WO2019006568A1 - Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias 0 hypex-goldest - Google Patents

Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias 0 hypex-goldest Download PDF

Info

Publication number
WO2019006568A1
WO2019006568A1 PCT/CL2018/000028 CL2018000028W WO2019006568A1 WO 2019006568 A1 WO2019006568 A1 WO 2019006568A1 CL 2018000028 W CL2018000028 W CL 2018000028W WO 2019006568 A1 WO2019006568 A1 WO 2019006568A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
solid
extraction
nacl
refractory
Prior art date
Application number
PCT/CL2018/000028
Other languages
English (en)
French (fr)
Inventor
Eduardo Luis PATIÑO MARTINEZ
Original Assignee
Patino Martinez Eduardo Luis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patino Martinez Eduardo Luis filed Critical Patino Martinez Eduardo Luis
Priority to EP18827508.5A priority Critical patent/EP3715481A4/en
Priority to CN201880057687.9A priority patent/CN111148851A/zh
Priority to US16/628,966 priority patent/US11492681B2/en
Priority to EA202090237A priority patent/EA202090237A1/ru
Priority to CA3068877A priority patent/CA3068877A1/en
Publication of WO2019006568A1 publication Critical patent/WO2019006568A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/06Chloridising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/08Obtaining noble metals by cyaniding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0082Leaching or slurrying with water
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present application is directed to a method for the extraction of base metals such as copper, zinc, lead, molybdenum, iron; and precious, such as gold, silver, platinum; all contained in refractory minerals, concentrates, tailings, rubble and urban waste, using a simple and robust pre-treatment consisting of mixing crushed ore (Cu2s, CuS, CuFeS2, Cu5FeS4, Cu3AsS4, FeS2, FeAsS, NiAs, (Ni, Fe) xSy), duly particulate (2.5 to 5 centimeters), with a certain dose of solid reagent inside a rotating agglomerating drum (standard in mining works), to later slightly add acid water obtaining a defined humidity (5-8%) , forming a glomer that will give rise to a pile (agglomeration stage), remaining then at rest for brief periods of time (20-60 days), to finally supply irrigation, duly regulated, thus obtaining the extraction of the metal by simple aqueous washing .
  • base metals such as
  • the dynamics in mineral extraction activity in Chile and the world has always been leaching, even though at the end of the twentieth century and the beginning of this one it has become new concepts, always related to it, as for example the bioleaching (by bacteria), the leaching of sulphided minerals with sodium chloride, leaching sauna, etc., however, the method proposed by the present invention is transversal, that is, it is optimal for the extraction of a series of metals contained in complex minerals; to de-encapsulate and dissolve precious metals contained in refractory matrices and even rare earths.
  • Copper hydrometallurgy corresponds to the methodology followed to process oxidized copper ores (oxides) and some sulfur species. With this, by means of different physical and chemical reactions, the copper is extracted from the crushed ore, dissolving it in an acid solution (leaching stage) and then continuing to a stage of solvent extraction and then electro-obtaining, producing copper cathodes. of high purity. In this scenario, in recent years the industry has not incorporated new leachable deposits into its resource base.
  • hydrometallurgy should also address the treatment of sulfur minerals.
  • hydrometallurgy is uncompetitive, given that the former allows a p 3 recovery of more than 90% in a matter of hours and the latter achieves between 35% and 60% recovery in periods greater than 300 days. In this sense, it is evident that it is crucial for hydrometallurgy to have technologies that allow increasing efficiency in relation to recovery time.
  • Figure. It represents the flow chart of the pre-treatment that uses the method to extract the metal later by aqueous medium. It begins with the crushed ore to then pass to a conveyor belt, in which it receives doses of solid reagents from an upper hopper mixing in a rattling agglomerating drum, receiving a slight dose of water thus acquiring a very low moisture content to finally give rise to to a pile-based glomer that is the one that will receive rest for days, for finally half aqueous pair to extract the metal.
  • the invention is based or based on the fundamental identification that the electron is a quantum particle, so that its transport mechanism is totally different from that of an ion used in conventional leaching mechanisms.
  • An electron is revealed by two specific mechanisms: tunneling and stretching. Par 10 itself, the invention is based on the integration of three properties:
  • An insulating semiconductor material (dicalcogenide materials, such as sulfur) that has a very high gap between the valence band and the conduction band of its molecular orbitals.
  • the invention provides a method to achieve a maximum transformation of the original refractory mineral into a highly soluble solid salt, during a stage prior to the conventional leaching process.
  • the metal will be contained in a solid of high solubility compared to the original matrix and, therefore, its dissolution will be faster, more efficient and will require a minimum of inputs and reagents, that is, it will only need a stage of washing, in the following way:
  • the mineral is intimately contacted (Cu2S, CuS, CuFeS2, Cu5FeS4, Cu3AsS4, FeS2, FeAsS, NiAs, (Ni, Fe) xSy) duly particulate (2.5 to 5 centimeters) with a determined amount of solid agent specific (depending on the mineral, between 3 to 12 kilos per ton of this), in the agglomeration stage, prior to leaching (2) (3) (4) (5) (6).
  • the agglomeration is carried out at a humidification range of between 5 - 8%, depending on the type of gangue that the solid containing the metal possesses.
  • the agglomeration solution can be the same refining that is generated in the SX-EW process.
  • the invention Since the solid agent used in the agglomeration stage is not a chemical reagent, it can be lowered from the washing solutions to prevent some ionic charge effect. 3. Since the objective is focused on delivering a real alternative to replace the conventional flotation-smelting process, the invention will be referred to as a baseline to the conventional leaching process.
  • the heap leaching process will be taken as a reference, as it is the simplest to operate and with the lowest investment and operation cost.
  • a conventional heap leaching process consists of 4 stages:
  • the agglomeration stage consists of mixing the mineral with solutions until reaching humidity of 7 - 8%.
  • the agglomeration solutions contain the chemical reagents and are allowed to stand for a few days. In this period of rest, the chemical reaction manifests itself at very low levels, no more than 20%, so the rest of the mineral, which is still as sulfur, continues to be refractory and therefore, it is imperatively required to continue with a heap leaching process, which requires very long cycles of time (8 -12 months and more).
  • the agglomeration is carried out by mixing the mineral with a solid agent and acid solution (6), allowing it to rest.
  • the resting period is fundamental, given that it is at this stage that the maximum transformation of sulfur to a soluble solid is achieved, which will later only require a wash in slightly acid solutions, reaching transformations of up to 70%, in very long times short (20 - 40 days). Strictly speaking, the leaching concept is dispensed with, reaching high levels of extraction in very short cycles.
  • the method includes the definition of both the size of the mineral (2.5 to 5 centimeters) and the size of the active solid agent (3 to 12 Kg. Per ton of mineral, in order to generate the adequate conditions for the optimal transport of electrons
  • the solid active agents are varied depending on the origin of the refractory matrix that is required to solubilize: a) They can be solid salts such as NaCl, NaN03, MgCl2, KCI, Phosphates, Oxalates, Urates; b) Mix ore and solid active agent, before the wetting stage at ambient conditions; c) The wetting solutions in this agglomeration stage, can even be the refining solution circulating in the hydrometallurgical process (5), that is, solutions with sulfuric acid content (10 to 12 gpl) and pH less than 2, 5. 8. Once the resting period is finished, the aqueous extraction of the valuable metal is done by drip irrigation.
  • a soluble salt is much lower than the dissolution kinetics of a sulfide.
  • the method of the present invention can be repeated as many times as necessary to achieve the most optimal extractions, depending on the type of matrix and the desired financial economic objective. That is, after washing the glomerus for the first time, the battery is allowed to drain. Once drained, it is rehumidified with very concentrated solutions (> 50 gpl) of the same reagent used in the first stage and a more intense one. The rewetting of the battery should be done at a very low rate: 2 to 3 Ilm2xh, thus ensuring that the rewet solution does not dislodge the battery. It is left to rest for 10 to 20 days for the glomers to dry and generate the secondary reactions of solubilization of the remaining refractory matrix and finally, it is irrigated again to proceed to extract the complementary part of the valuable metal.
  • the solution containing the released metal also includes iron and many other dissolved species of the mineral and, depending on the solid agent used, the solutions resulting from the process may contain high levels of chloride chloride.
  • the resulting flow will be lower compared to that obtained in the conventional process and therefore one less train will be required in the solvent extraction stage.
  • that remaining SX train is adapted to be used as a Cl washing step from the organic.
  • MINERAL TYPE I Free gold particles in oxidized matrices.
  • MINERAL TYPE II 010 particles encapsulated in sulphide granules that can be pyrite, arsenopyrite or other sulfide, which are contained in silicate matrices.
  • leaching with cyanide solutions in piles is the most standardized and used process.
  • Obtaining metallic gold is achieved by applying the Merrill Crowe process.
  • the method of the invention considers agglomerate with solid cyanide, in the stage prior to leaching, to drastically accelerate the solubilization of gold, in such a way as to drastically reduce the cycle of the process and increase the recovery thereof.
  • the method of the invention considers three alternatives consisting of agglomerating the mineral with solid cyanide and / or sodium chloride, in the stage prior to leaching, to accelerate drastically and simultaneously three aspects of the process: a) Achieve the total or partial dissolution of the pyrite, to allow the reagents to agree to attack the gold; b) Achieve high solubilization of gold, such way to drastically reduce the cycle of the process and increase the recovery of it; and, c) In this case, irrigation refers practically to a mere washing stage, drastically avoiding or minimizing the concept of leaching.
  • NaCN or NaCl can be used and consists of the following stages:
  • the mineral is reduced to a size of 2.5 centimeters (if the oxidized mineral contains a lot of clay, the reduction in size must be made to 5 centimeters)
  • Solid lime is added directly from a hopper N 0 1 to the conveyor belt.
  • the lime comes in powder and is added between 0.5 and 5 k / ton, depending on the lime purity to ensure a basic pH> 11 when watering starts.
  • the dosage will be between 1 - 2 kg of NaCN per ton of mineral.
  • the NaCN must be granulated to a size between 0.3 - 0.9 centimeters.
  • the mineral is reduced to a size of 2.5 centimeters (if the oxidized mineral contains a lot of clay, the reduction in size must be made to 5 centimeters)
  • Solid lime is added directly from a hopper N 0 1 to the conveyor belt.
  • the lime comes in powder and is added between 0.5 and 5 k / ton, depending on the lime purity to ensure a basic pH> 11 when watering starts.
  • the solid NaCl reagent is added directly to the same conveyor belt from a Hopper N02.
  • the dosage will be between 2 - 3 kg of NaCl per ton of mineral.
  • the NaCl should be granulated to a size between 0.9 - 0.6 centimeters.
  • the conveyor belt contains mineral, lime and NaCI reagent.
  • the formed glomerry is transported to the leach pad.
  • the glomer should rest for a period between 10 and 15 days.
  • MINERAL TYPE II Gold particles encapsulated in sulfide grains that can be pyrite, arsenopyrite or other sulfur, contained in silicate matrices:
  • the method of the invention applied to mineral type II can be applied in 3 alternatives and consists of the following stages:
  • the mineral is reduced to a size of 2.5 centimeters (if the oxidized mineral contains a lot of clay, the reduction in size must be made to 5 centimeters)
  • Solid lime is added directly from hopper No. 1 to the conveyor belt.
  • the lime comes in powder and is added between 0.5 and 5 k / ton, depending on the lime purity to ensure a basic pH> 11 when watering starts.
  • the solid NaCl reagent is added directly to the same conveyor belt from a Hopper N02. -The dosage should be between 5 - 10 kg of NaCl per ton of mineral. The NaCl should be granulated to a size between 0.9 - 0.6 centimeters.
  • the conveyor belt contains mineral, lime and NaCl reagent.
  • the conveyor belt contains mineral, lime and NaCl reagent.
  • a perfect mixture of solid reagents is achieved.
  • refining solutions are added to reach the determined degree of wetting.
  • the formed glomerne is transported to the leaching pad.
  • the glomer should rest between 20 and 30 days. In that period the reactant transforms the pyrite into a porous mineral and solubilizes the gold.
  • Solid lime is added directly from a hopper N 0 1 to the conveyor belt.
  • the lime comes in powder and is added between 0.5 and 5 k / ton, depending on the lime purity to ensure a basic pH> 11 when watering starts.
  • the dosage should be between 3 - 5 kg of NaCl per ton of mineral.
  • the NaCl should be granulated to a size between 0.9 - 0.6 centimeters.
  • the conveyor belt contains mineral, lime and NaCl reagent.
  • the dosage will be between 2 - 3 kg of NaCN per ton of mineral.
  • the NaCN must be granulated to a size between 0.3 - 0.9 centimeters.
  • a perfect mixture of lime, NaCN and NaCl solid reagents is achieved.
  • refining solutions are added to reach the determined degree of wetting.
  • the formed glomerry is transported to the leach pad.
  • the glomer should rest between 15 and 20 days. In that period the reactant transforms the pyrite into a porous mineral and solubilizes the gold.
  • the mineral is reduced to a size of 2.5 centimeters (if the oxidized mineral contains a lot of clays, the reduction in size must be made to 5 centimeters)
  • Solid lime is added directly from hopper No. 1 to the conveyor belt.
  • the lime comes in powder and is added between 0.5 and 5 k / ton, depending on the purity of the lime to ensure a basic pH> 11 when it starts to water.
  • the dosage of NaCl should be between 3 - 5 kg of NaCl per ton of mineral.
  • the NaCl should be granulated to a size between 0.9 - 0.6 centimeters.
  • the conveyor belt contains mineral, lime and NaCI reagent.
  • the formed glomerry is transported to the leach pad.
  • the glomer should rest between 15 and 20 days. During this period, the reactant transformed the pyrite into a porous mineral.
  • the dosage of NaCl should be between 3 - 5 kg of NaCl per ton of mineral.
  • the NaCl should be granulated to a size between 0.9 - 0.6 centimeters.
  • the conveyor belt contains mineral, lime and NaCI reagent.
  • the formed glomerry is transported to the leach pad.
  • the glomer should rest between 15 and 20 days. During this period, the reactant transformed the pyrite into a porous mineral.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

La presente invención se refiere a un método de extracción de metales base y preciosos, todos contenidos en minerales refractarios, por medios acuosos. Pretender reemplazar el actual proceso de extracción de minerales en la minería chilena y mundial de "flotación - fundición" o clásica lixiviación, por un método que consiste en un simple y robusto pre tratamiento conducente a la solubilización de sus matrices refractarias. Consiste en mezclar el mineral chancado ( Cu2S, CuS,CuFeS2, Cu5FeS4, FeS2, FeAsS.NiS, (Ni,Fe)xSy), debidamente particulado ( 2,5 centímetros), con una determinada dosis de reactivo sólido dentro de un tambor aglomerador rotatorio, para luego agregarle agua levemente ácida obteniendo una humedad definida (5 a 8%) dependiendo del tipo de ganga que contiene el sólido que contiene el metal, formándose un glómero que dará lugar a un pila, permaneciendo luego en reposo por un período de días ( 20 - 60 días), lapso en el que se generarán las condiciones necesarias para transformar la matriz refractaria en un sólido muy soluble. Finalmente se suministra el riego, debidamente regulado, obteniéndose así la extracción del metal por simple lavado acuoso. Básicamente, el método lo que hace es alcanzar una máxima transformación del mineral refractario original en una sal sólida altamente soluble, durante una etapa previa al convencional proceso de lixiviación. De esa manera, el metal estará contenido en un sólido de alta solubilidad comparada con la matriz original, y por ende, su disolución será más rápida, eficiente y requerirá de un mínimo uso de insumos y reactivos.

Description

MEMORIA DESCRIPTIVA
MÉTODO DE EXTRACCIÓN DE METALES BASE Y PRECIOSOS MEDIANTE UN PRE TRATAMIENTO CONDUCENTE A LA SOLUBILIZACIÓN DE SUS MATRICES REFRACTARIAS 0 HYPEX-GOLDEST
La presente solicitud está dirigida a un método para la extracción de metales base tales como el cobre, zinc, plomo, molibdeno, hierro; y preciosos, tales como el oro, plata, platino; todos contenidos en minerales refractarios, concentrados, relaves, ripios y deshechos urbanos, utilizando un simple y robusto pre tratamiento consistente en mezclar el mineral chancado (Cu2s, CuS, CuFeS2, Cu5FeS4, Cu3AsS4, FeS2, FeAsS, NiAs, (Ni, Fe)xSy), debidamente particulado (2,5 a 5 centímetros), con una determinada dosis de reactivo sólido dentro de un tambor aglomerador rotatorio (standard en faenas mineras), para posteriormente agregar levemente agua acida obteniendo una humedad definida (5-8%), formándose un glómero que dará lugar a una pila (etapa de aglomeración), permaneciendo luego en reposo por periodos breves de tiempo (20-60 días), para finalmente suministrarle riego, debidamente regulado, obteniéndose así la extracción del metal por simple lavado acuoso.
ESTADO DE LA TÉCNICA
En la minería chilena, el única método a proceso de extracción mineral, histórico y por antonomasia, ha sida la lixiviación. Por definición, el problema técnico que presenta el proceso convencional de lixiviación dice relación básicamente con el requerimiento de altas dosis de reactivos químicos, tiempos prolongados que se necesitan para obtener finalmente la extracción del mineral para el proceso, producto del desarrollo de todas sus etapas (flotación - fundición), y el alto impacto ambiental que toda la cronología procesal de lixiviación supone (detonaciones, chancada, utilización de reactivos, concentradoras, utilización de aguas, energía, etcétera).
En un comienzo, la lixiviación en pilas por capas delgadas a TL (Thinlayer) fue un desarrollo tecnológico liderada para la Sociedad Minera Pudahuel, precursora en el país. Si bien tuvo su origen en un concepto patentada en E.E.U.U. en la segunda mitad de los años setenta, fue perfeccionado par esta compañía a partir de su definición original en el ámbito de laboratorio hasta ser llevado a una aplicación industrial en 1980. Estos perfeccionamientos dieron también lugar a una patente de invención, registrada primero en Chile (Registro de Propiedad Intelectual N° 32.025 "Procedimiento de lixiviación en rumas a capas de minerales mixtos de cobre de estado de óxidos y de sulfuras") y después en algunos otros países. Además, la Sociedad Minera Pudahuel desarrolló la tecnología de lixiviación bacteriana en pilas par capas delgadas o BTL mediante una investigación sistemática orientada a conocer los mecanismos de lixiviación asistidos por bacterias. Los resultados, en definitiva, consistieron básicamente en modelos de gestión para la optimización de los procesos de lixiviación de minerales sulfurados, ampliando de esta manera considerablemente el espectro de minerales aptos a ser lixiviados económicamente.
La Empresa Minera de Mantos Blancos por su parte el año 1971 , en su Registro de Propiedad Intelectual N° 25.930, exhibía sus "Mejoras en la lixiviación de minerales mixtos de óxidos y sulfuras de cobre y de otros metales empleando cloro y compuestos oxidados de él, a temperatura entre la ambiente y los 50 °C". Deleew Schmitz Partnerschip el año 1979, en su Registro de Propiedad Intelectual N° 30.914, daba cuenta de su "Procedimiento destinado a la recuperación de cobre y plata de concentrados de sulfuro por lixiviación con oxígeno y cloruro ferroso".
En 1981 la empresa E I DU PONT DE NEMOURS AND COMPANY, en su Registro de Propiedad Intelectual N° 32.426, anotaba su "Procedimiento de recuperación de cobré desde concentrados de minerales de sulfuras por lixiviación con ácido nítrico y ácido sulfúrico para producir una solución que contiene jones de cobre y hierro complementado con electrodeposición del cobre después de disminuir los jones férrico nitrato y otras impurezas para obtener cobre de alta pureza".
Degussa Aktiengesellschafe, en el Registro de Propiedad Intelectual N° 38.554 de 1993, acuñó su Proceso para lixiviar minerales concentrados o desechos de oro y plata mediante lixiviación con cianuro apoyada con perióxido de hidrogeno y compuestos de maganeso como catalizadores de la descomposición de dicho perióxido".
Y finalmente, para efectos del presente texto, Minnesota Mining and Manufacturing Company, en su Registro de Propiedad Intelectual NO 39.510 del año 1998, precisó su "Método de recuperación de oro y plata mediante lixiviación con una solución acuosa que contiene determinados tensioactivos fluoroaliféticos y poliméricos".
En el ámbito internacional se destacan las patentes US7722756132 del año 2010 "Process for múltiple stage direct electrowinning of Cooper" que dice relación con un proceso para la etapa de extracción electrolítica directa de múltiplo de cobre; la patente US7736488132 "Process for recovery of Cooper from copper-bearing material using pressure leaching, direct electrowinning and solvent/solution extraction" que dice relación con un procedimiento para la recuperación de cobre a partir del material que contiene cobre mediante lixiviación a presión y extracción electrolítica directa y la extracción de disolvente/solución; y, finalmente la patente US8070851 32 del año 2011 "Chloride heap leaching" que dice relación con un método de lixiviación en pilas para recuperar cobre a partir de un mineral de sulfuro de cobre primario en el que el mineral se lixivia en una solución de cloruro de ácido/sulfato en presencia de exigencias con el potencial de la superficie del mineral par debajo de 600 mv para causar la disolución del sulfuro al cobre.
Con posterioridad a estas invenciones, la dinámica en la actividad de extracción mineral en Chile y el mundo ha sido siempre la lixiviación, aun cuando a fines del siglo veinte y comienzos de éste ha devenido en nuevos conceptos, eso sí, siempre relacionados a ésta, como por ejemplo la biolixiviación (mediante bacterias), la lixiviación de minerales sulfurados con cloruro de sodio, lixiviación sauna, etc., sin embargo, el método que propone la presente invención es transversal, es decir, es óptimo para la extracción de una serie de metales contenidos en minerales complejos; para desencapsular y disolver metales preciosos contenidos en matrices refractarias e inclusive tierras raras. Su aplicación industrial es perfectamente factible en la minería chilena y mundial, toda vez que su establecimiento no supone inversiones onerosas (es posible utilizarlo en las faenas existentes de concentradoras de cobre); los insumos que requiere (reactivos sólidos, agua y energía) son de muy bajo costo y necesarios en menores dosis; importa maximizar la recuperación final del metal de un 10 a un 30%; mayor cinética de extracción, esto es, de un 50 a un 100%; menor costo unitario de operación; minimiza el ciclo de clásica lixiviación entre un 30 a un 50% con mayor disponibilidad de pad; optimiza la disponibilidad de inventarios; incrementa la valorización del recurso minero; incrementa el throughput; se constituye como nuevo punto de equilibrio de parámetros operativos; requiere bajas dosis de reactivos (reduce su consumo neto desde un 30 a un 50%); reduce los requerimientos de agua entre un 15 a un 30% y los de energía entre un 30 y un 70%, al igual que las resistencias de transporte fisico/(bio)químico y el número de etapas de reacciones químicas a bien, derechamente, ELIMINA el concepto clásico de la LIXIVIACION.
La hidrometalurgia del cobre corresponde a la metodología seguida para procesar los minerales oxidados de cobre (óxidos) y algunas especies de sulfurados. Con ésta, por medio de distintas reacciones físicas y químicas se extrae el cobre del mineral chancado, disolviéndolo en una solución ácida (etapa de lixiviación) para luego continuar a una etapa de extracción por solventes y luego de electro-obtención, produciendo cátodos de cobre de alta pureza. En este escenario, en los últimos años la industria no ha incorporado a su base de recursos nuevos yacimientos lixiviables. De la misma forma, las carteras de proyectos y los planes de desarrollo futuro de las empresas mineras estén basados fuertemente en el aprovechamiento de minas que ya se encuentran en operación (proyectos brawnfield), donde la mayor profundización de sus yacimientos conllevará el agotamiento de minerales oxidados. Lo anterior, sumado al deterioro en la calidad del mineral, tanto de las leyes coma de sus características de lixiviabilidad, lleva a que en estimaciones recientes para el año 2026 se prevea que solo un 12% de la producción esperada de cobre corresponda a cátodos electro-obtenidos, generándose una importante capacidad ociosa en las plantas de electro-obtención.
En los próximos años el desarrollo de la industria minera nacional se basará en explotar reservas mineras sulfuradas (mayoritariamente calcopirita), para las cuales, actualmente, se utilizan los procesos de concentración de minerales. Sin embargo, en este escenario futuro, la hidrometalurgia también deberá abordar el tratamiento de minerales sulfurados. Frente a la concentración, la hidrometalurgia es poco competitiva, dada que la primera permite una p 3 recuperación superior al 90% en cuestión de horas y la segunda alcanza entre 35% y 60% de recuperación en periodos mayores a 300 días. En este sentido, se hace evidente que es crucial para a hidrometalurgia contar con tecnologías que permitan aumentar la eficiencia en relación al tiempo de recuperación. Precisamente por la anterior, es que el método que propone la presente invención surge coma una tecnología nueva y alternativa a la clásico en cuanto a la extracción de metales desde el punto de vista de tiempo de recuperación de éstos, bajas costos de funcionamiento (reactivos sólidos, agua, energía) y a su mayor empatia con el media ambiente.
BREVE DESCRIPCION DE LA FIGURA
Figura. Representa el diagrama de flujo del pre tratamiento que utiliza el método para extraer el metal posteriormente por media acuosa. Comienza con el mineral chancado para pasar luego a una correa transportadora, en la cual recibe dosis de reactivos sólidos desde una tolva superior mezclándóse en un tambor aglomerador ratatario, recibiendo una dosis leve de agua adquiriendo así una cuota de humedad muy baja para dar lugar finalmente a un glómero a pila que es la que recibirá reposo por días, para finalmente par media acuosa extraer el metal.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Se hará referencia siempre en este texto, a título de ejemplo descriptivo, a minerales de cobre coma calcosina, covelina, enargita, bornita, calcopirita, y a minerales de oro contenidas en matrices sulfuradas (ej: oro encapsulada en pirita o arsenopirita). Por otra parte, el concepto de matriz refractaria se referirá a un sólido que contiene el metal y que es muy difícil de destruir par métodos convencionales de lixiviación. Conceptos base de la invención a método:
1. La invención se basa o fundamenta en la identificación fundamental de que el electrón es una partícula cuántica, por lo que su mecanismo de transporte es totalmente diferente al de un ión utilizado en los mecanismos convencionales de lixiviación. Un electrón se transparta mediante dos mecanismos específicos: escarbamiento (tunneling) y estiramiento (stretching). Par 10 mismo, la invención se basa en la integración de tres propiedades:
a) Un material semiconductor a aislante (materiales dicalcogenuros, como el sulfuro) que posee un gap muy alto entre la banda de valencia y la banda de conducción de sus orbitales moleculares.
b) La transformación de estos materiales refractarios en matrices no refractarias (es decir matrices muy solubles) requiere minimizar ese gap entre las bandas de valencia; y,
c) El transporte electrónico por estiramiento y escarbamiento, para solubilizar la matriz refractaria, se estimula mediante una excitación.
2. La invención entrega un método para alcanzar una máxima transformación del mineral refractario original en una sal sólida altamente soluble, durante una etapa previa al convencional procesa de Lixiviación. De esa manera, el metal estará contenido en un sólido de alta solubilidad comparada con la matriz original y, por ende, su disolución será más rápida, eficiente y requerirá de un mínimo de insumos y reactivos, esto es, sólo necesitará de una etapa de lavado, en la forma que sigue:
a) Se pone en contacto íntimo el mineral (Cu2S, CuS, CuFeS2, Cu5FeS4, Cu3AsS4, FeS2, FeAsS, NiAs, (Ni, Fe) xSy) debidamente particulado (2,5 a 5 centímetros) con una cantidad determinada de agente sólido especifico (dependiendo del mineral, entre 3 a 12 kilos par tonelada de éste), en la etapa de aglomeración, previa a la lixiviación (2) (3) (4) (5) (6).
b) La aglomeración se realiza a un rango de humectación de entre 5 - 8%, dependiendo del tipa de ganga que posee el sólido que contiene el metal. La solución de aglomeración puede ser el mismo refino que se genera en el proceso de SX— EW.
c) El aglomerado así formado (7), se deja reposar durante un periodo que va desde 20 a 60 días. Durante ese periodo, se generan las condiciones para transformar la matriz refractaria, en un sólido muy soluble que contendrá el metal a extraer.
d) En este punto, el metal se extrae mediante un simple lavado (8).
e) Dado que el agente sólido utilizado en la etapa de aglomeración, no es un reactivo químico, éste puede ser abatido desde las soluciones de lavado, para prevenir algún efecto de carga iónica. 3. Dado que el objetivo está enfocado en entregar una alternativa real de reemplazar el proceso convencional de flotación - fundición, la invención se referirá como línea base al proceso convencional de lixiviación. Se tomará como referencia el proceso de lixiviación en pilas, por ser el más simple de operar y de más bajo costo de inversión y operación.
4. Un proceso de lixiviación en pilas convencional consta de 4 etapas:
Chancado - Aglomerado - Lixiviación - Extracción por Solventes - Electro obtención.
5. La diferencia radical entre el proceso convencional y la invención radica en la etapa de aglomeración. Para explicarla, se tomará como ejemplo un mineral sulfurado de cobre.
En un proceso convencional, la etapa de aglomeración consiste en mezclar el mineral con soluciones hasta alcanzar humedades del 7 - 8%. En este caso, las soluciones de aglomeración contienen los reactivos químicos y se dejan reposar unos días. En ese periodo de reposo, la reacción química se manifiesta a niveles muy bajos, no más de 20%, por lo que el resto de mineral, que aún está como sulfuro, sigue siendo refractario y por ende se requiere, imperativamente, continuar con un proceso de lixiviación en pila, que requiere de ciclos muy extensos de tiempo ( 8 -12 meses y más).
En cambio, ocupando el método de la presente invención, la aglomeración se realiza mezclando el mineral con un agente sólido y solución ácida (6), dejándose reposar. El periodo de reposo es fundamental, dado que es en ésta etapa donde se logra la máxima transformación del sulfuro a un sólido soluble, el que posteriormente sólo requerirá de un lavado en soluciones levemente acidas, alcanzando transformaciones de hasta un 70%, en tiempos muy cortos (20 - 40 días). En estricto rigor, se prescinde del concepto de Lixiviación, alcanzando altos niveles de extracción en ciclos muy breves.
6. El método incluye la definición tanto del tamaño del mineral (2,5 a 5 centímetros) como del tamaño del agente sólida activo (3 a 12 Kg. por tonelada de mineral, de modo de generar las condiciones adecuadas para el óptima transporte de electrones.
7. Los agentes sólidos activos son variados en función del origen de la matriz refractaria que se requiere solubilizar: a) Pueden ser sales sólidas coma NaCI, NaN03, MgCI2, KCI, Fosfatos, Oxalatos, Uratos; b) Mezclar mineral y agente activo sólido, antes de la etapa de humectación a condiciones ambientales; c) Las soluciones de humectación en esta etapa de aglomeración, puede ser incluso la solución de refino que circula en el proceso hidrometalúrgico (5), esto es, soluciones con contenido de ácido sulfúrico (10 a 12 gpl) y pH menores a 2,5. 8. Una vez terminado el período de reposo, la extracción acuosa del metal valioso se realiza mediante riego por gotea. El riego debe ser continua, a un flujo moderada y se realiza par sectores, expresándose en unidades de litro/metro cuadrado par hora = 4. Esto significa que en cada metro cuadrado que se mantiene regando durante una hora, se están añadiendo 4 litros de agua, todo hasta desalojar de la pila tanto metal coma se haya solubilizado en el periodo de reposo. En esta primera etapa, se extrae la cantidad de metal solubilizado en el reposo i.e. 70% y se realiza en codas períodos, debido a que la cinética de disolución de
- una sal soluble es muy inferior a la cinética de disolución de un sulfuro.
Si después del lavado, el remanente mineral es aün insoluble, se debe seguir con un riego continua, pero con velocidad igual a la mitad del flujo utilizado en la primera etapa. Esta última etapa será cada vez más coda, en la medida que en la etapa de reposo se consigan los máximos niveles de solubilización. Ahora, finalmente, dada la esencia del método, se puede utilizar, inclusive, agua de mar en la aglomeración y riego.
9. El método de la presente invención se puede repetir las veces que se necesite para alcanzar las más Optimas extracciones, dependiendo del tipo de matriz y del objetivo económico financiero deseado. Esto es, después de lavar el glómero par primera vez, se deja drenar la pila. Una vez drenada, se procede a rehumectarla con soluciones muy concentradas (>50 gpl) del mismo reactivo utilizado en la primera etapa ylu otro que sea más intenso. La rehumectación de la pila se debe realizar a tasa muy bajas: 2 a 3 Ilm2xh, asegurando así que la solución de rehumectación no desaloje la pila. Se deja reposar 10 a 20 días para que los glómeros vayan secándose y se generen las reacciones secundarias de solubilización de la matriz refractaria remanente y finalmente, se vuelve a irrigar para proceder a extraer la parte complementaria del metal valioso.
10. La solución que contiene el metal liberada también incluye hierro y otras muchas especies disueltas del mineral y, dependiendo del agente sólido utilizado, las soluciones resultantes del proceso pueden contener altos niveles de jones coma de cloruro. Por otro lado, al utilizar un método de riego coma el mencionado, el flujo resultante será menor comparado con el obtenido en el proceso convencional y por eso se requerirá un tren menos en la etapa de extracción por solventes. Así, ese tren restante de SX se adapta para utilizarse coma etapa de lavado de Cl desde el orgánico.
MÉTODO DE IA INVENCIÓN APLICADO A LA EXTRACCIÓN DE ORO
El oro puede encontrarse geológicamente de dos formas:
MINERAL TIPO I: Partículas de oro libre en matrices oxidadas. MINERAL TIPO II: Partículas de 010 encapsuladas en granas de sulfuros que pueden ser pirita, arsenopirita u otro sulfuro, los que están contenidos en matrices silicatadas.
En el caso de partículas de oro libre en matrices oxidadas, la lixiviación can soluciones cianuradas en pilas es el proceso más estandarizado y utilizado. La obtención de oro metálico se consigue aplicando el procesa Merrill Crowe. El método de la invención, considera aglomerar con cianuro sólido, en la etapa previa a la lixiviación, para acelerar drásticamente la solubilización del oro, de tal manera de disminuir drásticamente el ciclo del proceso e incrementar la recuperación de éste.
En el caso de las partículas de aro encapsuladas en granos de sulfuros que pueden ser pirita, arsenopirita u otro sulfuro, contenidos en matrices silicatadas, et cianuro no puede atacar los granos de sulfuros y par ende, no llegar a disolver et oro, por tanto existen tres tecnologías consideradas convencionales:
1. Reducir el mineral at tamaño de mjcras, utilizando chancadores, molinos de bolas y SAG, luego concentrar por flotación la pirita/ arsenopirita, y posteriormente fundir el concentrado para obtener lingotes de oro. Proceso de altos costos de inversión y de operación.
2. Reducir el mineral al tamaño de mieras, utilizando chancadares, molinos de balas y SAG, luego concentrar par flotación la pirita/ arsenapirita, y posteriormente dicho concentrada se lixivia utilizando reactores de titania a alta presión para finalmente obtener Oro mediante el procesa Merrill Crawe. También es un proceso muy caro en inversión y operación. Una variante es biolixiviar el concentrado para destruir la pirita, luego se lava y se realiza una segunda lixiviación con cianuro. Todo ella, en tanques mecánicamente agitados. Este es un proceso conocido coma BIOX. Aun así, siguen siendo procesos de alta inversiOn.
3. Reducir el mineral al tamaño de pulgadas, utilizando chancadores, se lixivia bacterialmente en pilas para que los microorganismos destruyan la matriz pirítica, luego se lava la pila y se inicia un proceso convencional de cianuración (equivalente al que se aplica al mineral tipo 1). Es un proceso que invierte mucho tiempo, exceso de agua fresca y además es de baja eficiencia.
Para las partículas de oro libres en matrices oxidadas o minerales tipo I, el método de la invención considera tres alternativas que consisten en aglomerar el mineral con cianuro sólido y/o cloruro de sodio, en la etapa previa a la lixiviación, para acelerar drástica y simultáneamente tres aspectos del proceso: a) Lograr la disolución total o parcial de la pirita, para permitir que los reactivos accedan a atacar al oro; b) Alcanzar una alta solubilización del oro, de tal manera de disminuir drásticamente el ciclo del proceso e incrementar la recuperación de éste; y, c) En tal caso, el riego se refiere prácticamente a una mera etapa de lavado, evitando o minimizando drásticamente el concepto de lixiviación.
MINERAL TIPO I (Partículas de oro libre en matrices oxidadas):
En el método de la invención, aplicada al mineral tipo I, se puede utilizar NaCN o NaCI y consta de las siguientes etapas:
a) ALTERNATIVA 1 (Utilización de NaCN)
- CHANCADO: El mineral se reduce a tamaño de 2,5 centímetros (si el mineral oxidado contiene mucha arcilla, la reducción de tamaño debe realizarse a 5 centímetros)
- AGLOMERACION: Antes de ingresar al tambor aglomerador:
- Se añade cal sólida directamente desde una tolva N 0 1 a la correa transportadora. La cal viene en polvo y se adiciona entre 0,5 y 5 k/ton, dependiendo de la pureza de cal para asegurar un pH básico> 11 cuando se empiece a regar.
- Inmediatamente después se añade el reactivo sólido NaGN directamente a la misma correa transportadora desde una Tolva N02.
- La dosificación estará entre 1 - 2 kg de NaCN por tonelada de mineral. El NaCN debe estar granulada a tamaño entre 0,3 - 0,9 centímetros.
- REPOSO: A la salida del tambor, el glómero formado se transporta hacia el pad de lixiviación. El glómero debe reposar entre 5 y 10 días.
- RIEGO: Transcurrido el periodo de reposo, la pila se procede a regar con soluciones de refino para extraer el oro en solución acuosa cianurada.
b) ALTERNATIVA 2 (Utilizando NaCI)
- CHANCADO: El mineral se reduce a tamaño de 2,5 centímetros (si el mineral oxidado contiene mucha arcilla, la reducción de tamaño debe realizarse a 5 centímetros)
- AGLOMERACION: Antes de ingresar al tambor aglomerador.
- Se añade cal sólida directamente desde una tolva N 0 1 a la correa transportadora. La cal viene en polvo y se adiciona entre 0,5 y 5 k/ton, dependiendo de la pureza de cal para asegurar un pH básico> 11 cuando se empiece a regar. - Inmediatamente después se añade el reactivo sólido NaCI directamente a la misma correa transportadora desde una Tolva N02.
- La dosificación estará entre 2 - 3 kg de NaCI por tonelada de mineral. El NaCI debe estar granulada a tamaño entre 0,9 - 0,6 centímetros.
- De esa manera la correa transportadora contiene mineral, cal y reactivo NaCI.
- Al ingresar al tambor aglomerador se logra una mezcla perfecta de los reactivos sólidos. Al interior del tambor aglomerador soluciones de refino son añadidas para alcanzar el grado de humectación determinado.
- REPOSO: A la salida del tambor, el glómero formado se transporta hacia el pad de lixiviación. El glómero debe reposar un período entre 10 y 15 días.
- RIEGO: Transcurrido el periodo de reposo, la pila se procede a regar con soluciones de refino para extraer el oro en solucián acuosa de cloruro.
MINERAL TIPO II (Partículas de oro encapsuladas en granos de sulfuros que pueden ser pirita, arsenopirita u otro sulfuro, contenidos en matrices silicatadas):
El método de la invención aplicada a mineral tipo II se puede aplicar en 3 alternativas y consta de las siguientes etapas:
a) ALTERNATIVA 1 (Utilizando NaCI)
Consiste en utilizar un solo reactivo sólido solo para ambos efectos: desencapsular el oro atrapado en los granos de pirita/arsenopirita y simultáneamente solubilizar el 010. Se procede de la siguiente manera:
- CHANCADO: El mineral se reduce a tamaño de 2,5 centímetros (si el mineral oxidado contiene mucha arcilla, la reducción de tamaño debe realizarse a 5 centímetros)
- AGLOMERACION: Antes de ingresar al tambor aglomerador.
-Se añade cal sólida directamente desde una tolva N°1 a la correa transportadora. La cal viene en polvo y se adiciona entre 0,5 y 5 k/ton, dependiendo de la pureza de cal para asegurar un pH básico> 11 cuando se empiece a regar.
-Inmediatamente después se añade el reactivo sólido NaCI, directamente a la misma correa transportadora desde una Tolva N02. -La dosificación debe estar entre 5 - 10 kg de NaCI par tonelada de mineral. El NaCI debe estar granulada a tamaño entre 0,9 - 0,6 centímetros.
-De esa manera la correa transportadora contiene mineral, cal y reactivo NaCI. -Al ingresar al tambor aglomerador se logra una mezcla perfecta de los reactivos sólidos. Al interior del tambor aglomerador soluciones de refino son añadidas para alcanzar el grado de humectación determinado.
- REPOSO: A la salida del tambor, el glomero formado se transporta hacia el pad de lixiviación, El glómero debe reposar entre 20 y 30 días. En ese periodo el reactivo transforma a la pirita en un mineral poroso y solubiliza el oro.
- RIEGO: Transcurrido el periodo de reposo, la pila se procede a regar con soluciones de refino de pH ácido (alrededor de pH =2) para desalojar el oro en solución acuosa de cloruro.
b) ALTERNATIVA 2 (Utilizando NaCI y NaCN)
Consiste en utilizar ambos reactivos para generar una mezcla sinérgica en desencapsular el oro atrapado en los granos de pirita/arsenopirita y simultáneamente solubilizar el oro. Se procede de la siguiente manera:
- CHANCADO: El mineral se reduce a tamaño de 2,5 centímetros (si el mineral oxidado contiene mucha arcilla, la reducciOn de tamaño debe realizarse a 5 centímetros)
- AGLOMERACION: Antes de ingresar al tambor aglomerador:
- Se añade cal sólida directamente desde una tolva N 0 1 a la correa transportadora. La cal viene en polvo y se adiciona entre 0,5 y 5 k/ton, dependiendo de la pureza de cal para asegurar un pH básico> 11 cuando se empiece a regar.
-Inmediatamente después se añade el reactivo sólido NaCI, directamente a la misma correa transportadora desde una Tolva N°2.
-La dosificación debe estar entre 3 - 5 kg de NaCI par tonelada de mineral. El NaCI debe estar granulada a tamaño entre 0,9 - 0,6 centímetros.
-De esa manera la correa transportadora contiene mineral, cal y reactivo NaCI.
-Luego se añade el reactivo sólido NaCN directamente a la misma correa transportadora desde una Tolva N°2.
-La dosificación estará entre 2 - 3 kg de NaCN par tonelada de mineral. El NaCN debe estar granulada a tamaño entre 0,3 - 0,9 centímetros. -Al ingresar al tambor aglomerador se logra una mezcla perfecta de los reactivos sólidos cal, NaCN y NaCI. Al interior del tambor aglomerador soluciones de refino son añadidas para alcanzar el grado de humectación determinado.
- REPOSO: A la salida del tambor, el glómero formado se transporta hacia el pad de lixiviación. El glómero debe reposar entre 15 y 20 días. En ese período el reactivo transforma a la pirita en un mineral poroso y solubiliza el oro.
- RIEGO: Transcurrido el periodo de reposo, la pila se procede a regar con soluciones de refino medianamente básico para desalojar el oro en solución acuosa.
c) ALTERNATIVA 3 (Utilizando reactivo sólido y luego lixiviación cianurada) Utilizar el reactivo sólido solo para desencapsular el oro atrapado en los granos de pirita/arsenopirita y luego lixiviar en forma convencional con soluciones de cianuro. Se procede según la siguiente:
- CHANCADO: El mineral se reduce a tamaño de 2,5 centímetros (si el mineral oxidado contiene mucha arcillas, la reducción de tamaño debe realizarse a 5 centímetros)
- AGLOMERACION: Antes de ingresar al tambor aglomerador:
- Se añade cal sólida directamente desde una tolva N°1 a la correa transportadora. - La cal viene en polvo y se adiciona entre 0,5 y 5 k/ton, dependiendo de la pureza de cal para asegurar un pH básico> 11 cuando se empiece a regar.
- Inmediatamente después se añade el reactivo sólido NaCI, directamente a la misma correa transportadora desde una Tolva N°2.
- La dosificación de NaCI debe estar entre 3 - 5 kg de NaCI por tonelada de mineral.
- El NaCI debe estar granulada a tamaño entre 0,9 - 0,6 centímetros.
- De esa manera la correa transportadora contiene mineral, cal y reactivo NaCI.
- Al ingresar al tambor aglomerador se logra una mezcla perfecta de los reactivos sólidos. Al interior del tambor aglomerador soluciones de refino son añadidas para alcanzar el grado de humectación determinado.
- REPOSO: A la salida del tambor, el glómero formado se transporta hacia el pad de lixiviación. El glómero debe reposar entre 15 y 20 días. En ese periodo el reactivo transforma a la pirita en un mineral poroso.
-RIEGO: Transcurrido el período de reposo, la pila se procede a regar con soluciones de refino que contienen cianuro entre 300 - 500 mg NaCN por litro - Inmediatamente después se añade el reactivo sólido NaCI, directamente a la misma correa transportadora desde una Tolva N°2.
- La dosificación de NaCI debe estar entre 3 - 5 kg de NaCI por tonelada de mineral.
- El NaCI debe estar granulada a tamaño entre 0,9 - 0,6 centímetros.
- De esa manera la correa transportadora contiene mineral, cal y reactivo NaCI.
- Al ingresar al tambor aglomerador se logra una mezcla perfecta de los reactivos sólidos. Al interior del tambor aglomerador soluciones de refino son añadidas para alcanzar el grado de humectación determinado.
- REPOSO: A la salida del tambor, el glómero formado se transporta hacia el pad de lixiviación. El glómero debe reposar entre 15 y 20 días. En ese periodo el reactivo transforma a la pirita en un mineral poroso.
-RIEGO: Transcurrido el período de reposo, la pila se procede a regar con soluciones de refino que contienen cianuro entre 300 - 500 mg NaCN por litro de solución, para extraer el oro en solución acuosa. Este corresponde a un proceso convencional de cianuración.
Las alternativas a utilizar se seleccionan en función de un trade-off entre aspectos ambientales, técnico- económico y de producción. Los parámetros (dosificación de reactivos, tiempo de reposo, % de humectación, etc) están indicados en rangos. La exacta determinación de sus valores se debe obtener previamente en el laboratorio, en base a tests experimentales estándar de aglomeración y lavado.

Claims

REIVINDICACIONES
Método de extracción de metales base y preciosos mediante un pretratamiento conducente a la solubilización de sus matrices refractarias, CARACTERIZADO, en el caso de la extracción de COBRE, por estar compuestos de los siguiente pasos:
CHANCADO. El mineral ( Cu2S, CuS ,CuFeS2, Cu5FeS4, FeS2, ZnS, MoS2, PbS) que contiene el metal valioso a extraer debe ser un sistema particulado, esto es, debe ser chancado o triturado hasta alcanzar una distribución de tamaños de partícula entre 2,5 y 5 centímetros, dependiendo de la dureza del roca y de su origen, es decir si proviene de un yacimiento, concentrados , ripios, relaves o deshechos urbanos.
MEZCLA. Al mineral así particulado, puesto sobre una correa transportadora de mineral, se le añade el agente activo sólido (NaCI), desde una tolva por caída libre mediante un sensor que regula el flujo, debiendo poseer tanto el mineral como el agente activo sólido una distribución granulométrica equivalente, generándose así una mezcla homogénea en el tambor aglomerador rotatorio.
AGLOMERACION. La mezcla homogénea del mineral y el agente sólido activo, se le agrega agua o refino, para formar un glómero cuya humedad puede fluctuar entre 5 y 8%, el cual a su vez es depositado en un pad para formar una pila.
REPOSO. La pila así formada debe reposar por un lapso de entre 20 y 60 días, para que a medida que vaya reduciéndose la humedad, se produzca la transferencia spintrónica que se requiere a nivel atómico, para transformar el mineral refractario en una sal altamente soluble.
RIEGO. Posterior al reposo, la extracción del metal de interés se extrae por lavado acuoso, esto es un sistema de riego en unidades de litros por metro cuadrado/hora. El uso de agua puede ser dulce, de mar , industrial o salada/semi- salada. Se obtiene así una solución rica en el metal valioso.
2. Método de extracción de metales preciosos mediante un pretratamiento conducente a la solubilización de sus matrices refractarias, CARACTERIZADO, en el caso de la extracción de partículas de ORO y PLATINO L LIBRE en matrices oxidadas, utilizando NaCN por los siguiente pasos: CHANCADO. El mineral se reduce a tamaños de 2,5 centímetros. Si el mineral contiene mucha arcilla, la reducción de tamaño debe realizarse a 5 centímetros.
AGLOMERACION. Antes de ingresar al tambor aglomerador, se añade cal (0,5 a 5 kg/ton)sólida desde una tolva directamente a la correa transportadora, para asegurar un pH básico > 11. Inmediatamente después se añade el reactivo sólido NaCN, directamente a la misma correa que ya contiene el mineral y la cal ( 1 a 2 kg NaCN por tonelada de mineral).
REPOSO. A la salida del tambor aglomerador, el glómero formado se transporta hacia el pad de lixiviación y debe reposar entre 5 a 10 días
RIEGO. Transcurido el período de reposo, la pila se procede a regar con soluciones de refino para extraer el oro en solución cianurada.
Método de extracción de metales base y preciosos mediante un pretratamiento conducente a la solubilización de sus matrices refractarias, CARACTERIZADO, en el caso de la extracción de partículas de ORO LIBRE en matrices oxidadas, utilizando NaCI por los siguiente pasos:
CHANCADO. El mineral se reduce a tamaños de 2,5 centímetros. Si el mineral contiene mucha arcilla, la reducción de tamaño debe realizarse a 5 centímetros.
AGLOMERACION. Antes de ingresar al tambor aglomerador, se añade cal (0,5 a 5 kg/ton)sólida desde una tolva directamente a la correa transportadora, para asegurar un pH básico > 11. Inmediatamente después se añade el reactivo sólido NaCI, directamente a la misma correa que ya contiene el mineral y la cal ( 2 a 3 kg NaCI por tonelada de mineral).
REPOSO. A la salida del tambor aglomerador, el glómero formado se transporta hacia el pad de lixiviación y debe reposar entre 10 a 15 días
RIEGO. Transcurido el período de reposo, la pila se procede a regar con soluciones de refino para extraer el oro en solución clorurada.
4. Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias, CARACTERIZADO, en el caso de la extracción de partículas de Oro encapsuladas en granos de sulfuras ( pirita, arsenopirita u otro sulfuro) contenidas en matrices silicatadas, utilizando NaCI, por los siguiente pasos:
CHANCADO. El mineral se reduce a un tamaño de 2,5 centímetros. Si el mineral contiene exceso de arcilla, la reducción de tamaño se debe realizar a 5 centímetros.
AGLOMERACION. Antes de ingresar al tambor aglomerador, se añade cal (0,5 a 5 kg/ton)sólida desde una tolva directamente a la correa transportadora, para asegurar un pH básico > 11. Inmediatamente después se añade el reactivo sólido NaCI, directamente a la misma correa que ya contiene el mineral y la cal ( 5 a 10 kg NaCI por tonelada de mineral). Y debe ser granulada entre 0,6 y 0,9 centímetros
REPOSO: A la salida del tambor aglomerador, el glómero formado se transporta hacia el pad de lixiviación y debe reposar entre 20 a 30 días
RIEGO. Transcurido el período de reposo, la pila se procede a regar con soluciones de refino para extraer el oro en solución clorurada.
Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias, CARACTERIZADO, en el caso de la extracción de partículas de Oro encapsuladas en granos de sulfuras ( pirita, arsenopirita u otro sulfuro) contenidas en matrices silicatadas, utilizando NaCI y NaCN, por los siguiente pasos:
CHANCADO. El mineral se reduce a un tamaño de 2,5 centímetros. Si el mineral contiene exceso de arcilla, la reducción de tamaño se debe realizar a 5 centímetros.
AGLOMERACION. Antes de ingresar al tambor aglomerador, se añade cal (0,5 a 5 kg/ton)sólida desde una tolva directamente a la correa transportadora, para asegurar un pH básico > 11. Inmediatamente después se añade el reactivo sólido NaCI, directamente a la misma correa que ya contiene el mineral y la cal ( 3 a 5 kg NaCI por tonelada de mineral). Y debe ser granulada entre 0,6 y 0,9 centímetros. Luego se añade el reactivo sólido NaCN (2 a 3 kg de NaCn por tonelada de mineral), también directamente a la correa transportadora , donde ya están el mineral, la cal y el NaCI.
REPOSO: A la salida del tambor aglomerador, el glómero formado se transporta hacia el pad de lixiviación y debe reposar entre 15 a 20 días d. RIEGO. Transcurido el período de reposo, la pila se procede a regar con soluciones de refino para extraer el oro en solución acuosa.
6. Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias, CARACTERIZADO, en el caso de la extracción de partículas de Oro encapsuladas en granos de sulfuros ( pirita, arsenopirita u otro sulfuro) contenidas en matrices silicatadas, utilizando reactivo sólido NaCI sólo para desencapsular el oro atrapado en los granos de sulfuros y luego lixiviar en forma convencional con soluciones de cianuro NaCN.
7. Método de extracción de metales base y preciosos mediante un pretratamiento conducente a la solubilización de sus matrices refractarias, CARACTERIZADO, en el caso de la extracción de COBALTO y HIERRO, por estar compuestos de los siguiente pasos:
CHANCADO. El mineral ( Carrolita, Cobaltita, Esferocobaltita, heterogenita y variantes, y Wustita.Hematita, Magnetita, Niquelita) que contiene el metal valioso a extraer debe ser un sistema particulado, esto es, debe ser chancado o triturado hasta alcanzar una distribución de tamaños de partícula entre 2,5 y 5 centímetros, dependiendo de la dureza del roca y de su origen, es decir si proviene de un yacimiento, concentrados , ripios, relaves o deshechos urbanos.
MEZCLA. Al mineral así particulado, puesto sobre una correa transportadora de mineral, se le añade el agente activo sólido (NaCI), desde una tolva por caída libre mediante un sensor que regula el flujo, debiendo poseer tanto el mineral como el agente activo sólido una distribución granulométrica equivalente, generándose así una mezcla homogénea en el tambor aglomerador rotatorio.
AGLOMERACION. La mezcla homogénea del mineral y el agente sólido activo, se le agrega agua o refino, para formar un glómero cuya humedad puede fluctuar entre 5 y 8%, el cual a su vez es depositado en un pad para formar una pila.
REPOSO. La pila así formada debe reposar por un lapso de entre 20 y 60 días, para que a medida que vaya reduciéndose la humedad, se produzca la transferencia spintrónica que se requiere a nivel atómico, para transformar el mineral refractario en una sal altamente soluble. e. RIEGO. Posterior al reposo, la extracción del metal de interés se extrae por lavado acuoso, esto es un sistema de riego en unidades de litros por metro cuadrado/hora. El uso de agua puede ser dulce, de mar , industrial o salada/semi- salada. Se obtiene así una solución rica en el metal valioso.
8. Método de extracción de metales base y preciosos mediante un pretratamiento conducente a la solubilización de sus matrices refractarias, CARACTERIZADO, en el caso de la extracción de LITIO (extendible para extraer Na, K, B y Mg), por estar compuestos de los siguiente pasos:
CHANCADO. El mineral ( Espodumena, Lepidolita.Litiofilita, Petalita y variantes) que contiene el metal valioso a extraer debe ser un sistema particulado, esto es, debe ser chancado o triturado hasta alcanzar una distribución de tamaños de partícula entre 2,5 y 5 centímetros, dependiendo de la dureza del roca y de su origen, es decir si proviene de un yacimiento, concentrados , ripios, relaves o deshechos urbanos.
MEZCLA. Al mineral así particulado, puesto sobre una correa transportadora de mineral, se le añade el agente activo sólido (NaCI), desde una tolva por caída libre mediante un sensor que regula el flujo, debiendo poseer tanto el mineral como el agente activo sólido una distribución granulométrica equivalente, generándose así una mezcla homogénea en el tambor aglomerador rotatorio.
AGLOMERACION. La mezcla homogénea del mineral y el agente sólido activo, se le agrega agua o refino, para formar un glómero cuya humedad puede fluctuar entre 3 y 5%, el cual a su vez es depositado en un pad para formar una pila.
REPOSO. La pila así formada debe reposar por un lapso de entre 5 y 15 días, para que a medida que vaya reduciéndose la humedad, se produzca la transferencia spintrónica que se requiere a nivel atómico, para transformar el mineral refractario en una sal altamente soluble.
RIEGO. Posterior al reposo, la extracción del metal de interés se extrae por lavado acuoso, esto es un sistema de riego en unidades de litros por metro cuadrado/hora. El uso de agua puede ser dulce, de mar , industrial o salada/semi- salada. Se obtiene así una solución rica en el metal valioso.
PCT/CL2018/000028 2017-07-05 2018-09-05 Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias 0 hypex-goldest WO2019006568A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18827508.5A EP3715481A4 (en) 2017-07-05 2018-09-05 PROCESS FOR THE EXTRACTION OF BASE AND PRECIOUS METALS THROUGH A PRE-TREATMENT RESULTING IN SOLUBILIZATION OF THE REFRACTORY MATRICES
CN201880057687.9A CN111148851A (zh) 2017-07-05 2018-09-05 通过使难熔基质增溶的预处理提取贱金属和贵金属的方法0 hypex-goldest
US16/628,966 US11492681B2 (en) 2017-07-05 2018-09-05 Method for extracting base and precious metals by a pre-treatment that leads to solubilisation of the refractory matrices thereof
EA202090237A EA202090237A1 (ru) 2017-07-05 2018-09-05 Способ извлечения неблагородных и благородных металлов путем предварительной обработки для солюбилизации их тугоплавких матриц 0 hypex-goldest
CA3068877A CA3068877A1 (en) 2017-07-05 2018-09-05 Method of extracting base and precious metals by means of a pre-treatment leading to the solubilisation of their refractory matrices 0 hypex-goldest

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2017001777A CL2017001777A1 (es) 2017-07-05 2017-07-05 Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias o hypexgoldest.
CL1777-2017 2017-07-05

Publications (1)

Publication Number Publication Date
WO2019006568A1 true WO2019006568A1 (es) 2019-01-10

Family

ID=63046517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/000028 WO2019006568A1 (es) 2017-07-05 2018-09-05 Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias 0 hypex-goldest

Country Status (7)

Country Link
US (1) US11492681B2 (es)
EP (1) EP3715481A4 (es)
CN (1) CN111148851A (es)
CA (1) CA3068877A1 (es)
CL (1) CL2017001777A1 (es)
EA (1) EA202090237A1 (es)
WO (1) WO2019006568A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595456A (zh) * 2022-10-14 2023-01-13 江西理工大学(Cn) 一种废旧钴酸锂电池正极材料低温硫化焙烧提锂的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2017001777A1 (es) * 2017-07-05 2018-06-29 Tecnologias Exponenciales En Minerales Spa Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias o hypexgoldest.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256706A (en) * 1979-04-13 1981-03-17 The United States Of America As Represented By The Secretary Of The Interior Leaching agglomerated gold - silver ores
US7227561B2 (en) 2001-09-05 2007-06-05 Thomson Licensing Method of displaying video images on a display device, e.g. a plasma display panel
US7364881B1 (en) 2004-07-29 2008-04-29 United States Of America As Represented By The Secretary Of The Air Force Biological process for the conversion of nitroarenes to ortho-aminophenols using recombinant E. coli strains
CL2010001345A1 (es) * 2010-12-03 2011-01-21 Corporacion Nac Del Cobre De Chile Procedimiento de lixiviacion de minerales de cu primarios con el fin de lograr la disolucion de sulfuros de cobre que comprende someter el mineral calcopiritico a una etapa de curado con h2so4 y nacl, luego someterlo a una segunda etapa de reposo por un tiempo mayor a 30 dias y lixiviarlo mediante riego con una solucion acuosa.
US8070851B2 (en) 2006-05-12 2011-12-06 Bhp Billiton Sa Limited Chloride heap leaching
CL2015000395A1 (es) * 2012-08-22 2015-08-21 Bhp Chile Inc Metodo de lixiviacion en pila
CL2015001298A1 (es) * 2015-05-13 2016-05-20 Univ Técnica Federico Santa María Tambor de aglomeración y procedimiento de aglomeración de mineral para el pretratamiento de minerales.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2054522C (en) * 1991-10-30 2000-08-08 C. Neil Smith Ore feed heating
CA2432743C (en) * 2002-11-26 2010-12-14 Minera Michilla S.A. Non-biochemical method to heap leach copper concentrates
AU2006236085C1 (en) * 2005-11-28 2014-02-27 Vale S.A. Process for extraction of nickel, cobalt, and other base metals from laterite ores by using heap leaching and product containing nickel, cobalt, and other metals from laterite ores
US20120039796A1 (en) * 2010-08-15 2012-02-16 Demetrios Markou Novel method for creating, suspending and stabilizing electronically modified oxygen derivatives, along with creating, suspending and stabilizing electronically modified reaction intermediates, in a bio compatible fluorocarbon suspension, for the purpose of inducing a cascading immune response in mammalian patients
CL2017001777A1 (es) * 2017-07-05 2018-06-29 Tecnologias Exponenciales En Minerales Spa Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias o hypexgoldest.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256706A (en) * 1979-04-13 1981-03-17 The United States Of America As Represented By The Secretary Of The Interior Leaching agglomerated gold - silver ores
US7227561B2 (en) 2001-09-05 2007-06-05 Thomson Licensing Method of displaying video images on a display device, e.g. a plasma display panel
US7364881B1 (en) 2004-07-29 2008-04-29 United States Of America As Represented By The Secretary Of The Air Force Biological process for the conversion of nitroarenes to ortho-aminophenols using recombinant E. coli strains
US8070851B2 (en) 2006-05-12 2011-12-06 Bhp Billiton Sa Limited Chloride heap leaching
ES2379202T3 (es) * 2006-05-12 2012-04-23 Bhp Billiton Sa Limited Lixiviación de apilamientos de cloruro
CL2010001345A1 (es) * 2010-12-03 2011-01-21 Corporacion Nac Del Cobre De Chile Procedimiento de lixiviacion de minerales de cu primarios con el fin de lograr la disolucion de sulfuros de cobre que comprende someter el mineral calcopiritico a una etapa de curado con h2so4 y nacl, luego someterlo a una segunda etapa de reposo por un tiempo mayor a 30 dias y lixiviarlo mediante riego con una solucion acuosa.
CL2015000395A1 (es) * 2012-08-22 2015-08-21 Bhp Chile Inc Metodo de lixiviacion en pila
CL2015001298A1 (es) * 2015-05-13 2016-05-20 Univ Técnica Federico Santa María Tambor de aglomeración y procedimiento de aglomeración de mineral para el pretratamiento de minerales.

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BUGUEÑO, R.: "ANÁLISIS COMPUTACIONAL Y EXPERIMENTAL DEL PROCESO DE SATURACION EN COLUMNAS DE LIXIVIACION DE DISTINTOS DIÁMETROS", TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS DE LA INGENIERIA MENCIÓN MECANICA Y MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MECANICO, 20 January 2015 (2015-01-20), XP055574448, Retrieved from the Internet <URL:http://repositorio.uchile.cl/handle/2250/132807> [retrieved on 20181029] *
HERREROS, O. ET AL.: "Leaching of sulfide copper ore in a NaCl- H2S04-02 media with acid pre-treatment", HYDROMETALLURGY, vol. 89, 2007, pages 260 - 268, XP022314570 *
IPINZA, J. ET AL., LIXIVIACION DE MINERALES DE CALCOPIRITA Y ENARGITA EN MEDIO CLORURO DE SODIO-ACIDO SULFURICO, XP055568873, Retrieved from the Internet <URL:https://docplayer.es/1 0992634-Lixiviacion-de-minerales-de-calco pirita-y-enargita-en-medía-cloruro-de-sodio-acido-sulfurico-jorge-i pinza-juan-flaquer.html> [retrieved on 20181029] *
PATINO, E.: "NUEVO METODO DE EXTRACCION DE METALES DESDE MATRIALES REFRACTARIOS / COMPLEJOS", January 2017 (2017-01-01), pages 1 - 21, XP055666543, Retrieved from the Internet <URL:https://www.camara.cl/pdf.aspx? prmlD=32594&prmTIPO=ACTACOMISION> [retrieved on 20181029] *
See also references of EP3715481A4
SIMPSON, J. ET AL., ESTUDIO DE LIXIVIACION DE MINERALES DE COBRE OXIDADOS PARA UNA PLANTA DE 1200 TPD, 2016, XP055574456, Retrieved from the Internet <URL:https://docplayer.es/13877125-Estudio-de-lixiviacion-de-minerales-de-cobre-oxidados-para-una-planta-de-1200-tpd.html> [retrieved on 20181029] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595456A (zh) * 2022-10-14 2023-01-13 江西理工大学(Cn) 一种废旧钴酸锂电池正极材料低温硫化焙烧提锂的方法
CN115595456B (zh) * 2022-10-14 2023-10-27 江西理工大学 一种废旧钴酸锂电池正极材料低温硫化焙烧提锂的方法

Also Published As

Publication number Publication date
US11492681B2 (en) 2022-11-08
US20200224291A1 (en) 2020-07-16
EP3715481A4 (en) 2023-03-15
CL2017001777A1 (es) 2018-06-29
EA202090237A1 (ru) 2021-01-28
CN111148851A (zh) 2020-05-12
EP3715481A1 (en) 2020-09-30
CA3068877A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
Watling Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options
Toro et al. Dissolution of pure chalcopyrite with manganese nodules and waste water
Wang Copper leaching from chalcopyrite concentrates
Kordosky Copper recovery using leach/solvent extraction/electrowinning technology: Forty years of innovation, 2.2 million tonnes of copper annually
Sparrow et al. Cyanide and other lixiviant leaching systems for gold with some practical applications
ES2466265T3 (es) Procedimiento para la extracción de níquel, cobalto y otros metales base a partir de menas de laterita mediante lixiviado en pila y productos que contienen níquel, cobalto y otros metales procedentes de menas de laterita
Wang et al. Copper sulfides leaching assisted by acidic seawater-based media: Ionic strength and mechanism
ES2540077T3 (es) Procedimiento para lixiviar óxido de cobre reemplazando ácido sulfúrico por un agente orgánico lixiviante no contaminante
ES2765678T3 (es) Lixiviación de minerales
ES2254863T3 (es) Procedimiento para aglutinar concentrados de cobre en una gravera, para ser lixiviados posteriormente en un lecho no inundado, al cual se añaden una solucion aglutinante que contiene cloruro de calcio y una segunda solucion que contiene ion sulfato.
Safarzadeh et al. An update to “recent trends in the processing of enargite concentrates”
WO2019006568A1 (es) Método de extracción de metales base y preciosos mediante un pre tratamiento conducente a la solubilización de sus matrices refractarias 0 hypex-goldest
WO2015042729A9 (es) Proceso para preparar un reactivo nitrato férrico a partir de una solución de refino de cobre y el uso de este reactivo en la lixiviación y/o curado de sustancias de cobre de especies sulfuradas
WO2015143574A1 (es) Proceso para recuperar cobre, molibdeno y otros metales desde escorias de fundición
CN107208176A (zh) 堆浸方法
Herreros et al. Dissolution kinetics of copper, white metal and natural chalcocite in Cl2/Cl− media
EP1559799B1 (en) Procedure to leach copper concentrates, under pressure and at ambient temperature, by forming a reactive gel in a sulfate-chloride medium
WO2015178752A1 (es) Proceso hidrometalurgico para la recuperación de cobre, plomo y/o zinc
CN100404705C (zh) 一种利用微生物提取金属铜的方法及其应用
WO2019193403A1 (es) Procedimiento para la solubilización de metales de cobre metalogénicamente primario a partir de minerales y/o concentrados calcopiríticos que lo contienen
Aghazadeh et al. Bioleaching of zinc, copper and antimony from a tetrahedrite concentrate using acidophilic microorganisms
Akretche et al. Selective leaching of a polymetallic complex ore by sulphuric acid and thiourea mixed with sea water
US20230203618A1 (en) Oxidative heap leaching of base metals
ES2362985T3 (es) Método para producir concentrados.
RU2336343C1 (ru) Способ извлечения металлов из комплексных руд, содержащих благородные металлы

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3068877

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018827508

Country of ref document: EP

Effective date: 20200205