WO2019004439A1 - Rfic chip-equipped product - Google Patents

Rfic chip-equipped product Download PDF

Info

Publication number
WO2019004439A1
WO2019004439A1 PCT/JP2018/024848 JP2018024848W WO2019004439A1 WO 2019004439 A1 WO2019004439 A1 WO 2019004439A1 JP 2018024848 W JP2018024848 W JP 2018024848W WO 2019004439 A1 WO2019004439 A1 WO 2019004439A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil conductor
rfic
electrode
ground electrode
metal surface
Prior art date
Application number
PCT/JP2018/024848
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 登
哲平 三浦
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018562272A priority Critical patent/JP6508441B1/en
Publication of WO2019004439A1 publication Critical patent/WO2019004439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present invention relates to an article provided with an RFIC chip in which an RFIC (Radio-Frequency Integrated Circuit) chip is provided on an article at least a part of which is made of a metal, and the metal surface of the article is used as an antenna.
  • RFIC Radio-Frequency Integrated Circuit
  • a wireless communication tag provided with an RFIC chip storing various information related to the article is attached to the article or a container (package) of the article, etc.
  • an RFID system Radio Frequency Identification System
  • Patent Documents 1 to 3 As an article management system using an RFID system using a metal surface of an article as an antenna, for example, there are configurations disclosed in Patent Documents 1 to 3.
  • a feeding circuit substrate provided with a wireless IC chip and incorporating a resonant circuit is electromagnetically coupled to a metal object, and the metal surface of the metal object is an antenna (radiation plate) It functions as
  • the printed circuit board with the wireless IC chip of Patent Document 3 has a configuration in which the resonant circuit of the feeding circuit board on which the wireless IC chip is mounted and the loop electrode are electrically connected by electromagnetic field coupling, power (energy Also in terms of the transmission efficiency of), it was not sufficient.
  • FIG. 17 is a perspective view schematically showing a configuration of a coil conductor and the like on a feed circuit substrate of the RFIC module in the fourth embodiment.
  • a perspective view showing an enlarged part of a printed circuit board with an RFIC chip of a modification of the fourth embodiment The figure which shows the state in which the RFIC module was mounted in the grand electrode in the modification of Embodiment 4.
  • FIG. 17 is a perspective view schematically showing a configuration of a coil conductor and the like on a feed circuit board of the RFIC module according to a seventh embodiment of the present invention
  • An article with an RFIC chip according to the first aspect of the present invention is An article having a metal surface; A coil conductor having a loop surface facing the metal surface; An RFIC chip having first and second input / output terminals respectively connected to one end and the other end of the coil conductor; and one point in the middle of the coil conductor and one point near the edge of the metal surface are DC
  • a magnetic flux passing portion through which the magnetic flux from the coil conductor passes is disposed in a region overlapping with the loop surface of the coil conductor in plan view.
  • the RFIC chip attached article according to the second aspect of the present invention is characterized in that one point in the middle of the coil conductor electrically connected directly to the metal surface in the first aspect is approximately the electrical length of the coil conductor. The position of the middle point may be used.
  • the RFIC chip attached article according to the third aspect of the present invention is characterized in that one point of the metal surface electrically connected directly to the coil conductor of the first or second aspect is the surface of the coil conductor in plan view. It may be located directly below.
  • the article with an RFIC chip according to the seventh aspect of the present invention may be made of a material through which magnetic flux passes, in the magnetic flux passing portion according to any one of the first to fifth aspects.
  • the RFIC chip attached article according to an eighth aspect of the present invention is the article according to any one of the first to seventh aspects, wherein the coil conductor includes a plurality of points including the middle point of the coil conductor.
  • the plurality of points near the edge of the metal surface, including one point near the edge of the metal surface, may be DC connected.
  • the coil conductor and the RFIC chip may be modularized as an RFIC module,
  • the RFIC module may include an electrode interposed between the coil conductor and the metal surface, and connecting the coil conductor and the metal surface in a direct current manner.
  • the article with an RFIC chip according to a tenth aspect of the present invention is configured such that the metal surface is an antenna and the UHF band is a communication frequency in any one of the first to ninth aspects. It is also good.
  • FIG. 1 is an enlarged perspective view showing a part (ground electrode portion) of a printed wiring board 100 which is an article with an RFIC chip according to a first embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of the RFIC module 10 in the printed wiring board 100 with an RFIC chip of the first embodiment.
  • FIG. 1 shows that the RFIC module 10 including the RFIC chip 1 is mounted on the ground electrode 3.
  • the ground electrode 3 is a metal and serves as an antenna.
  • the RFIC module 10 is an RFID device for performing wireless communication (transmission and reception) with the UHF band as a communication frequency (carrier frequency), and a feeding circuit board 2 having an RFIC chip 1 for processing RFID signals and a coil conductor 4 (see FIG. 2). And.
  • the feeder circuit board 2 is configured by laminating a plurality of sheets formed of dielectrics, and a conductor pattern is formed on each sheet.
  • the conductor patterns formed on the respective sheets are connected by via hole conductors penetrating the respective sheets, whereby a coil conductor 4 to be an inductor element is formed inside the feeder circuit board 2.
  • One end and the other end of the coil conductor 4 are connected to the first input / output terminal 1a and the second input / output terminal 1b provided in the RFIC chip 1, respectively.
  • the RFIC module 10 is provided at the edge of the metal surface (surface) 3 a of the ground electrode 3.
  • a slit 3 b and an opening 3 c connected to the slit 3 b are formed at the edge of the ground electrode 3 provided with the RFIC module 10.
  • the RFIC module 10 is disposed to cover the slit 3 b and the opening 3 c of the ground electrode 3.
  • a direct current connection is made to the ground electrode 3 at one point in the middle of the coil conductor 4 of the feed circuit board 2.
  • One point (connection point) of the coil conductor 4 connected to the ground electrode 3 in a direct current manner is a middle point of the coil conductor 4 (a point between these except for one end and the other end).
  • the middle one point of the coil conductor 4 is closer to the middle point of the electrical length of the coil conductor 4 which is the current maximum point in the coil conductor 4 than the one end and the other end of the coil conductor.
  • the middle point of the coil conductor 4 is preferably the middle point of the electrical length of the coil conductor 4 which is the maximum current point in the coil conductor 4.
  • the direct-current connection state refers to a connection state in which direct current can actually flow without connection via electrostatic capacitance or connection by electromagnetic field coupling.
  • electrically connected state includes not only direct current connection but also connection via electrostatic capacitance, and connection by electromagnetic field coupling.
  • the ground electrode 3 is connected to the coil conductor 4 in a direct current manner (DC connection)
  • one point near the edge of the ground electrode 3 is preferable. This is because the high frequency current has the property of flowing along the surface near the edge of the ground electrode 3. That is, in the vicinity of the edge of the ground electrode 3, in the ground electrode 3 functioning as an antenna by the RFIC module 10, a region in which a high frequency current substantially flows is provided.
  • FIG. 3A is an exploded perspective view showing the configuration of the RFIC module 10 in the first embodiment
  • FIG. 3B is a perspective view schematically showing the configuration of the coil conductor 4 and the like in the feed circuit board 2.
  • the RFIC chip 1 mounted on the feeder circuit substrate 2 has a structure in which various elements are incorporated in a semiconductor substrate made of a semiconductor such as silicon.
  • the RFIC chip 1 includes a clock circuit, a logic circuit, a memory circuit, etc., and necessary information is recorded, and a first input / output terminal provided on the back surface (the surface facing the feeding circuit board 2 in FIG. 3A) Signals indicating various information are input and output by 1a and the second input / output terminal 1b.
  • the feeder circuit board 2 on which the RFIC chip 1 is mounted is formed by laminating, pressing, and firing a plurality of sheets formed of dielectric materials.
  • a predetermined electrode pattern and a via hole conductor are formed on each sheet constituting the feeder circuit board 2, and the feeder circuit board 2 includes the front electrodes 8a and 8b, the coil conductor 4 serving as an inductor element, and the back electrodes 9a and 9b. , 9c, 9d.
  • a pair of front surface electrodes 8a and 8b are provided on the upper surface (a surface facing the RFIC chip 1) of the feeding circuit substrate 2, and the pair of first input / output of the RFIC chip 1 described above.
  • the terminal 1a and the second input / output terminal 1b are connected in a direct current manner (DC connection).
  • the coil conductor 4 is formed in the inside of the feeder circuit board 2 of multilayer structure.
  • the coil conductor 4 is an inductor element constituted by the first loop electrode 4a, the second loop electrode 4b and the third loop electrode 4c formed in each layer, and the via hole conductors 6a, 6b, 6c, 6d connected to these. .
  • One end (end of the via hole conductor 6a) of the coil conductor 4 is connected to one surface electrode 8a, and the other end (end of the via hole conductor 6d) is connected to the other surface electrode 8b.
  • Each of the loop electrodes 4a, 4b and 4c constituting the coil conductor 4 has a substantially square frame shape in a plan view, and has a substantially square loop surface.
  • the term "loop surface” as used herein refers to a plane that includes the loop electrode itself and an opening (loop opening) substantially surrounded by the loop electrode.
  • a planar view means the case where it sees from the upper direction in the direction orthogonal to the layer surface in the feeder circuit board 2 of the multilayer structure shown to FIG. 3B. Therefore, the loop shape of each of the loop electrodes 4a, 4b, and 4c is a substantially square frame shape in plan view, and the loop surfaces of the loop electrodes overlap in plan view.
  • surface electrodes 8a and 8b, loop electrodes 4a, 4b and 4c, and via hole conductors 6a, 6b, 6c and 6d are connected to first via hole conductor 6a from first surface electrode 8a.
  • the first loop electrode 4a, the second via hole conductor 6b, the second loop electrode 4b, the third via hole conductor 6c, the third loop electrode 4c, the fourth via hole conductor 6d, and the second surface electrode 8b are connected in this order.
  • the coil conductor 4 serving as an inductor element configured as described above is connected to the pair of surface electrodes 8a and 8b.
  • back surface electrodes 9a, 9b, 9c, and 9d are provided on the lower surface (back surface) of the feed circuit substrate 2.
  • the back surface electrodes 9a, 9b, 9c and 9d are formed independently at four corners of the feeder circuit board 2 which is a square in plan view.
  • the back surface electrodes 9a, 9b, 9c, 9d are disposed in regions immediately below the four corners of the coil conductor 4 having a square frame shape in a plan view, and the shape has an L-shape bent substantially at a right angle ing.
  • Each of back surface electrodes 9a, 9b, 9c, and 9d in the first embodiment is arranged symmetrically with respect to the center point of the back surface of feed circuit board 2. For this reason, when the RFIC module 10 is mounted on the ground electrode 3 of the printed wiring board, it is possible to ease the positional restriction on the direction (direction) of the RFIC module 10 with respect to the ground electrode 3.
  • back surface electrodes (9a, 9b, 9c, 9d) are provided. However, only one back surface electrode (9a) is connected to coil conductor 4 in a direct current manner. Because of this, the remaining three back electrodes (9b, 9c, 9d) are dummy electrodes. Therefore, in the configuration of the first embodiment, at least one back electrode (9a) may be provided.
  • the first back surface electrode 9 a is electrically connected to the position of the substantially middle point of the electrical length in the coil conductor 4 in a direct current manner.
  • FIGS. 4A to 4C are diagrams showing the positional relationship between the ground electrode 3 of the printed wiring board 100 on which the RFIC module 10 is mounted and the RFIC module 10.
  • FIG. 4A shows the slit 3 b and the opening 3 c in the ground electrode 3 on which the RFIC module 10 is mounted.
  • FIG. 4B shows the positional relationship between the coil conductor 4 and the back surface electrodes 9a to 9d in the RFIC module 10.
  • FIG. 4C shows a state in which the RFIC module 10 is mounted on the ground electrode 3.
  • the coil conductor 4 and the back surface electrodes 9a to 9d of the feeding circuit substrate 2 in the RFIC module 10 are shown, and the illustration of the RFIC chip 1 is omitted.
  • the slit part 3b and the opening part 3c are formed in the position where the RFIC module 10 of the metal surface 3a in the ground electrode 3 which is a metal surface of articles
  • the slit portion 3 b is a gap extending inward from the edge of the ground electrode 3, and an opening 3 c is formed at a tip portion inside the gap.
  • the opening 3 c has a shape disposed inside the coil conductor 4 of the feed circuit board 2, and is formed at a position through which a magnetic field (magnetic flux) generated by the excited coil conductor 4 passes. That is, the slit portion 3 b and the opening 3 c in the ground electrode 3 are magnetic flux passing portions which are non-metal portions.
  • a resist pattern 7 is formed on the metal surface 3a of the ground electrode 3, and the resist openings 7a, 7b, 7c are removed only at positions facing the back surface electrodes 9a to 9d of the feed circuit substrate 2. 7d is formed. That is, the back surface electrodes 9a to 9d of the feeder circuit board 2 are connected to the ground electrode 3 in a direct current manner reliably through the resist openings 7a, 7b, 7c, 7d.
  • the RFIC module 10 is disposed such that the edge portion thereof is in contact with the edge of the ground electrode 3, and the slit portion 3 b and the opening 3 c of the ground electrode 3 are feed circuit boards of the RFIC module 10. It is almost covered by 2. That is, a magnetic flux passing portion (3b, 3c) through which a magnetic field (magnetic flux) generated by the excited coil conductor 4 passes is disposed in a region overlapping the loop surface of the coil conductor 4 of the feed circuit board 2 in plan view.
  • the resist openings 7a, 7b, 7c, 7d formed in the metal surface 3a of the ground electrode 3 are surely provided to the back surface electrodes 9a to 9d disposed immediately below the coil conductor 4 of the feed circuit board 2 in plan view. It is in the state of being positioned. Therefore, the magnetic field (magnetic flux) generated by the coil conductor 4 passes through the opening 3 c which is a magnetic flux passing portion disposed inside the coil conductor 4. In the metal surface 3a of the ground electrode 3, since the edge of the opening 3c is divided by the slit 3b, the generation of the loop current around the opening 3c is suppressed.
  • the magnetic flux passing portion of the slit portion 3b and the opening 3c formed in the ground electrode 3 is described as the opening portion, but as described above, the magnetic flux passing portion has a configuration in which the magnetic field (magnetic flux) passes through.
  • the magnetic flux passing portion (slit portion 3b and the opening 3c) may be made of a material (for example, a resin material) through which a magnetic field (magnetic flux) passes.
  • the first back surface electrode 9 a of the feeder circuit substrate 2 of the RFIC module 10 is connected through the connection line 5 at one point of the second loop electrode 4 b located in the middle of the coil conductor 4.
  • the first back surface electrode 9a is connected to the metal surface 3a of the ground electrode 3 exposed through one resist opening (first resist opening 7a) in a direct current manner via a conductive paste.
  • the middle point of the coil conductor 4 in the feeder circuit board 2 of the RFIC module 10 is located directly below the coil conductor 4 in the ground electrode 3 via the first back electrode 9a.
  • the position directly below the coil conductor in the ground electrode 3 means immediately below the loop electrode of the coil conductor and immediately below the loop opening. That is, the middle point of the coil conductor 4 in the feed circuit board 2 is connected in a direct current manner in a region near the edge of the ground electrode 3.
  • the area in the vicinity of the edge of the ground electrode 3 means the module mounting surface area in which the RFIC module is disposed in the ground electrode 3 or the ground in the state where the RFIC module 10 is mounted on the edge portion of the ground electrode 3 This refers to the area from the edge of the electrode 3 to the module mounting surface area.
  • the RFIC module 10 can receive signals by the high frequency current flowing through the edge thereof.
  • the coil conductor 4 of the feeder circuit board 2 in the first embodiment includes one coil-shaped portion, and the central axis of the coil is disposed in the vertical direction (vertical direction in FIG. 3B).
  • the coil conductor according to the embodiment of the present invention is not limited to such a configuration.
  • FIG. 5 is a schematic diagram which shows the modification of the coil conductor (40) in a feed circuit board (20).
  • the coil conductor 40 of the feed circuit board 20 is composed of two coiled parts 4A and 4B.
  • the two coiled parts 4A, 4B are juxtaposed and electrically connected in series.
  • the coil central axes of the two coiled parts 4A and 4B are parallel to each other and extend in the longitudinal direction.
  • the series connection position where the two coil-shaped portions 4A and 4B are connected in series with each other is DC-connected to the back surface electrode 9a via the connection wire 5, that is, the coil The middle point of the conductor 40 and the back electrode 9a are connected.
  • the other coiled part is formed in one coiled part so that the respective coil central axes overlap. It may be arranged. That is, in the configuration of the present invention, as the configuration of the coil conductor (4, 40) in the feed circuit substrate (2, 20), the coil conductor (4, 40) in the feed circuit substrate (2, 20) of the laminated structure It is sufficient if it has a configuration in which the substantially midpoint of the electrical length and the back surface electrode (9a) can be connected in a direct current manner via the connection line (5).
  • the approximate midpoint of the coil conductor (more preferably, the midpoint of the electrical length) of the coil conductor of the feeding circuit board 2 of the RFIC module 10 is used as an antenna.
  • Direct current connection (DC connection) is made at a specific position (one point) of the ground electrode 3 to be the radiation plate).
  • the printed wiring board 100 according to the first embodiment is configured to have a high degree of freedom of attachment and a high power transfer efficiency, and can be configured to be further reduced in size, weight and cost.
  • the printed wiring board which is an article with an RFIC chip of Embodiment 2 concerning the present invention is explained.
  • the printed wiring board of the second embodiment will be described focusing on differences from the printed wiring board 100 of the first embodiment.
  • elements having the same configurations, operations and functions as the first embodiment described above are denoted by the same reference numerals, and the description may be omitted to avoid redundant description.
  • the difference between the printed wiring board with the RFIC chip of the second embodiment and the printed wiring board 100 of the first embodiment is that the RFIC module (10A) including the RFIC chip 1 with respect to the ground electrode (3A) of the printed wiring board. It is a setting position.
  • the RFIC module (10A) in the second embodiment has substantially the same configuration as the RFIC module 10 in the first embodiment, the back electrode (19A) formed on the back surface of the feeder circuit board (12) is It is different in that it is one and its shape is quadrangular (substantially square).
  • the printed wiring board of the second embodiment is a radio frequency signal having a communication frequency (carrier frequency) in the UHF band by the RFIC module (10A) using the ground electrode (3A) as an antenna. It is configured to communicate, and configured to be capable of wireless communication in a wide frequency band.
  • FIG. 6 is a perspective view showing a mounting position of an RFIC module 10A mounted on the ground electrode 3A by enlarging a part of the printed wiring board with the RFIC chip of the second embodiment.
  • the article is a printed wiring board, and the metal in the article is the ground electrode 3A.
  • the RFIC module 10A is mounted on the edge of the metal surface 3Aa of the flat ground electrode 3A.
  • FIG. 7 is a plan view showing a state in which the RFIC module 10A is mounted on the edge of the metal surface 3Aa of the ground electrode 3A.
  • the coil conductor 4 and the back surface electrode 19A of the feeder circuit substrate 12 in the RFIC module 10A are shown, and the illustration of the RFIC chip 1 is omitted.
  • the coil conductor 4 of the feed circuit board 12 is disposed so as to protrude from the edge of the ground electrode 3A. In other words, a part of the coil conductor 4 of the feed circuit board 12 is disposed on the ground electrode 3A, and the remaining part of the coil conductor 4 is disposed at a position deviated from the ground electrode 3A.
  • the magnetic field (magnetic flux) generated by the excited coil conductor 4 passes through the region out of the metal surface 3Aa of the ground electrode 3A. That is, the loop surface of the coil conductor 4 is disposed so as to overlap the edge of the metal surface 3Aa in plan view, and a part of the loop surface of the coil conductor 4 overlaps the magnetic flux passing portion in plan view.
  • the remaining portion of the coil conductor 4 disposed at a position deviated from the ground electrode 3A may be configured to protrude from the ground electrode 3A, but a material (for example, a resin material) through which a magnetic field (magnetic flux) passes.
  • the remaining portion of the coil conductor 4 may be supported by a member made of a material through which a magnetic field (magnetic flux) passes, provided so as to be flush with 3A.
  • the back surface electrode formed on the back surface of feed circuit board 12 may be provided at the four corners of the back surface of feed circuit board 12 as in the configuration of the first embodiment described above.
  • the portion through which the magnetic field (magnetic flux) of the excited coil conductor 4 passes is the magnetic flux passing portion which is a nonmetal portion.
  • the approximate midpoint of the coil conductor 4 of the feed circuit board 12 (more preferably, the midpoint of the electrical length) is DC near the edge of the ground electrode 3A. Connected. For this reason, the high frequency current from the excited coil conductor 4 flows along the edge of the ground electrode 3A, and the ground electrode 3A functions as a transmission antenna. On the contrary, in the ground electrode 3A functioning as a receiving antenna, the RFIC module 10A can receive signals by the high frequency current flowing through the edge of the metal surface 3Aa.
  • connection line 5 In the configuration of coil conductor 4 of feed circuit substrate 12 in the second embodiment, two coil-shaped portions juxtaposed as shown in FIG. 5 described above are connected in series, and the serial connection point and back surface electrode 9A May be connected in a direct current manner by the connection line 5.
  • the approximate midpoint (more preferably, the midpoint of the electrical length) of the coil conductor 4 of the feeding circuit board 2 of the RFIC module 10A is used as an antenna It is a structure connected in a direct-current manner (DC connection) at one place near the edge of the ground electrode 3A to be a radiation plate).
  • the printed wiring board of the second embodiment has a configuration with high degree of freedom of attachment and power transfer efficiency, and can achieve further downsizing, weight reduction and cost reduction.
  • the printed wiring board with RFIC chip of the third embodiment differs from the printed wiring board of the first embodiment in the shape of the ground electrode (3B) of the printed wiring board and the RFIC chip 1 corresponding to the ground electrode (3B). It is an arrangement position of the RFIC module (10A) provided.
  • the RFIC module (10A) in the third embodiment has substantially the same configuration as the RFIC module 10A in the second embodiment.
  • the printed wiring board of the third embodiment has the communication frequency (carrier frequency) in the UHF band by the RFIC module (10A) using the ground electrode (3B) as an antenna, as in the configurations of the first embodiment and the second embodiment. It is configured to perform wireless communication with a high frequency signal that it has, and is configured to enable wireless communication in a wide frequency band.
  • FIG. 8 is a perspective view showing a mounting position of an RFIC module 10A mounted on a ground electrode 3B by enlarging a part of the printed wiring board with an RFIC chip of the third embodiment.
  • the article is a printed wiring board, and the metal in the article is the ground electrode 3B.
  • the RFIC module 10A is mounted on the edge of the metal surface 3Ba of the flat ground electrode 3B.
  • a slit portion 3Bb as a magnetic flux passing portion is formed on the metal surface 3Ba of the ground electrode 3B on which the RFIC module 10A is mounted.
  • the slit portion 3Bb has a gap shape extending inward from the edge of the ground electrode 3B, and the RFIC module 10A is mounted so as to straddle the slit portion 3Bb.
  • FIG. 9 is a plan view showing a state in which the RFIC module 10A is mounted on the edge of the metal surface 3Ba of the ground electrode 3B.
  • the coil conductor 4 and the back surface electrode 19A of the feeder circuit substrate 12 in the RFIC module 10A are shown, and the illustration of the RFIC chip 1 is omitted.
  • the coil conductor 4 of the feed circuit board 12 is disposed so as to protrude from the edge of the ground electrode 3B.
  • a part of the coil conductor 4 of the feeding circuit board 12 is disposed on the ground electrode 3B, and the remaining part of the coil conductor 4 is disposed at a position deviated from the ground electrode 3B.
  • the magnetic field (magnetic flux) generated by the excited coil conductor 4 passes through the region out of the metal surface 3Ba of the ground electrode 3B. That is, the loop surface of the coil conductor 4 is disposed so as to overlap the edge of the metal surface 3Ba in plan view, and a part of the loop surface of the coil conductor 4 overlaps the magnetic flux passing portion in plan view.
  • the feeder circuit board 12 of the RFIC module 10A is disposed so as to straddle the slit portion 3Bb formed on the metal surface 3Ba of the ground electrode 3B. That is, a part of the slit including the edge portion of the slit portion 3Bb extended from the edge of the ground electrode 3B intersects with the coil conductor 4 of the feed circuit substrate 12 in a plan view. Therefore, the region of the tip portion (inner portion) of the slit portion 3Bb extended from the edge of the ground electrode 3B is a region out of the module mounting surface region of the RFIC module 10A.
  • connection point connected in a direct current manner to the approximate midpoint of coil conductor 4 of feed circuit board 12 via connection line 5 and back surface electrode 19A is slit portion 3Bb at ground electrode 3B. It is near the edge of the area of one side divided by. That is, the substantially middle point of the coil conductor 4 is connected in a direct current manner via the connection line 5 and the back surface electrode 19A in the module mounting surface area near the edge of the ground electrode 3B.
  • the magnetic field (magnetic flux) generated by the excited coil conductor 4 in the feed circuit board 12 passes through the region out of the metal surface 3Ba of the ground electrode 3B in plan view. Since the slit portion 3Bb is formed in the module mounting surface area of the RFIC module 10A in the ground electrode 3B, the flow of current that degrades the power transfer efficiency in the module mounting surface area is suppressed.
  • the substantially middle point of the coil conductor 4 of the feeding circuit board 12 is DC connected near the edge of the ground electrode 3B and is connected to the ground electrode 3B. It has the structure which provided slit part 3Bb. Therefore, the high frequency current from the excited coil conductor 4 flows along the edge of the ground electrode 3B, and the ground electrode 3B functions as a transmitting antenna. On the contrary, in the ground electrode 3B functioning as a receiving antenna, the RFIC module 10A can receive signals by the high frequency current flowing through the edge portion of the metal surface 3Ba.
  • substantially the middle point of the coil conductor 4 of the feeding circuit board 12 of the RFIC module 10A (more preferably, middle point of electrical length) Are connected in a direct current manner (DC connection) at one place near the edge of the ground electrode 3B to be an antenna (radiation plate).
  • the printed wiring board of the third embodiment has a high degree of freedom of attachment, and has a configuration with higher power transfer efficiency, and can achieve downsizing, weight reduction, and cost reduction.
  • a metal is described as a ground electrode using a printed wiring board as an article with an RFIC chip, but a metal is used as an antenna as an article with an RFIC chip of the present invention. It is possible to apply to various articles which can
  • FIG. 10 shows an example of application of the article with an RFIC chip according to the present invention, which is an example used for the forceps 100 which is a metallic surgical tool which is a small accessory made of steel as the article.
  • a mounting surface 100a on which the RFIC module 101 is mounted is provided on one of the handles of the forceps 100 in which finger holes are formed.
  • the mounting surface 100a which becomes a metal surface provided in the insulator 100 is flat-plate circular [planar view], and the slit part 100b is formed in the part.
  • FIG. 10 shows a part of the forceps 100 and is a plan view showing a state in which the RFIC module 101 is mounted on the forceps 100. Further, FIG. 10 shows a state in which the RFIC module 101 having a circular plan view is mounted on the mounting surface 100 a of the forceps 100.
  • a dotted circle P indicates that the middle point of the coil conductor 102 provided in the RFIC module 101 is connected to the mounting surface 100a in a direct current manner.
  • the mounting position of the mounting surface 100a to which the middle point of the coil conductor 102 is connected in a direct current manner is directly below the module mounting surface area of the coil conductor 102 in plan view and near the outer edge of the mounting surface 100a. Position of the
  • the coil conductor 102 in the RFIC module 101 is disposed to intersect the slit portion 100 b which is a magnetic flux passing portion in plan view. As a result, the magnetic field (magnetic flux) generated by the excited coil conductor 102 passes through the slit portion 100 b.
  • a circular RFIC module 101 having a diameter smaller than that of the mounting surface 100a is concentrically mounted on the circular mounting surface 100a.
  • the configuration described in 3 is also applicable. That is, as described in the first embodiment, in addition to the slit portion (3b), the opening portion (3c) is formed, and the coil conductor (102) is disposed to surround the opening portion in plan view. (See FIG. 1). Further, as described in the second embodiment, as a configuration in which a part of the mounting surface (100a) is a metal surface, a magnetic field (magnetic flux) generated in the excited coil conductor (102) passes through the mounting surface (100a) (See FIG. 7). Furthermore, as described in the third embodiment, a part of the attachment surface (100a) may be formed of a metal surface, and a slit portion (3Bb) may be provided on the metal surface (see FIG. 9).
  • the magnetic flux passing portion formed on the ground electrode in the printed wiring board and through which the magnetic flux generated from the coil conductor of the RFIC module passes may be in a form other than the magnetic flux passing portion in the first to third embodiments described above.
  • FIG. 11 is an enlarged perspective view of a part of the printed wiring board with an RFIC chip of the fourth embodiment and a mounting position of the RFIC module mounted on the ground electrode.
  • FIG. 12 is a diagram showing the RFIC module mounted on the ground electrode.
  • FIG. 13 is a perspective view schematically showing the configuration of a coil conductor and the like on the feed circuit board of the RFIC module.
  • the ground electrode 3C in the printed wiring board is recessed inwardly from an end face 3Cb of the ground electrode 3C as a magnetic flux passing portion, and has a V-shaped notch 3Cc in plan view. Further, an L-shaped resist opening 17 provided along the notch 3Cc is formed in the ground electrode 3C.
  • the RFIC module 10B is mounted on the metal surface 3Ca (a resist pattern on the metal surface 3Ca) of the ground electrode 3C so that a part of the RFIC module 10B covers the notch 3Cc.
  • the feeder circuit board 22 of the RFIC module 10B is provided with a back electrode 29 different from the above-described first to third embodiments.
  • the feeder circuit board 22 includes two L-shaped back surface electrodes 29a and 29b having different sizes.
  • the back surface electrode 29 a has a size larger than that of the back surface electrode 29 b, and is connected to a substantially middle point of the coil conductor 4 via the connection line 5.
  • the smaller back electrode 29b is a dummy electrode.
  • the back surface electrodes 29a and 29b face each other in the diagonal direction of the feed circuit board 22 in plan view.
  • the back surface electrode 29a of the feeding circuit substrate 22 is connected to the metal surface 3Ca of the ground electrode 3C exposed through the resist opening 17 in a direct current manner via a conductive paste.
  • Such an RFIC module 10B can also be mounted on a ground electrode different from the ground electrode 3C provided with the V-shaped notch 3Cc.
  • FIG. 14 is an enlarged perspective view showing a part of a printed wiring board with an RFIC chip of a modification of the fourth embodiment.
  • FIG. 15 is a diagram showing the RFIC module mounted on the ground electrode.
  • the ground electrode 3D of the printed wiring board is provided with a slit portion 3Db and an opening 3Dc in the same manner as the ground electrode 3 of the first embodiment described above.
  • Two L-shaped resist openings 27a and 27b having different sizes are formed to face each other with the opening 3Dc interposed therebetween.
  • the back surface electrode 29a of the feeder circuit board 22 of the RFIC module 10B is connected to the metal surface 3Da of the ground electrode 3D exposed through the larger resist opening 27a in a direct current manner via the conductive paste.
  • one back surface electrode connected to the coil conductor of the feeding circuit substrate of the RFIC module is DC connected to the metal surface of the ground electrode exposed through one resist opening Being connected to the ground electrode at one point.
  • the embodiment of the present invention is not limited to this.
  • FIG. 16 is a perspective view showing a mounting position of an RFIC module mounted on a ground electrode by enlarging a part of a printed wiring board with an RFIC chip of the fifth embodiment.
  • the RFIC module is the RFIC module 10B of the fourth embodiment described above, and the ground electrode is the ground of the first embodiment described above. It is an electrode 3.
  • the larger back electrode 29a (see FIG. 13) of the feeding circuit substrate 22 of the RFIC module 10B is formed on the metal surface 3a of the ground electrode 3 exposed through the three resist openings 7a, 7c and 7d. It is connected in direct current. That is, the back surface electrode 29 a is connected to the coil conductor 4 at one point, and is connected to the ground electrode 3 at three points.
  • the back surface electrode 29a is connected to the ground electrode 3 at multiple points, a larger current can flow more reliably between the ground electrode 3 and the back surface electrode 29a as compared with the case where the connection is made at one point.
  • the contact resistance is increased due to manufacturing variations, the current flowing between the ground electrode 3 and the back electrode 29a decreases. That is, as the variation in contact resistance increases, the variation in current also increases.
  • the ground electrode 3 and the back surface electrode 29a are connected at many points, even if the contact resistance at some points is increased, the current is not changed through the remaining points. It can flow. Therefore, even if the variation in the contact resistance at some points becomes large, the variation in the current flowing between the ground electrode 3 and the back surface electrode 29a is small.
  • FIG. 17 is a perspective view showing a part of the printed circuit board with an RFIC chip of the modification of the fifth embodiment in an enlarged manner.
  • the ground electrode 3E has a V-shaped notch, like the ground electrode 3C of the fourth embodiment shown in FIG. A unit 3Ec is provided.
  • the ground electrode 3E is formed with three resist openings 27a, 27b and 27c provided along the notch 3Ec.
  • the resist opening 27a is provided in the vicinity of the top of the V-shaped notch 3Ec.
  • the remaining resist openings 27b and 27c are provided between the end face 3Eb of the notch 3Ec.
  • the larger back electrode 29a (see FIG. 13) of the feeder circuit substrate 22 of the RFIC module 10B is connected in a direct current manner to the metal surface 3Ea of the ground electrode 3E exposed through the three resist openings 27a, 27b and 27c. That is, the back surface electrode 29a is connected to the coil conductor 4 at one point, and is connected to the ground electrode 3E at three points.
  • the coil conductor of the feed circuit substrate of the RFIC module is DC-connected to the ground electrode through the back surface electrode at its substantially middle point (preferably the middle point of the electrical length). It is connected.
  • the embodiment of the present invention is not limited to this.
  • FIG. 20 is a perspective view schematically showing a configuration of a coil conductor and the like on a feeder circuit board of the RFIC module according to a modification of the seventh embodiment. This is also a modification of the above-described first embodiment shown in FIG.
  • the bracket-shaped back surface electrode 49 is connected in a direct current manner to the metal surface 3Fa of the ground electrode 3F exposed through the bracket-shaped resist opening 37.
  • the resist opening 37 is formed so as to partially surround the opening 3Fc.
  • the coil conductor of the feed circuit substrate of the RFIC module is connected to the ground electrode through one back surface electrode. It is connected in direct current.
  • the embodiment of the present invention is not limited to this.
  • FIG. 22 is a perspective view schematically showing a configuration of a coil conductor and the like on a feeder circuit board of the RFIC module according to the eighth embodiment.
  • the loop electrode 14c of the coil conductor 14 is connected to the back surface electrode 59a via the connecting wire 45a and via the connecting wire 45b. Is connected to the back electrode 59b. That is, each of the plurality of points (connection points) of the coil conductor 14 is connected to different back surface electrodes 59a and 59b.
  • connection points are one end and the other end of the coil conductor 14 in consideration of the power transfer efficiency. It is preferable to be provided at a position separated by a distance equal to or more than a quarter of the electrical length, ie, a position near the midpoint.
  • FIG. 23 is a perspective view showing a part of the printed wiring board with an RFIC chip of the eighth embodiment in an enlarged manner.
  • one back electrode 59a is connected to metal surface 3Ga of ground electrode 3G exposed through one resist opening 47a in a direct current manner.
  • the other back surface electrode 59b is connected in a direct current manner to the metal surface 3Ga exposed through the other resist opening 47b.
  • the resist openings 47a and 47b are formed to face each other across the opening 3Gc.
  • the printed wiring boards according to the above-described fourth to eighth embodiments and their variations are also configured to have high degree of freedom of installation and power transfer efficiency. Further, the configuration can be achieved to achieve miniaturization, weight reduction and cost reduction.
  • the RFIC chip-attached article of the present invention is simple in various articles which can use a metal surface such as a printed wiring board or a metal tool as an antenna as described in each embodiment. It is possible to construct an RFID system with the configuration.
  • the communication device has a high degree of freedom of attachment to an article, a simple configuration and high power transfer efficiency, and can achieve miniaturization, weight reduction, and cost reduction. .
  • the present invention can be applied to a variety of articles having a metal surface as an article with an RFIC chip, and therefore, the configuration is useful in expanding an article management system using an RFID system.
  • RFIC chip 1 RFIC chip 2 Feed circuit board 3 Ground electrode (metal) 3a Metal surface 3b Slit portion (flux passing portion) 3c opening (magnetic flux passing part) 3d resist opening 4 coil conductor (inductor element) 4a 1st loop electrode 4b 2nd loop electrode 4c 3rd loop electrode 5 connecting wire 6 via conductor 7 resist pattern 7a 1st resist opening 7b 2nd resist opening 7c 3rd resist opening 7d 4th resist opening 8 front surface electrode 8a 1st Surface electrode 8b Second surface electrode 9 Back surface electrode 9a First back surface electrode 9b Second back surface electrode 9c Third back surface electrode 9d Fourth back surface electrode 10 RFIC module 100 Article (printed wiring board, insulator) 101 RFIC module 102 coil conductor

Abstract

An RFIC chip-equipped product which is equipped with a product (100) having a metal surface, a coil conductor (4) having a loop surface that faces the metal surface, and an RFIC chip (1) having first and second input/output terminals which are respectively connected to one end and the other end of the coil conductor, wherein an intermediate point along the coil conductor is DC-connected to a point near the edge of the metal surface, and a magnetic flux passage section through which magnetic flux from the coil conductor passes is positioned in a region which overlaps the loop surface of the coil conductor when seen in a planar view.

Description

RFICチップ付き物品Article with RFIC chip
 本発明は、少なくとも一部が金属物で構成された物品にRFIC(Radio-Frequency Integrated Circuit)チップを設けて、当該物品における金属面をアンテナとして用いるRFICチップ付き物品に関する。 The present invention relates to an article provided with an RFIC chip in which an RFIC (Radio-Frequency Integrated Circuit) chip is provided on an article at least a part of which is made of a metal, and the metal surface of the article is used as an antenna.
 物品の管理システムにおいては、物品やその物品の容器(包装体)などに対して、当該物品に関する各種情報を記憶したRFICチップを備えた無線通信タグを付し、RFICチップに対して非接触方式で通信を行うことにより、当該物品に関する各種情報を入手するRFIDシステム(Radio Frequency Identification System)を利用した構成が提案されている。 In the article management system, a wireless communication tag provided with an RFIC chip storing various information related to the article is attached to the article or a container (package) of the article, etc. There has been proposed a configuration using an RFID system (Radio Frequency Identification System) for acquiring various information related to the article by performing communication.
 物品における金属面をアンテナとしてRFIDシステムを利用した物品管理システムとしては、例えば特許文献1~3に開示された構成がある。特許文献1および特許文献2に開示された構成においては、無線ICチップを備え共振回路を内蔵する給電回路基板が、金属物と電磁界結合し、当該金属物の金属面をアンテナ(放射板)として機能させている。 As an article management system using an RFID system using a metal surface of an article as an antenna, for example, there are configurations disclosed in Patent Documents 1 to 3. In the configurations disclosed in Patent Document 1 and Patent Document 2, a feeding circuit substrate provided with a wireless IC chip and incorporating a resonant circuit is electromagnetically coupled to a metal object, and the metal surface of the metal object is an antenna (radiation plate) It functions as
 また、特許文献3に開示された無線ICチップ付きプリント配線基板は、プリント配線基板の表面に設けたグランド電極の一側部に大きな切欠き部分を設けて、グランド電極の一部分にループ状電極を形成した構成である。特許文献3のプリント配線基板は、そのループ状電極に無線ICチップの端子電極を電気的に接続して、このループ状電極と一体的に形成されたグランド電極をアンテナとして機能させる構成である(特許文献3の図5参照)。また、特許文献3には、無線ICチップが搭載された給電回路基板をグランド電極の一部分に形成されたループ状電極に対して電気的に接続する構成が開示されている。この給電回路基板に内蔵された共振回路が、接続用電極を介してループ状電極と電磁界結合される構成である(特許文献3の図8参照)。この構成においても、ループ状電極と一体的に形成されたグランド電極がアンテナとして機能している。 Further, in the printed circuit board with a wireless IC chip disclosed in Patent Document 3, a large notch is provided on one side of the ground electrode provided on the surface of the printed circuit board, and a loop electrode is provided on a part of the ground electrode. It is the formed structure. The printed wiring board of Patent Document 3 has a configuration in which the loop electrode is electrically connected to the terminal electrode of the wireless IC chip, and the ground electrode integrally formed with the loop electrode functions as an antenna ( Refer FIG. 5 of patent document 3). Further, Patent Document 3 discloses a configuration in which a feeding circuit substrate on which a wireless IC chip is mounted is electrically connected to a loop electrode formed on a part of a ground electrode. The resonance circuit incorporated in the feed circuit substrate is configured to be electromagnetically coupled to the loop electrode through the connection electrode (see FIG. 8 of Patent Document 3). Also in this configuration, the ground electrode formed integrally with the loop electrode functions as an antenna.
特許第5794361号公報Patent No. 5794361 特開2013-13130号公報JP, 2013-13130, A 特許第5769637号公報Patent No. 5769637
 上記のように構成された特許文献1および特許文献2の構成においては、給電回路基板の共振回路が、金属物と電磁界結合により電気的に接続する構成であるため、金属物に対する給電回路基板の取付けは容易なものとなるが、電力(エネルギー)の伝達効率が悪く、無線通信による情報伝達としては十分なものではなかった。 In the configurations of Patent Document 1 and Patent Document 2 configured as described above, the resonant circuit of the feeder circuit substrate is configured to be electrically connected to the metal by electromagnetic field coupling, so the feeder circuit substrate for the metal is Although it is easy to install, the transmission efficiency of power (energy) is poor, and it is not sufficient as information transmission by wireless communication.
 また、特許文献3の無線ICチップ付きプリント配線基板においては、グランド電極の一側部に大きな切欠き部分を設けてループ状電極を形成して整合回路を構成し、無線ICチップとグランド電極とのインピーダンスの整合を図る構成である。このため、特許文献3のプリント配線基板は、整合回路を構成するループ状電極をグランド電極に形成する必要があり、ループ状電極を形成するためのスペースが必要となる。当分野においては、小型化、軽量化、および低コスト化は重要な課題であり、例えばグランド電極にループ状電極のような構成を設けることは、小型化、軽量化、および低コスト化に逆行するものである。さらに、特許文献3の無線ICチップ付きプリント配線基板は、無線ICチップを搭載した給電回路基板の共振回路とループ状電極が電磁界結合により電気的に接続される構成であるため、電力(エネルギー)の伝達効率の点においても、十分なものではなかった。 In the printed circuit board with a wireless IC chip disclosed in Patent Document 3, a large notch is provided on one side of the ground electrode to form a loop electrode to form a matching circuit, and a wireless IC chip and a ground electrode are formed. To match the impedance of the For this reason, in the printed wiring board of Patent Document 3, it is necessary to form the loop electrode forming the matching circuit on the ground electrode, and a space for forming the loop electrode is required. In the field, miniaturization, weight reduction, and cost reduction are important issues. For example, providing a configuration such as a loop electrode on the ground electrode is contrary to miniaturization, weight reduction, and cost reduction. It is Furthermore, since the printed circuit board with the wireless IC chip of Patent Document 3 has a configuration in which the resonant circuit of the feeding circuit board on which the wireless IC chip is mounted and the loop electrode are electrically connected by electromagnetic field coupling, power (energy Also in terms of the transmission efficiency of), it was not sufficient.
 本発明は、小型化、軽量化、および低コスト化を達成することができ、電力伝達効率が高く、物品に対する取付けの自由度が高い構成を有するRFICチップ付き物品を提供することである。 An object of the present invention is to provide an article with an RFIC chip having a configuration that can achieve miniaturization, weight reduction, and cost reduction, has a high power transfer efficiency, and has a high degree of freedom of attachment to the article.
 本発明の一態様のRFICチップ付き物品は、
 金属面を有する物品と、
 前記金属面に対向するループ面を有するコイル導体と、
 前記コイル導体の一端および他端にそれぞれ接続された第1および第2の入出力端子を有するRFICチップと、を備え
 前記コイル導体の中間の一点と前記金属面の縁近傍の一点とが直流的に接続し、前記コイル導体のループ面と平面視で重なる領域に前記コイル導体による磁束が通る磁束通過部が配設されている。
An article with an RFIC chip according to one aspect of the present invention is
An article having a metal surface;
A coil conductor having a loop surface facing the metal surface;
An RFIC chip having first and second input / output terminals respectively connected to one end and the other end of the coil conductor; and one point in the middle of the coil conductor and one point near the edge of the metal surface are DC A magnetic flux passing portion through which the magnetic flux from the coil conductor passes is disposed in a region overlapping with the loop surface of the coil conductor in plan view.
 本発明によれば、小型化、軽量化、および低コスト化を達成することができ、電力伝達効率が高く、物品に対する取付けの自由度が高い構成を有するRFICチップ付き物品を提供することができる。 According to the present invention, it is possible to achieve size reduction, weight reduction and cost reduction, and provide an article with an RFIC chip having a configuration with high power transfer efficiency and high degree of freedom of attachment to the article. .
本発明に係る実施の形態1のRFICチップ付き物品であるプリント配線基板の一部を拡大して示した斜視図The perspective view which expanded and showed a part of printed wiring board which is an article with an RFIC chip of Embodiment 1 concerning the present invention 実施の形態1のRFICチップ付き物品におけるRFICモジュールの等価回路図Equivalent Circuit Diagram of RFIC Module in Article with RFIC Chip of Embodiment 1 実施の形態1におけるRFICモジュールの構成を示す分解斜視図An exploded perspective view showing a configuration of the RFIC module in the first embodiment RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図The perspective view which shows typically the structure of a coil conductor etc. in the electric power feeding circuit board of RFIC module RFICモジュールが搭載されるプリント配線基板のグランド電極におけるスリット部および開口部を示す図The figure which shows the slit part and opening part in the ground electrode of the printed wiring board by which an RFIC module is mounted RFICモジュールにおけるコイル導体と裏面電極との位置関係を示す図Diagram showing the positional relationship between coil conductor and back electrode in RFIC module グランド電極にRFICモジュールが搭載された状態を示す図Diagram showing the RFIC module mounted on the ground electrode RFICモジュールの給電回路基板におけるコイル導体の変形例を示す模式図A schematic view showing a modification of the coil conductor on the feeding circuit board of the RFIC module 本発明に係る実施の形態2のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図The perspective view which expands and shows a part in the printed wiring board with a RFIC chip of Embodiment 2 concerning the present invention 実施の形態2のRFICチップ付きプリント配線基板において、RFICモジュールがグランド電極の金属面の縁上に搭載された状態を示す平面図In the printed wiring board with an RFIC chip of the second embodiment, a plan view showing a state in which the RFIC module is mounted on the edge of the metal surface of the ground electrode 本発明に係る実施の形態3のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図The perspective view which expands and shows a part in the printed wiring board with a RFIC chip of Embodiment 3 concerning the present invention 実施の形態3のRFICチップ付きプリント配線基板において、RFICモジュールがグランド電極の金属面の縁上に搭載された状態を示す平面図In the printed wiring board with RFIC chip of the third embodiment, a plan view showing a state in which the RFIC module is mounted on the edge of the metal surface of the ground electrode 本発明のRFICチップ付き物品の応用例の一例を示す図The figure which shows an example of the application example of the articles | goods with a RFIC chip | tip of this invention. 本発明に係る実施の形態4のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図The perspective view which expands and shows a part in the printed wiring board with a RFIC chip of Embodiment 4 concerning the present invention 実施の形態4における、のグランド電極にRFICモジュールが搭載された状態を示す図A diagram showing a state in which the RFIC module is mounted on the ground electrode of the fourth embodiment. 実施の形態4における、RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図FIG. 17 is a perspective view schematically showing a configuration of a coil conductor and the like on a feed circuit substrate of the RFIC module in the fourth embodiment. 実施の形態4の変形例のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図A perspective view showing an enlarged part of a printed circuit board with an RFIC chip of a modification of the fourth embodiment 実施の形態4の変形例における、グランド電極にRFICモジュールが搭載された状態を示す図The figure which shows the state in which the RFIC module was mounted in the grand electrode in the modification of Embodiment 4. 本発明に係る実施の形態5のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図The perspective view which expands and shows a part in the printed wiring board with a RFIC chip of Embodiment 5 concerning the present invention 実施の形態5の変形例のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図The perspective view which expands and shows a part in the printed wiring board with a RFIC chip of the modification of Embodiment 5 本発明に係る実施の形態6における、RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図The perspective view which shows typically the structure of a coil conductor etc. in the electric power feeding circuit board of a RFIC module in Embodiment 6 which concerns on this invention 本発明に係る実施の形態7における、RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図FIG. 17 is a perspective view schematically showing a configuration of a coil conductor and the like on a feed circuit board of the RFIC module according to a seventh embodiment of the present invention 実施の形態7の変形例における、RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図FIG. 17 is a perspective view schematically showing a configuration of a coil conductor and the like on a feed circuit substrate of the RFIC module according to a modification of the seventh embodiment. 実施の形態7の変形例のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図A perspective view showing an enlarged part of a printed circuit board with an RFIC chip of a modification of the seventh embodiment 本発明に係る実施の形態8における、RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図FIG. 18 is a perspective view schematically showing a configuration of a coil conductor and the like on a feed circuit board of the RFIC module according to an eighth embodiment of the present invention 実施の形態8のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図A perspective view showing a part of the printed circuit board with an RFIC chip of the eighth embodiment in an enlarged manner
 先ず始めに、本発明に係るRFICチップ付き物品における各種態様の構成について記載する。 First of all, the configurations of various aspects of the article with an RFIC chip according to the present invention will be described.
 本発明に係る第1の態様のRFICチップ付き物品は、
 金属面を有する物品と、
 前記金属面に対向するループ面を有するコイル導体と、
 前記コイル導体の一端および他端にそれぞれ接続された第1および第2の入出力端子を有するRFICチップと、を備え
 前記コイル導体の中間の一点と前記金属面の縁近傍の一点とが直流的に接続し、前記コイル導体のループ面と平面視で重なる領域に前記コイル導体による磁束が通る磁束通過部が配設されている。
An article with an RFIC chip according to the first aspect of the present invention is
An article having a metal surface;
A coil conductor having a loop surface facing the metal surface;
An RFIC chip having first and second input / output terminals respectively connected to one end and the other end of the coil conductor; and one point in the middle of the coil conductor and one point near the edge of the metal surface are DC A magnetic flux passing portion through which the magnetic flux from the coil conductor passes is disposed in a region overlapping with the loop surface of the coil conductor in plan view.
 上記のように構成された第1の態様のRFICチップ付き物品は、小型化、軽量化、および低コスト化を達成することができ、電力伝達効率が高く、物品に対する取付けの自由度が高い構成を有するRFICチップ付き物品を提供することができる。 The article with an RFIC chip according to the first aspect configured as described above can achieve downsizing, weight reduction, and cost reduction, has a high power transfer efficiency, and has a high degree of freedom of attachment to the article. An article with an RFIC chip can be provided.
 本発明に係る第2の態様のRFICチップ付き物品は、前記の第1の態様における前記金属面に電気的に直接接続される前記コイル導体の中間の一点が、前記コイル導体における電気長の略中点の位置としてもよい。 The RFIC chip attached article according to the second aspect of the present invention is characterized in that one point in the middle of the coil conductor electrically connected directly to the metal surface in the first aspect is approximately the electrical length of the coil conductor. The position of the middle point may be used.
 本発明に係る第3の態様のRFICチップ付き物品は、前記の第1または第2の態様の前記コイル導体に電気的に直接接続される前記金属面の一点が、平面視で前記コイル導体の直下に位置してもよい。 The RFIC chip attached article according to the third aspect of the present invention is characterized in that one point of the metal surface electrically connected directly to the coil conductor of the first or second aspect is the surface of the coil conductor in plan view. It may be located directly below.
 本発明に係る第4の態様のRFICチップ付き物品は、前記の第1から第3の態様のいずれか一つの態様において、前記磁束通過部が前記金属面に形成され、前記コイル導体のループ面の一部を平面視で前記磁束通過部と重なるように構成してもよい。 In the RFIC chip-attached article according to the fourth aspect of the present invention, in the aspect according to any one of the first to third aspects, the magnetic flux passing portion is formed on the metal surface, and the loop surface of the coil conductor The magnetic flux passing portion may be partially overlapped with the magnetic flux passing portion in a plan view.
 本発明に係る第5の態様のRFICチップ付き物品は、前記の第1から第4の態様のいずれか一つの態様において、前記コイル導体のループ面を平面視で前記金属面の縁と重なるように構成してもよい。 In the RFIC chip-attached article according to the fifth aspect of the present invention, in any one of the first to fourth aspects, the loop surface of the coil conductor overlaps the edge of the metal surface in plan view. You may configure it.
 本発明に係る第6の態様のRFICチップ付き物品は、前記の第1から第5の態様のいずれか一つの態様において、前記磁束通過部が開口で構成されてもよい。 In the RFIC chip-attached article according to the sixth aspect of the present invention, in the aspect according to any one of the first to fifth aspects, the magnetic flux passing portion may be an opening.
 本発明に係る第7の態様のRFICチップ付き物品は、前記の第1から第5の態様のいずれか一つの態様において、前記磁束通過部を磁束が通過する材料で構成してもよい。 The article with an RFIC chip according to the seventh aspect of the present invention may be made of a material through which magnetic flux passes, in the magnetic flux passing portion according to any one of the first to fifth aspects.
 本発明に係る第8の態様のRFICチップ付き物品は、前記の第1から第7の態様のいずれか1つの態様において、前記コイル導体が、前記コイル導体の中間の一点を含む複数の点で、前記金属面の縁近傍の一点を含む前記金属面の縁近傍における複数の点に直流的に接続されてもよい。 The RFIC chip attached article according to an eighth aspect of the present invention is the article according to any one of the first to seventh aspects, wherein the coil conductor includes a plurality of points including the middle point of the coil conductor. The plurality of points near the edge of the metal surface, including one point near the edge of the metal surface, may be DC connected.
 本発明に係る第9の態様のRFICチップ付き物品は、前記第1から第8の態様のいずれか1つの態様において、前記コイル導体と前記RFICチップとがRFICモジュールとしてモジュール化されてもよく、その場合には、前記RFICモジュールが、前記コイル導体と前記金属面との間に介在し、前記コイル導体と前記金属面とを直流的に接続する電極を備えてもよい。 In the RFIC chip-attached article according to the ninth aspect of the present invention, in any one of the first to eighth aspects, the coil conductor and the RFIC chip may be modularized as an RFIC module, In that case, the RFIC module may include an electrode interposed between the coil conductor and the metal surface, and connecting the coil conductor and the metal surface in a direct current manner.
 本発明に係る第10の態様のRFICチップ付き物品は、前記の第1から第9の態様のいずれか一つの態様において、前記金属面をアンテナとして、UHF帯を通信周波数とするよう構成してもよい。 The article with an RFIC chip according to a tenth aspect of the present invention is configured such that the metal surface is an antenna and the UHF band is a communication frequency in any one of the first to ninth aspects. It is also good.
 以下、本発明に係るRFICチップ付き物品の具体的な例示としての実施の形態について、添付の図面を参照しつつ説明する。なお、以下の実施の形態のRFICチップ付き物品の具体例として、プリント配線基板に適用した例ついて説明するが、本発明に係るRFICチップ付き物品としては、少なくとも一部が金属物で構成されており、金属面がアンテナとして機能できる物品の全てが対象となる。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a specific exemplary embodiment of an article with an RFIC chip according to the present invention will be described with reference to the attached drawings. In addition, although the example applied to a printed wiring board is demonstrated as a specific example of the articles | goods with a RFIC chip of the following embodiment, At least one part is comprised with a metal thing as an article with a RFIC chip concerning this invention. All of the articles in which the metal surface can function as an antenna are targeted.
 《実施の形態1》
 図1は、本発明に係る実施の形態1のRFICチップ付き物品であるプリント配線基板100の一部(グランド電極部分)を拡大して示した斜視図である。図2は、実施の形態1のRFICチップ付きプリント配線基板100におけるRFICモジュール10の等価回路図である。
Embodiment 1
FIG. 1 is an enlarged perspective view showing a part (ground electrode portion) of a printed wiring board 100 which is an article with an RFIC chip according to a first embodiment of the present invention. FIG. 2 is an equivalent circuit diagram of the RFIC module 10 in the printed wiring board 100 with an RFIC chip of the first embodiment.
 図1においては、RFICチップ1を備えるRFICモジュール10がグランド電極3上に搭載されることを示している。図1に示す物品の具体例であるプリント配線基板100においては、グランド電極3が金属物でありアンテナとなる。 FIG. 1 shows that the RFIC module 10 including the RFIC chip 1 is mounted on the ground electrode 3. In the printed wiring board 100 which is a specific example of the article shown in FIG. 1, the ground electrode 3 is a metal and serves as an antenna.
 RFICモジュール10は、UHF帯を通信周波数(キャリア周波数)として無線通信(送受信)するRFIDデバイスであり、RFID信号を処理するRFICチップ1と、コイル導体4(図2参照)を有する給電回路基板2と、を備える。給電回路基板2は、誘電体で形成された複数のシートを積層して構成されており、各シート上には導体パターンが形成されている。各シートに形成された導体パターンは各シートを貫通するビアホール導体により接続され、それにより、給電回路基板2の内部にインダクタ素子となるコイル導体4が形成されている。コイル導体4の一端および他端は、RFICチップ1に設けられた第1の入出力端子1aおよび第2の入出力端子1bのそれぞれに接続されている。 The RFIC module 10 is an RFID device for performing wireless communication (transmission and reception) with the UHF band as a communication frequency (carrier frequency), and a feeding circuit board 2 having an RFIC chip 1 for processing RFID signals and a coil conductor 4 (see FIG. 2). And. The feeder circuit board 2 is configured by laminating a plurality of sheets formed of dielectrics, and a conductor pattern is formed on each sheet. The conductor patterns formed on the respective sheets are connected by via hole conductors penetrating the respective sheets, whereby a coil conductor 4 to be an inductor element is formed inside the feeder circuit board 2. One end and the other end of the coil conductor 4 are connected to the first input / output terminal 1a and the second input / output terminal 1b provided in the RFIC chip 1, respectively.
 実施の形態1のRFICチップ付きプリント配線基板100の構成においては、RFICモジュール10がグランド電極3の金属面(表面)3aにおける縁部に設けられている。RFICモジュール10が設けられたグランド電極3の縁部にはスリット部3b、およびこのスリット部3bに繋がる開口部3cが形成されている。RFICモジュール10は、グランド電極3のスリット部3bおよび開口部3cを覆うように配設されている。 In the configuration of the printed wiring board 100 with the RFIC chip of the first embodiment, the RFIC module 10 is provided at the edge of the metal surface (surface) 3 a of the ground electrode 3. A slit 3 b and an opening 3 c connected to the slit 3 b are formed at the edge of the ground electrode 3 provided with the RFIC module 10. The RFIC module 10 is disposed to cover the slit 3 b and the opening 3 c of the ground electrode 3.
 なお、実施の形態1の構成において、グランド電極3のスリット部3bおよび開口部3cの開口部分は、RFICモジュール10の給電回路基板2に形成されたインダクタ素子であるコイル導体4により生じる磁界(磁束)が通る構成であれば良く、開口部分に磁界が通過する材料が充填された構成でもよい。本明細書においては、グランド電極3のスリット部3bおよび開口部3c、並びに磁界が通過する材料が充填された領域が、非金属部であり「磁束通過部」として定義する。 In the configuration of the first embodiment, the magnetic field (magnetic flux) generated by the coil conductor 4 which is an inductor element formed on the feeder circuit substrate 2 of the RFIC module 10 in the slit 3b and the opening 3c of the ground electrode 3 The configuration may be such that the opening portion is filled with a material through which the magnetic field passes. In the present specification, the slit portion 3 b and the opening 3 c of the ground electrode 3 and the region filled with the material through which the magnetic field passes are non-metal portions and are defined as “magnetic flux passing portions”.
 図2のRFICモジュール10の等価回路図に示すように、給電回路基板2のコイル導体4における中間の一点においてグランド電極3に直流的に接続(DC接続)されている。グランド電極3に直流的に接続されるコイル導体4の一点(接続点)は、コイル導体4の中間の点(一端と他端とを除くこれらの間の点)である。好ましくは、このコイル導体4の中間の一点は、コイル導体の一端および他端よりも、コイル導体4における電流最大点である該コイル導体4の電気長の中点に近いことが好ましい。さらに好ましくは、このコイル導体4の中間の一点は、コイル導体4における電流最大点である該コイル導体4の電気長の中点が好ましい。このように、コイル導体4の電気長の中点とグランド電極3とを直流的に接続することにより、電力伝達効率は最大となる。 As shown in the equivalent circuit diagram of the RFIC module 10 of FIG. 2, a direct current connection (DC connection) is made to the ground electrode 3 at one point in the middle of the coil conductor 4 of the feed circuit board 2. One point (connection point) of the coil conductor 4 connected to the ground electrode 3 in a direct current manner is a middle point of the coil conductor 4 (a point between these except for one end and the other end). Preferably, the middle one point of the coil conductor 4 is closer to the middle point of the electrical length of the coil conductor 4 which is the current maximum point in the coil conductor 4 than the one end and the other end of the coil conductor. More preferably, the middle point of the coil conductor 4 is preferably the middle point of the electrical length of the coil conductor 4 which is the maximum current point in the coil conductor 4. Thus, by connecting the middle point of the electrical length of the coil conductor 4 to the ground electrode 3 in a direct current manner, the power transfer efficiency is maximized.
 なお、本明細書において直流的な接続状態とは、静電容量を介する接続や、電磁界結合による接続を含まず、実際に直流が流れることが可能な接続状態をいう。単に電気的に接続状態とは、直流的に接続しているだけでなく静電容量を介して接続している場合や、電磁界結合により接続している場合を含む。 Note that, in the present specification, the direct-current connection state refers to a connection state in which direct current can actually flow without connection via electrostatic capacitance or connection by electromagnetic field coupling. The term “electrically connected state” includes not only direct current connection but also connection via electrostatic capacitance, and connection by electromagnetic field coupling.
 また、グランド電極3においてコイル導体4に対して直流的に接続(DC接続)される位置としては、グランド電極3の縁近傍における一点が好ましい。これは、高周波電流がグランド電極3における縁近傍の表面に沿って流れる性質を有するためである。即ち、グランド電極3における縁近傍とは、RFICモジュール10によるアンテナとして機能するグランド電極3において、実質的に高周波電流が流れる領域となる。 Further, as a position where the ground electrode 3 is connected to the coil conductor 4 in a direct current manner (DC connection), one point near the edge of the ground electrode 3 is preferable. This is because the high frequency current has the property of flowing along the surface near the edge of the ground electrode 3. That is, in the vicinity of the edge of the ground electrode 3, in the ground electrode 3 functioning as an antenna by the RFIC module 10, a region in which a high frequency current substantially flows is provided.
 図3Aは実施の形態1におけるRFICモジュール10の構成を示す分解斜視図)であって、図3Bは給電回路基板2におけるコイル導体4などの構成を模式的に示す斜視図である。図3Aに示すRFICモジュール10において、給電回路基板2に搭載されたRFICチップ1は、シリコンなどの半導体を素材とする半導体基板に各種の素子を内蔵した構造を有する。RFICチップ1には、クロック回路、ロジック回路、メモリ回路などを含み、必要な情報が記録されて、裏面(図3Aにおける給電回路基板2に対向する面)に設けられた第1の入出力端子1aおよび第2の入出力端子1bにより各種情報を示す信号が入出される構成である。 FIG. 3A is an exploded perspective view showing the configuration of the RFIC module 10 in the first embodiment, and FIG. 3B is a perspective view schematically showing the configuration of the coil conductor 4 and the like in the feed circuit board 2. In the RFIC module 10 shown in FIG. 3A, the RFIC chip 1 mounted on the feeder circuit substrate 2 has a structure in which various elements are incorporated in a semiconductor substrate made of a semiconductor such as silicon. The RFIC chip 1 includes a clock circuit, a logic circuit, a memory circuit, etc., and necessary information is recorded, and a first input / output terminal provided on the back surface (the surface facing the feeding circuit board 2 in FIG. 3A) Signals indicating various information are input and output by 1a and the second input / output terminal 1b.
 RFICチップ1が搭載される給電回路基板2は、誘電体材料で形成された複数のシートを積層、圧着、焼成して形成されている。給電回路基板2を構成する各シートには所定の電極パターンおよびビアホール導体が形成されており、給電回路基板2は、表面電極8a、8b、インダクタ素子となるコイル導体4、および裏面電極9a、9b、9c、9dを備える。 The feeder circuit board 2 on which the RFIC chip 1 is mounted is formed by laminating, pressing, and firing a plurality of sheets formed of dielectric materials. A predetermined electrode pattern and a via hole conductor are formed on each sheet constituting the feeder circuit board 2, and the feeder circuit board 2 includes the front electrodes 8a and 8b, the coil conductor 4 serving as an inductor element, and the back electrodes 9a and 9b. , 9c, 9d.
 図3Aに示すように、給電回路基板2の上面(RFICチップ1に対向する面)には一対の表面電極8a、8bが設けられており、前述のRFICチップ1における一対の第1の入出力端子1aおよび第2の入出力端子1bが直流的に接続(DC接続)される構成である。 As shown in FIG. 3A, a pair of front surface electrodes 8a and 8b are provided on the upper surface (a surface facing the RFIC chip 1) of the feeding circuit substrate 2, and the pair of first input / output of the RFIC chip 1 described above. The terminal 1a and the second input / output terminal 1b are connected in a direct current manner (DC connection).
 図3Bに示すように、多層構造の給電回路基板2の内部に、コイル導体4が形成されている。コイル導体4は、各層に形成された第1ループ電極4a、第2ループ電極4bおよび第3ループ電極4c、そしてこれらに接続するビアホール導体6a、6b、6c、6dによって構成されたインダクタ素子である。コイル導体4の一端(ビアホール導体6aの端)が一方の表面電極8aに接続され、他端(ビアホール導体6dの端)が他方の表面電極8bに接続されている。コイル導体4を構成するループ電極4a、4b、4cのそれぞれは、平面視で略四角の枠体形状であって、略四角のループ面を有する。ここで言う「ループ面」は、ループ電極自体とループ電極に実質的に囲まれた開口(ループ開口)とを含む平面を言う。 As shown to FIG. 3B, the coil conductor 4 is formed in the inside of the feeder circuit board 2 of multilayer structure. The coil conductor 4 is an inductor element constituted by the first loop electrode 4a, the second loop electrode 4b and the third loop electrode 4c formed in each layer, and the via hole conductors 6a, 6b, 6c, 6d connected to these. . One end (end of the via hole conductor 6a) of the coil conductor 4 is connected to one surface electrode 8a, and the other end (end of the via hole conductor 6d) is connected to the other surface electrode 8b. Each of the loop electrodes 4a, 4b and 4c constituting the coil conductor 4 has a substantially square frame shape in a plan view, and has a substantially square loop surface. The term "loop surface" as used herein refers to a plane that includes the loop electrode itself and an opening (loop opening) substantially surrounded by the loop electrode.
 なお、本明細書において、平面視とは図3Bに示した多層構造の給電回路基板2における層面に直交する方向における上方向から見た場合をいう。従って、各ループ電極4a、4b、4cのループ形状は、平面視で略四角の枠体形状であり、それぞれのループ面が平面視で重なる構成である。 In addition, in this specification, a planar view means the case where it sees from the upper direction in the direction orthogonal to the layer surface in the feeder circuit board 2 of the multilayer structure shown to FIG. 3B. Therefore, the loop shape of each of the loop electrodes 4a, 4b, and 4c is a substantially square frame shape in plan view, and the loop surfaces of the loop electrodes overlap in plan view.
 実施の形態1における給電回路基板2において、表面電極8a、8bと、ループ電極4a、4b、4cと、ビアホール導体6a、6b、6c、6dは、第1表面電極8aから、第1ビアホール導体6a、第1ループ電極4a、第2ビアホール導体6b、第2ループ電極4b、第3ビアホール導体6c、第3ループ電極4c、第4ビアホール導体6d、そして第2表面電極8bの順に接続されている。このように構成されたインダクタ素子となるコイル導体4が、1対の表面電極8a、8bに対して接続されている。 In feed circuit substrate 2 in the first embodiment, surface electrodes 8a and 8b, loop electrodes 4a, 4b and 4c, and via hole conductors 6a, 6b, 6c and 6d are connected to first via hole conductor 6a from first surface electrode 8a. The first loop electrode 4a, the second via hole conductor 6b, the second loop electrode 4b, the third via hole conductor 6c, the third loop electrode 4c, the fourth via hole conductor 6d, and the second surface electrode 8b are connected in this order. The coil conductor 4 serving as an inductor element configured as described above is connected to the pair of surface electrodes 8a and 8b.
 給電回路基板2の下面(裏面)には4つの裏面電極9a、9b、9c、9dが設けられている。裏面電極9a、9b、9c、9dは、平面視が四角形である給電回路基板2の四隅にそれぞれが独立して形成されている。裏面電極9a、9b、9c、9dは、平面視が四角の枠体形状のコイル導体4の四隅の直下の領域に配設されており、その形状は略直角に折れ曲がったL字形状を有している。実施の形態1における裏面電極9a、9b、9c、9dのそれぞれは、給電回路基板2の裏面の中心点を基準とする点対称に配置されている。このため、RFICモジュール10をプリント配線基板のグランド電極3に実装するとき、グランド電極3に対するRFICモジュール10の向き(方向)に関する位置規制を緩和することができる。 Four back surface electrodes 9a, 9b, 9c, and 9d are provided on the lower surface (back surface) of the feed circuit substrate 2. The back surface electrodes 9a, 9b, 9c and 9d are formed independently at four corners of the feeder circuit board 2 which is a square in plan view. The back surface electrodes 9a, 9b, 9c, 9d are disposed in regions immediately below the four corners of the coil conductor 4 having a square frame shape in a plan view, and the shape has an L-shape bent substantially at a right angle ing. Each of back surface electrodes 9a, 9b, 9c, and 9d in the first embodiment is arranged symmetrically with respect to the center point of the back surface of feed circuit board 2. For this reason, when the RFIC module 10 is mounted on the ground electrode 3 of the printed wiring board, it is possible to ease the positional restriction on the direction (direction) of the RFIC module 10 with respect to the ground electrode 3.
 なお、実施の形態1においては、4つの裏面電極(9a、9b、9c、9d)を設けた構成で説明したが、コイル導体4に直流的に接続される裏面電極(9a)は1つであるため、残りの3つの裏面電極(9b、9c、9d)はダミー電極である。従って、実施の形態1の構成においては、少なくとも1つの裏面電極(9a)が設けられていればよい。 In the first embodiment, four back surface electrodes (9a, 9b, 9c, 9d) are provided. However, only one back surface electrode (9a) is connected to coil conductor 4 in a direct current manner. Because of this, the remaining three back electrodes (9b, 9c, 9d) are dummy electrodes. Therefore, in the configuration of the first embodiment, at least one back electrode (9a) may be provided.
 図3Bに示すように、第1裏面電極9aのみが、コイル導体4における中間の位置となる第2ループ電極4bに対して、層間を貫通するビアホール導体である接続線5を介して直流的に接続されている。具体的には、第1裏面電極9aは、コイル導体4における電気長の略中点の位置に対して電気的に直流的に接続されている。 As shown in FIG. 3B, with respect to the second loop electrode 4b in which only the first back surface electrode 9a is at an intermediate position in the coil conductor 4, in a direct current manner via the connection line 5 which is a via hole conductor penetrating the interlayer. It is connected. Specifically, the first back surface electrode 9 a is electrically connected to the position of the substantially middle point of the electrical length in the coil conductor 4 in a direct current manner.
 図4A~図4Cは、RFICモジュール10が搭載されるプリント配線基板100のグランド電極3と、RFICモジュール10との位置関係を示す図である。図4AはRFICモジュール10が搭載されるグランド電極3におけるスリット部3bおよび開口部3cを示している。図4Bは、RFICモジュール10におけるコイル導体4と裏面電極9a~9dとの位置関係を示し、図4Cは、グランド電極3にRFICモジュール10が搭載された状態を示している。図4Bおよび図4Cにおいては、RFICモジュール10における給電回路基板2のコイル導体4と裏面電極9a~9dとを示しており、RFICチップ1の図示を省略している。 FIGS. 4A to 4C are diagrams showing the positional relationship between the ground electrode 3 of the printed wiring board 100 on which the RFIC module 10 is mounted and the RFIC module 10. FIG. 4A shows the slit 3 b and the opening 3 c in the ground electrode 3 on which the RFIC module 10 is mounted. FIG. 4B shows the positional relationship between the coil conductor 4 and the back surface electrodes 9a to 9d in the RFIC module 10. FIG. 4C shows a state in which the RFIC module 10 is mounted on the ground electrode 3. In FIG. 4B and FIG. 4C, the coil conductor 4 and the back surface electrodes 9a to 9d of the feeding circuit substrate 2 in the RFIC module 10 are shown, and the illustration of the RFIC chip 1 is omitted.
 図4Aに示すように、物品の金属面であるグランド電極3における金属面3aのRFICモジュール10が搭載される位置には、スリット部3bおよび開口部3cが形成されている。スリット部3bは、グランド電極3の縁から内側に延びる隙間であり、その隙間の内側の先端部分に開口部3cが形成されている。開口部3cは、給電回路基板2のコイル導体4の内側に配設される形状であり、励起されたコイル導体4により生じた磁界(磁束)が通る位置に形成されている。即ち、グランド電極3におけるスリット部3bおよび開口部3cが非金属部である磁束通過部である。 As shown to FIG. 4A, the slit part 3b and the opening part 3c are formed in the position where the RFIC module 10 of the metal surface 3a in the ground electrode 3 which is a metal surface of articles | goods is mounted. The slit portion 3 b is a gap extending inward from the edge of the ground electrode 3, and an opening 3 c is formed at a tip portion inside the gap. The opening 3 c has a shape disposed inside the coil conductor 4 of the feed circuit board 2, and is formed at a position through which a magnetic field (magnetic flux) generated by the excited coil conductor 4 passes. That is, the slit portion 3 b and the opening 3 c in the ground electrode 3 are magnetic flux passing portions which are non-metal portions.
 また、グランド電極3の金属面3aにはレジストパターン7が形成されており、給電回路基板2の裏面電極9a~9dに対向する位置のみにレジスト膜が除去されたレジスト開口7a、7b、7c、7dが形成されている。即ち、給電回路基板2の裏面電極9a~9dがレジスト開口7a、7b、7c、7dを通じてグランド電極3に確実に互いに直流的に接続される。 In addition, a resist pattern 7 is formed on the metal surface 3a of the ground electrode 3, and the resist openings 7a, 7b, 7c are removed only at positions facing the back surface electrodes 9a to 9d of the feed circuit substrate 2. 7d is formed. That is, the back surface electrodes 9a to 9d of the feeder circuit board 2 are connected to the ground electrode 3 in a direct current manner reliably through the resist openings 7a, 7b, 7c, 7d.
 図4Cに示すように、RFICモジュール10は、その縁部分がグランド電極3の縁に接するように配設されており、グランド電極3のスリット部3bおよび開口部3cがRFICモジュール10の給電回路基板2により略覆われている。即ち、給電回路基板2のコイル導体4のループ面と平面視で重なる領域において、励起されたコイル導体4により生じる磁界(磁束)が通る磁束通過部(3b、3c)が配設されている。 As shown in FIG. 4C, the RFIC module 10 is disposed such that the edge portion thereof is in contact with the edge of the ground electrode 3, and the slit portion 3 b and the opening 3 c of the ground electrode 3 are feed circuit boards of the RFIC module 10. It is almost covered by 2. That is, a magnetic flux passing portion (3b, 3c) through which a magnetic field (magnetic flux) generated by the excited coil conductor 4 passes is disposed in a region overlapping the loop surface of the coil conductor 4 of the feed circuit board 2 in plan view.
 また、グランド電極3の金属面3aに形成されたレジスト開口7a、7b、7c、7dは、給電回路基板2のコイル導体4の平面視で直下に配設された裏面電極9a~9dに確実に位置決めされた状態である。従って、コイル導体4の内側に配置された磁束通過部である開口部3cをコイル導体4により生じた磁界(磁束)が通り抜ける。なお、グランド電極3の金属面3aにおいては、開口部3cの縁がスリット部3bにより分断されているため、開口部3cを周回するループ電流の発生が抑制されている。 Further, the resist openings 7a, 7b, 7c, 7d formed in the metal surface 3a of the ground electrode 3 are surely provided to the back surface electrodes 9a to 9d disposed immediately below the coil conductor 4 of the feed circuit board 2 in plan view. It is in the state of being positioned. Therefore, the magnetic field (magnetic flux) generated by the coil conductor 4 passes through the opening 3 c which is a magnetic flux passing portion disposed inside the coil conductor 4. In the metal surface 3a of the ground electrode 3, since the edge of the opening 3c is divided by the slit 3b, the generation of the loop current around the opening 3c is suppressed.
 実施の形態1の構成においては、グランド電極3に形成されたスリット部3bおよび開口部3cの磁束通過部を開口部分として説明したが、前述のように磁束通過部は磁界(磁束)が通り抜ける構成であればよく、磁束通過部(スリット部3bおよび開口部3c)を磁界(磁束)が通過する材料(例えば、樹脂材料)で構成してもよい。 In the configuration of the first embodiment, the magnetic flux passing portion of the slit portion 3b and the opening 3c formed in the ground electrode 3 is described as the opening portion, but as described above, the magnetic flux passing portion has a configuration in which the magnetic field (magnetic flux) passes through. The magnetic flux passing portion (slit portion 3b and the opening 3c) may be made of a material (for example, a resin material) through which a magnetic field (magnetic flux) passes.
 実施の形態1の構成においては、RFICモジュール10の給電回路基板2における第1裏面電極9aがコイル導体4の中間にある第2ループ電極4bの一点において接続線5を介して接続されている。第1裏面電極9aは、1つのレジスト開口(第1レジスト開口7a)を通じて露出するグランド電極3の金属面3aに、導電性ペーストを介して直流的に接続されている。 In the configuration of the first embodiment, the first back surface electrode 9 a of the feeder circuit substrate 2 of the RFIC module 10 is connected through the connection line 5 at one point of the second loop electrode 4 b located in the middle of the coil conductor 4. The first back surface electrode 9a is connected to the metal surface 3a of the ground electrode 3 exposed through one resist opening (first resist opening 7a) in a direct current manner via a conductive paste.
 実施の形態1のプリント配線基板100においては、RFICモジュール10の給電回路基板2におけるコイル導体4の中点がグランド電極3におけるコイル導体4の直下に位置する一点で、第1裏面電極9aを介して、直流的に接続されている。ここで言う、グランド電極3におけるコイル導体の直下の位置は、コイル導体のループ電極の直下およびループ開口の直下を意味する。即ち、給電回路基板2におけるコイル導体4の中点は、グランド電極3の縁近傍の領域において直流的に接続されている。ここで、グランド電極3の縁近傍の領域とは、RFICモジュール10がグランド電極3の縁部分に搭載された状態において、グランド電極3においてRFICモジュールが配設されるモジュール配設面領域、若しくはグランド電極3の縁からモジュール配設面領域までの領域をいう。 In the printed wiring board 100 according to the first embodiment, the middle point of the coil conductor 4 in the feeder circuit board 2 of the RFIC module 10 is located directly below the coil conductor 4 in the ground electrode 3 via the first back electrode 9a. Are connected in a DC manner. Here, the position directly below the coil conductor in the ground electrode 3 means immediately below the loop electrode of the coil conductor and immediately below the loop opening. That is, the middle point of the coil conductor 4 in the feed circuit board 2 is connected in a direct current manner in a region near the edge of the ground electrode 3. Here, the area in the vicinity of the edge of the ground electrode 3 means the module mounting surface area in which the RFIC module is disposed in the ground electrode 3 or the ground in the state where the RFIC module 10 is mounted on the edge portion of the ground electrode 3 This refers to the area from the edge of the electrode 3 to the module mounting surface area.
 上記のように、実施の形態1のプリント配線基板100においては、給電回路基板2のコイル導体4の略中点がグランド電極3の縁近傍の一カ所で直流的に接続されているため、励起したコイル導体4からの高周波電流がグランド電極3の縁部に沿って流れて、当該グランド電極3が送信アンテナとして機能する。また、逆に受信アンテナとして機能するグランド電極3ではその縁部に高周波電流が流れることにより、RFICモジュール10において受信可能な構成となる。 As described above, in the printed wiring board 100 of the first embodiment, since approximately the midpoint of the coil conductor 4 of the feeding circuit board 2 is connected in a direct current manner at one place near the edge of the ground electrode 3 The high frequency current from the coil conductor 4 flows along the edge of the ground electrode 3, and the ground electrode 3 functions as a transmitting antenna. On the contrary, in the ground electrode 3 which functions as a receiving antenna, the RFIC module 10 can receive signals by the high frequency current flowing through the edge thereof.
 なお、実施の形態1における給電回路基板2のコイル導体4は、1つのコイル状部を備え、そのコイル中心軸が縦方向(図3Bにおける上下方向)に配設されている。しかし、本発明の実施の形態に係るコイル導体は、このような構成に限定されるものではない。 The coil conductor 4 of the feeder circuit board 2 in the first embodiment includes one coil-shaped portion, and the central axis of the coil is disposed in the vertical direction (vertical direction in FIG. 3B). However, the coil conductor according to the embodiment of the present invention is not limited to such a configuration.
 図5は、給電回路基板(20)におけるコイル導体(40)の変形例を示す模式図である。図5に示す変形例においては、給電回路基板20のコイル導体40は、2つのコイル状部4A、4Bから構成されている。2つのコイル状部4A、4Bは、並設され、電気的に直列に接続されている。また、2つのコイル状部4A、4Bのコイル中心軸は、互いに平行であって、縦方向に延在している。このように構成したコイル導体40においては、2つのコイル状部4A、4Bが互いに直列接続する直列接続位置が、裏面電極9aに対して接続線5を介して直流的に接続される、すなわちコイル導体40の中点と裏面電極9aとが接続される。 FIG. 5: is a schematic diagram which shows the modification of the coil conductor (40) in a feed circuit board (20). In the modification shown in FIG. 5, the coil conductor 40 of the feed circuit board 20 is composed of two coiled parts 4A and 4B. The two coiled parts 4A, 4B are juxtaposed and electrically connected in series. The coil central axes of the two coiled parts 4A and 4B are parallel to each other and extend in the longitudinal direction. In the coil conductor 40 configured in this manner, the series connection position where the two coil-shaped portions 4A and 4B are connected in series with each other is DC-connected to the back surface electrode 9a via the connection wire 5, that is, the coil The middle point of the conductor 40 and the back electrode 9a are connected.
 コイル導体において、図5に示すように2つのコイル状部4A、4Bを並設することに代わって、それぞれのコイル中心軸が重なるように一方のコイル状部の内部に他方のコイル状部を配置してもよい。すなわち、本発明の構成において、給電回路基板(2、20)におけるコイル導体(4、40)の構成としては、積層構造の給電回路基板(2、20)において、コイル導体(4、40)の電気長の略中点と裏面電極(9a)とを接続線(5)を介して直流的に接続できる構成であればよい。 In the coil conductor, instead of juxtaposing the two coiled parts 4A and 4B as shown in FIG. 5, the other coiled part is formed in one coiled part so that the respective coil central axes overlap. It may be arranged. That is, in the configuration of the present invention, as the configuration of the coil conductor (4, 40) in the feed circuit substrate (2, 20), the coil conductor (4, 40) in the feed circuit substrate (2, 20) of the laminated structure It is sufficient if it has a configuration in which the substantially midpoint of the electrical length and the back surface electrode (9a) can be connected in a direct current manner via the connection line (5).
 上記のように構成された実施の形態1のRFICチップ付きプリント配線基板100においては、RFICモジュール10の給電回路基板2のコイル導体の略中点(より好ましくは電気長の中点)をアンテナ(放射板)となるグランド電極3の特定の位置(一点)で直流的に接続(DC接続)する構成である。このため、実施の形態1のプリント配線基板100は、取付けの自由度および電力伝達効率が高い構成となり、更に小型化、軽量化、および低コスト化を達成することができる構成となる。 In the printed wiring board 100 with the RFIC chip of Embodiment 1 configured as described above, the approximate midpoint of the coil conductor (more preferably, the midpoint of the electrical length) of the coil conductor of the feeding circuit board 2 of the RFIC module 10 is used as an antenna. Direct current connection (DC connection) is made at a specific position (one point) of the ground electrode 3 to be the radiation plate). For this reason, the printed wiring board 100 according to the first embodiment is configured to have a high degree of freedom of attachment and a high power transfer efficiency, and can be configured to be further reduced in size, weight and cost.
 《実施の形態2》
 以下、本発明に係る実施の形態2のRFICチップ付き物品であるプリント配線基板について説明する。実施の形態2のプリント配線基板に関しては、実施の形態1のプリント配線基板100との相違点を中心に説明する。なお、実施の形態2の説明において、前述の実施の形態1と同様の構成、作用および機能を有する要素には同じ参照符号を付し、重複する記載を避けるため説明を省略する場合がある。
Second Embodiment
Hereinafter, the printed wiring board which is an article with an RFIC chip of Embodiment 2 concerning the present invention is explained. The printed wiring board of the second embodiment will be described focusing on differences from the printed wiring board 100 of the first embodiment. In the description of the second embodiment, elements having the same configurations, operations and functions as the first embodiment described above are denoted by the same reference numerals, and the description may be omitted to avoid redundant description.
 実施の形態2のRFICチップ付きプリント配線基板において、実施の形態1のプリント配線基板100との相違点は、プリント配線基板のグランド電極(3A)に対するRFICチップ1を備えるRFICモジュール(10A)の配設位置である。なお、実施の形態2におけるRFICモジュール(10A)は、実施の形態1におけるRFICモジュール10と実質的に同じ構成であるが、給電回路基板(12)の裏面に形成された裏面電極(19A)が1つであり、その形状が四角形形状(略正方形形状)である点で異なっている。実施の形態2のプリント配線基板は、実施の形態1の構成と同様に、グランド電極(3A)をアンテナとしたRFICモジュール(10A)によりUHF帯の通信周波数(キャリア周波数)を有する高周波信号で無線通信するよう構成されており、広い周波数帯域で無線通信可能に構成されている。 The difference between the printed wiring board with the RFIC chip of the second embodiment and the printed wiring board 100 of the first embodiment is that the RFIC module (10A) including the RFIC chip 1 with respect to the ground electrode (3A) of the printed wiring board. It is a setting position. Although the RFIC module (10A) in the second embodiment has substantially the same configuration as the RFIC module 10 in the first embodiment, the back electrode (19A) formed on the back surface of the feeder circuit board (12) is It is different in that it is one and its shape is quadrangular (substantially square). As in the configuration of the first embodiment, the printed wiring board of the second embodiment is a radio frequency signal having a communication frequency (carrier frequency) in the UHF band by the RFIC module (10A) using the ground electrode (3A) as an antenna. It is configured to communicate, and configured to be capable of wireless communication in a wide frequency band.
 図6は、実施の形態2のRFICチップ付きプリント配線基板における一部を拡大し、グランド電極3Aに搭載されるRFICモジュール10Aの搭載位置を示す斜視図である。実施の形態2の構成においては、実施の形態1の構成と同様に、物品がプリント配線基板であり、物品における金属物がグランド電極3Aである。図6に示すように、平板状のグランド電極3Aの金属面3Aaの縁上にRFICモジュール10Aが搭載される構成である。 FIG. 6 is a perspective view showing a mounting position of an RFIC module 10A mounted on the ground electrode 3A by enlarging a part of the printed wiring board with the RFIC chip of the second embodiment. In the configuration of the second embodiment, as in the configuration of the first embodiment, the article is a printed wiring board, and the metal in the article is the ground electrode 3A. As shown in FIG. 6, the RFIC module 10A is mounted on the edge of the metal surface 3Aa of the flat ground electrode 3A.
 図7は、RFICモジュール10Aがグランド電極3Aの金属面3Aaの縁上に搭載された状態を示す平面図である。図7においては、RFICモジュール10Aにおける給電回路基板12のコイル導体4と裏面電極19Aとを示し、RFICチップ1の図示は省略している。図7に示すように、給電回路基板12のコイル導体4がグランド電極3Aの縁から突出するように配設されている。言い換えると、給電回路基板12のコイル導体4の一部分がグランド電極3A上に配置されており、コイル導体4の残りの部分がグランド電極3Aから外れた位置に配置されている。従って、励起したコイル導体4により生じる磁界(磁束)は、グランド電極3Aの金属面3Aaから外れた領域を通り抜ける構成である。即ち、コイル導体4のループ面が平面視で金属面3Aaの縁と重なるように配置され、コイル導体4のループ面の一部が平面視で磁束通過部と重なる構成となっている。 FIG. 7 is a plan view showing a state in which the RFIC module 10A is mounted on the edge of the metal surface 3Aa of the ground electrode 3A. In FIG. 7, the coil conductor 4 and the back surface electrode 19A of the feeder circuit substrate 12 in the RFIC module 10A are shown, and the illustration of the RFIC chip 1 is omitted. As shown in FIG. 7, the coil conductor 4 of the feed circuit board 12 is disposed so as to protrude from the edge of the ground electrode 3A. In other words, a part of the coil conductor 4 of the feed circuit board 12 is disposed on the ground electrode 3A, and the remaining part of the coil conductor 4 is disposed at a position deviated from the ground electrode 3A. Therefore, the magnetic field (magnetic flux) generated by the excited coil conductor 4 passes through the region out of the metal surface 3Aa of the ground electrode 3A. That is, the loop surface of the coil conductor 4 is disposed so as to overlap the edge of the metal surface 3Aa in plan view, and a part of the loop surface of the coil conductor 4 overlaps the magnetic flux passing portion in plan view.
 なお、グランド電極3Aから外れた位置に配置されたコイル導体4の残りの部分は、グランド電極3Aから突設された構成でもよいが、磁界(磁束)が通り抜ける材料(例えば樹脂材料)をグランド電極3Aと同一平面となるように設けて、コイル導体4の残りの部分を磁界(磁束)が通り抜ける材料で構成された部材で支持する構成でもよい。また、給電回路基板12の裏面に形成された裏面電極としては、前述の実施の形態1の構成のように給電回路基板12の裏面の四隅に設ける構成でもよい。ここでは、励起したコイル導体4による磁界(磁束)が通り抜ける部分が非金属部である磁束通過部となる。 The remaining portion of the coil conductor 4 disposed at a position deviated from the ground electrode 3A may be configured to protrude from the ground electrode 3A, but a material (for example, a resin material) through which a magnetic field (magnetic flux) passes The remaining portion of the coil conductor 4 may be supported by a member made of a material through which a magnetic field (magnetic flux) passes, provided so as to be flush with 3A. The back surface electrode formed on the back surface of feed circuit board 12 may be provided at the four corners of the back surface of feed circuit board 12 as in the configuration of the first embodiment described above. Here, the portion through which the magnetic field (magnetic flux) of the excited coil conductor 4 passes is the magnetic flux passing portion which is a nonmetal portion.
 上記のように、実施の形態2のRFICチップ付きプリント配線基板においては、給電回路基板12のコイル導体4の略中点(より好ましくは電気長の中点)がグランド電極3Aの縁近傍に直流的に接続されている。このため、励起したコイル導体4からの高周波電流は、グランド電極3Aの縁部に沿って流れて、当該グランド電極3Aが送信アンテナとして機能する。また、逆に受信アンテナとして機能するグランド電極3Aでは、その金属面3Aaの縁部に高周波電流が流れることにより、RFICモジュール10Aにおいて受信可能な構成となる。 As described above, in the printed wiring board with the RFIC chip of the second embodiment, the approximate midpoint of the coil conductor 4 of the feed circuit board 12 (more preferably, the midpoint of the electrical length) is DC near the edge of the ground electrode 3A. Connected. For this reason, the high frequency current from the excited coil conductor 4 flows along the edge of the ground electrode 3A, and the ground electrode 3A functions as a transmission antenna. On the contrary, in the ground electrode 3A functioning as a receiving antenna, the RFIC module 10A can receive signals by the high frequency current flowing through the edge of the metal surface 3Aa.
 なお、実施の形態2における給電回路基板12のコイル導体4の構成においても、前述の図5に示したように併設した2つのコイル状部を直列接続して、その直列接続点と裏面電極9Aとを接続線5により直流的に接続する構成でもよい。 Also in the configuration of coil conductor 4 of feed circuit substrate 12 in the second embodiment, two coil-shaped portions juxtaposed as shown in FIG. 5 described above are connected in series, and the serial connection point and back surface electrode 9A May be connected in a direct current manner by the connection line 5.
 上記のように構成された実施の形態2のRFICチップ付きプリント配線基板においては、RFICモジュール10Aの給電回路基板2のコイル導体4の略中点(より好ましくは電気長の中点)をアンテナ(放射板)となるグランド電極3Aの縁近傍の一カ所で直流的に接続(DC接続)する構成である。このため、実施の形態2のプリント配線基板は、取付けの自由度および電力伝達効率が高い構成となり、更に小型化、軽量化、および低コスト化を達成することができる構成となる。 In the printed wiring board with the RFIC chip of the second embodiment configured as described above, the approximate midpoint (more preferably, the midpoint of the electrical length) of the coil conductor 4 of the feeding circuit board 2 of the RFIC module 10A is used as an antenna It is a structure connected in a direct-current manner (DC connection) at one place near the edge of the ground electrode 3A to be a radiation plate). For this reason, the printed wiring board of the second embodiment has a configuration with high degree of freedom of attachment and power transfer efficiency, and can achieve further downsizing, weight reduction and cost reduction.
 《実施の形態3》
 以下、本発明に係る実施の形態3のRFICチップ付き物品であるプリント配線基板について説明する。実施の形態3のプリント配線基板に関しては、実施の形態1および実施の形態2のプリント配線基板との相違点を中心に説明する。なお、実施の形態3の説明において、前述の実施の形態1と同様の構成、作用および機能を有する要素には同じ参照符号を付し、重複する記載を避けるため説明を省略する場合がある。
Third Embodiment
Hereinafter, a printed wiring board which is an article with an RFIC chip of the third embodiment according to the present invention will be described. The printed wiring board of the third embodiment will be described focusing on differences from the printed wiring boards of the first embodiment and the second embodiment. In the description of the third embodiment, elements having the same configurations, operations, and functions as the first embodiment described above are denoted by the same reference numerals, and the description may be omitted to avoid redundant description.
 実施の形態3のRFICチップ付きプリント配線基板において、実施の形態1のプリント配線基板との相違点は、プリント配線基板のグランド電極(3B)の形状と、グランド電極(3B)に対するRFICチップ1を備えるRFICモジュール(10A)の配設位置である。実施の形態3におけるRFICモジュール(10A)は、実施の形態2におけるRFICモジュール10Aと実質的に同じ構成である。実施の形態3のプリント配線基板は、実施の形態1および実施の形態2の構成と同様に、グランド電極(3B)をアンテナとしたRFICモジュール(10A)によりUHF帯の通信周波数(キャリア周波数)を有する高周波信号で無線通信するよう構成されており、広い周波数帯域で無線通信可能に構成されている。 The printed wiring board with RFIC chip of the third embodiment differs from the printed wiring board of the first embodiment in the shape of the ground electrode (3B) of the printed wiring board and the RFIC chip 1 corresponding to the ground electrode (3B). It is an arrangement position of the RFIC module (10A) provided. The RFIC module (10A) in the third embodiment has substantially the same configuration as the RFIC module 10A in the second embodiment. The printed wiring board of the third embodiment has the communication frequency (carrier frequency) in the UHF band by the RFIC module (10A) using the ground electrode (3B) as an antenna, as in the configurations of the first embodiment and the second embodiment. It is configured to perform wireless communication with a high frequency signal that it has, and is configured to enable wireless communication in a wide frequency band.
 図8は、実施の形態3のRFICチップ付きプリント配線基板における一部を拡大し、グランド電極3Bに搭載されるRFICモジュール10Aの搭載位置を示す斜視図である。実施の形態3の構成においては、物品がプリント配線基板であり、物品における金属物がグランド電極3Bである。図8に示すように、平板状のグランド電極3Bの金属面3Baの縁上にRFICモジュール10Aが搭載される構成である。 FIG. 8 is a perspective view showing a mounting position of an RFIC module 10A mounted on a ground electrode 3B by enlarging a part of the printed wiring board with an RFIC chip of the third embodiment. In the configuration of the third embodiment, the article is a printed wiring board, and the metal in the article is the ground electrode 3B. As shown in FIG. 8, the RFIC module 10A is mounted on the edge of the metal surface 3Ba of the flat ground electrode 3B.
 実施の形態3のRFICチップ付きプリント配線基板において、RFICモジュール10Aが搭載されるグランド電極3Bの金属面3Baには磁束通過部としてのスリット部3Bbが形成されている。スリット部3Bbは、グランド電極3Bの縁から内側に延びる隙間形状を有しており、そのスリット部3Bbを跨ぐようにRFICモジュール10Aが搭載される。 In the printed wiring board with the RFIC chip of the third embodiment, a slit portion 3Bb as a magnetic flux passing portion is formed on the metal surface 3Ba of the ground electrode 3B on which the RFIC module 10A is mounted. The slit portion 3Bb has a gap shape extending inward from the edge of the ground electrode 3B, and the RFIC module 10A is mounted so as to straddle the slit portion 3Bb.
 図9は、RFICモジュール10Aがグランド電極3Bの金属面3Baの縁上に搭載された状態を示す平面図である。図9においては、RFICモジュール10Aにおける給電回路基板12のコイル導体4と裏面電極19Aとを示し、RFICチップ1の図示は省略している。図9に示すように、給電回路基板12のコイル導体4がグランド電極3Bの縁から突出するように配設されている。言い換えると、給電回路基板12のコイル導体4の一部分がグランド電極3B上に配置されており、コイル導体4の残りの部分がグランド電極3Bから外れた位置に配置されている。従って、励起したコイル導体4により生じる磁界(磁束)がグランド電極3Bの金属面3Baから外れた領域を通り抜ける構成である。即ち、コイル導体4のループ面が平面視で金属面3Baの縁と重なるように配置され、コイル導体4のループ面の一部が平面視で磁束通過部と重なる構成となる。 FIG. 9 is a plan view showing a state in which the RFIC module 10A is mounted on the edge of the metal surface 3Ba of the ground electrode 3B. In FIG. 9, the coil conductor 4 and the back surface electrode 19A of the feeder circuit substrate 12 in the RFIC module 10A are shown, and the illustration of the RFIC chip 1 is omitted. As shown in FIG. 9, the coil conductor 4 of the feed circuit board 12 is disposed so as to protrude from the edge of the ground electrode 3B. In other words, a part of the coil conductor 4 of the feeding circuit board 12 is disposed on the ground electrode 3B, and the remaining part of the coil conductor 4 is disposed at a position deviated from the ground electrode 3B. Therefore, the magnetic field (magnetic flux) generated by the excited coil conductor 4 passes through the region out of the metal surface 3Ba of the ground electrode 3B. That is, the loop surface of the coil conductor 4 is disposed so as to overlap the edge of the metal surface 3Ba in plan view, and a part of the loop surface of the coil conductor 4 overlaps the magnetic flux passing portion in plan view.
 また、実施の形態3の構成においては、グランド電極3Bの金属面3Baに形成されたスリット部3Bbを跨ぐようにRFICモジュール10Aの給電回路基板12が配置されている。即ち、グランド電極3Bの縁から延設されたスリット部3Bbにおける縁部を含むスリットの一部が給電回路基板12のコイル導体4と平面視で交差する構成となっている。従って、グランド電極3Bの縁から延設されたスリット部3Bbの先端部分(内側部分)の領域は、RFICモジュール10Aのモジュール配設面領域から外れた領域である。 Further, in the configuration of the third embodiment, the feeder circuit board 12 of the RFIC module 10A is disposed so as to straddle the slit portion 3Bb formed on the metal surface 3Ba of the ground electrode 3B. That is, a part of the slit including the edge portion of the slit portion 3Bb extended from the edge of the ground electrode 3B intersects with the coil conductor 4 of the feed circuit substrate 12 in a plan view. Therefore, the region of the tip portion (inner portion) of the slit portion 3Bb extended from the edge of the ground electrode 3B is a region out of the module mounting surface region of the RFIC module 10A.
 さらに、実施の形態3の構成において、給電回路基板12のコイル導体4の略中点に接続線5および裏面電極19Aを介して直流的に接続される接続点は、グランド電極3Bにおいてスリット部3Bbで分けられた片側の領域の縁近傍である。即ち、コイル導体4の略中点は、グランド電極3Bにおける縁近傍であるモジュール配設面領域において接続線5および裏面電極19Aを介して直流的に接続される構成である。 Furthermore, in the configuration of the third embodiment, the connection point connected in a direct current manner to the approximate midpoint of coil conductor 4 of feed circuit board 12 via connection line 5 and back surface electrode 19A is slit portion 3Bb at ground electrode 3B. It is near the edge of the area of one side divided by. That is, the substantially middle point of the coil conductor 4 is connected in a direct current manner via the connection line 5 and the back surface electrode 19A in the module mounting surface area near the edge of the ground electrode 3B.
 上記のように構成された実施の形態3の構成においては、給電回路基板12における励起したコイル導体4により生じる磁界(磁束)がグランド電極3Bの金属面3Baから平面視で外れた領域を通り抜ける構成を有すると共に、グランド電極3BにおけるRFICモジュール10Aのモジュール配設面領域にスリット部3Bbが形成されているため、モジュール配設面領域において電力伝達効率を劣化させる電流の流れを抑制する構成となる。 In the configuration of the third embodiment configured as described above, the magnetic field (magnetic flux) generated by the excited coil conductor 4 in the feed circuit board 12 passes through the region out of the metal surface 3Ba of the ground electrode 3B in plan view. Since the slit portion 3Bb is formed in the module mounting surface area of the RFIC module 10A in the ground electrode 3B, the flow of current that degrades the power transfer efficiency in the module mounting surface area is suppressed.
 上記のように、実施の形態3のRFICチップ付きプリント配線基板においては、給電回路基板12のコイル導体4の略中点がグランド電極3Bの縁の近傍に直流的に接続され、グランド電極3Bにスリット部3Bbを設けた構成を有している。このため、励起したコイル導体4からの高周波電流は、グランド電極3Bの縁部に沿って流れて、当該グランド電極3Bが送信アンテナとして機能する。また、逆に受信アンテナとして機能するグランド電極3Bでは、その金属面3Baの縁部に高周波電流が流れることにより、RFICモジュール10Aにおいて受信可能な構成となる。 As described above, in the printed wiring board with the RFIC chip of the third embodiment, the substantially middle point of the coil conductor 4 of the feeding circuit board 12 is DC connected near the edge of the ground electrode 3B and is connected to the ground electrode 3B. It has the structure which provided slit part 3Bb. Therefore, the high frequency current from the excited coil conductor 4 flows along the edge of the ground electrode 3B, and the ground electrode 3B functions as a transmitting antenna. On the contrary, in the ground electrode 3B functioning as a receiving antenna, the RFIC module 10A can receive signals by the high frequency current flowing through the edge portion of the metal surface 3Ba.
 上記のように構成された実施の形態3のRFICチップ付き物品であるプリント配線基板においては、RFICモジュール10Aの給電回路基板12のコイル導体4の略中点(より好ましくは電気長の中点)をアンテナ(放射板)となるグランド電極3Bの縁近傍の一カ所で直流的に接続(DC接続)する構成である。このため、実施の形態3のプリント配線基板は、取付けの自由度が高く、更に高い電力伝達効率を有する構成となり、小型化、軽量化、および低コスト化を達成することができる構成となる。 In the printed wiring board which is the article with the RFIC chip of the third embodiment configured as described above, substantially the middle point of the coil conductor 4 of the feeding circuit board 12 of the RFIC module 10A (more preferably, middle point of electrical length) Are connected in a direct current manner (DC connection) at one place near the edge of the ground electrode 3B to be an antenna (radiation plate). For this reason, the printed wiring board of the third embodiment has a high degree of freedom of attachment, and has a configuration with higher power transfer efficiency, and can achieve downsizing, weight reduction, and cost reduction.
 《応用例》
 前述の実施の形態1~3においては、RFICチップ付き物品としてプリント配線基板を用いて、金属物をグランド電極として説明したが、本発明のRFICチップ付き物品としては金属物をアンテナとして利用することができる各種物品に適用することが可能である。
<< Example of application >>
In the first to third embodiments described above, a metal is described as a ground electrode using a printed wiring board as an article with an RFIC chip, but a metal is used as an antenna as an article with an RFIC chip of the present invention. It is possible to apply to various articles which can
 図10は、本発明のRFICチップ付き物品の応用例の一例を示しており、物品として鋼製の小物である金属製外科手術用具である鉗子100に用いた具体例である。図10に示すように、鉗子100における指孔が形成されたハンドルの一方には、RFICモジュール101が搭載される取付面100aが設けられている。鉗子100に設けた金属面となる取付面100aは、平面視が平板な円形であり、その一部にスリット部100bが形成されている。 FIG. 10 shows an example of application of the article with an RFIC chip according to the present invention, which is an example used for the forceps 100 which is a metallic surgical tool which is a small accessory made of steel as the article. As shown in FIG. 10, a mounting surface 100a on which the RFIC module 101 is mounted is provided on one of the handles of the forceps 100 in which finger holes are formed. The mounting surface 100a which becomes a metal surface provided in the insulator 100 is flat-plate circular [planar view], and the slit part 100b is formed in the part.
 図10では、鉗子100の一部を示しており、鉗子100にRFICモジュール101が搭載された状態を示す平面図である。また、図10は、鉗子100の取付面100aに平面視が円形のRFICモジュール101が搭載された状態を示している。図10において、破線の丸印PはRFICモジュール101に設けられているコイル導体102の中点が取付面100aに対して直流的に接続されていることを示している。コイル導体102の中点が直流的に接続される取付面100aの取付位置は、平面視におけるコイル導体102のモジュール配設面領域の直下であり、取付面100aの外縁近傍であり、スリット部100bの近傍の位置である。 FIG. 10 shows a part of the forceps 100 and is a plan view showing a state in which the RFIC module 101 is mounted on the forceps 100. Further, FIG. 10 shows a state in which the RFIC module 101 having a circular plan view is mounted on the mounting surface 100 a of the forceps 100. In FIG. 10, a dotted circle P indicates that the middle point of the coil conductor 102 provided in the RFIC module 101 is connected to the mounting surface 100a in a direct current manner. The mounting position of the mounting surface 100a to which the middle point of the coil conductor 102 is connected in a direct current manner is directly below the module mounting surface area of the coil conductor 102 in plan view and near the outer edge of the mounting surface 100a. Position of the
 RFICモジュール101におけるコイル導体102は、磁束通過部であるスリット部100bと平面視で交差するように配置されている。その結果、励起されたコイル導体102により生じる磁界(磁束)がスリット部100bを通り抜ける構成となる。 The coil conductor 102 in the RFIC module 101 is disposed to intersect the slit portion 100 b which is a magnetic flux passing portion in plan view. As a result, the magnetic field (magnetic flux) generated by the excited coil conductor 102 passes through the slit portion 100 b.
 なお、図10に示す鉗子100においては、円形の取付面100aに対して、取付面100aより直径が小さい円形のRFICモジュール101を同心円的に搭載する構成であるが、前述の実施の形態1~3において説明した構成でも対応可能である。即ち、実施の形態1において説明したように、スリット部(3b)に加えて開口部(3c)を形成して、その開口部を平面視で取り囲むようにコイル導体(102)を配設する構成(図1参照)でもよい。また、実施の形態2において説明したように、取付面(100a)の一部が金属面となる構成として、励起したコイル導体(102)において生じる磁界(磁束)が取付面(100a)を通り抜ける構成(図7参照)でもよい。更に、実施の形態3において説明したように、取付面(100a)の一部を金属面で構成し、その金属面にスリット部(3Bb)を設けた構成(図9参照)でもよい。 In the forceps 100 shown in FIG. 10, a circular RFIC module 101 having a diameter smaller than that of the mounting surface 100a is concentrically mounted on the circular mounting surface 100a. The configuration described in 3 is also applicable. That is, as described in the first embodiment, in addition to the slit portion (3b), the opening portion (3c) is formed, and the coil conductor (102) is disposed to surround the opening portion in plan view. (See FIG. 1). Further, as described in the second embodiment, as a configuration in which a part of the mounting surface (100a) is a metal surface, a magnetic field (magnetic flux) generated in the excited coil conductor (102) passes through the mounting surface (100a) (See FIG. 7). Furthermore, as described in the third embodiment, a part of the attachment surface (100a) may be formed of a metal surface, and a slit portion (3Bb) may be provided on the metal surface (see FIG. 9).
 以上、上述の実施の形態1~3を挙げて本発明を説明したが、本発明はこれらの実施の形態に限定されない。 The present invention has been described above by citing the above-described first to third embodiments, but the present invention is not limited to these embodiments.
 例えば、プリント配線基板におけるグランド電極に形成され、RFICモジュールのコイル導体から発生した磁束が通過する磁束通過部は、上述の実施の形態1~3における磁束通過部以外の形態も可能である。 For example, the magnetic flux passing portion formed on the ground electrode in the printed wiring board and through which the magnetic flux generated from the coil conductor of the RFIC module passes may be in a form other than the magnetic flux passing portion in the first to third embodiments described above.
 《実施の形態4》
 図11は、実施の形態4のRFICチップ付きプリント配線基板における一部を拡大し、グランド電極に搭載されるRFICモジュールの搭載位置を示す斜視図である。図12は、グランド電極にRFICモジュールが搭載された状態を示す図である。図13は、RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図である。
Fourth Embodiment
FIG. 11 is an enlarged perspective view of a part of the printed wiring board with an RFIC chip of the fourth embodiment and a mounting position of the RFIC module mounted on the ground electrode. FIG. 12 is a diagram showing the RFIC module mounted on the ground electrode. FIG. 13 is a perspective view schematically showing the configuration of a coil conductor and the like on the feed circuit board of the RFIC module.
 図11に示すように、プリント配線基板におけるグランド電極3Cは、磁束通過部として、グランド電極3Cの端面3Cbから内側に向かって窪み、平面視でV字形状の切欠き部3Ccを備える。また、グランド電極3Cには、切欠き部3Ccに沿って設けられたL字形状のレジスト開口17が形成されている。 As shown in FIG. 11, the ground electrode 3C in the printed wiring board is recessed inwardly from an end face 3Cb of the ground electrode 3C as a magnetic flux passing portion, and has a V-shaped notch 3Cc in plan view. Further, an L-shaped resist opening 17 provided along the notch 3Cc is formed in the ground electrode 3C.
 図12に示すように、RFICモジュール10Bは、一部が切欠き部3Ccを覆うようにグランド電極3Cの金属面3Ca(金属面3Ca上のレジストパターン)に搭載されている。 As shown in FIG. 12, the RFIC module 10B is mounted on the metal surface 3Ca (a resist pattern on the metal surface 3Ca) of the ground electrode 3C so that a part of the RFIC module 10B covers the notch 3Cc.
 図13に示すように、RFICモジュール10Bの給電回路基板22は、上述の実施の形態1~3と異なる裏面電極29を備える。具体的には、給電回路基板22は、大きさが異なる2つのL字形状の裏面電極29a、29bを備える。裏面電極29aは、裏面電極29bに比べて大きいサイズを備え、コイル導体4の略中点に接続線5を介して接続されている。小さい方の裏面電極29bは、ダミー電極である。また、裏面電極29a、29bは、平面視で、給電回路基板22の対角方向に対向している。 As shown in FIG. 13, the feeder circuit board 22 of the RFIC module 10B is provided with a back electrode 29 different from the above-described first to third embodiments. Specifically, the feeder circuit board 22 includes two L-shaped back surface electrodes 29a and 29b having different sizes. The back surface electrode 29 a has a size larger than that of the back surface electrode 29 b, and is connected to a substantially middle point of the coil conductor 4 via the connection line 5. The smaller back electrode 29b is a dummy electrode. The back surface electrodes 29a and 29b face each other in the diagonal direction of the feed circuit board 22 in plan view.
 給電回路基板22の裏面電極29aが、レジスト開口17を通じて露出するグランド電極3Cの金属面3Caに、導電ペーストを介して直流的に接続される。 The back surface electrode 29a of the feeding circuit substrate 22 is connected to the metal surface 3Ca of the ground electrode 3C exposed through the resist opening 17 in a direct current manner via a conductive paste.
 なお、このようなRFICモジュール10Bは、V次状の切欠き部3Ccを備えるグランド電極3Cと異なるグランド電極にも搭載可能である。 Such an RFIC module 10B can also be mounted on a ground electrode different from the ground electrode 3C provided with the V-shaped notch 3Cc.
 図14は、実施の形態4の変形例のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図である。図15は、グランド電極にRFICモジュールが搭載された状態を示す図である。 FIG. 14 is an enlarged perspective view showing a part of a printed wiring board with an RFIC chip of a modification of the fourth embodiment. FIG. 15 is a diagram showing the RFIC module mounted on the ground electrode.
 図14および図15に示すように、プリント配線基板のグランド電極3Dは、上述の実施の形態1のグランド電極3と同様に、スリット部3Dbと開口部3Dcとを備える。開口部3Dcを挟んで対向するように、大きさが異なる2つのL字形状のレジスト開口27a、27bが形成されている。大きい方のレジスト開口27aを通じて露出するグランド電極3Dの金属面3Daに、RFICモジュール10Bの給電回路基板22の裏面電極29aが導電ペーストを介して直流的に接続される。 As shown in FIGS. 14 and 15, the ground electrode 3D of the printed wiring board is provided with a slit portion 3Db and an opening 3Dc in the same manner as the ground electrode 3 of the first embodiment described above. Two L-shaped resist openings 27a and 27b having different sizes are formed to face each other with the opening 3Dc interposed therebetween. The back surface electrode 29a of the feeder circuit board 22 of the RFIC module 10B is connected to the metal surface 3Da of the ground electrode 3D exposed through the larger resist opening 27a in a direct current manner via the conductive paste.
 また、上述の実施の形態1~3の場合、RFICモジュールの給電回路基板のコイル導体に接続されている1つの裏面電極は、1つのレジスト開口を通じて露出するグランド電極の金属面に直流的に接続されている、すなわち一点でグランド電極に接続されている。しかしながら、本発明の実施の形態はこれに限らない。 Further, in the case of Embodiments 1 to 3 described above, one back surface electrode connected to the coil conductor of the feeding circuit substrate of the RFIC module is DC connected to the metal surface of the ground electrode exposed through one resist opening Being connected to the ground electrode at one point. However, the embodiment of the present invention is not limited to this.
 《実施の形態5》
 図16は、実施の形態5のRFICチップ付きプリント配線基板における一部を拡大し、グランド電極に搭載されるRFICモジュールの搭載位置を示す斜視図である。
Fifth Embodiment
FIG. 16 is a perspective view showing a mounting position of an RFIC module mounted on a ground electrode by enlarging a part of a printed wiring board with an RFIC chip of the fifth embodiment.
 図16に示すように、実施の形態5のRFICチップ付きプリント配線基板において、RFICモジュールは、上述の実施の形態4のRFICモジュール10Bであって、グランド電極は、上述の実施の形態1のグランド電極3である。 As shown in FIG. 16, in the printed wiring board with an RFIC chip of the fifth embodiment, the RFIC module is the RFIC module 10B of the fourth embodiment described above, and the ground electrode is the ground of the first embodiment described above. It is an electrode 3.
 実施の形態5に場合、RFICモジュール10Bの給電回路基板22の大きい方の裏面電極29a(図13参照)は、3つのレジスト開口7a、7c、および7dを通じて露出するグランド電極3の金属面3aに直流的に接続される。すなわち、裏面電極29aは、コイル導体4に対しては一点で接続し、グランド電極3に対しては3点で接続される。 In the case of the fifth embodiment, the larger back electrode 29a (see FIG. 13) of the feeding circuit substrate 22 of the RFIC module 10B is formed on the metal surface 3a of the ground electrode 3 exposed through the three resist openings 7a, 7c and 7d. It is connected in direct current. That is, the back surface electrode 29 a is connected to the coil conductor 4 at one point, and is connected to the ground electrode 3 at three points.
 グランド電極3に対して多点で裏面電極29aが接続されるため、一点で接続する場合に比べて、グランド電極3と裏面電極29aとの間をより確実に大きな電流が流れることができる。一点で接続する場合、製造上のバラツキによってその接触抵抗が大きくなると、グランド電極3と裏面電極29aとの間を流れる電流が減少する。すなわち、接触抵抗のバラツキが大きくなると、電流のバラツキも大きくなる。 Since the back surface electrode 29a is connected to the ground electrode 3 at multiple points, a larger current can flow more reliably between the ground electrode 3 and the back surface electrode 29a as compared with the case where the connection is made at one point. When connecting at one point, if the contact resistance is increased due to manufacturing variations, the current flowing between the ground electrode 3 and the back electrode 29a decreases. That is, as the variation in contact resistance increases, the variation in current also increases.
 これに対して、実施の形態5の場合、グランド電極3と裏面電極29aとが多点で接続するため、いくつかの点での接触抵抗が大きくなっても、残りの点を介して電流は流れることができる。そのため、いくつか点での接触抵抗のバラツキが大きくなっても、グランド電極3と裏面電極29aとの間を流れる電流のバラツキは小さい。 On the other hand, in the case of the fifth embodiment, since the ground electrode 3 and the back surface electrode 29a are connected at many points, even if the contact resistance at some points is increased, the current is not changed through the remaining points. It can flow. Therefore, even if the variation in the contact resistance at some points becomes large, the variation in the current flowing between the ground electrode 3 and the back surface electrode 29a is small.
 なお、実施の形態5の変形例を図17に示す。 A modification of the fifth embodiment is shown in FIG.
 図17は、実施の形態5の変形例のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図である。 FIG. 17 is a perspective view showing a part of the printed circuit board with an RFIC chip of the modification of the fifth embodiment in an enlarged manner.
 図17に示すように、実施の形態5の変形例のRFICチップ付きプリント配線基板において、グランド電極3Eは、図11に示す実施の形態4のグランド電極3Cと同様に、V字形状の切欠き部3Ecを備える。グランド電極3Eには、切欠き部3Ecに沿って設けられた3つのレジスト開口27a、27b、および27cが形成されている。レジスト開口27aは、V字形状の切欠き部3Ecの頂点近傍に設けられている。残りのレジスト開口27b、27cは、切欠き部3Ecの端面3Ebとの間に設けられている。 As shown in FIG. 17, in the printed wiring board with the RFIC chip of the modification of the fifth embodiment, the ground electrode 3E has a V-shaped notch, like the ground electrode 3C of the fourth embodiment shown in FIG. A unit 3Ec is provided. The ground electrode 3E is formed with three resist openings 27a, 27b and 27c provided along the notch 3Ec. The resist opening 27a is provided in the vicinity of the top of the V-shaped notch 3Ec. The remaining resist openings 27b and 27c are provided between the end face 3Eb of the notch 3Ec.
 RFICモジュール10Bの給電回路基板22の大きい方の裏面電極29a(図13参照)は、3つのレジスト開口27a、27b、および27cを通じて露出するグランド電極3Eの金属面3Eaに直流的に接続される。すなわち、裏面電極29aは、コイル導体4に対しては一点で接続し、グランド電極3Eに対しては3点で接続される。 The larger back electrode 29a (see FIG. 13) of the feeder circuit substrate 22 of the RFIC module 10B is connected in a direct current manner to the metal surface 3Ea of the ground electrode 3E exposed through the three resist openings 27a, 27b and 27c. That is, the back surface electrode 29a is connected to the coil conductor 4 at one point, and is connected to the ground electrode 3E at three points.
 さらに、上述の実施の形態1~3の場合、RFICモジュールの給電回路基板のコイル導体は、その略中点で(好ましくは電気長の中点)、裏面電極を介してグランド電極に直流的に接続されている。しかしながら、本発明の実施の形態はこれに限らない。 Furthermore, in the case of Embodiments 1 to 3 described above, the coil conductor of the feed circuit substrate of the RFIC module is DC-connected to the ground electrode through the back surface electrode at its substantially middle point (preferably the middle point of the electrical length). It is connected. However, the embodiment of the present invention is not limited to this.
 《実施の形態6》
 図18は、実施の形態6における、RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図である。
Embodiment 6
FIG. 18 is a perspective view schematically showing a configuration of a coil conductor and the like on a feeder circuit board of the RFIC module according to the sixth embodiment.
 図18に示すように、実施の形態6のRFICモジュールの給電回路基板32において、コイル導体14は、第1ループ電極14a、第2ループ電極14b、第3のループ電極14c、およびこれらに接続するビアホール導体16a、16b、16c、16dによって構成されている。裏面電極29aは、最も裏面電極側に位置する第3のループ電極14cに接続線15を介して接続されている。すなわち、裏面電極29aは、コイル導体14の一端(表面電極8aに接続するビアホール導体16aの端)と他端(表面電極8bに接続するビアホール導体16dの端)との中間の一点に接続されている。 As shown in FIG. 18, in the feeder circuit substrate 32 of the RFIC module of the sixth embodiment, the coil conductor 14 is connected to the first loop electrode 14a, the second loop electrode 14b, the third loop electrode 14c, and these. The via hole conductors 16a, 16b, 16c and 16d are formed. The back surface electrode 29 a is connected to the third loop electrode 14 c located closest to the back surface electrode via the connection line 15. That is, the back surface electrode 29a is connected to one point intermediate between one end of the coil conductor 14 (the end of the via hole conductor 16a connected to the surface electrode 8a) and the other end (the end of the via hole conductor 16d connected to the surface electrode 8b) There is.
 このようにコイル導体14の中点(好ましくは電気長の中点)以外の点(接続点)に裏面電極29aが接続される場合、その接続点は、電力伝達効率を考慮すると、コイル導体14の一端および他端それぞれから電気長の四分の一以上の距離だけ離れた位置、すなわち電気長の中点近くの位置に設けられるのが好ましい。 When the back electrode 29a is connected to a point (connection point) other than the middle point (preferably the middle point of the electrical length) of the coil conductor 14 in this manner, the connection point corresponds to the coil conductor 14 in consideration of the power transfer efficiency. Preferably, they are provided at a distance of one-quarter or more of the electrical length from each of the one end and the other end, that is, at a position near the midpoint of the electrical length.
 さらにまた、上述の実施の形態1~3の場合、RFICモジュールの給電回路基板おいて、コイル導体の一点と裏面電極の一点とが、1つの接続線によって接続されている。しかしながら、本発明の実施の形態はこれに限らない。 Furthermore, in the case of Embodiments 1 to 3 described above, in the feeder circuit substrate of the RFIC module, one point of the coil conductor and one point of the back surface electrode are connected by one connection line. However, the embodiment of the present invention is not limited to this.
 《実施の形態7》
 図19は、実施の形態7における、RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図である。
Seventh Embodiment
FIG. 19 is a perspective view schematically showing a configuration of a coil conductor and the like on a feeder circuit board of the RFIC module according to the seventh embodiment.
 図19に示すように、実施の形態7のRFICモジュールの給電回路基板42において、コイル導体14の第3ループ電極14cが、複数の接続線25a、25b、25cを介して裏面電極39aに接続されている。すなわち、コイル導体14上の複数の点と裏面電極39a上の複数の点とが、複数の接続線25a、25b、25cによって接続されている。 As shown in FIG. 19, in the feeding circuit board 42 of the RFIC module of the seventh embodiment, the third loop electrode 14c of the coil conductor 14 is connected to the back surface electrode 39a via the plurality of connecting lines 25a, 25b, 25c. ing. That is, the plurality of points on the coil conductor 14 and the plurality of points on the back surface electrode 39a are connected by the plurality of connection lines 25a, 25b, 25c.
 このようにコイル導体14が複数の点(接続点)で裏面電極39aに接続される場合、それらの接続点は、電力伝達効率を考慮すると、コイル導体14の一端および他端それぞれから電気長の四分の一以上の距離だけ離れた位置、すなわち電気長の中点近くの位置に設けられるのが好ましい。 Thus, when the coil conductor 14 is connected to the back surface electrode 39a at a plurality of points (connection points), the connection points have electrical lengths from one end and the other end of the coil conductor 14 in consideration of the power transfer efficiency. It is preferably provided at a distance of a quarter or more, that is, at a position near the midpoint of the electrical length.
 コイル導体14が複数の点で裏面電極に接続されることにより、一点で接続される場合に比べて、コイル導体14と裏面電極39aとの間を多くの電流が流れる。これにより、グランド電極をアンテナとして使用するRFICモジュールは、より長い通信距離を得ることができる。 Since the coil conductor 14 is connected to the back surface electrode at a plurality of points, more current flows between the coil conductor 14 and the back surface electrode 39a as compared to the case where they are connected at one point. Thus, the RFIC module using the ground electrode as an antenna can obtain a longer communication distance.
 なお、実施の形態7の変形例を図20に示す。 A modification of the seventh embodiment is shown in FIG.
 図20は、実施の形態7の変形例における、RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図である。なお、図5に示す上述の実施の形態1の変形例でもある。 FIG. 20 is a perspective view schematically showing a configuration of a coil conductor and the like on a feeder circuit board of the RFIC module according to a modification of the seventh embodiment. This is also a modification of the above-described first embodiment shown in FIG.
 図20に示すように、実施の形態7の変形例のRFICモジュールの給電回路基板52において、コイル導体24は、2つのコイル状部24A、24Bから構成されている。2つのコイル状部4A、4Bは、並設され、電気的に直列に接続されている。また、2つのコイル状部4A、4Bのコイル中心軸は、互いに平行であって、縦方向に延在している。 As shown in FIG. 20, in the feeder circuit board 52 of the RFIC module according to the modification of the seventh embodiment, the coil conductor 24 is composed of two coiled portions 24A and 24B. The two coiled parts 4A, 4B are juxtaposed and electrically connected in series. The coil central axes of the two coiled parts 4A and 4B are parallel to each other and extend in the longitudinal direction.
 一方のコイル状部24Aは3つのループ電極24Aa、24Ab、24Acを備え、同様に、他方のコイル状部24Bも3つのループ電極24Ba、24Bb、24Bcを備える。一方のコイル状部24Aのループ電極24Acと他方のコイル状部24Bのループ電極24Bcは、互いに接続され、1つの導体パターンとして形成されている。 One coiled portion 24A comprises three loop electrodes 24Aa, 24Ab, 24Ac, and similarly, the other coiled portion 24B also comprises three loop electrodes 24Ba, 24Bb, 24Bc. The loop electrode 24Ac of one coiled portion 24A and the loop electrode 24Bc of the other coiled portion 24B are connected to each other and formed as a single conductor pattern.
 この場合、一方のコイル状部24Aのループ電極24Acと他方のコイル状部24Bのループ電極24Bcの接続点が、接続線35aを介して、ブラケット形状の裏面電極49の中点に接続される。なお、ループ電極24Acとループ電極24Bcの接続点は、コイル導体の中点である。また、一方のコイル状部24Aのループ電極24Acが、接続線35bを介して、裏面電極49の一端に接続される。そして、他方のコイル状部24Bのループ電極24Bcが、接続線35cを介して、裏面電極49の他端に接続される。 In this case, the connection point between the loop electrode 24Ac of one coiled portion 24A and the loop electrode 24Bc of the other coiled portion 24B is connected to the middle point of the bracket-shaped back surface electrode 49 via the connection line 35a. The connection point between the loop electrode 24Ac and the loop electrode 24Bc is the middle point of the coil conductor. Further, the loop electrode 24Ac of one of the coiled portions 24A is connected to one end of the back surface electrode 49 via the connection wire 35b. Then, the loop electrode 24Bc of the other coiled portion 24B is connected to the other end of the back surface electrode 49 via the connection wire 35c.
 図21は、実施の形態7の変形例のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図である。 FIG. 21 is a perspective view showing a part of the printed wiring board with an RFIC chip of the modification of the seventh embodiment in an enlarged manner.
 図21に示すように、ブラケット形状の裏面電極49は、ブラケット形状のレジスト開口37を通じて露出するグランド電極3Fの金属面3Faに直流的に接続される。レジスト開口37は、開口部3Fcを部分的に囲むように形成されている。 As shown in FIG. 21, the bracket-shaped back surface electrode 49 is connected in a direct current manner to the metal surface 3Fa of the ground electrode 3F exposed through the bracket-shaped resist opening 37. The resist opening 37 is formed so as to partially surround the opening 3Fc.
 加えて、上述の実施の形態1~3の場合、それに加えて上述の実施の形態4~7の場合、RFICモジュールの給電回路基板のコイル導体は、1つの裏面電極を介して、グランド電極に直流的に接続されている。しかしながら、本発明の実施の形態はこれに限らない。 In addition, in the case of Embodiments 1 to 3 above, and in the case of Embodiments 4 to 7 above, in addition to that, the coil conductor of the feed circuit substrate of the RFIC module is connected to the ground electrode through one back surface electrode. It is connected in direct current. However, the embodiment of the present invention is not limited to this.
 《実施の形態8》
 図22は、実施の形態8における、RFICモジュールの給電回路基板におけるコイル導体などの構成を模式的に示す斜視図である。
Embodiment 8
FIG. 22 is a perspective view schematically showing a configuration of a coil conductor and the like on a feeder circuit board of the RFIC module according to the eighth embodiment.
 図22に示すように、実施の形態8のRFICモジュールの給電回路基板62において、コイル導体14のループ電極14cは、接続線45aを介して裏面電極59aに接続されるとともに、接続線45bを介して裏面電極59bに接続される。すなわち、コイル導体14の複数の点(接続点)それぞれが、異なる裏面電極59a、59bに接続される。 As shown in FIG. 22, in the feeding circuit board 62 of the RFIC module of the eighth embodiment, the loop electrode 14c of the coil conductor 14 is connected to the back surface electrode 59a via the connecting wire 45a and via the connecting wire 45b. Is connected to the back electrode 59b. That is, each of the plurality of points (connection points) of the coil conductor 14 is connected to different back surface electrodes 59a and 59b.
 このようにコイル導体14が複数の点(接続点)それぞれで異なる裏面電極59a、59bに接続される場合、それらの接続点は、電力伝達効率を考慮すると、コイル導体14の一端および他端それぞれから電気長の四分の一以上の距離だけ離れた位置、すなわち中点近くの位置に設けられるのが好ましい。 Thus, when the coil conductor 14 is connected to different back surface electrodes 59a and 59b at a plurality of points (connection points) respectively, those connection points are one end and the other end of the coil conductor 14 in consideration of the power transfer efficiency. It is preferable to be provided at a position separated by a distance equal to or more than a quarter of the electrical length, ie, a position near the midpoint.
 図23は、実施の形態8のRFICチップ付きプリント配線基板における一部を拡大して示す斜視図である。 FIG. 23 is a perspective view showing a part of the printed wiring board with an RFIC chip of the eighth embodiment in an enlarged manner.
 図23に示すように、一方の裏面電極59aは、一方のレジスト開口47aを通じて露出するグランド電極3Gの金属面3Gaに直流的に接続する。他方の裏面電極59bは、他方のレジスト開口47bを通じて露出する金属面3Gaに直流的に接続する。レジスト開口47a、47bは、開口部3Gcを挟んで対向するように形成されている。 As shown in FIG. 23, one back electrode 59a is connected to metal surface 3Ga of ground electrode 3G exposed through one resist opening 47a in a direct current manner. The other back surface electrode 59b is connected in a direct current manner to the metal surface 3Ga exposed through the other resist opening 47b. The resist openings 47a and 47b are formed to face each other across the opening 3Gc.
 上述の実施の形態4~8およびそれらの変形例に係るプリント配線基板も、上述の実施の形態1~3に係るプリント配線基板と同様に、取付けの自由度および電力伝達効率が高い構成となり、更に小型化、軽量化、および低コスト化を達成することができる構成となる。 Similarly to the printed wiring boards according to the above-described first to third embodiments, the printed wiring boards according to the above-described fourth to eighth embodiments and their variations are also configured to have high degree of freedom of installation and power transfer efficiency. Further, the configuration can be achieved to achieve miniaturization, weight reduction and cost reduction.
 上記のように本発明のRFICチップ付き物品としては、各実施の形態において説明したように、例えばプリント配線基板、金属製工具などの金属面をアンテナとして利用することが可能な各種物品において簡単な構成でRFIDシステムを構築することが可能となる。 As described above, the RFIC chip-attached article of the present invention is simple in various articles which can use a metal surface such as a printed wiring board or a metal tool as an antenna as described in each embodiment. It is possible to construct an RFID system with the configuration.
 以上のように、本発明のRFICチップ付き物品においては、RFICモジュールの給電回路基板のコイル導体の中間の少なくとも一点をアンテナ(放射板)となるグランド電極の少なくとも一カ所で直流的に接続(DC接続)する構成であるため、物品に対する取付けの自由度が高く、簡単な構成で高い電力伝達効率を有する通信機器となり、小型化、軽量化、および低コスト化を達成することができる構成となる。 As described above, in the article with an RFIC chip of the present invention, at least one point in the middle of the coil conductor of the feed circuit substrate of the RFIC module is DC connected (DC) at at least one place of the ground electrode serving as the antenna (radiation plate) Because of the configuration to be connected, the communication device has a high degree of freedom of attachment to an article, a simple configuration and high power transfer efficiency, and can achieve miniaturization, weight reduction, and cost reduction. .
 本発明をある程度の詳細さをもって各実施の形態において説明したが、これらの実施の形態の開示内容は構成の細部において変化してしかるべきものであり、各実施の形態における要素の組合せや順序の変化は請求された本発明の範囲および思想を逸脱することなく実現し得るものである。 Although the present invention has been described in the embodiments with a certain degree of detail, the disclosed contents of these embodiments should be changed in the details of the configuration, and the combination and order of the elements in the embodiments can be appropriately changed. Changes can be made without departing from the scope and spirit of the claimed invention.
 本発明は、RFICチップ付き物品としては金属面を有する各種物品に適用することができるため、RFIDシステムを利用した物品管理システムの拡充などにおいて有用な構成となる。 The present invention can be applied to a variety of articles having a metal surface as an article with an RFIC chip, and therefore, the configuration is useful in expanding an article management system using an RFID system.
  1 RFICチップ
  2 給電回路基板
  3 グランド電極(金属物)
  3a 金属面
  3b スリット部(磁束通過部)
  3c 開口部(磁束通過部)
  3d レジスト開口
  4 コイル導体(インダクタ素子)
  4a 第1ループ電極
  4b 第2ループ電極
  4c 第3ループ電極
  5 接続線
  6 ビア導体
  7 レジストパターン
  7a 第1レジスト開口
  7b 第2レジスト開口
  7c 第3レジスト開口
  7d 第4レジスト開口
  8 表面電極
  8a 第1表面電極
  8b 第2表面電極
  9 裏面電極
  9a 第1裏面電極
  9b 第2裏面電極
  9c 第3裏面電極
  9d 第4裏面電極
 10 RFICモジュール
100 物品(プリント配線基板、鉗子)
101 RFICモジュール
102 コイル導体
1 RFIC chip 2 Feed circuit board 3 Ground electrode (metal)
3a Metal surface 3b Slit portion (flux passing portion)
3c opening (magnetic flux passing part)
3d resist opening 4 coil conductor (inductor element)
4a 1st loop electrode 4b 2nd loop electrode 4c 3rd loop electrode 5 connecting wire 6 via conductor 7 resist pattern 7a 1st resist opening 7b 2nd resist opening 7c 3rd resist opening 7d 4th resist opening 8 front surface electrode 8a 1st Surface electrode 8b Second surface electrode 9 Back surface electrode 9a First back surface electrode 9b Second back surface electrode 9c Third back surface electrode 9d Fourth back surface electrode 10 RFIC module 100 Article (printed wiring board, insulator)
101 RFIC module 102 coil conductor

Claims (10)

  1.  金属面を有する物品と、
     前記金属面に対向するループ面を有するコイル導体と、
     前記コイル導体の一端および他端にそれぞれ接続された第1および第2の入出力端子を有するRFICチップと、を備え
     前記コイル導体の中間の一点と前記金属面の縁近傍の一点とが直流的に接続し、前記コイル導体のループ面と平面視で重なる領域に前記コイル導体による磁束が通る磁束通過部が配設されたRFICチップ付き物品。
    An article having a metal surface;
    A coil conductor having a loop surface facing the metal surface;
    An RFIC chip having first and second input / output terminals respectively connected to one end and the other end of the coil conductor; and one point in the middle of the coil conductor and one point near the edge of the metal surface are DC An article with an RFIC chip, wherein a magnetic flux passing portion through which a magnetic flux from the coil conductor passes is disposed in a region overlapping with a loop surface of the coil conductor in a plan view.
  2.  前記金属面に電気的に直接接続される前記コイル導体の中間の一点が、前記コイル導体における電気長の略中点の位置である、請求項1に記載のRFICチップ付き物品。
    The RFIC chip attached article according to claim 1, wherein one point in the middle of the coil conductor electrically connected directly to the metal surface is a position of a substantially midpoint of an electrical length in the coil conductor.
  3.  前記コイル導体に電気的に直接接続される前記金属面の一点が、平面視で前記コイル導体の直下に位置する、請求項1または2に記載のRFICチップ付き物品。
    The RFIC chip attached article according to claim 1, wherein one point of the metal surface electrically connected directly to the coil conductor is located directly below the coil conductor in plan view.
  4.  前記磁束通過部が前記金属面に形成され、
     前記コイル導体のループ面の一部が平面視で前記磁束通過部と重なるように構成された、請求項1から3のいずれか一項に記載のRFICチップ付き物品。
    The magnetic flux passing portion is formed on the metal surface,
    The RFIC chip attached article according to any one of claims 1 to 3, wherein a part of a loop surface of the coil conductor is configured to overlap the magnetic flux passing portion in plan view.
  5.  前記コイル導体のループ面が平面視で前記金属面の縁と重なるように構成された、請求項1から3のいずれか一項に記載のRFICチップ付き物品。
    The RFIC chip attached article according to any one of claims 1 to 3, wherein a loop surface of the coil conductor is configured to overlap an edge of the metal surface in plan view.
  6.  前記磁束通過部が開口で構成された、請求項1から5のいずれか一項に記載のRFICチップ付き物品。
    The article with an RFIC chip according to any one of claims 1 to 5, wherein the magnetic flux passing portion is constituted by an opening.
  7.  前記磁束通過部は磁束が通過する材料で構成された、請求項1から5のいずれか一項に記載のRFICチップ付き物品。
    The article with an RFIC chip according to any one of claims 1 to 5, wherein the magnetic flux passage part is made of a material through which magnetic flux passes.
  8.  前記コイル導体が、前記コイル導体の中間の一点を含む複数の点で、前記金属面の縁近傍の一点を含む前記金属面の縁近傍における複数の点に直流的に接続されている、請求項1から7のいずれか一項に記載のRFICチップ付き物品。
    The coil conductor is galvanically connected at a plurality of points including one middle point of the coil conductor to a plurality of points near the edge of the metal surface including one point near the edge of the metal surface. An article with an RFIC chip according to any one of 1 to 7.
  9.  前記コイル導体と前記RFICチップとがRFICモジュールとしてモジュール化され、
     前記RFICモジュールが、前記コイル導体と前記金属面との間に介在し、前記コイル導体と前記金属面とを直流的に接続する電極を備える、請求項1から8のいずれか一項に記載のRFICチップ付き物品。
    The coil conductor and the RFIC chip are modularized as an RFIC module,
    9. The RFIC module according to any one of claims 1 to 8, further comprising: an electrode interposed between the coil conductor and the metal surface and connecting the coil conductor and the metal surface in a DC manner. Article with RFIC chip.
  10.  前記金属面をアンテナとして、UHF帯を通信周波数とするよう構成された、請求項1から9のいずれか一項に記載のRFICチップ付き物品。 The RFIC chip attached article according to any one of claims 1 to 9, wherein the metal surface is an antenna and the UHF band is a communication frequency.
PCT/JP2018/024848 2017-06-30 2018-06-29 Rfic chip-equipped product WO2019004439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018562272A JP6508441B1 (en) 2017-06-30 2018-06-29 Article with RFIC chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017129076 2017-06-30
JP2017-129076 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004439A1 true WO2019004439A1 (en) 2019-01-03

Family

ID=64741582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024848 WO2019004439A1 (en) 2017-06-30 2018-06-29 Rfic chip-equipped product

Country Status (2)

Country Link
JP (1) JP6508441B1 (en)
WO (1) WO2019004439A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044931A1 (en) * 2019-09-05 2021-03-11 株式会社村田製作所 Medical-purpose metal tool provided with wireless ic tag
WO2021044930A1 (en) * 2019-09-05 2021-03-11 株式会社村田製作所 Metal medical device with wireless ic tag
WO2021075159A1 (en) * 2019-10-18 2021-04-22 株式会社村田製作所 Metal medical implement with wireless ic tag
JPWO2021229857A1 (en) * 2020-05-15 2021-11-18

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014939A1 (en) * 2010-07-28 2012-02-02 株式会社村田製作所 Antenna device and communications terminal device
JP2015211421A (en) * 2014-04-30 2015-11-24 Tdk株式会社 Antenna device
WO2018079718A1 (en) * 2016-10-29 2018-05-03 株式会社フェニックスソリューション Antenna-mounted communication ic unit and antenna-mounted communication ic unit equipped with conductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014939A1 (en) * 2010-07-28 2012-02-02 株式会社村田製作所 Antenna device and communications terminal device
JP2015211421A (en) * 2014-04-30 2015-11-24 Tdk株式会社 Antenna device
WO2018079718A1 (en) * 2016-10-29 2018-05-03 株式会社フェニックスソリューション Antenna-mounted communication ic unit and antenna-mounted communication ic unit equipped with conductor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112955990B (en) * 2019-09-05 2023-03-10 株式会社村田制作所 Medical metal appliance with wireless IC tag
WO2021044930A1 (en) * 2019-09-05 2021-03-11 株式会社村田製作所 Metal medical device with wireless ic tag
US11714988B2 (en) 2019-09-05 2023-08-01 Murata Manufacturing Co., Ltd. Wireless IC tag-attached metal medical instrument
CN112930151A (en) * 2019-09-05 2021-06-08 株式会社村田制作所 Metal medical instrument with wireless IC tag
CN112955990A (en) * 2019-09-05 2021-06-11 株式会社村田制作所 Metal medical instrument with wireless IC tag
JP6912024B1 (en) * 2019-09-05 2021-07-28 株式会社村田製作所 Medical metal device with wireless IC tag
WO2021044931A1 (en) * 2019-09-05 2021-03-11 株式会社村田製作所 Medical-purpose metal tool provided with wireless ic tag
JP6912022B1 (en) * 2019-09-05 2021-07-28 株式会社村田製作所 Medical metal device with wireless IC tag
JP6912023B1 (en) * 2019-10-18 2021-07-28 株式会社村田製作所 Medical metal device with wireless IC tag
US11701200B2 (en) 2019-10-18 2023-07-18 Murata Manufacturing Co., Ltd. Wireless IC tag-attached metal medical instrument
WO2021075159A1 (en) * 2019-10-18 2021-04-22 株式会社村田製作所 Metal medical implement with wireless ic tag
WO2021229857A1 (en) * 2020-05-15 2021-11-18 株式会社村田製作所 Rfic module, rfid tag, and article
JP7060180B2 (en) 2020-05-15 2022-04-26 株式会社村田製作所 RFIC modules, RFID tags and articles
JPWO2021229857A1 (en) * 2020-05-15 2021-11-18
US11714989B2 (en) 2020-05-15 2023-08-01 Murata Manufacturing Co., Ltd. RFIC module, RFID tag, and article

Also Published As

Publication number Publication date
JPWO2019004439A1 (en) 2019-06-27
JP6508441B1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6137362B2 (en) Wireless IC device component and wireless IC device
JP3148168U (en) Wireless IC device
JP6260729B2 (en) Feeding element
JP6508441B1 (en) Article with RFIC chip
JP5522227B2 (en) Mobile communication terminal
JP5521686B2 (en) Antenna apparatus and wireless communication device
JP5267463B2 (en) Wireless IC device and wireless communication system
JP5549787B2 (en) Antenna device and communication terminal device
WO2011158844A1 (en) Communication terminal apparatus and antenna device
WO2009119548A1 (en) Radio ic device
JP6593552B2 (en) Wireless communication device
WO2017022554A1 (en) Antenna apparatus and electronic device
JP6269902B2 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE
WO2015147132A1 (en) Antenna device and communications apparatus
JP6583589B2 (en) Wireless communication device
WO2012093541A1 (en) Wireless communication device
WO2013011856A1 (en) Wireless communication device
JP2012253699A (en) Wireless communication device, its manufacturing method, and metal article with wireless communication device
JP6229814B2 (en) Communication terminal device
JP5958670B2 (en) Wireless communication device and method for manufacturing wireless communication module
JP5896594B2 (en) Wireless IC device
JP6137347B2 (en) Wireless IC device and metal body with wireless IC device
JP6128183B2 (en) ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018562272

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822666

Country of ref document: EP

Kind code of ref document: A1