工裂隙,然后从一井注入冷水,另一井中就能产出高温蒸汽和热水,供地热发电等。自2011年以来法国、德国、澳大利亚和美国已相继实现兆瓦级EGS电站商业运行试点,EGS破解常规高温地热资源的局限,美国称之为21世纪地热能的未来,将在2050年在美国完成1亿千瓦装机容量。中国设计了15%的美国指标,至2050年实现1500万千瓦干热岩EGS发电。
地热能由于不受天气影响、随时可开采利用,地热发电平均利用效率达73%,是太阳光伏发电的5.4倍,风力发电的3.6倍,因此国际能源专家普遍认为,预计到2100年,地热利用将在世界能源总值中占30%~80%。
地热能作为绿色、环保的可再生能源,可用于地热发电、工业烘干、制冷空调、供暖、医疗洗浴、温室、养殖、农业灌溉等。
目前无论是超深井钻探、油气田开采或是地热能开采等,基本均通过机械转盘式钻井,其主要设备包括钻头、管汇、钻杆、固控、泥浆、动力等。由于超深井地下温度高,影响泥浆性能、钻杆机械强度要求高,机械钻速慢。在上述机械钻孔、泥浆护壁、排岩屑等方法的基础上,采用超高压高速喷射破岩技术、旋冲钻井技术、离子体高温熔融钻井技术、离子通道钻井技术、激光钻井技术甚至核子钻井技术等,上述方法虽能够提高破岩效率。但由于在200℃以上的高温环境下,对钻杆、泥浆、管汇、固控、电子元件等设备材料质量要求高,同时需固井、挂管、射孔、护壁、防喷、防漏、防塌、防卡等等复杂工艺,事故率高,风险大,且其钻井深度一般在9000米以内。地下10-35Km的温度为300-1000℃,在这样高温环境下,采用目前现有的钻井技术,钻出孔洞直径30-100cm,井深10000-35000米的莫霍井(达到莫霍面)是很难想象的。
发明内容
针对传统超深井钻井现有技术不足:钻井周期长、钻井成本高、使用寿命短、钻井深度有限等缺点,同时钻深也不可能达到10000-50000米。本发明的目的是提供一种3D打印离子体智能莫霍井钻井成井方法,能够大幅度缩短钻井周期(设计钻速即成井速度30-150米/h)、提高钻井深度(10000-50000米),扩大钻孔直径(30-100cm),降低钻井费用,延长钻井使用寿命,降低钻井事故及风险,确保钻、成井质量,以便开采地下热能及稀缺资源。
为实现上述目的,本发明采用如下技术方案:
一种3D打印离子体智能莫霍井钻井完井方法,包括如下步骤:先在根据物探选定的钻孔位置建设钻井平台,然后安装钻井设备,开始钻井过程;所述的钻井设备包括智能控制处理中心、泥水岩屑等及其混合物抽送系统、井管、智能井管升降固定系统、管汇系统集成、井下钻孔扩孔固井智能执行器,所述的钻井设备还包括地面3D打印机系统集成、绝热和冷却保护系统,所述的井管为3D打印机打印的井管,由泥水岩屑等及其混合物抽送系统排出钻井产生的泥浆及岩屑,由井下钻孔扩孔固井智能执行器实施钻井;地下整个钻井设备系统由绝热和冷却保护系统予以保护;地面3D打印机系统集成、泥水岩屑等及其混合物抽送系统、智能井管升降固定系统、管汇系统集成以及智能控制处理中心的地面设备均在钻井平台上;管汇系统集成最下端与井下钻孔扩孔固井智能执行器本体的公共接头连接,该公共接头可通过电磁控制方式使管汇系统集成与井下钻孔扩孔固井智能执行器自动断开;管汇系统集成穿过井管、地面3D打印机系统集成,其上端由吊索支架支撑。
整个3D打印离子体智能莫霍井钻井完井方法由5个3D打印机协同作业,包括:3D打印喷头Ⅰ,3D打印喷头Ⅱ,封堵系统喷头,离子体熔融固井、离子体喷枪固井、离子体扩孔喷头,离子体钻孔、高压气体喷头,都具有一般3D打印机的特征;智能井管升降固定系统根据井下钻孔扩孔固井智能执行器的钻井工况—钻井、封堵、熔融固井、喷涂固井、扩孔及地面3D打印机系统集成打印情况,对3D打印机打印的井管进行智能固定、升降。
3D打印机系统集成包括依次相连的喷嘴段、再熔段、结晶段和冷却段的模具系统和3D打印熔融喷射系统;当井管结构为单管时,由模具内管、内管模具内层、内管模具外层、内管模具、模具横梁集成组成,其模具为两个大小不一的同心圆柱体套筒;当井管结构为套管时,由模具内管即井管管腔、内管模具内层、内管模具外层、内管模具、内管与外管的夹层、外管模具内层、外管模具外层、套管的外管及模具横梁集成组成,其模具腔为两个大小不一的空心同心圆柱体套筒,其模具为四个大小不一的同心圆柱体套筒,其上端通过横梁集成固连,下端悬空;内管模具、外管模具分别位于冷却器套筒和冷却器套筒的夹层内,其上端通过横梁集成中的冷气管道固连,其下端悬空;在模具、冷却器套筒及横梁集成上均安装有耐高温无线温度传感器;横梁集成用来固连模具、冷却器及通入冷气的管道;横梁集成是模具和冷却器的共同横梁,同时其内部有通入超低温冷气的管道。冷却器套筒由套筒内壁、冷却气腔、套筒外壁、冷却器套筒上密封盖及下密封盖组成;冷却器内外壁上有大小不一的孔洞,其分别对应结晶段、冷却段;冷却器为单向通入超低温冷气;3D打印熔融喷射系统包括:3D打印喷头Ⅰ和3D打印喷头Ⅱ,二者位于模具系统上方,可为一体或分开,根据工作流程二者可同时工作并自动切换单独工作;3D打印喷头Ⅰ喷射的金属液体可由离子体、激光等方式熔融;根据所要打印的井管结构:井管是单管或套管,一侧分别有1或2个,两侧2或4个打印喷头,从里向外分别对应其模具槽;打印喷头Ⅱ是等离子体炬、激光或电子束发生器方式喷射;根据所要打印的井管结构,井管可以是单管或套管,一侧分别有1或2个,两侧2或4个打印喷头,从里向外分别对应其模具槽;当打印喷头Ⅰ停止工作后,模具内的金属液体凝固,打印喷头Ⅱ用来再融模具内的已经凝固的金属断面。
泥水岩屑等及其混合物抽送系统包括:地面高负压吸入、抽送及相应的处理设备、抽送管汇、地下钻孔内与井下钻孔扩孔固井智能执行器一体的吸入装置;抽送管汇由管道、相应的接头、阀门组成;与井下钻孔扩孔固井智能执行器一体的吸入装置,由连为一体的上空心圆柱体的底面、中间圆柱体的侧面即真空绝热、冷却层外壳、下空心圆柱体顶面,长方体吸入管、外罩、抽送管道、矩形吸入口及其合围的空心圆柱体吸入腔组成;长方体吸入管的外侧为矩形吸入口,内侧矩形口与抽送管道半圆柱开口连接为一体,长方体吸入管从外壳圆柱体一侧穿过。吸入装置与整个钻井执行器连为一体。整个吸入口为空心圆柱体。在吸入口及内腔合适位置安装有无线风压传感器、湿度传感器、温度传感器。
智能化井管升降固定系统包括:支架、平衡装置和自动夹紧交替升降装置;支架及平衡装置包括支架底座、支架横梁及支架底座上安装的自动平衡装置;自动夹紧交替升降装置为两对十字交叉型的自动夹紧交替升降装置,包括支架横梁、拉索、液压或其他动力升降吊臂、拉力传感器、夹紧装置、夹紧装置液压或其他动力推拉臂及其智能控制系统;液压升降吊臂下端与支架横梁固连,液压升降吊臂上端与拉索上端连接,拉索下端与夹紧装置连接,夹紧装置液压推拉臂两端分别与夹紧装置、液压升降吊臂固连;夹紧装置包括贯钉体及其伺服器、贯钉、夹紧装置凹糟体、夹紧装置凸起体、夹紧装置夹具、气囊、压力传感器,夹紧装置凹糟体、夹紧装置凸起体外观均为立方体,中间一侧为半圆柱凹槽,上下均有封盖;所述的夹具两端均有两个大小不一的凸起体,在夹紧装置凹糟体、夹紧装置凸起体两端均有与夹具凸起体对应的凹槽,该凹槽体的宽度,满足在气囊不充气和充满高压气体下,夹具所产生的位移;在夹紧装置夹紧状态下,最里层为被夹紧的钢管,依次为夹具、气囊、夹紧装置凹凸体;夹紧装置凹凸体吻合后,在贯钉伺服器作用下,贯钉贯入,在气囊充高压气体后,夹紧装置凹凸体不可以松动;夹紧装置凹凸体吻合后其上下端截面均为空心圆;夹紧装置凹凸体底部有孔洞,以便气囊通气管道穿过,与气囊连通的为通气管道和空气压缩机,气囊配有压力传感器;夹紧装置凸起体凸起部分的侧面有与贯钉对应的贯钉孔;贯钉体及其伺服器由贯钉、贯钉体、伺服器组成;贯钉体上有若干分布均匀的贯钉,伺服器与贯钉体连接;在夹紧装置夹紧后,整个井管的重力全部由夹紧装置在夹紧状态下的底部承重,根据钻井深度,当钻井深度足够深而井管足够长、其重力足够重时,可由上下1-N对夹紧装置组成;根据在井下钻孔扩孔固井智能执行器钻进和3D打印机打印井管的速度,当一对夹紧装置对井管进行夹紧时,随着井管的下降,该夹紧装置随井管一起下降,下降到预定位置时,另一对夹紧装置升到预定高度并同时夹紧井管,同时该夹紧装置松开井管并开始上升,如此交替智能升降并夹紧井管。
3D打印机打印的井管包括:由3D打印机打印而成与井下钻孔扩孔固井智能执行器上端为一体的井管样管、由3D打印喷头Ⅰ喷射打印的井管;当井管为套管时,其外管顶部侧面开有孔洞。
管汇系统集成包括:抽送系统、封堵系统、等离子体工作气体系统、超低温冷气系统、高压气体系统及其卷盘、伺服器,电缆、信号传输线、吊索等及其卷盘和其伺服器,管汇系统集成外保护层及缠绕设备、公共接头、若干换接管、接线机器人;管汇系统集成的管汇包括:抽送管道、电缆、信号线、封堵管道、高压空气管 道、离子体工作气体管道、超低温冷却管道、吊索、管汇系统集成保护层;封堵管汇系统包括:封堵3D打印机、封堵管道、封堵管道卷盘及其伺服器、封堵送料设备、封堵材料、管道换接机器人,封堵管汇由能够承受一定压力、耐高温且具有韧性、硬度的材料制造的管道和相应的接头、阀门组成,封堵送料设备满足封堵3D打印机喷口的喷射压力,封堵材料具有在3D封堵打印机喷口射出后具有水性或干性快速凝固、一定硬度的特性;等离子体工作气体系统、高压气体系统、超低温冷气系统均由管汇、管道卷盘、伺服器、送气设备、制气或储气设备组成,其管汇均由各自物理、化学性能决定的能够承受相应压力、耐相应高温或超低温的,且具有韧性、硬度的材料制造的管道和相应的接头、阀门组成;等离子体工作气体是氩气、氮气、氧气或者空气,或者是它们中至少两种的混合气体;高压气体系统其井下喷嘴喷出的高压气体可使刚处于熔融状态的岩土层喷为粉末,超低温冷气管道有一定的散热性能;电缆、信号传输线、吊索均由其相应的卷盘和伺服器组成并与其他管汇系统同步,电缆分为交流电缆和直流脉冲电缆,交流电缆与井下钻孔扩孔固井智能执行器内的无线充电装置相连;直流脉冲电缆直接与井下钻孔扩孔固井智能执行器内的钻井执行段的离子体发生器和熔融固井或扩孔段的离子体发生器相连;信号传输线与井下钻孔扩孔固井智能执行器内的无线传输中央处理器相连;吊索与井下最末端公共接头固连,每隔一定距离有与吊索固连的公共接头,所有管汇系统及所含物料、电缆、信号传输线的重量全部由吊索承载;公共接头为在地下钻孔的井管内用来连接所有管道、电缆、信号线、吊索等的公共接头,所有接头均可自动拆接;管汇系统集成外保护层及缠绕设备包括:管汇系统集成外保护层、3D打印机系统集成上方的收口器、卷材缠绕伺服器、缠绕转盘、硅酸铝针刺毯卷材;硅酸铝针刺毯卷材为耐高温、韧性好、抗拉强度高、绝缘的卷材,收口器是在缠绕设备上方的,按照各种管道、电缆、信号线、吊索等按照各自的排列方位,随着钻进,对管汇系统集成进行收拢、收紧的装置,3D打印机打印的井管和管汇系统集成居于转盘中心位置,根据钻井的速度,在自动智能转盘伺服器的带动下,转动转盘,同时在卷材缠绕伺服器的作用下,硅酸铝针刺毯等卷材自动随钻进速度缠绕管汇系统集成,并收紧、包紧,成为管汇系统集成保护层;管汇系统集成在井下钻孔扩孔固井智能执行器内部段,封装在井下钻孔扩孔固井智能执行器内部的筒状管道内;所有管汇系统在卷盘两侧接头顺序为:当续接管道时,先关停送料、送气或抽送设备等出口阀门,再关闭钻井侧阀门,断开管道连接;换上新的管道卷盘,依次连接卷盘两侧接头并开启卷盘两侧阀门,最后开启送气、送料、抽送设备阀门,进行正常钻井施工,以上操作均为相应的机器人操作。
井下钻孔扩孔固井智能执行器包括:外壳、钻井执行器离子体或激光或电子束或核子等高温高压钻井执行段,抽送系统吸入段,3D打印封堵段,离子体熔融喷涂固井或扩孔段、中央处理器、信息采集储存处理、电源、信号线及各种探测设备装配段、井管基础段、光源;外壳由真空或绝热层和冷却保护层系统、底部钨合金喷嘴、高压空气喷嘴构成;真空或绝热层和冷却保护层,二者紧密相连且与整个井下钻孔扩孔固井智能执行器内部的垂直筒状管道连为一体,二者由大小不一的若干个连为一体的圆桶组成,上端有与其连为一体的盖,其形状一致;冷却保护层系统,由制冷设备、冷媒供管、冷媒回管、装配段的立方体冷媒腔、封堵段和熔融固井或扩孔段的立方体冷媒腔、抽送系统吸入段和钻井执行段的立方体冷媒腔以及其进出接管组成;冷却保护层的内腔为通入的低温冷媒;在装配段冷媒腔的上方或其内部,从冷媒供管引入支管与靠近冷媒供管的位置与装配段冷媒腔联通,冷媒充满整个腔体;在装配段冷媒腔底部靠近冷媒供管位置有冷媒回管和立方体冷媒腔底部联通的支管;在装配段冷媒腔底部下面的供管与封堵段和熔融固井或扩孔段顶部有可伸缩的与封堵段和熔融固井或扩孔段冷媒腔联通的供冷媒支管;在封堵段和熔融固井或扩孔段内部底部靠近冷媒回管的位置有与回管和封堵段和熔融固井或扩孔段冷媒腔联通的可伸缩的回流支管,可伸缩的供冷媒支管、回流支管耐超低温、超高压;在抽送系统吸入段和钻井执行段顶部上方,靠近冷媒供管,有冷媒供管与封堵段和熔融固井或扩孔段冷媒腔联通的供冷媒支管;在抽送系统吸入段和钻井执行段冷媒腔内部底部有冷媒回管与抽送系统吸入段和钻井执行段冷媒腔联通的冷媒回流支管或回管与抽送系统吸入段和钻井执行段冷媒腔底部直接联通;冷媒供管和回管均在位于井下钻孔扩孔固井智能执行器中心位置的筒状管道内;冷媒供管下端到抽送系统吸入段和钻井执行段顶部,冷媒回管到抽送系统吸入段和钻井执行段冷媒腔底部;外壳的设备装配段侧面合适位置开有若干孔洞,用于装配各种元器件、电源及探测设备,同时,对应的孔洞安装有耐高温保温密封盖;在外壳各个段的侧面或顶端或下端安装有各种无线传感器及全景摄像头,各种无线传感器及全景摄像头安装在与冷媒腔相连的筒状的热管内,热管内侧与冷媒腔密封相连,热管外侧穿过真空层;热管内侧即冷凝端略向上倾斜;井下钻孔扩孔固井智能执行器离子体或激光或电子束或核子等高温高压钻井执行段包括:离子体发生器系统或激光或电子束或核子等高温系统、高压空气系统、各种无线传感器及全景摄像头;所述的离子体发生器系统包括:若干个离子体发生器及其冷却系统、直流脉冲电源、离子体工作 气体、各种传感器;离子体发生器由热管阴极、筒状阳极、阴极阳极绝缘绝热支架、喷嘴、切向离子体工作气体通入管道及通道、直流脉冲电源组成;热管阴极由热管冷凝端、热管璧、热管芯、蒸发端组成;热管的蒸发端采用钨或其他耐高温耐烧灼的金属或合金制造,热管阴极镶嵌在热管蒸发端端且呈圆锥状,热管阴极、阳极由铜或其他金属或合金制得;热管阴极冷凝端有绝缘涂层,阳极为筒状,热管阴极、阳极通过绝缘支架分别与上下冷却腔的外壳固连,阳极一侧合适位置有小孔,以便直流脉冲电源与阴极连接;离子体发生器系统的冷却系统的冷源,采用冷却保护系统中的抽送系统吸入段和钻井执行段的立方体冷媒腔的冷媒;钻井执行段冷媒腔底部平面有若干凹槽,热管阴极冷凝端穿过钻井执行段冷媒腔的底部并浸入凹槽的冷媒中,阳极一侧或两侧有通入离子体工作气体的管道,阳极与热管阴极组成的环柱型腔道为离子体工作气体通道,阳极的下口为离子体喷嘴,外壳最底面的离子体、高压空气喷射管道及喷嘴穿过底部冷却层和真空层,离子体喷嘴、高压空气喷嘴呈均匀分布,且最外侧呈圆周离子体喷嘴均以一定角度向外侧喷射,喷射的离子束为喇叭口形状,外壳最底面安装有无线全景摄像头、无线红外线测距仪;抽送系统吸入段即泥水岩屑等及其混合物抽送系统与井下钻孔扩孔固井智能执行器连为一体的吸入装置;3D打印封堵段由真空绝热、冷却保护系统、智能升降或进退系统、智能旋转系统、可伸缩外罩、管道、可伸缩管道、喷嘴、封堵管道无线充电电动流量调节阀、各类无线传感器、全景摄像头组成;3D打印封堵段的真空绝热、冷却保护系统为一个相对独立的系统,为空心圆柱体,可智能升降和旋转,其冷媒供管和冷媒回流管可伸缩,伸缩的长度与升降高度、旋转长度一致;智能升降系统由抽送段外壳、位于抽送段外壳内的若干升降或进退无线充电电机或无线充电伺服器、升降或进退支架、托盘组成;无线充电升降或进退电机或无线充电伺服器位于抽送段外壳上底面并固定,其传动采用齿轮或液压传动;支架下端与升降或进退电机或伺服器固连,支架上端与托盘连接,中间穿过抽送段外壳并可上下移动或整个井下钻孔扩孔固井智能执行器水平放置时能前后移动;智能旋转系统由位于托盘上平面的圆环形导轨、位于封堵段外壳底面的若干无线充电驱动电机或无线充电伺服器及其传动机构、若干下端可自由滑动上端与外壳底面固定的支架、封堵段外壳中空圆柱体外侧面与筒装管道之间的轴承组成;无线充电驱动电机或无线充电伺服器与封堵段外壳底面固定,通过齿轮或带或其他方式传动使支架下端及整个封堵段和离子体熔融喷涂固井段,沿托盘上面的圆环形导轨自由旋转;可伸缩外罩为圆筒状,分为上可伸缩外罩和下可伸缩外罩,下可伸缩外罩其下端与抽送段顶面周边固连,其上端与封堵段下底面周边以若干可沿圆周滑动吊环紧密连接;上可伸缩外罩其下端与封堵段和离子体熔融喷涂固井段外壳上底面周边,以若干可沿圆周滑动吊环紧密连接,其上端与封装段外壳下底面固连;封堵段和离子体熔融喷涂固井或扩孔段共用一个外壳,在封堵段和离子体熔融喷涂固井段外壳顶面至装配段下底面的封堵管道为可伸缩耐高温、高压管道;在封堵段外壳内腔的水平封堵管道的合适位置,安装有无线充电电动流量调节阀,水平封堵管道最外侧为封堵材料喷嘴;离子体熔融喷涂固井或扩孔段,由真空绝热、冷却保护系统、智能升降或进退系统、智能旋转系统、可伸缩外罩、若干离子体发生器系统或离子体喷涂系统、各类无线传感器、全景摄像头组成;离子体熔融喷涂固井或扩孔段与封堵段紧密连为一体且共用一个绝热冷却保护系统、智能升降或进退系统、智能旋转系统、可伸缩外罩,其冷源是封堵段和离子体熔融喷涂固井或扩孔段顶部冷却腔的冷媒,当为离子体喷涂系统时为常见离子体喷枪;离子体发生器或离子体喷涂枪为圆弧形,其上端与离子体熔融喷涂固井或扩孔段与封堵段的外壳顶部底面固定连接,其下端即喷嘴呈水平穿过外壳并与外壳密封固连。若干个喷嘴组成一个圆环形喷嘴线;离子体工作气体管道、直流脉冲电源线在装配段外壳下面和离子体熔融喷涂固井段外壳上面之间的空隙具有可伸缩性,可伸缩的长度满足封堵段和离子体熔融喷涂固井段上下升降、正反旋转180度的需求;信息采集储存处理、电源、信号线及各种探测设备装配段包括:由外壳组成的腔体、信息采集储存处理器及其传输信号线、电源及其无线充电装置、各种探测设备;外壳组成的圆筒状腔体,其外侧开有若干个适宜的孔洞,用于安装各类元器件、设备,且有相应的绝热密封盖;井管基础段包括:与井下钻孔扩孔固井智能执行器一体的公共接头、基础井管;电源线、传输线通过预留的筒状孔洞与公共接头连接;所有与公共接头连接的上接头为电磁控制可自动拔出的接头;基础井管,为与井下钻孔扩孔固井智能执行器一体的井管,基础井管其下部直接与井下钻孔扩孔固井智能执行器上端连为一体且密封;当井管为单管时,其底部与井下钻孔智能执行器最上端连接处合适位置开有N个圆孔或方孔;当井管为套管时,其内管底部与井下钻孔智能执行器上端连接处上面开有N个圆孔或方孔;且内管外管下端均与井下钻孔扩孔固井智能执行器上端连为一体并密封,内外管之间的空腔通过内管底部孔洞与内管腔连通,且外管顶部侧面开有孔洞;光源,为在井下钻孔扩孔固井智能执行器的壳体或内部安装的有线或无线LED强光源,用于井下摄像头或内部照明且具有自清洁功能。
智能控制处理中心包括:地面3D打印机系统集成、冷却保护系统、泥水岩屑等及其混合物抽送系统、智 能井管升降固定系统、管汇系统集成、井下钻孔扩孔固井智能执行器的智能控制系统;每个智能控制系统都有自己独立的控制液晶显示系统且受中央智能控制中心控制并显示。
所有地下设备、功能段、管汇均安装有相应功能的无线传感器和无线全景摄像头,地面设备、功能段、管汇均安装有相应功能的无线或有线传感器和全景摄像头,并将采集的各类信息传送至中央智能控制中心;所述的传感器、摄像头等元器件都安装在筒状热管内并密封,筒状热管由冷凝端、热管外侧面、热管内侧面、热管芯、热管蒸发端组成;筒状热管穿过真空绝热层到达冷却腔内侧面且密闭;在热管式摄像头外侧面安装有中空的圆环,圆环截面为方形,圆环的内侧面有若干向摄像头镜面倾斜的放气小孔,圆环的外侧接入通气小管Ⅰ和通气小管Ⅱ,两个通气小管之间安装有微型无线充电、耐高压常闭型电磁气阀及识别传感器、自动控制模块,通气小管Ⅱ与高压气体管道联通。
所述的钻井过程为把井下钻孔扩孔固井智能执行器放在钻孔位置,与管汇系统集成下端接头对接,钻孔扩孔固井智能执行器的基础井管上端插入至模具再熔段顶部,由智能井管升降固定系统对其夹紧固定;开启3D打印喷头Ⅱ,对基础井管顶端的金属断面再熔,当金属断面熔融后,自动关闭3D打印喷头Ⅱ,开启3D打印喷头Ⅰ进行金属液体喷射,即打印井管;同时,模具冷却系统及井下冷却系统、井下钻孔扩孔固井智能执行器均自动开启进行钻井,管汇系统集成、泥水岩屑等及其混合物抽送系统随钻进也自动开启;随着钻进,智能井管升降固定系统交替升降对井管夹紧固定;当钻进一定深度,需要续接各种管道、电缆、信号线、吊索时,由续接机器人自动换接,抽送系统抽出的水蒸气、泥土岩屑等及其混合物由地面处理设备进行无害化处理并清运。
在地球深部高温300-1000℃环境下实施垂直或水平钻孔,当实施水平钻孔时,将井下钻孔扩孔固井智能执行器水平放置,并在井下钻孔扩孔固井智能执行器的装配段的内腔和抽送段上方内腔加装驱动电机或伺服器以及传动机构并密封绝热,行进方式以轮式或履带式或步行式前进或后退。
当在大洋及深海海底钻井时,所述的钻井平台为海上钻井平台,在海上钻井平台上,根据钻孔的直径,先下一个直达海底面以下一定深度的套管,然后按陆地方法开始钻井。
本发明的优势在于:
1.本发明没有真正意义上的钻杆,3D打印机打印的井管或裸孔钻井的钢筋吊索即为钻杆。特别是超深井,传统机械钻井的钻杆所受扭力很大,对钻杆要求很高,同时,在钻井过程中钻杆震动,容易使围岩坍塌,再个也容易使钻孔倾斜。同时需要防止卡钻。
2.本发明采用泥水岩屑等及其混合物抽送系统,钻孔产生的泥水、岩屑等通过高负压抽送到地面。而传统钻孔方法采用泥浆循环方法把岩屑输送到地面。当为超深井或莫霍井时,地下温度300—1000℃时,泥浆的物理、化学性质会发生变化而不能循环。同时需要防喷、防漏、防塌。
3.本发明采用离子体(3000-30000℃)或激光或电子束等高温及高压气体(40Mp以上)联合破岩技术,钻孔速度快、效率高,设计钻速50-150m/h。而传统钻孔方法采用机械钻孔或机械、高压水喷射联合钻孔钻孔,总体破岩效率低;也有提出采用离子体或激光或电子束或核子破岩,由于没有相应的配套技术比如先进的离子体冷却技术,在实际上没有商业应用。
4.本发明采用离子体(3000-30000℃)熔融固井、离子体喷涂固井,固井效率高、节约钻井成本、安全可靠。而传统固井方法多采用套管,增加增加成本、效率低。
5.本发明采用离子体扩孔技术,可随意将钻孔扩孔直径达到30-100cm。而传统钻井方法,采用增大钻头的方法进行扩孔,扩孔直径有限,且钻井周期及成本大大增加。
6.本发明采用封堵系统和离子体喷涂对含水层及裂隙进行封堵,提高钻井速度及保护水资源。而传统钻井方法同时需要防漏、防塌。
7.本发明采用钻孔扩孔固井智能执行器技术,能够自动识别岩性,根据各种岩层的融点,智能调整高压气体喷射压力及离子体温度,以降低钻井成本。
8.本发明的地下钻孔扩孔固井智能执行器采用绝热、冷却技术,所有的电子元器件、电机等凡是不耐高温的设备均在绝热、冷却保护腔内。因此地下钻孔扩孔固井智能执行器能在300-1000℃高温环境下正常工作,因此钻孔可达到10000-40000m莫霍界面(即莫霍井)。而传统钻井方法无法配套冷却保护。
附图说明
图1为本发明系统图。
图2为模具结构图。
图3为单管模具截面图。
图4为套管模具顶部截面图。
图5为套管模具剖面图。
图6为套管模具及冷却器结构图。
图7为冷却器空心圆柱体套筒截面图。
图8为冷却器套筒外观图。
图9为模具系统与3D打印喷头结构图。
图10为单管模具3D打印工作原理图。
图11为套管模具3D打印工作原理图。
图12为单管模具3D打印再熔工作原理图。
图13为套管模具3D打印再熔工作原理图。
图14为泥水岩屑等及其混合物抽送系统结构图。
图15为与地下钻孔扩孔固井智能执行器一体的吸入装置剖面图。
图16为与地下钻孔扩孔固井智能执行器一体的吸入装置截面图。
图17为抽送管道侧面开口示意图。
图18为钻井支架底座平面图。
图19为智能自动夹紧、交替升降装置轴线剖面图。
图20为夹紧装置夹紧状态中间截面图。
图21为夹紧装置夹紧状态下端截面图。
图22为夹紧装置凸起体侧面图。
图23为贯钉体结构图。
图24为贯钉体立体图。
图25为3D打印机打印的单管截面图。
图26为3D打印机打印的套管截面图。
图27为管汇系统集成截面图。
图28为管汇系统集成系统图。
图29为管汇系统集成公共接头截面图。
图30为管道续接示意图。
图31为管汇系统集成收口器剖面图。
图32为管汇系统集成保护层缠绕原理图。
图33为地下钻孔扩孔固井智能执行器结构图。
图34为地下钻孔扩孔固井智能执行器系统图。
图35为地下钻孔扩孔固井智能执行器冷却保护层原理图。
图36为热管式阴极离子体发生器原理图。
图37为热管式离子体阴极结构图。
图38为离子体与高压气体喷嘴结构截面图。
图39为井管样管单管侧面图。
图40为井管样管套管剖面图。
图41为各类传感器、摄像头安装示意图。
图42为筒状热管示意图。
图43为热管、摄像头与自清洁装置安装示意图。
图44为摄像头自清洁装置原理图。
具体实施方式
下面结合附图和实施例,进一步说明本发明的技术方案:
3D打印离子体智能莫霍井钻井完井方法包括如下步骤及设备:先在根据地质勘探选定的钻孔位置建设钻井平台7,然后安装钻井设备,开始钻井过程。
如图1所示,钻井设备由地面3D打印机系统集成1、泥水岩屑等及其混合物抽送系统2、智能井管升降固定系统3、3D打印机打印的井管4、管汇系统集成5、井下钻孔扩孔固井智能执行器6、钻井平台7、智能控制处理中心8等组成。钻井设备穿过岩土层10形成井壁9。
地面3D打印机系统集成1、泥水岩屑等及其混合物抽送系统2、智能井管升降固定系统3、管汇系统集成5以及智能控制处理中心8的地面设备均在钻井平台7上。
井下钻孔扩孔固井智能执行器6位于井下最低部,井下钻孔扩孔固井智能执行器6上部为与之连为一体的井管样管,通过再熔井管样管上端方式由3D打印机打印或其他方式而成井管4,井管4与井管样管连接为再熔3D打印机打印而成,保持其冶金性能及强度,没有焊缝,不易腐蚀。
管汇系统集成5最下端通过与井下钻孔扩孔固井智能执行器6本体的公共接头连接,该公共接头具有可通过电磁控制等方式使管汇系统集成5与井下钻孔扩孔固井智能执行器6自动断开,当钻井完成后,管汇系统集成5可收回二次使用。井下钻孔扩孔固井智能执行器6完成钻井后,不再收回,为一次性使用,裸井除外。管汇系统集成5穿过3D打印机打印或其他方式而成的井管4及地面3D打印机系统集成1,其上端由吊索悬吊支撑。
智能井管升降固定系统3根据井下钻孔扩孔固井智能执行器6的钻井工况—钻井、封堵、熔融固井、喷涂固井、扩孔及地面3D打印机系统集成1打印情况,对3D打印机打印的井管4进行智能固定升降。
整个3D打印离子体智能莫霍井钻井完井方法可看作由5个3D打印机协同作业:3D打印喷头Ⅰ,3D打印喷头Ⅱ,封堵系统喷头,离子体熔融固井、离子体喷枪固井、离子体扩孔喷头,离子体钻孔喷头及高压气体喷头。凡是3D打印机部分,都具有一般3D打印机的特征,电子部分:系统板、主板、电机驱动板、温度控制板;机械部分:电机、支架、同步装置等;软件部分:固件、上位机程序等。
3D打印机系统集成包括:模具系统和3D打印熔融喷射系统。如图2所示,模具系统包括:依次相连的喷嘴段1—1、再熔段1—2、结晶段1—3、冷却段1—4及冷却系统。如图3所示,当井管结构为单管时,其模具由模具内管即井管管腔1—5、内管模具内层1—6、内管模具外层1—7、内管模具1—8、模具横梁集成1—12组成,模具为两个大小不一的同心圆柱体套筒,其上端通过横梁集成固连,下端悬空。如图4所示,当井管结构为套管时,其模具由模具内管即井管管腔1—5、内管模具内层1—6、内管模具外层1—7、内管模具1—8、内管与外管的夹层1—9(圆柱体腔)、外管模具内层1—10、外管模具外层1—11、套管的外管1—28及模具横梁集成1—12组成,其模具腔为两个大小不一的空心同心圆柱体套筒,其模具为四个大小不一的同心圆柱体套筒,其上端通过横梁集成固连,下端悬空。如图5、图6所示,内管模具1—8位于冷却器套筒Ⅰ1—14和冷却器套筒Ⅱ1—15的夹层内,外管模具1—28位于冷却器套筒Ⅱ1—15和冷却器套筒Ⅲ1—16的夹层内,其上端通过横梁集成1—12中的冷气管道1—13固连,其下端悬空。在模具、冷却器套筒及横梁集成1—12的合适位置安装有若干耐高温无线温度传感器1—23。横梁集成1—12用来固连模具、冷却器及通入冷气的管道1—13。横梁集成1—12是模具和冷却器的共同横梁,同时其内部有通入超低温冷气的管道1—13。如图7、图8所示,冷却器套筒由套筒内壁1—17、冷却气腔1—18、套筒外壁1—19、冷却器套筒上密封盖1—20及下密封盖组成。冷却器内外壁上有小孔洞1—21、大孔洞1—22,其分别对应结晶段、冷却段。冷却器为单向通入超低温冷气(空气),在保证工艺降温的同时,冷却气体不再回收,直接排入现场大气,以降低环境温度。整个模具系统可由金属粉末或其他耐超高温材料通过激光熔融或电子束熔融或其他3D打印方式打印或其他方法制成。不因钢水的温度而影响模具性能,且模具内表面光滑,便于钢水、冷凝成型后的钢管顺利下行。冷却器的制冷设备为超低温制冷设备,制冷量满足3D打印井管冶金性能冷却及环境降温需求。
如图9、图10、图11所示,3D打印熔融喷射系统包括:3D打印喷头Ⅰ1—25和3D打印喷头Ⅱ1—26,二者位于模具系统上方,可为一体或分开,根据工作流程二者可同时工作并可自动切换单独工作。为提高3D打印即增材制造的速度即钻孔的速度(根据不同岩性,设计钻速即成井速度50—150米/h),3D打印喷头1喷射的金属液体可由高温电炉或焦煤炉或氧气乙炔炉或等离子体电弧炉、激光器、电子束发生器Ⅰ1—24等方式熔融。根据所要打印的井管结构:井管可以是单管或套管,一侧分别有1或2个,两侧2或4个打印喷头,从里向外分别对应其模具槽。打印井管的材料为碳钢或合金钢粉末或金属丝等。如图12、图13所示,3D打印喷头Ⅱ由等离子、激光、电子束发生器Ⅱ1—27等方式、打印喷头Ⅱ1—26组成。根据所要打印的井管结构,井管可以是单管或套管,一侧分别有1或2个,两侧4或6个打印喷头,从里向外分别对应其模具槽。当打印喷头Ⅰ停止工作后,模具内的金属液体凝固,为保证其冶金性能,打印喷头Ⅱ提供超高温热源,用来再融模具内的已经凝固的金属断面。
如图14所示,泥水岩屑等及其混合物抽送系统包括:地面高负压吸入、抽送及相应的处理设备2—3、抽 送管汇2—2、地下钻孔内与井下钻孔扩孔固井智能执行器一体的吸入装置2—1。所述的地面负压抽送设备及相应的处理设备,具备足够高的负压,可把水(汽)、泥土、岩屑及其混合物从2000—40000米钻孔底部抽送到地面,并可对水、岩屑粉尘、高温混合气体、混合物进行无害化处理。抽送管汇2—2耐高温不低于1200℃。其管汇由其物理、化学性能决定的能够承受相应压力且具有韧性、硬度的材料制造的管道和相应的接头、阀门等组成,它们以常规方法密封连接。如图15所示,地下钻孔内与井下钻孔扩孔固井智能执行器一体的吸入装置,由连为一体的上空心圆柱体的底面2—10、中间圆柱体的侧面即真空绝热、冷却层外壳、下空心圆柱体顶面2—11,长方体吸入管上面2—4、长方体吸入管下面2—5、上部外罩2—7和下部外罩2—8、抽送管汇2—2、矩形吸入口2—9及其合围的空心圆柱体吸入腔2—6组成。如图16、图17所示、长方体吸入管的外侧为矩形吸入口2—9,内侧矩形口与抽送管道半圆柱开口2—16连接为一体,长方体吸入管从外壳圆柱体一侧穿过,2—15为抽送管道侧面开口一侧边沿。吸入装置2—1与整个井下钻孔扩孔固井智能执行器连为一体。整个吸入口为空心圆柱体。在吸入口及内腔内安装有无线风压传感器2—12、无线湿度传感器2—13、无线温度传感器2—14等传感器。智能化井管升降固定系统包括:支架及平衡装置和自动夹紧交替升降装置。如图18所示,支架及平衡装置包括:支架底座3—1、支架横梁3—2及于支架底座上安装的自动平衡装置3—3,它们以丝接或焊接方式固连。如图19所示,自动夹紧交替升降装置为两对十字交叉型的自动夹紧交替升降装置,包括:支架横梁3—2、拉索3—4、液压或其他动力升降吊臂3—5、拉力传感器3—6、夹紧装置3—7、夹紧装置液压或其他动力推拉臂3—8及其智能控制系统。液压升降吊臂3—5下端与支架横梁3—2固连,液压升降吊臂3—5上端与拉索3—4上端连接,拉索3—4下端与夹紧装置3—7连接,夹紧装置液压推拉臂3—8两端分别与夹紧装置3—7、液压升降吊臂3—5固连。如图20所示,夹紧装置包括:贯钉体及其伺服器3—9、贯钉3—10、夹紧装置凹糟体3—11、夹紧装置凸起体3—12、夹紧装置夹具3—13、气囊3—14、压力传感器等。夹紧装置凹糟体3—11、夹紧装置凸起体3—12外观均为立方体,中间一侧为半圆柱凹槽,上下均有封盖。如图20、图21所示,夹具两端均有两个大小不一的凸起体3—15,在夹紧装置凹糟体、夹紧装置凸起体两端均有与夹具凸起对应的凹槽3—16,该凹槽体的宽度,满足在气囊不充气和充满高压气体下,夹具所产生的位移。如图20所示,在夹紧装置夹紧状态下,最里层为被夹紧的井管4,依次为夹具、气囊、夹紧装置凹凸体。夹紧装置凹凸体吻合后,在贯钉伺服器作用下,贯钉贯入,在气囊充高压气体后,夹紧装置凹凸体不可以松动。如图21所示夹紧装置凹凸体吻合后其上下端截面均为空心圆。夹紧装置凹凸体底部有孔洞3—20,以便气囊通气管道3—22穿过,与气囊连通的为通气管道3—22和空气压缩机3—21,气囊配有压力传感器等。如图22所示,夹紧装置凸起体凸起部分的侧面有与贯钉对应的贯钉孔3—17。如图23、图24所示,贯钉体及其伺服器3—9由贯钉3—10、贯钉体3—18、伺服器3—19组成;贯钉体3—18上有若干分布均匀并与之固连的贯钉3—10,与贯钉体连接的有伺服器3—19,伺服器动力可以是伺服电机或自动液压传动。在夹紧装置夹紧后,整个井管的重力全部由夹紧装置在夹紧状态下的底部承重。根据钻井深度,当钻井深度足够深而井管足够长、其重力足够重时,可由上下1-N对夹紧装置组成。智能控制系统根据在井下钻孔扩孔固井智能执行器钻进和3D打印机打印井管的速度,当一对夹紧装置对井管进行夹紧时,随着井管的下降,该夹紧装置随井管一起下降,下降到预定位置时,另一对夹紧装置升到预定高度并同时夹紧井管,同时该夹紧装置松开井管并开始上升。如此交替升降并夹紧井管。
3D打印机打印的井管包括:由3D打印机打印而成与井下钻孔智能执行器上端为一体的井管样管、由3D打印喷头Ⅰ喷射打印的井管。如图25、图26所示,井管样管同钻井执行器所述。3D打印喷头Ⅰ喷射的金属液体可由高温电炉或焦煤炉或氧气乙炔炉或等离子体电弧炉、激光器、电子束发生器1—24等。根据设计的井身结构,井管可以是单管或套管。当井管为套管时,其外管顶部侧面开有孔洞4—2。
管汇系统集成包括:泥水岩屑等及其混合物抽送系统2、封堵系统、等离子体工作气体系统、超低温冷气系统、高压气体(空气)系统等的管汇系统及其卷盘、伺服器;电缆、信号传输线、吊索等及其卷盘和其伺服器;管汇系统集成外保护层及缠绕设备、公共接头、若干换接管、接线机器人等。
如图27所示,管汇系统集成的管汇包括:抽送管汇2—2、电缆、信号线等5—1、封堵管汇5—2、高压空气管道5—3、离子体工作气体管道5—4、超低温冷却管道5—5、离子体喷涂粉沫管道5—6、管汇系统集成保护层5—7、吊索5—8等,它们按照各自的直径及形状被保护层紧密封装在一起,其中吊索居中。所述的抽送系统管汇,同泥水岩屑等及其混合物抽送系统所述,包括抽送管道卷盘5—13、抽送管道卷盘伺服器5—14、抽送设备5—15。如图28所示、封堵管汇系统包括:封堵3D打印机6—3、封堵管汇5—2、封堵管道卷盘5—16及其伺服器5—17、封堵送料设备5—18、封堵材料、管道换、接机器人等。封堵3D打印机在钻井执行器封堵段描述。封堵 管汇5—2由能够承受一定压力、耐高温且具有韧性、硬度的材料制造的管道和相应的接头、阀门等组成,它们以常规方法密封连接。所述的封堵送料设备为常见的送料设备且带一定的压力送料,满足3D打印机喷口的喷射压力。所述的封堵材料具有在3D封堵打印机喷口射出后具有水性或干性快速凝固、一定硬度的特性,主要用来封堵含水层岩土的裂隙和填充岩土的凹陷等,以免影响正常钻井进度和成井速度。如图28所示,等离子体工作气体系统、高压气体系统、超低温冷气系统均由管汇、管道卷盘、伺服器、送气设备、制气或储气设备组成;其管汇均由各自物理、化学性能决定的能够承受相应压力、耐相应高温或超低温的,且具有韧性、硬度的材料制造的管道和相应的接头、阀门等组成,它们以常规方法密封连接。所述的等离子体工作气体,其气体可以是氩气、氮气、氧气、空气等以及其混合气体,等离子体工作气体系统包括乙炔管道卷盘5—22、乙炔管道卷盘伺服器5—23、乙炔储罐或乙炔瓶5—24,氧气管道卷盘5—28、氧气管道卷盘伺服器5—29、氧气储罐或氧气瓶5—30。所述的高压气体系统包括高压空气管道卷盘5—25、高压空气管道卷盘伺服器5—26、空气压缩机5—27;其井下喷嘴喷出的高压气体,能够自动根据岩性,硬度或熔点调整喷射压力,使刚处于熔融状态的岩土层喷为粉末。所述的超低温冷气系统,包括超低温管道卷盘5—19、超低温管道卷盘伺服器5—20、超低温制冷设备或冷源5—21;其冷却介质为无毒、无害、环保的超低沸点、比热容大的介质;超低温冷气系统释放的超低温度和冷量足以满足井下钻孔扩孔固井智能执行器及其器件(等离子体热管阴极和阳极冷却、探头、传感器、摄像头等)、线路等不因高温而影响工作或缩短其使用寿命即完成设计钻井任务。超低温冷气管道应具有一定的散热性能,其散发的冷量足以在超深井高温环境下,不影响管汇系统集成正常运行。如图28所示,上述的所有管道卷盘及其伺服器是根据其管道各自直径的大小、承压、作用等情况予以相应配置,以保证各类管道随钻井速度同步下降。
如图28所示,所述的电缆、信号传输线、吊索5—8等均由其相应的卷盘和伺服器组成并与其他管汇系统同步。电缆、信号传输线包括电缆信号传输线卷盘5—11、电缆信号传输线卷盘伺服器5—12,电缆分为交流和直流脉冲电缆,交流电缆与井下钻孔扩孔固井智能执行器内的无线充电装置6—48相连。直流脉冲电缆直接与井下钻孔扩孔固井智能执行器内的钻井执行段的离子体发生器和熔融固井或扩孔段的离子体发生器相连。信号传输线与井下钻孔扩孔固井智能执行器内的无线传输中央处理器相连。吊索5—8与井下最末端公共接头固连,每隔一定距离有与吊索固连的公共接头,所有管汇系统及所含物料、电缆、信号传输线等重量全部由吊索承载,以免管汇系统等断裂,确保管汇系统集成安全。
如图29所示,公共接头体5—0为在地下钻孔内由3D打印机打印的井管内用来连接所有管道、电缆、信号线、吊索等的公共接头,所有接头均可拆卸。若干换接管、接线机器人等是指对各类管道、电缆、信号线、吊索的拆开和续接均由相应专门的机器人操作。如图30所示,每节管道或电缆、信号线、吊索两端均有相应的阀门或接头5—35。所有管汇系统在卷盘两侧接头顺序为:当续接管道时,先关停送料、送气或抽送设备等出口阀门,再关闭钻井侧阀门,断开管道连接;换上新的管道卷盘,依次连接卷盘两侧接头并开启卷盘两侧阀门,最后开启送气、送料、抽送设备阀门,进行正常钻井施工。公共接头的连接方法与此相同。以上操作均为相应的机器人操作。如图31所示,管汇系统集成外保护层及缠绕设备及装配包括:管汇系统集成外保护层5—7、3D打印机系统集成上方的收口器5—31、卷材缠绕设备5—32、缠绕转盘5—33、硅酸铝针刺毯卷材5—34等组成。硅酸铝针刺毯等材料为耐高温、韧性好、抗拉强度高、绝热、绝缘的卷材。如图32所示,收口器指在缠绕设备上方的,依据各种管道、电缆、信号线、吊索等按照各自的排列方位及形状,随着钻进,对管汇系统集成进行收拢、收紧的装置。3D打印机打印的井管和管汇系统集成居于转盘中心位置,根据钻井的速度,在自动智能转盘伺服器的带动下,转动转盘,同时在卷材缠绕伺服器的作用下,硅酸铝针刺毯等卷材自动随钻进速度缠绕管汇系统集成,并收紧、包紧,成为管汇系统集成保护层。
由于整个管汇系统集成为带压、带料、带电作业,特别是封堵系统、抽送系统、其管道直径较大,通过卷盘,沿程阻力也很大,因此,对其动力设备、管道、接头、阀门的质量要求很高,要满足相应要求。高压气体系统对其管汇承压质量要求也很高,以保证能够承受相应的压力。所述的管汇系统集成在钻井执行器内部段,封装在钻井执行器内部的筒状管道内。
封堵系统只是在含水层时发挥相应作用,当为干热岩时(井下钻孔扩孔固井智能执行器自动识别),封堵系统的管汇可取消。
如图33、图34所示,井下钻孔扩孔固井智能执行器包括:外壳、钻井执行器离子体或激光或电子束或核子等高温高压钻井执行段6—1,抽送系统吸入装置2—1,3D打印封堵段6—3,离子体熔融喷涂固井扩孔段6—4,中央处理器、信息采集储存处理、电源、信号线及各种探测设备装配段6—5,井管基础段、光源等。
如图34所示,外壳由真空或绝热层6—32和冷却保护层6—31、底部钨合金喷嘴6—25、高压空气喷嘴构成。真空或绝热层6—32和冷却保护层6—31,二者紧密相连且与整个钻井执行器内部的垂直筒状管道连为一体,二者由大小不一的若干个连为一体的圆桶组成,上端有与其连为一体的盖,其形状一致。如图35所示,冷却保护层系统6—31,由制冷设备、冷媒供管6—6、冷媒回管6—7、装配段的圆柱体冷媒腔6—9、封堵段和熔融固井或扩孔段的圆柱体冷媒腔6—12、抽送系统吸入段和钻井执行段的圆柱体冷媒腔6—14以及其进出接管组成。冷却保护层的内腔为通入的低温冷媒。通入的冷媒量和冷媒温度可根据地下环境温度、热管冷却、各种管汇、电子元器件、各种探测设备正常工作的需求自动智能调节且满足使用。
如图35所示,在装配段圆柱体冷媒腔6—9的上方或其内部,从冷媒供管6—6引入支管6—8与靠近冷媒供管6—6的位置与装配段圆柱体冷媒腔6—9联通,冷媒充满整个腔体;在装配段圆柱体冷媒腔6—9底部靠近冷媒供管6—6位置有冷媒回管6—7与冷媒腔底部联通的支管6—10。在装配段圆柱体冷媒腔6—9底部下面的供管6—6与封堵段和熔融固井或扩孔段6—12顶部有可伸缩的与封堵段和熔融固井或扩孔段冷媒腔6—12联通的供冷媒支管6—11;在封堵段和熔融固井或扩孔段6—12内部底部靠近冷媒回管6—7的位置有与回管和封堵段和熔融固井或扩孔段冷媒腔6—12联通的可伸缩的回流支管6—13。可伸缩的供冷媒支管6—11、回流支管6—13耐超低温、超高压。
如图35所示,在抽送系统吸入段和钻井执行段顶部上方,靠近冷媒供管6—6,设置有冷媒供管6—6与抽送系统吸入段和钻井执行段冷媒腔6—15联通的供冷媒支管6—14;在抽送系统吸入段和钻井执行段冷媒腔6—16内部底部有冷媒回管6—7与抽送系统吸入段和钻井执行段冷媒腔6—16联通的冷媒回流支管6—17或回管与抽送系统吸入段和钻井执行段冷媒腔6—16底部直接联通。冷媒供管6—6和回管6—7均在位于钻井执行器中心位置的筒状管道内。冷媒供管6—6下端直接到达抽送系统吸入段和钻井执行段6—15顶部,冷媒回管6—7直接到达抽送系统吸入段和钻井执行段冷媒腔6—16底部。
如图34所示,外壳的设备装配段6—5侧面合适位置开有若干孔洞,用于装配各种元器件、电源、各种探测等设备,同时,对应的孔洞安装有耐高温保温密封盖6—56。在外壳各个段的侧面或顶端或下端安装有各种无线传感器及全景摄像头,各种无线传感器及全景摄像头安装在与冷媒腔相连的筒状的热管内,热管内侧与冷媒腔密封相连,热管外侧穿过真空层。热管内侧即冷凝端略向上倾斜。具体如热管式传感器、热管式摄像头描述。底部钨合金喷嘴6—25、高压空气喷嘴在钻井执行器执行段阐述。
如图34所示,钻井执行器离子体或激光或电子束或核子等高温高压钻井执行段包括:离子体发生器系统或激光或电子束或核子等高温系统、高压空气系统、各种无线传感器及全景热管摄像头等。如图34、图36所示,以离子体发生器作为高温热源为实施例,离子体发生器系统包括:若干个离子体发生器及其冷却系统、直流脉冲电源、离子体工作气体、各种传感器等。
如图36所示,离子体发生器由热管阴极6—22、筒状阳极6—21、阴极阳极绝缘绝热支架6—19、喷嘴6—25、切向离子体工作气体通入管道6—20及工作气体通道6—24、直流脉冲电源5—1等组成。
如图37所示,热管阴极具有传统热管的特性,由热管冷凝端6—26、热管璧6—27、热管芯6—28、蒸发端6—29组成。热管阴极的蒸发端6—29采用钨或其他耐高温耐烧灼的金属或合金制造。热管阴极钨6—23或其他耐高温耐烧灼的金属镶嵌在热管蒸发端,热管阴极钨6—23端部足够长,在其烧灼时、会有消融,但并不能影响其放电射流,热管阴极钨连续使用时间不低于10000小时。热管阴极、阳极由铜或其他金属或合金制得。热管阴极冷凝端有绝缘涂层。阳极为筒状,热管阴极、阳极通过绝缘支架6—19分别与上下冷却腔的外壳固连。阳极一侧合适位置有小孔,以便直流脉冲电源与阴极连接。
如图34、36所示,离子体发生器系统的冷却系统的冷源,采用冷却保护系统中的抽送系统吸入段和钻井执行段的圆柱体冷媒腔的冷媒。钻井执行段冷媒腔6—16底部平面有若干凹槽6—18,热管阴极冷凝端6—26穿过钻井执行段冷媒腔6—16的底部并浸入凹槽6—18的冷媒中。阳极一侧或两侧有通入离子体工作气体的管道6—20。阳极与热管阴极组成的环柱型腔道为离子体工作气体通道6—24。阳极的下口为离子体喷嘴6—25。最外侧沿圆周有若干个离子体喷嘴向外侧喷射,形成喇叭口状。高压空气系统包括:超高压空气压缩机,管汇、喷嘴及智能控制系统。为提高破岩效率和减少离子体工作时间及强度,采用超高压(大于40Mpa)空气破岩技术,提高成井或钻孔效率。
如图34、40所示,离子体、高压空气喷射管道及喷嘴穿过底部冷却保护层6—31和真空绝热层6—32,离子体喷嘴6—25、高压空气喷嘴6—30呈均匀分布。且最外侧沿圆周离子体喷嘴均以一定角度向外侧喷射,喷射的 离子束为喇叭口形状。
如图40所示,外壳最底面冷却保护层6—31和真空绝热层6—32安装有无线全景摄像头6—57、无线红外线测距仪6—58等探测元器件。
如图34所示,抽送系统吸入段即泥水岩屑等及其混合物抽送系统与井下钻孔扩孔固井智能执行器连为一体的吸入装置。
如图34所示,3D打印封堵段6—3由真空绝热6—32、冷却保护系统6—31、智能升降或进退系统、智能旋转系统、可伸缩外罩6—2、管道6—43、可伸缩管道6—47、喷嘴、封堵管道无线充电电动流量调节阀6—42、各类无线传感器、全景摄像头等组成。
如图34所示,3D打印封堵段6—3的冷却保护层6—31和真空绝热层6—32为一个独立的系统,为空心圆柱体,可升降和旋转。其冷媒供管6—11和冷媒回流管6—13耐高压、耐超低温,可伸缩,伸缩的长度与升降高度一致。
如图34所示,智能升降系统由抽送段2—1外壳、位于抽送段2—1外壳内的若干升降或进退无线充电电机或无线充电伺服器6—36、升降或水平井工况进退支架6—37、托盘组成6—38组成。无线充电升降或水平井工况进退电机或无线充电伺服器位于抽送段2—1外壳上底面并固定,其传动可采用齿轮或液压或其他方法传动。支架下端与升降或水平井工况进退电机或伺服器合适位置固连,上端与托盘连接,中间穿过抽送段2—1外壳并可上下移动或整个井下钻孔扩孔固井智能执行器水平井工况时能前后移动。
如图34所示,智能旋转系统由位于托盘上平面的圆环形导轨6—39、位于封堵段外壳底面的若干无线充电驱动电机或无线充电伺服器及其传动机构6—41、若干下端可自由滑动上端与外壳底面固定的支架6—40、封堵段外壳中空圆柱体外侧面与筒装管道之间的轴承等组成。无线充电驱动电机或无线充电伺服器6—41与封堵段6—3外壳底面固定,通过齿轮或带或其他方式传动使支架6—40下端及整个封堵段和离子体熔融喷涂固井段,沿托盘6—38上面的圆环形导轨6—39上自由旋转。如图34所示,可伸缩外罩为圆筒状,分为上可伸缩外罩6—2—1和下可伸缩外罩6—2—2。下可伸缩外罩6—2—2其下端与抽送段2—1顶面周边固连,其上端与封堵段6—3下底面周边以若干可沿圆周滑动吊环紧密连接。上可伸缩外罩6—2—1其下端与封堵段和离子体熔融喷涂固井段外壳上底面周边以若干可沿圆周滑动吊环紧密连接,其上端与封装段6—5外壳下底面固连。可伸缩外罩由耐高温、韧性好的材料制得。由于封堵段和离子体熔融喷涂固井或扩孔段共用一个外壳,在封堵段和离子体熔融喷涂固井段外壳顶面至装配段下底面的封堵管道为耐高温、高压封堵可伸缩管道6—47。以常规方法连接。在封堵段外壳内腔的水平封堵管道的合适位置,安装有无线充电电动流量调节阀6—42,水平封堵管道最外侧为封堵材料喷嘴。所述的各类无线传感器、全景摄像头为若干温度、湿度、压力、流速等传感器及全景摄像头。
如图34所示,离子体熔融喷涂固井或扩孔段,由冷却保护层6—31、真空绝热层6—32、智能升降或进退系统、智能旋转系统、可伸缩外罩6—2、若干离子体发生器系统或离子体喷涂系统、各类无线传感器、全景摄像头等组成。如图34所示,离子体熔融喷涂固井或扩孔段与封堵段紧密连为一体且共用一个绝热冷却保护系统,智能升降或进退系统、智能旋转系统、可伸缩外罩,如封堵段的描述。其冷源是封堵段和离子体熔融喷涂固井或扩孔段顶部冷却腔的冷媒,安装方法如离子体发生器所述。所述的若干离子体发生器系统如以上离子体发生器所述。当为离子体喷涂系统时,在离子体发生器所述的基础上,为常见离子体喷枪。如图34所示,离子体发生器或离子体喷涂枪为圆弧形,其上端与离子体熔融喷涂固井或扩孔段与封堵段的外壳顶部底面固定连接,其下端即喷嘴6—44呈水平穿过外壳并与外壳密封固连。若干个喷嘴6—44组成一个圆弧形喷嘴线。离子体工作气体管道、直流脉冲电源线在装配段外壳下面和离子体熔融喷涂固井段外壳上面之间的空隙具有可伸缩性,可伸缩的长度满足封堵段和离子体熔融喷涂固井段上下升降、正反旋转180度的需求。
如图34所示,信息采集储存处理、电源、信号线及各种探测设备装配段包括:由外壳组成的腔体、信息采集储存处理器6—49及其传输信号线、电源及其无线充电装置、各种探测设备6—52比如压力、温度、湿度、贵金属、钻石、天然气、地震仪、用于科学研究的仪器等。外壳组成的圆筒状腔体,其外侧开有若干个适宜的孔洞,用于安装各类元器件、设备及信号收发装置6—52等,且有相应的绝热密封盖6—56。图34中6—33为工作气体管道、6—34为直流脉冲电缆、6—35为空心圆柱腔外壁、6—45为固井扩孔段离子体热管阴极、6—46为固井扩孔段离子体热管阳极、6—50为电缆、6—51为冷媒凹槽、6—54为离子体喷涂送粉管道、6—55为封堵扩孔段圆柱形空腔壁。
如图34所示,井管基础段包括:与井下钻孔扩孔固井智能执行器一体的公共接头、井管样管。所述的与井 下钻孔扩孔固井智能执行器一体的公共接头,凡是管道类的在公共接头以下的管道均与井下钻孔扩孔固井智能执行器为一体,电源线、传输线等通过预留的筒装孔洞与公共接头连接。所有与公共接头连接的上接头为电磁控制可自动拔出的接头。如图38、图39所示,井管样管4为与井下钻孔扩孔固井智能执行器一体的井管,其长度适宜。井管样管4其下部直接与井下钻孔扩孔固井智能执行器6上端连为一体且密封;当井管为单管时,其底部与井下钻孔扩孔固井智能执行器6最上端连接处合适位置开有N个圆孔或方孔4—1;当井管为套管时,其内管底部与井下钻孔扩孔固井智能执行器上端连接处上面合适位置开有N个圆孔或方孔4—1;且内管外管下端均与井下钻孔扩孔固井智能执行器6上端连为一体并密封,内外管之间的空腔通过内管底部孔洞与内管腔连通,且外管顶部侧面开有孔洞4—2(用于干热岩开,采供暖或发电)。整个井下钻孔扩孔固井智能执行器的壳体、内部结构,除以后需安装部件外,全部是在工厂通过3D打印机打印或其他方法而制成。真空层或绝热层,通过3D打印机打印而成后,留有孔洞,待抽真空或加入绝热物质后密封。所述的冷却层腔,通过3D打印机打印而成后,留有相应的密封孔洞用于安装各类热管元器件。
所述的光源,为在井下钻孔扩孔固井智能执行器的壳体或内部安装的有线或无线LED等节能强光源,用于井下摄像头或内部照明。同时具有与摄像头一样的自清洁功能。
智能控制处理中心包括:地面3D打印机系统集成、冷却保护系统、泥水岩屑等及其混合物抽送系统、智能井管升降固定系统、管汇系统集成、井下钻孔扩孔固井智能执行器等智能控制系统。每个智能控制系统都有自己独立的控制液晶显示系统且受中央智能控制中心控制并显示。
智能控制处理中心位于地面控制中心机房。
在所有地下设备、功能段、管汇均安装有相应功能的无线传感器和无线全景摄像头。地面设备、功能段、管汇均安装有相应功能的无线或有线传感器和全景摄像头。并将采集的各类信息传送至中央智能控制中心。
如图41所示,在地下智能钻井执行器及地面3D打印功能位置安装的各类传感器、摄像头等元器件为热管式传感器8—1、热管式摄像头8—2等元器件。如图42所示,所述的热管为筒状,具有一般热管的特性,由筒状热管冷凝端8—4、热管外侧面8—5、热管内侧面8—6、热管芯8—7、热管蒸发端8—8组成。具体形状可根据传感器、摄像头等元器件形状予以调整。传感器和摄像头等元器件被封闭在筒状的热管内。筒状热管穿过真空绝热层到达冷却腔内侧面8—3,但并不直接与冷媒接触,此处冷媒腔的接触面也为筒状且内侧封闭。冷媒与热管靠辐射、接触热传导。
如图43、44所示,在热管式摄像头外侧面安装有中空的圆环8—9,圆环截面为方形,圆环的内侧面有若干向摄像头镜面倾斜的放气小孔,圆环的外侧接入通气小管Ⅰ8—11、通气小管Ⅱ8—12,通气小管Ⅰ8—11、通气小管Ⅱ8—12之间安装有微型无线充电、耐高压常闭型电磁气阀及识别传感器、自动控制模块8—10,通气小管Ⅱ8—12与高压气体管道联通。当摄像头被泥水、岩屑等遮挡或成像不清楚时,识别传感器自动识别,开启电磁气阀并清洁摄像头。
实施例:
当为陆地单管或套管钻井时,根据物探选定钻孔位置后,建设钻井平台7,各种钻井设备、材料、控制系统到达预设位置并安装、准备完毕后,把井下钻孔扩孔固井智能执行器6放到钻孔位置,将其与管汇系统集成下端接头对接,井下钻孔扩孔固井智能执行器6的井管样管上端插入至模具系统再熔段顶部,由智能井管升降固定系统3对其夹紧固定;开启3D打印机喷头Ⅱ,对井管样管顶端的金属断面再熔,当金属断面熔融后,自动关闭3D打印机喷头Ⅱ,自动开启3D打印机喷头Ⅰ进行金属液体喷射,即打印井管;同时,模具冷却系统及井下冷却系统、井下钻孔扩孔固井智能执行器6均自动开启进行钻孔。同时管汇系统、抽送系统等其他设备随钻进也自动开启。随着钻进,智能井管升降固定系统3交替升降对井管夹紧固定;当钻进一定深度,需要续接各种管道、电缆、信号线、吊索等时,由续接机器人自动换接。抽送系统抽出的水蒸气、泥土岩屑等及其混合物由地面处理设备进行无害化处理并清运。当因检修、续接等因素停止钻井后,续钻时,仍按照开启3D打印机喷头Ⅱ,对井管样管顶端的金属断面再熔,当金属断面熔融后,自动关闭3D打印机喷头Ⅱ,自动开启3D打印机喷头Ⅰ进行金属液体喷射,即继续打印井管并钻孔。
当钻层为泥土层或含水土层时,由于离子体温度在3000-30000℃,地下水瞬间蒸发,随抽送管道抽送至地面,泥土层也瞬间成为干土,在40Mp以上高压空气和离子体高温气体双重作用下,也瞬间被喷为粉末随抽送管道抽送至地面。此段固井,可采用传统套管固井,也可采用井下钻孔扩孔固井智能执行器6侧面的离子体熔融固井,即把围岩土琉化固井(根据摄像信息,智能琉化)。
当钻层为富含水土层、岩层、有裂隙时,在3000-30000℃离子体温度和40Mp以上高压气体双重作用下,岩层在刚处于熔融前状态下,瞬间被喷为粉末随抽送管道抽送至地面;水也会蒸发,被随抽送管道抽送至地面。为了保证钻进速度和成井质量,采用井下钻孔扩孔固井智能执行器6封堵系统的封堵材料对出水点或裂隙进行高压喷射封堵。由于封堵材料具有水性或干性快速凝结的特性和一定韧性、强度,达到封堵渗水和固井的目的。在此基础上,仍可采用井下钻孔扩孔固井智能执行器6侧面的离子体熔融固井,即把围岩土琉化固井。对难于封堵的出水点,在离子体熔融固井的基础上,可把井下钻孔扩孔固井智能执行器6侧面的离子体熔融功能转为离子体喷枪,进行离子体喷涂,进行封堵和固井。离子体喷涂可形成致密的有一定韧度的涂层,并可保证地下水不流失。根据物探报告,当地下水太丰富时,也可先采用裸孔钻孔、扩孔方法,钻到干热岩层(不含水)后,采用传统方法下套管,待水层封堵后,在按上述方法钻井。
当钻层为松散岩层、有裂隙时,采用井下钻孔扩孔固井智能执行器6封堵系统的封堵材料对裂隙进行高压喷射封堵。仍采用井下钻孔扩孔固井智能执行器6侧面的离子体熔融固井,即把围岩土琉化固井。也可与离子体喷枪配合使用,达到最佳固井状态。
当钻层有溶洞时,可继续钻井,不像传统钻井,因地漏而停工或致工程失败。
当为陆地裸孔钻井(没有井管)时,选定钻孔位置后,建设钻井平台7,各种钻井设备(3D打印及自动夹紧升降系统除外)、材料、控制系统到达预设位置并安装、准备完毕后,把井下钻孔扩孔固井智能执行器6放钻孔位置,井下钻孔扩孔固井智能执行器6的井管样管上端与管汇系统集成最下端的接头对接,由钢筋吊索(不可旋转)承担井下钻孔扩孔固井智能执行器6及管汇的全部重量并根据智能控制系统,控制井下钻孔扩孔固井智能执行器6的升降。管汇系统、抽送系统等其他设备随钻进也自动开启。当钻进一定深度,需要续接各种管道、电缆、信号线、吊索等时,由续接机器人自动换接。抽送系统抽出的水蒸气、泥土岩屑等及其混合物由地面处理设备进行无害化处理并清运。
当为陆地裸孔扩孔钻孔工况时,根据地质结构钻探,地球深部物理化学探测、地震监测,地球深部稀缺资源开采等钻孔目的的不同,钻孔直径可在20-100cm范围内自由选择。当钻孔直径较大时,比如地球深部稀缺资源开采等,在原有的裸孔钻孔的基础上,采用井下钻孔扩孔固井智能执行器66侧面的离子体熔融扩孔固井段进行扩孔或将井下钻孔扩孔固井智能执行器6的直径扩大至想钻的孔径即可。
当为陆地水平钻孔工况时,即地球深部实验室(高温300-1000℃高压环境)等需要地球深部水平孔洞或空间或开采稀缺资源(钻孔的过程即开采的过程),可采用本发明3D打印离子体智能莫霍井钻井完井方法进行水平钻孔进行资源开采。在陆地裸孔扩孔钻孔的基础上,将井下钻孔扩孔固井智能执行器6水平放置,并在井下钻孔扩孔固井智能执行器6的装配段的内腔和抽送段上方内腔加装驱动电机或伺服器以及传动机构并密封绝热,以轮式或履带式或步行式前进或后退的行进方式。
当在大洋及深海海底钻井时,除需要相应的海上钻井平台外,只需要根据钻孔的直径,先下一个相应直径的直达海底一定深度的套管,海水及地下水不能进入套管。形成陆地钻井的条件,再开始按陆地钻孔进行。该套管也可采用3D打印。
本发明的有益效果:采用本发明进行莫霍井钻探,能够更好地进行科学探测地球内部结构和成分;在构造地质学方面能够研究球深部构造及演化,检校地球物理探测结果,研究地壳深部流体及其作用,探索大型陨石撞击作用与生物集群灭绝奥秘;在资源能源开发利用方面,能够更好地研究盆地演化、成矿理论、油气成因及天然气水合物,调查和开发深部热能;在环境科学方面,能够更好地研究地震成因改进地震预报、火山喷发机理,地质灾害预警,研究地球气候演变、探索生命演化历史。除此以外,科学钻探可以建立地壳长期观测站、调查核废料储埋场址,最重要的还会促进钻探技术的极大发展。对陆地或深海油气田、稀有矿物质、稀有金属等开采具有战略意义。为提高我国及世界各国地热能的应用比例(预期地热发电占比90%以上)提供最先进、最科学、最可靠的技术保障。
本发明专利3D打印离子体智能莫霍井钻井完井方法可以称为:开启探索地球深部奥秘及开采地球深部资源的钥匙。

Claims (13)

  1. 一种3D打印离子体智能莫霍井钻井完井方法,包括如下步骤:先在根据物探选定的钻孔位置建设钻井平台,然后安装钻井设备,开始钻井过程;所述的钻井设备包括智能控制处理中心、泥水岩屑等及其混合物抽送系统、井管、智能井管升降固定系统、管汇系统集成、井下钻孔扩孔固井智能执行器,其特征在于:所述的钻井设备还包括地面3D打印机系统集成、绝热和冷却保护系统,所述的井管为3D打印机打印的井管,由泥水岩屑等及其混合物抽送系统排出钻井产生的泥浆及岩屑,由井下钻孔扩孔固井智能执行器实施钻井;地下整个钻井设备系统由绝热和冷却保护系统予以保护;地面3D打印机系统集成、泥水岩屑等及其混合物抽送系统、智能井管升降固定系统、管汇系统集成以及智能控制处理中心的地面设备均在钻井平台上;管汇系统集成最下端与井下钻孔扩孔固井智能执行器本体的公共接头连接,该公共接头可通过电磁控制方式使管汇系统集成与井下钻孔扩孔固井智能执行器自动断开;管汇系统集成穿过井管、地面3D打印机系统集成,其上端由吊索支架支撑。
  2. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:整个3D打印离子体智能莫霍井钻井完井方法由5个3D打印机协同作业,包括:3D打印喷头Ⅰ,3D打印喷头Ⅱ,封堵系统喷头,离子体熔融固井、离子体喷枪固井、离子体扩孔喷头,离子体钻孔、高压气体喷头,都具有一般3D打印机的特征;智能井管升降固定系统根据井下钻孔扩孔固井智能执行器的钻井工况—钻井、封堵、熔融固井、喷涂固井、扩孔及地面3D打印机系统集成打印情况,对3D打印机打印的井管进行智能固定、升降。
  3. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:3D打印机系统集成包括依次相连的喷嘴段、再熔段、结晶段和冷却段的模具系统和3D打印熔融喷射系统;当井管结构为单管时,由模具内管、内管模具内层、内管模具外层、内管模具、模具横梁集成组成,其模具为两个大小不一的同心圆柱体套筒;当井管结构为套管时,由模具内管即井管管腔、内管模具内层、内管模具外层、内管模具、内管与外管的夹层、外管模具内层、外管模具外层、套管的外管及模具横梁集成组成,其模具腔为两个大小不一的空心同心圆柱体套筒,其模具为四个大小不一的同心圆柱体套筒,其上端通过横梁集成固连,下端悬空;内管模具、外管模具分别位于冷却器套筒和冷却器套筒的夹层内,其上端通过横梁集成中的冷气管道固连,其下端悬空;在模具、冷却器套筒及横梁集成上均安装有耐高温无线温度传感器;横梁集成用来固连模具、冷却器及通入冷气的管道;横梁集成是模具和冷却器的共同横梁,同时其内部有通入超低温冷气的管道;冷却器套筒由套筒内壁、冷却气腔、套筒外壁、冷却器套筒上密封盖及下密封盖组成;冷却器内外壁上有大小不一的孔洞,其分别对应结晶段、冷却段;冷却器为单向通入超低温冷气;3D打印熔融喷射系统包括:3D打印喷头Ⅰ和3D打印喷头Ⅱ,二者位于模具系统上方,可为一体或分开,根据工作流程二者可同时工作并自动切换单独工作;3D打印喷头Ⅰ喷射的金属液体可由离子体、激光等方式熔融;根据所要打印的井管结构:井管是单管或套管,一侧分别有1或2个,两侧2或4个打印喷头,从里向外分别对应其模具槽;打印喷头Ⅱ是等离子体炬、激光或电子束发生器方式喷射;根据所要打印的井管结构,井管可以是单管或套管,一侧分别有1或2个,两侧2或4个打印喷头,从里向外分别对应其模具槽;当打印喷头Ⅰ停止工作后,模具内的金属液体凝固,打印喷头Ⅱ用来再融模具内的已经凝固的金属断面。
  4. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:泥水岩屑等及其混合物抽送系统包括:地面高负压吸入、抽送及相应的处理设备、抽送管汇、地下钻孔内与井下钻孔扩孔固井智能执行器一体的吸入装置;抽送管汇由管道、相应的接头、阀门组成;与井下钻孔扩孔固井智能执行器一体的吸入装置,由连为一体的上空心圆柱体的底面、中间圆柱体的侧面即真空绝热、冷却层外壳、下空心圆柱体顶面,长方体吸入管、外罩、抽送管道、矩形吸入口及其合围的空心圆柱体吸入腔组成;长方体吸入管的外侧为矩形吸入口,内侧矩形口与抽送管道半圆柱开口连接为一体,长方体吸入管从外壳圆柱体一侧穿过,吸入装置与整个钻井执行器连为一体,整个吸入口为空心圆柱体,在吸入口及内腔合适位置安装有无线风压传感器、湿度传感器、温度传感器。
  5. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:智能化井管升降固定系统包括:支架、平衡装置和自动夹紧交替升降装置;支架及平衡装置包括支架底座、支架横梁及支架底座上安装的自动平衡装置;自动夹紧交替升降装置为两对十字交叉型的自动夹紧交替升降装置,包括支架横梁、拉索、液压或其他动力升降吊臂、拉力传感器、夹紧装置、夹紧装置液压或其他动力推拉臂及其智能控制系统;液压升降吊臂下端与支架横梁固连,液压升降吊臂上端与拉索上端连接,拉索下端与夹紧装置连接,夹紧装置液压推拉臂两端分别与夹紧装置、液压升降吊臂固连;夹紧装置包括贯钉体及其伺服器、贯钉、夹紧装置凹糟体、夹紧装置凸起体、夹紧装置夹具、气囊、压力传感器,夹紧装置凹糟体、夹紧装置凸起体外观均为立方体,中间一侧为半圆柱凹槽,上下均有封盖;所述的夹具两端均有两个大小不一的凸起体,在夹紧装置凹糟体、夹紧装置凸起体两端均有与夹具凸起体对应的凹槽,该凹槽体的宽度,满足在气囊不充气和充满高压气体下,夹具所产生的位移;在夹紧 装置夹紧状态下,最里层为被夹紧的钢管,依次为夹具、气囊、夹紧装置凹凸体;夹紧装置凹凸体吻合后,在贯钉伺服器作用下,贯钉贯入,在气囊充高压气体后,夹紧装置凹凸体不可以松动;夹紧装置凹凸体吻合后其上下端截面均为空心圆;夹紧装置凹凸体底部有孔洞,以便气囊通气管道穿过,与气囊连通的为通气管道和空气压缩机,气囊配有压力传感器;夹紧装置凸起体凸起部分的侧面有与贯钉对应的贯钉孔;贯钉体及其伺服器由贯钉、贯钉体、伺服器组成;贯钉体上有若干分布均匀的贯钉,伺服器与贯钉体连接;在夹紧装置夹紧后,整个井管的重力全部由夹紧装置在夹紧状态下的底部承重,根据钻井深度,当钻井深度足够深而井管足够长、其重力足够重时,可由上下1-N对夹紧装置组成;根据在井下钻孔扩孔固井智能执行器钻进和3D打印机打印井管的速度,当一对夹紧装置对井管进行夹紧时,随着井管的下降,该夹紧装置随井管一起下降,下降到预定位置时,另一对夹紧装置升到预定高度并同时夹紧井管,同时该夹紧装置松开井管并开始上升,如此交替智能升降并夹紧井管。
  6. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:3D打印机打印的井管包括:由3D打印机打印而成与井下钻孔扩孔固井智能执行器上端为一体的井管样管、由3D打印喷头Ⅰ喷射打印的井管;当井管为套管时,其外管顶部侧面开有孔洞。
  7. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:管汇系统集成包括:抽送系统、封堵系统、等离子体工作气体系统、超低温冷气系统、高压气体系统及其卷盘、伺服器,电缆、信号传输线、吊索等及其卷盘和其伺服器,管汇系统集成外保护层及缠绕设备、公共接头、若干换接管、接线机器人;管汇系统集成的管汇包括:抽送管道、电缆、信号线、封堵管道、高压空气管道、离子体工作气体管道、超低温冷却管道、吊索、管汇系统集成保护层;封堵管汇系统包括:封堵3D打印机、封堵管道、封堵管道卷盘及其伺服器、封堵送料设备、封堵材料、管道换接机器人,封堵管汇由能够承受一定压力、耐高温且具有韧性、硬度的材料制造的管道和相应的接头、阀门组成,封堵送料设备满足封堵3D打印机喷口的喷射压力,封堵材料具有在3D封堵打印机喷口射出后具有水性或干性快速凝固、一定硬度的特性;等离子体工作气体系统、高压气体系统、超低温冷气系统均由管汇、管道卷盘、伺服器、送气设备、制气或储气设备组成,其管汇均由各自物理、化学性能决定的能够承受相应压力、耐相应高温或超低温的,且具有韧性、硬度的材料制造的管道和相应的接头、阀门组成;等离子体工作气体是氩气、氮气、氧气或者空气,或者是它们中至少两种的混合气体;高压气体系统其井下喷嘴喷出的高压气体可使刚处于熔融状态的岩土层喷为粉末,超低温冷气管道有一定的散热性能;电缆、信号传输线、吊索均由其相应的卷盘和伺服器组成并与其他管汇系统同步,电缆分为交流电缆和直流脉冲电缆,交流电缆与井下钻孔扩孔固井智能执行器内的无线充电装置相连;直流脉冲电缆直接与井下钻孔扩孔固井智能执行器内的钻井执行段的离子体发生器和熔融固井或扩孔段的离子体发生器相连;信号传输线与井下钻孔扩孔固井智能执行器内的无线传输中央处理器相连;吊索与井下最末端公共接头固连,每隔一定距离有与吊索固连的公共接头,所有管汇系统及所含物料、电缆、信号传输线的重量全部由吊索承载;公共接头为在地下钻孔的井管内用来连接所有管道、电缆、信号线、吊索等的公共接头,所有接头均可自动拆接;管汇系统集成外保护层及缠绕设备包括:管汇系统集成外保护层、3D打印机系统集成上方的收口器、卷材缠绕伺服器、缠绕转盘、硅酸铝针刺毯卷材;硅酸铝针刺毯卷材为耐高温、韧性好、抗拉强度高、绝缘的卷材,收口器是在缠绕设备上方的,按照各种管道、电缆、信号线、吊索等按照各自的排列方位,随着钻进,对管汇系统集成进行收拢、收紧的装置,3D打印机打印的井管和管汇系统集成居于转盘中心位置,根据钻井的速度,在自动智能转盘伺服器的带动下,转动转盘,同时在卷材缠绕伺服器的作用下,硅酸铝针刺毯等卷材自动随钻进速度缠绕管汇系统集成,并收紧、包紧,成为管汇系统集成保护层;管汇系统集成在井下钻孔扩孔固井智能执行器内部段,封装在井下钻孔扩孔固井智能执行器内部的筒状管道内;所有管汇系统在卷盘两侧接头顺序为:当续接管道时,先关停送料、送气或抽送设备等出口阀门,再关闭钻井侧阀门,断开管道连接;换上新的管道卷盘,依次连接卷盘两侧接头并开启卷盘两侧阀门,最后开启送气、送料、抽送设备阀门,进行正常钻井施工,以上操作均为相应的机器人操作。
  8. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:井下钻孔扩孔固井智能执行器包括:外壳、钻井执行器离子体或激光或电子束或核子等高温高压钻井执行段,抽送系统吸入段,3D打印封堵段,离子体熔融喷涂固井或扩孔段、中央处理器、信息采集储存处理、电源、信号线及各种探测设备装配段、井管基础段、光源;外壳由真空或绝热层和冷却保护层系统、底部钨合金喷嘴、高压空气喷嘴构成;真空或绝热层和冷却保护层,二者紧密相连且与整个井下钻孔扩孔固井智能执行器内部的垂直筒状管道连为一体,二者由大小不一的若干个连为一体的圆桶组成,上端有与其连为一体的盖,其形状一致;冷却保护层系统,由制冷设备、冷媒供管、冷媒回管、装配段的立方体冷媒腔、封堵段和熔融固井或扩孔段的立方体冷媒腔、抽送系统吸入段和钻井执 行段的立方体冷媒腔以及其进出接管组成;冷却保护层的内腔为通入的低温冷媒;在装配段冷媒腔的上方或其内部,从冷媒供管引入支管与靠近冷媒供管的位置与装配段冷媒腔联通,冷媒充满整个腔体;在装配段冷媒腔底部靠近冷媒供管位置有冷媒回管和立方体冷媒腔底部联通的支管;在装配段冷媒腔底部下面的供管与封堵段和熔融固井或扩孔段顶部有可伸缩的与封堵段和熔融固井或扩孔段冷媒腔联通的供冷媒支管;在封堵段和熔融固井或扩孔段内部底部靠近冷媒回管的位置有与回管和封堵段和熔融固井或扩孔段冷媒腔联通的可伸缩的回流支管,可伸缩的供冷媒支管、回流支管耐超低温、超高压;在抽送系统吸入段和钻井执行段顶部上方,靠近冷媒供管,有冷媒供管与封堵段和熔融固井或扩孔段冷媒腔联通的供冷媒支管;在抽送系统吸入段和钻井执行段冷媒腔内部底部有冷媒回管与抽送系统吸入段和钻井执行段冷媒腔联通的冷媒回流支管或回管与抽送系统吸入段和钻井执行段冷媒腔底部直接联通;冷媒供管和回管均在位于井下钻孔扩孔固井智能执行器中心位置的筒状管道内;冷媒供管下端到抽送系统吸入段和钻井执行段顶部,冷媒回管到抽送系统吸入段和钻井执行段冷媒腔底部;外壳的设备装配段侧面合适位置开有若干孔洞,用于装配各种元器件、电源及探测设备,同时,对应的孔洞安装有耐高温保温密封盖;在外壳各个段的侧面或顶端或下端安装有各种无线传感器及全景摄像头,各种无线传感器及全景摄像头安装在与冷媒腔相连的筒状的热管内,热管内侧与冷媒腔密封相连,热管外侧穿过真空层;热管内侧即冷凝端略向上倾斜;井下钻孔扩孔固井智能执行器离子体或激光或电子束或核子等高温高压钻井执行段包括:离子体发生器系统或激光或电子束或核子等高温系统、高压空气系统、各种无线传感器及全景摄像头;所述的离子体发生器系统包括:若干个离子体发生器及其冷却系统、直流脉冲电源、离子体工作气体、各种传感器;离子体发生器由热管阴极、筒状阳极、阴极阳极绝缘绝热支架、喷嘴、切向离子体工作气体通入管道及通道、直流脉冲电源组成;热管阴极由热管冷凝端、热管璧、热管芯、蒸发端组成;热管的蒸发端采用钨或其他耐高温耐烧灼的金属或合金制造,热管阴极镶嵌在热管蒸发端端且呈圆锥状,热管阴极、阳极由铜或其他金属或合金制得;热管阴极冷凝端有绝缘涂层,阳极为筒状,热管阴极、阳极通过绝缘支架分别与上下冷却腔的外壳固连,阳极一侧合适位置有小孔,以便直流脉冲电源与阴极连接;离子体发生器系统的冷却系统的冷源,采用冷却保护系统中的抽送系统吸入段和钻井执行段的立方体冷媒腔的冷媒;钻井执行段冷媒腔底部平面有若干凹槽,热管阴极冷凝端穿过钻井执行段冷媒腔的底部并浸入凹槽的冷媒中,阳极一侧或两侧有通入离子体工作气体的管道,阳极与热管阴极组成的环柱型腔道为离子体工作气体通道,阳极的下口为离子体喷嘴,外壳最底面的离子体、高压空气喷射管道及喷嘴穿过底部冷却层和真空层,离子体喷嘴、高压空气喷嘴呈均匀分布,且最外侧呈圆周离子体喷嘴均以一定角度向外侧喷射,喷射的离子束为喇叭口形状,外壳最底面安装有无线全景摄像头、无线红外线测距仪;抽送系统吸入段即泥水岩屑等及其混合物抽送系统与井下钻孔扩孔固井智能执行器连为一体的吸入装置;3D打印封堵段由真空绝热、冷却保护系统、智能升降或进退系统、智能旋转系统、可伸缩外罩、管道、可伸缩管道、喷嘴、封堵管道无线充电电动流量调节阀、各类无线传感器、全景摄像头组成;3D打印封堵段的真空绝热、冷却保护系统为一个相对独立的系统,为空心圆柱体,可智能升降和旋转,其冷媒供管和冷媒回流管可伸缩,伸缩的长度与升降高度、旋转长度一致;智能升降系统由抽送段外壳、位于抽送段外壳内的若干升降或进退无线充电电机或无线充电伺服器、升降或进退支架、托盘组成;无线充电升降或进退电机或无线充电伺服器位于抽送段外壳上底面并固定,其传动采用齿轮或液压传动;支架下端与升降或进退电机或伺服器固连,支架上端与托盘连接,中间穿过抽送段外壳并可上下移动或整个井下钻孔扩孔固井智能执行器水平放置时能前后移动;智能旋转系统由位于托盘上平面的圆环形导轨、位于封堵段外壳底面的若干无线充电驱动电机或无线充电伺服器及其传动机构、若干下端可自由滑动上端与外壳底面固定的支架、封堵段外壳中空圆柱体外侧面与筒装管道之间的轴承组成;无线充电驱动电机或无线充电伺服器与封堵段外壳底面固定,通过齿轮或带或其他方式传动使支架下端及整个封堵段和离子体熔融喷涂固井段,沿托盘上面的圆环形导轨自由旋转;可伸缩外罩为圆筒状,分为上可伸缩外罩和下可伸缩外罩,下可伸缩外罩其下端与抽送段顶面周边固连,其上端与封堵段下底面周边以若干可沿圆周滑动吊环紧密连接;上可伸缩外罩其下端与封堵段和离子体熔融喷涂固井段外壳上底面周边,以若干可沿圆周滑动吊环紧密连接,其上端与封装段外壳下底面固连;封堵段和离子体熔融喷涂固井或扩孔段共用一个外壳,在封堵段和离子体熔融喷涂固井段外壳顶面至装配段下底面的封堵管道为可伸缩耐高温、高压管道;在封堵段外壳内腔的水平封堵管道的合适位置,安装有无线充电电动流量调节阀,水平封堵管道最外侧为封堵材料喷嘴;离子体熔融喷涂固井或扩孔段,由真空绝热、冷却保护系统、智能升降或进退系统、智能旋转系统、可伸缩外罩、若干离子体发生器系统或离子体喷涂系统、各类无线传感器、全景摄像头组成;离子体熔融喷涂固井或扩孔段与封堵段紧密连为一体且共用一个绝热冷却保护系统、智能升降或进退系统、智能旋转系统、可伸缩外罩,其冷源是封堵段和离子体熔融喷涂固井 或扩孔段顶部冷却腔的冷媒,当为离子体喷涂系统时为常见离子体喷枪;离子体发生器或离子体喷涂枪为圆弧形,其上端与离子体熔融喷涂固井或扩孔段与封堵段的外壳顶部底面固定连接,其下端即喷嘴呈水平穿过外壳并与外壳密封固连;若干个喷嘴组成一个圆环形喷嘴线;离子体工作气体管道、直流脉冲电源线在装配段外壳下面和离子体熔融喷涂固井段外壳上面之间的空隙具有可伸缩性,可伸缩的长度满足封堵段和离子体熔融喷涂固井段上下升降、正反旋转180度的需求;信息采集储存处理、电源、信号线及各种探测设备装配段包括:由外壳组成的腔体、信息采集储存处理器及其传输信号线、电源及其无线充电装置、各种探测设备;外壳组成的圆筒状腔体,其外侧开有若干个适宜的孔洞,用于安装各类元器件、设备,且有相应的绝热密封盖;井管基础段包括:与井下钻孔扩孔固井智能执行器一体的公共接头、基础井管;电源线、传输线通过预留的筒状孔洞与公共接头连接;所有与公共接头连接的上接头为电磁控制可自动拔出的接头;基础井管,为与井下钻孔扩孔固井智能执行器一体的井管,基础井管其下部直接与井下钻孔扩孔固井智能执行器上端连为一体且密封;当井管为单管时,其底部与井下钻孔智能执行器最上端连接处合适位置开有N个圆孔或方孔;当井管为套管时,其内管底部与井下钻孔智能执行器上端连接处上面开有N个圆孔或方孔;且内管外管下端均与井下钻孔扩孔固井智能执行器上端连为一体并密封,内外管之间的空腔通过内管底部孔洞与内管腔连通,且外管顶部侧面开有孔洞;光源,为在井下钻孔扩孔固井智能执行器的壳体或内部安装的有线或无线LED强光源,用于井下摄像头或内部照明且具有自清洁功能。
  9. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:智能控制处理中心包括:地面3D打印机系统集成、冷却保护系统、泥水岩屑等及其混合物抽送系统、智能井管升降固定系统、管汇系统集成、井下钻孔扩孔固井智能执行器的智能控制系统;每个智能控制系统都有自己独立的控制液晶显示系统且受中央智能控制中心控制并显示。
  10. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:所有地下设备、功能段、管汇均安装有相应功能的无线传感器和无线全景摄像头,地面设备、功能段、管汇均安装有相应功能的无线或有线传感器和全景摄像头,并将采集的各类信息传送至中央智能控制中心;所述的传感器、摄像头等元器件都安装在筒状热管内并密封,筒状热管由冷凝端、热管外侧面、热管内侧面、热管芯、热管蒸发端组成;筒状热管穿过真空绝热层到达冷却腔内侧面且密闭;在热管式摄像头外侧面安装有中空的圆环,圆环截面为方形,圆环的内侧面有若干向摄像头镜面倾斜的放气小孔,圆环的外侧接入通气小管Ⅰ和通气小管Ⅱ,两个通气小管之间安装有微型无线充电、耐高压常闭型电磁气阀及识别传感器、自动控制模块,通气小管Ⅱ与高压气体管道联通。
  11. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:所述的钻井过程为把井下钻孔扩孔固井智能执行器放在钻孔位置,与管汇系统集成下端接头对接,钻孔扩孔固井智能执行器的基础井管上端插入至模具再熔段顶部,由智能井管升降固定系统对其夹紧固定;开启3D打印喷头Ⅱ,对基础井管顶端的金属断面再熔,当金属断面熔融后,自动关闭3D打印喷头Ⅱ,开启3D打印喷头Ⅰ进行金属液体喷射,即打印井管;同时,模具冷却系统及井下冷却系统、井下钻孔扩孔固井智能执行器均自动开启进行钻井,管汇系统集成、泥水岩屑等及其混合物抽送系统随钻进也自动开启;随着钻进,智能井管升降固定系统交替升降对井管夹紧固定;当钻进一定深度,需要续接各种管道、电缆、信号线、吊索时,由续接机器人自动换接,抽送系统抽出的水蒸气、泥土岩屑等及其混合物由地面处理设备进行无害化处理并清运。
  12. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:在地球深部高温300—1000℃环境下实施垂直或水平钻孔,当实施水平钻孔时,将井下钻孔扩孔固井智能执行器水平放置,并在井下钻孔扩孔固井智能执行器的装配段的内腔和抽送段上方内腔加装驱动电机或伺服器以及传动机构并密封绝热,行进方式以轮式或履带式或步行式前进或后退。
  13. 如权利要求1所述的3D打印离子体智能莫霍井钻井完井方法,其特征在于:当在大洋及深海海底钻井时,所述的钻井平台为海上钻井平台,在海上钻井平台上,根据钻孔的直径,先下一个直达海底面以下一定深度的套管,然后按陆地方法开始钻井。
PCT/CN2017/096856 2017-07-12 2017-08-10 3d打印离子体智能莫霍井钻井完井方法 WO2019010743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710567644.2 2017-07-12
CN201710567644.2A CN107313749A (zh) 2017-07-12 2017-07-12 3d打印离子体智能莫霍井钻井完井方法

Publications (1)

Publication Number Publication Date
WO2019010743A1 true WO2019010743A1 (zh) 2019-01-17

Family

ID=60177846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096856 WO2019010743A1 (zh) 2017-07-12 2017-08-10 3d打印离子体智能莫霍井钻井完井方法

Country Status (2)

Country Link
CN (1) CN107313749A (zh)
WO (1) WO2019010743A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505792A (ja) * 2017-12-05 2021-02-18 サウジ アラビアン オイル カンパニー 坑井管状部材の付加製造
US11840904B2 (en) 2022-02-28 2023-12-12 Saudi Arabian Oil Company Methods and apparatus for printing a wellbore casing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109162710B (zh) * 2018-10-26 2020-10-09 中国石油大学(北京) 井壁裂隙打印装置
CN111677479A (zh) * 2020-06-18 2020-09-18 中煤科工集团重庆研究院有限公司 基于3d打印的自动化快速封孔工艺
CN112172143A (zh) * 2020-09-18 2021-01-05 上海言诺建筑材料有限公司 3d打印深井装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002949A (zh) * 2010-11-16 2011-04-06 江苏科技大学 地源热泵埋管装置及埋管方法
WO2012016045A1 (en) * 2010-07-30 2012-02-02 Shell Oil Company Monitoring of drilling operations with flow and density measurement
CN204632237U (zh) * 2015-04-30 2015-09-09 西南石油大学 一种适合于钻井应急演练的井架设备
CN205259341U (zh) * 2015-12-29 2016-05-25 马义和 3d打印的雨水井
US20160153266A1 (en) * 2014-08-22 2016-06-02 Schlumberger Technology Corporation Oilfield-wide production optimization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3914617A1 (de) * 1989-05-03 1990-11-08 Werner Foppe Vorrichtungen und verfahren zur gewaehrleistung kontinuierlich ablaufender schmelzbohrprozesse fuer tiefbohrungen
CN105751493A (zh) * 2014-12-19 2016-07-13 中石化胜利石油工程有限公司钻井工艺研究院 基于3d打印技术的精密钻井工具快速成型方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016045A1 (en) * 2010-07-30 2012-02-02 Shell Oil Company Monitoring of drilling operations with flow and density measurement
CN102002949A (zh) * 2010-11-16 2011-04-06 江苏科技大学 地源热泵埋管装置及埋管方法
US20160153266A1 (en) * 2014-08-22 2016-06-02 Schlumberger Technology Corporation Oilfield-wide production optimization
CN204632237U (zh) * 2015-04-30 2015-09-09 西南石油大学 一种适合于钻井应急演练的井架设备
CN205259341U (zh) * 2015-12-29 2016-05-25 马义和 3d打印的雨水井

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505792A (ja) * 2017-12-05 2021-02-18 サウジ アラビアン オイル カンパニー 坑井管状部材の付加製造
JP7097968B2 (ja) 2017-12-05 2022-07-08 サウジ アラビアン オイル カンパニー 坑井管状部材の付加製造
US11840904B2 (en) 2022-02-28 2023-12-12 Saudi Arabian Oil Company Methods and apparatus for printing a wellbore casing

Also Published As

Publication number Publication date
CN107313749A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
WO2019010743A1 (zh) 3d打印离子体智能莫霍井钻井完井方法
US9708885B2 (en) System and method for extracting energy
JP6605210B2 (ja) 海底熱水井掘削装置
CN104533287B (zh) 一种钻鱼刺状多级分支水平井页岩气储层钻完井和增产系统
CN106761513A (zh) 一种绳索打捞式保压取心钻具
CN106246101B (zh) 一种用干冰钻井液辅助破岩的钻井方法
CN106285617A (zh) 天然气水平井完井方法
CN106014473B (zh) 一种交叉钻孔约束爆破网络增透瓦斯抽放方法
CN109488305A (zh) 一种应用在破损井筒修复过程中的冻结器布置方式
JP2021513052A5 (zh)
CN110043229A (zh) 一种海域天然气水合物多井组连通汇聚开采方法
JP2014533332A (ja) 地熱坑井用同軸熱交換器のケーシング及び該ケーシングの配向及び支持方法
KR20130133990A (ko) 고심도용 지중 열교환기 코일관 웨이트장치 및 설치방법
CN109184626A (zh) 一种天然气水合物高效率开采方法
CN107631899A (zh) 一种用于海洋天然气水合物的连续取样装置及取样方法
CN102002949B (zh) 地源热泵埋管装置及埋管方法
JP2022542910A (ja) 地熱採掘システム
CN208763630U (zh) 一种天然气水合物开采系统
CN109252833A (zh) 一种天然气水合物开采方法
US2850271A (en) Method of mining sulfur located underneath bodies of water
CN111583770B (zh) 基于土工离心机的海洋渗漏型天然气水合物成藏模拟实验装置及方法
US8966900B2 (en) Methods and systems to harvest energy from the earth
CN109812999B (zh) 一种干热岩热能的大规模采集利用系统
CN108547599B (zh) 海底可燃冰的开采系统及开采方法
ES2346260T3 (es) Dispositivo de bombeo.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917494

Country of ref document: EP

Kind code of ref document: A1