WO2019007431A1 - 灵活以太网的故障通知、获取方法、装置以及通信设备 - Google Patents

灵活以太网的故障通知、获取方法、装置以及通信设备 Download PDF

Info

Publication number
WO2019007431A1
WO2019007431A1 PCT/CN2018/094898 CN2018094898W WO2019007431A1 WO 2019007431 A1 WO2019007431 A1 WO 2019007431A1 CN 2018094898 W CN2018094898 W CN 2018094898W WO 2019007431 A1 WO2019007431 A1 WO 2019007431A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
overhead
data
information
flexible ethernet
Prior art date
Application number
PCT/CN2018/094898
Other languages
English (en)
French (fr)
Inventor
刘峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019007431A1 publication Critical patent/WO2019007431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0631Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0631Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
    • H04L41/065Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis involving logical or physical relationship, e.g. grouping and hierarchies

Definitions

  • the present disclosure relates to the field of communications technologies, for example, to a fault notification, acquisition method, apparatus, and communication device of Flexible Ethernet (FlexE).
  • FlexE Flexible Ethernet
  • the service bandwidth of communication equipment is growing rapidly, and the interface speed of communication equipment is increased from 10M bandwidth to 100M, and then increased to 1G and 10G. Every few years, the business speed is multiplied to meet the needs of business traffic on the network.
  • the commercial optical module of communication equipment has reached a speed of 100G and has been commercially available. When the speed of the optical module begins to exceed 100G, the technical difficulties encountered in the development of the optical module are increasing, and the production cost of the optical module is drastically increased. In the process of developing bandwidth from 100G to 400G, although 400G optical modules have been developed, the price of 400G optical modules is expensive.
  • a flexible Ethernet group refers to a group that is Bonded from one to N Ethernet Physical Layer (Ethernet PHY) signals.
  • a flexible Ethernet group client refers to the Ethernet flow based on the medium access control (MAC) signal rate, which can not match any Ethernet PHY stream, and can support the customer MAC signal rate of 10, 40.
  • MAC medium access control
  • Flexible Ethernet mezzanine (FlexE Shim) is used to map or unmap client signals to the FlexE Group.
  • the optical modules at both ends of the flexible Ethernet group and the optical physical channels between the optical modules form a communication link.
  • the optical modules at both ends are members of the flexible Ethernet group.
  • the remote phy fault (RPF) information is used in the FlexE protocol to transmit the fault of the phys of the local end member to the peer member through the optical fiber in the opposite direction.
  • the local end member and the peer member are in a pair of optical fibers.
  • the remote phy fault message is passed between.
  • the optical module at one end fails or the optical fiber is interrupted, the remote phy fault information cannot be sent to the peer end.
  • the fault status of the peer member cannot be known, and the peer member cannot be notified to stop sending the service on the fault path.
  • the business cannot be switched to a reliable path.
  • the fault notification, the acquisition method, the device, and the communication device of the flexible Ethernet provided by the embodiment of the present disclosure solve the problem that the fault information cannot be notified to the opposite end when a member of the flexible Ethernet group experiences a two-way fault.
  • the embodiment of the present disclosure provides a flexible Ethernet fault notification method, including:
  • the embodiment of the present disclosure further provides a method for acquiring a fault of a flexible Ethernet, including:
  • the embodiment of the present disclosure further provides a flexible Ethernet fault notification apparatus, including:
  • the fault obtaining module is configured to obtain at least one fault member that fails in the local end member in the flexible Ethernet group;
  • a fault processing module configured to add fault information of the fault member to the data to be sent of each target member of the at least one target member; wherein the target member is the one other than the at least one fault member a member of the local member;
  • a sending module configured to send the to-be-sent data of each target member to a corresponding peer member of each target member in the flexible Ethernet group.
  • the embodiment of the present disclosure further provides a flexible Ethernet fault acquiring apparatus, including:
  • a receiving module configured to receive data sent by the peer member in the flexible Ethernet group that carries fault information of at least one fault member that has failed in the peer member;
  • an extraction module configured to extract, from the received data, fault information of the at least one fault member that is faulty among the peer members.
  • the embodiment of the present disclosure further provides a communication device, including a first processor, a first memory, and a first data bus;
  • the first data bus is configured to communicatively connect the first processor and the first memory
  • the first memory is configured to store a fault notification program of a flexible Ethernet
  • the first processor is configured to run a fault notification procedure of the flexible Ethernet in the first memory to implement the flexible Ethernet fault notification method as described above.
  • the embodiment of the present disclosure further provides a communication device, including a second processor, a second memory, and a second data bus;
  • the second data bus is configured to communicatively connect the second processor and the second memory
  • the second memory is configured to store a fault acquisition procedure of the flexible Ethernet
  • the second processor is configured to run a fault acquisition procedure of the flexible Ethernet in the second memory to implement the fault acquisition method of the flexible Ethernet as described above.
  • the embodiment of the present disclosure further provides a computer storage medium, where the computer storage medium stores computer executable instructions for performing the foregoing flexible Ethernet fault notification method or flexible Ethernet fault acquisition. method.
  • FIG. 1 is a schematic diagram of a flexible Ethernet networking provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a fault of a flexible Ethernet physical channel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a fault notification method for a flexible Ethernet according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for acquiring a fault of a flexible Ethernet according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of physical link replacement according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a flexible Ethernet fault notification apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a fault acquiring apparatus of a flexible Ethernet according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of partitioning a data block group according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of data polling transmission according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an overhead block according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a multiframe according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of an example of a member failure indication according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of an example of a member failure indication according to another embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of an example of a member failure indication according to another embodiment of the present disclosure.
  • Figure 1 shows a general structure of the FlexE.
  • the N100100 optical modules are bundled by the FlexE protocol to form an N*100G transmission channel, which is equivalent to the service transmission speed of the N*100G optical module. It not only meets the transmission requirements of the N*100G service, but also solves the service delivery. Economic value issues.
  • the optical modules at both ends of the flexible Ethernet group and the optical physical channels between the optical modules form a communication link.
  • the optical modules at both ends are members of the flexible Ethernet group.
  • the FlexE protocol bundles multiple physical channels into one logical channel for service delivery, when one physical channel fails, the entire logical channel fails. As shown in Figure 2, when a physical channel is interrupted, the entire logical channel is interrupted, so that the reliability of the entire logical channel is reduced.
  • the probability of a logical channel failing is an integer multiple of the probability of failure of a single physical channel, and the multiple is the total number of bundles of physical channels.
  • the transceiver function of the optical module is integrated and integrated. If the optical module fails (that is, the member itself has a fault), the transceiver sends and receives both directions, and the direction of the transmission also occurs. It is impossible to send the remote phy fault information to the peer end, and it cannot receive the remote phy fault information sent by the peer end.
  • the transceiver fiber cabling is going through the same physical path, when one or more mechanical reasons are caused by trenching, etc. When the fiber is interrupted, the fiber in both directions is interrupted (that is, the physical channel of the member is faulty), so the remote phy fault information cannot be transmitted.
  • the local fault defined by the FlexE protocol cannot be transmitted to the peer member, and the fault information of the peer member cannot be received.
  • the local member and the remote member are isolated from each other. Each member only knows the fault detected locally, but cannot know the fault status of the peer member. The peer member cannot be notified to stop sending the service on the fault path. It is not possible to switch to a reliable path.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the fault notification method of the flexible Ethernet obtains the current fault in the local end member of the flexible Ethernet group. After at least one faulty member, the fault information of the at least one fault member obtained is added to the data to be sent of the target member; the selected target member includes at least one member of the local member other than the fault member, and then the target is The data to be sent by the member is sent to the peer member corresponding to the target member in the flexible Ethernet group. After receiving the data, the peer member can extract the fault information of the faulty member from the received data.
  • the method provided in this embodiment sends the fault information of the faulty member to the peer end through other members of the local end, so that when a member has a two-way fault, the fault information of the member can be sent to the peer through other members of the local end.
  • the fault notification method of the flexible Ethernet in this embodiment is shown in FIG. 3, and includes:
  • Step 301 Acquire at least one fault member that fails in the local end member in the flexible Ethernet group.
  • the member of the local end of the flexible Ethernet group is faulty, and the data received from the physical link of each member is determined. For example, if the member is not received, The data transmitted by the physical link can determine that the member has failed.
  • the failure of a member in this embodiment includes, but is not limited to, a member's own failure, and a physical link failure of the member.
  • Step 302 Add fault information of at least one fault member to the data to be sent of each target member of the at least one target member.
  • the target member in this embodiment includes at least one member of the local member except at least one failed member.
  • fault information of at least one fault member is added to the data to be sent of the target member.
  • the data to be sent here may be one or more kinds of data dedicated to the notification of the fault information, or may be one or more data of the service data or other auxiliary functions transmitted by the service data.
  • a member other than the at least one faulty member in this embodiment refers to a member other than the faulty member.
  • the member A is faulty
  • at least one of the members other than the member A in the local member is selected as the member.
  • Target member such as member B.
  • the member B selected at this time may be a member that has failed, or a member that has failed. Therefore, in an embodiment, all the local end members in the flexible Ethernet group can be directly selected as the target members, and the target member includes all the local end members in the flexible Ethernet group, so that the faulty member can be maximized.
  • the fault information can be successfully sent to the peer unless all local members have a two-way fault.
  • which members are selected as target members can be flexibly set according to the actual application scenario.
  • Step 303 Send the data to be sent of each target member to the corresponding peer member of each target member in the flexible Ethernet group.
  • the data to be sent is sent to the member of the peer on the physical link through the physical link where each target member is located.
  • the fault information of the faulty member may be added to the data to be sent of the target member, and sent to the corresponding member of the target member by the target member.
  • the data to be transmitted in this embodiment may be data dedicated to failure notification, such as one or more failure notification messages, or may be service data or other one or more auxiliary data transmitted together with the service data.
  • the fault information of at least one fault member may be added to the overhead frame included in the data to be transmitted.
  • An overhead frame is composed of a plurality of overhead blocks, so that fault information can be added to at least one overhead block of the overhead frame with reserved fields.
  • Adding the fault information of the at least one fault member to the data to be sent of the at least one target member includes: adding the fault information of the at least one fault member to the at least one overhead block having the reserved field in an overhead frame. .
  • the fault information of the at least one fault member may be added to the multiframe included in the data to be sent.
  • the data to be sent of the target member includes multiple overhead blocks constituting the overhead frame, and the N overhead frames constitute a multiframe.
  • the fault information of the at least one fault member is added to at least one of the at least one overhead frame included in the multiframe, and the N is greater than or equal to 2.
  • 32 overhead frames constitute a multiframe.
  • the cost frames added to the multiframe can be flexibly set according to requirements, and the reserved fields of the overhead blocks and the reserved fields can be flexibly set according to the application scenario.
  • the fault information is added to the overhead frame in the unit of the overhead frame, or is added to the multi-frame in the multi-frame unit, and can be flexibly set according to the application scenario, for example, according to the number of failed members or the fault information. Flexible settings such as the length occupied by the content.
  • the fault information of the faulty member may include the faulty member identification information, and in this case, only the member identification information of the member in which the fault has occurred may be added to the overhead frame or the multiframe.
  • the fault information of the faulty member may include faulty member identification information and fault indication information.
  • member identification information of all members may be added to the overhead frame or the multiframe, for the fault to occur.
  • Members can add fault indication information, and do not add fault indication information for members that have not failed, or add indications with normal status (may be added differently in some examples).
  • the fault information adopts the fault member identification information, or adopts the method of combining the fault member identification information and the fault indication information, and can also be flexibly set according to the application scenario.
  • the faulty member identification information in this embodiment may be a member number, or any other type of information that can uniquely identify a member.
  • the failure indication information in this embodiment may be any information for indicating that a failure has occurred.
  • the fault information of the failed member can be sent to the peer through other members other than the faulty member to notify the fault of the local end of the fault, thereby facilitating the two parties to perform fault negotiation, alarm, and corresponding Protection measures, etc.
  • the protection measures in this embodiment include, but are not limited to, culling the failed link from the group and adding the alternate link when there is a backup link.
  • Step 401 Receive data of fault information that is sent by the peer member in the flexible Ethernet group and that carries at least one fault member that has a fault in the peer member.
  • Step 402 Extract, from the received data, fault information of at least one fault member that has failed in the peer member.
  • the data comprises a plurality of overhead blocks constituting an overhead frame
  • Extracting fault information of at least one fault member that has failed in the peer member from the received data including:
  • the data includes a plurality of overhead blocks constituting an overhead frame, wherein the N overhead frames constitute one multiframe;
  • Extracting fault information of at least one fault member that has failed in the peer member from the received data including:
  • the fault information of the faulty member includes faulty member identification information, or includes faulty member identification information and fault indication information.
  • extracting the fault information of the faulty member in the peer member from the received data includes: extracting the received data from the received data.
  • the corresponding overhead frame or multiframe is extracted, and the fault information of the faulty member is extracted from the reserved field of the corresponding overhead block of the overhead frame or the multiframe, and then the physical link (including the physical) is analyzed in combination with the failure of the local member.
  • Both the channel and the optical module at both ends of the physical path have a two-way failure (either a physical path failure or a failure of the member itself on the physical link).
  • the physical link can be removed from the flexible Ethernet group to prevent the service from being sent on the faulty physical link.
  • the bandwidth of the flexible Ethernet group logical channel is reduced.
  • this processing method is obviously more reasonable and practical than the result of a physical channel failure leading to the interruption of all services.
  • an alternate physical link may be preset, and after the faulty physical link is removed, the spare physical link may be added to the flexible Ethernet group, that is, the standby physical link is used instead. If the physical link of the fault is faulty, the automatic switchover function after the fault of the physical link can be implemented, and the service can be automatically restored. This can greatly improve the reliability of the FlexE service and improve the application value. For example, as shown in Figure 5, the physical link of the member A and the peer member B in the flexible Ethernet group is removed, and the standby physical link is added to the flexible Ethernet group to implement fault physics. The replacement of the link enables automatic recovery of services and improves the reliability of the FlexE service.
  • the fault information of the faulty member is sent to the peer end by means of other members other than the faulty member, so as to avoid the problem that the fault information cannot be transmitted to the peer end when a member has a two-way fault, so that the double end can be faulty according to the peer end.
  • the corresponding alarms and protection processes are implemented to improve the reliability of the FlexE service.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a flexible Ethernet fault notification device. As shown in FIG. 6, the method includes:
  • the fault obtaining module 61 is configured to obtain at least one fault member that fails in the local end member in the flexible Ethernet group.
  • the fault can be determined by determining the data received from the physical link where each member is located, for example, if the member is not received.
  • the data transmitted by the physical link can determine that the member has failed.
  • the failure of a member in this embodiment includes, but is not limited to, a member's own failure, and a physical link failure of the member.
  • the fault processing module 62 is configured to add fault information of the at least one fault member to the data to be transmitted of each of the at least one target member.
  • the target member in this embodiment includes at least one member other than all the failed members themselves in the local member.
  • fault information of at least one fault member is added to the data to be sent of the target member.
  • the data to be sent here may be one or more kinds of data dedicated to the notification of the fault information, or one or more data of the service data or other auxiliary functions transmitted by the service data.
  • At least one member other than the fault member itself refers to a member other than the fault member.
  • a member other than the fault member For example, if member A fails, at least one of the members other than the member A in the local member is selected as the target. Member, such as member B.
  • the member B selected at this time may be a member that has failed, or a member that has failed. Therefore, in an embodiment, the fault processing module 62 can be configured to directly select all the local end members in the flexible Ethernet group as the target members, and the target member includes all the local end members in the flexible Ethernet group, and the fault is processed.
  • the module 62 is configured to add the fault information of the at least one fault member to the data to be sent of all the local end members in the flexible Ethernet group, so as to ensure that the fault information of the faulty member can be successfully sent to the peer end unless all The local member has a two-way failure.
  • which members are selected as target members can be flexibly set according to the actual application scenario.
  • the sending module 63 is configured to send the to-be-sent data of each target member to a corresponding peer member of each target member in the flexible Ethernet group. That is, the data to be sent is sent to the member of the peer on the physical link through the physical link where each target member is located.
  • the functions of the one or more modules in this embodiment may be implemented by a flexible Ethernet mezzanine (FlexE Shim), and the flexible Ethernet mezzanine (FlexE Shim) may be implemented by one or more logic function circuits (which may be a chip carrier) .
  • the fault processing module 62 in this embodiment may be configured to add the fault information of the faulty member to the data to be sent of the target member, and send the target member to the corresponding member of the peer.
  • the data to be transmitted in this embodiment may be data dedicated to failure notification, such as one or more failure notification messages, or may be service data or other one or more auxiliary data transmitted together with the service data.
  • the fault processing module 62 may be configured to add the fault information of the at least one fault member to the overhead frame included in the data to be transmitted, wherein one overhead frame is composed of multiple cost blocks, so the fault information may be added to at least one of the overhead frames. In an overhead block with reserved fields.
  • the fault processing module 62 is configured to add the fault information of the at least one fault member to at least one overhead block having a reserved field in an overhead frame in units of overhead frames.
  • the fault processing module 62 is configured to add the fault information of the at least one fault member to the multiframe included in the data to be sent, where the data to be sent of the target member includes multiple cost blocks constituting the overhead frame, and N overhead frames.
  • Forming a multiframe adding, in units of multiframes, fault information of at least one fault member to at least one overhead block having at least one overhead frame included in a multiframe, wherein N is greater than or equal to 2.
  • 32 overhead frames constitute a multiframe.
  • the cost frames added to the multiframe can also be flexibly set according to requirements, and the reserved fields of the overhead blocks and the reserved fields can be flexibly set according to the application scenario.
  • the fault processing module 62 adds the fault information to the overhead frame in the unit of the overhead frame, or adds the multi-frame to the multi-frame in the multi-frame, and can be flexibly set according to the application scenario, for example, according to the number of the failed members. Or the fault information contains flexible settings such as the length occupied by the content.
  • the fault information of the faulty member may include the faulty member identification information.
  • the fault processing module 62 may only add the member identification information of the member that has failed to the overhead frame or the multiframe.
  • the fault information of the faulty member may include faulty member identification information and fault indication information, and the fault processing module 62 may add the member identification information of all members to the overhead frame or the multiframe.
  • the faulty member can add fault indication information, and the fault indication information is not added to the member that has not failed, or the indication information with the normal status is added (in some examples, it can be added differently). Whether the fault information adopts the fault member identification information or the combination of the fault member identification information and the fault indication information may also be flexibly set according to the application scenario.
  • the faulty member identification information in this embodiment may be a member number, or any other type of information that can uniquely identify a member.
  • the failure indication information in this embodiment may be any information for indicating that a failure has occurred.
  • the fault information of the member of the flexible Ethernet that is faulty to the local end can be sent to the peer through a member other than the faulty member to notify the fault of the local end of the fault, thereby facilitating the two parties to perform fault negotiation.
  • Alarms and corresponding protection measures are provided.
  • the protection measures in this embodiment include, but are not limited to, culling the failed link from the group and adding the alternate link when there is a backup link.
  • the embodiment further provides a flexible Ethernet fault acquiring device.
  • the method includes:
  • the receiving module 71 is configured to receive, by the peer member in the flexible Ethernet group, data that carries fault information of at least one faulty member that has a fault in the peer member;
  • the extracting module 72 is configured to extract, from the received data, fault information of only at least one fault member that has failed in the peer member.
  • the functions of the one or more modules in this embodiment may also be implemented by a flexible Ethernet mezzanine (FlexE Shim), and the flexible Ethernet mezzanine (FlexE Shim) may pass through one or more logic function circuits (the chip may be a carrier) achieve.
  • the fault acquisition device of the flexible Ethernet is also a flexible Ethernet fault notification device with respect to the peer member.
  • the data comprises a plurality of overhead blocks constituting an overhead frame
  • the extraction module 72 is configured to:
  • the data includes a plurality of overhead blocks constituting an overhead frame, wherein the N overhead frames constitute one multiframe;
  • the extraction module 72 is configured to:
  • the fault information of the faulty member includes faulty member identification information, or includes faulty member identification information and fault indication information.
  • the extracting module 72 is configured to: extract the corresponding overhead frame and the multiframe from the received data. And extracting the fault information of the faulty member from the reserved field of the corresponding overhead block of the overhead frame or the multiframe, and analyzing which physical links (including the physical channel and the optical modules at both ends of the physical channel) are combined with the failure of the local member.
  • a two-way failure (either a physical path failure or a failure of a member on the physical link).
  • the physical link can be removed from the flexible Ethernet group to prevent the service from being sent on the faulty physical link.
  • the bandwidth of the flexible Ethernet group logical channel is reduced.
  • this processing method is obviously more reasonable and practical than the result of a physical channel failure leading to the interruption of all services.
  • an alternate physical link may be preset, and after the faulty physical link is removed, the spare physical link may be added to the flexible Ethernet group, that is, the standby physical link is used instead. If the physical link of the fault is faulty, the automatic switchover function after the fault of the physical link can be implemented, and the service can be automatically restored. This can greatly improve the reliability of the FlexE service and improve the application value.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment provides a communication device, as shown in FIG. 8, including a first processor 81, a first memory 82, and a first data bus 83;
  • the first data bus 83 is configured to communicatively connect the first processor 81 and the first memory 82;
  • the first memory 82 is configured to store a fault notification program of the flexible Ethernet
  • the first processor 81 is configured to execute a fault notification procedure of the flexible Ethernet in the first memory to implement the flexible Ethernet fault notification method as shown in one of the above embodiments.
  • the embodiment further provides a communication device, as shown in FIG. 9, including a second processor 91, a second memory 92, and a second data bus 93;
  • the second data bus 93 is configured to communicatively connect the second processor 91 and the second memory 92;
  • the second memory 92 is configured to store a fault acquisition procedure of the flexible Ethernet
  • the second processor 91 is configured to run a fault acquisition procedure of the flexible Ethernet in the second memory to implement the fault acquisition method of the flexible Ethernet as shown in the above embodiment.
  • the first communication device and the second communication device in this embodiment may be any one of optical communication devices or servers.
  • the flexible Ethernet group contains four physical links, that is, the flexible Ethernet group in Figure 1 has a value of 4.
  • the value of N may be 2, 3, or 5, and the value of N needs to be flexibly set according to the application scenario.
  • the 100G data packet is 64/66 encoded before the data packet is transmitted, and the 64-bit data block is expanded into a 66-bit information block, and the added 2 bits are located in front, as 66 bits.
  • the start flag of the block is then sent out from the optical port in a 66-bit block.
  • the optical port discriminates the 66-bit block from the received data stream, then recovers the original 64-bit data from the 66-bit block and reassembles the data message.
  • the FlexE protocol is in the 64-bit to 66-bit block conversion layer.
  • the 66-bit data block is sorted and planned before the 66-bit data block is transmitted. As shown in FIG.
  • every 20 66-bit data blocks are divided into A data block group, a total of 20 data blocks in each group, representing 20 time slots, each time slot representing the service speed of 5G bandwidth.
  • a FlexE overhead block is inserted, as shown in FIG. 10 with a slash pattern filled block.
  • After inserting the overhead block continue to send the data block, after sending the second 1023*20 data blocks, insert the overhead block, and so on, so that during the process of sending the data block, the overhead block is periodically inserted.
  • the interval between two adjacent overhead blocks is 1023*20 data blocks.
  • the FLEXE protocol sorts and plans 66-bit data blocks. Each 20 66-bit data blocks is divided into one data block group, and each group has 20 data blocks. Block, representing 20 time slots. As shown in FIG. 11, the four physical channels are bundled into one logical channel.
  • the first data block group (20 data blocks) is sent to the first physical channel
  • the second data block group is 20 data blocks
  • the third data block group (20 data blocks) is sent to the third physical channel
  • the fourth data block group (20 data blocks) is sent Go to the fourth physical channel
  • the fifth data block group (20 data blocks) is sent to the first physical channel, and so on, average and poll all data groups (20 data blocks) Send to 4 physical channels.
  • the data blocks on the four physical channels are fully aligned at the time of transmission. In each of the four physical channels, there are 1023 data block groups at intervals.
  • the overhead blocks are simultaneously inserted, so that the data on the four physical channels is performed. Blocks and overhead blocks are fully aligned.
  • each physical channel receives the data block separately and then determines the overhead block location.
  • Each physical channel realigns the data block groups of the four physical channels based on the overhead block position.
  • the data block groups of the four physical channels are aligned according to the position of the overhead block, and are reordered according to the inverse process of the polling allocation at the time of sending: the first data block group after the cost block is obtained from the first physical channel (20)
  • the data block is sorted first, and then the first data block group (20 data blocks) is sorted after the cost block is obtained from the second physical channel, and then the first block is obtained from the third physical channel.
  • the first data block group (20 data blocks) is sorted at the end after the cost block is obtained from the fourth physical channel, and then the above process is repeated.
  • the second data block group (20 data blocks) after the cost block is obtained from the first physical channel the second data block group after the cost block is obtained from the second physical channel (20 data)
  • the data block groups of the four physical channels are reordered into one large logical channel data block group. In this way, four physical channels can be bundled to form a large logical channel. For the customer business, only a large logical channel is perceived, and the business is transmitted through the large logical channel without knowing the underlying four physical channels.
  • the FlexE overhead block is a 66-bit-long overhead block.
  • an overhead block is inserted every 1023*20 blocks.
  • the overhead block plays a positioning function in the entire service flow.
  • the content of the overhead block is as shown in FIG. 12, and eight consecutive overhead blocks form an overhead frame.
  • An overhead block consists of a 2-bit block flag and 64-bit block contents. The block flag is located in the first 2 columns, the next 64 columns are the block contents, the block flag of the first overhead block is 10, and the block flags of the following 7 overhead blocks are 01 or SS (SS indicates that the content is uncertain).
  • the contents of the first overhead block are: 0x4B (8 bits, 4B in hexadecimal), C bits (1 bit, indicating adjustment control), OMF bits (1 bit, indicating overhead frame multiframe indication), RPF bits ( 1 bit, indicating remote fault indication), RES bit (1 bit, reserved bit), flexible Ethernet number (FLEXE group number) (20 bits, indicating the number of the bundle group), 0x5 (4 digits, hexadecimal 5), 000000 (28 bits, both 0).
  • 0x4B and 0x5 are the flag indications of the first overhead block.
  • the reserved portion is reserved content, which has not yet been defined. See the black padding portion of FIG. 12.
  • the reserved field any one or more of the overhead blocks having the reserved field may be used.
  • Each 32 FlexE overhead frames form a multiframe, and the OMF bit indicates the order relationship of each frame in the multiframe, as shown in FIG.
  • the OMF bit is 0 in 16 frames and then 1 in the subsequent 16 frames, which changes cyclically and changes every 32 frames.
  • the frame in which the OMF bit is 0 for the first time is the first frame in the multiframe, and thus the second frame, the third frame, ... the thirty-second frame.
  • Phy map (map) conveys 8 bits of information in each frame (indicating whether the corresponding 8 phys are in use, "0" means unused, "1" means in use), 32 frames can pass 256 bits (0-255) ) Information, passing 256 phy numbers (number) in use.
  • the Client Calendar indicates which customer each time slot belongs to, and is divided into Client Calendar A and Client Calendar B. Only one of A and B is valid during work. There are 20 time slots, and one multiframe has 32 frames, so the first 20 frames convey 20 slots of customer information, and the contents of the next 12 frames serve as reserved fields. The contents of other bytes in the overhead frame are not directly related to the scheme, and are not described here.
  • the FlexE protocol bundles multiple physical channels to form a large logical channel to meet the traffic transmission needs of large traffic. However, when one physical channel fails, the entire logical channel is affected. If an physical channel is interrupted, the service of the entire logical channel is also interrupted, and the reliability of service delivery is reduced.
  • the RPF information is defined. The RPF information can only transmit the remote fault information of the member and cannot transmit the fault information of other members. When both members of the member are interrupted, the two ends cannot transmit the fault information of the peer.
  • a member fault indication content is added. As shown in FIG. 14, a remote member fault (RMF) field is used to transmit the fault information of all members to the remote end. And all members of the local end transmit to the peer end, so that as long as one path is normal, the fault information can be transmitted to the opposite end, thereby avoiding the problem that the two-way fault cannot be transmitted.
  • RPF remote member fault
  • FIG. 14 is a schematic diagram of an example of a member fault indication provided in this embodiment.
  • An RMF field is added to an overhead frame to transmit fault information of all members of the local end.
  • the RMF uses one byte (8-bit wide), and one bit indicates the failure information of a member (such as "1" indicates fault, "0" indicates normal), and 8 members can be transmitted in one frame. Fault information.
  • subsequent frames continue to transmit fault information of other members, and a multiframe can transmit fault information of 256 members.
  • the RMF field in the overhead frame can deliver all members at a time. If the multiframe structure is adopted, it takes 32 frames to be transmitted again, and the waiting time is long. In the case of fewer members, the multiframe structure is not passed, but all members are passed every frame.
  • 16 is a schematic diagram of an example of a member failure indication provided by another embodiment of the present disclosure.
  • the number of faulty members is small, both the faulty member and the non-faulty member are simultaneously transmitted, causing the faulty member to wait for the time when transmitting. Longer.
  • only faulty members are delivered, and no faultless members are delivered.
  • Each frame passes the fault information of one fault member, and then passes the fault information of the next member fault, ... the fault information of the last fault member, and loops.
  • the fault information of a member can be represented by 1 bit or multiple bits.
  • the transmission may be the failure information of the member, or the status information that can characterize the fault condition;
  • one frame can transmit information of one member, and can also transmit information of multiple members.
  • the member failure indication information may be transmitted only, and the member number and the failure indication information may be transmitted together.
  • the term "comprises”, “comprises” or any other variants thereof is intended to encompass a non-exclusive inclusion, such that a process, method, article, or device that comprises a plurality of elements includes not only those elements but also Other elements that are explicitly listed, or include elements inherent to such a process, method, article, or device.
  • An element that is defined by the phrase “comprising a " does not exclude the presence of additional equivalent elements in the process, method, item, or device that comprises the element.
  • the technical solution of the present disclosure which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as a read-only memory (Read-Only Memory). , ROM)/Random Access Memory (RAM), disk, CD-ROM, including multiple instructions to make an application device (can be a mobile phone, computer, server, air conditioner or network application device) And the like) performing the method of any of the embodiments of the present disclosure.
  • a storage medium such as a read-only memory (Read-Only Memory). , ROM)/Random Access Memory (RAM), disk, CD-ROM, including multiple instructions to make an application device (can be a mobile phone, computer, server, air conditioner or network application device) And the like) performing the method of any of the embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种灵活以太网的故障通知、获取方法、装置及通信设备。其中所述通知方法包括:获取灵活以太网组内本端成员中发生故障的至少一个故障成员,将获取的至少一个故障成员的故障信息加入至少一个目标成员中的每个成员的待发送数据中;其中,目标成员包括除至少一个故障成员之外的本端成员中的成员;将至少一个目标成员的待发送数据发送至灵活以太网组内每个目标成员各自对应的对端成员。

Description

灵活以太网的故障通知、获取方法、装置以及通信设备
本公开要求申请日为2017年07月07日、申请号为201710551792.5、名称为“灵活以太网之故障通知及获取方法、装置、通信设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,例如涉及一种灵活以太网(Flexible Ethernet,FlexE)的故障通知、获取方法、装置以及通信设备。
背景技术
随着网络业务流量的高速增长,通讯设备的业务带宽快速增长,通讯设备的接口速度从10M带宽提高到100M,再提高到1G、10G。每隔几年业务速度就翻几倍,以适应网路上业务流量的需求。通讯设备商用光模块的速度已经达到100G,并开始大量商用。在光模块速度开始超越100G时,光模块研发技术上遇到的困难越来越大,光模块的生产成本急剧增加。在带宽从100G向400G发展的过程中,虽然已经研发出400G光模块,但400G光模块的价格昂贵,一个400G光模块的价格已经超过了4个100G光模块的价格,导致400G光模块缺少商用的经济价值。在不增加成本的情况下,为了解决400G业务的传递需求,能在100G光模块上传递400G业务,国际标准组织定义了FlexE协议。FlexE协议将多个100G光模块捆绑起来,形成一个大业务速度的传递通道。灵活以太网组(FlexE Group)指的是一个由1条到N条以太网物理层(Ethernet Physical Layer,Ethernet PHY)信号绑定(Bonded)起来的一个组。一个灵活以太网组客户(FlexE Client)指的是基于介质访问控制(Medium Access Control,MAC)信号速率的以太流,可以不匹配到任何Ethernet PHY流,可以支持的客户MAC信号速率有10、40或者m*25Gb/s。灵活以太网夹层(FlexE Shim)用来将客户信号映射到或者解映射到FlexE Group。灵活以太网组中两端的光模块以及光模块之间的光物理通道构成一条通信链路,其中两端的光模块作为灵活以太网组的成员。
FlexE协议中定义远端phy故障(remote phy fault,RPF)信息,用来将本端成员的phy的故障通过反方向的光纤传递给对端成员,本端成员和对端成员是在一对光纤之间传递远端phy故障信息。然而,当某一端的光模块出现故障或光纤中断时,则无法向对端发送远端phy故障信息,导致无法知道对端成员的故障状态,不能通知对端成员停止在故障路径上发送业务,业务无法倒换到可靠路径上。
发明内容
本公开实施例提供的灵活以太网的故障通知、获取方法、装置以及通信设备,解决了灵活以太网组中某一成员出现双向故障时,不能将故障信息通知到对端的问题。
本公开实施例提供一种灵活以太网的故障通知方法,包括:
获取灵活以太网组内本端成员中发生故障的至少一个故障成员;
将所述至少一个故障成员的故障信息加入至少一个目标成员中的每个目标成员的待发送数据中;其中,所述目标成员为除所述至少一个故障成员之外的所述本端成员中的成员;
将所述每个目标成员的待发送数据发送至所述灵活以太网组内所述每个目标成员各自对应的对端成员。
本公开实施例还提供了一种灵活以太网的故障获取方法,包括:
接收灵活以太网组内对端成员发送的携带有所述对端成员中发生故障的至少一个故障成员的故障信息的数据;
从接收到的所述数据中提取出所述对端成员中发生故障的所述至少一个故障成员的故障信息。
本公开实施例还提供了一种灵活以太网的故障通知装置,包括:
故障获取模块,设置为获取灵活以太网组内本端成员中发生故障的至少一个故障成员;
故障处理模块,设置为将所述故障成员的故障信息加入至少一个目标成员中的每个目标成员的待发送数据中;其中,所述目标成员为除所述至少一个故 障成员之外的所述本端成员中的成员;
发送模块,设置为将所述每个目标成员的待发送数据发送至所述灵活以太网组内所述每个目标成员各自对应的对端成员。
本公开实施例还提供了一种灵活以太网的故障获取装置,包括:
接收模块,设置为接收灵活以太网组内对端成员发送的携带有所述对端成员中发生故障的至少一个故障成员的故障信息的数据;
提取模块,设置为从接收到的所述数据中提取出所述对端成员中发生故障的所述至少一个故障成员的故障信息。
本公开实施例还提供了一种通信设备,包括第一处理器、第一存储器以及第一数据总线;
所述第一数据总线设置为将所述第一处理器和所述第一存储器进行通信连接;
所述第一存储器设置为存储灵活以太网的故障通知程序;
所述第一处理器设置为运行所述第一存储器中的灵活以太网的故障通知程序,以实现如上所述的灵活以太网的故障通知方法。
本公开实施例还提供了一种通信设备,包括第二处理器、第二存储器以及第二数据总线;
所述第二数据总线设置为将所述第二处理器和所述第二存储器进行通信连接;
所述第二存储器设置为存储灵活以太网的故障获取程序;
所述第二处理器设置为运行所述第二存储器中的灵活以太网的故障获取程序,以实现如上所述的灵活以太网的故障获取方法。
本公开实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述的灵活以太网的故障通知方法或灵活以太网的故障获取方法。
附图说明
图1为本公开一实施例提供的灵活以太网组网示意图;
图2为本公开一实施例提供的灵活以太网物理通道故障示意图;
图3为本公开一实施例提供的灵活以太网的故障通知方法的流程示意图;
图4为本公开一实施例提供的灵活以太网的故障获取方法的流程示意图;
图5为本公开一实施例提供的物理链路替换示意图;
图6为本公开一实施例提供的灵活以太网的故障通知装置的结构示意图;
图7为本公开一实施例提供的灵活以太网的故障获取装置的结构示意图;
图8为本公开一实施例提供的通信设备的结构示意图;
图9为本公开另一实施例提供的通信设备的结构示意图;
图10为本公开一实施例提供的数据块组的划分示意图;
图11为本公开一实施例提供的数据轮询发送的示意图;
图12为本公开一实施例提供的开销块的结构示意图;
图13为本公开一实施例提供的复帧的结构示意图;
图14为本公开一实施例提供的成员故障指示示例的示意图;
图15为本公开另一实施例提供的成员故障指示示例的示意图;
图16为本公开另一实施例提供的成员故障指示示例的示意图。
具体实施方式
下面通过具体实施方式结合附图对本公开实施例作进一步说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
如图1所示,图1所示为FlexE的通用结构示意图。通过FlexE协议将N个100G光模块捆绑起来,形成一个N*100G传递通道,等效于N*100G光模块的业务传递速度,既满足了N*100G业务的传递需求,也解决了业务传递的经济价值问题。图1中,灵活以太网组中两端的光模块以及光模块之间的光物理通道构成一条通信链路,其中,两端的光模块作为灵活以太网组的成员。
由于FlexE协议是将多个物理通道捆绑成一个业务传递的逻辑通道,当一个物理通道发生故障时,则整个逻辑通道都发生故障。如图2所示,一个物理通道中断,则整个逻辑通道都中断了,这样整个逻辑通道的可靠性就降低了。逻辑通道发生故障的概率是单个物理通道发生故障概率的整数倍,倍数就是物理 通道的总捆绑数。
在实际应用中,光模块的收发功能是集成在一起,是个整体,如果光模块出现故障(也即成员自身出现了故障),则收发两个方向都出现中断,由于发的方向也出现中断,就无法向对端发送远端phy故障信息,也无法接收对端发送的远端phy故障信息;另外,由于收发光纤布线是走同一条物理路径,当因为挖沟等一种或多种机械原因造成光纤中断时,收发两个方向的光纤都出现中断(也即成员所在的物理通道故障),因此也无法传递远端phy故障信息。因此,当灵活以太网某一成员在收发两个方向同时中断时(也即出现双向故障时),FlexE协议定义的本地故障就无法传送到对端成员,也无法接收到对端成员的故障信息,导致本端成员和远端成员之间相互孤立,每端成员都只知道本地检测到的故障,但无法知道对端成员的故障状态,不能通知对端成员停止在故障路径上发送业务,业务无法倒换到可靠路径上。
实施例一:
为了解决灵活以太网组中出现双向故障时,不能将故障信息通知到对端的问题,本实施例提供的灵活以太网的故障通知方法,在获取到灵活以太网组内本端成员中当前发生故障的至少一个故障成员后,将获取的至少一个故障成员的故障信息加入目标成员的待发送数据中;所选择的目标成员包括至少一个故障成员之外本端成员中的至少一个成员,然后将目标成员的待发送数据通过目标成员向灵活以太网组内目标成员对应的对端成员发送,对端成员接收到数据后,即可从接收到的数据中提取到故障成员的故障信息。也即本实施例提供的方法将故障成员的故障信息通过本端的其他成员向对端发送,这样可以在某一成员出现双向故障时,可将该成员的故障信息通过本端其他成员发送到对端,从而通知对端成员停止在故障路径上发送业务,将业务倒换到可靠路径上,从而提升整个逻辑通道的可靠性。本实施例中的灵活以太网的故障通知方法参见图3所示,包括:
步骤301:获取灵活以太网组内本端成员中发生故障的至少一个故障成员。
本实施例中,获取灵活以太网组内本端成员中哪些成员发生了故障,可以通过判断从每个成员所在的物理链路接收到的数据情况进行判定,例如若没有 接收到该成员所在的物理链路所传送过来的数据,则可判定该成员发生故障。本实施例中成员发生故障包括但不限于成员自身故障,以及成员所在物理链路故障。
步骤302:将至少一个故障成员的故障信息加入至少一个目标成员中的每个目标成员的待发送数据中。
本实施例中的目标成员包括本端成员中除至少一个故障成员之外的至少一个成员。本实施例针对每一个目标成员,都在该目标成员的待发送数据中加入至少一个故障成员的故障信息。此处的待发送数据可以是专门用于进行故障信息通告的一种或多种数据,也可以是业务数据,或和业务数据发送的其他辅助功能的一种或多种数据。
本实施例中除至少一个故障成员之外的成员是指除故障成员之外的其他成员,例如假设成员A故障,则至少在本端成员内除成员A之外的其他成员中选择至少一个作为目标成员,例如成员B。此时选择的成员B可能是为发生故障的成员,也可能是发生了故障的成员。因此,在一实施例中,可以直接选择灵活以太网组内所有的本端成员均作为目标成员,此时目标成员包括灵活以太网组内所有的本端成员,这样可以最大化的保证故障成员的故障信息能成功地发送到对端,除非所有的本端成员都发生双向故障。当然,选择哪些成员作为目标成员可以根据实际应用情景灵活设定。
步骤303:将每个目标成员的待发送数据发送至灵活以太网组内每个目标成员各自对应的对端成员。
也即通过每个目标成员所在的物理链路将待发送数据发送到该物理链路上对端的成员。
如上所述,本实施例中可以将故障成员的故障信息加入目标成员的待发送数据中,通过目标成员发送到目标成员对端相应的成员。本实施例中的待发送数据可以是专门用于进行故障通告的数据,例如一种或多种故障通知消息,也可以是业务数据或和业务数据一起发送的其他一种或多种辅助数据。例如,可以将至少一个故障成员的故障信息加入待发送数据包括的开销帧中。一个开销帧由多个开销块组成,因此可以将故障信息加入开销帧的至少一个具有保留字 段的开销块中。此时将至少一个故障成员的故障信息加入至少一个目标成员的待发送数据中包括:以开销帧为单位,将至少一个故障成员的故障信息加入一个开销帧的至少一个具有保留字段的开销块中。又例如,可以将至少一个故障成员的故障信息加入待发送数据包括的复帧中,此时目标成员的待发送数据包括构成开销帧的多个开销块,N个开销帧构成一个复帧,以复帧为单位,将至少一个故障成员的故障信息加入一个复帧包括的至少一个开销帧的至少一个具有保留字段的开销块中,N大于或等于2。根据相关协议规定,32个开销帧构成一个复帧。加入复帧的哪些开销帧中可以根据需求灵活设定,且占用哪些开销块的保留字段,以及占用多少保留字段都可以根据应用场景灵活设定。
本实施例中,将故障信息以开销帧为单位加入开销帧中,还是以复帧为单位加入复帧中,可以根据应用场景灵活设定,例如可以根据发生故障的成员个数或故障信息包含内容所占用的长度等灵活设定。
在本实施例中,故障成员的故障信息可包括故障成员识别信息,此时则可仅将发生了故障的成员之成员识别信息加入到开销帧或复帧中。又例如,在另一示例中,故障成员的故障信息可包括故障成员识别信息和故障指示信息,此时可以将所有的成员的成员识别信息加入到开销帧或复帧中,对于发生了故障的成员则可以添加故障指示信息,对于未发生故障的成员则不添加故障指示信息,或添加状态为正常的指示信息(在一些示例中也可以不同添加)。故障信息采用故障成员识别信息,还是采用结合故障成员识别信息和故障指示信息的方式,也可以根据应用场景灵活设定。
本实施例中的故障成员识别信息可以是成员编号,或其他能唯一识别成员的任意一种信息。本实施例中的故障指示信息可以是用于指示发生了故障的任意信息。
这样,在本端,对于发生故障的成员之故障信息,可以通过故障成员之外的其他成员发送给对端,以通知对端本端的故障情况,从而利于双方进行故障协商、告警以及做出相应的保护措施等。
本实施例中的保护措施包括但不限于将故障链路从组中剔除,以及在存在备用链路时,将备用链路加入。
相应的,对端获取灵活以太网的故障方法参见图4所示,包括:
步骤401:接收灵活以太网组内对端成员发送的携带有对端成员中发生故障的至少一个故障成员的故障信息的数据。
步骤402:从接收到的数据中提取出对端成员中发生故障的至少一个故障成员的故障信息。
在一实施例中,所述数据包括构成开销帧的多个开销块;
从接收到的数据中提取出对端成员中发生故障的至少一个故障成员的故障信息,包括:
从接收到的数据中提取出至少一个故障成员的故障信息所在的一个开销帧;
从该开销帧中至少一个故障成员的故障信息所在的至少一个开销块的保留字段中提取出至少一个故障成员的故障信息;
或者,
所述数据包括构成开销帧的多个开销块,其中,N个开销帧构成一个复帧;
从接收到的数据中提取出对端成员中发生故障的至少一个故障成员的故障信息,包括:
从接收到的数据中提取出至少一个故障成员的故障信息所在的一个复帧;
从该复帧中至少一个故障成员的故障信息所在的至少一个开销帧的至少一个开销块的保留字段中提取出至少一个故障成员的故障信息,其中,N大于或等于2。
在一实施例中,故障成员的故障信息包括故障成员识别信息,或包括故障成员识别信息和故障指示信息。
当对端的故障成员的故障信息是加入开销帧或复帧中发送过来时,从接收到的数据中提取出对端成员中发生故障的故障成员的故障信息则包括:从接收到的数据中提取出相应的开销帧或复帧,并从开销帧或复帧相应的开销块的保留字段中提取出故障成员的故障信息,进而结合本端成员发生故障的情况分析出哪些物理链路(包含物理通道以及物理通道两端的光模块)发生了双向故障(可能是物理通路故障,也可能是该物理链路上的成员自身发生故障)。
对于发生了双向故障的物理链路,可以将该物理链路从灵活以太网组中剔 除,避免业务仍在该故障的物理链路上发送,此时虽然减少了灵活以太网组逻辑通道的带宽,但和一个物理通道发生故障导致全部业务中断的结果相比,这种处理方式显然更为合理实用。
另外,本实施例还可预先设置备用的物理链路,在剔除故障的物理链路之后,可将备用的物理链路加入该灵活以太网组中,也即用备用的物理链路来代替有故障的物理链路,则可以实现物理链路发生故障后的自动倒换功能,实现了业务的自动恢复,这样可以大幅度地提高FlexE业务的可靠性,提高应用价值。例如,参见图5所示,灵活以太网组内成员A和对端成员B所在的物理链路发生的故障而被剔除,将备用的物理链路加入该灵活以太网组内,从而实现故障物理链路的替换,实现了业务的自动恢复,提高FlexE业务的可靠性。
本实施例借助故障成员之外的其他成员将故障成员的故障信息发送到对端,从而避免出现某一成员发生双向故障时故障信息不能传到对端的问题,使得双端可以根据对端的故障情况进行相应的告警以及保护处理,提升了FlexE业务的可靠性。
实施例二:
本实施例提供了一种灵活以太网的故障通知装置,参见图6所示,包括:
故障获取模块61,设置为获取灵活以太网组内本端成员中发生故障的至少一个故障成员。故障获取模块61获取灵活以太网组内本端成员中哪些成员发生了故障时,可以通过判断从每个成员所在的物理链路接收到的数据情况进行判定,例如若没有接收到该成员所在的物理链路所传送过来的数据,则可判定该成员发生故障。本实施例中成员发生故障包括但不限于成员自身故障,以及成员所在物理链路故障。
故障处理模块62,设置为将至少一个故障成员的故障信息加入至少一个目标成员中的每个目标成员的待发送数据中。本实施例中的目标成员包括本端成员中所有故障成员自身之外的至少一个成员。本实施例针对每一个目标成员,都在该目标成员的待发送数据中加入至少一个故障成员的故障信息。此处的待发送数据可以是专门用于进行故障信息通告的一种或多种数据,也可以是业务数据,或和业务数据发送的其他辅助功能的一中或多种数据。
本实施例中至少一个故障成员自身之外的成员是指故障成员之外的其他成员,例如假设成员A故障,则至少在本端成员内除成员A之外的其他成员中选择至少一个作为目标成员,例如成员B。此时选择的成员B可能是为发生故障的成员,也可能是发生了故障的成员。因此,在一实施例中,故障处理模块62可以设置为直接选择灵活以太网组内所有的本端成员均作为目标成员,此时目标成员包括灵活以太网组内所有的本端成员,故障处理模块62设置为将至少一个故障成员的故障信息加入灵活以太网组内所有的本端成员的待发送数据中,这样可以最大化的保证故障成员的故障信息能成功地发送到对端,除非所有的本端成员都发生双向故障。当然,选择哪些成员作为目标成员可以根据实际应用情景灵活设定。
发送模块63,设置为将每个目标成员的待发送数据发送至所述灵活以太网组内每个目标成员各自对应的对端成员。也即通过每个目标成员所在的物理链路将待发送数据发送到该物理链路上对端的成员。
本实施例中的上述一个或多个模块的功能可以通过灵活以太网夹层(FlexE Shim)实现,灵活以太网夹层(FlexE Shim)可以通过一种或多种逻辑功能电路(可以芯片为载体)实现。
如上所述,本实施例中的故障处理模块62可以设置为将故障成员的故障信息加入目标成员的待发送数据中,通过目标成员发送到对端相应的成员。本实施例中的待发送数据可以是专门用于进行故障通告的数据,例如一种或多种故障通知消息,也可以是业务数据或和业务数据一起发送的其他一种或多种辅助数据。例如,故障处理模块62可以设置为将至少一个故障成员的故障信息加入待发送数据包括的开销帧中,其中,一个开销帧由多个开销块组成,因此可以将故障信息加入开销帧的至少一个具有保留字段的开销块中。此时故障处理模块62是设置为:以开销帧为单位,将至少一个故障成员的故障信息加入一个开销帧的至少一个具有保留字段的开销块中。又例如,故障处理模块62是设置为将至少一个故障成员的故障信息加入待发送数据包括的复帧中,此时目标成员的待发送数据包括构成开销帧的多个开销块,N个开销帧构成一个复帧,以复帧为单位,将至少一个故障成员的故障信息加入一个复帧包括的至少一个开销 帧的至少一个具有保留字段的开销块中,其中,N大于或等于2。根据相关的一种协议规定,32个开销帧构成一个复帧。加入复帧的哪些开销帧中也可以根据需求灵活设定,且占用哪些开销块的保留字段,以及占用多少保留字段都可以根据应用场景灵活设定。
本实施例中,故障处理模块62将故障信息以开销帧为单位加入开销帧中,还是以复帧为单位加入复帧中,可以根据应用场景灵活设定,例如可以根据发生故障的成员个数或故障信息包含内容所占用的长度等灵活设定。
在本实施例中,故障成员的故障信息可包括故障成员识别信息,此时故障处理模块62则可仅将发生了故障的成员的成员识别信息加入到开销帧或复帧中。又例如,在另一示例中,故障成员的故障信息可包括故障成员识别信息和故障指示信息,此时故障处理模块62可以将所有的成员的成员识别信息加入到开销帧或复帧中,对于发生了故障的成员则可以添加故障指示信息,对于未发生故障的成员则不添加故障指示信息,或添加状态为正常的指示信息(在一些示例中也可以不同添加)。故障信息采用故障成员识别信息,还是采用结合故障成员识别信息和故障指示信息的方式也可以根据应用场景灵活设定。本实施例中的故障成员识别信息可以是成员编号,或其他能唯一识别成员的任意一种信息。本实施例中的故障指示信息可以是用于指示发生了故障的任意信息。
这样,在灵活以太网的故障通知装置对于本端发生故障的成员之故障信息,可以通过故障成员之外的其他成员发送给对端以通知对端本端的故障情况,从而利于双方进行故障协商、告警以及做出相应的保护措施等。
本实施例中的保护措施包括但不限于将故障链路从组中剔除,以及在存在备用链路时,将备用链路加入。
相应的,本实施例还提供了一种灵活以太网的故障获取装置,参见图7所示,包括:
接收模块71,设置为接收灵活以太网组内对端成员发送的携带有对端成员中发生故障的至少一个故障成员的故障信息的数据;
提取模块72,设置为从接收到的数据中提取出对端成员中发生故障的只至少一个故障成员的故障信息。
本实施例中的上述一个或多个模块的功能也可以通过灵活以太网夹层(FlexE Shim)实现,灵活以太网夹层(FlexE Shim)可以通过一种或多种逻辑功能电路(可以芯片为载体)实现。应当理解的是,本实施例中,灵活以太网的故障获取装置相对于对端成员来说也是灵活以太网的故障通知装置。
在一实施例中,所述数据包括构成开销帧的多个开销块;
提取模块72是设置为:
从接收到的数据中提取出至少一个故障成员的故障信息所在的一个开销帧;
从该开销帧中至少一个故障成员的故障信息所在的至少一个开销块的保留字段中提取出至少一个故障成员的故障信息;
或者,
所述数据包括构成开销帧的多个开销块,其中,N个开销帧构成一个复帧;
提取模块72是设置为:
从接收到的数据中提取出至少一个故障成员的故障信息所在的一个复帧;
从该复帧中所述至少一个故障成员的故障信息所在的至少一个开销帧的至少一个开销块的保留字段中提取出至少一个故障成员的故障信息,其中,N大于或等于2。
在一实施例中,故障成员的故障信息包括故障成员识别信息,或包括故障成员识别信息和故障指示信息。
当对端的灵活以太网的故障通知装置将故障成员的故障信息是加入开销帧或复帧中发送过来时,提取模块72是设置为:从接收到的数据中提取出相应的开销帧和复帧,并从开销帧或复帧相应的开销块的保留字段中提取出故障成员的故障信息,进而结合本端成员发生故障的情况分析出哪些物理链路(包含物理通道以及物理通道两端的光模块)发生了双向故障(可能是物理通路故障,也可能是该物理链路上的成员自身发生故障)。
对于发生了双向故障的物理链路,可以将该物理链路从灵活以太网组中剔除,避免业务仍在该故障的物理链路上发送,此时虽然减少了灵活以太网组逻辑通道的带宽,但和一个物理通道发生故障导致全部业务中断的结果相比,这种处理方式显然更为合理实用。
另外,本实施例还可预先设置备用的物理链路,在剔除故障的物理链路之后,可将备用的物理链路加入该灵活以太网组中,也即用备用的物理链路来代替有故障的物理链路,则可以实现物理链路发生故障后的自动倒换功能,实现了业务的自动恢复,这样可以大幅度地提高FlexE业务的可靠性,提高应用价值。
实施例三:
本实施例提供了一种通信设备,参见图8所示,包括第一处理器81、第一存储器82以及第一数据总线83;
第一数据总线83设置为将第一处理器81和所述第一存储器82进行通信连接;
第一存储器82设置为存储灵活以太网的故障通知程序;
第一处理器81设置为运行第一存储器中的灵活以太网的故障通知程序,以实现如上述实施例一种所示的灵活以太网的故障通知方法。
本实施例还提供了一种通信设备,参见图9所示,包括第二处理器91、第二存储器92以及第二数据总线93;
第二数据总线93设置为将第二处理器91和所述第二存储器92进行通信连接;
第二存储器92设置为存储灵活以太网的故障获取程序;
第二处理器91设置为运行第二存储器中的灵活以太网的故障获取程序,以实现如上述实施例一种所示的灵活以太网的故障获取方法。
本实施例中的第一通信设备和第二通信设备可以是任意一种光通信设备或服务器等。
为了便于理解本公开的方案,本实施例结合一种具体FlexE协议对本公开做进一步示例说明。本示例中,灵活以太网组中包含4条物理链路,也即图1中的灵活以太网组的N取值为4。当然,根据实际应用,N取值也可能为2、3或5等,N的取值需要根据应用场景灵活设定。
在光模块中,100G的数据报文在发送前,是将数据包报文进行64/66编码,将64比特的数据块扩展成66比特的信息块,增加的2比特位于前面,作为66比特块的开始标志,然后以66比特块的方式从光口发送出去。在接收时,光口 从接收到的数据流中辨别出66比特块,然后从66比特块中恢复出原始的64比特数据,重新组装出数据报文来。FlexE协议处于64比特到66比特块转换层,在发送66比特数据块前,对66比特的数据块进行排序和规划,如图10所示,对于100G业务,每20个66比特数据块划分为一个数据块组,每组中共20个数据块,代表20个时隙,每个时隙代表5G带宽的业务速度。发送66比特的数据块时,每发送完1023个数据块组(1023*20个数据块),插入一个FlexE开销块,如图10中有斜杠图案填充的块。插入开销块后,继续发送数据块,发送完第二个1023*20个数据块后,再插入开销块,以此类推,这样在发送数据块的过程中,会周期性地插入开销块,相邻两个开销块的间隔是1023*20个数据块。
当使用FlexE协议实现多个物理通道捆绑成一个大逻辑通道时,FLEXE协议对66比特的数据块进行排序和规划,每20个66比特数据块划分为一个数据块组,每组中共20个数据块,代表20个时隙。如图11所示,将4个物理通道捆绑成一个逻辑通道,发送时,将第一个数据块组(20个数据块)发送到第一个物理通道上,将第二个数据块组(20个数据块)发送到第二个物理通道上,将第三个数据块组(20个数据块)发送到第三个物理通道上,将第四个数据块组(20个数据块)发送到第四个物理通道上,然后将第五个数据块组(20个数据块)发送到第一个物理通道上,以此类推,将所有数据组(20个数据块)平均、轮询地发送到4个物理通道上。4个物理通道上的数据块在发送时是完全对齐的,在4个物理通道都是每间隔1023个数据块组,在4个物理通道上同时插入开销块,这样4个物理通道上的数据块、开销块是完全对齐的。在接收端,每个物理通道单独接收数据块,然后确定开销块位置。每个物理通道都以开销块位置为基准,重新对齐4个物理通道的数据块组。4个物理通道的数据块组以开销块位置为基准对齐后,按照发送时轮询分配的逆过程重新排序:先从第一个物理通道中取得开销块之后的第一个数据块组(20个数据块)排序在前面,然后从第二个物理通道中取得开销块之后第一个数据块组(20个数据块)排序在后面,再从第三个物理通道中取得开销块之后第一个数据块组(20个数据块)排序在次后,再从第四个物理通道中取得开销块之后第一个数据块组(20个数据块)排序在最后,然后重新上面的过程,先从第一个物理通道中取得开销块 之后的第二个数据块组(20个数据块)排序次后,从第二个物理通道中取得开销块之后的第二个数据块组(20个数据块)排序次后,以此类推,将四个物理通道的数据块组重新排序成一个大的逻辑通道数据块组。通过这种方式,可以将4个物理通道捆绑起来,组成一个大的逻辑通道。对客户业务来讲,只是感知到一个大的逻辑通道,通过大的逻辑通道传递业务,而不需要知道底层的四个物理通道。
FlexE开销块是一个66比特长的开销块,在业务数据流发送时,每间隔1023*20个数据块插入一个开销块。开销块在整个业务流中起到定位功能,找到开销块,就可以知道业务中第一个数据块组的位置,以及后续的数据块组的位置。开销块的内容如图12,连续8个开销块组成一个开销帧。一个开销块由2比特的块标志和64位的块内容组成。块标志位于前2列,后面64列是块内容,第一个开销块的块标志是10,后面7个开销块的块标志是01或SS(SS表示内容不确定)。第一个开销块的内容是:0x4B(8位,十六进制的4B)、C比特(1位,指示调整控制)、OMF比特(1位,表示开销帧复帧指示)、RPF比特(1位,表示远端故障指示)、RES比特(1位,保留位)、灵活以太网编号(FLEXE group number)(20位,表示捆绑组的编号)、0x5(4位,十六进制的5)、000000(28位,都是0)。其中的0x4B和0x5是第一个开销块的标志指示,在接收时,当找到一个开销块中对应位置是0x4B和0x5,则表示该开销块是开销帧中的第一个开销块,和次后连续的7个开销块组成一个开销帧。在开销帧中,保留(reserved)部分是保留内容,尚未定义,见图12黑色填充部分,在选用保留字段时,可以采用开销帧中的任意一个或多个具有保留字段的开销块中。
每32个FlexE开销帧组成一个复帧,通过OMF比特来指示复帧中每个帧的顺序关系,如图13所示。OMF比特在16帧中为0,然后在后续的16帧中为1,以此循环变化,每32帧变化一次。OMF比特首次为0的帧是复帧中的第一帧,以此是第二帧、第三帧、…第三十二帧。Phy映射(map)在每帧中传递8位的信息(表示对应的8个phy是否在用,“0”表示未用,“1”表示在用),32帧可以传递256位(0-255)信息,传递256个phy编号(number)在用情况。例如,0号位置为“1”,则表示phy number=1的成员在用;15号位置如果为“1”, 则表示phy number=15的成员在用。客户日历(Client Calendar)表示每个时隙属于哪个客户,分Client Calendar A和Client Calendar B,工作时A、B之间只有一个有效。有20个时隙,一个复帧有32帧,因此前20帧传递20时隙的客户信息,后面12帧的内容作为保留字段。开销帧中其他字节内容与方案没有直接关系,在此不再赘述。
FlexE协议将多个物理通道捆绑起来,组成一个大的逻辑通道,满足大流量的业务传递需要,但是当一个物理通道发生故障时,则整个逻辑通道的业务全部受影响。如果一个物理通道发生中断,则整个逻辑通道的业务也中断了,业务传递的可靠性降低了。在FlexE协议中,定义了RPF信息,RPF信息只能传递本成员的远端故障信息,无法传递其他成员的故障信息,当本成员的双向都中断时,两端无法传递对端的故障信息。在FlexE协议定义的开销字段的保留字段中,增加一个成员故障指示内容,如图14所示,远端成员故障(remote member fault,RMF)字段,用来将所有成员的故障信息传递给远端,且通过本端的所有成员向对端传送,这样只要有一条路径是正常的,就可以将故障信息传递给对端,避免了双向故障造成无法传递故障的问题。
图14是本实施例提供的成员故障指示示例的示意图,在开销帧中增加一个RMF字段,用于传递本端所有成员的故障信息。在示例1中,RMF采用一个字节(8位宽),用一个比特表示一个成员的故障信息(如“1”表示有故障,“0”表示正常),在一帧中可以传递8个成员的故障信息。通过复帧结构,后续帧继续传递其他成员的故障信息,一个复帧就可以传递完256个成员的故障信息。
图15是本公开另一实施例提供的成员故障指示示例的示意图,在总成员数量很少,只有8个成员的情况下,开销帧中RMF字段一次就可以传递完所有成员。如果采用复帧结构,需要等32帧才能再次传递,等待时间很长。在成员比较少的情况下,没有传递复帧结构,而是每帧都在传递所有成员。
图16是本公开另一实施例提供的成员故障指示示例的示意图,在故障成员数量很少的情况下,同时传递有故障的成员和无故障的成员,导致有故障的成员在传递时等待时间较长。在本实施例中,只传递有故障的成员,不传递无故障的成员。传递时传递两个信息,故障成员的phy number号和故障信息。每帧 传递一个故障成员的故障信息,然后传递下一个成员故障的故障信息、……最后一个故障成员的故障信息,以此循环。
上面只是给出几个示例,具体实现时有多类灵活方式,但都属于该专利的保护范围,例如:(1)、成员的故障信息可以是1个比特来表示,也可以是多个比特;(2)、传递的可以是成员的故障信息,也可以是可以表征故障情况的状态信息;(3)、一帧可以传递一个成员的信息,也可以传递多个成员的信息。(4)可以只传递成员故障指示信息,也可以将成员编号和故障指示信息一起传递。
在本公开中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明公开实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括多个指令用以使得一台应用设备(可以是手机、计算机、,服务器、空调器或者网络应用设备等)执行本公开任意实施例的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的。

Claims (16)

  1. 一种灵活以太网的故障通知方法,包括:
    获取灵活以太网组内本端成员中发生故障的至少一个故障成员;
    将所述至少一个故障成员的故障信息加入至少一个目标成员中的每个目标成员的待发送数据中;其中,所述目标成员为除所述至少一个故障成员之外的所述本端成员中的成员;
    将所述每个目标成员的待发送数据发送至所述灵活以太网组内所述每个目标成员各自对应的对端成员。
  2. 如权利要求1所述的方法,其中,所述至少一个目标成员包括所述灵活以太网组内所有的本端成员。
  3. 如权利要求1或2所述的方法,其中,所述每个目标成员的待发送数据包括构成开销帧的多个开销块;
    所述将所述至少一个故障成员的故障信息加入至少一个目标成员的每个成员的待发送数据中,包括:
    以开销帧为单位,将所述至少一个故障成员的故障信息加入所述每个目标成员的待发送数据的一个开销帧的至少一个具有保留字段的开销块中;
    或者,
    所述每个目标成员的待发送数据包括构成开销帧的多个开销块,其中,N个开销帧构成一个复帧;
    所述将所述至少一个故障成员的故障信息加入至少一个目标成员的每个成员的待发送数据中,包括:
    以复帧为单位,将所述至少一个故障成员的故障信息加入所述每个目标成员的待发送数据的一个复帧包括的至少一个开销帧的至少一个具有保留字段的开销块中,其中,所述N大于或等于2。
  4. 如权利要求1、2或3所述的灵活以太网的故障通知方法,其中,所述故障成员的故障信息包括故障成员识别信息,或包括故障成员识别信息和故障指示信息。
  5. 一种灵活以太网的故障获取方法,包括:
    接收灵活以太网组内对端成员发送的携带有所述对端成员中发生故障的至少一个故障成员的故障信息的数据;
    从接收到的所述数据中提取出所述对端成员中发生故障的所述至少一个故障成员的故障信息。
  6. 根据权利要求5所述的方法,其中,
    所述数据包括构成开销帧的多个开销块;
    所述从接收到的所述数据中提取出所述对端成员中发生故障的所述至少一个故障成员的故障信息,包括:
    从接收到的所述数据中提取出所述至少一个故障成员的故障信息所在的一个开销帧;
    从所述一个开销帧中所述至少一个故障成员的故障信息所在的至少一个开销块的保留字段中提取出所述至少一个故障成员的故障信息;
    或者,
    所述数据包括构成开销帧的多个开销块,其中,N个开销帧构成一个复帧;
    所述从接收到的所述数据中提取出所述对端成员中发生故障的所述至少一个故障成员的故障信息,包括:
    从接收到的所述数据中提取出所述至少一个故障成员的故障信息所在的一个复帧;
    从所述一个复帧中所述至少一个故障成员的故障信息所在的至少一个开销帧的至少一个开销块的保留字段中提取出所述至少一个故障成员的故障信息,其中,所述N大于或等于2。
  7. 根据权利要求5或6所述的方法,其中,所述故障成员的故障信息包括故障成员识别信息,或包括故障成员识别信息和故障指示信息。
  8. 一种灵活以太网的故障通知装置,包括:
    故障获取模块,设置为获取灵活以太网组内本端成员中发生故障的至少一个故障成员;
    故障处理模块,设置为将所述至少一个故障成员的故障信息加入至少一个目标成员中的每个目标成员的待发送数据中;其中,所述目标成员为所述除所述至少一个故障成员之外的本端成员中的成员;
    发送模块,设置为将所述每个目标成员的待发送数据发送至目标成员向所述灵活以太网组内所述每个目标成员各自对应的对端成员发送。
  9. 如权利要求8所述的装置,其中,所述故障处理模块是设置为将所述至少一个故障成员的故障信息加入所述灵活以太网组内所有的本端成员的待发送数据中。
  10. 如权利要求8或9所述的装置,其中,
    所述每个目标成员的待发送数据包括构成开销帧的多个开销块;
    所述故障处理模块是设置为,以开销帧为单位,将所述至少一个故障成员的故障信息加入所述每个目标成员的待发送数据的一个开销帧的至少一个具有保留字段的开销块中;
    或者,
    所述每个目标成员的待发送数据包括构成开销帧的多个开销块,其中,N个开销帧构成一个复帧;
    所述故障处理模块是设置为以复帧为单位,将所述至少一个故障成员的故障信息加入所述每个目标成员的待发送数据的一个复帧包括的至少一个开销帧的至少一个具有保留字段的开销块中,其中,所述N大于或等于2。
  11. 一种灵活以太网的故障获取装置,包括:
    接收模块,设置为接收灵活以太网组内对端成员发送的携带有所述对端成员中发生故障的至少一个故障成员的故障信息的数据;
    提取模块,设置为从接收到的所述数据中提取出所述对端成员中发生故障的所述至少一个故障成员的故障信息。
  12. 根据权利要求11所述的装置,其中,
    所述数据包括构成开销帧的多个开销块;
    所述提取模块是设置为:
    从接收到的所述数据中提取出所述至少一个故障成员的故障信息所在的一个开销帧;
    从所述一个开销帧中所述至少一个故障成员的故障信息所在的至少一个开销块的保留字段中提取出所述至少一个故障成员的故障信息;
    或者,
    所述数据包括构成开销帧的多个开销块,其中,N个开销帧构成一个复帧;
    所述提取模块是设置为:
    从接收到的所述数据中提取出所述至少一个故障成员的故障信息所在的一个复帧;
    从所述一个复帧中所述至少一个故障成员的故障信息所在的至少一个开销帧的至少一个开销块的保留字段中提取出所述至少一个故障成员的故障信息,其中,所述N大于或等于2。
  13. 根据权利要求12或13所述的装置,其中,所述故障成员的故障信息 包括故障成员识别信息,或包括故障成员识别信息和故障指示信息。
  14. 一种通信设备,包括:处理器、存储器以及数据总线;其中,
    所述数据总线设置为将所述处理器和所述存储器进行通信连接;
    所述存储器设置为存储灵活以太网的故障通知程序;
    所述处理器设置为运行所述存储器中的所述灵活以太网的故障通知程序,以实现如权利要求1-4任一项所述的灵活以太网的故障通知方法。
  15. 一种通信设备,包括:处理器、存储器以及数据总线;其中,
    所述数据总线设置为将所述处理器和所述存储器进行通信连接;
    所述存储器设置为存储灵活以太网的故障获取程序;
    所述处理器设置为运行所述存储器中的所述灵活以太网的故障获取程序,以实现如权利要求5、6或7所述的灵活以太网的故障获取方法。
  16. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-7任一项所述的方法。
PCT/CN2018/094898 2017-07-07 2018-07-06 灵活以太网的故障通知、获取方法、装置以及通信设备 WO2019007431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710551792.5 2017-07-07
CN201710551792.5A CN109218061A (zh) 2017-07-07 2017-07-07 灵活以太网之故障通知及获取方法、装置、通信设备

Publications (1)

Publication Number Publication Date
WO2019007431A1 true WO2019007431A1 (zh) 2019-01-10

Family

ID=64949698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094898 WO2019007431A1 (zh) 2017-07-07 2018-07-06 灵活以太网的故障通知、获取方法、装置以及通信设备

Country Status (2)

Country Link
CN (1) CN109218061A (zh)
WO (1) WO2019007431A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197770A1 (zh) * 2022-04-15 2023-10-19 华为技术有限公司 一种故障通告方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585778B (zh) 2019-02-19 2022-02-25 华为技术有限公司 一种灵活以太网通信方法及网络设备
CN111585779B (zh) * 2019-02-19 2021-10-15 华为技术有限公司 一种灵活以太网通信方法及网络设备
CN112543113A (zh) * 2019-09-23 2021-03-23 中兴通讯股份有限公司 一种灵活以太网响应链路故障的方法、装置、设备及介质
CN112911420A (zh) * 2019-12-03 2021-06-04 中兴通讯股份有限公司 基于FlexE网络的重路由方法、电子设备和可读存储介质
CA3207087A1 (en) * 2019-12-31 2021-07-08 Huawei Technologies Co., Ltd. Data sending method, data receiving method, data sending apparatus, and data receiving apparatus
CN112202492B (zh) * 2020-09-01 2021-10-01 中国移动通信集团广东有限公司 一种光缆故障定位方法、装置及电子设备
WO2023168690A1 (en) * 2022-03-11 2023-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for radio over ethernet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913414A (zh) * 2006-08-29 2007-02-14 华为技术有限公司 利用链路聚合实施保护的方法、设备和系统
US20120320737A1 (en) * 2011-06-14 2012-12-20 Avaya Inc. Method and apparatus for lossless link recovery between two devices interconnected via multi link trunk/link aggregation group (mlt/lag)
CN105227456A (zh) * 2015-09-07 2016-01-06 浙江宇视科技有限公司 一种聚合链路故障恢复传输的方法及装置
CN106612220A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 灵活以太网的通道管理方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983931A (zh) * 2006-04-05 2007-06-20 华为技术有限公司 在光网络中传递故障信息的方法及系统
CN101883295B (zh) * 2009-05-06 2014-04-30 华为技术有限公司 业务传输处理方法、节点设备及网络系统
CN102185784A (zh) * 2011-05-26 2011-09-14 杭州华三通信技术有限公司 一种自动保护切换方法及其装置
US9838290B2 (en) * 2015-06-30 2017-12-05 Ciena Corporation Flexible ethernet operations, administration, and maintenance systems and methods
US9800361B2 (en) * 2015-06-30 2017-10-24 Ciena Corporation Flexible ethernet switching systems and methods
US10218823B2 (en) * 2015-06-30 2019-02-26 Ciena Corporation Flexible ethernet client multi-service and timing transparency systems and methods
US10097480B2 (en) * 2015-09-29 2018-10-09 Ciena Corporation Time transfer systems and methods over flexible ethernet
US10193688B2 (en) * 2015-12-11 2019-01-29 Ciena Corporation Flexible Ethernet encryption systems and methods
US10135760B2 (en) * 2015-06-30 2018-11-20 Ciena Corporation Flexible Ethernet chip-to-chip inteface systems and methods
CN106612203A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 一种处理灵活以太网客户端数据流的方法及装置
CN106302146A (zh) * 2016-10-17 2017-01-04 杭州迪普科技有限公司 链路聚合的收敛方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913414A (zh) * 2006-08-29 2007-02-14 华为技术有限公司 利用链路聚合实施保护的方法、设备和系统
US20120320737A1 (en) * 2011-06-14 2012-12-20 Avaya Inc. Method and apparatus for lossless link recovery between two devices interconnected via multi link trunk/link aggregation group (mlt/lag)
CN105227456A (zh) * 2015-09-07 2016-01-06 浙江宇视科技有限公司 一种聚合链路故障恢复传输的方法及装置
CN106612220A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 灵活以太网的通道管理方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOFMEISTER, TAD. ET AL.: "How can flexibility on the line side best be exploited on the client side?", 2016 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 20 March 2016 (2016-03-20), pages 1 - 3, XP032942890 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197770A1 (zh) * 2022-04-15 2023-10-19 华为技术有限公司 一种故障通告方法及装置

Also Published As

Publication number Publication date
CN109218061A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2019007431A1 (zh) 灵活以太网的故障通知、获取方法、装置以及通信设备
CN109688016B (zh) 灵活以太网协议中切换时隙配置的方法及相关设备
US10951340B2 (en) Method and device for transmitting bit error rate information in FlexE overhead frame, and computer storage medium
JP7282187B2 (ja) フレキシブルイーサネット通信方法及びネットワーク装置
US20190229846A1 (en) Code error detection method, device and system, and computer-readable storage medium
US10623836B2 (en) Service transmission method and first transmission device
CN111092686A (zh) 一种数据传输方法、装置、终端设备和存储介质
US11310138B2 (en) Method and apparatus for indicating fault in flexible ethernet
CN109309530B (zh) 一种数据传输方法和装置
WO2018171641A1 (zh) 网络管理信息的收发方法、装置、发送设备和接收设备
CN111211957B (zh) 通信方法和装置
US7586950B1 (en) Remote management interface
US20030235214A1 (en) Service channel over the Ethernet inter-frame gap
US20230337212A1 (en) Methods for inserting and extracting operations, administration, and maintenance of transmitting end, device, and medium
WO2021121352A1 (zh) 一种数据传输的方法以及装置
JP2009231906A (ja) データ伝送システム、伝送装置、およびプロテクション制御方法
EP3403378A1 (en) Fault propagation in segmented protection
WO2019015462A1 (zh) 一种检测块发送和接收的方法、网络设备和系统
EP3886363B1 (en) Communication method and apparatus
US6928056B2 (en) System and method for distribution of a data stream from high-to-low-to-high bandwidth links
JP2009153029A (ja) 伝送システム
US20040114640A1 (en) System, method and device for aggregating SONET links
WO2023197770A1 (zh) 一种故障通告方法及装置
CN116962145A (zh) 一种故障通告方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18828901

Country of ref document: EP

Kind code of ref document: A1