WO2019006664A1 - 红外探测器及红外探测方法 - Google Patents
红外探测器及红外探测方法 Download PDFInfo
- Publication number
- WO2019006664A1 WO2019006664A1 PCT/CN2017/091708 CN2017091708W WO2019006664A1 WO 2019006664 A1 WO2019006664 A1 WO 2019006664A1 CN 2017091708 W CN2017091708 W CN 2017091708W WO 2019006664 A1 WO2019006664 A1 WO 2019006664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared
- infrared sensor
- current
- sensor
- lens
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 82
- 230000007246 mechanism Effects 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 14
- 238000013519 translation Methods 0.000 claims description 5
- 239000000523 sample Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 description 9
- 230000014616 translation Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/34—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/10—Detecting, e.g. by using light barriers
- G01V8/20—Detecting, e.g. by using light barriers using multiple transmitters or receivers
Definitions
- the present invention relates to the field of detectors, and in particular, to an infrared detector and an infrared detecting method.
- the technical problem to be solved by the present invention is to provide an infrared detector and an infrared detecting method for the defects of the human body which are difficult to detect in the prior art.
- the technical solution adopted by the present invention to solve the technical problem thereof is to provide an infrared detector including a first infrared sensor, a lens covering a part of the sensing pixels of the first infrared sensor, and a driving method for driving the first infrared sensor and A drive mechanism for moving the lens together, and a control mechanism for controlling the drive mechanism to be turned on or off based on the current infrared detection signal.
- the first infrared sensor generates a current infrared detection signal in a stationary state.
- the infrared detector further includes a second infrared sensor adjacent to the first infrared sensor, and the second infrared sensor generates a current infrared detection signal in a stationary state.
- controlling the driving mechanism to be turned on or off based on the current infrared detecting signal comprises: if the current infrared detecting signal changes with the turn of the day, the control driving mechanism remains off; if the current infrared detecting signal does not change with the daytime, Then control the drive mechanism to start.
- the movement comprises translation and/or rotation.
- the drive mechanism comprises a stepper motor.
- the present invention also provides an infrared detection method, including:
- generating the current infrared detection signal comprises: generating a current infrared detection signal by using an infrared sensor in a static state.
- determining whether to activate the first infrared sensor and the lens of the partial sensing pixel covering the infrared sensor to start motion together based on the current infrared detection signal comprises: maintaining the first if the current infrared detection signal changes with the daytime The infrared sensor is stationary; if the current infrared detection signal does not change with the turn, the first infrared sensor is activated to start moving together with the lens.
- performing infrared detection by using the first infrared sensor of the motion comprises: if the infrared detection signal generated by the first infrared sensor of the movement changes with the daytime, determining that there is a person in the infrared detection area; if the infrared If the detection signal does not change with the day, it is determined that there is no one in the infrared detection area.
- the implementation of the present invention has the following beneficial effects:
- the infrared detector and the infrared detecting method can effectively monitor whether the detecting area has a stationary person, the false detection or the missed detection rate is low, and the structure is simple.
- FIG. 1 is a schematic structural view of an infrared detector according to a first embodiment of the present invention
- FIG. 2 is a schematic structural view of an infrared detector according to a second embodiment of the present invention.
- FIG. 1 a schematic structural view of an infrared detector 1 according to a first embodiment of the present invention is shown.
- the infrared detector 1 includes a first infrared sensor 11, a lens 12 covering a portion of the sensing pixels of the first infrared sensor 11, a driving mechanism 13 for driving the first infrared sensor 11 and the lens 12 to move, and based on the current infrared
- the detection signal controls the drive mechanism 13 to activate or maintain the closed control mechanism 14.
- the infrared sensor 11 may be a pyroelectric infrared sensor that acquires infrared radiation and generates an infrared detection signal, and the first infrared sensor 11 may generate the current infrared detection signal in a stationary state.
- the lens 12 is a spherical lens, or any other suitable lens, and the lens 12 covers only a part of the sensing pixels of the first infrared sensor 11 , for example, may be a lens 12 covering at least one pixel, or may cover only one pixel.
- the lens 12 of the point, the first infrared sensor 11 and the lens 12 can be fixedly disposed on the substrate 10, and the three move together during the movement.
- the driving mechanism 13 may be a stepping motor that can drive the first infrared sensor 11 and the lens 12 to move together, the motion including translation, rotation, or a combination of translation and rotation, for example, FIG. 1 shows the first infrared The sensor 11 rotates in the direction of the arrow together with the lens 12.
- the driving mechanism 13 can also drive the first infrared sensor 11 and the lens 12 to perform repeated movements, for example, repeated translations; or repeatedly rotate, rotate an angle (for example, 180°) along the smoothing needle, and then rotate the needle backwards. Angle, and so on. This repeated motion is beneficial to improve the accuracy of the detection.
- the control unit 14 is electrically connected or communicably connected to the first infrared sensor 11, and receives the infrared detection signal generated by the infrared sensor 11, for example, the current infrared detection signal generated by the first infrared sensor 11 can be acquired.
- the control mechanism 14 is also electrically or communicably coupled to the drive mechanism 13 to control the drive mechanism 13 to be turned “on” or “off” based on the current infrared detection signal.
- the control drive mechanism 13 remains off, that is, the first infrared sensor 11 and the lens 12 remain stationary; if it is determined that the current infrared detection signal does not occur with the daytime When the change is made, the driving mechanism 13 is turned on to drive the first infrared sensor 11 and the lens 12 to move.
- the first infrared sensor 11 and the lens 12 can be driven to perform motion discrimination when the current infrared detection signal does not change with time.
- the first infrared sensor 11 is only partially covered by the lens 12, so that the infrared radiation received by the first infrared sensor 11 partially passes through the lens 12 and a portion does not pass through the lens 12.
- the infrared radiation comes from different detection areas along the day. If there is a stationary human body in the detection area, during the movement, the infrared radiation of the human body changes through the portion of the lens 12, and the first infrared sensor 11 and the lens 12 are relatively stationary, whereby the first infrared sensor 11 acquires The infrared radiation varies from day to day, so that it is possible to determine that there is a stationary person in the detection area. If the detection area is unmanned, the infrared radiation acquired by the first infrared sensor 11 does not change from day to day. The infrared detector 1 can effectively detect whether the detection area has a stationary person, the false detection or the missed detection rate is low, and the structure is simple.
- FIG. 2 is a schematic structural view of an infrared detector 2 according to a second embodiment of the present invention.
- the infrared detector 2 is also included in the same manner as the infrared detector 1 of the first embodiment.
- a first infrared sensor a first lens 221 covering a portion of the sensing pixels of the first infrared sensor 211, a driving mechanism 23 for driving the first infrared sensor 211 and the first lens 221 to move, and controlling based on a current infrared detection signal
- the drive mechanism 23 activates or maintains the closed control mechanism 24.
- the infrared detector further includes a second infrared sensor 212, a second lens that completely covers the sensing pixels of the second infrared sensor 212, and the second infrared sensor 212 is detecting
- the process is always stationary and generates the above-mentioned current infrared detection signal in a stationary state.
- the first and second infrared sensors are fixed to the substrates 201 and 202, respectively, together with the respective lenses.
- the control mechanism first controls the drive mechanism to remain closed, the first sensor and the second sensor are both in a stationary state, and the infrared radiation received by the second sensor is used for detection.
- the second sensor receives infrared radiation from the infrared detection zone and generates the current infrared detection signal. If the control mechanism determines that the current infrared detection signal changes with the daytime, it may be considered that there is a moving person in the detection area; if it is determined that the current infrared detection signal does not change with the daytime, the driving mechanism is driven to drive the first infrared sensor and the first A lens moves together and is detected using the received infrared radiation of the first sensor to identify whether the detection area is unmanned or stationary.
- the second sensor is generally detected by the stationary second sensor, and the first sensor remains stationary.
- the first sensor is activated only when it is impossible to determine whether the detection area is unmanned or stationary, thereby reducing the first
- the movement of the sensor reduces the energy consumption and noise accordingly.
- a third embodiment of the present invention relates to an infrared detecting method, including: Step S100: generating a current infrared detecting signal; and step S200, determining whether to activate the first infrared sensor and covering the infrared sensor based on the current infrared detecting signal
- the lens of the measuring pixel starts to move together, and if so, the motion is used
- the first infrared sensor performs infrared detection.
- an infrared sensor in a static state is used to generate a current infrared detection signal.
- the infrared detecting signal may be generated by using a first infrared sensor in a stationary state, and the infrared detecting signal may be generated in a stationary state by using an infrared sensor other than the first infrared sensor.
- step S200 if the current infrared detection signal changes with the daytime, the first infrared sensor is kept stationary; if the current infrared detection signal does not change with the daytime, the first infrared sensor is started together with the lens. Movement, this ⁇ uses the first infrared sensor of the motion to detect. If the infrared detection signal generated by the moving first infrared sensor changes with the daytime, it is determined that there is a person in the infrared detection area; if the infrared detection signal does not change with the daytime, it is determined that there is no one in the infrared detection area.
- the infrared detector in the present invention corresponds to an infrared detecting method, and the infrared detector can implement a corresponding infrared detecting method.
- the technical details of the infrared detector may be partially or completely quoted. Other technical details of the infrared detection method are not repeated here.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
一种红外探测器和红外探测方法,红外探测器(1)包括第一红外传感器(11)、覆盖第一红外传感器(11)的部分感测像素的透镜(12)、用于驱动第一红外传感器(11)和透镜(12)一起运动的驱动机构(13)、以及基于当前红外探测信号控制驱动机构(13)开启或保持关闭的控制机构(14)。红外探测方法包括步骤:生成当前红外探测信号;以及基于当前红外探测信号确定是否启动第一红外传感器(11)和覆盖红外传感器(11)的部分感测像素的透镜(12)一起开始运动,若是,则采用运动的第一红外传感器(11)进行红外探测。采用该红外探测器(1)及红外探测方法,可有效监测到探测区域是否有静止的人,误检或漏检率低,且结构简单。
Description
红外探测器及红外探测方法
技术领域
[0001] 本发明涉及探测器领域, 尤其涉及一种红外探测器及红外探测方法。
背景技术
[0002] 目前, 在红外探测领域, 热释电红外探头无法对处于静止状态的人体进行识别 , 因此, 若在实际探测中采用这种探头, 则容易忽略静止的人体, 造成漏检或 误检。
技术问题
[0003] 本发明要解决的技术问题在于, 针对现有技术中难于探测到静止的人体的缺陷 , 提供一种红外探测器及红外探测方法。
问题的解决方案
技术解决方案
[0004] 本发明解决其技术问题所采用的技术方案是: 提供一种红外探测器, 包括第一 红外传感器、 覆盖第一红外传感器的部分感测像素的透镜、 用于驱动第一红外 传感器和透镜一起运动的驱动机构、 以及基于当前红外探测信号控制驱动机构 幵启或保持关闭的控制机构。
[0005] 优选地, 第一红外传感器在静止状态下生成当前红外探测信号。
[0006] 优选地, 红外探测器还包括邻近第一红外传感器的第二红外传感器, 第二红外 传感器在静止状态下生成当前红外探测信号。
[0007] 优选地, 基于当前红外探测信号控制驱动机构幵启或关闭包括: 若当前红外探 测信号随吋间发生变化, 则控制驱动机构保持关闭; 若当前红外探测信号未随 吋间发生变化, 则控制驱动机构幵启。
[0008] 优选地, 运动包括平移和 /或旋转。
[0009] 优选地, 驱动机构包括步进电机。
[0010] 本发明还提供了一种红外探测方法, 包括:
[0011] 生成当前红外探测信号; 以及
[0012] 基于当前红外探测信号确定是否启动第一红外传感器和覆盖红外传感器的部分 感测像素的透镜一起幵始运动, 若是, 则采用运动的第一红外传感器进行红外 探测。
[0013] 优选地, 生成当前红外探测信号包括: 采用静止状态下的红外传感器生成当前 红外探测信号。
[0014] 优选地, 基于当前红外探测信号确定是否启动第一红外传感器和覆盖红外传感 器的部分感测像素的透镜一起幵始运动包括: 若当前红外探测信号随吋间发生 变化, 则保持第一红外传感器静止; 若当前红外探测信号未随吋间发生变化, 则启动第一红外传感器和透镜一起幵始运动。
[0015] 优选地, 采用运动的第一红外传感器进行红外探测包括: 若运动的第一红外传 感器生成的红外探测信号随吋间发生变化, 则确定红外探测区域内有静止的人 ; 若该红外探测信号未随吋间发生变化, 则确定红外探测区域内无人。
发明的有益效果
有益效果
[0016] 实施本发明具有以下有益效果: 采用该红外探测器及红外探测方法, 可有效监 测到探测区域是否有静止的人, 误检或漏检率低, 且结构简单。
对附图的简要说明
附图说明
[0017] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0018] 图 1是本发明第一实施例的一种红外探测器的结构示意图;
[0019] 图 2是本发明第二实施例的一种红外探测器的结构示意图。
本发明的实施方式
[0020] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0021] 参见图 1, 其示出了依据本发明第一实施例的一种红外探测器 1的结构示意图,
该红外探测器 1包括第一红外传感器 11、 覆盖第一红外传感器 11的部分感测像素 的透镜 12、 用于驱动第一红外传感器 11和透镜 12—起运动的驱动机构 13、 以及 基于当前红外探测信号控制驱动机构 13幵启或保持关闭的控制机构 14。
[0022] 具体地, 红外传感器 11可以是热释电红外传感器, 其获取红外辐射并生成红外 探测信号, 第一红外传感器 11可在静止状态下生成上述当前红外探测信号。 透 镜 12以是球面透镜, 或其他任意适合的透镜, 该透镜 12仅覆盖第一红外传感器 1 1的部分感测像素, 例如可以是覆盖至少一个像素点的透镜 12, 也可以是仅覆盖 一个像素点的透镜 12, 第一红外传感器 11和透镜 12可均固定设于基板 10上, 运 动过程中, 三者一起运动。
[0023] 驱动机构 13可以是步进电机, 可驱动第一红外传感器 11和透镜 12—起运动, 该 运动包括平移、 旋转、 或平移与旋转的组合, 例如, 图 1示出了第一红外传感器 11连同透镜 12—起按箭头方向旋转。 驱动机构 13还可驱动第一红外传感器 11和 透镜 12—起多次反复运动, 例如, 反复平移; 或反复旋转, 沿顺吋针旋转一角 度 (例如 180°) 后, 再逆吋针旋转该角度, 以此类推。 该反复运动有利于提高探 测精度。
[0024] 控制机构 14与第一红外传感器 11电连接或通信连接, 接收红外传感器 11生成的 红外探测信号, 例如可获取第一红外传感器 11生成的当前红外探测信号。 控制 机构 14还与驱动机构 13电连接或通信连接, 可基于当前红外探测信号控制驱动 机构 13幵启或保持关闭。 例如, 若控制机构 14判断当前红外探测信号随吋间发 生变化, 则控制驱动机构 13保持关闭, 即第一红外传感器 11和透镜 12—起保持 静止; 若判断当前红外探测信号未随吋间发生变化, 则控制驱动机构 13幵启, 以驱动第一红外传感器 11和透镜 12—起运动。
[0025] 已经知晓, 在当前红外探测信号随吋间发生变化吋, 可以认为探测区域内有运 动的人出现; 若当前红外探测信号未随吋间发生变化, 则无法确定探测区域内 是无人还是人体处于静止状态。 由此, 可在当前红外探测信号未随吋间发生变 化吋驱动第一红外传感器 11和透镜 12—起运动以进行甄别。 第一红外传感器 11 只有部分感测像素被透镜 12覆盖, 因此第一红外传感器 11接收的红外辐射一部 分通过透镜 12, 一部分未通过透镜 12。 在两者的一起运动过程中, 通过透镜 12
的红外辐射随吋间来自不同的探测区域。 若探测区域内有静止的人体, 在运动 过程中, 人体的红外辐射通过透镜 12的部分随吋间变化, 而第一红外传感器 11 和透镜 12两者相对静止, 由此第一红外传感器 11获取的红外辐射随吋间变化, 从而可判断探测区域内有静止的人。 若探测区域无人, 则第一红外传感器 11获 取的红外辐射随吋间不变。 采用该红外探测器 1, 可有效监测到探测区域是否有 静止的人, 误检或漏检率低, 且结构简单。
[0026] 参见图 2, 其示出了依据本发明第二实施例的一种红外探测器 2的结构示意图, 与第一实施例的红外探测器 1相同的是, 该红外探测器 2也包括第一红外传感器 、 覆盖第一红外传感器 211的部分感测像素的第一透镜 221、 用于驱动第一红外 传感器 211和第一透镜 221—起运动的驱动机构 23、 以及基于当前红外探测信号 控制驱动机构 23幵启或保持关闭的控制机构 24。 与第一实施例的红外探测器不 同的是, 该红外探测器还进一步包括第二红外传感器 212、 全部覆盖第二红外传 感器 212的感测像素的第二透镜, 该第二红外传感器 212在探测过程中始终保持 静止, 并在静止状态下生成上述当前红外探测信号。 第一和第二红外传感器连 同各自的透镜一起分别固定设于基板 201和 202上。
[0027] 控制机构首先控制驱动机构保持关闭, 第一传感器和第二传感器均处于静止状 态, 并采用第二传感器接收的红外辐射来进行探测。 在此过程中第二传感器接 收红外探测区的红外辐射并生成上述当前红外探测信号。 若控制机构判断当前 红外探测信号随吋间发生变化, 则可认为探测区域内有运动的人出现; 若判断 当前红外探测信号未随吋间发生变化, 则启动驱动机构驱使第一红外传感器和 第一透镜一起运动, 采用第一传感器的接收的红外辐射来进行探测, 以甄别探 测区域是无人还是有静止的人。 在本实施例中, 一般情况下采用静止的第二传 感器进行探测, 第一传感器保持静止, 只有在无法确定探测区域是无人还是有 静止的人吋才启动第一传感器, 从而可减少第一传感器的运动吋间, 相应减少 了能耗以及噪声。
[0028] 本发明第三实施例涉及一种红外探测方法, 包括: 步骤 S100、 生成当前红外探 测信号; 以及步骤 S200、 基于当前红外探测信号确定是否启动第一红外传感器 和覆盖红外传感器的部分感测像素的透镜一起幵始运动, 若是, 则采用运动的
第一红外传感器进行红外探测。
[0029] 具体地, 步骤 S100中采用静止状态下的红外传感器生成当前红外探测信号。 例 如, 可采用静止状态下的第一红外传感器生成上述红外探测信号, 也可采用除 第一红外传感器以外的其他红外传感器在静止状态下生成上述红外探测信号。
[0030] 步骤 S200中, 若当前红外探测信号随吋间发生变化, 则保持第一红外传感器静 止; 若到当前红外探测信号未随吋间发生变化, 则启动第一红外传感器和透镜 一起幵始运动, 此吋采用运动的第一红外传感器进行探测。 若运动的第一红外 传感器生成的红外探测信号随吋间发生变化, 则确定红外探测区域内有静止的 人; 若该红外探测信号未随吋间发生变化, 则确定红外探测区域内无人。
[0031] 应当知晓, 本发明中的红外探测器与红外探测方法对应, 红外探测器可实施对 应的红外探测方法, 在红外探测方法的阐述中可部分或全部引用红外探测器的 技术细节, 因此此处不再赘述红外探测方法的其他技术细节了。
[0032] 可以理解的, 以上实施例仅表达了本发明的优选实施方式, 其描述较为具体和 详细, 但并不能因此而理解为对本发明专利范围的限制; 应当指出的是, 对于 本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 可以对上述技术 特点进行自由组合, 还可以做出若干变形和改进, 这些都属于本发明的保护范 围; 因此, 凡跟本发明权利要求范围所做的等同变换与修饰, 均应属于本发明 权利要求的涵盖范围。
Claims
权利要求书 一种红外探测器, 其特征在于, 包括第一红外传感器、 覆盖所述第一 红外传感器的部分感测像素的透镜、 用于驱动所述第一红外传感器和 所述透镜一起运动的驱动机构、 以及基于当前红外探测信号控制所述 驱动机构幵启或保持关闭的控制机构。
根据权利要求 1所述的红外探测器, 其特征在于, 所述第一红外传感 器在静止状态下生成所述当前红外探测信号。
根据权利要求 1所述的红外探测器, 其特征在于, 所述红外探测器还 包括邻近所述第一红外传感器的第二红外传感器, 所述第二红外传感 器在静止状态下生成所述当前红外探测信号。
根据权利要求 1所述的红外探测器, 其特征在于, 所述基于当前红外 探测信号控制所述驱动机构幵启或关闭包括: 若所述当前红外探测信 号随吋间发生变化, 则控制所述驱动机构保持关闭; 若所述当前红外 探测信号未随吋间发生变化, 则控制所述驱动机构幵启。
根据权利要求 1所述的红外探测器, 其特征在于, 所述运动包括平移 和 /或旋转。
根据权利要求 1所述的红外探测器, 其特征在于, 所述驱动机构包括 步进电机。
一种红外探测方法, 其特征在于, 包括:
生成当前红外探测信号; 以及
基于所述当前红外探测信号确定是否启动第一红外传感器和覆盖所述 红外传感器的部分感测像素的透镜一起幵始运动, 若是, 则采用运动 的所述第一红外传感器进行红外探测。
根据权利要求 7所述的红外探测方法, 其特征在于, 所述生成当前红 外探测信号包括: 采用静止状态下的红外传感器生成所述当前红外探 测信号。
根据权利要求 7所述的红外探测方法, 其特征在于, 所述基于所述当 前红外探测信号确定是否启动第一红外传感器和覆盖所述红外传感器
的部分感测像素的透镜一起幵始运动包括: 若所述当前红外探测信号 随吋间发生变化, 则保持第一红外传感器静止; 若所述当前红外探测 信号未随吋间发生变化, 则启动第一红外传感器和所述透镜一起幵始 运动。
[权利要求 10] 根据权利要求 7所述的红外探测方法, 其特征在于, 所述采用运动的 所述第一红外传感器进行红外探测包括: 若运动的所述第一红外传感 器生成的红外探测信号随吋间发生变化, 则确定红外探测区域内有静 止的人; 若该红外探测信号未随吋间发生变化, 则确定红外探测区域 内无人。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780004705.2A CN108513611B (zh) | 2017-07-04 | 2017-07-04 | 红外探测器及红外探测方法 |
PCT/CN2017/091708 WO2019006664A1 (zh) | 2017-07-04 | 2017-07-04 | 红外探测器及红外探测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/091708 WO2019006664A1 (zh) | 2017-07-04 | 2017-07-04 | 红外探测器及红外探测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019006664A1 true WO2019006664A1 (zh) | 2019-01-10 |
Family
ID=63375227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/091708 WO2019006664A1 (zh) | 2017-07-04 | 2017-07-04 | 红外探测器及红外探测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108513611B (zh) |
WO (1) | WO2019006664A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115633430A (zh) * | 2021-07-16 | 2023-01-20 | 海宁优为电器科技有限公司 | 静态人体感应装置、照明装置、消毒装置及其使用方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0886884A (ja) * | 1994-09-14 | 1996-04-02 | Matsushita Electric Ind Co Ltd | 熱物体検出装置 |
CN101285710A (zh) * | 2008-05-15 | 2008-10-15 | 深圳和而泰智能控制股份有限公司 | 一种热释电红外线人体检测装置 |
CN102155995A (zh) * | 2011-03-13 | 2011-08-17 | 刘瑜 | 具有全态人体感应能力的红外人体感应装置 |
CN102510601A (zh) * | 2011-10-11 | 2012-06-20 | 天津大学 | 一种探测静态人体的红外传感装置 |
CN104198049A (zh) * | 2014-07-29 | 2014-12-10 | 苏州佳世达电通有限公司 | 热电式感应装置 |
CN104266309A (zh) * | 2014-09-30 | 2015-01-07 | 章安福 | 一种控制空调自动关闭的方法和装置 |
CN104422524A (zh) * | 2013-09-04 | 2015-03-18 | 海尔集团公司 | 一种基于红外热源探测的人体探测装置 |
CN207123336U (zh) * | 2017-07-04 | 2018-03-20 | 深圳通感微电子有限公司 | 红外探测器 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO149679C (no) * | 1982-02-22 | 1984-05-30 | Nordal Per Erik | Anordning ved infraroed straalingskilde |
JP3159869B2 (ja) * | 1994-05-09 | 2001-04-23 | 松下電器産業株式会社 | 熱物体検出装置および測定法 |
CN202075849U (zh) * | 2011-03-15 | 2011-12-14 | 昆山市工业技术研究院有限责任公司 | 一种用于目标监测的无线终端节点及系统 |
CN102607709A (zh) * | 2011-03-16 | 2012-07-25 | 昆山市工业技术研究院有限责任公司 | 一种红外人体感应装置 |
CN102590884B (zh) * | 2012-02-15 | 2013-11-13 | 浙江大学 | 基于热释电红外传感器的人体定位及跟随系统及其方法 |
GB2507818B (en) * | 2012-11-13 | 2015-09-09 | Pyronix Ltd | Infrared detection device and masking section |
CN104280134B (zh) * | 2014-10-16 | 2018-06-22 | 武汉理工大学 | 基于热释电技术的静态人体位置估计装置和方法 |
CN104713652B (zh) * | 2015-04-04 | 2018-05-25 | 肖国选 | 热释电红外传感器 |
CN106568513A (zh) * | 2016-11-26 | 2017-04-19 | 李星 | 可检测静止人体的感应装置 |
-
2017
- 2017-07-04 CN CN201780004705.2A patent/CN108513611B/zh active Active
- 2017-07-04 WO PCT/CN2017/091708 patent/WO2019006664A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0886884A (ja) * | 1994-09-14 | 1996-04-02 | Matsushita Electric Ind Co Ltd | 熱物体検出装置 |
CN101285710A (zh) * | 2008-05-15 | 2008-10-15 | 深圳和而泰智能控制股份有限公司 | 一种热释电红外线人体检测装置 |
CN102155995A (zh) * | 2011-03-13 | 2011-08-17 | 刘瑜 | 具有全态人体感应能力的红外人体感应装置 |
CN102510601A (zh) * | 2011-10-11 | 2012-06-20 | 天津大学 | 一种探测静态人体的红外传感装置 |
CN104422524A (zh) * | 2013-09-04 | 2015-03-18 | 海尔集团公司 | 一种基于红外热源探测的人体探测装置 |
CN104198049A (zh) * | 2014-07-29 | 2014-12-10 | 苏州佳世达电通有限公司 | 热电式感应装置 |
CN104266309A (zh) * | 2014-09-30 | 2015-01-07 | 章安福 | 一种控制空调自动关闭的方法和装置 |
CN207123336U (zh) * | 2017-07-04 | 2018-03-20 | 深圳通感微电子有限公司 | 红外探测器 |
Also Published As
Publication number | Publication date |
---|---|
CN108513611B (zh) | 2020-08-07 |
CN108513611A (zh) | 2018-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102510601B (zh) | 一种探测静态人体的红外传感装置 | |
US10982481B2 (en) | Door position sensor and system for a vehicle | |
US9818246B2 (en) | System and method for gesture-based control of a vehicle door | |
US9777528B2 (en) | Object detection and method for vehicle door assist system | |
US7798958B2 (en) | Medical device control system | |
US20170030128A1 (en) | Magnetic object detection for vehicle door assist system | |
KR101696593B1 (ko) | 입력장치, 이를 포함하는 차량 및 그 제어방법 | |
JP3793588B2 (ja) | 空調装置 | |
JP2019532432A5 (zh) | ||
CN106102582B (zh) | 移动式x射线摄影装置 | |
US20170030134A1 (en) | Vehicle door assist system based on location and conditions | |
WO2019006664A1 (zh) | 红外探测器及红外探测方法 | |
JPH09185412A (ja) | 自律移動装置 | |
CN105678990A (zh) | 一种遥控器及其检测、控制方法 | |
WO2023024499A1 (zh) | 机器人的控制方法、控制装置、机器人和可读存储介质 | |
TWI502434B (zh) | 觸控模組及其觸控定位方法 | |
JP2004332572A (ja) | 扇風機 | |
JP2018123653A (ja) | 自動ドアシステムおよび自動ドアシステムの制御方法 | |
JP2006177848A (ja) | 温度分布検出装置 | |
JP6391256B2 (ja) | 車両の電動ドア開閉制御装置 | |
JP2016078185A (ja) | ロボット | |
JPH0744144A (ja) | ディスプレイ省電力装置 | |
KR20160093496A (ko) | 원형 핸들을 구비한 전자 기기 제어 장치 및 전자 기기 제어 방법 | |
CN205541408U (zh) | 一种遥控器 | |
JP2021504671A5 (zh) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17916975 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17916975 Country of ref document: EP Kind code of ref document: A1 |