WO2019006579A1 - 菲涅尔聚光装置和聚光式太阳能系统 - Google Patents

菲涅尔聚光装置和聚光式太阳能系统 Download PDF

Info

Publication number
WO2019006579A1
WO2019006579A1 PCT/CN2017/091414 CN2017091414W WO2019006579A1 WO 2019006579 A1 WO2019006579 A1 WO 2019006579A1 CN 2017091414 W CN2017091414 W CN 2017091414W WO 2019006579 A1 WO2019006579 A1 WO 2019006579A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresnel lens
layer
fresnel
concentrating
light
Prior art date
Application number
PCT/CN2017/091414
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to CA3068080A priority Critical patent/CA3068080A1/en
Priority to PCT/CN2017/091414 priority patent/WO2019006579A1/zh
Priority to CN201780091632.5A priority patent/CN110741481A/zh
Priority to KR1020207002818A priority patent/KR20200031116A/ko
Priority to MYPI2019007567A priority patent/MY194521A/en
Priority to US16/624,931 priority patent/US20210336581A1/en
Priority to BR112019027997-0A priority patent/BR112019027997A2/pt
Priority to JP2019571545A priority patent/JP6916315B2/ja
Priority to EP17916539.4A priority patent/EP3648179A4/en
Priority to AU2017422421A priority patent/AU2017422421B2/en
Publication of WO2019006579A1 publication Critical patent/WO2019006579A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • H02S40/12Means for removing snow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • H02S40/425Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to the field of optical component technology and clean energy technology, and in particular to a Fresnel concentrating device containing a Fresnel lens and its use in a concentrating solar energy system.
  • the concentrating device of the existing solar system also causes a problem in height because the height of the concentrating device generally increases as its concentrating ratio increases.
  • a Fresnel concentrating device includes: first and second Fresnel lens layers, each lens layer including at least one concentrating Fresnel lens; and a continuous cylindrical shape a light guiding layer having a straight cylindrical shape, the first and second Fresnel lens layers are respectively disposed at two ends of the straight cylindrical shape, and the straight cylindrical light guiding layer is used for guiding the light from the first Fresnel lens layer downward To the second Fresnel lens layer.
  • a concentrating solar energy system comprising a Fresnel concentrating device and at least one light energy utilizing device according to the present invention, the light receiving surface being disposed behind the Fresnel concentrating device The light path.
  • Fresnel concentrating device of the present invention two Fresnel lens layers are used to respectively converge light, and a straight tubular light guiding layer is used in the middle to assist in guiding light from the upper layer to the lower layer, so that the concentrating device can not only It has a wide range of incident angles and can achieve a large concentration ratio at a lower height, avoiding the dependence on the Japanese system.
  • FIG. 1 is a schematic view of a Fresnel concentrating device of Embodiment 1;
  • FIG. 2 is a schematic view of a Fresnel concentrating device of Embodiment 2;
  • FIG. 3 is a schematic view of a concentrating solar energy system of Embodiment 3; [0012] FIG.
  • FIG. 4 is a schematic view of a concentrating solar energy system of Embodiment 4.
  • FIG. Fig. 1 is a schematic view showing the structure of the apparatus after longitudinal decomposition, comprising a first Fresnel lens layer 110, a straight cylindrical light guiding layer 120 and a second Fresnel lens layer 130.
  • the Fresnel lens layer in the present invention uses a Fresnel lens as an optical element, and each lens layer includes at least one concentrating Fresnel lens.
  • the Fresnel lens is a thin lens, and this type of lens has the advantages of being thin and easy to mass-produce.
  • a "concentrating" (or "astigmatic") Fresnel lens refers to functionally concentrating light (or diffusing out of the optical center) toward the optical center of the lens.
  • the Fresnel lens has a tooth surface that is usually derived from a convex lens surface (or a concave lens surface).
  • the so-called "linear" Fresnel lens means that the focus center of the lens is a line instead of being concentrated at one point.
  • the tooth flanks of a linear Fresnel lens may originate from a concave (or convex) cylindrical face, or a concave (or convex) polynomial cylinder.
  • the Fresnel lens may be a single-sided Fresnel lens having a flat surface on one side of the tooth surface, or a double-sided Fresnel lens having a tooth surface on both sides.
  • Each tooth surface of each Fresnel lens may be a simple lens surface containing only one Fresnel unit, or a composite lens surface composed of a plurality of Fresnel units, thereby forming a composite Fresnel lens.
  • the first and second Fresnel lens layers in this embodiment are respectively formed by a single condensing type simple Fresnel lens 111, 131.
  • the first and second Fresnel lens layers may also adopt a more complicated structure, for example, may include a plurality of Fresnel lenses, or adopt a double-sided Fresnel lens, or use a composite Fresnel lens.
  • a multifocal Fresnel lens can be employed in at least one of the lens layers.
  • the so-called multifocal Fresnel lens is divided into different regions according to the distance from the central optical axis, wherein the region farther from the central optical axis has a shorter focal length and a region closer to the central optical axis, Longer focal length.
  • the so-called longer focal length includes the case where the focal length is infinite, in which case the corresponding region is, for example, a hollowed out region, or is formed of a planar transparent material.
  • At least one concentrating Fresnel lens of the first or second Fresnel lens layer may adopt a linear concentrating Fresnel lens, wherein each linear lens
  • the focus centerline is substantially perpendicular to the optical axis (or central axis of the entire concentrating device, ie, the direction in which the sunlight is incident vertically).
  • the focusing centerlines of the different layers of the linear concentrating Fresnel lens are perpendicular to each other, thereby realizing a two-dimensional (ie, having a single central optical axis and focus) with two linear Fresnel lens layers. Fresnel lens.
  • This structure will help achieve a uniform light intensity distribution in the focal plane, or a complex optical design through a combination of easy-to-machine lenses.
  • the shape of the straight tubular light guiding layer 120 is a straight cylinder shape, and the first and second Fresnel lens layers are respectively disposed at two ends of the straight cylindrical shape, and the straight cylindrical light guiding layer is used for coming from the first Fresnel The light from the lens layer is directed downward to the second Fresnel lens layer.
  • the wall of the straight cylindrical light guiding layer is perpendicular to the two lens layers (i.e., substantially coincident with the optical axis direction of the entire concentrating device), which may be transparent, or may be provided with a mirror surface on at least a portion of the inner wall.
  • Various optical designs can be used to realize the light guiding function of the straight tubular light guiding layer, for example: the mirror surface of the inner wall can be used to guide light; or the wall of the straight tubular light guiding layer and the first and second Philippine
  • the Neel lens layer together encloses a closed first space, and the first space is filled with a high-pressure gas or an optical gas to assist in deflecting the incident light downward.
  • the so-called optical gas refers to a refractive index greater than 1 at a standard atmospheric pressure. Or gas; or other optical elements that assist in the deflection of the light are disposed in the inner space of the straight light guiding layer.
  • the inner wall of the cylinder is a mirror surface structure, and the closed first space is filled with an optical gas 121 , and the incident light LL is concentrated by the convergence of the top lens layer and the deflection of the straight tubular light guiding layer. Guide the lens layer to the bottom.
  • the cross section of the straight tubular light guiding layer is square, and in other embodiments, different cross sectional shapes may also be employed.
  • the cross-sectional shape of the straight cylindrical shape may preferably be various regular and easy-to-manufacture shapes, for example, may be selected from the group consisting of a quadrangle, a hexagon, a circle, and the like.
  • the Fresnel concentrating device of the embodiment can achieve a higher concentrating ratio and a relatively low height, and can be combined with any light energy or electromagnetic energy receiving device to form concentrating light energy or electromagnetic energy receiving.
  • the system for example, is used in a concentrating solar system.
  • FIG. 2 is a schematic view showing the structure of the apparatus after being longitudinally decomposed, including a first Fresnel lens layer 210, a straight tubular light guiding layer 220, a second Fresnel lens layer 230 and a tapered light guiding layer 240.
  • the first Fresnel lens layer 210 preferably employs a multi-focal Fresnel lens 211 whose surface is divided into two concentric regions of similar shape, wherein the region is further away from the central optical axis. (peripheral area A01), having a shorter focal length, a region closer to the central optical axis (center area A02), having a longer focal length;
  • the second Fresnel lens layer 230 preferably employs a multi-focal Fresnel lens 231 having a Fresnel lens surface only in the peripheral region B01, and the central region B02 is hollowed out; [0030] 3.
  • the straight tubular light guiding layer 220 further includes an astigmatism tube 222, the wall of which is formed by a linear astigmatic Fresnel lens, the length extending direction of the astigmatism tube is consistent with the straight tubular light guiding layer, and is set In the inner space of the straight tubular light guiding layer, the focusing center line of each linear astigmatic Fresnel lens is perpendicular to the length extension direction of the astigmatism cylinder.
  • the astigmatism tube 222 can scatter the incident light toward the lower end of the straight tube to enhance the ability of the straight light guiding layer to shift the incident light from the optical axis, which is beneficial for the subsequent optical component to finally guide the light LL to the light energy utilization.
  • the cross-sectional shape of the astigmatism cylinder may be the same as or different from the cross-sectional shape of the cylinder wall of the straight cylindrical light guiding layer surrounding the outside thereof, and a square shape is employed in this embodiment.
  • the tapered light guiding layer 240 is disposed under the second Fresnel lens layer 230, and includes at least one reflective conical light guiding tube 241, the inner wall of which is wholly or at least partially mirrored, and the top opening is compared The large bottom opening is smaller, and the light concentrated by the second Fresnel lens layer is incident from the top of the tapered light guide and guided to the bottom.
  • the cross-sectional shape of the tapered light guide tube may be a quadrangle, a hexagon, a circle, or the like.
  • the bottom of the tapered light guide tube 241 may be closed so as to be provided with a light energy utilization device thereon, thereby forming a concentrating solar energy system, or a light energy utilization device may be used to close the tapered light guide tube. bottom.
  • a light energy utilization device may be used to close the tapered light guide tube. bottom.
  • a single-sided light-receiving light energy utilization device such as a single-sided light-receiving photovoltaic panel 250, may be disposed at the bottom of the tapered light guide tube, and its light-receiving surface is oriented. The top of the tapered light guide.
  • photovoltaic panel as used in the present invention generally refers to various types of photoelectric conversion devices, such as photovoltaic panels made of various materials, photovoltaic thin films, quantum dot photovoltaic materials, and the like.
  • FIG. 3 is a schematic structural view of the system after assembly, including a first Fresnel lens layer 310, a straight tubular light guiding layer 320, a second Fresnel lens layer 330, a tapered light guiding layer 340, and a light energy utilization device 350. .
  • the multi-focal Fresnel lens 311 employed in the first Fresnel lens layer 310 has different shapes of the two regions divided by the surface, the central region C02 is circular, and the peripheral region C01 is square. This reflects the dependence The flexibility of the structure according to the invention in optical path design and shape design.
  • the light energy utilization device 350 in the present embodiment is of a composite type, that is, includes a thermoelectric conversion device 352 in addition to the photovoltaic panel 351.
  • the thermoelectric conversion device can be disposed on the heat conduction path of the photovoltaic panel to dissipate heat to further convert the thermal energy into electrical energy during the heat dissipation of the photovoltaic panel.
  • the thermoelectric conversion device can employ, for example, a semiconductor device having a thermoelectric effect.
  • the photovoltaic panel 351 and the thermoelectric conversion device 352 are separately disposed, wherein the photovoltaic panel 351 is disposed in the tapered light guide tube, and is fixed on the tapered light guide tube by the heat conduction support member 342.
  • the bottom of the tapered light guide can be closed by the mirror surface 343.
  • the thermoelectric conversion device 352 is thermally conductively attached to the back side of the bottom of the tapered light guide.
  • the photovoltaic panel 351 may preferably employ a double-sided light-receiving photovoltaic panel to improve light energy utilization.
  • thermoelectric conversion device may also be thermally conductively attached to the single-sided light receiving device.
  • the back side of the photovoltaic panel allows the composite light energy utilization device to be formed as a single unit.
  • FIG. 4 Another embodiment of a concentrating solar energy system in accordance with the present invention can be seen in FIG. 4 is a schematic structural view of the system after being longitudinally decomposed, including a first Fresnel lens layer 410, a straight tubular light guiding layer 420, a second Fresnel lens layer 430, a tapered light guiding layer 440, and light energy.
  • the device 450 and the bottom basin 460 are utilized.
  • This embodiment illustrates an integrated implementation of the system in accordance with the present invention to facilitate fabrication and lower cost.
  • the Fresnel concentrating device according to the present invention may be separately integrated after being separately fabricated; or each layer may be composed of a plurality of units, each layer being integrated and then integrally combined; or a partial layer An integrated multi-cell structure is used, and part of the layers are formed as a single component.
  • the present embodiment shows a mixed case in which:
  • the first Fresnel lens layer 410 includes a plurality of concentrating Fresnel lenses 411 arranged in an array, each lens 411 may be a simple Fresnel lens, or a composite Fresnel lens, the entire lens
  • the layer 410 may be formed by a combination of a plurality of cells, or may be a whole, and each lens 411 is divided by a pattern of its tooth faces;
  • the second Fresnel lens layer 430 includes a plurality of concentrating Fresnel lenses 431 arranged in an array, each of which is a multi-focus Fresnel lens hollowed out in the central region;
  • the straight tubular light guiding layer 420 may be formed by a plurality of straight cylindrical light guide tubes (not shown) arranged in an array, each of the straight cylindrical light guiding tubes corresponding to a pair of lenses 411 and 431, or may be a whole Large light guide straight;
  • the tapered light guiding layer 440 includes a plurality of tapered light guiding tubes 441 arranged in an array, and accordingly, the light energy utilizing device 450 includes a plurality of photovoltaic panels 451 disposed at the bottom of the tapered light guiding tubes 441, respectively. .
  • a bottom basin 460 is preferably included, which is disposed under the tapered light guiding layer 440, and the tapered light guide.
  • the layers together form a closed third space, and the third space can accommodate working fluids, which are thermally connected to the photovoltaic panel 451.
  • the working substance may preferably be a substance having a large heat capacity, which may be a solid or a fluid, and the heat absorbed by the working medium may be supplied to the outside for further heat conduction or circulation through the working medium.
  • the fluid working fluid used may be selected from the group consisting of: water, oil, refrigerant, compressed gas, and the like.
  • the inlet and outlet for the inflow and outflow of the working fluid may be further provided on the bottom basin.
  • the circulating system of the liquid working fluid can be either open or closed, depending on the type of working medium and the desired form of thermal energy utilization.
  • a thermoelectric conversion device (not shown) may be further disposed on the heat conduction path between the photoelectric conversion device and the working medium.
  • the thermoelectric conversion device may be disposed on the back surface of the bottom of the tapered light guide tube 441 and immersed in In the working medium.
  • the present embodiment further includes a piezoelectric vibrator 470 including a piezoelectric vibrating piece 471 and a driving circuit thereof (not shown).
  • the piezoelectric vibrating piece 471 is mechanically coupled to the first Fresnel lens layer 410 (e.g., to the outside of the straight tubular light guiding layer 420) to drive it to vibrate.
  • the vibrator can be used, for example, for automatic cleaning of the light receiving surface of the concentrating device, or for snow removal, deicing, and the like.
  • the piezoelectric vibrating piece may be fixed at other positions, which is not limited in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种菲涅尔聚光装置和聚光式太阳能系统,其中聚光装置包括第一和第二菲涅尔透镜层(110,130),每个透镜层包括至少一个聚光型菲涅尔透镜(111,131);以及一直筒形导光层(120),第一和第二菲涅尔透镜层(110,130)分别设置于其两端,直筒形导光层(120)用于将来自第一菲涅尔透镜层(110)的光线(LL)向下引导至第二菲涅尔透镜层(130)。通过采用两个菲涅尔透镜层(110,130)分别进行光线的汇聚,中间使用直筒形导光层(120)协助将光线从上层向下层引导,使得聚光装置不仅能够具有宽广的入射角度适应范围,还能够在较低的高度下获得较大的聚光比,避免了对跟日系统的依赖。

Description

发明名称:菲涅尔聚光装置和聚光式太阳能系统 技术领域
[0001] 本发明涉及光学元件技术领域和清洁能源技术领域, 具体涉及含有菲涅尔透镜 的菲涅尔聚光装置及其在聚光式太阳能系统中的应用。
背景技术
[0002] 随着对环境保护的日益重视, 太阳能系统得到了越来越广泛的应用。 其中聚光 式太阳能系统由于能提高太阳能的利用效率, 因而受到越来越多的重视。
[0003] 现有的聚光式太阳能系统中常采用菲涅尔透镜作为聚光光学元件, 然而使用菲 涅尔透镜直接聚焦到光能利用装置上的光学设计, 使得聚光装置对于太阳光的 入射角的适应范围较小。 这使得现有太阳能系统的聚光装置受到两方面的限制 : 一方面, 其需要与跟日系统联合使用才能达到应有的效果, 另一方面, 其聚 光比受到限制。
[0004] 此外现有太阳能系统的聚光装置还会产生高度方面的问题, 因为聚光装置的高 度通常随着其聚光比的增加而增加。
[0005] 因此, 有必要研究具有更好的入射角适应能力, 以及能增加聚光比或降低系统 高度的菲涅尔聚光装置。
技术问题
问题的解决方案
技术解决方案
[0006] 依据本发明的一方面提供一种菲涅尔聚光装置, 包括第一和第二菲涅尔透镜层 , 每个透镜层包括至少一个聚光型菲涅尔透镜; 以及一直筒形导光层, 其外形 为直筒形, 第一和第二菲涅尔透镜层分别设置于直筒形的两端, 直筒形导光层 用于将来自第一菲涅尔透镜层的光线向下引导至第二菲涅尔透镜层。
[0007] 依据本发明的另一方面提供一种聚光式太阳能系统, 包括依据本发明的菲涅尔 聚光装置和至少一个光能利用装置, 其受光面设置在菲涅尔聚光装置之后的光 路上。 发明的有益效果
有益效果
[0008] 依据本发明的菲涅尔聚光装置, 采用两个菲涅尔透镜层分别进行光线的汇聚, 中间使用直筒形导光层协助将光线从上层向下层引导, 使得聚光装置不仅能够 具有宽广的入射角度适应范围, 还能够在较低的高度下获得较大的聚光比, 避 免了对跟日系统的依赖。
[0009] 以下结合附图, 对依据本发明的具体示例进行详细说明。 本文中所使用的表示 位置的词语, 例如"上"、 "下"、 "顶部"、 "底部 "等, 仅表示相对的位置关系, 不 具有绝对性的含义。 本文中所使用的编号或序号, 例如"第一"、 "第二 "等, 仅起 到标识性作用, 不具有任何限制性含义。
对附图的简要说明
附图说明
[0010] 图 1是实施例 1的菲涅尔聚光装置的示意图;
[0011] 图 2是实施例 2的菲涅尔聚光装置的示意图;
[0012] 图 3是实施例 3的聚光式太阳能系统的示意图;
[0013] 图 4是实施例 4的聚光式太阳能系统的示意图。
本发明的实施方式
[0014] 具体实施方式
[0015] 实施例 1
[0016] 依据本发明的菲涅尔聚光装置的一种实施方式可参考图 1。 图 1示出了该装置沿 纵向分解后的结构示意图, 包括第一菲涅尔透镜层 110, 直筒形导光层 120和第 二菲涅尔透镜层 130。
[0017] 本发明中的菲涅尔透镜层使用菲涅尔 (Fresnel) 透镜作为光学元件, 每个透镜 层包括至少一个聚光型菲涅尔透镜。 菲涅尔透镜是一种薄型透镜, 这种类型的 透镜具有轻薄且便于批量制作的优点。 本文中所称"聚光型" (或"散光型") 菲涅 尔透镜是指在功能上将光线向透镜的光学中心汇聚 (或从光学中心扩散出去) 的菲涅尔透镜, 其齿面通常源自凸透镜面 (或凹透镜面) 。 所称"线型"菲涅尔透 镜, 包括线型散光型菲涅尔透镜和线型聚光型菲涅尔透镜, 是指透镜的聚焦中 心为一条线, 而不是集中在一个点上。 举例而言, 线型菲涅尔透镜的齿面可源 自凹形 (或凸形) 圆柱面、 或凹形 (或凸形) 多项式柱面。 菲涅尔透镜可以是 一面为齿面一面为平面的单面菲涅尔透镜, 也可以是两面均为齿面的双面菲涅 尔透镜。 每个菲涅尔透镜的每个齿面既可以是仅包含一个菲涅尔单元的简单透 镜面, 也可以是由多个菲涅尔单元组成的复合透镜面, 从而形成为复合菲涅尔 透镜。
[0018] 作为一种简单的情形, 本实施例中的第一和第二菲涅尔透镜层分别由单个聚光 型简单菲涅尔透镜 111, 131形成。 在其他实施方式中, 第一和第二菲涅尔透镜 层也可以采用更为复杂的结构, 例如可包括多个菲涅尔透镜, 或采用双面菲涅 尔透镜, 或采用复合菲涅尔透镜。 优选地, 可在至少一个透镜层中采用多焦距 菲涅尔透镜。 所称多焦距菲涅尔透镜按照与其中心光轴的距离被分为不同的区 域, 其中与中心光轴距离更远的区域, 具有更短的焦距, 与中心光轴距离更近 的区域, 具有更长的焦距。 所称更长的焦距包括焦距为无穷大的情形, 在这种 情况下, 相应的区域例如为镂空区域, 或者由平面透明材料形成。
[0019] 作为一种可选的实施方式, 第一或第二菲涅尔透镜层的至少一个聚光型菲涅尔 透镜可采用线型聚光型菲涅尔透镜, 其中各个线型透镜的聚焦中心线基本垂直 于整个聚光装置的光轴 (或中心轴, 即太阳光竖直入射的方向) 。 优选地, 不 同层的线型聚光型菲涅尔透镜的聚焦中心线相互垂直, 从而用两个线型的菲涅 尔透镜层实现一个二维的 (即具有单一中心光轴和焦点的) 菲涅尔透镜。 这种 结构将有助于在焦平面上获得均匀的光强分布, 或通过易于加工的透镜组合来 实现复杂的光学设计。
[0020] 直筒形导光层 120的外形为直筒形, 第一和第二菲涅尔透镜层分别设置于该直 筒形的两端, 该直筒形导光层用于将来自第一菲涅尔透镜层的光线向下引导至 第二菲涅尔透镜层。 直筒形导光层的筒壁垂直于两个透镜层 (即与整个聚光装 置的光轴方向基本一致) , 其可以是透明的, 也可以在至少部分内壁设置反射 镜面。 [0021] 可采用各种光学设计来实现直筒形导光层的导光功能, 例如: 可利用内壁的反 射镜面来导光; 或者, 直筒形导光层的筒壁与第一和第二菲涅尔透镜层一起围 成封闭的第一空间, 第一空间中填充有高压气体或光学气体, 从而协助将入射 光线向下偏转, 所称光学气体是指在一个标准大气压下, 折射率大于 1的气体; 或者, 在直筒形导光层的内部空间中设置其他协助光线偏转的光学元件。
[0022] 本实施例中, 采用筒体内壁为反射镜面的结构, 并在封闭的第一空间中填充有 光学气体 121, 入射光线 LL通过顶部透镜层的汇聚以及直筒形导光层的偏转被引 导到底部的透镜层。
[0023] 本实施例中, 直筒形导光层的横截面为方形, 在其他实施方式中, 也可以采用 不同的横截面形状。 为了便于多个聚光装置的紧密排列或集成, 直筒形的横截 面形状可优选各种规则且便于制作的形状, 例如可选自如下集合: 四边形、 六 边形、 圆形等。
[0024] 本实施例菲涅尔聚光装置能够实现较高的聚光比而高度相对较低, 其可与任意 光能或电磁能接收器件结合, 形成为聚光式光能或电磁能量接收系统, 例如, 应用于聚光式太阳能系统中。
[0025] 实施例 2
[0026] 依据本发明的菲涅尔聚光装置的另一种实施方式可参考图 2。 图 2示出了该装置 沿纵向分解后的结构示意图, 包括第一菲涅尔透镜层 210, 直筒形导光层 220, 第二菲涅尔透镜层 230和锥形导光层 240。
[0027] 本实施例中的两个透镜层与直筒形导光层的基本结构关系与实施例 1类似, 主 要区别在于:
[0028] 1.第一菲涅尔透镜层 210优选地采用一多焦距菲涅尔透镜 211, 其表面被分为两 个形状相似的同心的区域, 其中, 与中心光轴距离更远的区域 (周边区域 A01) , 具有更短的焦距, 与中心光轴距离更近的区域 (中心区域 A02) , 具有更长的 焦距;
[0029] 2.
第二菲涅尔透镜层 230优选地采用一多焦距菲涅尔透镜 231, 其仅在周边区域 B01 具有菲涅尔透镜面, 而中心区域 B02被镂空; [0030] 3.直筒形导光层 220中还包括有散光筒 222, 其筒壁由线型散光型菲涅尔透镜形 成, 该散光筒的长度延伸方向与直筒形导光层一致, 并设置于直筒形导光层的 内部空间中, 每个线型散光型菲涅尔透镜的聚焦中心线垂直于散光筒的长度延 伸方向。
[0031] 散光筒 222能够将入射光向直筒的下端散射, 以增强直筒形导光层对偏离光轴 的入射光线的偏移能力, 有利于随后的光学元件将光线 LL最终引导到光能利用 装置。 散光筒的横截面形状可以与包围在其外部的直筒形导光层的筒壁的横截 面形状相同或不同, 本实施例中均采用方形。
[0032] 锥形导光层 240设置于第二菲涅尔透镜层 230下方, 其包括至少一个反射式的锥 形导光筒 241, 其内壁全部或至少部分为反射镜面, 且顶部幵口较大而底部幵口 较小, 经由第二菲涅尔透镜层汇聚的光线从锥形导光筒的顶部射入, 并被引导 至底部。 锥形导光筒的横截面形状可以是四边形、 六边形、 圆形等。
[0033] 锥形导光筒 241的底部可以被封闭以便于在其上设置光能利用装置, 从而形成 为聚光式太阳能系统, 或者也可以用光能利用装置来封闭锥形导光筒的底部。 锥形导光筒的底部被封闭后, 其筒壁与第二菲涅尔透镜层一起围成封闭的第二 空间, 其中可进一步填充高压气体或光学气体, 以增大聚光比。
[0034] 作为实现聚光式太阳能系统的一种简单的情形, 可以将单面受光的光能利用装 置, 例如单面受光的光伏板 250设置在锥形导光筒的底部, 其受光面朝向锥形导 光筒的顶部。 本发明中所称 "光伏板"泛指各种类型的光电转换器件, 例如各种材 料制成的光伏板、 光伏薄膜、 量子点光伏材料等。
[0035] 实施例 3
[0036] 依据本发明的聚光式太阳能系统的一种实施方式可参考图 3。 图 3示出了该系统 组装后的结构示意图, 包括第一菲涅尔透镜层 310, 直筒形导光层 320, 第二菲 涅尔透镜层 330, 锥形导光层 340和光能利用装置 350。
[0037] 本实施例中的两个透镜层与两个导光层的基本结构关系与实施例 2类似, 主要 区别在于:
[0038] 第一菲涅尔透镜层 310所采用的多焦距菲涅尔透镜 311, 其表面所划分的两个区 域的形状是不同的, 中心区域 C02为圆形, 而周边区域 C01为方形。 这体现了依 据本发明的结构在光路设计和外形设计上的灵活性。
[0039] 此外, 本实施例中的光能利用装置 350是复合型的, 即, 除了光伏板 351以外还 包括热电转换器件 352。 热电转换器件可设置在光伏板向外散热的热传导路径上 , 以在光伏板散热的过程中, 进一步将热能转换为电能。 热电转换器件例如可 采用具有热电效应的半导体器件。
[0040] 本实施例中, 光伏板 351和热电转换器件 352被分离地设置, 其中, 光伏板 351 设置于锥形导光筒中, 通过导热的支撑件 342固定在锥形导光筒上, 这种情况下 , 锥形导光筒的底部可由反射镜面 343封闭。 热电转换器件 352则导热地贴合在 锥形导光筒的底部的背侧。 在这种情况下, 光伏板 351可优选地采用双面受光的 光伏板, 以提高光能利用率。
[0041] 在其他实施方式中, 例如, 当如图 2所示将单面受光的光伏板 250设置在锥形导 光筒的底部吋, 热电转换器件也可以导热地贴合在单面受光的光伏板的背侧, 使得复合型的光能利用装置形成为一个整体。
[0042] 实施例 4
[0043] 依据本发明的聚光式太阳能系统的另一种实施方式可参考图 4。 图 4示出了该系 统沿纵向分解后的结构示意图, 包括第一菲涅尔透镜层 410, 直筒形导光层 420 , 第二菲涅尔透镜层 430, 锥形导光层 440, 光能利用装置 450和底盆 460。
[0044] 本实施例示出了依据本发明的系统的一种集成化的实现方式, 以便于制作和降 低成本。 依据本发明的菲涅尔聚光装置可以每个单独制作后再多个集成在一起 ; 也可以每一层均由多个单元组成, 每一层分别集成后再整体组合在一起; 或 者部分层采用集成化的多单元结构, 而部分层采用整体形成为单个元件的结构
[0045] 作为示例, 本实施例显示了一种混合的情形, 其中:
[0046] 第一菲涅尔透镜层 410包括多个排列成阵列的聚光型菲涅尔透镜 411, 每个透镜 411可以是简单菲涅尔透镜, 也可以是复合菲涅尔透镜, 整个透镜层 410可以由 多个单元组合形成, 也可以是一个整体, 各个透镜 411通过其齿面的图案进行划 分;
[0047] 第二菲涅尔透镜层 430包括多个排列成阵列的聚光型菲涅尔透镜 431, 每个均为 中心区域镂空的多焦距菲涅尔透镜;
[0048] 直筒形导光层 420可以由多个排列成阵列的直筒形导光筒 (未图示) 形成, 每 个直筒形导光筒对应于一对透镜 411和 431, 也可以整体是一个大的导光直筒;
[0049] 锥形导光层 440包括多个排列成阵列的锥形导光筒 441, 因此相应地, 光能利用 装置 450包括多个光伏板 451, 分别设置在锥形导光筒 441的底部。
[0050] 为提高光能利用装置的散热速度, 同吋对发散的热量进行利用, 本实施例中还 优选地包括一底盆 460, 设置于锥形导光层 440下方, 与锥形导光层一起围成封 闭的第三空间, 第三空间中可容纳有工质, 这些工质与光伏板 451导热连接。 工 质可优选为具有较大热容量的物质, 可以是固体或流体, 工质所吸收的热量可 通过进一步的热传导或者通过工质的循环提供给外部使用。 所使用的流体工质 可选自: 水、 油、 制冷剂、 压缩气体等。 在这种情况下, 底盆上可进一步设置 供工质流入和流出的入口和出口。 液体工质的循环系统既可以是幵放式的也可 以是封闭式的, 可根据工质的类型和所希望的热能利用形式来确定。 优选地, 在光电转换器件与工质之间的热传导路径上还可进一步设置热电转换器件 (未 图示) , 例如, 可将热电转换器件设置在锥形导光筒 441底部的背面并浸泡在工 质中。
[0051] 作为一种优选的实施方式, 本实施例中还包括一压电振动器 470, 其包括一压 电振动片 471及其驱动电路 (未在图中示出) 。 压电振动片 471与第一菲涅尔透 镜层 410机械连接 (例如固定在直筒形导光层 420的外侧) 以带动其进行振动。 振动器例如可用于聚光装置的受光面的自动清洗, 或者除雪、 除冰等。 在其他 实施方式中, 压电振动片也可以固定在其他位置, 本发明对此并不限制。
[0052]
[0053] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。

Claims

权利要求书
[权利要求 1] 一种菲涅尔聚光装置, 其特征在于, 包括
第一菲涅尔透镜层,
第二菲涅尔透镜层,
每个透镜层包括至少一个聚光型菲涅尔透镜; 以及 一直筒形导光层, 其外形为直筒形, 第一和第二菲涅尔透镜层分别设 置于所述直筒形的两端, 所述直筒形导光层用于将来自第一菲涅尔透 镜层的光线向下引导至第二菲涅尔透镜层。
[权利要求 2] 如权利要求 1所述的装置, 其特征在于,
所述直筒形导光层的内壁为反射镜面; 或者,
所述直筒形导光层的筒壁与第一和第二菲涅尔透镜层一起围成封闭的 第一空间, 第一空间中填充有高压气体或光学气体; 或者, 所述直筒形导光层还包括散光筒, 其筒壁由线型散光型菲涅尔透镜形 成, 所述散光筒的长度延伸方向与所述直筒形导光层一致, 并设置于 所述直筒形导光层的内部空间中, 所述线型散光型菲涅尔透镜的聚焦 中心线垂直于所述长度延伸方向。
[权利要求 3] 如权利要求 1或 2所述的装置, 其特征在于, 第一或第二菲涅尔透镜层 的至少一个聚光型菲涅尔透镜为多焦距菲涅尔透镜, 或双面菲涅尔透 镜, 或复合菲涅尔透镜,
所述多焦距菲涅尔透镜按照与其中心光轴的距离被分为不同的区域, 其中与中心光轴距离更远的区域, 具有更短的焦距, 与中心光轴距离 更近的区域, 具有更长的焦距, 所述更长的焦距包括焦距为无穷大的 情形。
[权利要求 4] 如权利要求 1至 3任意一项所述的装置, 其特征在于, 第一或第二菲涅 尔透镜层的至少一个聚光型菲涅尔透镜为线型聚光型菲涅尔透镜, 不 同层的线型聚光型菲涅尔透镜的聚焦中心线相互垂直。
[权利要求 5] 如权利要求 1至 4任意一项所述的装置, 其特征在于, 具有如下特征中 的至少一个: 第一菲涅尔透镜层包括多个排列成阵列的聚光型菲涅尔透镜; 第二菲涅尔透镜层包括多个排列成阵列的聚光型菲涅尔透镜; 所述直筒形导光层包括多个排列成阵列的直筒形导光筒, 所述直筒形 导光筒的横截面形状选自如下集合: 四边形、 六边形、 圆形。
如权利要求 1至 5任意一项所述的装置, 其特征在于, 还包括
一锥形导光层, 设置于第二菲涅尔透镜层下方, 所述锥形导光层包括 至少一个反射式的锥形导光筒, 其内壁至少部分为反射镜面, 且顶部 幵口较大而底部幵口较小, 经由第二菲涅尔透镜层汇聚的光线从所述 锥形导光筒的顶部射入。
如权利要求 6所述的装置, 其特征在于, 所述锥形导光筒的底部封闭
, 其筒壁与第二菲涅尔透镜层一起围成封闭的第二空间。
如权利要求 1至 7任意一项所述的装置, 其特征在于, 还包括
一压电振动器, 其包括一压电振动片及其驱动电路, 所述压电振动片 与第一菲涅尔透镜层机械连接以带动其进行振动。
一种聚光式太阳能系统, 其特征在于, 包括
权利要求 1至 8任意一项所述的菲涅尔聚光装置; 以及
至少一个光能利用装置, 其受光面设置在所述菲涅尔聚光装置之后的 光路上。
如权利要求 9所述的系统, 其特征在于,
包括权利要求 6至 8任意一项所述的菲涅尔聚光装置,
所述光能利用装置设置于所述锥形导光筒的底部, 或设置于所述锥形 导光筒中, 所述光能利用装置包括一光电转换器件。
如权利要求 10所述的系统, 其特征在于,
所述光电转换器件为单面受光的光伏板, 设置于所述锥形导光筒的底 部, 且受光面朝向所述锥形导光筒的顶部, 或者,
所述光电转换器件为双面受光的光伏板, 设置于所述锥形导光筒中, 通过导热的支撑件固定在锥形导光筒上, 所述锥形导光筒的底部由反 射镜面封闭。 [权利要求 12] 如权利要求 10或 11所述的系统, 其特征在于, 还包括
一底盆, 设置于所述锥形导光层下方, 与所述锥形导光层一起围成封 闭的第三空间, 第三空间中容纳有工质, 所述工质与所述光电转换器 件导热连接, 所述工质选自: 水、 油、 制冷剂、 压缩气体。
[权利要求 13] 如权利要求 10至 12中任意一项所述的系统, 其特征在于, 所述光能利 用装置还包括热电转换器件, 设置在所述光电转换器件进行散热的热 传导路径上。
PCT/CN2017/091414 2017-07-03 2017-07-03 菲涅尔聚光装置和聚光式太阳能系统 WO2019006579A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA3068080A CA3068080A1 (en) 2017-07-03 2017-07-03 Fresnel light-concentrating apparatus and light-concentrating solar system
PCT/CN2017/091414 WO2019006579A1 (zh) 2017-07-03 2017-07-03 菲涅尔聚光装置和聚光式太阳能系统
CN201780091632.5A CN110741481A (zh) 2017-07-03 2017-07-03 菲涅尔聚光装置和聚光式太阳能系统
KR1020207002818A KR20200031116A (ko) 2017-07-03 2017-07-03 프레넬 집광 장치 및 집광식 태양에너지 시스템
MYPI2019007567A MY194521A (en) 2017-07-03 2017-07-03 Fresnel Condenser Device and Condenser-Type Solar Energy System
US16/624,931 US20210336581A1 (en) 2017-07-03 2017-07-03 Fresnel light-concentrating apparatus and light-concentrating solar system
BR112019027997-0A BR112019027997A2 (pt) 2017-07-03 2017-07-03 aparelho fresnel concentrador de luz e sistema concentrador de luz solar
JP2019571545A JP6916315B2 (ja) 2017-07-03 2017-07-03 フレネル集光装置及び集光型太陽エネルギーシステム
EP17916539.4A EP3648179A4 (en) 2017-07-03 2017-07-03 FRESNEL CAPACITOR AND CAPACITOR SOLAR ENERGY SYSTEM
AU2017422421A AU2017422421B2 (en) 2017-07-03 2017-07-03 Fresnel light-concentrating apparatus and light-concentrating solar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091414 WO2019006579A1 (zh) 2017-07-03 2017-07-03 菲涅尔聚光装置和聚光式太阳能系统

Publications (1)

Publication Number Publication Date
WO2019006579A1 true WO2019006579A1 (zh) 2019-01-10

Family

ID=64950532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091414 WO2019006579A1 (zh) 2017-07-03 2017-07-03 菲涅尔聚光装置和聚光式太阳能系统

Country Status (10)

Country Link
US (1) US20210336581A1 (zh)
EP (1) EP3648179A4 (zh)
JP (1) JP6916315B2 (zh)
KR (1) KR20200031116A (zh)
CN (1) CN110741481A (zh)
AU (1) AU2017422421B2 (zh)
BR (1) BR112019027997A2 (zh)
CA (1) CA3068080A1 (zh)
MY (1) MY194521A (zh)
WO (1) WO2019006579A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145861A (ja) * 1984-12-19 1986-07-03 Mitsubishi Electric Corp 固体撮像素子
CN101355114A (zh) * 2008-09-24 2009-01-28 江苏白兔科创新能源股份有限公司 一种聚光光伏发电cpv模组
CN102338929A (zh) * 2010-07-27 2012-02-01 鸿富锦精密工业(深圳)有限公司 聚光装置
CN102620232A (zh) * 2012-03-28 2012-08-01 陕西科技大学 透射式太阳光隧道直接增强照明的装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284839A (en) * 1978-12-18 1981-08-18 Johnson Steven A Internal refractor focusing solar energy collector apparatus and method
JPS59110176A (ja) * 1982-12-15 1984-06-26 Sumitomo Electric Ind Ltd 集光式太陽光発電装置
US5886821A (en) * 1997-10-02 1999-03-23 Fresnel Technologies, Inc. Lens assembly for miniature motion sensor
JP2000091612A (ja) * 1998-09-08 2000-03-31 Honda Motor Co Ltd 集光追尾式発電装置
JP2005105789A (ja) * 2003-09-30 2005-04-21 Seratekku:Kk 圧電振動板を用いた除雪装置
JP2006332113A (ja) * 2005-05-23 2006-12-07 Sharp Corp 集光型太陽光発電モジュール及び集光型太陽光発電装置
US20100012171A1 (en) * 2008-03-05 2010-01-21 Ammar Danny F High efficiency concentrating photovoltaic module with reflective optics
JP2010166010A (ja) * 2009-01-13 2010-07-29 Tsutomu Watanabe 集光閉空間三次元太陽電池
TWI494633B (zh) * 2010-07-23 2015-08-01 Hon Hai Prec Ind Co Ltd 聚光裝置
TW201214732A (en) * 2010-09-24 2012-04-01 Foxsemicon Integrated Tech Inc Light concentrator and solar cell apparatus
JP2012252228A (ja) * 2011-06-03 2012-12-20 Dainippon Printing Co Ltd 反射型スクリーンの製造方法、及び反射型スクリーン
JP2014035803A (ja) * 2012-08-07 2014-02-24 Konica Minolta Inc 太陽光集光用の光学系および太陽光集光システム
WO2015023995A1 (en) * 2013-08-15 2015-02-19 Morteza Gharib Methods and systems for self-cleaning of photovoltaic panels
CN104456980B (zh) * 2014-12-09 2017-07-28 中国科学院工程热物理研究所 一种二次聚光反射‑透射型抛物槽式太阳能集热器
CA2970047A1 (en) * 2014-12-10 2016-06-16 Bolymedia Holdings Co. Ltd. Electromagnetic radiation sensing system
JP2016138911A (ja) * 2015-01-26 2016-08-04 株式会社クラレ フレネルレンズ、集光型太陽光発電モジュール、及び集光型太陽光発電装置
CN106533328B (zh) * 2015-09-11 2018-05-25 博立码杰通讯(深圳)有限公司 集成式太阳能利用装置及系统
CN206099878U (zh) * 2016-10-20 2017-04-12 博立码杰通讯(深圳)有限公司 聚光式光能接收装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145861A (ja) * 1984-12-19 1986-07-03 Mitsubishi Electric Corp 固体撮像素子
CN101355114A (zh) * 2008-09-24 2009-01-28 江苏白兔科创新能源股份有限公司 一种聚光光伏发电cpv模组
CN102338929A (zh) * 2010-07-27 2012-02-01 鸿富锦精密工业(深圳)有限公司 聚光装置
CN102620232A (zh) * 2012-03-28 2012-08-01 陕西科技大学 透射式太阳光隧道直接增强照明的装置

Also Published As

Publication number Publication date
KR20200031116A (ko) 2020-03-23
EP3648179A4 (en) 2021-02-24
JP6916315B2 (ja) 2021-08-11
JP2020525833A (ja) 2020-08-27
AU2017422421B2 (en) 2020-08-20
MY194521A (en) 2022-11-30
AU2017422421A1 (en) 2020-02-13
CA3068080A1 (en) 2019-01-10
CN110741481A (zh) 2020-01-31
EP3648179A1 (en) 2020-05-06
BR112019027997A2 (pt) 2020-07-07
US20210336581A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
US9086227B2 (en) Method and system for light collection and light energy converting apparatus
TWI234635B (en) Photovoltaic array module design for solar electric power generation systems
US10020413B2 (en) Fabrication of a local concentrator system
KR20130140690A (ko) 집광 및 조명 시스템을 위한 압밀한 광소자
TWM561365U (zh) 聚光式光能接收裝置
EP3703253A1 (en) Light-concentrating solar energy system
AU2016434337B2 (en) Concentrating solar apparatus
KR101207852B1 (ko) 평판형 고집광 태양전지 모듈 및 이를 이용한 태양광 트랙커
TWI437273B (zh) 可切換光聚焦位置之系統
US20200228058A1 (en) Concentrated multifunctional solar system
JP2020522220A5 (zh)
WO2019006579A1 (zh) 菲涅尔聚光装置和聚光式太阳能系统
KR20240082256A (ko) 태양 광 수집 시스템
JP2020525833A5 (zh)
US10199527B2 (en) Solar concentrator and illumination apparatus
KR20090030443A (ko) 집광렌즈
WO2022205375A1 (zh) 太阳能利用装置
WO2023028735A1 (zh) 太阳能利用单元及其组合结构
TW201010103A (en) Concentrating solar module and system with hollow integration rod
KR101469583B1 (ko) 태양광 집광 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3068080

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019571545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019027997

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207002818

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017916539

Country of ref document: EP

Effective date: 20200127

ENP Entry into the national phase

Ref document number: 2017422421

Country of ref document: AU

Date of ref document: 20170703

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019027997

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191227