JP6605210B2 - 海底熱水井掘削装置 - Google Patents

海底熱水井掘削装置 Download PDF

Info

Publication number
JP6605210B2
JP6605210B2 JP2015050162A JP2015050162A JP6605210B2 JP 6605210 B2 JP6605210 B2 JP 6605210B2 JP 2015050162 A JP2015050162 A JP 2015050162A JP 2015050162 A JP2015050162 A JP 2015050162A JP 6605210 B2 JP6605210 B2 JP 6605210B2
Authority
JP
Japan
Prior art keywords
hot water
submarine
digging
excavation
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015050162A
Other languages
English (en)
Other versions
JP2016169538A (ja
Inventor
俊文 松岡
和己 大里
高志 岡部
晴弥 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEOTHERMAL ENERGY RESEARCH AND DEVELOPMENT CO.,LTD.
Original Assignee
GEOTHERMAL ENERGY RESEARCH AND DEVELOPMENT CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEOTHERMAL ENERGY RESEARCH AND DEVELOPMENT CO.,LTD. filed Critical GEOTHERMAL ENERGY RESEARCH AND DEVELOPMENT CO.,LTD.
Priority to JP2015050162A priority Critical patent/JP6605210B2/ja
Priority to PCT/JP2015/058851 priority patent/WO2016147419A1/ja
Publication of JP2016169538A publication Critical patent/JP2016169538A/ja
Application granted granted Critical
Publication of JP6605210B2 publication Critical patent/JP6605210B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、1000mから1500mの海底から噴出する熱水を利用して熱水発電及び同熱水中に含まれる有用物質の回収を可能とする掘削・発電・回収装置並びにそれらの処理に関する。
近年、日本近海の海洋熱水の具体的な調査からは、例えば、独立行政法人海洋研究開発機構(JAMSTEC)の運用する地球深部探査船「ちきゅう」は、2010年9月1日より、統合国際深海掘削計画(IODP)第331次研究航海として、「沖縄熱水海底下生命圏掘削−1」を実施し、沖縄本島北西100キロメートルの地点(伊平屋北海丘)で、海深1000mの海底下に広がる高温熱水だまりを発見し、この地域では、海底下百数十mの掘削で200℃を超える大規模な熱水だまりに遭遇しており、金属資源(海底熱水鉱床)としての価値のみならず、地熱エネルギーの宝庫としても期待できることが知られている。また、海底から噴出する熱水には、有用物質が含まれ、これを取り出す技術の開発が求められている。
この種の深海の海底に噴出する熱水を利用し、また,有用物質を回収する技術としては、例えば、特表2010-534777号公報に開示のものが知られている。
特表2010-534777号公報の開示は、発明名称「熱水エネルギーおよび深海資源回収システム」に係り、「発電または水の淡水化のように熱の利用に適する他のいかなるメカニズムにも使われる確実なメカニズムによって過熱した深海の熱水流体の流れを表面に導くように構成される。同装置はまた、熱エネルギー回収と同時にまたはそれとは別に、改造することなく、金属および鉱物の深海の資源回収に確実なメカニズムを提供する」技術分野において(同公報明細書段落番号0001参照)、「熱水流体に含まれる資源を熱水噴出孔から回収するシステムであって、(a)前記熱水流体またはその熱水流体を含む資源を前記熱水噴出孔から集めるための収集手段と、(b)前記熱水流体またはその中に含まれる資源を受容するため、海洋表面またはそれより上に位置する回収ステーションと、(c)前記海洋表面またはそれより上の前記回収ステーションに前記噴出孔から前記熱水流体または前記流体において含まれる資源を送達し、一方で、前記熱水流体またはその流体の資源の有意な劣化なしで周囲の海洋の状況から前記流体または前記流体に含まれる資源を保護するための送達手段と、を含む」ことにより(同公報明細書特許請求の範囲の請求項1の記載等参照)、「回収された熱水流体はそれから、発電、淡水化または他のいかなる熱エネルギー使用のため、熱の供給源として使われる。それは、有益な鉱物、金属、および、化学製品の除去のための資源回収装置に、同時にまたは別々に供給されることもできる。」等の効果を奏するものである(同公報明細書段落番号0012参照)。
図4は、特表2010-534777号公報に図4として開示される資源回収と同様に発電、淡水化、または他のいかなる熱エネルギー使用の供給源として熱水流体の利用を示しているフローチャートを示す図である。図4において、符号110は、枠組み、111は、流体、112は、煙突、113は、管、116は、海洋表面、117は、環状浮揚装置、118は、海底、119は、熱差強化管、124は、プラットフォーム、126は、戻り管、132は、冷水ポンプ、133、150、151、152は、リング、154は、脚、172は、円錐形、210は、熱水動力装置、250は、淡水化施設、252は、採掘施設(資源回収装置)である(符号は、先行技術であることを明らかにするために、本願出願人において、3桁に変更して説明した。)。
上記のような構成からなる特表2010-534777号公報に開示の「熱水エネルギーおよび深海資源回収システム」は、図4から明らかなように、熱水を一旦海洋表面(116)にまで汲み上げて、海洋表面116に設置された装置により発電等を行わしめるものであり、深海の深さで行うものではなく,海面までの汲み上げの途中でのエネルギーロス等は避けられず、効率的とは言えないものである。
特表2010-534777号公報
そこで、本願発明は、海面下1000mから1500mの比較的浅深の海底下の高温熱水溜まりに熱水採取の熱水井を掘削し、又は、自然に生成される熱水チムニーからの熱水を利用して、海底下において熱水発電を行い、また、汲み上げられる熱水から有用な物質(例えば、稀少金属等の外、シリカやリチウム等)の回収を可能ならしめる海底熱水発電及び熱水含有有用物質回収装置の提供を目的とするものである。
上記の目的を達成するために、本願請求項1に係る発明は、海底熱水井掘削装置において、海底熱水鉱床に孔を穿つための高温用掘削ビットと、前記ビットに回転力を伝達するとともに孔底に溜まる掘屑(岩石の破片)をポンプで送られた掘削水で排出する掘管と、前記掘管に周辺海水を送水し、掘屑を掘削坑から排出する掘削水用ポンプと、前記掘管を昇降し、掘削中は当該掘管の最上部をつかんで回転させて前記掘削ビットに回転力を伝達する自動昇降式トップドライブ掘削装置と、御・電源供給塔と、上下に接続用のネジを持つ前記堀管を掘削に必要な複数本を搭載し、前記自動昇降式トップドライブ掘削装置で掘削中の前記掘管が掘削面まで掘進した段階で、搭載された前記掘管を順次上部に接続することが可能な自動式掘管接続装置とが無限軌道により海底を自走する自走式無限軌道車上に搭載されてなることを特徴とする。
上記のような構成の本願各発明は次のような特有の効果を有する。
(1)本願発明に係る海底熱水井掘削装置によれば、海面下1000m〜1500m程度10〜15MPa程度の水圧の海水を利用して海底の掘削を行うので、ポンプ効率が高く、また、掘削により発生する掘削屑(岩石の破片)を周囲の海水により泥水としてそのまま放出することができるので、掘削効率の優れたものとなる。
(2)本願発明に係る海底熱水井掘削装置と同海底地熱バイナリー発電装置等と組み合わせて実現することにより、掘削に要する電力を近隣に掘削された掘削孔に設置された発電設備から得ることにより、掘削工事に係る燃料費も節減することができる。
(3)地上における地熱利用と異なり、自然公園・温泉地等からの温泉枯渇の危険等、地熱利用における立地問題が生じることがない。
(4)海底地熱バイナリー発電装置をモジュール化して陸上で組み立てるので、海底の熱水坑への設置に現場での作業を軽減でき、設置するだけで発電が可能である。
(5)バイナリー発電装置の蒸発器を熱水噴出孔の直上に設置するだけで、その反対側に配置される凝縮器は、冷たい海水中に配置され、わざわざ冷却のために凝縮器に冷たい水まで引き回す必要がなく、地上における地熱発電等の設備に比し、極めて簡便に熱交換が可能である。
(6)一組からなる熱交換器に良し温度制御される反応槽、熱水ポンプ、海水ポンプ、薬液調整装置及び逆浸透装置を基本的構成ユニットを準備すれば、回収物質の処理温度、処理薬剤を適宜決定することにより、容易に目的とする回収物質を熱水から回収できる。
(7)複数の構成ユニットを重畳的に設置することにより、多種類の有用物質の回収が可能となる。
図1は、本発明に係る海底熱水発電及び熱水含有有用物質回収装置を実施するための形態の一実施例である海底熱水発電及び熱水含有有用物質回収装置を実現するための実施例1に係る「海底熱水井掘削装置」の概略を示す図である。 図2は、自然に存する熱水チムニー又は人工的に掘削された坑井からの熱水を利用する本実施例2に係る海底地熱バイナリー発電装置の概略を示す図である。 図3は、海底地熱バイナリー発電に利用された熱水又は熱水チムニー等の熱水から有用物質を回収する本実施例3に係る熱水含有有用物質回収装置の処理概念を示す図であり、前記一組からなる熱交換器により温度制御される反応槽、熱水ポンプ、海水ポンプ、薬液調整装置及び逆浸透装置を基本的構成ユニットを3つ組み合わせたものである。 図4は、特表2010-534777号公報に図4として開示される資源回収と同様に発電、淡水化、または他のいかなる熱エネルギー使用の供給源として熱水流体の利用を示しているフローチャートを示す図である。
本発明に係る海底熱水発電及び熱水含有有用物質回収装置を実施するための形態として一実施例を図面に基づき詳細に説明する。
(海底熱水井掘削装置)
まず最初に、本発明に係る海底熱水発電及び熱水含有有用物質回収装置を実施するための形態の一実施例である海底熱水発電及び熱水含有有用物質回収装置を実現するための実施例1に係る「海底熱水井掘削装置」について図面に基づいて説明する。
海底熱水発電に際しては、自然に存する熱水チムニー等からの熱水を利用する場合も考えられるが、継続的に多岐に渡り利用するには熱水井の掘削が必須である。そこで、海底における熱水井を掘削する実施例1に係る「海底熱水井掘削装置」について図面に基づいて説明する。
図1は、本発明に係る海底熱水発電及び熱水含有有用物質回収装置を実施するための形態の一実施例である海底熱水発電及び熱水含有有用物質回収装置を実現するための実施例1に係る「海底熱水井掘削装置」の概略を示す図である。
図1において、符号1は、本実施例1に係る海底熱水井掘削装置であり、2は、海底熱水鉱床(H)に孔を穿つための高温用掘削ビット、3は、先端の前記ビット2に回転力を伝達するとともに孔底に溜まる掘屑(岩石の破片)をポンプで送られた掘削水で排出する掘管、4は、従来の掘削のように泥水を循環させることなく、周辺にある海水をそのまま掘管に送水するための掘削水用ポンプ、5は、前記掘管3を昇降し、掘削中は当該掘管3の最上部をつかんで回転させることで、前記掘削ビット2に回転力を伝達する自動昇降式トップドライブ掘削装置、6は、動力を与える電源を搭載し、予めプログラミングされた地点の掘削を行う無人制御・電源供給塔、7は、上下に接続用のネジを持つ前記堀管3を掘削に必要な複数本を搭載し、前記自動昇降式トップドライブ掘削装置5で掘削中の前記掘管3が掘削面まで掘進した段階で、搭載された前記掘管3のうちの1本の掘管3(例えば、掘管3b)を取り出して掘削中の掘管3(例えば、掘管3a)の上部に順次接続することが可能な自動式掘管接続装置、8は、無限軌道により海底を自走することができる自走式無限軌道車、9は、海水、10は、海上まで接続される送電・通信用メーブル、Hは、海底熱水鉱床である。
この種の掘削装置は、前述の地球深部探査船「ちきゅう」における海底掘削でも使用されたように、ほとんど人手を要することのない掘削作業と同様、海底において、完全な自動化が可能な装置から構成される。
すなわち、本実施例1に係る海底熱水井掘削装置1においては、海面下1000m〜1500m程度の海底で、海底面下からの掘削深度が100〜200m程度の深さまで、最初は、洋上船舶から供給される電力を用いて、海底下で掘削を行う。掘削には、海中自動掘削ロボットを用いたBMS(ボーリング・マシン・システム)により、ノンケーシングで人口噴出孔を掘削するので、事前に綿密な海底調査が必要であり、事前の調査によって明らかにされた海底構造・地底構造に基づいて掘削箇所・掘削深さ等が決定され、予めプログラミングされた実行命令によって、本実施例1に係る海底熱水井掘削装置1が設置され、運転・駆動される。
掘削は、電動式モーター(図示外)を備え前記掘削用ポンプ4とともに、前記自動昇降式トップドライブ掘削装置5で前記掘管3の最上部をつかんで回転させることで、先端の前記掘削ビット2を回転させて、地層中の岩石を砕くことで行う。
この場合、掘削中は掘削井の坑壁を保持するため、最初に掘削した掘削井の坑径より一回り小さい鋼管を当該掘削井中に徐々に挿入し、前記ポンプ4を用いて前記掘削ビット2が砕いた岩屑を鋼管上部から海底に排出しながら行うようにしても良い。
また、本実施例1に係る海底熱水井掘削装置1においては、海面下1000m〜1500m程度での掘削であり、特徴的なのは、海面下1000m〜1500m程度10〜15MPa程度の水圧の周囲の海水9を前記掘削水用ポンプ4を洋上からの電力供給により駆動し、掘削後に発生する掘削泥水を海底にそのまま放出するので、地上での掘削のように泥水パイプにより長い距離を循環させる必要はなく、掘削効率の優れたものとなる。
なお、図1には表示されないが、海上から掘削状態を監視できるモニタ装置(図示外)を設け、常時監視の態勢をとるようにする。
さらに、本実施例1に係る海底熱水井掘削装置1においては、掘削に要する電力を洋上の船舶から供給するようにしたが、これは以下に述べる海底地熱バイナリー発電装置等と組み合わせて実現することにより、掘削に要する電力を近隣に掘削された掘削孔に設置された発電設備から得るようにすれば、本実施例1に係る海底熱水井掘削装置1により自動的に人手を要することなく掘削することができるので、掘削工事に係る労務費や燃料費も節減され得る。もちろん、海中設備であるので、水密や材料に関しては割高にならざるを得ないが、陸上と比べて経費削減が可能な部分も多いので、系統的なモジュール化や工法のシステム化を図ることで、全体として掘削費用を陸上並みに抑制することは可能である。
このような熱水井は、海底下1000m〜1500m程度の浅部掘削とすれば、現時点(平成25年2月現在)においても非常に短期間で多数の坑井掘削が可能であり、掘削期間を短縮することができることに加え、海底下であるため、高い水圧下におけるポンプを利用する場合でも大きなエネルギーを必要とせず、また、周囲には機器の冷却に使用する冷却水が豊富にあるという特色を利用することができる。また、地上における地熱利用と異なり、自然公園・温泉地等からの温泉枯渇の危険等、地熱利用における立地問題が生じることがない。
(海底地熱バイナリー発電装置)
次に、熱水坑が掘削されたら、又は、自然に存する熱水チムニーやブラックスモーカー等からの熱水を利用する本発明に係る海底熱水発電及び熱水含有有用物質回収装置を実施するための形態の他の一実施例である実施例2に係る「海底熱水発電」の概略を図面に基づいて説明する。
図2は、自然に存する熱水チムニー又は人工的に掘削された坑井からの熱水を利用する本実施例2に係る海底地熱バイナリー発電装置の概略を示す図である。
図2において、符号11は、本実施例2に係る海底地熱バイナリー発電装置であり、12は、海底熱水鉱床(H)の熱水噴出孔から噴出する熱水、13は、前記熱水12に直接接触して、内部の二次媒体を沸騰させるための開放式熱交換器(蒸発器)、14は、沸騰した二次媒体を蒸気タービンへ輸送する配管、15は、沸騰した二次媒体の力で回転力を得るための蒸気タービン、16は、前記蒸気タービン15の回転力を電気に変換する発電機、17は、前記発電機16で得られた交流電気を商用電力に整流し、送電圧まで昇圧する変電装置、18は、送電を行う海底用ケーブル、19は、前記蒸気タービン15から排気された二次媒体を凝縮器に輸送するための配管、20は、排気された二次媒体を海水との間で熱交換して凝縮させるための開放式熱交換器(凝縮器)、21は、凝縮した二次媒体を輸送するための配管、22は、二次媒体を循環するためのポンプ、23は、ポンプで昇圧した媒体を熱交換器(蒸発器)に輸送するための配管、24は、洋上の船舶より投入して、海底熱水鉱床の熱水噴出孔まで曳航・設置が可能な水密式海底地熱バイナリー発電装置用筐体である。
なお、符号25は、熱回収後の海底熱水鉱床(H)から噴出する熱水12を回収して、有用金属を回収する装置を配置した洋上浮体まで運搬するための有用物質回収パイプであり、必ずしも本実施例2に係る海底地熱バイナリー発電装置11に必須のものではない(詳しくは、後述の実施例3において説明する)。
本実施例2に係る海底地熱バイナリー発電装置11は、海底熱水鉱床(H)のような海洋底熱水系から放出されるエネルギーは、地球全表面から放出される全体量(44テラワット)の1/4(10テラワット)にも及ぶことが推定されており、前述の熱水チムニー等の噴出孔から熱水として放出され前記熱水12は100m×100m程度の面積に散らばる海底の噴出孔からは、350℃〜400℃の熱水11が総量100kg/s(360t/h)、熱流束で250MWth程度で噴出することが知られており、この範囲で75MWe(7.5万kWe)程度の地熱発電が可能となる。
本実施例に2に係る海底地熱バイナリー発電装置11を構成する全ての装置13・・・・24は、陸上で組み立てられて、船で運搬されて対象地域にて沈めて設置する。
特に、図2から明らかなように、本実施例2に係る海底地熱バイナリー発電装置11においては、前記蒸気タービン15を回転させる蒸気を発生する前記蒸発器13及び前記発電機16の排気蒸気を冷却して液化するための前記凝縮器20からなる2つの熱交換器は、それぞれ開放型のものが使用される。すなわち、これらの2つの熱交換器(前記蒸発器13及び前記凝縮器20)は、所定径の熱伝導率が高く、かつ、高い水圧に耐える材質からなる熱交換チューブが複数回巻回され、該熱交換チューブを流れる前記二次媒体と該チューブの周囲物質の間で直接熱交換可能に前記水密式海底地熱バイナリー発電装置用筐体24の両側に突出して配置される構造のものとしている。したがって、前記蒸発器13を熱水12が噴出する噴出孔の直上に設置するだけで、その反対側に配置される前記凝縮器20は、冷たい海水中に配置されることになるので、わざわざ冷却のために前記凝縮器20を冷たい海水まで引き回す必要がなく、地上における地熱発電等の設備に比し、極めて簡便に熱交換が可能である。
すなわち、本実施例2に係る海底地熱バイナリー発電装置11においては、前記蒸発器13を海底から熱水12を噴出する噴出孔の上に設置し、また、前記凝縮器20を水密型の前記海底地熱バイナリー発電装置用筐体24の反対側に位置せしめるだけで、容易に前記海底地熱バイナリー発電装置用筐体24に格納された前記発電機16により容易に発電することができる。
なお、前記蒸発器13及び前記凝縮器20からなる2つの熱交換器の間を流れる前記二次媒体としては、これらの2つの熱交換器の間は高い水圧に耐えて密閉されているので、これらの2つの熱交換器の間のサイクル内部圧力は海底下であることはさほど問題にする必要はなく、かつ、熱水側が 400℃程度の高温であることからすれば、上記のような構成の本実施例2に係る海底地熱バイナリー発電装置11における二次媒体としては、アンモニア水、あるいは、水を二次媒体としても対応可能である。これは、海底下の高圧状体でアンモニア水あるいは水を用いることが、バイナリー発電では効率的であると考えられ、地上施設の通常のバイナリー発電等で用いられる代替フロン等は、海底下の高圧では超臨界になるため、むしろタービン設計が難しいことも考えられ、本実施例2に係る海底地熱バイナリー発電装置11は、むしろ、二次媒体の点でもオゾン破壊などの環境の面からも好ましいこととなる。
本実施例2に係る海底地熱バイナリー発電装置11においては、発電された電力を前記海底用ケーブル18により洋上の停泊された船舶(図示外)またはプラットフォーム(図示外)に送電され、当該船舶(図示外)またはプラットフォーム(図示外)からは別途の送電用の回転電力ケーブル(図示外)またはマイクロウエーブ送電機によって陸地あるいは周辺の外洋上プラットフォーム(海洋資源開発用あるいは海洋牧場用等)に送電する。
この種のバイナリー発電設備の大半を占めているのは、上述する2つの熱交換器であり、前記タービン15で発電される発電機16自体は数1000kWの容量でも全長5m以下の円筒形であるため、それを格納する前記水密式海底地熱バイナリー発電装置用筐体24の水密殻自体は十分小型に、かつ、海深1500m程度の耐圧を維持することができる。
本実施例に2に係る海底地熱バイナリー発電装置11を構成する熱交換チューブ、発電機、水密船殻、海底ケーブル等は、熱水鉱床(H)の高温・腐食性流体下での使用のため、高温下での使用や、耐腐食材質のもの(例えば、チタン合金等)を使用する。
上記のような構成としたので、本実施例2に係る海底地熱バイナリー発電装置11は、陸上における地熱発電に比し、現地での設置工事の手間を大きく軽減することができ、したがって、これらの各装置13〜24をさらにモジュール化して陸上で組み立てることで、太陽光発電や風力発電のように迅速に設置することが可能である。
また、熱源は天然の熱水噴出孔かあるいはその近くで数100m以内の掘削で得られる人口掘削孔や自然孔であるため、1本あたりの設置時間は非常に早い。したがって、例えば、人工孔の掘削が終われば、陸上の地熱発電のような10年を越える長いリードタイムなしに発電を開始することができる。
(熱水含有有用物質回収装置)
次に、上記実施例2に係る海底地熱バイナリー発電に加え、または、これとは単独に、掘削された熱水坑又は自然に存する熱水チムニー等からの熱水から本発明に係る海底熱水発電及び熱水含有有用物質回収装置を実施するための形態の他の一実施例である実施例3に係る「熱水含有有用物質回収装置」の概略を図面に基づいて説明する。
海底から排出される熱水には多量の重金属イオン等を含むことが知られており、熱水に含まれる有用金属イオン等から重金属の外、シリカやリチウム等の有用物質を回収することができれば、一石二鳥の効能がある。
本実施例3に係る熱水含有有用物質回収装置は、海底の人工掘削熱水孔又は熱水チムニー等から熱水を洋上に設置される浮体上の回収装置まで導き、有用金属等資源を回収する装置であり、本実施例3に係る熱水含有有用物質回収装置は、熱交換器により温度制御される反応槽、熱水ポンプ、海水ポンプ、薬液調整装置及び逆浸透装置を基本的構成ユニットとする装置であり、この構成からなる構成ユニットを一又は複数重畳した構成からなるものである。
図3は、海底地熱バイナリー発電に利用された熱水又は熱水チムニー等の熱水から有用物質を回収する本実施例3に係る熱水含有有用物質回収装置の処理概念を示す図であり、熱交換器により温度制御される反応槽、熱水ポンプ、海水ポンプ、薬液調整装置及び逆浸透装置を基本的構成ユニットを3つ組み合わせた例のものである。
したがって、重複的な説明を避けるため、図3に示す一組のユニットについてのみ説明し、その後のユニットにおける処理は繰り返し処理となるので詳しい説明は省略して説明する。
図3において、符号30は、本実施例3に係る海底から採取の熱水から有用物質を回収する熱水含有有用物質回収装置であり、31は、反応槽、32は、前記熱交換器、33は、前記熱水ポンプであり、前述の実施例2に係る前記有用物質回収パイプ25が接続される。また、符号34は、前記海水ポンプ、35は、前記薬液調整装置、36(36a、36b)は、前記逆浸透装置、37は、前記熱水、38は、前記海水であり、装置が設置される洋上で採取可能なものである。また、39は、有用物質(A)、40は、有用物質(B)、41は、有用物質(最終回収物)である。
前記熱水ポンプ33は、前記熱交換器32を備えた前記反応槽31に前記熱水37を送水するポンプであり、前記海水ポンプ34は、前記海水38を前記熱交換器32に送り、前記反応槽31内を適切な温度(有用物質回収の反応を引き起こさせるに適した温度)とするものである。また、前記薬液調整装置35は、前記反応槽31内の熱水37を適切な性状に調整する薬剤を投入する装置である。
本実施例3に係る熱水含有有用物質回収装置30における最初のユニットでの処理は、前述の実施例2に係る海底地熱バイナリー発電装置11を説明した図2に示される前記有用物質回収パイプ25が熱水排出地点まで延設されており、該回収パイプ25を介して前記熱水ポンプ33で吸引された前記熱水37が前記熱交換器32を備え、回収物質の回収温度が制御される前記反応槽31内に送り込まれる。
次いで、前記海水ポンプ34を駆動して洋上浮体周囲の海水を取り込み、当該周囲海水を前記熱交換器32に送り込み、前記反応槽31内の熱水37について、含有する有用物質(A)39が適正に回収される温度にする。ここに「適正に回収される温度」とは、有用物質の性状に基づき適正に反応が促進される温度に調整されることを意味し、例えば、熱水37に所定の薬剤を投入して結晶化を促す等の反応に適した状態にすることをいう。この例で言えば、結晶化等された錯体等が、次の段階の前記逆浸透装置36を通ることにより、有用物質(A)39の錯体等が逆浸透膜(図示外)により分別されて、有用物質(A)39が回収されることをいう。
有用物質(A)39が回収された後には、本実施例3に係る熱水含有有用物質回収装置30においては、さらに、次のユニットに送られる。すなわち、第1のユニットでの処理が完了し、前記有用物質(A)39が回収された後の前記熱水37は、前記第2の熱水ポンプ33により前記反応槽31に送り込まれ、前記第2の海水ポンプ34により熱交換されて適正な回収温度にされた後に、さらに、第2の前記薬液調整装置35から有能物質(B)40を回収するための薬剤を投入されて、有用物質(B)40の回収に適当な性状、例えば、前記有用物質(B)40の錯体等が、前記第2の逆浸透装置36を通ることにより、有用物質(B)40の錯体等が逆浸透膜(図示外)により分別されて、その後の必要な処理により有用物質(B)40が回収されることとなる。
以下、有用物質の性状を利用して、回遊分離で残留した溶液を次の有用物質適正な回収温度まで前記熱交換器32を冷却し、同じプロセスを繰り返し、最優回収物まで繰り返した後は、適切な処理の後、海中に投棄する。
以上の説明したように、本実施例3に係る熱水含有有用物質回収装置30は、有用物質回収の薬液調整と、その反応温度を高い方から順次段階的に設定するプロセスをとり、かつ、それをくり返し可能とすることにより、効率的に必要とする有用物質の回収を可能とするものである。
さらに、本実施例3に係る熱水含有有用物質回収装置30を上述した実施例2に係る海底地熱バイナリー発電装置11に使用する場合には、熱水発電で発生する熱水に含まれ、ともすれば毒性が強く実体に有害な重金属イオンや高濃度塩化合物等が存在していたとしても、これをわざわざ還元して海洋に投与することによる海洋汚染のリスクを回避することができる。むしろ、このような海洋汚染リスクを回避しつつ、熱水に含まれる有用金属を回収し、その副産物生成による事業性を改善し、無害化した熱水を海中に廃棄することにより、還元井掘削や維持に係るコストを削減することができ、事業性を改善できる等のメリットがある。
本発明は、1000mから1500m海底から噴出する熱水を利用して熱水発電並びに同熱水中に含まれる有用物質の回収を可能とする掘削・発電・回収に利用される。
1 実施例1に係る海底熱水井掘削装置
2 掘削ビット
3、3a、3b、・・ 堀管
4 掘削水用ポンプ
5 自動昇降式トップドライブ掘削装置
6 無人制御・電源供給塔
7 自動式掘管接続装置
8 自走式無限軌道車
9 海水
10 送電・通信用メーブル
11 実施例2に係る海底地熱バイナリー発電装置
12 熱水
13 蒸発器
14 配管
15 蒸気タービン
16 発電機
17 変電装置
18 前記海底用ケーブル
19 配管
20 凝縮器
24 海底地熱バイナリー発電装置用筐体
25 有用物質回収パイプ
30 実施例3に係る熱水含有有用物質回収装置
31 反応槽
32 熱交換器
33 熱水ポンプ
34 海水ポンプ
35 薬液調整装置
36 逆浸透装置
37 熱水
38 海水
39 有用物質(A)
40 有用物質(B)
41 有用物質(最終回収物)
110 枠組み
111 流体
112 煙突
113 管
116 海洋表面
117 環状浮揚装置
118 海底
119 熱差強化管
124 プラットフォーム
126 戻り管
132 冷水ポンプ
133、150、151、152 リング
154 脚
172 円錐形
210 熱水動力装置
250 淡水化施設
252 採掘施設(資源回収装置)
H 海底熱水鉱床

Claims (1)

  1. 海底熱水鉱床に孔を穿つための高温用掘削ビットと、
    前記ビットに回転力を伝達するとともに孔底に溜まる掘屑(岩石の破片)をポンプで送られた掘削水で排出する掘管と、
    前記掘管に周辺海水を送水し、掘屑を掘削坑から排出する掘削水用ポンプと、
    前記掘管を昇降し、掘削中は当該掘管の最上部をつかんで回転させて前記掘削ビットに回転力を伝達する自動昇降式トップドライブ掘削装置と、
    動力を与える電源を搭載し、予めプログラミングされた地点の掘削を行う制御・電源供給塔と、上下に接続用のネジを持つ前記堀管を掘削に必要な複数本を搭載し、前記自動昇降式トップドライブ掘削装置で掘削中の前記掘管が掘削面まで掘進した段階で、搭載された前記掘管を順次上部に接続することが可能な自動式掘管接続装置とが無限軌道により海底を自走する自走式無限軌道車上に搭載されてなることを特徴とする海底熱水井掘削装置。
JP2015050162A 2015-03-13 2015-03-13 海底熱水井掘削装置 Active JP6605210B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015050162A JP6605210B2 (ja) 2015-03-13 2015-03-13 海底熱水井掘削装置
PCT/JP2015/058851 WO2016147419A1 (ja) 2015-03-13 2015-03-24 海底熱水発電及び有用物質回収を可能とする掘削・発電・回収装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050162A JP6605210B2 (ja) 2015-03-13 2015-03-13 海底熱水井掘削装置

Publications (2)

Publication Number Publication Date
JP2016169538A JP2016169538A (ja) 2016-09-23
JP6605210B2 true JP6605210B2 (ja) 2019-11-13

Family

ID=56918640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050162A Active JP6605210B2 (ja) 2015-03-13 2015-03-13 海底熱水井掘削装置

Country Status (2)

Country Link
JP (1) JP6605210B2 (ja)
WO (1) WO2016147419A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107023294B (zh) * 2017-06-06 2018-05-11 西安科技大学 矿床与地热协同开采方法及系统
CN107422032B (zh) * 2017-08-24 2018-06-15 国家海洋局第二海洋研究所 一种海底热液羽状流声学成像模拟装置与方法
US10077656B1 (en) * 2018-05-07 2018-09-18 Qingdao Institute Of Marine Geology In-situ cultivation system of deep-sea hydrothermal metallic sulfide deposits
US11280322B1 (en) 2021-04-02 2022-03-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227515B2 (ja) * 1982-09-21 1990-06-18 Masaaki Uchida Dankaijokaiteishigennosaikosochi
AUPO857197A0 (en) * 1997-08-15 1997-09-04 Benthic Geotech Pty Ltd Improved methods for seabed piston coring
EP1224026B1 (en) * 1999-08-17 2007-09-26 Mobile Process Technology, Co. Process for the purification of wash water from the production of aromatic acids
JP4756315B2 (ja) * 2004-11-15 2011-08-24 学校法人近畿大学 メタンハイドレート採鉱用ロボット
US8001784B2 (en) * 2007-07-13 2011-08-23 Bruce Marshall Hydrothermal energy and deep sea resource recovery system
JP2011516767A (ja) * 2008-04-14 2011-05-26 ペリー シリングズビー システムズ インコーポレイテッド ワイヤーライン式掘削システムおよび方法
EP2226466A1 (en) * 2009-02-13 2010-09-08 Shell Internationale Research Maatschappij B.V. Method for producing a marketable hydrocarbon composition from a hydrate deposit buried in the waterbottom
CA2802872C (en) * 2010-06-30 2015-05-19 Marl Technologies Inc. Remotely operable underwater drilling system and drilling method
JP5875065B2 (ja) * 2012-02-09 2016-03-02 国立研究開発法人海洋研究開発機構 海底熱水鉱物資源の回収方法及び回収システム
JP2014118813A (ja) * 2012-12-12 2014-06-30 Kenji Fukushi 海洋熱水発電システム

Also Published As

Publication number Publication date
WO2016147419A1 (ja) 2016-09-22
JP2016169538A (ja) 2016-09-23

Similar Documents

Publication Publication Date Title
JP6605210B2 (ja) 海底熱水井掘削装置
EP2176496B1 (en) Hydrothermal energy and deep sea resource recovery system
JP2019082171A (ja) 地熱エネルギー生産のための井戸元を目的変更して再利用するための方法及び装置
US11053927B2 (en) Underground energy generating method
US4492083A (en) Geothermal salinity control system
JP4280790B1 (ja) メタンハイドレートの採取装置
KR101403041B1 (ko) 개방형 지열 지중 열교환기 장치
WO2009005479A1 (en) Equipment for excavation of deep boreholes in geological formation and the manner of energy and material transport in the boreholes
CN114278257B (zh) 海上油田开采与超临界二氧化碳封存的同步装置与方法
Makinson et al. Development of a clean hot water drill to access Subglacial Lake CECs, West Antarctica
WO2014109173A1 (ja) メタンハイドレートからのメタンガス生産装置
CN102322264A (zh) 天然气水合物开采完井收集运输平台系统
CN105888613A (zh) 钻屑深井注入工艺
EP2102490B1 (en) Geothermal energy system
JP6432916B1 (ja) メタンハイドレートの採掘方法
JP2015038296A5 (ja)
US20090320474A1 (en) Heat recovery from geothermal source
RU2529769C2 (ru) Петротермальная электростанция и устройство монтажа теплоотборной системы петротермальной электростанции
JP2002013380A (ja) 水車を利用した掘削採取装置
RU2316460C1 (ru) Способ подземного захоронения жидких бытовых и дождевых стоков
WO2013115656A1 (en) Energy stave
Williamson et al. Dewatering in the hot groundwater conditions at Lihir Gold
Kaltschmitt et al. Utilisation of geothermal energy
JP2019178561A (ja) メタンハイドレートを含む地層からメタンガスを採取するメタンガス採取装置及びメタンガス採取方法
TW202337548A (zh) 結合能量生產及二氧化碳礦化之方法及相關設施

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191016

R150 Certificate of patent or registration of utility model

Ref document number: 6605210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250