WO2019008945A1 - Vehicular measurement device - Google Patents

Vehicular measurement device Download PDF

Info

Publication number
WO2019008945A1
WO2019008945A1 PCT/JP2018/020460 JP2018020460W WO2019008945A1 WO 2019008945 A1 WO2019008945 A1 WO 2019008945A1 JP 2018020460 W JP2018020460 W JP 2018020460W WO 2019008945 A1 WO2019008945 A1 WO 2019008945A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
notification
sensor
mode
air
Prior art date
Application number
PCT/JP2018/020460
Other languages
French (fr)
Japanese (ja)
Inventor
竹田 弘
政幸 児玉
佑太 辻
尚敬 石山
健太 中嶋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019008945A1 publication Critical patent/WO2019008945A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/24Devices purely for ventilating or where the heating or cooling is irrelevant

Definitions

  • the present disclosure relates to a measuring device for a vehicle.
  • the vehicle is equipped with a vehicle measuring device for measuring a specific physical quantity.
  • a vehicle measuring device for vehicles an outside air temperature sensor for measuring outside air temperature, a particle sensor for measuring the concentration of the minute particle (PM2.5) which drifts in the air, etc. are mentioned, for example.
  • the result measured by the vehicle measurement device is notified to the occupant by, for example, a display device or the like provided in the vicinity of the driver's seat.
  • Patent Document 1 describes that the value measured by the outside air temperature sensor may be higher than the actual outside air temperature due to the influence of radiant heat from the engine. If such measured values are directly displayed (notified) to the occupant, the occupant will recognize a value different from the actual value as the outside air temperature.
  • the occupant looking at the outside air temperature display device described in the above-mentioned patent document 1 is a value which is held so that the displayed value is a value actually measured or is not affected by radiation. I can not know what it is.
  • the measuring device for vehicles measures a physical quantity
  • various situations may arise besides the situation where measurement becomes inaccurate by an external factor as mentioned above.
  • an optical particle concentration sensor it may occur that the dew condensation on the light receiving surface makes the measurement difficult.
  • the vehicular measuring device In order to cause the occupant to accurately grasp the condition of the vehicle, it is not sufficient that the vehicular measuring device merely report only the measurement result, and it is preferable to notify the occupant of the condition of measurement as well.
  • An object of the present disclosure is to provide a vehicle measurement device capable of notifying an occupant of the measurement condition in addition to the measurement result.
  • the measuring apparatus for vehicles concerning this indication is provided with the sensor which measures a specific physical quantity, and the reporting part which reports a measurement result by a sensor to a crew member.
  • the notification unit notifies the occupant in one notification mode selected according to the situation from among a plurality of notification modes set in advance.
  • notification to the occupant is performed in the notification mode selected according to the situation. Therefore, the occupant can not only know the measurement result but also know the state of measurement based on the notification mode.
  • a vehicle measurement device capable of notifying an occupant of the condition of measurement in addition to the measurement result.
  • FIG. 1 is a view schematically showing the configuration of a measurement apparatus for a vehicle according to the present embodiment.
  • FIG. 2 is a view showing a normal mode which is one of the notification modes of the notification unit.
  • FIG. 3 is a diagram showing an aspect of stopping the control which is one of the notification aspects of the notification unit.
  • FIG. 4 is a diagram showing another example of the control suspension state shown in FIG.
  • FIG. 5 is a figure which shows the aspect in preparation which is one of the alerting modes of an alerting
  • FIG. 6 is a diagram showing an abnormal state which is one of the notification modes of the notification unit.
  • FIG. 7 is a diagram showing an insufficient control mode, which is one of the notification modes of the notification unit.
  • FIG. 8 is a flowchart showing the flow of processing executed by the control unit.
  • the measuring apparatus 10 for vehicles which concerns on this embodiment is demonstrated, referring FIG.
  • the measuring apparatus 10 for vehicles is an apparatus provided in a vehicle (the whole is not shown), and is comprised as an apparatus which measures the density
  • the measuring device 10 for vehicles measures the said density
  • concentration measured by the vehicle measuring device 10 is hereinafter also referred to as "particle concentration".
  • particle concentration Prior to the description of the configuration of the vehicle measurement device 10, the configuration of the air conditioner 20 will be described first.
  • the air conditioner 20 is a device for performing air conditioning of the vehicle interior.
  • the air conditioner 20 includes an air conditioning case 200, a fan 250, a particle filter 240, and a heat exchange unit 260.
  • the air conditioning case 200 is a tubular member for guiding the air to be air conditioned into the vehicle compartment. Inside the air conditioning case 200, the air flows from the left side to the right side in FIG. In the air conditioning case 200, an inside air introducing unit 210, an outside air introducing unit 220, a face duct 270, and a foot duct 280 are formed.
  • the inside air introduction unit 210 is an introduction port for introducing the air (inside air) inside the vehicle compartment into the inside of the air conditioning case 200.
  • the outside air introduction unit 220 is an introduction port for introducing the air outside the vehicle (outside air) into the inside of the air conditioning case 200.
  • the inside air introducing unit 210 and the outside air introducing unit 220 are formed to be aligned in the upstream side portion of the air conditioning case 200.
  • An inside / outside air switching door 230 is provided between the inside air introduction unit 210 and the outside air introduction unit 220.
  • the inside / outside air switching door 230 is a door for switching between the state where only the inside air introducing unit 210 is opened (FIG. 1) and the state where only the outside air introducing unit 220 is opened.
  • FIG. 1 the state where only the inside air introducing unit 210 is opened
  • the inside air taken in from the vehicle compartment is air-conditioned and blown into the vehicle room, that is, the inside air circulating state.
  • the outside air introducing unit 220 is open, the outside air taken in from the outside of the vehicle is air-conditioned and blown out into the vehicle interior, that is, the outside air circulating state.
  • the operation of the inside / outside air switching door 230 is controlled by a control unit 130 described later.
  • the face duct 270 and the foot duct 280 are both exhaust ports for introducing the conditioned air into the vehicle compartment.
  • the face duct 270 and the foot duct 280 are formed on the downstream side of the air conditioning case 200.
  • the face duct 270 is connected to a face outlet (not shown) for blowing conditioned air toward the face of the occupant.
  • the foot duct 280 is connected to a foot outlet (not shown) for blowing conditioned air toward the feet of the occupant.
  • a face door 271 is provided at the inlet of the face duct 270.
  • conditioned air is supplied from the face duct 270 toward the face outlet.
  • a foot door 281 is provided at the inlet of the foot duct 280.
  • conditioned air is supplied from the foot duct 280 toward the foot outlet.
  • the operations of the face door 271 and the foot door 281 are controlled by the control unit 130.
  • downstream side of the face duct 270 may be branched into two, and one of them may be connected to a defroster outlet (not shown) formed in the vicinity of the window.
  • the fan 250 is a blower for delivering air to the downstream side inside the air conditioning case 200.
  • the control unit 130 controls the number of rotations of the fan 250, that is, the amount of conditioned air blown out from the air conditioner 20.
  • the particle filter 240 is a filter for removing the microparticles contained in the air from the air passing through the air conditioning case 200.
  • the particle filter 240 is provided at a position downstream of the inside air introducing unit 210 and the outside air introducing unit 220 and on the upstream side of the fan 250.
  • the heat exchange unit 260 is a portion that performs air conditioning by heat exchange with a refrigerant or the like.
  • the heat exchange unit 260 is provided downstream of the fan 250 and upstream of the face duct 270 and the foot duct 280.
  • the heat exchange unit 260 includes an evaporator for dehumidifying and cooling the air, a heater core for heating the air, an air mix door for adjusting the flow rate of the air passing through them, and the like. ) Is provided.
  • omitted since a well-known thing can be employ
  • the configuration of the vehicle measuring device 10 will be described with reference to FIG. 1 continuously.
  • the vehicular measurement device 10 includes a particle sensor 110, a notification unit 120, and a control unit 130.
  • the particle sensor 110 is a sensor for measuring the particle concentration in the air. As shown in FIG. 1, one end of an introduction pipe 290 is connected to the air conditioning case 200 at a position downstream of the particle filter 240 and upstream of the fan 250. The other end of the introduction pipe 290 is open to the passenger compartment. The particle sensor 110 is provided at a position in the middle of the introduction pipe 290. When the air is flowing inside the air conditioning case 200, the negative pressure generated on the air conditioning case 200 side also causes the air flow in the introduction pipe 290. That is, a flow of air from the vehicle interior to the inside of the air conditioning case 200 through the introduction pipe 290 occurs. The particle sensor 110 measures the concentration of microparticles contained in the air, and transmits the concentration to the control unit 130 as an electrical signal.
  • the particle sensor 110 has a light emitting unit and a light receiving unit, and air is configured to flow between the two. As the particle concentration of the air increases, the amount of light received by the light receiving unit decreases accordingly. The particle sensor 110 measures the particle concentration based on the amount of light received by the light receiving unit.
  • the air flow in the introduction pipe 290 needs to occur. For this reason, the measurement of the particle concentration by the particle sensor 110 in the present embodiment is performed only in a state in which the air conditioner 20 is performing air conditioning.
  • the notification unit 120 is a part that notifies the occupant of the measurement result by the particle sensor 110 (that is, the magnitude of the particle concentration).
  • the notification unit 120 is configured as a liquid crystal display panel. That is, the notification to the occupant in the present embodiment is performed by visual display. Instead of such an aspect, the notification to the occupant by the notification unit 120 may be performed by voice or the like.
  • the operation of the notification unit 120 is controlled by the control unit 130.
  • the control unit 130 is a device for controlling the overall operation of the vehicular measuring device 10.
  • the control unit 130 is configured as a computer system provided with a CPU, a ROM, a RAM, and the like. As described above, the control unit 130 controls the operation of the inside / outside air switching door 230, the fan 250, and the like. That is, the control unit 130 in the present embodiment is configured as a device that also controls the operation of the air conditioner 20.
  • an ECU for controlling the operation of the air conditioner 20 may be provided separately from the control unit 130.
  • part of the operation of the air conditioner 20 may be indirectly controlled by the control unit 130 communicating with the ECU.
  • the control unit 130 is capable of performing particle removal control.
  • the particle removal control is control for efficiently removing particulates by the particle filter 240.
  • the control unit 130 increases the rotational speed of the fan 250 to a predetermined value or more after setting the inside air introduction unit 210 to the open state by the inside / outside air switching door 230, that is, the inside air circulation state. This makes it possible to efficiently remove the particulates by the particle filter 240 while preventing the particulates from entering the vehicle compartment from the outside.
  • Such particle removal control can be said to be control that affects the measurement of particle concentration by the particle sensor 110.
  • the particle removal control may be automatically started, or may be started based on an operation performed by an occupant on a switch or the like.
  • reporting part 120 is demonstrated.
  • the notification to the occupant by the notification unit 120 is not always performed by the same notification mode, but is performed by one notification mode selected according to the situation from among a plurality of preset notification modes.
  • FIG. 2 What is shown in FIG. 2 is a notification mode used when the measurement by the particle sensor 110 is normally performed. Such a notification mode indicates to the occupant that the measurement by the particle sensor 110 is normally performed. Therefore, the notification mode of FIG. 2 is hereinafter also referred to as a “normal mode”.
  • FIG. 3 shows a notification mode used when the particle removal control described above is not performed. Such notification mode indicates to the occupant that the particle removal control is stopped. Therefore, the notification mode of FIG. 3 is hereinafter also referred to as the “control in-stop mode”.
  • the notification mode shown in FIG. 3 can also be said to be an “in-stop mode” indicating that the measurement by the particle sensor 110 is stopped. That is, in the present embodiment, the control stop mode and the stop mode are set as the same mode, and they are used in the same scene.
  • measurement of the particle concentration by the particle sensor 110 may be performed even in a situation where particle removal control is not performed.
  • the notification mode illustrated in FIG. 4 may be used.
  • the bars (B1 to B5) are displayed in the same manner as in the normal mode of FIG. 2, while the character string ST "in control stop” is also displayed.
  • the notification mode shown in FIG. 3 corresponds to the “stopping mode”
  • the notification mode shown in FIG. 4 corresponds to the “control stopping mode”.
  • FIG. 5 Shown in FIG. 5 is a notification mode used when the particle sensor 110 is in preparation for measurement. Such notification mode indicates to the occupant that preparation for measurement by the particle sensor 110 is in progress. For this reason, the notification mode of FIG. 5 is hereinafter also referred to as the “under preparation mode”.
  • this preparation-in-progress mode is used.
  • the preparation mode none of the bars B1 to B5 of FIG. 2 are displayed on the screen of the notification unit 120, and only a circular arrow as shown in FIG. 5 is displayed.
  • FIG. 6 What is shown in FIG. 6 is a notification mode used when the measurement by the particle sensor 110 is not normally performed. Such a notification mode indicates to the occupant that measurement by the particle sensor 110 is not normally performed. Therefore, the notification mode of FIG. 6 is hereinafter also referred to as an “abnormal mode”.
  • this abnormal aspect is used.
  • it can be determined based on the temperature and humidity of the vehicle interior which were measured by another sensor, for example that it is the condition which dew condensation has produced on the light-receiving surface of the particle sensor 110.
  • this abnormal aspect may be used based on the result of the self-diagnosis performed by the particle sensor 110.
  • the bar B1 or the like is displayed in a blinking state.
  • such blinking bars B1 and the like are shown by dotted lines.
  • the bar B1 or the like may be displayed in a dimmed state.
  • FIG. 7 What is shown in FIG. 7 is a notification mode used when the particle removal control is not sufficiently executed. Such a notification mode indicates to the occupant that particle removal control is not sufficiently executed. For this reason, the notification mode of FIG. 7 is hereinafter also referred to as the “insufficient control mode”.
  • only one of the bars B1 to B5 indicates the current measurement value.
  • the highest bar B3 as shown in FIG. Only the lower bars B2 and B1 are not displayed.
  • examples of the situation where the particle removal control is not sufficiently executed include, for example, a situation where the number of rotations of the fan 250 is reduced by the operation of the occupant. be able to.
  • a process performed by the control unit 130 to switch the notification mode will be described with reference to FIG.
  • a series of processes shown in FIG. 8 are repeatedly executed by the control unit 130 each time a predetermined control cycle elapses.
  • step S01 it is determined whether or not particle removal control is being performed. If the particle removal control is being performed, the process proceeds to step S02.
  • step S02 it is determined whether preparation for measurement by the particle sensor 110 is completed. Here, the determination is performed based on whether or not a predetermined period has elapsed since the vehicle was activated. If it is determined that preparation for measurement by the particle sensor 110 is completed (that is, if a predetermined period has elapsed since activation), the process proceeds to step S03.
  • step S03 it is determined whether the measurement by the particle sensor 110 is normally performed.
  • the air temperature and humidity inside the vehicle compartment are such that the dew condensation does not occur on the light receiving surface of the particle sensor 110, it is determined that the measurement by the particle sensor 110 is normally performed.
  • the measurement by the particle sensor 110 is normally performed, it transfers to step S04.
  • step S04 it is determined whether particle removal control is sufficiently executed.
  • the particle removal control is sufficiently executed when the inside air introduction unit 210 is in the open state (that is, the inside air circulation state) and the rotational speed of the fan 250 is equal to or more than a predetermined value. Ru. Otherwise, it is determined that the particle removal control is not sufficiently executed.
  • step S05 notification to the occupant by the notification unit 120 is performed by using the normal mode of FIG.
  • step S04 If it is determined in step S04 that the particle removal control is not sufficiently executed, the process proceeds to step S06.
  • step S06 notification to the occupant by the notification unit 120 is performed by using the control insufficient state of FIG.
  • step S07 notification to the occupant by the notification unit 120 is performed by using the abnormality mode of FIG. Further, in step S07, information indicating a history that an abnormality has occurred in particle sensor 110 is recorded in a storage device (for example, non-volatile memory) (not shown) included in control unit 130. The information is used as so-called diagnostic information at the time of failure analysis or the like later.
  • a storage device for example, non-volatile memory
  • step S02 When it is determined in step S02 that preparation for measurement by the particle sensor 110 is not completed (that is, when a predetermined period has not elapsed since activation), the process proceeds to step S08.
  • step S08 notification to the occupant by the notification unit 120 is performed by using the preparation in progress mode of FIG.
  • step S09 notification to the occupant by the notification unit 120 is performed by using the control in-stop mode of FIG.
  • the notification to the occupant is performed in one notification mode selected according to the situation from among a plurality of notification modes set in advance. Therefore, the occupant can not only know the measurement result (the size of the particle concentration) but also know the state of measurement based on the notification mode.
  • the plurality of notification modes set in advance may include notification modes other than the modes described above.
  • each of the notification modes shown in FIGS. 2 to 7 is merely an example, and a notification mode different from the above description may be used.
  • the particle concentration may not be displayed by the number of bars B1 or the like, but may be displayed by a numerical value.
  • the occupant instead of notifying the occupant by the screen display of the notification unit 120, for example, the occupant may be notified by voice. In this case, for example, the notification to the occupant may be performed in an insufficient control mode in which a voice such as "the PM removal efficiency is reduced because it is in the open air circulation state" is emitted. .
  • the specific physical quantity measured by the sensor has been described as being the concentration of microparticles floating in the air, but the physical quantity to be measured is other than the particle concentration May be For example, the inside temperature or the outside temperature may be used.
  • reporting aspects may occur simultaneously. For example, condensation may occur on the light receiving surface of the particle sensor 110, and particle removal control may not be performed. In such a situation, a dedicated notification mode corresponding to the situation may be used, or a notification mode corresponding to each situation occurring simultaneously may be alternately used. Further, among the notification modes corresponding to the respective situations occurring simultaneously, only the notification mode having the highest priority set in advance may be used.
  • the abnormal mode and the control stop mode are alternately alternated every several seconds, for example. It is also possible to switch. Also, among these, only the high-priority abnormal mode may be used. It is preferable to use only one notification mode with high priority, because the occupant can easily understand the situation. As the priority of the notification mode, it is preferable to set the priority of the abnormal mode to the highest.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A vehicular measurement device (10) is provided with a sensor (110) for measuring a specific physical quantity and a reporting unit (120) for reporting a measurement result from the sensor to a passenger. The reporting unit uses one reporting mode selected from among a plurality of preset reporting modes in accordance with the circumstances to report to a passenger.

Description

車両用測定装置Vehicle measuring device 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年7月7日に出願された日本国特許出願2017-133713号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-133713 filed on July 7, 2017, and claims the benefit of its priority, and the entire contents of the patent application are as follows: Incorporated herein by reference.
 本開示は、車両用測定装置に関する。 The present disclosure relates to a measuring device for a vehicle.
 車両には、特定の物理量を測定するための車両用測定装置が備えられる。このような車両用測定装置としては、例えば外気温を測定するための外気温度センサや、空気中を漂う微小粒子(PM2.5)の濃度を測定するための粒子センサ等が挙げられる。車両用測定装置で測定された結果は、例えば運転席の近傍に設けられた表示装置等により、乗員に報知される。 The vehicle is equipped with a vehicle measuring device for measuring a specific physical quantity. As such a measuring device for vehicles, an outside air temperature sensor for measuring outside air temperature, a particle sensor for measuring the concentration of the minute particle (PM2.5) which drifts in the air, etc. are mentioned, for example. The result measured by the vehicle measurement device is notified to the occupant by, for example, a display device or the like provided in the vicinity of the driver's seat.
 ところで、車両用測定装置による物理量の測定は、常に正常に行われているとは限らない。例えば下記特許文献1には、外気温度センサがエンジンからの輻射熱の影響を受けることにより、外気温度センサで測定された値が実際の外気温よりも高くなる場合があることが記載されている。このような測定値がそのまま乗員に向けて表示(報知)されると、乗員は実際とは異なる値を外気温として認識してしまうこととなる。 By the way, the measurement of the physical quantity by the measuring device for vehicles is not always performed normally. For example, Patent Document 1 below describes that the value measured by the outside air temperature sensor may be higher than the actual outside air temperature due to the influence of radiant heat from the engine. If such measured values are directly displayed (notified) to the occupant, the occupant will recognize a value different from the actual value as the outside air temperature.
 そこで、下記特許文献1に記載の外気温度表示装置では、輻射の影響を受ける可能性がある状況で測定値が上昇したときは、上昇前の測定値をホールドした状態で表示することとしている。これにより、実際の外気温よりも高い値が乗員に向けて表示されてしまうような事態を防止することが可能となっている。 Therefore, in the outside air temperature display device described in Patent Document 1 below, when the measurement value rises in a situation where there is a possibility of being affected by radiation, the measurement value before the rise is displayed in a held state. This makes it possible to prevent a situation in which a value higher than the actual outside air temperature is displayed to the occupant.
特公平6-45297号公報Japanese Examined Patent Publication 6-45297
 しかしながら、上記特許文献1に記載の外気温度表示装置を見ている乗員は、表示されている値が実際に測定されている値なのか、それとも、輻射の影響を受けないようにホールドされた値なのか、を知ることができない。 However, the occupant looking at the outside air temperature display device described in the above-mentioned patent document 1 is a value which is held so that the displayed value is a value actually measured or is not affected by radiation. I can not know what it is.
 尚、車両用測定装置が物理量の測定を行うにあたっては、上記のように外的要因によって測定が不正確になってしまうような状況の他、様々な状況が生じ得る。例えば光学式の粒子濃度センサの場合には、受光面の結露によって測定が困難となってしまうような場合も生じ得る。車両の状況を乗員に正確に把握させるためには、車両用測定装置が単に測定結果のみを報知するだけでは不十分であり、測定の状況をも乗員に報知することが好ましい。 In addition, when the measuring device for vehicles measures a physical quantity, various situations may arise besides the situation where measurement becomes inaccurate by an external factor as mentioned above. For example, in the case of an optical particle concentration sensor, it may occur that the dew condensation on the light receiving surface makes the measurement difficult. In order to cause the occupant to accurately grasp the condition of the vehicle, it is not sufficient that the vehicular measuring device merely report only the measurement result, and it is preferable to notify the occupant of the condition of measurement as well.
 本開示は、測定結果に加えて測定の状況をも乗員に報知することのできる車両用測定装置、を提供することを目的とする。 An object of the present disclosure is to provide a vehicle measurement device capable of notifying an occupant of the measurement condition in addition to the measurement result.
 本開示に係る車両用測定装置は、特定の物理量を測定するセンサと、センサによる測定結果を乗員に報知する報知部と、を備える。報知部は、予め設定された複数の報知態様の中から、状況に応じて選択された一つの報知態様で乗員への報知を行う。 The measuring apparatus for vehicles concerning this indication is provided with the sensor which measures a specific physical quantity, and the reporting part which reports a measurement result by a sensor to a crew member. The notification unit notifies the occupant in one notification mode selected according to the situation from among a plurality of notification modes set in advance.
 このような構成の車両用測定装置では、状況に応じて選択された報知態様で乗員への報知が行われる。このため、乗員は測定結果を知るだけでなく、報知態様に基づいて測定の状況をも知ることができる。 In the vehicle measuring apparatus having such a configuration, notification to the occupant is performed in the notification mode selected according to the situation. Therefore, the occupant can not only know the measurement result but also know the state of measurement based on the notification mode.
 本開示によれば、測定結果に加えて測定の状況をも乗員に報知することのできる車両用測定装置、が提供される。 According to the present disclosure, there is provided a vehicle measurement device capable of notifying an occupant of the condition of measurement in addition to the measurement result.
図1は、本実施形態に係る車両用測定装置の構成を模式的に示す図である。FIG. 1 is a view schematically showing the configuration of a measurement apparatus for a vehicle according to the present embodiment. 図2は、報知部の報知態様の一つである正常態様を示す図である。FIG. 2 is a view showing a normal mode which is one of the notification modes of the notification unit. 図3は、報知部の報知態様の一つである制御停止中態様を示す図である。FIG. 3 is a diagram showing an aspect of stopping the control which is one of the notification aspects of the notification unit. 図4は、図3に示される制御停止中態様の他の例を示す図である。FIG. 4 is a diagram showing another example of the control suspension state shown in FIG. 図5は、報知部の報知態様の一つである準備中態様を示す図である。FIG. 5: is a figure which shows the aspect in preparation which is one of the alerting modes of an alerting | reporting part. 図6は、報知部の報知態様の一つである異常態様を示す図である。FIG. 6 is a diagram showing an abnormal state which is one of the notification modes of the notification unit. 図7は、報知部の報知態様の一つである制御不十分態様を示す図である。FIG. 7 is a diagram showing an insufficient control mode, which is one of the notification modes of the notification unit. 図8は、制御部によって実行される処理の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of processing executed by the control unit.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same constituent elements in the drawings are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 図1を参照しながら、本実施形態に係る車両用測定装置10について説明する。車両用測定装置10は、車両(全体は不図示)に設けられる装置であって、当該車両の車室内の空間を漂う微小粒子(PM2.5)の濃度を測定する装置として構成されている。車両用測定装置10は、車両に搭載された空調装置20を通過する空気、における上記濃度を測定する。車両用測定装置10によって測定される上記濃度のことを、以下では「粒子濃度」とも表記する。車両用測定装置10の構成の説明に先立ち、先ず空調装置20の構成について説明する。 The measuring apparatus 10 for vehicles which concerns on this embodiment is demonstrated, referring FIG. The measuring apparatus 10 for vehicles is an apparatus provided in a vehicle (the whole is not shown), and is comprised as an apparatus which measures the density | concentration of the micro particle (PM2.5) which drifts the space in the vehicle interior of the said vehicle. The measuring device 10 for vehicles measures the said density | concentration in the air which passes the air conditioner 20 mounted in the vehicle. The concentration measured by the vehicle measuring device 10 is hereinafter also referred to as "particle concentration". Prior to the description of the configuration of the vehicle measurement device 10, the configuration of the air conditioner 20 will be described first.
 空調装置20は、車室内の空調を行うための装置である。空調装置20は、空調ケース200と、ファン250と、粒子フィルタ240と、熱交換部260と、を備えている。 The air conditioner 20 is a device for performing air conditioning of the vehicle interior. The air conditioner 20 includes an air conditioning case 200, a fan 250, a particle filter 240, and a heat exchange unit 260.
 空調ケース200は、空調対象である空気を車室内に案内するための管状の部材である。空調ケース200の内側では、図1における左側から右側に向かう方向に空気が流れる。空調ケース200には、内気導入部210と、外気導入部220と、フェイスダクト270と、フットダクト280と、が形成されている。 The air conditioning case 200 is a tubular member for guiding the air to be air conditioned into the vehicle compartment. Inside the air conditioning case 200, the air flows from the left side to the right side in FIG. In the air conditioning case 200, an inside air introducing unit 210, an outside air introducing unit 220, a face duct 270, and a foot duct 280 are formed.
 内気導入部210は、車室内の空気(内気)を空調ケース200の内側に取り入れるための導入口である。外気導入部220は、車室外の空気(外気)を空調ケース200の内側に取り入れるための導入口である。内気導入部210及び外気導入部220は、空調ケース200のうち上流側部分において並ぶように形成されている。 The inside air introduction unit 210 is an introduction port for introducing the air (inside air) inside the vehicle compartment into the inside of the air conditioning case 200. The outside air introduction unit 220 is an introduction port for introducing the air outside the vehicle (outside air) into the inside of the air conditioning case 200. The inside air introducing unit 210 and the outside air introducing unit 220 are formed to be aligned in the upstream side portion of the air conditioning case 200.
 内気導入部210と外気導入部220との間には内外気切り換えドア230が設けられている。内外気切り換えドア230は、内気導入部210のみが開かれている状態(図1)の状態と、外気導入部220のみが開かれている状態と、を切り換えるためのドアである。内気導入部210のみが開かれている状態は、車室内から取り入れられた内気が空調されて車室内に吹き出される状態、すなわち内気循環状態である。外気導入部220のみが開かれている状態は、車室外から取り入れられた外気が空調されて車室内に吹き出される状態、すなわち外気循環状態である。内外気切り換えドア230の動作は、後述の制御部130によって制御される。 An inside / outside air switching door 230 is provided between the inside air introduction unit 210 and the outside air introduction unit 220. The inside / outside air switching door 230 is a door for switching between the state where only the inside air introducing unit 210 is opened (FIG. 1) and the state where only the outside air introducing unit 220 is opened. When only the inside air introducing unit 210 is open, the inside air taken in from the vehicle compartment is air-conditioned and blown into the vehicle room, that is, the inside air circulating state. When only the outside air introducing unit 220 is open, the outside air taken in from the outside of the vehicle is air-conditioned and blown out into the vehicle interior, that is, the outside air circulating state. The operation of the inside / outside air switching door 230 is controlled by a control unit 130 described later.
 フェイスダクト270及びフットダクト280は、いずれも、空調された空気を車室内に導くための排出口である。フェイスダクト270及びフットダクト280は、空調ケース200のうち下流側部分に形成されている。フェイスダクト270は、乗員の顔に向けて空調風を吹き出すためのフェイス吹き出し口(不図示)に繋がっている。フットダクト280は、乗員の足元に向けて空調風を吹き出すためのフット吹き出し口(不図示)に繋がっている。 The face duct 270 and the foot duct 280 are both exhaust ports for introducing the conditioned air into the vehicle compartment. The face duct 270 and the foot duct 280 are formed on the downstream side of the air conditioning case 200. The face duct 270 is connected to a face outlet (not shown) for blowing conditioned air toward the face of the occupant. The foot duct 280 is connected to a foot outlet (not shown) for blowing conditioned air toward the feet of the occupant.
 フェイスダクト270の入口部分にはフェイスドア271が設けられている。フェイスドア271が図1のように開状態となっているときには、フェイスダクト270からフェイス吹き出し口に向けて空調風が供給される。同様に、フットダクト280の入口部分にはフットドア281が設けられている。フットドア281が開状態となっているときには、フットダクト280からフット吹き出し口に向けて空調風が供給される。フェイスドア271及びフットドア281のそれぞれの動作は制御部130によって制御される。 A face door 271 is provided at the inlet of the face duct 270. When the face door 271 is in the open state as shown in FIG. 1, conditioned air is supplied from the face duct 270 toward the face outlet. Similarly, a foot door 281 is provided at the inlet of the foot duct 280. When the foot door 281 is in the open state, conditioned air is supplied from the foot duct 280 toward the foot outlet. The operations of the face door 271 and the foot door 281 are controlled by the control unit 130.
 尚、例えばフェイスダクト270の下流側が二つに分岐しており、その一方が窓の近傍に形成されたデフロスタ吹き出し口(不図示)に繋がっているような態様であってもよい。 For example, the downstream side of the face duct 270 may be branched into two, and one of them may be connected to a defroster outlet (not shown) formed in the vicinity of the window.
 ファン250は、空調ケース200の内側において下流側に空気を送り出すための送風機である。ファン250の回転数、すなわち空調装置20から吹き出される空調風の風量は、制御部130によって制御される。 The fan 250 is a blower for delivering air to the downstream side inside the air conditioning case 200. The control unit 130 controls the number of rotations of the fan 250, that is, the amount of conditioned air blown out from the air conditioner 20.
 粒子フィルタ240は、空調ケース200を通過する空気から、当該空気に含まれる微小粒子を除去するためのフィルタである。粒子フィルタ240は、内気導入部210や外気導入部220よりも下流側であり、且つファン250よりも上流側となる位置に設けられている。 The particle filter 240 is a filter for removing the microparticles contained in the air from the air passing through the air conditioning case 200. The particle filter 240 is provided at a position downstream of the inside air introducing unit 210 and the outside air introducing unit 220 and on the upstream side of the fan 250.
 熱交換部260は、冷媒などとの熱交換によって空調を行う部分である。熱交換部260は、ファン250よりも下流側であり、且つフェイスダクト270やフットダクト280よりも上流側となる位置に設けられている。熱交換部260には、空気の除湿及び冷却を行うためのエバポレータや、空気の加熱を行うためのヒータコア、及び、これらを通過する空気の流量を調整するためのエアミックスドア等(いずれも不図示)が設けられている。尚、このような熱交換部260の構成としては公知のものを採用し得るので、その具体的な図示や説明は省略する。 The heat exchange unit 260 is a portion that performs air conditioning by heat exchange with a refrigerant or the like. The heat exchange unit 260 is provided downstream of the fan 250 and upstream of the face duct 270 and the foot duct 280. The heat exchange unit 260 includes an evaporator for dehumidifying and cooling the air, a heater core for heating the air, an air mix door for adjusting the flow rate of the air passing through them, and the like. ) Is provided. In addition, since a well-known thing can be employ | adopted as a structure of such a heat exchange part 260, the specific illustration and description are abbreviate | omitted.
 引き続き図1を参照しながら、車両用測定装置10の構成について説明する。車両用測定装置10は、粒子センサ110と、報知部120と、制御部130と、を備えている。 The configuration of the vehicle measuring device 10 will be described with reference to FIG. 1 continuously. The vehicular measurement device 10 includes a particle sensor 110, a notification unit 120, and a control unit 130.
 粒子センサ110は、空気中における粒子濃度を測定するためのセンサである。図1に示されるように、空調ケース200のうち粒子フィルタ240よりも下流側であり、且つファン250よりも上流側となる位置には、導入管290の一端が接続されている。導入管290の他端は車室内に開放されている。粒子センサ110は、この導入管290の途中となる位置に設けられている。空調ケース200の内側を空気が流れているときには、空調ケース200側で生じる負圧により、導入管290においても空気の流れが生じる。つまり、車室内から導入管290を通って空調ケース200内に至るような空気の流れが生じる。粒子センサ110は、当該空気に含まれる微小粒子の濃度を測定し、当該濃度を電気信号により制御部130に送信する。 The particle sensor 110 is a sensor for measuring the particle concentration in the air. As shown in FIG. 1, one end of an introduction pipe 290 is connected to the air conditioning case 200 at a position downstream of the particle filter 240 and upstream of the fan 250. The other end of the introduction pipe 290 is open to the passenger compartment. The particle sensor 110 is provided at a position in the middle of the introduction pipe 290. When the air is flowing inside the air conditioning case 200, the negative pressure generated on the air conditioning case 200 side also causes the air flow in the introduction pipe 290. That is, a flow of air from the vehicle interior to the inside of the air conditioning case 200 through the introduction pipe 290 occurs. The particle sensor 110 measures the concentration of microparticles contained in the air, and transmits the concentration to the control unit 130 as an electrical signal.
 図示は省略するが、粒子センサ110は発光部と受光部とを有しており、両者の間を空気が流れるように構成されている。当該空気の粒子濃度が高くなると、それに伴って受光部が受光する光量が小さくなる。粒子センサ110は、受光部が受光する光量に基づいて粒子濃度を測定する。 Although not shown, the particle sensor 110 has a light emitting unit and a light receiving unit, and air is configured to flow between the two. As the particle concentration of the air increases, the amount of light received by the light receiving unit decreases accordingly. The particle sensor 110 measures the particle concentration based on the amount of light received by the light receiving unit.
 粒子センサ110による粒子濃度の測定が正確に行われるためには、導入管290における空気の流れが生じている必要がある。このため、本実施形態における粒子センサ110による粒子濃度の測定は、空調装置20による空調が行われている状況においてのみ行われる。 In order for the particle concentration measurement by the particle sensor 110 to be accurately performed, the air flow in the introduction pipe 290 needs to occur. For this reason, the measurement of the particle concentration by the particle sensor 110 in the present embodiment is performed only in a state in which the air conditioner 20 is performing air conditioning.
 報知部120は、粒子センサ110による測定結果(つまり粒子濃度の大きさ)を乗員に報知する部分である。本実施形態では、報知部120は液晶表示パネルとして構成されている。つまり、本実施形態における乗員への報知は視覚的な表示によって行われる。このような態様に換えて、報知部120による乗員への報知が音声等によって行われるような態様であってもよい。報知部120の動作は制御部130によって制御される。 The notification unit 120 is a part that notifies the occupant of the measurement result by the particle sensor 110 (that is, the magnitude of the particle concentration). In the present embodiment, the notification unit 120 is configured as a liquid crystal display panel. That is, the notification to the occupant in the present embodiment is performed by visual display. Instead of such an aspect, the notification to the occupant by the notification unit 120 may be performed by voice or the like. The operation of the notification unit 120 is controlled by the control unit 130.
 制御部130は、車両用測定装置10の全体の動作を制御するための装置である。制御部130は、CPU、ROM、RAM等を備えたコンピュータシステムとして構成されている。既に述べたように、制御部130は、内外気切り換えドア230やファン250等の動作を制御する。つまり、本実施形態における制御部130は、空調装置20の動作をも制御する装置として構成されている。 The control unit 130 is a device for controlling the overall operation of the vehicular measuring device 10. The control unit 130 is configured as a computer system provided with a CPU, a ROM, a RAM, and the like. As described above, the control unit 130 controls the operation of the inside / outside air switching door 230, the fan 250, and the like. That is, the control unit 130 in the present embodiment is configured as a device that also controls the operation of the air conditioner 20.
 このような態様に換えて、空調装置20の動作を制御するためのECUが、制御部130とは別に設けられているような態様であってもよい。この場合、制御部130が当該ECUと通信を行うことにより、空調装置20の動作の一部を間接的に制御することとすればよい。 Instead of such an aspect, an ECU for controlling the operation of the air conditioner 20 may be provided separately from the control unit 130. In this case, part of the operation of the air conditioner 20 may be indirectly controlled by the control unit 130 communicating with the ECU.
 制御部130は、粒子除去制御を行うことが可能となっている。粒子除去制御とは、粒子フィルタ240による微粒子の除去を効率的に行うための制御である。粒子除去制御において、制御部130は、内外気切り換えドア230によって内気導入部210が開放された状態、すなわち内気循環状態とした上で、ファン250の回転数を所定値以上に増加させる。これにより、外部から車室内への微粒子の侵入を防止しながら、粒子フィルタ240による微粒子の除去を効率的に行うことができる。このような粒子除去制御は、粒子センサ110による粒子濃度の測定に影響を及ぼす制御、ということができる。粒子除去制御は自動的に開始されてもよく、乗員がスイッチ等に対して行う操作に基づいて開始されてもよい。 The control unit 130 is capable of performing particle removal control. The particle removal control is control for efficiently removing particulates by the particle filter 240. In the particle removal control, the control unit 130 increases the rotational speed of the fan 250 to a predetermined value or more after setting the inside air introduction unit 210 to the open state by the inside / outside air switching door 230, that is, the inside air circulation state. This makes it possible to efficiently remove the particulates by the particle filter 240 while preventing the particulates from entering the vehicle compartment from the outside. Such particle removal control can be said to be control that affects the measurement of particle concentration by the particle sensor 110. The particle removal control may be automatically started, or may be started based on an operation performed by an occupant on a switch or the like.
 報知部120によって行われる報知の態様について説明する。報知部120による乗員への報知は、常に同じ報知態様によって行われるのではなく、予め設定された複数の報知態様の中から、状況に応じて選択された一つの報知態様により行われる。 The aspect of the alerting | reporting performed by the alerting | reporting part 120 is demonstrated. The notification to the occupant by the notification unit 120 is not always performed by the same notification mode, but is performed by one notification mode selected according to the situation from among a plurality of preset notification modes.
 図2に示されるのは、粒子センサ110による測定が正常に行われている場合において用いられる報知態様である。このような報知態様は、粒子センサ110による測定が正常に行われていることを乗員に示すものである。このため、図2の報知態様のことを以下では「正常態様」とも称する。 What is shown in FIG. 2 is a notification mode used when the measurement by the particle sensor 110 is normally performed. Such a notification mode indicates to the occupant that the measurement by the particle sensor 110 is normally performed. Therefore, the notification mode of FIG. 2 is hereinafter also referred to as a “normal mode”.
 この正常態様では、報知部120の画面上に最大で5本のバー(B1~B5)が示される。粒子センサ110で測定された粒子濃度が最も小さいときには、最も低いバーB1のみが表示され、それ以外のバーB2等は表示されない。 In this normal mode, up to five bars (B1 to B5) are shown on the screen of the notification unit 120. When the particle concentration measured by the particle sensor 110 is the lowest, only the lowest bar B1 is displayed, and the other bars B2 and the like are not displayed.
 粒子センサ110で測定された粒子濃度が上記よりも大きくなると、最も低いバーB1と、2番目に低いバーB2のみが表示され、それ以外のバーB3等は表示されない。以降は、測定された粒子濃度が大きくなるに従って、低い方から順にバーB3等が追加表示されて行く。粒子センサ110で測定された粒子濃度が最も大きくなると、図2に示されるように、報知部120の画面上に5本のバー(B1~B5)の全てが表示される。尚、それぞれのバーの表示色がバー毎に異なって表示されてもよい。 When the particle concentration measured by the particle sensor 110 becomes larger than the above, only the lowest bar B1 and the second lowest bar B2 are displayed, and the other bars B3 and the like are not displayed. After that, as the measured particle concentration increases, bars B3 and the like are additionally displayed in order from the lower one. When the particle concentration measured by the particle sensor 110 becomes the largest, all five bars (B1 to B5) are displayed on the screen of the notification unit 120, as shown in FIG. The display color of each bar may be displayed differently for each bar.
 図3に示されるのは、先に述べた粒子除去制御が行われていない場合において用いられる報知態様である。このような報知態様は、粒子除去制御が停止していることを乗員に示すものである。このため、図3の報知態様のことを以下では「制御停止中態様」とも称する。 FIG. 3 shows a notification mode used when the particle removal control described above is not performed. Such notification mode indicates to the occupant that the particle removal control is stopped. Therefore, the notification mode of FIG. 3 is hereinafter also referred to as the “control in-stop mode”.
 尚、本実施形態に係る車両用測定装置10では、粒子除去制御が行われていない状況においては、粒子センサ110による粒子濃度の測定も停止される。このため、図3に示される報知態様は、粒子センサ110による測定が停止していることを示す「停止中態様」、ということもできる。つまり、本実施形態では、制御停止中態様と停止中態様とが同一の態様として設定されており、これらが同一の場面において用いられる構成となっている。 In the vehicle measurement device 10 according to the present embodiment, measurement of the particle concentration by the particle sensor 110 is also stopped in a situation where particle removal control is not performed. For this reason, the notification mode shown in FIG. 3 can also be said to be an “in-stop mode” indicating that the measurement by the particle sensor 110 is stopped. That is, in the present embodiment, the control stop mode and the stop mode are set as the same mode, and they are used in the same scene.
 このような構成に換えて、粒子除去制御が行われていない状況においても、粒子センサ110による粒子濃度の測定が行われる構成としてもよい。この場合、粒子除去制御が行われておらず、且つ粒子センサ110による粒子濃度の測定が行われているときには、図4に示される報知態様が用いられることとすればよい。この報知態様では、バー(B1~B5)は図2の正常態様と同様に表示される一方で、「制御停止中」との文字列STも合わせて表示される。このような構成においては、図3に示される報知態様が「停止中態様」に該当し、図4に示される報知態様が「制御停止中態様」に該当する。 Instead of such a configuration, measurement of the particle concentration by the particle sensor 110 may be performed even in a situation where particle removal control is not performed. In this case, when the particle removal control is not performed and the measurement of the particle concentration by the particle sensor 110 is performed, the notification mode illustrated in FIG. 4 may be used. In this notification mode, the bars (B1 to B5) are displayed in the same manner as in the normal mode of FIG. 2, while the character string ST "in control stop" is also displayed. In such a configuration, the notification mode shown in FIG. 3 corresponds to the “stopping mode”, and the notification mode shown in FIG. 4 corresponds to the “control stopping mode”.
 図5に示されるのは、粒子センサ110が測定準備中である場合において用いられる報知態様である。このような報知態様は、粒子センサ110による測定の準備中であることを乗員に示すものである。このため、図5の報知態様のことを以下では「準備中態様」とも称する。 Shown in FIG. 5 is a notification mode used when the particle sensor 110 is in preparation for measurement. Such notification mode indicates to the occupant that preparation for measurement by the particle sensor 110 is in progress. For this reason, the notification mode of FIG. 5 is hereinafter also referred to as the “under preparation mode”.
 例えば、車両が始動された直後であって粒子センサ110の状態が不安定となっている所定期間においては、この準備中態様が用いられる。準備中態様では、報知部120の画面上には図2のバーB1~B5のいずれも表示されず、図5のような円形の矢印のみが表示される。 For example, during the predetermined period in which the state of the particle sensor 110 is unstable immediately after the vehicle is started, this preparation-in-progress mode is used. In the preparation mode, none of the bars B1 to B5 of FIG. 2 are displayed on the screen of the notification unit 120, and only a circular arrow as shown in FIG. 5 is displayed.
 図6に示されるのは、粒子センサ110による測定が正常には行われていない場合において用いられる報知態様である。このような報知態様は、粒子センサ110による測定が正常に行われていないことを乗員に示すものである。このため、図6の報知態様のことを以下では「異常態様」とも称する。 What is shown in FIG. 6 is a notification mode used when the measurement by the particle sensor 110 is not normally performed. Such a notification mode indicates to the occupant that measurement by the particle sensor 110 is not normally performed. Therefore, the notification mode of FIG. 6 is hereinafter also referred to as an “abnormal mode”.
 例えば、粒子センサ110の受光面に結露が生じているような状況においては、この異常態様が用いられる。尚、粒子センサ110の受光面に結露が生じている状況であることは、例えば別のセンサによって測定された車室内の温度や湿度に基づいて判定することができる。また、粒子センサ110が行う自己診断の結果に基づいて、この異常態様が用いられることとしてもよい。 For example, in a situation where condensation occurs on the light receiving surface of the particle sensor 110, this abnormal aspect is used. In addition, it can be determined based on the temperature and humidity of the vehicle interior which were measured by another sensor, for example that it is the condition which dew condensation has produced on the light-receiving surface of the particle sensor 110. In addition, this abnormal aspect may be used based on the result of the self-diagnosis performed by the particle sensor 110.
 異常態様においては、バーB1等が点滅した状態で表示される。図6では、このように点滅するバーB1等が点線で示されている。このような態様に換えて、バーB1等が減光された状態で表示されるような態様であってもよい。 In the abnormal mode, the bar B1 or the like is displayed in a blinking state. In FIG. 6, such blinking bars B1 and the like are shown by dotted lines. Instead of such an aspect, the bar B1 or the like may be displayed in a dimmed state.
 図7に示されるのは、粒子除去制御が十分に実行されていない場合において用いられる報知態様である。このような報知態様は、粒子除去制御が十分に実行されていないことを乗員に示すものである。このため、図7の報知態様のことを以下では「制御不十分態様」とも称する。 What is shown in FIG. 7 is a notification mode used when the particle removal control is not sufficiently executed. Such a notification mode indicates to the occupant that particle removal control is not sufficiently executed. For this reason, the notification mode of FIG. 7 is hereinafter also referred to as the “insufficient control mode”.
 制御不十分態様では、バーB1~B5のうち、現在の測定値を示す単一のバーのみが表示される。例えば、正常態様においてはバーB1、B2、B3の3本が表示されるような粒子濃度である状況において、粒子除去制御が不十分となった場合には、図7のように最も高いバーB3のみが表示され、これよりも低いバーB2、B1については表示されない。 In the poor control mode, only one of the bars B1 to B5 indicates the current measurement value. For example, when particle removal control becomes insufficient in a situation where the particle concentration is such that three bars B1, B2 and B3 are displayed in the normal mode, the highest bar B3 as shown in FIG. Only the lower bars B2 and B1 are not displayed.
 例えば、乗員が行う操作によって、外気導入部220のみが開かれている状態、すなわち外気循環状態となっているときには、微粒子を多量に含む外気が車室内に導入されることとなる。このような状況においては、粒子除去制御を効率的に実行することができない。このため、図7の制御不十分態様が用いられる。 For example, in the state where only the outside air introducing portion 220 is opened by the operation performed by the occupant, that is, in the outside air circulating state, the outside air containing a large amount of particles is introduced into the vehicle interior. Under such circumstances, particle removal control can not be performed efficiently. For this reason, the control inadequate aspect of FIG. 7 is used.
 尚、粒子除去制御が十分に実行されていない状況としては、上記のように外気循環状態となっている状況のほか、例えば、乗員の操作によってファン250の回転数が小さくされた状況等を挙げることができる。 In addition to the situation where the ambient air circulation state is established as described above, examples of the situation where the particle removal control is not sufficiently executed include, for example, a situation where the number of rotations of the fan 250 is reduced by the operation of the occupant. be able to.
 このような制御不十分態様で乗員への報知が行われることにより、「粒子除去制御が実行されているはずなのにその効果が小さい」と乗員が不審に思ってしまうような事態を防止することができる。 By notifying the occupant in such an insufficient control mode, it is possible to prevent a situation in which the occupant is suspected to be suspicious that "the effect is small although the particle removal control should be executed". it can.
 報知態様を切り換えるために制御部130が行う処理について、図8を参照しながら説明する。図8に示される一連の処理は、所定の制御周期が経過する毎に、制御部130によって繰り返し実行されるものである。 A process performed by the control unit 130 to switch the notification mode will be described with reference to FIG. A series of processes shown in FIG. 8 are repeatedly executed by the control unit 130 each time a predetermined control cycle elapses.
 最初のステップS01では、粒子除去制御が実行されているか否かが判定される。粒子除去制御が実行されている場合にはステップS02に移行する。ステップS02では、粒子センサ110による測定の準備が完了しているか否かが判定される。ここでは、車両が起動されてから所定期間が経過したか否かに基づいて当該判定が行われる。粒子センサ110による測定の準備が完了していると判定された場合(つまり起動されてから所定期間が経過している場合)には、ステップS03に移行する。 In the first step S01, it is determined whether or not particle removal control is being performed. If the particle removal control is being performed, the process proceeds to step S02. In step S02, it is determined whether preparation for measurement by the particle sensor 110 is completed. Here, the determination is performed based on whether or not a predetermined period has elapsed since the vehicle was activated. If it is determined that preparation for measurement by the particle sensor 110 is completed (that is, if a predetermined period has elapsed since activation), the process proceeds to step S03.
 ステップS03では、粒子センサ110による測定が正常に行われているか否かが判定される。ここでは、車室内の気温及び湿度が、粒子センサ110の受光面に結露が生じないような気温及び湿度であった場合に、粒子センサ110による測定が正常に行われていると判定される。粒子センサ110による測定が正常に行われている場合には、ステップS04に移行する。 In step S03, it is determined whether the measurement by the particle sensor 110 is normally performed. Here, when the air temperature and humidity inside the vehicle compartment are such that the dew condensation does not occur on the light receiving surface of the particle sensor 110, it is determined that the measurement by the particle sensor 110 is normally performed. When the measurement by the particle sensor 110 is normally performed, it transfers to step S04.
 ステップS04では、粒子除去制御が十分に実行されているか否かが判定される。ここでは、内気導入部210が開かれている状態(つまり内気循環状態)であり、且つファン250の回転数が所定値以上である場合に、粒子除去制御が十分に実行されていると判定される。それ以外の場合には、粒子除去制御が十分に実行されていないと判定される。 In step S04, it is determined whether particle removal control is sufficiently executed. Here, it is determined that the particle removal control is sufficiently executed when the inside air introduction unit 210 is in the open state (that is, the inside air circulation state) and the rotational speed of the fan 250 is equal to or more than a predetermined value. Ru. Otherwise, it is determined that the particle removal control is not sufficiently executed.
 粒子除去制御が十分に実行されていると判定された場合には、ステップS05に移行する。ステップS05では、図2の正常態様を用いることにより報知部120による乗員への報知が行われる。 If it is determined that the particle removal control is sufficiently executed, the process proceeds to step S05. In step S05, notification to the occupant by the notification unit 120 is performed by using the normal mode of FIG.
 ステップS04において、粒子除去制御が十分に実行されていないと判定された場合にはステップS06に移行する。ステップS06では、図7の制御不十分態様を用いることにより報知部120による乗員への報知が行われる。 If it is determined in step S04 that the particle removal control is not sufficiently executed, the process proceeds to step S06. In step S06, notification to the occupant by the notification unit 120 is performed by using the control insufficient state of FIG.
 ステップS03において、粒子センサ110による測定が正常に行われていないと判定された場合にはステップS07に移行する。ステップS07では、図6の異常態様を用いることにより報知部120による乗員への報知が行われる。また、ステップS07では、粒子センサ110に異常が生じたという履歴を示す情報が、制御部130が備える不図示の記憶装置(例えば不揮発性メモリ)に記録される。当該情報は、後の故障解析時等において所謂ダイアグ情報として用いられる。 When it is determined in step S03 that the measurement by the particle sensor 110 is not normally performed, the process proceeds to step S07. In step S07, notification to the occupant by the notification unit 120 is performed by using the abnormality mode of FIG. Further, in step S07, information indicating a history that an abnormality has occurred in particle sensor 110 is recorded in a storage device (for example, non-volatile memory) (not shown) included in control unit 130. The information is used as so-called diagnostic information at the time of failure analysis or the like later.
 ステップS02において、粒子センサ110による測定の準備が完了していないと判定された場合(つまり起動されてから所定期間が経過していない場合)には、ステップS08に移行する。ステップS08では、図5の準備中態様を用いることにより報知部120による乗員への報知が行われる。 When it is determined in step S02 that preparation for measurement by the particle sensor 110 is not completed (that is, when a predetermined period has not elapsed since activation), the process proceeds to step S08. In step S08, notification to the occupant by the notification unit 120 is performed by using the preparation in progress mode of FIG.
 ステップS01において、粒子除去制御が実行されていないと判定された場合には、ステップS09に移行する。ステップS09では、図3の制御停止中態様(停止中態様ともいえる)を用いることにより報知部120による乗員への報知が行われる。 If it is determined in step S01 that the particle removal control is not performed, the process proceeds to step S09. In step S09, notification to the occupant by the notification unit 120 is performed by using the control in-stop mode of FIG.
 以上のように、本実施形態に係る車両用測定装置10では、予め設定された複数の報知態様の中から、状況に応じて選択された一つの報知態様で乗員への報知が行われる。このため、乗員は測定結果(粒子濃度の大きさ)を知るだけでなく、報知態様に基づいて測定の状況をも知ることができる。予め設定された複数の報知態様には、これまでに説明した態様以外の報知態様が含まれていてもよい。 As described above, in the vehicle measurement device 10 according to the present embodiment, the notification to the occupant is performed in one notification mode selected according to the situation from among a plurality of notification modes set in advance. Therefore, the occupant can not only know the measurement result (the size of the particle concentration) but also know the state of measurement based on the notification mode. The plurality of notification modes set in advance may include notification modes other than the modes described above.
 尚、図2乃至7それぞれの報知態様はあくまで一例であって、以上の説明とは異なる態様の報知態様が用いられてもよい。例えば、粒子濃度をバーB1等の本数で表示するのではなく、数値で表示するような態様であってもよい。また、報知部120の画面表示によって乗員に報知するのではなく、例えば音声によって乗員に報知するような態様であってもよい。この場合、例えば「外気循環状態となっているので、PMの除去効率が低下しています」のような音声を発するような制御不十分態様で、乗員への報知が行われることとすればよい。 Each of the notification modes shown in FIGS. 2 to 7 is merely an example, and a notification mode different from the above description may be used. For example, the particle concentration may not be displayed by the number of bars B1 or the like, but may be displayed by a numerical value. Further, instead of notifying the occupant by the screen display of the notification unit 120, for example, the occupant may be notified by voice. In this case, for example, the notification to the occupant may be performed in an insufficient control mode in which a voice such as "the PM removal efficiency is reduced because it is in the open air circulation state" is emitted. .
 また、以上の説明においては、センサ(粒子センサ110)によって測定される特定の物理量が、空気中を漂う微小粒子の濃度である場合について説明したが、測定対象となる物理量は粒子濃度以外であってもよい。例えば、内気温や外気温であってもよい。 In the above description, the specific physical quantity measured by the sensor (particle sensor 110) has been described as being the concentration of microparticles floating in the air, but the physical quantity to be measured is other than the particle concentration May be For example, the inside temperature or the outside temperature may be used.
 尚、二以上の報知態様に対応する事態が同時に発生するような場合もあり得る。例えば、粒子センサ110の受光面に結露が生じており、且つ、粒子除去制御が実行されていないような場合もあり得る。このような状況においては、当該状況に対応した専用の報知態様が用いられることとしてもよく、同時に発生したそれぞれの事態に対応した報知態様が交互に用いられることとしてもよい。また、同時に発生しているそれぞれの事態に対応した報知態様のうち、予め設定された優先度の最も高い報知態様のみが用いられることとしてもよい。 In addition, the situation corresponding to two or more alerting | reporting aspects may occur simultaneously. For example, condensation may occur on the light receiving surface of the particle sensor 110, and particle removal control may not be performed. In such a situation, a dedicated notification mode corresponding to the situation may be used, or a notification mode corresponding to each situation occurring simultaneously may be alternately used. Further, among the notification modes corresponding to the respective situations occurring simultaneously, only the notification mode having the highest priority set in advance may be used.
 例えば、上記のように粒子センサ110の受光面に結露が生じており、且つ、粒子除去制御が実行されていないような場合には、異常態様と制御停止中態様とが例えば数秒おきに交互に切り換わることとしてもよい。また、これらのうち優先度の高い異常態様のみが用いられることとしてもよい。優先度の高い1つの報知態様のみが用いられることとした方が、乗員が状況をより理解しやすくなるため好ましい。尚、報知態様の優先度としては、異常態様の優先度を最も高くすることが好ましい。 For example, when condensation occurs on the light receiving surface of the particle sensor 110 as described above, and the particle removal control is not performed, the abnormal mode and the control stop mode are alternately alternated every several seconds, for example. It is also possible to switch. Also, among these, only the high-priority abnormal mode may be used. It is preferable to use only one notification mode with high priority, because the occupant can easily understand the situation. As the priority of the notification mode, it is preferable to set the priority of the abnormal mode to the highest.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to the specific example. However, the present disclosure is not limited to these specific examples. Those appropriately modified in design by those skilled in the art are also included in the scope of the present disclosure as long as the features of the present disclosure are included. The elements included in the above-described specific examples, and the arrangement, conditions, and shapes thereof are not limited to those illustrated, but can be appropriately modified. The elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Claims (8)

  1.  車両用測定装置(10)であって、
     特定の物理量を測定するセンサ(110)と、
     前記センサによる測定結果を乗員に報知する報知部(120)と、を備え
     前記報知部は、
     予め設定された複数の報知態様の中から、状況に応じて選択された一つの前記報知態様で乗員への報知を行う車両用測定装置。
    A measuring device for a vehicle (10),
    A sensor (110) that measures a specific physical quantity;
    And a notification unit (120) for notifying the occupant of the measurement result by the sensor.
    The measuring apparatus for vehicles which performs a notification to a crew member in one information mode selected according to a situation out of a plurality of information modes set up beforehand.
  2.  複数の前記報知態様には、
     前記センサによる測定が正常に行われていることを示す正常態様が含まれる、請求項1に記載の車両用測定装置。
    The plurality of notification modes include
    The measuring apparatus for vehicles according to claim 1 including a normal mode which shows that measurement by said sensor is performed normally.
  3.  複数の前記報知態様には、
     前記センサによる測定が正常には行われていないことを示す異常態様が含まれる、請求項1に記載の車両用測定装置。
    The plurality of notification modes include
    The measuring apparatus for vehicles according to claim 1 including an unusual mode which shows that measurement by said sensor is not performed normally.
  4.  複数の前記報知態様には、
     前記センサによる測定が停止していることを示す停止中態様が含まれる、請求項1に記載の車両用測定装置。
    The plurality of notification modes include
    The measuring apparatus for vehicles according to claim 1 including a during-stop mode which shows that measurement by said sensor has stopped.
  5.  複数の前記報知態様には、
     前記センサによる測定の準備中であることを示す準備中態様が含まれる、請求項1に記載の車両用測定装置。
    The plurality of notification modes include
    The measuring device for vehicles according to claim 1 including an preparing aspect which shows that it is preparing for measurement by said sensor.
  6.  複数の前記報知態様には、
     前記センサによる測定に影響を及ぼす制御、が十分に実行されていないことを示す制御不十分態様が含まれる、請求項1に記載の車両用測定装置。
    The plurality of notification modes include
    The measuring apparatus for vehicles according to claim 1 including the insufficient control mode which shows that control which affects measurement by said sensor is not carried out enough.
  7.  複数の前記報知態様には、
     前記センサによる測定に影響を及ぼす制御、が停止していることを示す制御停止中態様が含まれる、請求項1に記載の車両用測定装置。
    The plurality of notification modes include
    The measuring device for vehicles according to claim 1 including the mode under control which shows that control which affects measurement by said sensor has stopped.
  8.  前記物理量とは、空気中を漂う微小粒子の濃度である、請求項1乃至7のいずれか1項に記載の車両用測定装置。 The measurement device for a vehicle according to any one of claims 1 to 7, wherein the physical quantity is a concentration of microparticles floating in the air.
PCT/JP2018/020460 2017-07-07 2018-05-29 Vehicular measurement device WO2019008945A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017133713A JP2019014391A (en) 2017-07-07 2017-07-07 Measuring device for vehicle
JP2017-133713 2017-07-07

Publications (1)

Publication Number Publication Date
WO2019008945A1 true WO2019008945A1 (en) 2019-01-10

Family

ID=64950962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020460 WO2019008945A1 (en) 2017-07-07 2018-05-29 Vehicular measurement device

Country Status (2)

Country Link
JP (1) JP2019014391A (en)
WO (1) WO2019008945A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484665B2 (en) 2020-10-30 2024-05-16 株式会社デンソー Vehicle air conditioning control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089821A (en) * 1998-09-10 2000-03-31 Toshiba Joho Seigyo System Kk Monitor and control system
JP2000177379A (en) * 1998-12-21 2000-06-27 Equos Research Co Ltd Air cleaning system
JP2009150581A (en) * 2007-12-19 2009-07-09 Shinyei Technology Co Ltd Indoor environment determiner
JP2009174937A (en) * 2008-01-23 2009-08-06 Ngk Spark Plug Co Ltd Gas detector and vehicular air-conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089821A (en) * 1998-09-10 2000-03-31 Toshiba Joho Seigyo System Kk Monitor and control system
JP2000177379A (en) * 1998-12-21 2000-06-27 Equos Research Co Ltd Air cleaning system
JP2009150581A (en) * 2007-12-19 2009-07-09 Shinyei Technology Co Ltd Indoor environment determiner
JP2009174937A (en) * 2008-01-23 2009-08-06 Ngk Spark Plug Co Ltd Gas detector and vehicular air-conditioning system

Also Published As

Publication number Publication date
JP2019014391A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
CN109070683B (en) System and method for passenger cabin air quality control
US9419317B2 (en) Detecting blockage of air flow through vehicle traction battery
JP2007168706A (en) Filter device for air stream and air-conditioning system for vehicle using the device
EP1800920B1 (en) Air-conditioning system for a vehicle
JP6662362B2 (en) Dust concentration detector
JP6673235B2 (en) Vehicle air conditioner
JP2017206145A (en) Vehicle air conditioner
WO2018012098A1 (en) Dust measuring system for vehicles and air-conditioning apparatus for vehicles
WO2019008945A1 (en) Vehicular measurement device
CN105817091B (en) Method and apparatus for monitoring filter life
WO2019008946A1 (en) Vehicle air conditioning device
CN110997372B (en) Vehicle notification device
JP6920901B2 (en) Air conditioner
JP6798440B2 (en) Air conditioner
JP7017058B2 (en) Vehicle air conditioner
JP2019073120A5 (en)
JP2008265504A (en) Vehicular air conditioner
JP2019038391A (en) Vehicular measuring apparatus
KR102173899B1 (en) Filter exchange timing sensing apparatus of air conditioning system
JP2017007466A (en) Air conditioner for railway vehicle
JP6911819B2 (en) Vehicle air conditioner
KR101640075B1 (en) Apparatus for contolling airflap of an automobile
WO2019039088A1 (en) Air conditioning device for vehicles
JPH0680019A (en) Air cleaner for vehicle
WO2019039137A1 (en) Vehicle air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828944

Country of ref document: EP

Kind code of ref document: A1