WO2019006720A1 - 一种风电结构螺柱的旋转检测装置及检测方法 - Google Patents

一种风电结构螺柱的旋转检测装置及检测方法 Download PDF

Info

Publication number
WO2019006720A1
WO2019006720A1 PCT/CN2017/091934 CN2017091934W WO2019006720A1 WO 2019006720 A1 WO2019006720 A1 WO 2019006720A1 CN 2017091934 W CN2017091934 W CN 2017091934W WO 2019006720 A1 WO2019006720 A1 WO 2019006720A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
stud
wind power
detecting device
power structure
Prior art date
Application number
PCT/CN2017/091934
Other languages
English (en)
French (fr)
Inventor
张丛
Original Assignee
深圳市樊溪电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市樊溪电子有限公司 filed Critical 深圳市樊溪电子有限公司
Publication of WO2019006720A1 publication Critical patent/WO2019006720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Definitions

  • the invention relates to the field of detecting studs, in particular to a rotating detecting device and a detecting method for a stud of a wind power structure.
  • Structural studs are usually used for frictional connection of various engineering structures. Structural studs must meet all mechanical and chemical composition requirements. Functional requirements must also be met, ie preload control and preloading are reasonable. Stable and effective control is directly related to the installation effect and service life of the structural parts.
  • the structural studs used in the wind farm equipment are mostly under severe service conditions, so the requirements for the corrosion resistance of the studs are very high, and there are two kinds of material selection methods, one is weathering resistant steel. This material has relatively low resources and high cost. The second type is carbon steel or alloy steel. This material must assist in good anti-corrosion measures to adapt to the use of wind power plants. Most of the anticorrosive treatments currently used are hot-dip galvanizing or dacromet. However, the hot-dip galvanized coating is very thick and the surface is relatively rough, and the stud of the stud is actually disturbed.
  • Rotating ability testing of galvanized wind power structural bolts is usually not carried out before the stud manufacturer delivers them, which creates a great safety hazard.
  • studs that are not lubricated or under-lubricated When the specified corner is reached, the nut and stud are bitten or the thread is bitten.
  • Structural studs for wind power equipment whether it is studs for electric power or studs for towers, generally have large specifications, especially tower studs, which are subject to high force and high load bearing requirements, and must guarantee their quality and equipment. Safe operation, therefore, it is necessary to design a rotation detection device and detection method for the wind power structure stud.
  • An object of the present invention is to provide a rotation detecting device for a wind power structure stud, comprising a frame, a clamping device, a rotating platform, a driving device, a control system, a traction rope, a gravity stretching device, an axial force sensor, a torque sensor, and an angle a displacement sensor and a display, wherein the clamping device is fixed to the frame for clamping one end of a wind power stud, the rotating platform having a plurality of reversing devices, a plurality of reversing devices and the rotating The rotation center line of the platform is equally spaced, and one end of the traction rope is connected to one end of the wind power bolt that is not clamped, and the other end of the traction rope sequentially bypasses a plurality of reversing devices, the gravity stretching device Hanging at one end of the traction rope bypassing the last reversing device, adjusting the centering of the center of the gravity stretching device and the center of rotation of the rotating platform according to test requirements, the axial
  • the data measured by the detecting device includes an axial pulling force applied by the stud, a relative rotation angle between the stud and the nut, a torque of the rotating nut, and an extended length of the stud.
  • the force measurement error of the detecting device is ⁇ 2%.
  • the repeatability error of the detecting device is ⁇ ⁇ 1%.
  • the rotation angle measurement error of the detecting device is ⁇ 1°.
  • the actual torque error of the detecting device is ⁇ ⁇ 1%.
  • the driving device of the detecting device adopts a hydraulic driving device.
  • the reversing device is a pulley, and the pulley has a pulley seat.
  • the object of the present invention is also achieved by a rotation detecting method for a wind power structure stud, comprising the following steps: (1) installing a wind power structure stud, an axial force sensor, a torque sensor and an angular displacement sensor; (2) according to a functional type The test requires that the rotation-pull curve representing the rotation capability be drawn by the control system of the inspection device; (3) the tension of the stud is recorded in the rotation tension curve for the first time to reach the specified maximum value, 90% of the maximum value, the maximum (70) the angle at which the nut rotates when 70% of the value is used; (4) the transient tension, the torsion and the axial force after the stud and nut are sewn and the thread is broken after the rotation-pull test is recorded; (5) the preload test is performed.
  • the tension-torque curve is recorded to measure the torque factor, standard deviation and coefficient of variation, and to control the stability of the lubrication conditions.
  • the rotation detecting device and the detecting method of the wind power structure stud are used to fill the domestic blank of the rotation detection of the wind power structure stud, and improve the ability of the manufacturer to detect the rotating ability before delivery, thereby improving the wind power structure stud. Life and safety.
  • FIG. 1 is a schematic structural view of a sinker value detecting device of a non-contact hand-held drop weight deflector according to an embodiment of the invention.
  • FIG. 2 is a flow chart of a method for detecting a subsidence value of a non-contact hand-held drop weight deflector according to an embodiment of the invention.
  • a rotation detecting device for a wind power structure stud includes a frame 1, a clamping device 2, a rotating platform 3, a driving device 4, a control system 5, a traction rope 6, a gravity stretching device 7, and an axial force.
  • the reversing device 3-1, the gravity stretching device 7 is suspended at the end of the traction rope 6 around the last reversing device 3-1, and the center of the gravity stretching device 7 and the center of rotation of the rotating platform 3 are adjusted according to
  • the axial force sensor 8, the torque sensor 9 and the angular displacement sensor 10 are bolted to the wind power structure, and the measured data is transmitted to the control system 5 of the test equipment for starting the control signal, and a rotation-pull curve representing the rotation capability is drawn.
  • the studs without lubrication or insufficient lubrication can not pass this experiment completely.
  • the experimental requirements will be adjusted for the wind power studs, but the principle is the same, so the data measured by the testing device include the snails.
  • the testing equipment is required to have sufficient rigidity, and the following technical indicators are proposed: the measuring error of the detecting device is ⁇ 2%, the repeatability error of the detecting device is ⁇ 1%, and the measuring error of the detecting device is ⁇ 1 °, the actual torque of the detecting device is ⁇ 1%, and the measuring error of the stud of the detecting device is ⁇ 1/100mm.
  • the driving device 4 of the detecting device uses a hydraulic driving device or other driving device for mechanical rotation detection, as long as The above accuracy can be achieved.
  • the reversing device 3-1 is a pulley, and the pulley has a pulley seat.
  • a method for detecting rotation of a wind power structure stud includes the following steps: (1) installing a wind power structure stud, an axial force sensor, a torque sensor, and an angular displacement sensor; (2) according to functional test requirements, The rotation-pull force curve representing the rotation ability is drawn by the control system of the detecting device; (3) the tensile force of the stud is recorded in the rotating tension curve for the first time to reach the specified maximum value, 90% of the maximum value, 70 of the maximum value.
  • test compliance is as follows: when the total clamping length of the nut bearing surface and the stud bearing surface is less than 2 times the diameter, the rotation angle is between 90 degrees and 180 degrees; when the nut bearing surface and the stud bearing surface The total clamping length is between 2 and 6 times the diameter, then the angle of rotation is between 120 and 210 degrees; when the nut bearing surface and the stud bearing surface are clamped at a total length of 6 and 10 times the diameter Between, then the angle of rotation is between 150 degrees and 240 degrees.
  • the studs and nuts should not be killed, the threads are not damaged, and the studs of this experiment can prove that the lubrication conditions are good, and then the preload test, that is, the tensile-torque test, is required.
  • the torque coefficient, standard deviation and coefficient of variation were measured to control the stability of the lubrication conditions.
  • the pre-load can be obtained by specifying the torque. At the construction site, the latter method is more direct and effective.
  • there are many methods for controlling the pre-load construction such as preload washers. It can be more convenient and simple, but the cost of the gasket is higher.
  • the rotation detecting device and the detecting method of the wind power structure stud are used to fill the domestic blank of the rotation detection of the wind power structure stud, and improve the ability of the manufacturer to detect the rotating ability before delivery, thereby improving the wind power structure stud. Life and safety.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Wind Motors (AREA)

Abstract

一种风电结构螺柱的旋转检测装置及检测方法,包括机架(1)、夹持装置(2)、旋转平台(3)、驱动装置(4)、控制系统(5)、牵引绳(6)、重力拉伸装置(7)、轴力传感器(8),扭力传感器(9),角位移传感器(10)和显示器(11),其中,夹持装置(2)固定在机架(1)上,旋转平台(3)具有多个换向装置(3-1),牵引绳(6)的一端连接风电螺栓未被夹持的一端,另一端依次绕过多个换向装置(3-1),重力拉伸装置(7)悬挂在牵引绳(6)绕过最后一个换向装置(3-1)的一端,将测量的数据传输并绘制代表旋转能力的旋转-拉力曲线。该检测装置及检测方法填补了国内对于风电结构螺柱的旋转性的检测空白。

Description

[根据细则37.2由ISA制定的发明名称] 一种风电结构螺柱的旋转检测装置及检测方法 技术领域
本发明涉及螺柱的检测领域,特别是一种风电结构螺柱的旋转检测装置及检测方法。
背景技术
结构螺柱通常是用于摩擦连接各类工程结构上,结构螺柱出了必须满足全部机械性能和化学成分要求外,还必须实现对功能性的要求,即预载荷的控制,预载荷的合理稳定并有效控制,直接关系到结构件的安装效果和使用寿命。
上世纪在借鉴美国、日本等发达国家先进技术、标准和国际标准后,我国制定了结构螺柱的技术规范并开始生产结构螺柱,这就是GB/T1228-1231《钢结构用高强度大六角头螺栓连接副》和GB/T3632《钢结构用扭剪型高强度螺栓连接副》,规格从M12-M30,表面为本色,经磷化、皂化工艺后达到润滑要求,实现了预载荷的控制,同时为了防止螺柱预载荷的离散性,规定了扭矩数的标准偏差。
不同于上述结构螺柱,用于风电场装备的结构螺柱大多处于恶劣的服役条件下,因此对螺柱耐腐蚀性的要求非常高,可以有两种选材方式,一种是耐风化钢,这种材料相对资源少、成本高,第二种是碳钢或者合金钢,这种材料必须辅助很好的防腐措施,才能适应风电厂的使用。目前大多采用的防腐处理是热镀锌或达克罗,然而热镀锌的镀层非常厚,并且表面相对粗糙,螺柱的旋合性实际上会受到干扰。
通常在螺柱制造方交付使用前不会对镀锌的风电结构螺栓进行旋转能力测试,这样就会产生很大的安全隐患,对于不经润滑或润滑不足的螺柱,在未达 到规定转角时,螺母和螺柱便咬住了或螺牙被咬坏。风电装备用的结构螺柱,无论是叶电用螺柱或是塔筒用螺柱,一般规格较大,尤其是塔筒螺柱,受力大,承重要求高,必须保证其质量、保证设备的安全运行,因此,有必要设计一套风电结构螺柱的旋转检测装置和检测方法。
发明内容
本发明的目的在于提供一种风电结构螺柱的旋转检测装置,包括机架、夹持装置、旋转平台、驱动装置、控制系统、牵引绳、重力拉伸装置、轴力传感器,扭力传感器,角位移传感器和显示器,其中,所述夹持装置固定在所述机架上,用于夹持风电螺柱的一端,所述旋转平台具有多个换向装置,多个换向装置与所述旋转平台的旋转中心线等间距相隔离,所述牵引绳的一端连接所述风电螺栓未被夹持的一端,所述牵引绳的另一端依次绕过多个换向装置,所述重力拉伸装置悬挂在所述牵引绳绕过最后一个换向装置的一端,根据测试要求调整所述重力拉伸装置的中心与所述旋转平台的旋转中心的对中性,所述轴力传感器,扭力传感器以及角位移传感器与所述风电结构螺栓连接,将测量的数据传输到所述测试设备的控制系统进行控制信号出发,并绘制代表旋转能力的旋转-拉力曲线。
优选的,所述检测装置测量的数据包括螺柱所受的轴向拉力、螺柱和螺母之间的相对旋转角度、旋转螺母的扭矩以及螺柱的延伸长度。
优选的,所述检测装置的测力误差≤±2%。
优选的,所述检测装置的重复性误差≤±1%。
优选的,所述检测装置的旋转角度测量误差≤±1°。
优选的,所述检测装置的扭矩实际误差≤±1%。
优选的,所述检测装置的螺柱的延伸长度测量误差±1/100mm。
优选的,所述检测装置的驱动装置采用液压驱动装置。
优选的,所述换向装置为滑轮,所述滑轮具有滑轮座。
本发明的目的还通过一种风电结构螺柱的旋转检测方法实现,包括如下步骤:(1)安装被测风电结构螺柱,轴力传感器,扭力传感器以及角位移传感器;(2)根据功能型测试要求,通过检测设备的控制系统绘制代表旋转能力的旋转-拉力曲线;(3)在旋转拉力曲线中分别记录螺柱所受拉力第一次达到规定的最大值,最大值的90%,最大值的70%时,螺母旋转的角度;(4)记录旋转-拉力测试后,螺柱、螺母发生咬死以及螺纹破坏后的瞬态拉力,扭力以及轴力;(5)进行预载荷试验,记录拉力-扭矩曲线,从而测量获得扭矩系数、标准偏差和变异系数以及控制润滑条件的稳定性。
采用该风电结构螺柱的旋转检测装置和检测方法,填补了风电结构螺柱的旋转性检测的国内空白,提高了制造方在交付使用前对旋转能力的检测能力,从而提高了风电结构螺柱的使用寿命和安全性。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。本发明的目标及特征考虑到如下结合附图的描述将更加明显,附图中:
图1为根据本发明实施例的非接触式手持落锤弯沉仪的沉陷值检测装置结构示意图。
图2为根据本发明实施例的非接触式手持落锤弯沉仪的沉陷值检测方法流程图。
具体实施方式
参见附图1,一种风电结构螺柱的旋转检测装置,包括机架1、夹持装置2、旋转平台3、驱动装置4、控制系统5、牵引绳6、重力拉伸装置7、轴力传感器8,扭力传感器9,角位移传感器10和显示器11,其中,所述夹持装置2固定在机架1上,用于夹持风电螺柱的一端,旋转平台3具有多个换向装置3-1,多个换向装置3-1与旋转平台9的旋转中心线等间距相隔离,牵引绳6的一端连接风电螺栓未被夹持的一端,牵引绳6的另一端依次绕过多个换向装置3-1,重力拉伸装置7悬挂在牵引绳6绕过最后一个换向装置3-1的一端,根据测试要求调整重力拉伸装置7的中心与旋转平台3的旋转中心的对中性,轴力传感器8,扭力传感器9以及角位移传感器10与风电结构螺栓连接,将测量的数据传输到测试设备的控制系统5进行控制信号出发,并绘制代表旋转能力的旋转-拉力曲线。在生产实践中发现,不经润滑或润滑不足地螺柱是完全通不过此项实验的,,实验要求会针对风电螺柱进行调整,但是原理是一致的,因此检测装置测量的数据均包括螺柱所受的轴向拉力、螺柱和螺母之间的相对旋转角度、旋转螺母的扭矩以及螺柱的延伸长度。这是根据技术手段的不断提高以及对风电结构螺柱安装要求的严格控制提出的实验设备及技术参数的要求。根据实验原理,要求检测设备具有足够的刚度,并且提出如下技术指标:检测装置的测力误差≤±2%,检测装置的重复性误差≤±1%,检测装置的旋转角度测量误差≤±1°,检测装置的扭矩实际误差≤±1%,检测装置的螺柱的延伸长度测量误差±1/100mm,检测装置的驱动装置4采用液压驱动装置或者其他用于机械旋转检测的驱动装置,只要能够达到上述精度即可。换向装置3-1为滑轮,滑轮具有滑轮座。
参见图2,一种风电结构螺柱的旋转检测方法,包括如下步骤:(1)安装被测风电结构螺柱,轴力传感器,扭力传感器以及角位移传感器;(2)根据功能型测试要求,通过检测设备的控制系统绘制代表旋转能力的旋转-拉力曲线;(3)在旋转拉力曲线中分别记录螺柱所受拉力第一次达到规定的最大值,最大值的90%,最大值的70%时,螺母旋转的角度;(4)记录旋转-拉力测试后,螺柱、螺母发生咬死以及螺纹破坏后的瞬态拉力,扭力以及轴力;(5)进行预 载荷试验,记录拉力-扭矩曲线,从而测量获得扭矩系数、标准偏差和变异系数以及控制润滑条件的稳定性。
将螺柱所受拉力第一次达到规定的最大值Fmax,最大值的90%,最大值的70%时,螺母旋转的角度分别记录为θ2i,θ1i,θpi。那么试验符合性规定为:当螺母支承面和螺柱支承面总的夹持长度在直径的2倍之下,则旋转角度在90度和180度之间;当螺母支承面和螺柱支承面总的夹持长度在直径的2倍和6倍之间,则旋转角度在120度和210度之间;当螺母支承面和螺柱支承面总的夹持长度在直径的6倍和10倍之间,则旋转角度在150度和240度之间。
当旋转-拉力测试后,螺柱、螺母应不咬死,螺纹不破坏,能通过此项实验的螺柱证明其润滑条件良好,其后需要进一步进行预载荷试验,即拉力-扭矩试验,从而测得扭矩系数、标准偏差和变异系数、控制润滑条件的稳定性。通过电脑作图把实验过程的全部数据都精确采集,为风电结构螺柱生产、安装提供数据支撑。除了规定预载荷求扭矩的方法之外,还可以通过规定扭矩求得预载荷,在施工现场,后一种方法更为直接有效,当然,控制预载荷施工的方法还有很多,如预载荷垫圈,可以更方便简单,但是垫圈的成本较高。
采用该风电结构螺柱的旋转检测装置和检测方法,填补了风电结构螺柱的旋转性检测的国内空白,提高了制造方在交付使用前对旋转能力的检测能力,从而提高了风电结构螺柱的使用寿命和安全性。
虽然本发明已经参考特定的说明性实施例进行了描述,但是不会受到这些实施例的限定而仅仅受到附加权利要求的限定。本领域技术人员应当理解可以在不偏离本发明的保护范围和精神的情况下对本发明的实施例能够进行改动和修改。

Claims (10)

  1. 一种风电结构螺柱的旋转检测装置,其特征在于:包括机架(1)、夹持装置(2)、旋转平台(3)、驱动装置(4)、控制系统(5)、牵引绳(6)、重力拉伸装置(7)、轴力传感器(8),扭力传感器(9),角位移传感器(10)和显示器(11),其中,所述夹持装置(2)固定在所述机架(1)上,用于夹持风电螺柱的一端,所述旋转平台(3)具有多个换向装置(3-1),多个换向装置(3-1)与所述旋转平台(3)的旋转中心线等间距相隔离,所述牵引绳(6)的一端连接所述风电螺栓未被夹持的一端,所述牵引绳(6)的另一端依次绕过多个换向装置(3-1),所述重力拉伸装置(7)悬挂在所述牵引绳(6)绕过最后一个换向装置(3-1)的一端,根据测试要求调整所述重力拉伸装置(7)的中心与所述旋转平台(3)的旋转中心的对中性,所述轴力传感器(8),扭力传感器(9)以及角位移传感器(10)与所述风电结构螺栓连接,将测量的数据传输到所述测试设备的控制系统(5)进行控制信号出发,并绘制代表旋转能力的旋转-拉力曲线。
  2. 根据权利要求1所述的一种风电结构螺柱的旋转检测装置,其特征在于:所述检测装置测量的数据包括螺柱所受的轴向拉力、螺柱和螺母之间的相对旋转角度、旋转螺母的扭矩以及螺柱的延伸长度。
  3. 根据权利要求1所述的一种风电结构螺柱的旋转检测装置,其特征在于:所述检测装置的测力误差≤±2%。
  4. 根据权利要求1所述的一种风电结构螺柱的旋转检测装置,其特征在于:所述检测装置的重复性误差≤±1%。
  5. 根据权利要求1所述的一种风电结构螺柱的旋转检测装置,其特征在于:所述检测装置的旋转角度测量误差≤±1°。
  6. 根据权利要求1所述的一种风电结构螺柱的旋转检测装置,其特征在于:所述检测装置的扭矩实际误差≤±1%。
  7. 根据权利要求1所述的一种风电结构螺柱的旋转检测装置,其特征在于: 所述检测装置的螺柱的延伸长度测量误差±1/100mm。
  8. 根据权利要求1所述的一种风电结构螺柱的旋转检测装置,其特征在于:所述检测装置的驱动装置采用液压驱动装置。
  9. 根据权利要求1所述的一种风电结构螺柱的旋转检测装置,其特征在于:所述换向装置(3-1)为滑轮,所述滑轮具有滑轮座。
  10. 一种风电结构螺柱的旋转检测方法,其特征在于包括如下步骤:(1)安装被测风电结构螺柱,轴力传感器(8),扭力传感器(9)以及角位移传感器(10);(2)根据功能型测试要求,通过检测设备的控制系统(5)绘制代表旋转能力的旋转-拉力曲线;(3)在旋转拉力曲线中分别记录螺柱所受拉力第一次达到规定的最大值,最大值的90%,最大值的70%时,螺母旋转的角度;(4)记录旋转-拉力测试后,螺柱、螺母发生咬死以及螺纹破坏后的瞬态拉力,扭力以及轴力;(5)进行预载荷试验,记录拉力-扭矩曲线,从而测量获得扭矩系数、标准偏差和变异系数以及控制润滑条件的稳定性。
PCT/CN2017/091934 2017-07-05 2017-07-06 一种风电结构螺柱的旋转检测装置及检测方法 WO2019006720A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710542458.3 2017-07-05
CN201710542458.3A CN107314895B (zh) 2017-07-05 2017-07-05 一种风电结构螺柱的旋转检测装置及检测方法

Publications (1)

Publication Number Publication Date
WO2019006720A1 true WO2019006720A1 (zh) 2019-01-10

Family

ID=60180460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091934 WO2019006720A1 (zh) 2017-07-05 2017-07-06 一种风电结构螺柱的旋转检测装置及检测方法

Country Status (2)

Country Link
CN (1) CN107314895B (zh)
WO (1) WO2019006720A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945372A (zh) * 2021-10-15 2022-01-18 上海天乘实业有限公司 一种风电螺套积液镀层自动智能检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179786A (en) * 1976-08-09 1979-12-25 Rockwell International Corporation Tension control of fasteners
CN101776500A (zh) * 2009-10-19 2010-07-14 浙江电力职业技术学院 紧固件轴力-扭矩联合试验机
CN102235940A (zh) * 2010-04-23 2011-11-09 上海宝冶工程技术有限公司 大直径螺栓拉力试验机
CN202631236U (zh) * 2012-04-27 2012-12-26 中国直升机设计研究所 一种拉扭承载能力试验装置
CN104142229A (zh) * 2013-05-10 2014-11-12 中科风电(北京)有限公司 一种风力发电机组法兰螺栓在线监测及故障诊断系统
CN105300683A (zh) * 2015-12-01 2016-02-03 中国船舶重工集团公司第七0四研究所 螺栓扭矩系数测量试验台

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120839A (ja) * 1982-12-27 1984-07-12 Kawasaki Steel Corp トルシヤ型ボルト試験機
CN2597974Y (zh) * 2003-02-13 2004-01-07 李君实 高强螺栓扭矩系数试验机
CN2814395Y (zh) * 2005-03-28 2006-09-06 林夏雹 高强度螺栓连接副测试装置
CN201852663U (zh) * 2010-09-17 2011-06-01 中冶建筑研究总院有限公司 一种高强螺栓的检测装置
CN102692291B (zh) * 2011-03-23 2016-08-03 上海金马高强紧固件有限公司 风力发电紧固件扭矩、轴力联合测试机
CN203275004U (zh) * 2013-05-30 2013-11-06 龙源(北京)风电工程技术有限公司 一种高强螺栓轴力测量装置
CN105784249B (zh) * 2016-03-28 2019-01-29 北京理工大学 一种螺纹结构扭拉关系的测量装置及测量方法
CN106885647B (zh) * 2017-02-24 2019-10-29 大连海事大学 螺纹扭力特性测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179786A (en) * 1976-08-09 1979-12-25 Rockwell International Corporation Tension control of fasteners
CN101776500A (zh) * 2009-10-19 2010-07-14 浙江电力职业技术学院 紧固件轴力-扭矩联合试验机
CN102235940A (zh) * 2010-04-23 2011-11-09 上海宝冶工程技术有限公司 大直径螺栓拉力试验机
CN202631236U (zh) * 2012-04-27 2012-12-26 中国直升机设计研究所 一种拉扭承载能力试验装置
CN104142229A (zh) * 2013-05-10 2014-11-12 中科风电(北京)有限公司 一种风力发电机组法兰螺栓在线监测及故障诊断系统
CN105300683A (zh) * 2015-12-01 2016-02-03 中国船舶重工集团公司第七0四研究所 螺栓扭矩系数测量试验台

Also Published As

Publication number Publication date
CN107314895A (zh) 2017-11-03
CN107314895B (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
JP6297499B2 (ja) 風力タービン用ボルト締めロボット
CN203130381U (zh) 一种可在线检测螺栓轴力的塔架
CN101776500A (zh) 紧固件轴力-扭矩联合试验机
CN107238460A (zh) 一种螺栓扭矩系数测试装置及方法
CN102636397B (zh) 锚杆综合力学性能的快速测试装置及方法
CN109297690B (zh) 一种车轮螺栓紧固质量验证系统、方法及设备
CN204694393U (zh) 一种螺钉扭矩力检测装置
CN204165843U (zh) 多功能螺栓紧固分析系统的加载装置
CN102928291B (zh) 一种用于螺栓力学特性试验的螺栓夹具结构及试验装置
WO2020073580A1 (zh) 摩擦提升机钢丝绳承载性能测试装置及方法
CN201532277U (zh) 紧固件轴力-扭矩联合试验机
WO2019006720A1 (zh) 一种风电结构螺柱的旋转检测装置及检测方法
CN102431918A (zh) 一种判断塔机塔身钢结构损伤方位的方法
CN105485125B (zh) 一种可测预紧伸长量的螺栓及测量方法
CN201843880U (zh) 风力发电塔架用自润滑高强度螺栓连接副
CN203148657U (zh) 一种锚杆综合力学性能检测装置
WO2022237012A1 (zh) 一种受压元件刚性吊挂装置现场测量与调试系统及方法
CN103481005B (zh) 一种管道径向螺栓焊接对中辅助机构
Matsubara et al. A novel method for estimating ultimate clamp force in lag screw timber joints with steel side plates
CN208736685U (zh) 一种汽车电子助力转向系统静态试验装置
CN210293512U (zh) 接闪器固定支架拉力测试装置
CN203929304U (zh) 火灾后高强螺栓连接预紧力松弛量测定用加载装置
CN202372294U (zh) 一种拧接机简易扭矩校准装置
CN203376102U (zh) 卡钳用支架螺栓拧紧力矩测试装置
CN201600302U (zh) 螺栓球用检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916983

Country of ref document: EP

Kind code of ref document: A1