WO2019004406A1 - Diffraction optical element, manufacturing method therefor, acrylic resin composition for forming diffraction optical element, and illumination device - Google Patents

Diffraction optical element, manufacturing method therefor, acrylic resin composition for forming diffraction optical element, and illumination device Download PDF

Info

Publication number
WO2019004406A1
WO2019004406A1 PCT/JP2018/024734 JP2018024734W WO2019004406A1 WO 2019004406 A1 WO2019004406 A1 WO 2019004406A1 JP 2018024734 W JP2018024734 W JP 2018024734W WO 2019004406 A1 WO2019004406 A1 WO 2019004406A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
refractive index
acrylic resin
optical element
meth
Prior art date
Application number
PCT/JP2018/024734
Other languages
French (fr)
Japanese (ja)
Inventor
英範 吉岡
由紀子 伴
ノリ子 永松
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2019004406A1 publication Critical patent/WO2019004406A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present disclosure relates to a diffractive optical element having sticking resistance under wet heat conditions and having a small amount of pattern burrs, a method of manufacturing the same, an acrylic resin composition for forming the diffractive optical element, and a lighting apparatus.
  • the need for sensor systems has increased in recent years, such as the need for personal identification to avoid security risks through the spread of networks, the flow of automated driving of cars, and the spread of the so-called "Internet of Things".
  • sensors There are various types of sensors, and the information to be detected is various.
  • One of the means is that the light source emits light to the object and information is obtained from the reflected light.
  • a pattern authentication sensor or an infrared radar is an example.
  • the light source of these sensors is used with wavelength distribution, brightness and spread according to the application.
  • the wavelength of light visible light wavelengths to infrared light wavelengths are often used.
  • infrared light is hard to be affected by external light, is invisible, and it is possible to observe the inside of the surface vicinity of an object. It is widely used.
  • an LED light source, a laser light source, and the like are often used.
  • a laser light source with less spread of light is preferably used to detect a distant place, and an LED light source is preferably used to detect a relatively close place or to illuminate an area having a certain extent of spread.
  • the size and shape of the illuminated area on the object do not necessarily match the spread (profile) of the light from the light source, in which case it is necessary to shape the light with a diffuser, lens, shield, etc. is there.
  • a diffuser called Light Shaping Diffuser (LSD) has been developed that can shape the shape of light to some extent.
  • a diffractive optical element DOE
  • the DOE is basically designed for light of a single wavelength, it is theoretically possible to shape the light into almost any shape.
  • the light intensity in the irradiation area is a Gaussian distribution
  • the DOE it is possible to control the uniformity of the light distribution in the irradiation area.
  • Such characteristics of DOE are advantageous in terms of high efficiency by suppressing irradiation to unnecessary regions, downsizing of the apparatus by reduction of the number of light sources, and the like.
  • the DOE is applicable to both parallel light sources such as lasers and diffused light sources such as LEDs, and is applicable to a wide range of wavelengths from ultraviolet light to visible light and infrared light.
  • DOE requires microfabrication in nano order, and in particular, in order to diffract light of long wavelength, it has been necessary to form a fine shape with a high aspect ratio. Therefore, electron beam lithography technology using an electron beam is conventionally used to manufacture the DOE. For example, after forming a hard mask or a resist on a quartz plate transparent in the ultraviolet to near infrared regions, a predetermined shape is drawn on the resist using an electron beam, resist development, dry etching of the hard mask, dry of quartz After etching is sequentially performed to form a pattern on the surface of the quartz plate, the hard mask can be removed to obtain a desired DOE.
  • a form called a grating cell array As a form of a diffractive optical element, a form called a grating cell array (grating cell array) is conventionally used.
  • the grating cell array type diffractive optical element for example, square fine unit regions (cells) are arranged in a matrix. Then, in one unit area of the grating cell array type diffractive optical element, a diffraction grating whose rotation direction in the plane is directed in a fixed direction at a fixed pitch is arranged. Further, in the grating cell array type diffractive optical element, the pitches and rotational directions of the diffraction gratings arranged are different for each unit region, and one diffractive optical element is configured as an aggregate thereof.
  • a diffractive optical element based on this grating cell array is manufactured by patterning glass.
  • the patterning of the glass generally includes a direct writing method such as a laser or an electron beam.
  • This direct writing method is not suitable for mass production because it takes time to produce a diffractive optical element having a fine pattern of several ⁇ m or less because it draws one by one and is not widely used.
  • the nanoimprinting method is a method in which a master plate pattern is contact-transferred onto a replica plate, and a product of the same type as the master plate can be produced at high speed.
  • the side to be transferred is not glass but resin material. That is, the replica plate to be a product is not patterned by glass but patterned by resin.
  • an acrylic UV curable resin is generally known (see Patent Documents 2-3).
  • the above-mentioned acrylic UV curable resin has low heat resistance, and it is known that material deterioration occurs under high temperature conditions or high humidity conditions.
  • wet heat conditions under wet and high temperature conditions (hereinafter, such conditions are referred to as wet heat conditions), a phenomenon in which adjacent patterns are attached or separated by the meniscus force generated when water is released from between the fine patterns (Sticking) may be confirmed.
  • An object of the present invention is to provide a manufacturing method, an acrylic resin composition for forming a diffractive optical element, and a lighting device.
  • the diffractive optical element of the present disclosure is a diffractive optical element that shapes light from a light source, and includes at least one surface side of a transparent substrate, one or more high refractive index convex portions protruding from the surface of the transparent substrate,
  • the high-refractive-index convex portion is formed of a cured product of an acrylic resin composition, and the high-refractive-index convex portion is formed at 60 ° C. and relative to the cured product.
  • the storage elastic modulus (E ′) at a humidity of 95% is characterized by being 0.90 ⁇ 10 9 Pa or more and 2.6 ⁇ 10 9 Pa or less.
  • a diffraction grating portion in which one or more high refractive index convex portions protruding from the surface of the transparent base and one or more low refractive index portions are disposed on at least one surface side of the transparent base
  • a method of manufacturing a diffractive optical element that shapes light from a light source Preparing a mold having a cavity shape for forming the high refractive index convex portion and the low refractive index portion; A cured product sample obtained by irradiating an acrylic resin composition to a cavity of the mold, and curing the acrylic resin composition with ultraviolet light so that the integrated light amount is 1,000 mJ / cm 2 .
  • an acrylic resin composition having a storage elastic modulus (E ′) at 60 ° C. and a relative humidity of 95% of 0.90 ⁇ 10 9 Pa or more and 2.6 ⁇ 10 9 Pa or less A step of curing the acrylic resin composition by bringing the transparent substrate and the acrylic resin composition into contact with each other on the side of the cavity opening of the mold and irradiating active energy rays; Forming a diffraction grating portion having a high refractive index convex portion formed of a cured product of an acrylic resin composition on a transparent substrate by pulling the mold away from the substrate; It is characterized by having.
  • one or more high refractive index convex portions protruding from the surface of the transparent substrate and one or more low refractive index portions are disposed on at least one side of the transparent substrate.
  • the storage elastic modulus (E ') at 60 ° C. and 95% relative humidity of a cured product sample obtained by curing by irradiation with ultraviolet light so as to be 1 cm 2 / cm 2 is 0.90 ⁇ 10 9 Pa or more 2.6 ⁇ 10 It is characterized by being 9 Pa or less.
  • the storage elastic modulus (E ′) at 30 ° C. and a relative humidity of 30% of the cured product of the acrylic resin composition may be 1 ⁇ 10 8 Pa or more and 5 ⁇ 10 9 Pa or less.
  • the acrylic resin composition contains a urethane bond from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern burrs.
  • the acrylic resin composition is an active energy ray curable resin composition containing a tetrafunctional or higher functional (meth) acrylate and a bifunctional (meth) acrylate, which is resistant to sticking under moist heat conditions. It is preferable from the point that it is excellent in quality and less in pattern pattern.
  • the active energy ray-curable resin composition contains 40% by mass or more and 80% by mass or less of the (meth) acrylate having four or more functional groups with respect to all the curable components, and the bifunctional (meth) It is preferable to contain 10% by mass or more and 60% by mass or less of acrylate from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern burrs.
  • the tetrafunctional or higher functional (meth) acrylate contains a tetrafunctional or higher functional urethane (meth) acrylate from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern unevenness.
  • the tetrafunctional or higher urethane (meth) acrylate is formed of the isocyanate group of the polyvalent isocyanate compound and the hydroxyl group of a compound having one hydroxyl group and two or more (meth) acrylic groups in the molecule. It is preferable that the compound is a urethane-bonded compound from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern mottle.
  • the bifunctional (meth) acrylate has a molecular weight (Mw) of 100 or more and 5,000 or less from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern burrs. .
  • a cured product of the acrylic resin composition as measured by a Vickers hardness test performed according to JIS Z 2 244 (2003) and under a measurement condition of maximum load 0.2 mN and holding time 10 seconds. It is preferable from the point which is further excellent in the sticking resistance under moist heat conditions that the restoration ratio of is 60% or more.
  • the high refractive index convex portion have a portion having a height of 400 nm or more from the viewpoint of being able to diffract light having a relatively long wavelength.
  • the top of the high refractive index convex portion is defined as the upper end, and the position of the valley bottom between the high refractive index convex portion and another high refractive index convex portion adjacent thereto, or the high refractive index convex portion Among the positions of the flat part closest to the top of the high-refractive-index convex part, the lower end of the high-refractive-index convex part is defined as the lower end of the high-refractive-index convex part.
  • the ratio of the height of the high refractive index convex portion to the width of the high refractive index convex portion at a position corresponding to half the height is defined as the aspect ratio of the high refractive index convex portion
  • the high refractive index convex portion The aspect ratio of the high refractive index con
  • An illumination device includes a frame having a conductive portion capable of supplying power from the outside and an opening serving as a light emitting surface, a light source, and the above-described diffractive optical element, and the light source is fixed in the inner space of the frame. And the diffractive optical element is disposed in the opening.
  • the light source may be a light source emitting an infrared ray having a wavelength of 780 nm or more.
  • the storage elastic modulus (E ′) under moist heat conditions for the cured product of the acrylic resin composition forming the high refractive index convex portion is within the specific range, so sticking under the moist heat conditions is It can be prevented and the pattern can be reduced.
  • FIG. 1 is a plan view schematically showing an embodiment of a diffractive optical element.
  • FIG. 1 is a schematic perspective view of an embodiment of a diffractive optical element. It is a figure which shows one Embodiment of a diffractive optical element, and is sectional drawing which shows typically an example of the A-A 'cut surface of FIG.
  • FIG. 5 is a cross-sectional view schematically showing another embodiment of the diffractive optical element in which a base 3 is present between the transparent base 1 and the diffraction grating portion 2.
  • FIG. 7 is a cross-sectional view schematically showing another embodiment of the diffractive optical element, in which the covering layer 5 is provided on the opposite side of the transparent base 1 with the diffraction grating portion 2 interposed therebetween.
  • FIG. 1 is a plan view schematically showing an embodiment of a diffractive optical element.
  • FIG. 1 is a schematic perspective view of an embodiment of a diffractive optical element. It is a figure which shows one Embodi
  • FIG. 7 is a cross-sectional view schematically showing another embodiment of the diffractive optical element, in which the covering layer 5 is provided on the opposite side of the transparent base 1 with the diffraction grating portion 2 interposed therebetween.
  • FIG. 6 is a cross-sectional view schematically showing another embodiment of the diffractive optical element in which the low refractive index resin 3 is filled in the low refractive index portion 3;
  • FIG. 6 is a cross-sectional view schematically showing another embodiment of the diffractive optical element in which the low refractive index resin 3 is filled in the low refractive index portion 3;
  • FIG. 10 is a cross-sectional view schematically showing an embodiment including the anti-reflection layer 9 which is another embodiment of the diffractive optical element.
  • FIG. 10 is a cross-sectional view schematically showing an embodiment including the anti-reflection layer 9 which is another embodiment of the diffractive optical element. It is a figure which is provided for explanation of an aspect ratio, and is a fragmentary sectional view of a diffraction grating part containing a high refractive index convex part of binary shape.
  • FIG. 6 is a view provided for describing an aspect ratio, and is a schematic partial cross-sectional view of a diffraction grating portion including multi-step (4-level) high refractive index convex portions.
  • FIG. 7 is a cross-sectional view schematically showing an embodiment in which the thickness of the high refractive index convex portion 2 a is intermittently increased from the tip to the root, which is another embodiment of the cross-sectional shape of the diffraction grating portion.
  • FIG. 10 is a cross-sectional view schematically showing an embodiment in which the thickness of the high refractive index convex portion 2 a is continuously increased from the tip to the root, which is another embodiment of the cross-sectional shape of the diffraction grating portion.
  • FIG. 10 is a cross-sectional view schematically showing an embodiment in which the thickness of the high refractive index convex portion 2 a is continuously increased from the tip to the root, which is another embodiment of the cross-sectional shape of the diffraction grating portion.
  • FIG. 10 is a cross-sectional view schematically showing an embodiment in which the high refractive index convex portions 2a have a multistage shape (4-level), which is another embodiment of the cross-sectional shape of the diffraction grating portion.
  • FIG. 7 is a cross-sectional view schematically showing another embodiment of the cross-sectional shape of the diffraction grating portion, in which the high refractive index convex portion 2a has a multi-stage shape (8-level).
  • FIG. 5 is a schematic perspective view showing that the irradiation light 21 is diffracted by the diffractive optical element 10 and a square image 24 is formed at the center of the screen 22.
  • FIG. 5 is a schematic perspective view showing that the irradiation light 21 is diffracted by the diffractive optical element 10 and a square image 24 is formed on the top of the screen 22.
  • FIG. 10A is a front view of screen 22 shown to FIG. 10A.
  • FIG. 10B is a schematic diagram of an example of the metal mold
  • FIG. 7 is a schematic cross-sectional view showing an example of the acrylic resin composition filling step in the manufacturing method of the present disclosure, and showing a state in which the acrylic resin composition 32 is placed on the surface of the mold 31.
  • FIG. 7 is a schematic cross-sectional view showing an example of the acrylic resin composition filling step in the manufacturing method of the present disclosure, and showing a state in which the acrylic resin composition 32 is placed on the surface of the mold 31.
  • FIG. 7 is a schematic cross-sectional view showing an example of the acrylic resin composition filling step in the manufacturing method of the present disclosure, and showing a state of applying the acrylic resin composition 32 to the surface of the mold 31. It is a schematic diagram of an example of the acrylic resin composition hardening process in the manufacturing method of this indication. It is a schematic diagram of an example of the mold release process in the manufacturing method of this indication. It is a sectional view showing typically one embodiment of a lighting installation. It is a perspective view showing a case where light which becomes circular [irradiation area 23] is projected directly to screen 22 of plane shape.
  • FIG. 6 is a schematic perspective view of the diffractive optical element 50 in which sticking has occurred.
  • the diffractive optical element of the present disclosure and a method of manufacturing the same, an acrylic resin composition for forming the diffractive optical element, and a lighting apparatus will be described in detail in order, the present disclosure is limited to the following embodiments. Instead, various modifications may be made within the scope of the present invention.
  • the shapes and geometrical conditions as well as the degree of them are specified. For example, terms such as “parallel” and values of length and angle etc. It shall be interpreted including the extent to which the function can be expected.
  • the term “plan view” in this specification means that the image is viewed from the direction perpendicular to the top surface of the diffractive optical element.
  • plan view corresponds to visual recognition from the direction perpendicular to the surface of the diffractive optical element having the diffraction grating portion (corresponding to the direction of the plan view as shown in FIG. 1).
  • the active energy ray is not only visible light and electromagnetic waves of wavelengths in the invisible region such as ultraviolet light and X-rays, but also curing of acrylic resin compositions that collectively refers to particle rays such as electron rays and alpha rays. It contains radiation with energy quanta that is sufficient to As active energy rays, ultraviolet rays are preferred.
  • (meth) acrylic represents each of acrylic or methacrylic
  • (meth) acrylate represents each of acrylate or methacrylate
  • (meth) acryloyl represents each of acryloyl or methacryloyl.
  • shapeing the light means that the shape (irradiation area) of the light projected onto the target object or the target area is made to be an arbitrary shape by controlling the traveling direction of the light. . For example, by transmitting light (FIG. 14) in which the irradiation area 23 is circular when projected directly onto the flat screen 22 (FIG. 14A), the irradiation area is square (24 in FIG. 10A).
  • the diffractive optical element and emitted as it is without being diffracted as zero-order light (25 in FIG. 10A), and diffracted light generated by the diffractive optical element is referred to as first-order light (26a to 26d in FIG. 10A).
  • first-order light 26a to 26d in FIG. 10A
  • the cross-sectional shape of the diffraction grating portion is defined as that in which the diffractive optical element is placed on a horizontal surface. In the example of FIG.
  • the X axis is taken in the repetition direction of the periodic structure, orthogonal to the X axis, the Y axis taken so that XY forms a horizontal plane, and the Z axis taken in the direction perpendicular to the XY horizontal plane.
  • a valley bottom (minimum point of Z) between convex portions is a reference of height 0, and a portion of height 0 is a concave portion.
  • a portion having a height H (H> 0) is a convex portion.
  • the depth to the valley bottom between the protrusions may be referred to as the maximum height of the protrusions, but in the present disclosure, the height and the depth have a relationship between front and back, and the protrusions In the case of focusing on the height, the case of focusing on the recess, and the depth, it is substantially the same.
  • it is a binary (2-level) shape that the cross-sectional shape of the diffraction grating portion is a repetitive structure of a concave portion with a height of 0 and a convex portion with a height H as shown in the example of FIG. It is said that.
  • a convex portion having two or more flat portions may be referred to as a multistage shape, and the multistage convex portion and the concave portion are combined to n If there are two flats, it may be called n-level shape.
  • “transparent” refers to one that transmits light of at least a target wavelength. For example, even if it does not transmit visible light, if it transmits infrared rays, it shall be treated as transparent when used for infrared applications.
  • the diffractive optical element according to the present disclosure is a diffractive optical element that shapes light from a light source, and includes at least one high refractive index convex projecting from the surface of the transparent base on at least one surface side of the transparent base Portion and one or more low refractive index portions are provided, and the high refractive index convex portion is formed of a cured product of an acrylic resin composition, and the cured product of the cured product
  • the storage elastic modulus (E ') at 0 ° C and a relative humidity of 95% is characterized by being 0.90 ⁇ 10 9 Pa or more and 2.6 ⁇ 10 9 Pa or less.
  • the high refractive index convex portion in the diffractive optical element of the present disclosure is an acrylic resin having a specific storage elastic modulus (E ′) under the conditions of 60 ° C. and 95% relative humidity. It is formed of a cured product of the composition.
  • E ′ specific storage elastic modulus
  • E ' storage elastic modulus
  • FIG. 2 is a schematic perspective view of an embodiment of a diffractive optical element.
  • high-refractive-index convex portions 2 a connected in a long and thin manner are arranged on one surface side of the transparent base material 1 at a constant interval.
  • DOE and GCA usually have such a so-called line & space structure.
  • FIG. 15 is a schematic perspective view of a diffractive optical element in which sticking has occurred.
  • hatched portions indicate portions where sticking has occurred.
  • all or part of adjacent high refractive index convex portions 2 a are sticking and are in contact with each other.
  • the long and thin convex portions are arranged in a fine size, the sticking that has once occurred is easily propagated as a whole compared to the dot-like moth-eye structure and the like.
  • GCA is usually smaller in size than DOE, sticking is more likely to occur.
  • FIG. 16A is a schematic cross-sectional view showing a state in which water has infiltrated between fine patterns of the diffractive optical element.
  • FIG. 16B is a schematic cross-sectional view of the diffractive optical element in which the sticking has occurred, corresponding to a part of the BB ′ cut surface in FIG.
  • the diffractive optical element 10 provided with the diffraction grating portion 2 on the transparent substrate 1 is depicted.
  • the diffraction grating portion 2 includes a high refractive index convex portion 2a and a low refractive index portion 2b, and in the example of FIG. 16A, the low refractive index portion 2b is air. However, as shown in FIG. 16A, the moisture 51 infiltrates into one of the low refractive index portions 2b. In this case, the stress ⁇ acting on the high refractive index convex portion 2a in contact with the moisture 51 is expressed by the following formula (1).
  • the stress ⁇ disappears, so the sticking is canceled and the high refractive index convex portion 2a in contact may be separated, but the high refractive index convex portion 2a is fused together particularly under wet heat conditions In some cases, sticking may not be eliminated. In order to prevent sticking, it is required that the material forming the high refractive index convex portion be so hard that it can withstand stress ⁇ .
  • the high refractive index convex portion has a portion extending in a ridge line shape (a portion extending narrowly in the surface direction and linearly extending), and extends in a ridge line shape of the high refractive index convex portion Stucking is particularly likely to occur when at least a portion of the portions are separated by low refractive index portions having a width narrower than the height of the high refractive index convex portions and adjacent in parallel or substantially in parallel.
  • assembly may be performed under wet heat conditions.
  • pattern peeling occurs at the time of mold release.
  • pattern wrinkling means that a part of the entire or a part of the high refractive index convex portions forming the fine pattern in the diffraction grating portion is broken or taken off from the root. means.
  • FIG. 17 is a schematic cross-sectional view showing a state in which pattern peeling has occurred at the time of mold release of the diffractive optical element. Such a pattern is found, for example, in the case of replicating a diffractive optical element by imprinting with a resin using a mold prepared by electron beam lithography.
  • the cured resin 102 When pulling the convex cured resin 102 on the substrate 101 away from the mold 103, if the cured resin 102 is too hard, the cured resin 102 may break in the mold 103. It is necessary for the cured resin 102 to be deformed to a certain extent at the time of mold release, but when the resin cured product 102 is too hard, free deformation can not be expected, and as a result, the load required for mold release increases. It is considered that breakage occurs in a portion where particular load concentrates. When the cured resin material 102 is broken, high refractive index convex portions having a desired height can not be obtained as illustrated. Such a problem of pattern peeling is not limited to the cured resin on the molded diffractive optical element.
  • the desired fine pattern can not be obtained when the high refractive index convex portions are too hard or too soft.
  • high refractive index convex portions are formed of a cured product of an acrylic resin composition, and the storage elastic modulus (E ′) of the cured product at 60 ° C. and 95% relative humidity is 0. It became clear that sticking could be prevented under moist heat conditions and that the pattern could be suppressed from mold release at the time of mold release when it is not less than 90 ⁇ 10 9 Pa and not more than 2.6 ⁇ 10 9 Pa.
  • the storage elastic modulus (E ') at 60 ° C.
  • the cured product has a relative humidity of 60 ° C. and a relative humidity of 95 because it can prevent sticking under moist heat conditions, suppress breakage and breakage of the cured product, and is excellent in releasability and deformation during release.
  • the storage elastic modulus (E ') in% is preferably 1.0 ⁇ 10 9 Pa or more and 2.5 ⁇ 10 9 Pa or less, and more preferably 1.1 ⁇ 10 9 Pa or more and 2.3 ⁇ 10 9 Pa or more. It is 9 Pa or less, and more preferably 1.2 ⁇ 10 9 Pa or more and 2.0 ⁇ 10 9 Pa or less.
  • the storage elastic modulus (E ′) is a physical property that does not depend on the shape or size of the object to be measured. In the present disclosure, it is measured with a test piece cut out from a diffractive optical element, or with a test piece obtained by separately polymerizing an acrylic resin composition. In the present disclosure, the storage elastic modulus (E ′) is measured by the following method in accordance with JIS K7244. First, a test piece for measurement is prepared. The test piece is obtained by cutting out the appropriate dimension from the diffraction grating portion of the diffractive optical element.
  • the acrylic resin composition is sufficiently cured by irradiating ultraviolet light so that the integrated light amount is 1,000 mJ / cm 2 , thereby obtaining a single film of an appropriate size, which is used as a test piece. It can also be done.
  • the storage elastic modulus at 60 ° C. and 95% relative humidity is measured by measuring the dynamic viscoelasticity based on the conditions of the measurement temperature 60 ° C. and the relative humidity 95% and the measurement conditions shown in Table A in the examples. (E ') is required.
  • the storage elastic modulus at 30 ° C. and 30% relative humidity is measured by measuring the dynamic viscoelasticity based on the conditions of measurement temperature 30 ° C. and relative humidity 30% and the measurement conditions shown in Table A in the examples.
  • E ' is required.
  • a measurement device for example, Rheogel E4000 manufactured by UBM can be used.
  • an indenter can be pressed into the surface of the test piece to determine the storage elastic modulus (E ′) of the surface of the test piece.
  • an AFM (Atomic Force Microscope) nano indenter such as TI950 TRIBOINDENTER manufactured by Hysitron can be used. Measurement with an AFM nanoindenter has the advantage that the surface mechanical strength of the diffractive optical element surface can be measured directly. However, in this measurement, in order to prevent variations in measured values, it is preferable to measure by pressing an indenter in the vicinity of the center of the high refractive index convex portion.
  • a recess on the surface of a diffractive optical element is selected as a measurement location, the width of a Berkovich indenter usually used in an AFM nanoindenter often can not penetrate to the bottom of the recess, so the bottom of the recess is selected.
  • Surface mechanical strength is difficult to measure.
  • the high refractive index convex portion is expected to be bent by the pressing of the indenter, so that it is difficult to obtain an accurate measurement value of the surface mechanical strength.
  • the outline of the measurement in the case of using the AFM nanoindenter is as follows. First, the measurement sample is set on the stage, and the measurement position is confirmed by the CCD camera. Next, after performing calibration as appropriate, the sample is moved under a Berkovich indenter to obtain an AFM image of the surface of the diffractive optical element in a dynamic force mode (DFM mode).
  • DFM mode dynamic force mode
  • the high refractive index convex portion is specified from the obtained AFM image, and several places around the center of the high refractive index convex portion are selected to be the measurement place. At this measurement site, measurement is performed by the contact mode of AFM. Examples of measurement conditions are shown below.
  • the indentation hardness H IT can be determined based on the relationship between the displacement and the load obtained at the load unloading time. This indentation hardness H IT, storage modulus of interest (E ') is obtained.
  • requiring storage elastic modulus (E ') using the test piece of acrylic resin composition single film is realistic.
  • the storage elastic modulus of the base adjacent to the high refractive index convex portion on the diffractive optical element is approximately the same value as the storage elastic modulus of the test piece obtained by curing the acrylic resin composition.
  • the storage modulus (E ′) of the test piece obtained by curing the composition is the same as the storage modulus (E ′) of the high refractive index convex portion on the diffractive optical element.
  • the storage elastic modulus (E ′) at 30 ° C. and 30% relative humidity of the cured product of the acrylic resin composition may be 1 ⁇ 10 8 Pa or more and 5 ⁇ 10 9 Pa or less.
  • a cured product having the above storage elastic modulus (1 ⁇ 10 8 Pa or more and 5 ⁇ 10 9 Pa or less) under normal temperature and normal humidity conditions the physical properties necessary for the diffractive optical element can be satisfied under the conditions.
  • the moist heat condition A diffractive optical element having anti-sticking resistance in the lower part and with less pattern blurring can be obtained.
  • the storage elastic modulus (E ′) under high humidity conditions of 95% relative humidity.
  • the high humidity condition is considered to be a factor of sticking because it causes excessive moisture in the diffraction grating portion of the diffractive optical element (the above-mentioned FIG. 16A and FIG. 16B).
  • the high temperature condition of 60 ° C. is considered to be a factor for promoting sticking, since it promotes the supply of water to the diffraction grating portion. Therefore, storage elastic modulus (E ') under moist heat conditions of 60 ° C. and 95% relative humidity is important in examining the sticking resistance.
  • the composition of the acrylic resin composition is adjusted so that the storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity is 0.90 ⁇ 10 9 Pa or more and 2.6 ⁇ 10 9 Pa or less.
  • the storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity is 0.90 ⁇ 10 9 Pa or more and 2.6 ⁇ 10 9 Pa or less.
  • the contact angle of water on the surface of the diffraction grating portion is preferably 90 degrees or more, more preferably 100 degrees or more, and even more preferably 110 degrees or more.
  • the measuring method of the contact angle of water is as follows. A droplet of 2.0 ⁇ L is dropped with the surface of the diffraction grating portion of the diffractive optical element up, and the contact angle after 0.5 seconds of deposition is measured.
  • a contact angle meter DM 500 manufactured by Kyowa Interface Science Co., Ltd. can be used as a measuring apparatus.
  • the contact angle of water is determined using the cured product of the acrylic resin composition having the composition. It may be measured.
  • the acrylic resin composition is coated on a transparent substrate, and the acrylic resin composition is cured by irradiation with ultraviolet light so that the integrated light amount becomes 1,000 mJ / cm 2 , and the coating is performed. Form a film. With the coated film side as the upper surface, it is horizontally attached to a black acrylic plate with an adhesive layer. Next, a 2.0 ⁇ L water droplet is dropped onto the coating, and the contact angle after 0.5 seconds of deposition is measured.
  • the measuring device is the same as above.
  • Glass transition temperature (Tg) measurement of acrylic resin composition” of the Example mentioned later Temperature Tg (degreeC) is mentioned.
  • the glass transition temperature Tg may be 45 ° C. or more and 80 ° C. or less, and may be 48 ° C. or more and 79 ° C. or less.
  • the glass transition temperature Tg is a secondary index.
  • the storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity is the most important parameter for exhibiting the effect of the anti-sticking effect and the effect of preventing the pattern cracking.
  • the acrylic resin composition preferably contains a urethane bond, because it is easy to obtain a diffractive optical element having sticking resistance under wet heat conditions and having few patterns.
  • the said acrylic resin composition is an active energy ray curable resin composition containing the (meth) acrylate more than tetrafunctional and the bifunctional (meth) acrylate from the same reason.
  • tetrafunctional or higher urethane (meth) acrylates tend to increase the storage elastic modulus (E ′) of the resulting cured product under moist heat conditions
  • the bifunctional urethane (meth) acrylate is a obtainable cured product.
  • the acrylic resin composition is more preferably an active energy ray curable resin composition containing a tetrafunctional or higher functional urethane (meth) acrylate and a bifunctional urethane (meth) acrylate.
  • the active energy ray-curable resin composition does not contain as much as possible a material that is susceptible to moisture or a material that absorbs water and tends to swell. This is because the sticking resistance of the resulting diffractive optical element may be reduced if the material contains a large amount of such materials.
  • the material susceptible to moisture include known materials that decompose by reacting with water.
  • a material which absorbs water and tends to swell for example, a material having high hydrophilicity can be mentioned, and more specifically, vinyl pyrrolidone, ammonium acrylate, carboxyethyl acrylate and the like can be mentioned.
  • the total content of the material sensitive to moisture and the material which easily absorbs water and swells is preferably 10% by mass or less, based on 100% by mass of the whole active energy ray-curable resin composition. Is 5% by mass or less, more preferably 1% by mass or less, and particularly preferably 0% by mass.
  • the tetrafunctional or higher (meth) acrylate means a polyfunctional acrylate having four or more (meth) acryloyl groups in one molecule.
  • the tetrafunctional or higher (meth) acrylates include both monomers and polymers.
  • Examples of tetrafunctional or higher (meth) acrylates include pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, urethane hexa (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetratetra
  • examples thereof include (meth) acrylates, oligoester tetra (meth) acrylates, and dipentaerythritol polyacrylates; ethylene oxide-modified compounds thereof, propylene oxide-modified compounds, and ⁇ -caprolactone-modified compounds.
  • the modified number n ⁇ 6 is preferable. This is because in the case of the modification number n> 6, the cured product of the active energy ray curable resin composition tends to be too soft and sticking may easily occur.
  • These tetrafunctional or higher functional (meth) acrylates can be used alone or in combination of two or more.
  • the content of the tetrafunctional or higher (meth) acrylate is preferably 40% by mass or more and 80% by mass or less, and more preferably 55% by mass or more and 65% by mass with respect to all the curable components of the active energy ray curable resin composition. It is more preferable that the content is less than%.
  • the tetrafunctional or higher functional (meth) acrylate is a tetrafunctional or higher functional urethane from the viewpoint of enhancing the shape retention and heat resistance of the obtained diffractive optical element by increasing the crosslink density by chemical bonding and densifying the network structure. It is preferred to contain meta) acrylate. There are no particular limitations on the position and number of urethane bonds in this case, and whether or not the (meth) acryloyl group is at the end of the molecule. Particularly preferred are compounds having 6 or more (meth) acryloyl groups in the molecule, and more preferred are compounds having 10 or more.
  • the upper limit of the number of (meth) acryloyl groups in the molecule is not particularly limited, but is preferably 15 or less.
  • the curability of the resulting cured product may be reduced, and the storage modulus may be reduced.
  • the number of (meth) acryloyl groups in the urethane (meth) acrylate molecule is too small, the curability of the resulting cured product may be reduced, and the storage modulus may be reduced.
  • the number of (meth) acryloyl groups in the urethane (meth) acrylate molecule is too large, the consumption rate of carbon-to-carbon double bonds of the (meth) acryloyl group by polymerization, that is, the reaction rate may not be sufficiently increased.
  • the structure of the tetrafunctional or higher urethane (meth) acrylate is not particularly limited, but from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern mottle, the isocyanate group of the polyvalent isocyanate compound (a), It is preferable that it is a compound in which one hydroxyl group and a hydroxyl group of the compound (b) having two or more (meth) acrylic groups in the molecule are urethane-bonded.
  • it is preferable that substantially all of the isocyanate groups in the polyvalent isocyanate compound (a) form a urethane bond with the hydroxyl group in the compound (b).
  • polyvalent isocyanate compound (a) there is no particular limitation on the polyvalent isocyanate compound (a) in this case, and a compound having two or more isocyanate groups in the molecule can be mentioned.
  • compounds having two isocyanate groups in the molecule include 1,5-naphthyl diisocyanate, 4,4′-diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate , Tolylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate , Isophorone diisocyanate, lysine diisocyan
  • a nurate body etc. are mentioned.
  • isophorone diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate and the like are particularly preferable in the present disclosure.
  • the compound (b) having one hydroxyl group and two or more (meth) acrylic groups in the molecule is not particularly limited, but a compound having three or more (p) hydroxyl groups in the molecule Examples of the compound in which (meth) acrylic acid is reacted (p-1) with the hydroxyl group of b-1); and compounds in which glycidyl (meth) acrylate and (meth) acrylic acid undergo ring opening reaction.
  • a compound in which (meth) acrylic acid is reacted (p-1) times with a compound (b-1) having p (p is an integer of 3 or more) hydroxyl groups in the molecule there are no particular limitations on the “compound (b-1) having three or more hydroxyl groups in the molecule”, and examples thereof include glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, tetramethylolethane, diglycerin and ditriol.
  • Methylol ethane ditrimethylol propane, dipentaerythritol, ditetramethylol ethane; ethylene oxide-modified compounds thereof; propylene oxide-modified compounds thereof; ethylene oxide-modified compounds of isocyanuric acid, propylene oxide-modified compounds, ⁇ -caprolactone-modified compounds; Ester etc. .
  • the number of hydroxyl groups in the compound (b-1) is particularly preferably 4 or more, and more preferably 6 or more, in that the number of functional groups in the resulting urethane (meth) acrylate can be increased.
  • diglycerin, ditrimethylolethane, ditrimethylolpropane, dipentaerythritol, ditetramethylolethane and the like are particularly preferable.
  • (meth) acrylic acid is reacted with three hydroxyl groups of four hydroxyl groups of diglycerin to give one hydroxyl group and two or more hydroxyl groups (in this case)
  • a compound (b) having three (meth) acrylic groups is synthesized.
  • polyvalent isocyanate compound (a) is isophorone diisocyanate
  • Two (b) react with each other to synthesize “a tetrafunctional or higher urethane (meth) acrylate”.
  • the bifunctional (meth) acrylate means a polyfunctional acrylate having two (meth) acryloyl groups in one molecule.
  • Specific examples of the difunctional (meth) acrylate include, for example, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate Etc.
  • difunctional (meth) acrylates can be used alone or in combination of two or more.
  • the content of the bifunctional (meth) acrylate is preferably 10% by mass or more and 60% by mass or less, and 30% by mass or more and 45% by mass or less based on all the curable components of the active energy ray curable resin composition. It is more preferable that
  • the molecular weight (Mw) of the bifunctional (meth) acrylate is preferably 100 or more and 5,000 or less, from the viewpoint that the cured product of the active energy ray curable resin composition has an appropriate hardness, and is more preferable. 100 or more and 4,000 or less, more preferably 100 or more and 2,000 or less.
  • the molecular weight (Mw) of the bifunctional (meth) acrylate is 100 or more, as a result of the cured product having appropriate flexibility, the sticking resistance of the resulting diffractive optical element becomes better.
  • the molecular weight (Mw) of the bifunctional (meth) acrylate is 5,000 or less, as a result of the cured product being able to maintain an appropriate hardness, it is difficult to form a pattern in the obtained diffractive optical element.
  • the difunctional (meth) acrylate may contain a difunctional urethane (meth) acrylate.
  • the content of the bifunctional urethane (meth) acrylate is preferably 30% by mass or less, and more preferably 20% by mass or less, based on all the curable components of the active energy ray curable resin composition. The content is more preferably 10% by mass or less, and particularly preferably 0% by mass.
  • the difunctional (meth) acrylate may contain a difunctional (meth) acrylate other than the difunctional urethane (meth) acrylate.
  • the content of the bifunctional (meth) acrylate other than the bifunctional urethane (meth) acrylate is 10% by mass or more and 50% by mass or less with respect to the entire curable component of the active energy ray curable resin composition Is preferable, and 20 to 45% by mass is more preferable.
  • the bifunctional urethane (meth) acrylate is preferably a bifunctional urethane (meth) acrylate having one (meth) acrylic group at each end of the molecule.
  • the weight average molecular weight is preferably 1,000 to 30,000, and 2,000 to 5,000. Is particularly preferred. If the molecular weight is too low, the flexibility may decrease, and if the molecular weight is too high, it may lead to a decrease in storage modulus.
  • the bifunctional urethane (meth) acrylate is not particularly limited, but the following are particularly preferable. That is, the diisocyanate compound (d) is reacted with both ends of the polymer or oligomer (c) such as hydroxyl group and amino group at both ends, and the obtained “polymer or oligomer having isocyanate group at both ends” is further added It is particularly preferable to react the compound (e) having a hydroxyl group and a (meth) acrylic group in the molecule at its both terminals.
  • the polymer or oligomer (c) having hydroxyl groups at both ends is not particularly limited, and examples thereof include ester oligomers, ester polymers, urethane oligomers, urethane polymers, polyethylene glycol, polypropylene glycol and the like. Among these, particularly preferred are ester oligomers and ester polymers.
  • the molecular weight of such an oligomer or polymer is not particularly limited, but a weight average molecular weight of 1,000 to 5,000 is preferable in view of curability, and 2,000 to 3,000 is particularly preferable.
  • the diol component of the above-mentioned ester is not particularly limited, but ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, 2,2'-thiodiethanol Etc. Particularly preferred are 1,4-butanediol, 1,6-hexanediol and the like.
  • the dicarboxylic acid component of the ester is not particularly limited, and examples thereof include alkylene dicarboxylic acids such as oxalic acid, succinic acid, maleic acid and adipic acid; and aromatic dicarboxylic acids such as terephthalic acid and phthalic acid. Particularly preferred are adipic acid and terephthalic acid.
  • diisocyanate compound (d) to be reacted at both ends of the polymer or oligomer, and the same diisocyanate compounds as those described in the item of the polyvalent isocyanate compound (a) above can be used.
  • Particularly preferred is isophorone diisocyanate and the like.
  • the “compound (e) having a hydroxyl group and a (meth) acrylic group in the molecule, which is reacted at both ends of the polymer or oligomer having an isocyanate group at both ends obtained above is not particularly limited, For example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, ethylene glycol mono (meth) acrylate, propylene glycol mono (meth) acrylate and the like can be mentioned.
  • the active energy ray-curable resin composition contains monofunctional (meth) acrylate and / or trifunctional (meth) acrylate besides tetrafunctional (meth) acrylate and bifunctional (meth) acrylate. It may be.
  • the monofunctional (meth) acrylate means an acrylate having one (meth) acryloyl group in one molecule.
  • the trifunctional (meth) acrylate means a polyfunctional acrylate having three (meth) acryloyl groups in one molecule. However, the lower the content of monofunctional (meth) acrylate and trifunctional (meth) acrylate, the better.
  • the total content of monofunctional (meth) acrylate and trifunctional (meth) acrylate is 10% by mass or less with respect to the total curable component of the active energy ray curable resin composition. Is preferable, 5% by mass or less is more preferable, and 0% by mass is more preferable.
  • monofunctional (meth) acrylates include phenoxyethyl acrylate, trimethylcyclohexanol acrylate, isobornyl acrylate, phenylphenol acrylate, nonylphenol acrylate and the like.
  • trifunctional (meth) acrylates include glycerin PO-modified tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-modified tri (meth) acrylate, trimethylolpropane PO-modified tri (meth) Acrylate, EO modified triisocyanurate (meth) acrylate, EO modified isocyanurate E-caprolactone modified tri (meth) acrylate, 1,3,5-triacryloylhexahydro-s-triazine, pentaerythritol tri (meth) acrylate, di- Pentaerythritol tri (meth) acrylate tripropionate and the like can be mentioned.
  • the crosslinking density depending on the magnitude of the molecular weight may contribute to the determination of the storage elastic modulus under wet heat conditions.
  • the acrylic resin composition may contain one or more photopolymerization initiators, if necessary.
  • the content of the photopolymerization initiator is usually 0.2 to 15% by mass, preferably 0.3 to 13% by mass, based on the total solid content of the acrylic resin composition. It is more preferable that the content be 10% by mass.
  • the photopolymerization initiator is not particularly limited, but known ones conventionally used for radical polymerization, such as acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers, benzyl Aryl ketone photopolymerization initiators such as dimethyl acetals, benzoyl benzoates, ⁇ -acyloxime esters; sulfur-containing photo polymerization initiators such as sulfides and thioxanthones; acyl phosphine oxides such as acyl diaryl phosphine oxides; Anthraquinones etc. are mentioned. Moreover, a photosensitizer can also be used together.
  • the acrylic resin composition preferably contains a release agent (material having releasability).
  • the mold release agent can suppress the pattern of the cured product by improving the release property of the cured product of the acrylic resin composition.
  • the storage elastic modulus (E ') at 60 ° C. and 95% relative humidity of the cured product is 0.90 ⁇ 10 9 Pa or more 2.6 ⁇ 10 9 by appropriately selecting the type of the release agent. It can be adjusted to the range of Pa or less, and the cured product can also be provided with sticking resistance. That is, the release agent brings about a better effect in both of the suppression of the pattern scum and the sticking prevention in the cured product.
  • the addition of the release agent can prevent the reduction of the mold life due to the resin clogging at the time of release.
  • the release agent is not particularly limited as long as it is usually used for producing a diffractive optical element.
  • the mold release agent can be appropriately selected from known mold release agents such as silicone type, fluorine type, and phosphoric acid type as needed, and used. Further, as these releasing agents, those fixed to the cross-linked structure of the acrylic resin composition and those existing in a free state can be selected according to the application. Among them, as the release agent, non-reactive silicone, reactive silicone, and phosphoric acid-based release agent are preferably used, and among these, non-reactive silicone is more preferable.
  • the acrylic resin composition only needs to contain at least the above-mentioned active energy ray curable component, and may further contain other components as necessary.
  • a plurality of antistatic agents, ultraviolet light absorbers, infrared light absorbers, light stabilizers, antioxidants and the like can be added.
  • Antistatic agents are effective in preventing dust deposition during processing and use, and ultraviolet absorbers, infrared absorbers, light stabilizers and antioxidants are effective in improving durability.
  • compounding with an inorganic material such as silsesquioxane is also effective.
  • the acrylic resin composition does not substantially contain a solvent in consideration of the environment, it contains a solvent in consideration of adhesion to a substrate, adjustment of viscosity, improvement of surface quality, etc. It is also good.
  • the resin is applied to the substrate or the mold, and the solvent is dried and then shaped.
  • the acrylic resin composition may contain a resin other than the acrylic resin.
  • the acrylic resin composition is, for example, a compound having an ethylenically unsaturated double bond other than an acrylic resin, specifically, vinyl such as triethylene glycol divinyl ether, 2- (2-vinyloxyethoxy) ethyl acrylate, etc. You may contain a system compound etc.
  • the diffractive optical element of the present disclosure preferably has excellent reflow resistance.
  • excellent reflow resistance means that the mass change rate before and after heating (for example, 260 ° C. for 1.5 minutes) is 2% or less, and the transmittance fluctuation before and after the heating is 1% or less. means.
  • Method of manufacturing diffractive optical element” described later in the case of manufacturing an illumination device using the diffractive optical element, a temporary assembly including the diffractive optical element is used. The process (reflow process) put into a reflow oven and heated on high temperature conditions may be implemented.
  • the light source and the frame surrounding the same can be electrically connected to the mounting substrate by, for example, solder or the like, and the lighting device can be efficiently manufactured.
  • the material since a high temperature of 200 ° C. or higher is instantaneously applied to the material constituting the lighting device, the material may be dissolved or sublimated.
  • the diffractive optical element of the present disclosure preferably has excellent reflow resistance.
  • the diffractive optical element having excellent reflow resistance can be said to be excellent in formability because the shape of the high refractive index convex portion is not easily damaged in the reflow step.
  • a diffractive optical element having excellent reflow resistance for example, a diffractive optical element in which a cured product of an acrylic resin composition containing a tetrafunctional or higher functional (meth) acrylate is used to form a high refractive index convex portion is It can be mentioned.
  • the calculation method of mass change rate and transmittance fluctuation is as follows. (Calculation method of mass change rate of diffractive optical element) The mass of the diffractive optical element before and after the reflow is measured, and the mass change rate a is calculated from the following formula I.
  • Formula I a ⁇ (M 0 -M 1 ) / M 0 ⁇ ⁇ 100
  • a a mass change rate (%)
  • M 0 a mass of the diffractive optical element before reflow (mg)
  • M 1 a mass of the diffractive optical element after reflow (mg).
  • the transmittance (%) of the diffractive optical element before and after reflow is measured.
  • the transmittance is measured using an ultraviolet visible near infrared (UV-Vis-NIR) spectrophotometer (for example, UV-3150 manufactured by Shimadzu Corporation).
  • UV-Vis-NIR ultraviolet visible near infrared
  • the transmittance of the transparent base and the diffraction grating portion of the diffractive optical element having a wavelength of 850 nm is measured by this device.
  • the absolute value of the difference between the transmittance of the diffractive optical element before reflow and the transmittance of the diffractive optical element after reflow is taken as the transmittance fluctuation (%) of the diffractive optical element.
  • the refractive index of the cured product of the acrylic resin composition constituting the high refractive index convex portion is not particularly limited, but is preferably 1.4 to 2.0 and 1.45 to 1.8. More preferable. According to the present disclosure, a shape having an aspect ratio of 2 or more can be stably formed, and a favorable diffractive optical element can be obtained even with a resin having a lower refractive index than silicon oxide and the like. Further, in the present disclosure, the transmittance of the cured product of the resin composition constituting the high refractive index convex portion is not particularly limited, but the infrared transmittance (wavelength 850 nm) is preferably 90% or more, 92% or more It is more preferable that
  • the diffractive optical element has excellent sticking resistance under wet heat conditions because the cured product exhibits the property as an elastic body more strongly.
  • the loss modulus (E ′ ′) at 60 ° C. and 95% relative humidity of the cured product of the acrylic resin composition can be measured by the same method as the storage modulus (E ′).
  • cured material of an acrylic resin composition is 60% or more. It is because a cured product having such a recovery rate has better resistance to sticking.
  • the acrylic resin in the acrylic resin composition preferably contains a urethane bond, and more preferably contains a tetrafunctional or higher functional urethane (meth) acrylate, from the viewpoint that the recovery rate is 60% or more.
  • the measurement conditions of the recovery rate are as follows.
  • a test piece cut out from a diffractive optical element may be used, or a test piece obtained by separately polymerizing the acrylic resin composition is used. It is also good.
  • the method of preparing these test pieces is as described above. Based on JIS Z 2244 (2003), the Vickers hardness test is carried out under the following measurement conditions. Specifically, an indenter is pressed into the surface of the test piece under the following measurement conditions, and the recovery rate (%) of the surface of the test piece is measured.
  • a measuring device for example, PICODENTER HM-500 manufactured by Fisher Instruments can be used.
  • FIG. 1 is a plan view schematically showing an embodiment of the diffractive optical element of the present disclosure.
  • FIG. 2 is a perspective view schematically showing an embodiment of the diffractive optical element of FIG.
  • FIG. 3 is a cross-sectional view schematically showing an example of a cross section taken along line AA ′ of FIG.
  • the diffractive optical element 10 of the present disclosure includes the diffraction grating portion 2 on one surface side of the transparent substrate 1.
  • the diffraction grating portion 2 includes one or more high refractive index convex portions 2 a protruding from the surface of the transparent substrate 1 and one or more low refractive index portions 2 b.
  • FIG. 1 is a plan view schematically showing an embodiment of the diffractive optical element of the present disclosure.
  • FIG. 2 is a perspective view schematically showing an embodiment of the diffractive optical element of FIG.
  • FIG. 3 is a cross-sectional view schematically showing an example of a cross section taken along line AA ′ of FIG
  • the diffractive optical element of the present disclosure generally has a plurality of regions (for example, 2A to 2D regions in FIG. 1) having different periodic structures.
  • the partial periodic structure 2A to 2D is a binary (2-level) of concavities and convexities (for example, the diffraction grating portion 2 of FIG. 3), but the shape of the region is required to shape the light as desired. The depth must be designed appropriately.
  • FIG. 4 shows an embodiment in which a base 3 is present between the transparent substrate 1 and the diffraction grating portion 2.
  • the high refractive index convex portions 2 a may be isolated from each other (FIG. 3), or the high refractive index convex portions 2 a may be separated by the base 3. It may be connected (FIG. 4).
  • the diffractive optical element 10 may include such a base 3.
  • FIGS. 5A and 5B show an embodiment in which the covering layer 5 is provided on the opposite side of the transparent substrate 1 with the diffraction grating portion 2 interposed therebetween.
  • the covering layer 5 may be in direct contact with the diffraction grating portion 2 or may be provided on the diffraction grating portion 2 via an adhesive layer (adhesive layer).
  • adding the covering layer 5 to the embodiment shown in FIG. 3 corresponds to the embodiment shown in FIG. 5A
  • adding the covering layer 5 to the embodiment shown in FIG. 4 corresponds to the embodiment shown in FIG. 5B.
  • Do. 6A and 6B show an embodiment in which the low refractive index portion 3 is filled with the low refractive index resin 7.
  • the low refractive index portion is preferably air.
  • the low refractive index portion 3 is preferably made of the low refractive index resin 7 from the viewpoint that a diffractive optical element excellent in mechanical strength can be obtained.
  • the low refractive index resin 7 added to the embodiment shown in FIG. 3 corresponds to the embodiment shown in FIG. 6A, and the low refractive index resin 7 added to the embodiment shown in FIG. 4 is shown in FIG. 6B. It corresponds to the embodiment.
  • FIG. 7A and 7B show an embodiment in which the anti-reflection layer 9 is provided on the opposite side of the diffraction grating portion 2 with the transparent substrate 1 interposed therebetween.
  • the antireflective layer 9 may be provided in direct contact with the transparent substrate 1, or another member (such as a glass layer or an adhesive layer) may be interposed between the antireflective layer 9 and the transparent substrate 1. May be
  • FIG. 3 with the addition of the antireflection layer 9 corresponds to the embodiment shown in FIG. 7A
  • FIG. 4 with the addition of the antireflection layer 9 shown in FIG. 7B. It corresponds to the embodiment.
  • the high refractive index convex portion have a portion having an aspect ratio of 2 or more, which is conceptualized as “the ratio of height to width” or “the length of the protrusion”.
  • a diffractive optical element including a high refractive index convex portion having an aspect ratio of 2 or more can obtain diffracted light of a desired shape even if it is an infrared ray (for example, an infrared ray of 780 nm or more) having a longer wavelength than conventional It is possible to suppress zero-order light in diffracted light.
  • the diffractive optical element having a relatively large aspect ratio as described above is a transmissive diffractive optical element.
  • the high refractive index convex portion may have a binary shape or a multistage shape.
  • FIG. 8A is a schematic cross-sectional view of a binary high-refractive-index convex part
  • FIG. 8B is a schematic cross-sectional view of a multi-level (4-level) high-refractive-index convex.
  • the root 41 of the high refractive index convex portion 2a may be a transparent base material or a base. Therefore, the aspect ratio of the high refractive index convex portion in the present disclosure is defined as follows. First, as shown in FIG.
  • the aspect ratio when the high refractive index convex portion has a binary shape is as follows: (height H of high refractive index convex portion) / (half of height of high refractive index convex portion) It is defined as the width W) of the high refractive index convex portion at the position of the height (H / 2).
  • the height H of the high refractive index convex portion means the height difference from the top of the high refractive index convex portion to the concave portion (the position of the valley bottom between the adjacent high refractive index convex portions) . Further, as shown in FIG.
  • the aspect ratio when the high refractive index convex portion has a multi-stage shape is as follows: (height H of high refractive index convex portion) / (minimum processing width W min of high refractive index convex portion) It is defined as Here, the minimum processing width W min of the high refractive index convex portion in the present disclosure is a portion corresponding to the height h in the figure as shown in FIG. 8B, that is, the middle belly of the high refractive index convex portion having a multistage shape.
  • the width is defined as the width.
  • the uppermost flat portion (height: H) of the high refractive index convex portion is the upper end, and the flat portion of the second stage from the top of the high refractive index convex portion
  • the width at half height (h / 2) from the lower end with the height: H ⁇ h) as the lower end is the minimum processing width W min of the high refractive index convex portion.
  • the “aspect ratio of the high refractive index convex portion” in a broad sense which includes both the high refractive index convex portion having the binary shape and the high refractive index convex portion having the multistage shape
  • the top of the high refractive index convex portion is defined as the upper end, and the position of the valley bottom between the high refractive index convex portion and another high refractive index convex portion adjacent thereto, or the closest from the top of the high refractive index convex portion
  • the height from the lower end to the upper end of the high refractive index convex portion corresponds to half the height difference between the upper end and the lower end It is defined as the ratio of the height of the high refractive index convex portion to the width of the high refractive index convex portion.
  • the aspect ratio in this manner, it is possible to design the diffraction grating portion precisely in an optical manner, and to correlate the correlation between the ease of removal of the high refractive index convex portion from the mold and the aspect ratio of the high refractive index convex portion. It can be raised.
  • the height H, the width W, and the minimum processing width W min of the high refractive index convex portion can be calculated from, for example, an SEM image of the cross-sectional shape of the diffraction grating portion.
  • the shape of the diffraction grating is determined by the wavelength of light, the refractive index (difference) of the material through which light is transmitted, and the required diffraction angle.
  • the groove depth of the diffraction grating is optimum as the wavelength of light becomes longer. It becomes deeper, and a 850 nm depth is required for infrared rays of wavelength 850 nm.
  • the high refractive index convex portion preferably includes a portion having a height of 850 nm or more, and curing shrinkage (eg, 10%) by active energy rays It is more preferable that the height is 944 nm or more in consideration of the above, and it is preferable that the height be about 994 nm in consideration of the manufacturing error (for example, 5%).
  • the aspect ratio of the high refractive index convex portion is about 1.1, and for diffracting in the direction of 70 °, the aspect ratio of about 2.1 is sufficient. .
  • this is a case where light is diffracted in only one direction, and when actually used as a light source of a sensor, it is necessary to spread diffracted light uniformly over a predetermined area. For this purpose, it is necessary to combine regions having various diffraction angles and diffraction directions in a complicated manner, but as a result, a region in which the pitch is narrowed to ⁇ / 4 is included.
  • the aspect ratio may be 2.1 or more, sometimes exceeding 4, when the pitch is narrow.
  • the material is quartz, and when designing a rectangular diffusion shape extending at long sides ⁇ 50 ° ⁇ short side ⁇ 3.3 ° at 2-level, the original of the diffraction grating is optimum.
  • the maximum aspect ratio exceeds 4 when the depth is 994 nm and the pitch of the narrowest feature is 212 nm.
  • the high refractive index convex portion have a portion having an aspect ratio of 2 or more from the viewpoint that infrared rays with a wavelength of 780 nm or more can be shaped into a desired shape.
  • the cross-sectional shape of the diffraction grating portion may be rectangular as shown in FIGS. 3 to 7B, or may be another shape.
  • 9A to 9D are schematic cross-sectional views showing other embodiments of the cross-sectional shape of the diffraction grating portion.
  • the root 41 of the high refractive index convex portion 2a may be a transparent base material or a base.
  • the cross-sectional shape of the high refractive index convex portion is tapered, and therefore, the releasability from the mold at the time of manufacture is excellent.
  • the thickness of the high refractive index convex portion 2a may increase intermittently from the tip to the root (FIG.
  • the cross-sectional shape of the diffraction grating portion may be changed from a usual binary (2-level: FIGS. 3 to 7B) to a multistage (4-level (FIG. 9C), 8- It is effective to increase the level (FIG. 9D)).
  • a usual binary (2-level: FIGS. 3 to 7B
  • a multistage (4-level (FIG. 9C)
  • 8- It is effective to increase the level (FIG. 9D)).
  • the groove depth becomes deeper.
  • the refractive index of the cured product of the acrylic resin composition is 1.5
  • the groove depth at 4-level is 1.5 times the target wavelength
  • the groove depth at 8-level Is 1.75 times the target wavelength.
  • the longer the target wavelength the deeper the required groove depth, and the more difficult the processing.
  • the minimum machined groove width set at the time of design is usually about 1 ⁇ 4 of the target wavelength. In order to increase the efficiency, the minimum machined groove width may be made finer. However, if the minimum machined groove width is too narrow, machining is difficult and time-consuming, so the minimum machined groove width is preferably about 80 to 100 nm.
  • the line & space ratio (L / S) is not particularly limited when the high refractive index convex portion is a line (L) and the low refractive index portion is a space (S).
  • the line and space ratio (L / S) is determined by the following equation (A).
  • (L / S) l / (l + s)
  • (L / S) represents a line & space ratio
  • l represents a line width (nm)
  • s represents a space width (nm).
  • the line and space ratio (L / S) may be appropriately set so as to obtain desired diffracted light, but can be appropriately set, for example, in the range of 0.1 to 0.9. The range of 0.4 to 0.6 is preferable from the point of efficiency.
  • the diffractive optical element of the present disclosure it is preferable that the diffractive optical element have a multistage shape having two or more flat portions in terms of easily increasing the diffraction angle.
  • the diffractive optical element of the present disclosure can weaken 0th-order light when the aspect ratio is 2 or more, but when the diffraction angle is increased, the 0th-order light from the projection region of the diffracted light can be obtained. It is also possible to obtain diffracted light of a desired shape while removing. This will be described with reference to the drawings.
  • FIG. 10A and FIG. 10B are drawings for explaining the diffractive optical element.
  • 11A is a front view of the screen 22 shown in FIG. 10A, and FIG.
  • FIG. 11B is a front view of the screen 22 shown in FIG. 10B.
  • FIG. 10A is a schematic perspective view showing how the irradiation light 21 is diffracted by the diffractive optical element 10 and a square image 24 is formed at the center of the screen 22.
  • FIG. 11A since the square image 24 includes the zero-order light irradiation position 27, the zero-order light is included in the image 24.
  • the aspect ratio is 2 or more, the zeroth-order light is suppressed, and therefore, even when the zeroth-order light is included in the image 24, good diffracted light can be obtained.
  • the diffraction grating portion preferably has a multistage shape having two or more flat portions, and further preferably has an aspect ratio of 3.5 or more.
  • the transparent substrate used in the present disclosure can be appropriately selected and used according to the application from among known transparent substrates.
  • the material used for the transparent substrate include, for example, acetyl cellulose resins such as triacetyl cellulose, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, olefin resins such as polyethylene and polymethylpentene, and acrylic resins Transparent resin such as resin, polyurethane resin, polyether sulfone and polycarbonate, polysulfone, polyimide, polyether, polyether ketone, acronitrile, methacrylonitrile, cycloolefin polymer, cycloolefin copolymer, soda glass, potash glass, Glass such as lead glass, ceramics such as PLZT, quartz, transparent inorganic materials such as fluorite, etc.
  • the birefringence of the transparent substrate does not affect the effect itself of the diffractive optical element, it has an appropriate birefringence when the phase difference of the light incident on the diffractive optical element and the diffused light is an issue.
  • the base material may be selected.
  • transparent refers to a state in which the other side can be seen through visually, but if light of the target wavelength designed by the diffractive optical element can be transmitted, it is practically problematic even if it is colored visually There is no.
  • the thing which cuts an active energy ray to irradiate as much as possible of a transparent base material is preferable.
  • the thickness of the transparent substrate can be appropriately set according to the application of the present disclosure, and is not particularly limited, but is usually 5 to 5,000 ⁇ m, and the transparent substrate is supplied in the form of a roll However, it may be one that does not bend enough to be wound, but that bends under load or does not bend completely.
  • the configuration of the transparent substrate used in the present disclosure is not limited to the configuration composed of a single layer, and may have a configuration in which a plurality of layers are laminated. When a plurality of layers are stacked, layers of the same composition may be stacked, or a plurality of layers having different compositions may be stacked. Moreover, you may perform surface treatment for improving adhesiveness with an acrylic resin composition, and a primer layer formation to a transparent base material.
  • the primer layer preferably has adhesiveness to both the transparent substrate and the resin composition, and transmits light of the target wavelength.
  • the primer layer preferably has adhesiveness to both the transparent substrate and the resin composition, and transmits light of the target wavelength.
  • the diffractive optical element of the present disclosure has the above-mentioned diffraction grating part on a transparent base material from the viewpoint of preventing damage and the like of the diffraction grating part and having excellent mechanical strength. It may be the composition which has a covering layer in this order (Drawing 5A and Drawing 5B). Although it does not specifically limit as a coating layer, It is preferable to use the thing similar to the said transparent base material. Moreover, when providing a coating layer on a diffraction grating part, you may provide an adhesive (adhesive agent) layer between a diffraction grating part and a coating layer.
  • the pressure-sensitive adhesive or adhesive for the pressure-sensitive adhesive layer may be appropriately selected from conventionally known ones, such as a pressure-sensitive adhesive (pressure-sensitive adhesive), a two-component curable adhesive, an ultraviolet curable adhesive, A thermosetting adhesive, a heat melting adhesive, etc. can be suitably used in any bonding form, but when the low refractive index portion is air, an adhesive or adhesive having low flowability should be used. Is preferred. In the case where a part of the low refractive index portion is filled with the adhesive or the adhesive, the diffraction grating portion may be designed in consideration of the amount.
  • the covering layer by providing such a covering layer, the secondary effect that it is possible to prevent the reverse engineering which used the unevenness
  • an anti-reflection layer may be further provided on the surface of the transparent base material or the surface of the covering layer opposite to the diffraction grating portion (FIGS. 7A and 7B).
  • the antireflection layer may be appropriately selected from conventionally known ones.
  • it may be a refractive index layer consisting of a low refractive index layer or a single layer of a high refractive index layer, and the low refractive index layer and high refractive index It may be a multilayer film in which layers with a rate layer are sequentially laminated, or it may be an antireflection layer in which a fine concavo-convex shape is formed.
  • the said transparent base material, the said coating layer, the said adhesion layer (adhesion layer) may contain the conventionally well-known additive in the range which does not impair the effect of this indication.
  • additives include ultraviolet light absorbers, infrared light absorbers, light stabilizers, and antioxidants.
  • the diffractive optical element of the present disclosure may be a transmissive diffractive optical element or a reflective diffractive optical element. Among these, the diffractive optical element of the present disclosure is preferably a transmissive diffractive optical element.
  • the aspect ratio of the high refractive index convex portion in the diffraction grating portion needs to be set larger than that of the reflection type diffractive optical element, and as a result, the problem of sticking tends to occur easily. Therefore, a transmissive diffractive optical element having a high refractive index convex portion satisfying the storage elastic modulus (E ′) under the moist heat conditions described above has a higher refractive index convex portion than a reflective diffractive optical element having a similar high refractive index convex portion. Highly effective in preventing sticking.
  • Method of Manufacturing Diffractive Optical Element at least one surface side of a transparent substrate, one or more high refractive index convex portions protruding from the surface of the transparent substrate, and one or more low refractive index portions
  • a manufacturing method of a diffractive optical element provided with the diffraction grating part which arranges, and shapes light from a light source, Preparing a mold having a cavity shape for forming the high refractive index convex portion and the low refractive index portion (hereinafter referred to as a mold preparing step);
  • a cured product sample obtained by irradiating an acrylic resin composition to a cavity of the mold, and curing the acrylic resin composition with ultraviolet light so that the integrated light amount is 1,000 mJ / cm 2 .
  • a step of filling an acrylic resin composition having a storage elastic modulus (E ′) at 60 ° C. and a relative humidity of 95% of 0.90 ⁇ 10 9 Pa or more and 2.6 ⁇ 10 9 Pa or less (hereinafter, acrylic resin Composition filling process)
  • a process of forming a mold (hereinafter referred to as a mold release process), It is characterized by having.
  • FIGS. 12A to 12E are process diagrams schematically showing an example of a method of manufacturing a diffractive optical element.
  • a mold 31 having a cavity shape corresponding to the surface structure of a target diffraction grating portion is prepared (mold preparation step).
  • the acrylic resin composition 32 is filled in the cavity 31a of the mold (acrylic resin composition filling step).
  • the acrylic resin composition 32 is the same composition as the acrylic resin composition described in the above “1. Diffractive optical element”.
  • the filling method is not particularly limited, and a conventionally known method may be appropriately selected. For example, as shown in FIGS.
  • the acrylic resin composition 32 may be filled in the cavity 31a by applying the acrylic resin composition 32 to the surface of the mold 31.
  • the acrylic resin composition 32 is placed on the surface of the mold 31 (FIG. 12B), and the transparent substrate 33 is placed thereon.
  • the acrylic resin composition 32 is uniformly spread on the surface of the mold 31 over the transparent base material 33 by the pressure roller 34 (FIG. 12C), and the acrylic resin composition 32 is placed in the cavity 31a.
  • a part of the acrylic resin composition 32 may protrude from the cavity 31a of the mold.
  • the protruding portion of the acrylic resin composition 32 becomes a base after curing.
  • the acrylic resin composition 32 may be filled in the mold cavity 31a.
  • the coating film of the acrylic resin composition 32 is irradiated with active energy rays from the side of the cavity opening of the mold (35) to cure the acrylic resin composition 32.
  • the contact between the transparent substrate and the acrylic resin composition may be performed at the same time as the filling of the acrylic resin composition, or may be performed later than the filling of the acrylic resin composition.
  • the obtained cured product 36 is released from the mold 31 to obtain a diffractive optical element (releasing step).
  • releasing step the detail of each process of the said manufacturing method is demonstrated. The description similar to that of the diffractive optical element of the present disclosure will be omitted.
  • a mold for manufacturing a diffractive optical element can be processed by techniques such as laser lithography, electron beam lithography, FIB (Focused Ion Beam), etc., but electron beam lithography is usually suitably used. .
  • the material may be any material that can be processed at a high aspect ratio, but usually quartz or Si is used.
  • the mold surface can be subjected to a release treatment, if necessary.
  • a fluorine-based or silicon-based mold release agent, diamond like carbon, Ni plating, etc. can be applied.
  • the processing method can be appropriately selected from vapor phase processing such as vapor deposition or sputtering, ALD (Atomic Layer Deposition) or the like, and liquid phase processing such as coating or dipping or plating. Since the shape required for the diffractive optical element is usually as small as several mm square to several cm square, the efficiency of replication can be increased by arranging and processing the shapes of a plurality of diffraction grating parts in one mold. When emphasis is placed on throughput, the above-mentioned molds or copy molds may be arranged side by side and replicated to be used as a multi-faced mold.
  • the opening on the opening side may be wider than the back of the fine structure of the mold (FIGS. 9A to 9D).
  • the surface of the diffraction grating portion of the obtained diffractive optical element becomes thin.
  • the diffractive optical element of the present disclosure generally includes a plurality of grooves having different pitches (openings) with respect to one diffractive optical element, since there are a plurality of regions with different periodic structures.
  • Acrylic resin composition filling step "A cured product sample obtained by irradiating and curing ultraviolet light so that the integrated light amount is 1,000 mJ / cm 2 to the acrylic resin composition” means the diffraction obtained It simulates the cured product of the acrylic resin composition that will actually be contained in the diffraction grating portion of the optical element.
  • the acrylic resin composition whose storage elastic modulus (E ') at 60 ° C. and 95% relative humidity in the cured product sample is 0.90 ⁇ 10 9 Pa or more and 2.6 ⁇ 10 9 Pa or less
  • Diffractive optical element Although the above-mentioned example was what forms the coating film of an acrylic resin composition in the metal mold
  • a suitable coating method can be selected from conventionally known coating methods such as die coating, bar coating, gravure coating, and spin coating.
  • the transparent substrate those described in the above "1. Diffractive optical element” can be used.
  • the transparent substrate may be a sheet-like one, or a long one may be used to sequentially perform the coating step, the acrylic resin composition curing step, and the release step by a roll-to-roll method.
  • the mold is a hard material that is hard to bend, it is preferable that the transparent substrate be flexible so as to resist bubbles. Conversely, when using a hard transparent substrate, it is preferable to use a soft mold as the mold.
  • the irradiation of ultraviolet light or electron beam may be performed at one time or divided into multiple times, and when divided into multiple times, additional irradiation may be performed after curing to some extent and releasing.
  • the frame 11 provided with the conduction part 11a and the internal space 11c is prepared.
  • the frame 11 may be a combination of two or more members (for example, a combination of a flat substrate and a hollow cylinder).
  • the light source 12 is placed in the internal space 11c of the frame 11, and the light source 12 and the conducting part 11a are electrically connected using the lead 13 and the like.
  • the diffractive optical element 10 is mounted on the frame 11.
  • a temporary assembly By mounting the structure obtained in this manner on the mounting substrate 14, a temporary assembly can be obtained. At this time, alignment is performed such that the position of the solder ball placed on the mounting substrate 14 overlaps the position of the conductive portion 11 a of the frame 11.
  • the temporary assembly is placed in a reflow furnace and heated at a temperature of 260 to 280 ° C. for 0.5 to 1.5 minutes to solder the mounting substrate 14 and the frame 11 to obtain the lighting device 20.
  • the acrylic resin composition of the present disclosure comprises, on at least one side of a transparent substrate, one or more high refractive index protrusions projecting from the surface of the transparent substrate, and one or more low refractive indexes
  • An acrylic resin composition for forming a high refractive index convex portion of a diffractive optical element having a diffraction grating portion in which the light from the light source is shaped, wherein the integration is performed with respect to the acrylic resin composition The storage elastic modulus (E ') at 60 ° C.
  • the acrylic resin composition preferably contains an active energy ray curable component, and the above physical properties can be obtained after curing. Moreover, if light of the designed target wavelength can be transmitted, there is no practical problem even if it is visually colored after curing.
  • the details of the acrylic resin composition of the present disclosure are as described in “(1) Cured product of acrylic resin composition” in “1. Diffractive optical element” described above. Further, the method of forming the high refractive index convex portion using the acrylic resin composition of the present disclosure is as described in the above-mentioned “2. Method of manufacturing a diffractive optical element”.
  • an acrylic resin is preferable such that the viscosity at 25 ° C. of the acrylic resin composition is about several tens of mPas to several thousands of mPas. Since viscosity changes also with temperature, when forming a high refractive index convex part using the acrylic resin composition of this indication, it is preferable to perform suitable temperature control suitably.
  • Lighting Device (1) Configuration of Lighting Device
  • a lighting device includes a frame having a conductive portion capable of supplying power from the outside and an opening serving as a light exit surface, a light source, and the above-described diffractive optical element
  • the light source is fixed in an internal space of the body and connected to the conductive portion, and the diffractive optical element is disposed in the opening. According to the illumination device of the present disclosure, light shaped into a desired shape can be emitted.
  • FIG. 13 is a cross-sectional view schematically showing an embodiment of a light irradiation apparatus according to the present disclosure.
  • the illumination device 20 shown in the example of FIG. 13 includes a frame 11, a light source 12, and the above-described diffractive optical element 10.
  • the frame 11 has a conducting portion 11 a which can be supplied with power from the outside, and an opening 11 b which is a light emitting surface.
  • the frame 11 further includes an internal space 11 c, and the light source 12 is fixed to the internal space 11 c. Furthermore, the light source 12 is connected to the conducting part 11a.
  • the light source 12 may be connected in direct contact with the conducting portion 11a, or may be connected to the conducting portion 11a via the conducting wire 13 as shown in FIG. Then, the diffractive optical element 10 is disposed in the opening 11 b.
  • the frame 11 may be a combination of two or more members.
  • the frame 11 may be a combination of a flat substrate (base portion) for light source control and a hollow cylinder placed thereon.
  • the light source is not particularly limited, and a known light source can be used. Since the diffractive optical element according to the present disclosure is designed for the purpose of diffraction of a specific wavelength, it is preferable to use a laser light source having a high intensity of the specific wavelength, an LED (light emitting diode) light source or the like as a light source. In the present disclosure, any light source such as a directional laser light source or a diffusive LED (light emitting diode) light source can be suitably used. In the present disclosure, it is preferable that the light source be appropriately selected from among reproducible light sources to be simulated in designing the diffractive optical element according to the present disclosure.
  • a diffractive optical element that diffracts an infrared ray having a wavelength of 780 nm or more
  • the illumination device of the present disclosure may include at least one diffraction grating according to the present disclosure, and may further include other optical elements as needed.
  • Other optical elements include, for example, a polarizing plate, a lens, a prism, and a pass filter that transmits a target wavelength of a specific wavelength, particularly a diffractive optical element. When using it combining a several optical element, it is preferable to bond optical elements together from the point which suppresses interface reflection.
  • the lighting device according to the present disclosure can emit light shaped into a desired shape, and is preferably used as a lighting device for a sensor from the viewpoint that infrared rays can be used.
  • infrared illumination for nighttime illumination for security sensor, illumination for human detection sensor, illumination for collision prevention sensor for unmanned aerial vehicles and automobiles, illumination for personal identification device, illumination for inspection device, from the point that light can be effectively shaped , Etc., and simplification, downsizing and power saving of the light source become possible.
  • quartz DOE Using a 6-inch square synthetic quartz plate, a designed shape of quartz DOE was produced by an electron beam lithography process using an electron beam drawing apparatus and a dry etching apparatus. In SEM observation, it could be confirmed that it had finished to a predetermined size, and when a laser of 980 nm was made incident and the diffracted light was projected on a screen and observed with an infrared camera, it could be confirmed that it had spread into a predetermined rectangular shape. .
  • the acrylic resin composition 1 to 13 is prepared by blending the (meth) acrylate compound (tetra- or higher functional (meth) acrylate, bifunctional (meth) acrylate) shown in Table 1 below and the photopolymerization initiator in the amounts shown in Table 1 Was prepared.
  • the numerical value regarding these compounds in Table 1 shows a mass part, and the total amount of a (meth) acrylate compound will be 100 mass parts.
  • Resin molding of the diffraction grating portion was performed as follows. First, using the above-mentioned quartz DOE as a mold, any one of acrylic resin compositions 1 to 11 and 13 was dropped on the diffractive surface. Next, a PET film (Toyobo Co., Ltd., A4300, 100 ⁇ m thick) as a transparent substrate was laminated from above with a roller, and the acrylic resin composition was spread uniformly. Furthermore, after irradiating an ultraviolet-ray from the transparent base material side so that an accumulated light quantity may be 1,000 mJ / cm ⁇ 2 > in that state, and hardening the said acrylic resin composition, a transparent base material and a shaping layer are mold-formed.
  • a PET film Toyobo Co., Ltd., A4300, 100 ⁇ m thick
  • the diffraction grating portion of the obtained diffractive optical element has the following periodic structure 1.
  • the periodic structure 1 has about 20 high refractive index convex portions. Each high refractive index convex portion has a linear shape in a plan view, a rectangular cross section, and a constant height (H).
  • widths (W) of the respective high refractive index convex portions are formed to be different from one another within the following range.
  • a lighting device was produced using the diffractive optical elements of Example 6 and Comparative Example 2 described above. The following description is based on the reference numerals shown in FIG.
  • the light source 12 was placed in the internal space 11 c of the frame 11, and the light source 12 and the conductive portion 11 a were electrically connected using the conducting wire 13.
  • the diffractive optical element of Example 6 or Comparative Example 2 was placed on the frame 11.
  • a temporary assembly was obtained.
  • alignment was performed so that the position of the solder ball placed on the mounting substrate 14 overlapped with the position of the conductive portion 11 a of the frame 11.
  • the temporary assembly was placed in a reflow furnace, heated under a temperature condition of 260 ° C. for 1.5 minutes, and the mounting substrate 14 and the frame 11 were soldered to manufacture the lighting device of Example 6 or Comparative Example 2. .
  • variation before and behind reflow were investigated by the following method, respectively.
  • the mass of the diffractive optical element before and after the reflow was measured, and the mass change rate a was calculated from the following formula I.
  • Formula I a ⁇ (M 0 -M 1 ) / M 0 ⁇ ⁇ 100
  • a a mass change rate (%)
  • M 0 a mass of the diffractive optical element before reflow (mg)
  • M 1 a mass of the diffractive optical element after reflow (mg).
  • the allowable range of mass change rate is 2.0% or less.
  • the transmittance of the transparent substrate and the diffraction grating portion of the diffractive optical element having a wavelength of 850 nm was measured from this device.
  • the absolute value of the difference between the transmittance of the diffractive optical element before reflow and the transmittance of the diffractive optical element after reflow was taken as the transmittance fluctuation (%) of the diffractive optical element.
  • the allowable range of the transmittance fluctuation is 1.0% or less.
  • the mass change rate before and after reflow for the reflow at 260 ° C. for 1.5 minutes is 3.8%, and the transmittance fluctuation before and after the reflow is 0.0% It is. Therefore, this result is beyond the allowable range of the mass change rate.
  • the compound used for the diffractive optical element of Comparative Example 2 is a bifunctional acrylic resin, this bifunctional acrylic resin is instantaneously exposed to a high temperature environment of 260 ° C. As a result of sublimation, it is conceivable that the fine structure of the diffraction grating portion changes.
  • the mass change rate before and after reflow for the reflow at 260 ° C. for 1.5 minutes is 1.5%
  • the transmittance change before and after the reflow is It is 0.1%. All these results are within the acceptable range.
  • the acrylic resin composition used for the diffractive optical element of Example 6 is exposed to a high temperature environment of 260 ° C. instantaneously because it contains a large amount of highly heat resistant tetrafunctional or higher urethane acrylate. Even in this case, mass fluctuation hardly occurs, and as a result, it is considered that the change in the fine structure of the diffraction grating portion can be minimized.
  • the measurement apparatus used Rheogel E4000 made from UBM.
  • the storage modulus E ′ (60 ° C., 95%) and tan ⁇ (60 ° C., 95%) are shown in Table 1. Furthermore, by measuring the dynamic viscoelasticity based on the conditions of a measurement temperature of 30 ° C. and a relative humidity of 30% and the measurement conditions shown in Table A below, using the same test single film, in accordance with JIS K7244.
  • the storage elastic modulus E ′ was determined at 30 ° C. and 30% relative humidity. Each value of storage elastic modulus E ′ (30 ° C., 30%) is shown in Table 1.
  • Tg Glass Transition Temperature
  • acrylic resin compositions 1 to 13 ultraviolet rays are irradiated and cured so that the integrated light amount is 1,000 mJ / cm 2 , and the substrate and the unevenness are obtained.
  • Test single films each having a thickness of 0.1 mm, a width of 5 mm, and a length of 20 mm were obtained without any shape.
  • DMS6100 dynamic viscoelasticity tester manufactured by Seiko Instruments Inc.
  • Apply a periodic external force at a frequency of 10 Hz in the length direction of each test piece and measure in the range of -20 ° C to 200 ° C.
  • the width of the high refractive index convex portion is taken as the minimum width W 1 min (nm) in the sticking evaluation, and the value obtained by dividing the height H (500 nm) by the minimum width W 1 min in the sticking evaluation
  • the maximum aspect ratio was used. As the minimum width W 1 min is smaller and the maximum aspect ratio is larger, it can be said that the cured product forming the high refractive index convex portion has an appropriate hardness, so that sticking is less likely to occur.
  • Pattern haze evaluation was performed as follows. First, for the periodic structure 1, among the high refractive index convex portions in which no pattern burrs were generated, the high refractive index convex portion having the smallest width was specified.
  • the width of the high refractive index convex portion, and a minimum width W 2 min (nm) in the pattern Moge evaluation was calculated in the same manner as the above-mentioned sticking evaluation.
  • the minimum width W 2 min is smaller and the maximum aspect ratio is larger, it can be said that the cured product forming the high refractive index convex portion has appropriate flexibility, so that the pattern is less likely to occur.
  • Table 1 summarizes the compositions, physical property values, and evaluation results of the acrylic resin compositions used in Examples 1 to 9 and Comparative Examples 1 to 4.
  • “> 500” for the maximum width of the sticking evaluation means that sticking occurred for all of the high refractive index convex portions having the width (W) within the range of 50 nm to 500 nm. Do. Therefore, in this case, the aspect ratio is not calculated.
  • Comparative Example 3 no diffractive optical element was obtained as described above, so there is no description of the sticking evaluation result and the pattern evaluation result.
  • compound (1) is a hexafunctional urethane acrylate (Mw: 1,400) represented by PETA-IPDI-PETA.
  • PETA indicates pentaerythritol triacrylate
  • IPDI indicates isophorone diisocyanate
  • - indicates a urethane bond.
  • the compound (2) is a 9-functional urethane acrylate (Mw: 11,000) represented by the following formula (i).
  • PETA represents pentaerythritol triacrylate
  • HDI represents hexamethylene diisocyanate
  • - represents a urethane bond, respectively.
  • compound (3) is a 10-functional urethane acrylate (Mw: 2,000) represented by DPPA-IPDI-DPPA.
  • DPPA indicates dipentaerythritol pentaacrylate
  • IPDI indicates isophorone diisocyanate
  • - indicates a urethane bond.
  • the compound (4) is a 15-functional urethane acrylate (Mw: 2,300) represented by the following formula (ii).
  • DPPA dipentaerythritol pentaacrylate
  • HDI hexamethylene diisocyanate
  • - indicates a urethane bond, respectively.
  • the compound (5) is a bifunctional urethane acrylate (Mw: 2,000) represented by caprolactone modified HEA-hydrogenated MDI-caprolactone modified HEA.
  • HEA indicates hydroxyethyl acrylate
  • MDI indicates diphenylmethane diisocyanate
  • - indicates a urethane bond.
  • the compound (6) is 1,9-nonanediol diacrylate (CAS No. 107481-28-7, Mw: 268).
  • compound (7) is polyethylene glycol # 600 diacrylate (Mw: 700).
  • Comparative Example 1 will be examined.
  • an acrylic resin composition 10 having a storage elastic modulus (E ′) at 60 ° C. and a relative humidity of 95% of 0.42 ⁇ 10 9 Pa is used in Comparative Example 1.
  • the minimum width W 2 min of the high refractive index convex portion in which no pattern burrs are generated is 90 nm, and the maximum aspect ratio is 5.6. Therefore, there is no problem in the flexibility of the high refractive index convex portion.
  • sticking occurs even if the width W of the high refractive index convex portion is 500 nm. This is considered to be because the storage elastic modulus (E ′) under wet heat conditions is smaller than 0.90 ⁇ 10 9 Pa and the high refractive index convex portion is too soft.
  • Comparative Example 2 The acrylic resin composition 11 whose storage elastic modulus (E ') at 60 ° C. and 95% relative humidity of the cured product is 0.06 ⁇ 10 9 Pa is used in Comparative Example 2.
  • the minimum width W 2 min of the high refractive index convex portion in which no pattern burrs are generated is 85 nm, and the maximum aspect ratio is 5.9. Therefore, there is no problem in the flexibility of the high refractive index convex portion.
  • the minimum width W 1 min of the high refractive index convex portion in which sticking does not occur is as large as 250 nm, and the maximum aspect ratio is as small as 2.0.
  • the diffractive optical element of Comparative Example 2 is susceptible to sticking. This is formed as a result that the acrylic resin composition 11 does not contain a tetrafunctional or higher functional (meth) acrylate while the storage elastic modulus (E ') under wet heat conditions is smaller than 0.90 ⁇ 10 9 Pa. It is considered that the high refractive index convex portion is too soft.
  • Comparative Example 3 an acrylic resin composition 12 whose storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of a cured product is 3.10 ⁇ 10 9 Pa is used.
  • the acrylic resin composition 12 has a high viscosity and the composition 12 can not be filled in the cavity of the mold, the cured product can not be shaped, and a diffractive optical element can not be obtained. It is considered that this is because, as a result of the storage elastic modulus (E ′) under wet heat conditions being greater than 2.6 ⁇ 10 9 Pa, the acrylic resin composition 12 lacks flexibility.
  • Comparative Example 4 an acrylic resin composition 13 whose storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of a cured product is 0.18 ⁇ 10 9 Pa is used.
  • the minimum width W 2 min of the high refractive index convex portion in which no pattern haze occurs is 90 nm, and the maximum aspect ratio is 5.6. Therefore, there is no problem in the flexibility of the high refractive index convex portion.
  • the storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity after curing is 0.90 ⁇ 10 9 Pa or more and 2.6 ⁇ 10 9 Pa or less It has become clear that, by using the acrylic resin composition, sticking can be prevented under moist heat conditions, and pattern burrs can be reduced.
  • the storage elastic modulus (E ') at 60 ° C. after curing and at a relative humidity of 95% is 1.0 ⁇ 10 9 Pa or more and 2.0 ⁇ 10 9 Pa or less from Examples 1 to 9
  • the highest refractive index convex portion where sticking does not occur as compared with the other examples It can be seen that the small width W 1 min is as small as 120 nm or less, and the maximum aspect ratio is as large as 4.2 or more. This can be said to be due to the fact that sticking is difficult to occur due to having a suitable storage elastic modulus (E ′) under moist heat conditions and a high recovery rate.

Abstract

The present invention provides a diffraction optical element which has resistance to sticking under a wet heat condition, and in which a pattern is rarely torn, a manufacturing method therefor, an acrylic resin composition for forming the diffraction optical element, and an illumination device. This diffraction optical element shapes light from a light source, and is provided with, on at least one surface side of a transparent substrate, a diffraction grating part in which one or more high refractive index protruding sections protruding from the surface of the transparent substrate, and one or more low refractive index sections are disposed, wherein the high refractive index protruding section is formed by a cured product of an acrylic resin composition, and the storage elastic modulus (E') of the cured product at 60°C and a relative humidity of 95% is 0.90×109-2.6×109 Pa inclusive.

Description

回折光学素子及びその製造方法、回折光学素子形成用のアクリル系樹脂組成物、並びに照明装置Diffractive optical element and method of manufacturing the same, acrylic resin composition for forming diffractive optical element, and illumination device
 本開示は、湿熱条件下における耐スティッキング性を有し、かつパターンもげの少ない回折光学素子及びその製造方法、回折光学素子形成用のアクリル系樹脂組成物、並びに照明装置に関する。 The present disclosure relates to a diffractive optical element having sticking resistance under wet heat conditions and having a small amount of pattern burrs, a method of manufacturing the same, an acrylic resin composition for forming the diffractive optical element, and a lighting apparatus.
 ネットワークの普及によるセキュリティリスク回避のための個人認証へのニーズや、自動車の自動運転化の流れ、あるいは、いわゆる「モノのインターネット」の普及など、近年、センサーシステムを必要とする局面が増大している。センサーには色々な種類があり、検出する情報も様々であるが、その中の一つの手段として、光源から対象物に対して光を照射し、反射してきた光から情報を得るというものがある。例えば、パターン認証センサーや赤外線レーダーなどはその一例である。 In recent years, the need for sensor systems has increased in recent years, such as the need for personal identification to avoid security risks through the spread of networks, the flow of automated driving of cars, and the spread of the so-called "Internet of Things". There is. There are various types of sensors, and the information to be detected is various. One of the means is that the light source emits light to the object and information is obtained from the reflected light. . For example, a pattern authentication sensor or an infrared radar is an example.
 これらのセンサーの光源は用途に応じた波長分布や明るさ、広がりをもったものが使用される。光の波長としては、可視光波長から赤外線波長がよく用いられ、特に赤外線は外光の影響を受けにくく、不可視であり、対象物の表面近傍内部を観察することも可能という特徴があるため、広く用いられている。また、光源の種類としては、LED光源やレーザー光源等が多く用いられる。例えば、遠いところを検知するには光の広がりが少ないレーザー光源が好適に用いられ、比較的近いところを検知する場合や、ある程度の広がりを持った領域を照射するにはLED光源が好適に用いられる。 The light source of these sensors is used with wavelength distribution, brightness and spread according to the application. As the wavelength of light, visible light wavelengths to infrared light wavelengths are often used. In particular, infrared light is hard to be affected by external light, is invisible, and it is possible to observe the inside of the surface vicinity of an object. It is widely used. Moreover, as a type of light source, an LED light source, a laser light source, and the like are often used. For example, a laser light source with less spread of light is preferably used to detect a distant place, and an LED light source is preferably used to detect a relatively close place or to illuminate an area having a certain extent of spread. Be
 対象物における照射領域の大きさや形状は、必ずしも光源からの光の広がり(プロファイル)と一致しているとは限らず、その場合には拡散板やレンズ、遮蔽板などにより光を整形する必要がある。最近ではLight Shaping Diffuser(LSD)という、光の形状をある程度整形できる拡散板が開発されている。
 また、光を整形する別の手段として、回折光学素子(Diffractive Optical Element:DOE)が挙げられる。これは異なる屈折率を持った材料が周期性を持って配列している場所を光が通過する際の回折現象を応用したものである。DOEは基本的に単一波長の光に対して設計されるものであるが、理論的にはほぼ任意の形状に光を整形することが可能である。また、前述のLSDにおいては照射領域内の光強度がガウシアン分布となるのに対し、DOEでは照射領域内の光分布の均一性を制御することが可能である。DOEのこのような特性は、不要な領域への照射を抑えることによる高効率化や、光源数の削減等による装置の小型化などの点で有利となる。
 DOEは、レーザーの様な平行光源や、LEDの様な拡散光源のいずれにも対応可能であり、紫外光から可視光、赤外線までの広い範囲の波長に対して適用可能である。
The size and shape of the illuminated area on the object do not necessarily match the spread (profile) of the light from the light source, in which case it is necessary to shape the light with a diffuser, lens, shield, etc. is there. Recently, a diffuser called Light Shaping Diffuser (LSD) has been developed that can shape the shape of light to some extent.
Further, as another means of shaping light, a diffractive optical element (DOE) can be mentioned. This is an application of the diffraction phenomenon when light passes through a place where materials having different refractive indexes are arranged with periodicity. Although the DOE is basically designed for light of a single wavelength, it is theoretically possible to shape the light into almost any shape. Further, in the LSD described above, the light intensity in the irradiation area is a Gaussian distribution, whereas in the DOE, it is possible to control the uniformity of the light distribution in the irradiation area. Such characteristics of DOE are advantageous in terms of high efficiency by suppressing irradiation to unnecessary regions, downsizing of the apparatus by reduction of the number of light sources, and the like.
The DOE is applicable to both parallel light sources such as lasers and diffused light sources such as LEDs, and is applicable to a wide range of wavelengths from ultraviolet light to visible light and infrared light.
 DOEは、ナノオーダーでの微細加工が必要となり、特に長波長の光を回折するためには、高アスペクト比の微細形状を形成する必要があった。そのため、DOEの製造は、従来、電子線を用いた電子線リソグラフィ技術が用いられている。例えば、紫外線~近赤外線領域で透明である石英板に、ハードマスクやレジストを成膜後、電子線を用いてレジストに所定の形状を描画し、レジスト現像、ハードマスクのドライエッチング、石英のドライエッチングを順次行って、石英板表面にパターンを形成した後、ハードマスクを除去することで所望のDOEを得ることができる。 DOE requires microfabrication in nano order, and in particular, in order to diffract light of long wavelength, it has been necessary to form a fine shape with a high aspect ratio. Therefore, electron beam lithography technology using an electron beam is conventionally used to manufacture the DOE. For example, after forming a hard mask or a resist on a quartz plate transparent in the ultraviolet to near infrared regions, a predetermined shape is drawn on the resist using an electron beam, resist development, dry etching of the hard mask, dry of quartz After etching is sequentially performed to form a pattern on the surface of the quartz plate, the hard mask can be removed to obtain a desired DOE.
 回折光学素子の形態として、グレーティングセルアレイ(Grating Cell Array)と呼ばれる形態が従来用いられている。グレーティングセルアレイ型の回折光学素子では、例えば正方形の微細な単位領域(セル)がマトリックス状に配列されている。そして、グレーティングセルアレイ型の回折光学素子の1つの単位領域内では、一定ピッチで面内の回転方向が一定の方向を向いた回折格子が配置されている。また、グレーティングセルアレイ型の回折光学素子では、それぞれの単位領域毎に、配置されている回折格子のピッチ及び回転方向が異なっており、それらの集合体として1つの回折光学素子を構成している。
 一般的に、このグレーティングセルアレイを主とする回折光学素子は、ガラスをパターニングすることで製造される。ガラスのパターニングは、一般的にはレーザー、乃至は電子線などの直接描画方式が挙げられる。この直接描画方式は一点一点描画するため、数μm以下の細かいパターンを持つ回折光学素子の作製には、時間がかかるため、量産には不向きであり、一般的には普及していない。
As a form of a diffractive optical element, a form called a grating cell array (grating cell array) is conventionally used. In the grating cell array type diffractive optical element, for example, square fine unit regions (cells) are arranged in a matrix. Then, in one unit area of the grating cell array type diffractive optical element, a diffraction grating whose rotation direction in the plane is directed in a fixed direction at a fixed pitch is arranged. Further, in the grating cell array type diffractive optical element, the pitches and rotational directions of the diffraction gratings arranged are different for each unit region, and one diffractive optical element is configured as an aggregate thereof.
Generally, a diffractive optical element based on this grating cell array is manufactured by patterning glass. The patterning of the glass generally includes a direct writing method such as a laser or an electron beam. This direct writing method is not suitable for mass production because it takes time to produce a diffractive optical element having a fine pattern of several μm or less because it draws one by one and is not widely used.
 回折光学素子を作製する手法として、直接描画方式の代替であるナノインプリント法が挙げられる(特許文献1参照)。
 ナノインプリント法はマスター版のパターンを、レプリカ版に接触転写させる手法であり、高速でマスター版と同型の製品を作製可能である。ただし、転写される側はガラスではなく、樹脂材料となる。つまり製品となるレプリカ版は、ガラスでパターニングされたものではなく、樹脂でパターニングされたものとなる。
 また、一般的に、アスペクト比2以上の微細構造パターンの形成に用いられる樹脂材料としては、アクリル系のUV硬化樹脂が知られている(特許文献2-3参照)。
As a method of producing a diffractive optical element, there is a nanoimprinting method which is an alternative to the direct writing method (see Patent Document 1).
The nanoimprinting method is a method in which a master plate pattern is contact-transferred onto a replica plate, and a product of the same type as the master plate can be produced at high speed. However, the side to be transferred is not glass but resin material. That is, the replica plate to be a product is not patterned by glass but patterned by resin.
In addition, as a resin material used to form a microstructure pattern having an aspect ratio of 2 or more, an acrylic UV curable resin is generally known (see Patent Documents 2-3).
国際公開第2017/119400号International Publication No. 2017/119400 特開2014-98864号公報JP, 2014-98864, A 特開2004-4515号公報JP 2004-4515 A
 しかし、ナノインプリント法により樹脂材料を用いて回折光学素子を作製する際には、スティッキング及び離型時のパターンもげが生じ易い。したがって、ナノインプリント法による回折光学素子の商業的製造は、従来技術では難しかった。
 上述したアクリル系のUV硬化樹脂は、耐熱性が低く、高温条件下や高湿条件下において、材料劣化が発生することが知られている。特に、湿潤かつ高温条件(このような条件を、以下、湿熱条件という)下においては、微細パターン間から水分が抜ける際に発生するメニスカス力により、隣り合うパターン同士がくっついたり、離れたりする現象(スティッキング)が確認される場合がある。耐熱性のみが問題であれば、樹脂の架橋密度を向上させることや、樹脂を多官能化するという対応策が考えられるが、これらの対応策によってもスティッキングは解消できない。
 一方、樹脂の架橋密度を向上させたり、樹脂を多官能化させたりすると、硬化後の膜硬度が向上する結果、離型時にパターンもげが生じる場合がある。
However, when producing a diffractive optical element using a resin material by a nanoimprinting method, patterns are easily produced during sticking and release. Therefore, commercial manufacture of diffractive optical elements by nanoimprinting has been difficult in the prior art.
The above-mentioned acrylic UV curable resin has low heat resistance, and it is known that material deterioration occurs under high temperature conditions or high humidity conditions. In particular, under wet and high temperature conditions (hereinafter, such conditions are referred to as wet heat conditions), a phenomenon in which adjacent patterns are attached or separated by the meniscus force generated when water is released from between the fine patterns (Sticking) may be confirmed. If only the heat resistance is a problem, measures to improve the crosslink density of the resin or to make the resin multifunctional may be considered, but these measures can not eliminate the sticking.
On the other hand, when the crosslink density of the resin is improved or the resin is polyfunctionalized, as a result of the improvement of the film hardness after curing, pattern peeling may occur at the time of mold release.
 本開示は、直接描画法以外で回折光学素子を製造する場合に関する上記実状を鑑みて成し遂げられたものであり、湿熱条件下における耐スティッキング性を有し、かつパターンもげの少ない回折光学素子及びその製造方法、回折光学素子形成用のアクリル系樹脂組成物、並びに照明装置を提供することを目的とする。 The present disclosure has been accomplished in view of the above-described situation regarding the case of manufacturing a diffractive optical element other than the direct drawing method, and is a diffractive optical element having sticking resistance under wet heat conditions and having less pattern burrs and the same An object of the present invention is to provide a manufacturing method, an acrylic resin composition for forming a diffractive optical element, and a lighting device.
 本開示の回折光学素子は、光源からの光を整形する回折光学素子であって、透明基材の少なくとも一面側に、透明基材の表面から突出する一つ以上の高屈折率凸部と、一つ以上の低屈折率部とを配置した回折格子部を備えており、前記高屈折率凸部は、アクリル系樹脂組成物の硬化物で形成されており、当該硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下であることを特徴とする。 The diffractive optical element of the present disclosure is a diffractive optical element that shapes light from a light source, and includes at least one surface side of a transparent substrate, one or more high refractive index convex portions protruding from the surface of the transparent substrate, The high-refractive-index convex portion is formed of a cured product of an acrylic resin composition, and the high-refractive-index convex portion is formed at 60 ° C. and relative to the cured product. The storage elastic modulus (E ′) at a humidity of 95% is characterized by being 0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less.
 本開示の製造方法は、透明基材の少なくとも一面側に、透明基材の表面から突出する一つ以上の高屈折率凸部と、一つ以上の低屈折率部とを配置した回折格子部を備え、光源からの光を整形する回折光学素子の製造方法であって、
 前記高屈折率凸部と前記低屈折率部を形成するためのキャビティ形状を有する金型を準備する工程、
 前記金型のキャビティに、アクリル系樹脂組成物であって、当該アクリル系樹脂組成物に対し積算光量が1,000mJ/cmになるように紫外線を照射し硬化させて得られる硬化物サンプルの60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下であるアクリル系樹脂組成物を充填する工程、
 前記金型のキャビティ開口部側において、前記透明基材と前記アクリル系樹脂組成物とを接触させ、かつ活性エネルギー線を照射することにより、前記アクリル系樹脂組成物を硬化させる工程、及び
 前記透明基材から前記金型を引き離すことにより、透明基材上にアクリル系樹脂組成物の硬化物で形成された高屈折率凸部を有する回折格子部を形成する工程、
を有することを特徴とする。
In the manufacturing method of the present disclosure, a diffraction grating portion in which one or more high refractive index convex portions protruding from the surface of the transparent base and one or more low refractive index portions are disposed on at least one surface side of the transparent base And a method of manufacturing a diffractive optical element that shapes light from a light source,
Preparing a mold having a cavity shape for forming the high refractive index convex portion and the low refractive index portion;
A cured product sample obtained by irradiating an acrylic resin composition to a cavity of the mold, and curing the acrylic resin composition with ultraviolet light so that the integrated light amount is 1,000 mJ / cm 2 . Filling an acrylic resin composition having a storage elastic modulus (E ′) at 60 ° C. and a relative humidity of 95% of 0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less,
A step of curing the acrylic resin composition by bringing the transparent substrate and the acrylic resin composition into contact with each other on the side of the cavity opening of the mold and irradiating active energy rays; Forming a diffraction grating portion having a high refractive index convex portion formed of a cured product of an acrylic resin composition on a transparent substrate by pulling the mold away from the substrate;
It is characterized by having.
 本開示のアクリル系樹脂組成物は、透明基材の少なくとも一面側に、透明基材の表面から突出する一つ以上の高屈折率凸部と、一つ以上の低屈折率部とを配置した回折格子部を備え、光源からの光を整形する回折光学素子の高屈折率凸部を形成するためのアクリル系樹脂組成物であって、当該アクリル系樹脂組成物に対し積算光量が1,000mJ/cmになるように紫外線を照射し硬化させて得られる硬化物サンプルの60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下であることを特徴とする。 In the acrylic resin composition of the present disclosure, one or more high refractive index convex portions protruding from the surface of the transparent substrate and one or more low refractive index portions are disposed on at least one side of the transparent substrate. An acrylic resin composition for forming a high refractive index convex portion of a diffractive optical element including a diffraction grating portion and shaping light from a light source, wherein an integrated light amount is 1,000 mJ relative to the acrylic resin composition. The storage elastic modulus (E ') at 60 ° C. and 95% relative humidity of a cured product sample obtained by curing by irradiation with ultraviolet light so as to be 1 cm 2 / cm 2 is 0.90 × 10 9 Pa or more 2.6 × 10 It is characterized by being 9 Pa or less.
 本開示において、前記アクリル系樹脂組成物の硬化物の30℃かつ相対湿度30%における貯蔵弾性率(E’)が、1×10Pa以上5×10Pa以下であってもよい。
 本開示において、前記アクリル系樹脂組成物の硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)に対する損失弾性率(E”)の比(tanδ(=E”/E’))は、0.12以下であってもよい。
 本開示において、前記アクリル系樹脂組成物は、ウレタン結合を含むものであることが、湿熱条件下における耐スティッキング性に優れ、かつパターンもげがより少ないという点から好ましい。
 本開示において、前記アクリル系樹脂組成物は、4官能以上の(メタ)アクリレートと、2官能の(メタ)アクリレートを含む活性エネルギー線硬化性樹脂組成物であることが、湿熱条件下における耐スティッキング性に優れ、かつパターンもげがより少ないという点から好ましい。
In the present disclosure, the storage elastic modulus (E ′) at 30 ° C. and a relative humidity of 30% of the cured product of the acrylic resin composition may be 1 × 10 8 Pa or more and 5 × 10 9 Pa or less.
In the present disclosure, the ratio (tan δ (= E ′ ′ / E ′)) of loss elastic modulus (E ′ ′) to storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of the cured product of the acrylic resin composition May be 0.12 or less.
In the present disclosure, it is preferable that the acrylic resin composition contains a urethane bond from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern burrs.
In the present disclosure, the acrylic resin composition is an active energy ray curable resin composition containing a tetrafunctional or higher functional (meth) acrylate and a bifunctional (meth) acrylate, which is resistant to sticking under moist heat conditions. It is preferable from the point that it is excellent in quality and less in pattern pattern.
 本開示において、前記活性エネルギー線硬化性樹脂組成物は、全硬化性成分に対し、前記4官能以上の(メタ)アクリレートを40質量%以上80質量%以下、及び、前記2官能の(メタ)アクリレートを10質量%以上60質量%以下含有することが、湿熱条件下における耐スティッキング性に優れ、かつパターンもげがより少ないという点から好ましい。 In the present disclosure, the active energy ray-curable resin composition contains 40% by mass or more and 80% by mass or less of the (meth) acrylate having four or more functional groups with respect to all the curable components, and the bifunctional (meth) It is preferable to contain 10% by mass or more and 60% by mass or less of acrylate from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern burrs.
 本開示において、前記4官能以上の(メタ)アクリレートは、4官能以上のウレタン(メタ)アクリレートを含むことが、湿熱条件下における耐スティッキング性に優れ、かつパターンもげがより少ないという点から好ましい。
 また、この際、前記4官能以上のウレタン(メタ)アクリレートは、多価イソシアネート化合物のイソシアネート基と、分子中に1個の水酸基と2個以上の(メタ)アクリル基を有する化合物の水酸基とがウレタン結合した化合物であることが、湿熱条件下における耐スティッキング性に優れ、かつパターンもげがより少ないという点から好ましい。
In the present disclosure, it is preferable that the tetrafunctional or higher functional (meth) acrylate contains a tetrafunctional or higher functional urethane (meth) acrylate from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern unevenness.
In this case, the tetrafunctional or higher urethane (meth) acrylate is formed of the isocyanate group of the polyvalent isocyanate compound and the hydroxyl group of a compound having one hydroxyl group and two or more (meth) acrylic groups in the molecule. It is preferable that the compound is a urethane-bonded compound from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern mottle.
 本開示において、前記2官能の(メタ)アクリレートは、分子量(Mw)が100以上5,000以下であることが、湿熱条件下における耐スティッキング性に優れ、かつパターンもげがより少ないという点から好ましい。 In the present disclosure, it is preferable that the bifunctional (meth) acrylate has a molecular weight (Mw) of 100 or more and 5,000 or less from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern burrs. .
 本開示において、JIS Z2244(2003)に準拠し、かつ最大荷重0.2mN、保持時間10秒の測定条件下にて行われるビッカース硬さ試験により測定される、前記アクリル系樹脂組成物の硬化物の復元率が、60%以上であることが、湿熱条件下における耐スティッキング性にさらに優れる点から好ましい。 In the present disclosure, a cured product of the acrylic resin composition as measured by a Vickers hardness test performed according to JIS Z 2 244 (2003) and under a measurement condition of maximum load 0.2 mN and holding time 10 seconds. It is preferable from the point which is further excellent in the sticking resistance under moist heat conditions that the restoration ratio of is 60% or more.
 本開示において、前記高屈折率凸部は、高さ400nm以上の部分を有することが、比較的長波長の光を回折できる点から好ましい。
 本開示において、前記高屈折率凸部の頂上を上端と定め、当該高屈折率凸部と隣接する他の高屈折率凸部との間にある谷底の位置、又は、当該高屈折率凸部の頂上から最も近い平坦部の位置のうち、当該高屈折率凸部の頂上から近い方を下端と定めるとき、当該高屈折率凸部の下端から上端に向かって、上端と下端の高低差の半分に当たる高さの位置における当該高屈折率凸部の幅に対する当該高屈折率凸部の高さの比を、当該高屈折率凸部のアスペクト比と定義するとき、前記高屈折率凸部のアスペクト比は2以上であることが、比較的長波長の光を回折できる点から好ましい。
In the present disclosure, it is preferable that the high refractive index convex portion have a portion having a height of 400 nm or more from the viewpoint of being able to diffract light having a relatively long wavelength.
In the present disclosure, the top of the high refractive index convex portion is defined as the upper end, and the position of the valley bottom between the high refractive index convex portion and another high refractive index convex portion adjacent thereto, or the high refractive index convex portion Among the positions of the flat part closest to the top of the high-refractive-index convex part, the lower end of the high-refractive-index convex part is defined as the lower end of the high-refractive-index convex part When the ratio of the height of the high refractive index convex portion to the width of the high refractive index convex portion at a position corresponding to half the height is defined as the aspect ratio of the high refractive index convex portion, the high refractive index convex portion The aspect ratio is preferably 2 or more from the viewpoint of being able to diffract relatively long wavelength light.
 本開示の照明装置は、外部から給電可能な導通部と出光面となる開口部を有する枠体、光源、及び、上記回折光学素子を備え、前記枠体の内部空間に前記光源が固定されるとともに前記導通部と接続され、前記開口部に前記回折光学素子が配置されていることを特徴とする。
 この際、前記光源は波長780nm以上の赤外線を放射する光源であってもよい。
An illumination device according to an embodiment of the present disclosure includes a frame having a conductive portion capable of supplying power from the outside and an opening serving as a light emitting surface, a light source, and the above-described diffractive optical element, and the light source is fixed in the inner space of the frame. And the diffractive optical element is disposed in the opening.
At this time, the light source may be a light source emitting an infrared ray having a wavelength of 780 nm or more.
 本開示によれば、高屈折率凸部を形成するアクリル系樹脂組成物の硬化物に関する、湿熱条件下における貯蔵弾性率(E’)が特定の範囲内にあるため、湿熱条件下におけるスティッキングを防止でき、かつパターンもげを少なくすることができる。 According to the present disclosure, the storage elastic modulus (E ′) under moist heat conditions for the cured product of the acrylic resin composition forming the high refractive index convex portion is within the specific range, so sticking under the moist heat conditions is It can be prevented and the pattern can be reduced.
回折光学素子の一実施形態を模式的に示す平面図である。FIG. 1 is a plan view schematically showing an embodiment of a diffractive optical element. 回折光学素子の一実施形態の斜視模式図である。FIG. 1 is a schematic perspective view of an embodiment of a diffractive optical element. 回折光学素子の一実施形態を示す図であり、図2のA-A’切断面の一例を模式的に示す断面図である。It is a figure which shows one Embodiment of a diffractive optical element, and is sectional drawing which shows typically an example of the A-A 'cut surface of FIG. 回折光学素子の他の実施形態であり、透明基材1と回折格子部2との間に基部3が存在する実施形態を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another embodiment of the diffractive optical element in which a base 3 is present between the transparent base 1 and the diffraction grating portion 2. 回折光学素子の他の実施形態であり、回折格子部2を挟んで透明基材1の反対側に被覆層5を備える実施形態を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing another embodiment of the diffractive optical element, in which the covering layer 5 is provided on the opposite side of the transparent base 1 with the diffraction grating portion 2 interposed therebetween. 回折光学素子の他の実施形態であり、回折格子部2を挟んで透明基材1の反対側に被覆層5を備える実施形態を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing another embodiment of the diffractive optical element, in which the covering layer 5 is provided on the opposite side of the transparent base 1 with the diffraction grating portion 2 interposed therebetween. 回折光学素子の他の実施形態であり、低屈折率部3に低屈折率樹脂7が充填された実施形態を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing another embodiment of the diffractive optical element in which the low refractive index resin 3 is filled in the low refractive index portion 3; 回折光学素子の他の実施形態であり、低屈折率部3に低屈折率樹脂7が充填された実施形態を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing another embodiment of the diffractive optical element in which the low refractive index resin 3 is filled in the low refractive index portion 3; 回折光学素子の他の実施形態であり、反射防止層9を備える実施形態を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an embodiment including the anti-reflection layer 9 which is another embodiment of the diffractive optical element. 回折光学素子の他の実施形態であり、反射防止層9を備える実施形態を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an embodiment including the anti-reflection layer 9 which is another embodiment of the diffractive optical element. アスペクト比の説明の用に供する図であり、2値形状の高屈折率凸部を含む回折格子部の部分断面模式図である。It is a figure which is provided for explanation of an aspect ratio, and is a fragmentary sectional view of a diffraction grating part containing a high refractive index convex part of binary shape. アスペクト比の説明の用に供する図であり、多段形状(4-level)の高屈折率凸部を含む回折格子部の部分断面模式図である。FIG. 6 is a view provided for describing an aspect ratio, and is a schematic partial cross-sectional view of a diffraction grating portion including multi-step (4-level) high refractive index convex portions. 回折格子部の断面形状の他の実施形態であり、高屈折率凸部2aの太さが、その先端から根元にかけて断続的に増している実施形態を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an embodiment in which the thickness of the high refractive index convex portion 2 a is intermittently increased from the tip to the root, which is another embodiment of the cross-sectional shape of the diffraction grating portion. 回折格子部の断面形状の他の実施形態であり、高屈折率凸部2aの太さが、その先端から根元にかけて連続的に増している実施形態を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an embodiment in which the thickness of the high refractive index convex portion 2 a is continuously increased from the tip to the root, which is another embodiment of the cross-sectional shape of the diffraction grating portion. 回折格子部の断面形状の他の実施形態であり、高屈折率凸部2aが多段形状(4-level)を有する実施形態を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an embodiment in which the high refractive index convex portions 2a have a multistage shape (4-level), which is another embodiment of the cross-sectional shape of the diffraction grating portion. 回折格子部の断面形状の他の実施形態であり、高屈折率凸部2aが多段形状(8-level)を有する実施形態を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing another embodiment of the cross-sectional shape of the diffraction grating portion, in which the high refractive index convex portion 2a has a multi-stage shape (8-level). 照射光21が回折光学素子10により回折され、スクリーン22上の中央に正方形の像24が形成される様子を示した斜視模式図である。FIG. 5 is a schematic perspective view showing that the irradiation light 21 is diffracted by the diffractive optical element 10 and a square image 24 is formed at the center of the screen 22. FIG. 照射光21が回折光学素子10により回折され、スクリーン22上の上部に正方形の像24が形成される様子を示した斜視模式図である。FIG. 5 is a schematic perspective view showing that the irradiation light 21 is diffracted by the diffractive optical element 10 and a square image 24 is formed on the top of the screen 22. FIG. 図10Aに示すスクリーン22の正面図である。It is a front view of screen 22 shown to FIG. 10A. 図10Bに示すスクリーン22の正面図である。It is a front view of the screen 22 shown to FIG. 10B. 本開示の製造方法に使用される金型の一例の模式図である。It is a schematic diagram of an example of the metal mold | die used for the manufacturing method of this indication. 本開示の製造方法におけるアクリル系樹脂組成物充填工程の一例を示し、金型31の表面にアクリル系樹脂組成物32を載置する様子を示す断面模式図である。FIG. 7 is a schematic cross-sectional view showing an example of the acrylic resin composition filling step in the manufacturing method of the present disclosure, and showing a state in which the acrylic resin composition 32 is placed on the surface of the mold 31. 本開示の製造方法におけるアクリル系樹脂組成物充填工程の一例を示し、アクリル系樹脂組成物32を金型31表面に塗布する様子を示す断面模式図である。FIG. 7 is a schematic cross-sectional view showing an example of the acrylic resin composition filling step in the manufacturing method of the present disclosure, and showing a state of applying the acrylic resin composition 32 to the surface of the mold 31. 本開示の製造方法におけるアクリル系樹脂組成物硬化工程の一例の模式図である。It is a schematic diagram of an example of the acrylic resin composition hardening process in the manufacturing method of this indication. 本開示の製造方法における離型工程の一例の模式図である。It is a schematic diagram of an example of the mold release process in the manufacturing method of this indication. 照明装置の一実施形態を模式的に示す断面図である。It is a sectional view showing typically one embodiment of a lighting installation. 平面形状のスクリーン22に対し、照射領域23が円形となる光を直接投影した場合を示す斜視模式図である。It is a perspective view showing a case where light which becomes circular [irradiation area 23] is projected directly to screen 22 of plane shape. スティッキングが生じた回折光学素子50の斜視模式図である。FIG. 6 is a schematic perspective view of the diffractive optical element 50 in which sticking has occurred. 微細パターン間に水分が浸入した回折光学素子の断面模式図である。It is a cross-sectional schematic diagram of the diffractive optical element which water infiltrated between the fine patterns. スティッキングが生じた回折光学素子の断面模式図である。It is a cross-sectional schematic diagram of the diffractive optical element in which sticking occurred. 回折光学素子の製造中にパターンもげが生じた様子を示す断面模式図である。It is a cross-sectional schematic diagram which shows a mode that pattern peeling arose during manufacture of a diffractive optical element.
 以下、本開示の回折光学素子及びその製造方法、回折光学素子形成用のアクリル系樹脂組成物、並びに照明装置について順に詳細に説明するが、本開示は以下の実施の態様に限定されるものではなく、その趣旨の範囲内で種々変形して実施することができる。
 なお、本開示において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。また、この明細書における「平面視」とは、回折光学素子上面に対し垂直方向から視認することを意味する。通常、「平面視」とは、回折光学素子の回折格子部を有する面に対して垂直方向から視認することに相当する(図1のような平面図の方向に相当する)。
 本開示において活性エネルギー線とは、可視光並びに紫外線及びX線等の非可視領域の波長の電磁波のみならず、電子線及びα線のような粒子線を総称する、アクリル系樹脂組成物を硬化させるに足るエネルギー量子を持った放射線が含まれる。活性エネルギー線としては、紫外線が好ましい。
 本開示において(メタ)アクリルとは、アクリル又はメタアクリルの各々を表し、(メタ)アクリレートとは、アクリレート又はメタクリレートの各々を表し、(メタ)アクリロイルとは、アクリロイル又はメタクリロイルの各々を表す。
 本開示において「光を整形する」とは、光の進行方向を制御することにより、対象物又は対象領域に投影された光の形状(照射領域)が任意の形状となるようにすることをいう。例えば、平面形状のスクリーン22に直接投影した場合に照射領域23が円形となる光(図14)を、本開示の回折光学素子10を透過させることにより、照射領域が正方形(図10Aの24)や、長方形、円形(図示せず)等、目的の形状とすることをいう。
 本開示において、光源からの光が、回折光学素子を透過して回折せずにそのまま出光した光を0次光といい(図10Aの25)、回折光学素子で生じた回折光を1次光ということがある(図10Aの26a~26d)。
 本開示において、回折格子部の断面形状は、回折光学素子を水平面に静置したものとして定義する。図2の例では、周期構造の繰り返し方向にX軸をとり、X軸と直交し、XYが水平面を形成するようにY軸をとり、XY水平面に垂直な方向にZ軸をとっている。本開示においては、凸部間の谷底(Zの極小点)を高さ0の基準とし、また、高さ0の部分を凹部とする。また本開示においては、高さH(H>0)を有する部分を凸部とする。一方、本開示においては凸部の最大高さを基準として、凸部間の谷底までを深さとすることがあるが、本開示において、高さと、深さは、表裏の関係にあり、凸部に着目する場合には高さ、凹部に着目する場合に深さとするものであって、実質的には同様のものである。
 本開示において、回折格子部の断面形状が図3の例に示されるような、高さ0の凹部と高さHの凸部との繰り返し構造であることを、2値(2-level)形状ということがある。また本開示において、回折格子部の断面形状において凸部が、2以上の平坦部(略水平部)を有するものを多段形状ということがあり、当該多段形状の凸部と凹部とを合わせてn個の平坦部を有する場合、n値(n-level)形状ということがある。
 また、本開示において透明とは、少なくとも目的の波長の光を透過するものをいう。例えば、仮に可視光を透過しないものであっても、赤外線を透過するものであれば、赤外線用途に用いる場合においては透明として取り扱うものとする。
Hereinafter, although the diffractive optical element of the present disclosure and a method of manufacturing the same, an acrylic resin composition for forming the diffractive optical element, and a lighting apparatus will be described in detail in order, the present disclosure is limited to the following embodiments. Instead, various modifications may be made within the scope of the present invention.
In the present disclosure, the shapes and geometrical conditions as well as the degree of them are specified. For example, terms such as “parallel” and values of length and angle etc. It shall be interpreted including the extent to which the function can be expected. In addition, the term “plan view” in this specification means that the image is viewed from the direction perpendicular to the top surface of the diffractive optical element. In general, “plan view” corresponds to visual recognition from the direction perpendicular to the surface of the diffractive optical element having the diffraction grating portion (corresponding to the direction of the plan view as shown in FIG. 1).
In the present disclosure, the active energy ray is not only visible light and electromagnetic waves of wavelengths in the invisible region such as ultraviolet light and X-rays, but also curing of acrylic resin compositions that collectively refers to particle rays such as electron rays and alpha rays. It contains radiation with energy quanta that is sufficient to As active energy rays, ultraviolet rays are preferred.
In the present disclosure, (meth) acrylic represents each of acrylic or methacrylic, (meth) acrylate represents each of acrylate or methacrylate, and (meth) acryloyl represents each of acryloyl or methacryloyl.
In the present disclosure, “shaping the light” means that the shape (irradiation area) of the light projected onto the target object or the target area is made to be an arbitrary shape by controlling the traveling direction of the light. . For example, by transmitting light (FIG. 14) in which the irradiation area 23 is circular when projected directly onto the flat screen 22 (FIG. 14A), the irradiation area is square (24 in FIG. 10A). It means having a target shape, such as a rectangle, a circle (not shown), or the like.
In the present disclosure, light emitted from the light source is transmitted through the diffractive optical element and emitted as it is without being diffracted as zero-order light (25 in FIG. 10A), and diffracted light generated by the diffractive optical element is referred to as first-order light (26a to 26d in FIG. 10A).
In the present disclosure, the cross-sectional shape of the diffraction grating portion is defined as that in which the diffractive optical element is placed on a horizontal surface. In the example of FIG. 2, the X axis is taken in the repetition direction of the periodic structure, orthogonal to the X axis, the Y axis taken so that XY forms a horizontal plane, and the Z axis taken in the direction perpendicular to the XY horizontal plane. In the present disclosure, a valley bottom (minimum point of Z) between convex portions is a reference of height 0, and a portion of height 0 is a concave portion. Further, in the present disclosure, a portion having a height H (H> 0) is a convex portion. On the other hand, in the present disclosure, the depth to the valley bottom between the protrusions may be referred to as the maximum height of the protrusions, but in the present disclosure, the height and the depth have a relationship between front and back, and the protrusions In the case of focusing on the height, the case of focusing on the recess, and the depth, it is substantially the same.
In the present disclosure, it is a binary (2-level) shape that the cross-sectional shape of the diffraction grating portion is a repetitive structure of a concave portion with a height of 0 and a convex portion with a height H as shown in the example of FIG. It is said that. Further, in the present disclosure, in the cross-sectional shape of the diffraction grating portion, a convex portion having two or more flat portions (substantially horizontal portions) may be referred to as a multistage shape, and the multistage convex portion and the concave portion are combined to n If there are two flats, it may be called n-level shape.
Further, in the present disclosure, “transparent” refers to one that transmits light of at least a target wavelength. For example, even if it does not transmit visible light, if it transmits infrared rays, it shall be treated as transparent when used for infrared applications.
 1.回折光学素子
 本開示の回折光学素子は、光源からの光を整形する回折光学素子であって、透明基材の少なくとも一面側に、透明基材の表面から突出する一つ以上の高屈折率凸部と、一つ以上の低屈折率部とを配置した回折格子部を備えており、前記高屈折率凸部は、アクリル系樹脂組成物の硬化物で形成されており、当該硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下であることを特徴とする。
 以下、本開示の主要な特徴である、高屈折率凸部を形成する硬化物の物性について説明した後、回折光学素子の構造を説明する。
1. Diffractive Optical Element The diffractive optical element according to the present disclosure is a diffractive optical element that shapes light from a light source, and includes at least one high refractive index convex projecting from the surface of the transparent base on at least one surface side of the transparent base Portion and one or more low refractive index portions are provided, and the high refractive index convex portion is formed of a cured product of an acrylic resin composition, and the cured product of the cured product The storage elastic modulus (E ') at 0 ° C and a relative humidity of 95% is characterized by being 0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less.
Hereinafter, the physical properties of the cured product forming the high refractive index convex portion, which is a main feature of the present disclosure, will be described, and then the structure of the diffractive optical element will be described.
 (1)アクリル系樹脂組成物の硬化物
 本開示の回折光学素子における高屈折率凸部は、60℃かつ相対湿度95%の条件下で特定の貯蔵弾性率(E’)を有するアクリル系樹脂組成物の硬化物により形成されてなる。このように、湿熱条件下で適度な貯蔵弾性率(E’)を有することにより、回折光学素子中の回折格子部が、スティッキングを防止しかつパターンもげを少なくすることができる。そのメカニズムを以下説明する。
(1) Cured Product of Acrylic Resin Composition The high refractive index convex portion in the diffractive optical element of the present disclosure is an acrylic resin having a specific storage elastic modulus (E ′) under the conditions of 60 ° C. and 95% relative humidity. It is formed of a cured product of the composition. Thus, by having an appropriate storage elastic modulus (E ') under moist heat conditions, it is possible for the diffraction grating portion in the diffractive optical element to prevent sticking and to reduce pattern burrs. The mechanism is described below.
 図2は、回折光学素子の一実施形態の斜視模式図である。この実施形態においては、透明基材1の一面側に、細長く繋がる高屈折率凸部2aが一定の間隔を空けて配置される。DOEやGCAは、通常、このような、いわゆるライン&スペース構造を有する。
 一方、図15は、スティッキングが生じた回折光学素子の斜視模式図である。図15中において、スティッキングが生じた部分を斜線で示す。図2とは異なり、図15の回折光学素子においては、隣り合う高屈折率凸部2aの全部又は一部が、スティッキングを起こして互いに接触している。このように、DOEやGCAにおいては、細長く繋がる凸部が微細サイズで配置されているため、ドット状のモスアイ構造体等と比較して一度生じたスティッキングが全体に伝播しやすい。特に、GCAは、通常、DOEと比べてそのサイズが小さいため、スティッキングがさらに生じやすい。
FIG. 2 is a schematic perspective view of an embodiment of a diffractive optical element. In this embodiment, high-refractive-index convex portions 2 a connected in a long and thin manner are arranged on one surface side of the transparent base material 1 at a constant interval. DOE and GCA usually have such a so-called line & space structure.
On the other hand, FIG. 15 is a schematic perspective view of a diffractive optical element in which sticking has occurred. In FIG. 15, hatched portions indicate portions where sticking has occurred. Unlike in FIG. 2, in the diffractive optical element of FIG. 15, all or part of adjacent high refractive index convex portions 2 a are sticking and are in contact with each other. As described above, in the DOE or GCA, since the long and thin convex portions are arranged in a fine size, the sticking that has once occurred is easily propagated as a whole compared to the dot-like moth-eye structure and the like. In particular, since GCA is usually smaller in size than DOE, sticking is more likely to occur.
 上述したように、スティッキングとは、回折光学素子の微細パターン間から水分が抜ける際に発生するメニスカス力に由来する現象である。
 図16Aは、回折光学素子の微細パターン間に水分が浸入した状態を示す断面模式図である。図16Bは、スティッキングが生じた回折光学素子の断面模式図であり、図15におけるB-B’切断面の一部に対応する。
 図16Aには、透明基材1上に回折格子部2を備える回折光学素子10が描かれている。回折格子部2は高屈折率凸部2a及び低屈折率部2bを含み、図16Aの例においては、低屈折率部2bは空気である。しかし、図16Aに示すように、低屈折率部2bのうち1つに水分51が浸入している。この場合、水分51に接する高屈折率凸部2aに働く応力σは、下記式(1)により表される。
  式(1)  σ=(6γcosθ/D)×(H/W)
(上記式(1)中、σは応力を、γは表面張力を、θは接触角を、Dはラインパターンの間隔を、Hは高屈折率凸部の高さを、Wは高屈折率凸部の幅を、それぞれ示す。)
 この応力σが一定値を超えると、高屈折率凸部2aが応力方向に倒れ込むことにより、隣り合う高屈折率凸部2a同士が接触し、スティッキングが生じる(図16B)。水分51が蒸発すると応力σが消失するため、スティッキングが解消され、接触していた高屈折率凸部2aが離れる場合もあるが、特に湿熱条件下では高屈折率凸部2aが融着し合うことにより、スティッキングが解消されない場合もある。
 スティッキングを防ぐ為には、高屈折率凸部を形成する材料が、応力σに耐え得るほど硬いことが求められる。
As described above, the term "sticking" is a phenomenon derived from the meniscus force generated when moisture is released from between the fine patterns of the diffractive optical element.
FIG. 16A is a schematic cross-sectional view showing a state in which water has infiltrated between fine patterns of the diffractive optical element. FIG. 16B is a schematic cross-sectional view of the diffractive optical element in which the sticking has occurred, corresponding to a part of the BB ′ cut surface in FIG.
In FIG. 16A, the diffractive optical element 10 provided with the diffraction grating portion 2 on the transparent substrate 1 is depicted. The diffraction grating portion 2 includes a high refractive index convex portion 2a and a low refractive index portion 2b, and in the example of FIG. 16A, the low refractive index portion 2b is air. However, as shown in FIG. 16A, the moisture 51 infiltrates into one of the low refractive index portions 2b. In this case, the stress σ acting on the high refractive index convex portion 2a in contact with the moisture 51 is expressed by the following formula (1).
Formula (1) σ = (6γ cos θ / D) × (H / W) 2
(In the above equation (1), σ is stress, γ is surface tension, θ is contact angle, D is the line pattern interval, H is the height of the high refractive index convex portion, W is the high refractive index Indicates the width of the projection, respectively)
When the stress σ exceeds a certain value, the high refractive index convex portions 2a fall in the stress direction, and the adjacent high refractive index convex portions 2a are in contact with each other to cause sticking (FIG. 16B). When the water 51 evaporates, the stress σ disappears, so the sticking is canceled and the high refractive index convex portion 2a in contact may be separated, but the high refractive index convex portion 2a is fused together particularly under wet heat conditions In some cases, sticking may not be eliminated.
In order to prevent sticking, it is required that the material forming the high refractive index convex portion be so hard that it can withstand stress σ.
 図15~図16Bに示したように、高屈折率凸部は、稜線状に延びる部分(面方向に細長く線状に伸びる部分)を有しており、高屈折率凸部の稜線状に延びる部分の少なくとも一部が、高屈折率凸部の高さよりも狭い幅を有する低屈折率部により隔てられ、平行又は略平行に隣接しあっている場合には、特にスティッキングが生じやすい。
 回折光学素子やこれを含む製品の製造工程においては、湿熱条件下にて組み立てが実施される場合がある。また、完成後の回折光学素子についても、湿熱条件下に置かれた場合、回折格子部の一部で生じたスティッキングが連鎖して全体に拡大する結果、微細パターンが維持できなくなるおそれもある(図15参照)。このように、スティッキングの回避は、所望の微細パターンを形成し、かつ維持するために特に重要である。
As shown in FIG. 15 to FIG. 16B, the high refractive index convex portion has a portion extending in a ridge line shape (a portion extending narrowly in the surface direction and linearly extending), and extends in a ridge line shape of the high refractive index convex portion Stucking is particularly likely to occur when at least a portion of the portions are separated by low refractive index portions having a width narrower than the height of the high refractive index convex portions and adjacent in parallel or substantially in parallel.
In the manufacturing process of a diffractive optical element and a product including the same, assembly may be performed under wet heat conditions. In addition, even when the diffractive optical element after completion is placed under moist heat conditions, there is a possibility that the fine pattern can not be maintained as the sticking generated in a part of the diffraction grating portion is chained and expanded as a whole. See Figure 15). Thus, the avoidance of sticking is particularly important in order to form and maintain the desired fine pattern.
 しかし、高屈折率凸部が単に硬いだけでは、離型時にパターンもげが発生する。ここでいう「パターンもげ」とは、回折格子部中の微細パターンを形成する全部又は一部の高屈折率凸部について、その一部が折れて取れるか、又はその全部が根元から抜けることを意味する。
 図17は、回折光学素子の離型時にパターンもげが生じた様子を示す断面模式図である。このようなパターンもげは、例えば、電子線リソグラフィで作成した金型を用いて、樹脂で賦型(インプリント)することにより回折光学素子を複製する場合にみられるものである。
 基材101上の凸状の樹脂硬化物102を金型103から引き離す際、樹脂硬化物102が硬すぎる場合には、樹脂硬化物102が金型103の中で破断することがある。これは、離型時において樹脂硬化物102がある程度変形する必要があるが、樹脂硬化物102が硬すぎる場合にはその自由な変形が望めず、離型に必要な荷重が大きくなる結果、過大な荷重が特に集中する部分において破断が生じるためと考えられる。樹脂硬化物102が破断すると、図示するように所望の高さを有する高屈折率凸部が得られない。
 このようなパターンもげの問題は、成形した回折光学素子上の樹脂硬化物に限られない。例えば、回折光学素子の成形に樹脂型を用いる場合、その樹脂型上の凸部についても、同様にパターンもげの問題がある。
 一方、樹脂硬化物102が変形しやすい場合には、離型しやすい反面、離型時の伸び縮みに耐え切れず樹脂硬化物102がスティッキングすることも考えられる。
However, if the high refractive index convex portion is merely hard, pattern peeling occurs at the time of mold release. Here, “pattern wrinkling” means that a part of the entire or a part of the high refractive index convex portions forming the fine pattern in the diffraction grating portion is broken or taken off from the root. means.
FIG. 17 is a schematic cross-sectional view showing a state in which pattern peeling has occurred at the time of mold release of the diffractive optical element. Such a pattern is found, for example, in the case of replicating a diffractive optical element by imprinting with a resin using a mold prepared by electron beam lithography.
When pulling the convex cured resin 102 on the substrate 101 away from the mold 103, if the cured resin 102 is too hard, the cured resin 102 may break in the mold 103. It is necessary for the cured resin 102 to be deformed to a certain extent at the time of mold release, but when the resin cured product 102 is too hard, free deformation can not be expected, and as a result, the load required for mold release increases. It is considered that breakage occurs in a portion where particular load concentrates. When the cured resin material 102 is broken, high refractive index convex portions having a desired height can not be obtained as illustrated.
Such a problem of pattern peeling is not limited to the cured resin on the molded diffractive optical element. For example, in the case of using a resin mold for molding a diffractive optical element, there is also a problem of pattern thinning also for the convex portion on the resin mold.
On the other hand, when the resin cured product 102 is easily deformed, it is considered that the resin cured product 102 is stuck without being able to endure expansion and contraction at the time of mold release, although it is easy to release the mold.
 このように、高屈折率凸部が硬すぎても柔らかすぎても、所望の微細パターンは得られない。本発明者らによる検討の結果、高屈折率凸部がアクリル系樹脂組成物の硬化物で形成され、かつ当該硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下である場合に、湿熱条件下におけるスティッキングを防止でき、かつ離型時のパターンもげを抑えられることが明らかとなった。
 前記硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)が0.90×10Pa未満の場合には、湿熱条件下でのスティッキングが避けられず、回折格子部の微細パターンを維持することができない。また、このように湿熱条件下での貯蔵弾性率(E’)が低すぎる場合には、離型時に当該硬化物が変形し過ぎる結果、スティッキングが生じる。
 一方、前記貯蔵弾性率(E’)が2.6×10Paを超える場合には、前記硬化物が柔軟性に欠けるため、離型時に破断する結果、パターンもげが生じる。
Thus, the desired fine pattern can not be obtained when the high refractive index convex portions are too hard or too soft. As a result of studies by the present inventors, high refractive index convex portions are formed of a cured product of an acrylic resin composition, and the storage elastic modulus (E ′) of the cured product at 60 ° C. and 95% relative humidity is 0. It became clear that sticking could be prevented under moist heat conditions and that the pattern could be suppressed from mold release at the time of mold release when it is not less than 90 × 10 9 Pa and not more than 2.6 × 10 9 Pa.
When the storage elastic modulus (E ') at 60 ° C. and 95% relative humidity of the cured product is less than 0.90 × 10 9 Pa, sticking under moist heat conditions can not be avoided, and the fine pattern of the diffraction grating portion Can not maintain. In addition, when the storage elastic modulus (E ') under the moist heat condition is too low as described above, the cured product is excessively deformed at the time of mold release, resulting in sticking.
On the other hand, when the storage elastic modulus (E ′) exceeds 2.6 × 10 9 Pa, the cured product lacks flexibility, and as a result of breakage at the time of mold release, pattern peeling occurs.
 湿熱条件下でのスティッキングを防止でき、前記硬化物の折れや破断も抑えられ、且つ離型性に優れ、離型時の変形も抑制される点から、前記硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)は、好適には1.0×10Pa以上2.5×10Pa以下であり、より好適には1.1×10Pa以上2.3×10Pa以下であり、更に好適には1.2×10Pa以上2.0×10Pa以下である。 The cured product has a relative humidity of 60 ° C. and a relative humidity of 95 because it can prevent sticking under moist heat conditions, suppress breakage and breakage of the cured product, and is excellent in releasability and deformation during release. The storage elastic modulus (E ') in% is preferably 1.0 × 10 9 Pa or more and 2.5 × 10 9 Pa or less, and more preferably 1.1 × 10 9 Pa or more and 2.3 × 10 9 Pa or more. It is 9 Pa or less, and more preferably 1.2 × 10 9 Pa or more and 2.0 × 10 9 Pa or less.
 上記特許文献1においては、25℃における貯蔵弾性率(E’)が所定の値である硬化物を用いることが記載されている。本開示における湿熱条件下での貯蔵弾性率(E’)は、25℃における貯蔵弾性率(E’)とは全く異なる物性である。また、上記特許文献1の課題は、単に耐久性に優れる回折光学素子を得ることであるのに対し、本開示の課題は、湿熱条件下における耐スティッキング性を有し、かつパターンもげの少ない回折光学素子を得ることであり、課題の面でも異なる。 In the said patent document 1, using the hardened | cured material whose storage elastic modulus (E ') in 25 degreeC is a predetermined value is described. The storage elastic modulus (E ') under moist heat conditions in the present disclosure is a physical property that is completely different from the storage elastic modulus (E') at 25 ° C. Further, while the problem of the above-mentioned Patent Document 1 is to simply obtain a diffractive optical element excellent in durability, the problem of the present disclosure is a diffraction which has anti-sticking properties under wet heat conditions and which has less pattern burrs. It is to obtain an optical element, and also differs in terms of problems.
 貯蔵弾性率(E’)は、測定物の形状や大きさには依存しない物性である。本開示においては、回折光学素子から切り出したテストピースで測定されるか、又は、アクリル系樹脂組成物を別途重合させて得られたテストピースで測定される。
 本開示において貯蔵弾性率(E’)は、JISK7244に準拠して、以下の方法により測定される。まず、測定用のテストピースを調製する。テストピースは、回折光学素子の回折格子部から適切な寸法に切り出すことにより得られる。または、アクリル系樹脂組成物に対し、積算光量が1,000mJ/cmになるように紫外線を照射することによって十分に硬化させることにより、適切な寸法の単膜が得られ、これをテストピースとすることもできる。
 次に、測定温度60℃及び相対湿度95%の条件、かつ実施例中の表Aに示す測定条件等に基づき動的粘弾性を測定することにより、60℃、相対湿度95%における貯蔵弾性率(E’)が求められる。または、測定温度30℃及び相対湿度30%の条件、かつ実施例中の表Aに示す測定条件等に基づき動的粘弾性を測定することにより、30℃、相対湿度30%における貯蔵弾性率(E’)が求められる。測定装置としては、例えば、UBM製Rheogel E4000を用いることができる。
 あるいは、テストピース表面に圧子を押し込んで、テストピース表面の貯蔵弾性率(E’)を求めることができる。測定装置としては、例えば、Hysitron社製TI950 TRIBOINDENTERなどのAFM(Atomic Force Microscope)ナノインデンターが使用可能である。
 AFMナノインデンターによる測定は、回折光学素子表面の表面機械強度を直接測定できるという利点がある。ただし、この測定においては、測定値のばらつきを防ぐため、高屈折率凸部の中央付近に圧子を押し込んで測定することが好ましい。仮に回折光学素子表面の凹部を測定場所に選んだ場合、AFMナノインデンターにおいて通常使用されるバーコビッチ(Berkovich)圧子の幅では、当該凹部の底まで入り込めないことが多いため、当該凹部の底の表面機械強度は測定し難い。また、高屈折率凸部の周縁部分は、圧子の押し込みにより高屈折率凸部が折れ曲がることが予想され、表面機械強度の正確な測定値が取得し難い。このように、材料特性以外の影響により高屈折率凸部の中央付近以外では正確な値を安定して得ることが難しいため、高屈折率凸部の中央付近を測定場所に選ぶことが好ましい。
 AFMナノインデンターを使用する場合の測定の概要は以下の通りである。まず、測定サンプルをステージ上にセットし、CCDカメラにより測定位置を確認する。次に、適宜キャリブレーションを取ったのち、バーコビッチ圧子の下にサンプルを移動させて、ダイナミック・フォース・モード(DFMモード)により回折光学素子表面のAFM像を取得する。得られたAFM像から高屈折率凸部を特定し、当該高屈折率凸部の中央付近を数か所選び、測定場所とする。この測定場所においてAFMのコンタクト・モードにより測定を行う。測定条件の例を以下に示す。荷重除荷時間において得られる変位と荷重との関係に基づき、インデンテーション硬さHITを求めることができる。このインデンテーション硬さHITから、目的とする貯蔵弾性率(E’)が求められる。
<測定条件>
・制御方式 変位制御
・測定深さ 50nm
・荷重印加時間 10秒間
・保持時間 5秒間
・荷重除荷時間 10秒間
・圧子 バーコビッチ圧子
・測定温度 30℃
・相対温度 30%
The storage elastic modulus (E ′) is a physical property that does not depend on the shape or size of the object to be measured. In the present disclosure, it is measured with a test piece cut out from a diffractive optical element, or with a test piece obtained by separately polymerizing an acrylic resin composition.
In the present disclosure, the storage elastic modulus (E ′) is measured by the following method in accordance with JIS K7244. First, a test piece for measurement is prepared. The test piece is obtained by cutting out the appropriate dimension from the diffraction grating portion of the diffractive optical element. Alternatively, the acrylic resin composition is sufficiently cured by irradiating ultraviolet light so that the integrated light amount is 1,000 mJ / cm 2 , thereby obtaining a single film of an appropriate size, which is used as a test piece. It can also be done.
Next, the storage elastic modulus at 60 ° C. and 95% relative humidity is measured by measuring the dynamic viscoelasticity based on the conditions of the measurement temperature 60 ° C. and the relative humidity 95% and the measurement conditions shown in Table A in the examples. (E ') is required. Alternatively, the storage elastic modulus at 30 ° C. and 30% relative humidity is measured by measuring the dynamic viscoelasticity based on the conditions of measurement temperature 30 ° C. and relative humidity 30% and the measurement conditions shown in Table A in the examples. E ') is required. As a measurement device, for example, Rheogel E4000 manufactured by UBM can be used.
Alternatively, an indenter can be pressed into the surface of the test piece to determine the storage elastic modulus (E ′) of the surface of the test piece. As a measurement apparatus, for example, an AFM (Atomic Force Microscope) nano indenter such as TI950 TRIBOINDENTER manufactured by Hysitron can be used.
Measurement with an AFM nanoindenter has the advantage that the surface mechanical strength of the diffractive optical element surface can be measured directly. However, in this measurement, in order to prevent variations in measured values, it is preferable to measure by pressing an indenter in the vicinity of the center of the high refractive index convex portion. If a recess on the surface of a diffractive optical element is selected as a measurement location, the width of a Berkovich indenter usually used in an AFM nanoindenter often can not penetrate to the bottom of the recess, so the bottom of the recess is selected. Surface mechanical strength is difficult to measure. Further, in the peripheral portion of the high refractive index convex portion, the high refractive index convex portion is expected to be bent by the pressing of the indenter, so that it is difficult to obtain an accurate measurement value of the surface mechanical strength. As described above, it is difficult to stably obtain an accurate value except near the center of the high refractive index convex portion due to influences other than the material characteristics, so it is preferable to select the central portion of the high refractive index convex portion as the measurement place.
The outline of the measurement in the case of using the AFM nanoindenter is as follows. First, the measurement sample is set on the stage, and the measurement position is confirmed by the CCD camera. Next, after performing calibration as appropriate, the sample is moved under a Berkovich indenter to obtain an AFM image of the surface of the diffractive optical element in a dynamic force mode (DFM mode). The high refractive index convex portion is specified from the obtained AFM image, and several places around the center of the high refractive index convex portion are selected to be the measurement place. At this measurement site, measurement is performed by the contact mode of AFM. Examples of measurement conditions are shown below. The indentation hardness H IT can be determined based on the relationship between the displacement and the load obtained at the load unloading time. This indentation hardness H IT, storage modulus of interest (E ') is obtained.
<Measurement conditions>
Control method Displacement control Measurement depth 50 nm
Load application time 10 seconds ・ Holding time 5 seconds ・ Load unloading time 10 seconds ・ Indenter Burko Bitch indenter ・ Measurement temperature 30 ° C
・ Relative temperature 30%
 しかし、実際には、回折光学素子の回折格子部から、上記のような比較的大きな面積のテストピースを得ることは難しい。そこで、アクリル系樹脂組成物単膜のテストピースを用いて貯蔵弾性率(E’)を求める方法が現実的である。
 回折光学素子上の高屈折率凸部に隣接した基部の貯蔵弾性率が、アクリル系樹脂組成物を硬化させて得られたテストピースの貯蔵弾性率と同程度の値であるため、アクリル系樹脂組成物を硬化させて得られたテストピースの貯蔵弾性率(E’)は、回折光学素子上の高屈折率凸部の貯蔵弾性率(E’)と変わらない。
However, in practice, it is difficult to obtain a test piece having a relatively large area as described above from the diffraction grating portion of the diffractive optical element. Then, the method of calculating | requiring storage elastic modulus (E ') using the test piece of acrylic resin composition single film is realistic.
The storage elastic modulus of the base adjacent to the high refractive index convex portion on the diffractive optical element is approximately the same value as the storage elastic modulus of the test piece obtained by curing the acrylic resin composition. The storage modulus (E ′) of the test piece obtained by curing the composition is the same as the storage modulus (E ′) of the high refractive index convex portion on the diffractive optical element.
 アクリル系樹脂組成物の硬化物の30℃かつ相対湿度30%における貯蔵弾性率(E’)は、1×10Pa以上5×10Pa以下であってもよい。
 常温常湿条件下において上記貯蔵弾性率(1×10Pa以上5×10Pa以下)を有する硬化物を用いることにより、当該条件下において回折光学素子に必要な物性を満たすことができる。このような硬化物の中から、さらに上述した湿熱条件下における貯蔵弾性率の条件(0.90×10Pa以上2.6×10Pa以下)に適合するものを選ぶことによって、湿熱条件下における耐スティッキング性を有し、かつパターンもげの少ない回折光学素子が得られる。
The storage elastic modulus (E ′) at 30 ° C. and 30% relative humidity of the cured product of the acrylic resin composition may be 1 × 10 8 Pa or more and 5 × 10 9 Pa or less.
By using a cured product having the above storage elastic modulus (1 × 10 8 Pa or more and 5 × 10 9 Pa or less) under normal temperature and normal humidity conditions, the physical properties necessary for the diffractive optical element can be satisfied under the conditions. By selecting from among such cured products those which meet the condition of storage elastic modulus under the above-mentioned wet heat condition (0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less), the moist heat condition A diffractive optical element having anti-sticking resistance in the lower part and with less pattern blurring can be obtained.
 本開示においては、相対湿度95%という高湿度条件下における貯蔵弾性率(E’)を特定している点も重要である。高湿度条件は、回折光学素子の回折格子部に過剰な水分をもたらすため、スティッキングの要因になると考えられる(上記図16A及び図16B)。さらに、60℃という高温条件は、回折格子部への水分供給を促すため、スティッキングを促進させる要因になると考えられる。したがって、60℃かつ相対湿度95%という湿熱条件下における貯蔵弾性率(E’)は、耐スティッキング性を検討する上で重要である。
 他の技術分野、例えば、半導体の技術分野においては、水分によって半導体表面の溝にスティッキングが生じることが知られている。しかし、半導体の場合には材料が変更できないため、半導体表面の溝から水分を予め除去することにより、スティッキングを防ぐという対策が取られている。ここで、水分の除去方法としては、イソプロパノール等の揮発しやすい有機溶媒を半導体表面に塗布し、溝中の水分の表面張力を変えることによって、水分の除去を容易にする方法が知られている。
 これに対し、本開示の回折光学素子の場合には、回折格子部を構成する材料(アクリル系樹脂組成物の硬化物)の調整が可能である。したがって、60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下となるように、アクリル系樹脂組成物の組成を調節することによって、耐スティッキング性を有する最適な回折光学素子を得ることができる。
In the present disclosure, it is also important to specify the storage elastic modulus (E ′) under high humidity conditions of 95% relative humidity. The high humidity condition is considered to be a factor of sticking because it causes excessive moisture in the diffraction grating portion of the diffractive optical element (the above-mentioned FIG. 16A and FIG. 16B). Furthermore, the high temperature condition of 60 ° C. is considered to be a factor for promoting sticking, since it promotes the supply of water to the diffraction grating portion. Therefore, storage elastic modulus (E ') under moist heat conditions of 60 ° C. and 95% relative humidity is important in examining the sticking resistance.
In other technical fields, for example in the field of semiconductors, it is known that moisture causes sticking in the grooves of the semiconductor surface. However, in the case of a semiconductor, since the material can not be changed, a countermeasure is taken to prevent sticking by removing water from the groove on the surface of the semiconductor in advance. Here, as a method of removing water, there is known a method of applying the easily volatilizable organic solvent such as isopropanol to the semiconductor surface and changing the surface tension of the water in the groove to facilitate the removal of the water. .
On the other hand, in the case of the diffractive optical element of the present disclosure, it is possible to adjust the material (the cured product of the acrylic resin composition) constituting the diffraction grating portion. Therefore, the composition of the acrylic resin composition is adjusted so that the storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity is 0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less. Thus, it is possible to obtain an optimum diffractive optical element having sticking resistance.
 回折格子部表面において、水の接触角が好適には90度以上、より好適には100度以上、さらに好適には110度以上であることが好ましい。アクリル系樹脂組成物の硬化物の表面が上記のような撥水性を有することにより、回折格子部表面に水が付着しにくくなり、スティッキングが生じにくくなるためである。
 水の接触角の測定方法は次の通りである。回折光学素子の回折格子部表面を上にして、2.0μLの水滴を滴下し、着滴0.5秒後の接触角を計測する。測定装置は、例えば、協和界面科学社製 接触角計DM 500を用いることができる。
 回折格子部を形成する硬化物の原料となったアクリル系樹脂組成物の組成が判明している場合には、その組成を有するアクリル系樹脂組成物の硬化物を用いて、水の接触角を測定してもよい。
 まず、透明基材上に当該アクリル系樹脂組成物を塗布して、積算光量が1,000mJ/cmになるように当該アクリル系樹脂組成物に対し紫外線を照射することにより硬化させて、塗膜を形成する。当該塗膜側を上面にして、粘着層つきの黒アクリル板に水平に貼り付ける。次いで、塗膜に対して2.0μLの水滴を滴下し、着滴0.5秒後の接触角を計測する。測定装置は上記同様とする。
The contact angle of water on the surface of the diffraction grating portion is preferably 90 degrees or more, more preferably 100 degrees or more, and even more preferably 110 degrees or more. When the surface of the cured product of the acrylic resin composition has the water repellency as described above, water is less likely to adhere to the surface of the diffraction grating portion, and sticking is less likely to occur.
The measuring method of the contact angle of water is as follows. A droplet of 2.0 μL is dropped with the surface of the diffraction grating portion of the diffractive optical element up, and the contact angle after 0.5 seconds of deposition is measured. As a measuring apparatus, for example, a contact angle meter DM 500 manufactured by Kyowa Interface Science Co., Ltd. can be used.
When the composition of the acrylic resin composition which is the raw material of the cured product forming the diffraction grating portion is known, the contact angle of water is determined using the cured product of the acrylic resin composition having the composition. It may be measured.
First, the acrylic resin composition is coated on a transparent substrate, and the acrylic resin composition is cured by irradiation with ultraviolet light so that the integrated light amount becomes 1,000 mJ / cm 2 , and the coating is performed. Form a film. With the coated film side as the upper surface, it is horizontally attached to a black acrylic plate with an adhesive layer. Next, a 2.0 μL water droplet is dropped onto the coating, and the contact angle after 0.5 seconds of deposition is measured. The measuring device is the same as above.
 耐スティッキング性に対応する物性としては、後述する実施例の「5.アクリル系樹脂組成物のガラス転移温度(Tg)測定」において回折格子部の形成に使用されるアクリル系樹脂組成物のガラス転移温度Tg(℃)が挙げられる。
 耐スティッキング性を有するという観点から、前記ガラス転移温度Tgは、45℃以上80℃以下であってもよく、48℃以上79℃以下であってもよい。
 ただし、本開示において前記ガラス転移温度Tgは、副次的な指標である。本開示においては、60℃かつ相対湿度95%における貯蔵弾性率(E’)が、耐スティッキング性の効果及びパターンもげ防止の効果を奏するための最も重要なパラメータである。この貯蔵弾性率(E’)によってこれら2つの効果の有無が判定し難い様な場合、前記ガラス転移温度Tgや、後述するアクリル系樹脂組成物の硬化物の復元率を指標として、これら2つの効果の有無を判定する。
As a physical property corresponding to sticking resistance, the glass transition of the acrylic resin composition used for formation of a diffraction grating part in "5. Glass transition temperature (Tg) measurement of acrylic resin composition" of the Example mentioned later Temperature Tg (degreeC) is mentioned.
From the viewpoint of having sticking resistance, the glass transition temperature Tg may be 45 ° C. or more and 80 ° C. or less, and may be 48 ° C. or more and 79 ° C. or less.
However, in the present disclosure, the glass transition temperature Tg is a secondary index. In the present disclosure, the storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity is the most important parameter for exhibiting the effect of the anti-sticking effect and the effect of preventing the pattern cracking. When it is difficult to determine the presence or absence of these two effects by this storage elastic modulus (E '), the two of the two are used with the glass transition temperature Tg and the recovery rate of the cured product of the acrylic resin composition described later as an index. Determine if there is an effect.
 湿熱条件下における耐スティッキング性を有し、かつパターンもげの少ない回折光学素子を得やすいという理由から、前記アクリル系樹脂組成物は、ウレタン結合を含むものであることが好ましい。また、同様の理由から、前記アクリル系樹脂組成物は、4官能以上の(メタ)アクリレートと、2官能の(メタ)アクリレートを含む活性エネルギー線硬化性樹脂組成物であることが好ましい。
 これらの中でも、4官能以上のウレタン(メタ)アクリレートは、得られる硬化物の湿熱条件下における貯蔵弾性率(E’)を高める傾向があり、2官能ウレタン(メタ)アクリレートは、得られる硬化物の湿熱条件下における貯蔵弾性率(E’)を下げる傾向がある。したがって、得られる硬化物の湿熱条件下における貯蔵弾性率(E’)を所望の値に調節できるため、湿熱条件下における耐スティッキング性を有し、かつパターンもげの少ない回折光学素子がより得られやすいという点で、前記アクリル系樹脂組成物は、4官能以上のウレタン(メタ)アクリレートと、2官能のウレタン(メタ)アクリレートを含む活性エネルギー線硬化性樹脂組成物であることがより好ましい。
The acrylic resin composition preferably contains a urethane bond, because it is easy to obtain a diffractive optical element having sticking resistance under wet heat conditions and having few patterns. Moreover, it is preferable that the said acrylic resin composition is an active energy ray curable resin composition containing the (meth) acrylate more than tetrafunctional and the bifunctional (meth) acrylate from the same reason.
Among these, tetrafunctional or higher urethane (meth) acrylates tend to increase the storage elastic modulus (E ′) of the resulting cured product under moist heat conditions, and the bifunctional urethane (meth) acrylate is a obtainable cured product. There is a tendency to lower the storage modulus (E ') under the heat and humidity conditions of Therefore, the storage elastic modulus (E ') of the resulting cured product under moist heat conditions can be adjusted to a desired value, so that a diffractive optical element having sticking resistance under wet heat conditions and having a small pattern haze can be obtained. From the viewpoint of easiness, the acrylic resin composition is more preferably an active energy ray curable resin composition containing a tetrafunctional or higher functional urethane (meth) acrylate and a bifunctional urethane (meth) acrylate.
 前記活性エネルギー線硬化性樹脂組成物は、水分に弱い材料、又は水を吸って膨潤しやすい材料を可能な限り含まない方が好ましい。なぜなら、このような材料を多く含む場合、得られる回折光学素子の耐スティッキング性が低下するおそれがあるためである。
 水分に弱い材料としては、例えば、水と反応することにより分解する公知の材料が挙げられる。また、水を吸って膨潤しやすい材料としては、例えば親水性の高い材料が挙げられ、より具体的には、ビニルピロリドン、アクリル酸アンモニウム、カルボキシエチルアクリレート等が挙げられる。
 前記活性エネルギー線硬化性樹脂組成物全体を100質量%としたとき、水分に弱い材料、及び水を吸って膨潤しやすい材料の総含有割合は、好適には10質量%以下であり、より好適には5質量%以下であり、さらに好適には1質量%以下であり、特に好適には0質量%である。
It is preferable that the active energy ray-curable resin composition does not contain as much as possible a material that is susceptible to moisture or a material that absorbs water and tends to swell. This is because the sticking resistance of the resulting diffractive optical element may be reduced if the material contains a large amount of such materials.
Examples of the material susceptible to moisture include known materials that decompose by reacting with water. Moreover, as a material which absorbs water and tends to swell, for example, a material having high hydrophilicity can be mentioned, and more specifically, vinyl pyrrolidone, ammonium acrylate, carboxyethyl acrylate and the like can be mentioned.
The total content of the material sensitive to moisture and the material which easily absorbs water and swells is preferably 10% by mass or less, based on 100% by mass of the whole active energy ray-curable resin composition. Is 5% by mass or less, more preferably 1% by mass or less, and particularly preferably 0% by mass.
 以下、活性エネルギー線硬化性樹脂組成物に含まれる各成分について説明する。
 4官能以上の(メタ)アクリレートとは、(メタ)アクリロイル基を1分子中に4個以上有する多官能アクリレートを意味する。4官能以上の(メタ)アクリレートには、モノマー及びポリマーの両方が含まれる。
 4官能以上の(メタ)アクリレートとしては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ウレタンヘキサ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、オリゴエステルテトラ(メタ)アクリレート、及びジペンタエリスリトールポリアクリレート;並びに、これらのエチレンオキサイド変性化合物、プロピレンオキサイド変性化合物、及びε-カプロラクトン変性化合物等が挙げられる。特に、エチレンオキサイド変性化合物、プロピレンオキサイド変性化合物、及びε-カプロラクトン変性化合物について、変性数n≦6であることが好ましい。なぜなら、変性数n>6の場合には、活性エネルギー線硬化性樹脂組成物の硬化物が柔らかくなりすぎる傾向にあり、スティッキングが生じやすくなるおそれがあるためである。これらの4官能以上の(メタ)アクリレートは、1種単独で、又は2種以上を組み合わせて用いることができる。
 4官能以上の(メタ)アクリレートの含有量は、活性エネルギー線硬化性樹脂組成物の全硬化性成分に対して、40質量%以上80質量%以下であることが好ましく、55質量%以上65質量%以下であることがより好ましい。
Hereinafter, each component contained in an active energy ray curable resin composition is demonstrated.
The tetrafunctional or higher (meth) acrylate means a polyfunctional acrylate having four or more (meth) acryloyl groups in one molecule. The tetrafunctional or higher (meth) acrylates include both monomers and polymers.
Examples of tetrafunctional or higher (meth) acrylates include pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, urethane hexa (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetratetra Examples thereof include (meth) acrylates, oligoester tetra (meth) acrylates, and dipentaerythritol polyacrylates; ethylene oxide-modified compounds thereof, propylene oxide-modified compounds, and ε-caprolactone-modified compounds. In particular, with respect to the ethylene oxide modified compound, the propylene oxide modified compound, and the ε-caprolactone modified compound, the modified number n ≦ 6 is preferable. This is because in the case of the modification number n> 6, the cured product of the active energy ray curable resin composition tends to be too soft and sticking may easily occur. These tetrafunctional or higher functional (meth) acrylates can be used alone or in combination of two or more.
The content of the tetrafunctional or higher (meth) acrylate is preferably 40% by mass or more and 80% by mass or less, and more preferably 55% by mass or more and 65% by mass with respect to all the curable components of the active energy ray curable resin composition. It is more preferable that the content is less than%.
 化学結合による架橋密度を高め、網目構造を密にすることにより、得られる回折光学素子の形状保持性と耐熱性を高める点から、4官能以上の(メタ)アクリレートは、4官能以上のウレタン(メタ)アクリレートを含むことが好ましい。この場合のウレタン結合の位置や個数、(メタ)アクリロイル基が分子末端にあるか否か等は特に限定はない。分子中に(メタ)アクリロイル基を6個以上有する化合物が特に好ましく、10個以上有する化合物が更に好ましい。また、分子中の(メタ)アクリロイル基の個数の上限は特に限定はないが、15個以下が特に好ましい。ウレタン(メタ)アクリレート分子中の(メタ)アクリロイル基の数が少なすぎると、得られる硬化物の硬化性が低下し、貯蔵弾性率が小さくなる場合がある。一方、ウレタン(メタ)アクリレート分子中の(メタ)アクリロイル基の数が多すぎると、重合による(メタ)アクリロイル基の炭素間二重結合消費率、すなわち反応率が十分に上がらない場合がある。 The tetrafunctional or higher functional (meth) acrylate is a tetrafunctional or higher functional urethane from the viewpoint of enhancing the shape retention and heat resistance of the obtained diffractive optical element by increasing the crosslink density by chemical bonding and densifying the network structure. It is preferred to contain meta) acrylate. There are no particular limitations on the position and number of urethane bonds in this case, and whether or not the (meth) acryloyl group is at the end of the molecule. Particularly preferred are compounds having 6 or more (meth) acryloyl groups in the molecule, and more preferred are compounds having 10 or more. The upper limit of the number of (meth) acryloyl groups in the molecule is not particularly limited, but is preferably 15 or less. If the number of (meth) acryloyl groups in the urethane (meth) acrylate molecule is too small, the curability of the resulting cured product may be reduced, and the storage modulus may be reduced. On the other hand, when the number of (meth) acryloyl groups in the urethane (meth) acrylate molecule is too large, the consumption rate of carbon-to-carbon double bonds of the (meth) acryloyl group by polymerization, that is, the reaction rate may not be sufficiently increased.
 4官能以上のウレタン(メタ)アクリレートの構造は特に限定はないが、湿熱条件下における耐スティッキング性に優れ、かつパターンもげがより少ないという点から、多価イソシアネート化合物(a)のイソシアネート基と、分子中に1個の水酸基と2個以上の(メタ)アクリル基を有する化合物(b)の水酸基とがウレタン結合した化合物であることが好ましい。
 ここで、多価イソシアネート化合物(a)中のイソシアネート基は、そのほぼ全てが、前記化合物(b)中の水酸基とウレタン結合を形成することが好ましい。
The structure of the tetrafunctional or higher urethane (meth) acrylate is not particularly limited, but from the viewpoint of excellent sticking resistance under wet heat conditions and less pattern mottle, the isocyanate group of the polyvalent isocyanate compound (a), It is preferable that it is a compound in which one hydroxyl group and a hydroxyl group of the compound (b) having two or more (meth) acrylic groups in the molecule are urethane-bonded.
Here, it is preferable that substantially all of the isocyanate groups in the polyvalent isocyanate compound (a) form a urethane bond with the hydroxyl group in the compound (b).
 この場合の多価イソシアネート化合物(a)としては特に限定はなく、分子中に2個以上のイソシアネート基を有する化合物が挙げられる。分子中に2個のイソシアネート基を有する化合物としては、例えば、1,5-ナフチレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン-4,4'-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、m-テトラメチルキシリレンジイソシアネート等が挙げられる。また、分子中に3個のイソシアネート基を有する化合物としては、例えば、イソホロンジイソシアネート、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート等を変性してなるトリメチロールプロパン付加アダクト体、ビューレット体、イソシアヌレート体等が挙げられる。このうち、本開示には、イソホロンジイソシアネート、トリレンジイソシアネート、ヘキサメチレンジイソシアネート等が特に好ましい。 There is no particular limitation on the polyvalent isocyanate compound (a) in this case, and a compound having two or more isocyanate groups in the molecule can be mentioned. Examples of compounds having two isocyanate groups in the molecule include 1,5-naphthyl diisocyanate, 4,4′-diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate , Tolylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate , Isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis (isocyanatomethyl) cyclo Hexane, methylcyclohexane diisocyanate, m- tetramethylxylylene diisocyanate, and the like. Moreover, as a compound having three isocyanate groups in the molecule, for example, trimethylolpropane adduct adduct, biuret, isocyanate formed by modifying isophorone diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, etc. A nurate body etc. are mentioned. Among these, isophorone diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate and the like are particularly preferable in the present disclosure.
 分子中に1個の水酸基と2個以上の(メタ)アクリル基を有する化合物(b)としては、特に限定はないが、分子中に3個以上(p個とする)の水酸基を有する化合物(b-1)の水酸基に、(メタ)アクリル酸が(p-1)個反応した化合物;グリシジル(メタ)アクリレートと(メタ)アクリル酸が開環反応した化合物等が挙げられる。 The compound (b) having one hydroxyl group and two or more (meth) acrylic groups in the molecule is not particularly limited, but a compound having three or more (p) hydroxyl groups in the molecule Examples of the compound in which (meth) acrylic acid is reacted (p-1) with the hydroxyl group of b-1); and compounds in which glycidyl (meth) acrylate and (meth) acrylic acid undergo ring opening reaction.
 ここで、「分子中に1個の水酸基と2個以上の(メタ)アクリル基を有する化合物(b)」には、該化合物が2種以上の化合物を部分的に反応させて製造される場合に、分子中に2個以上の水酸基を有する化合物が混入する場合や、(メタ)アクリル基1個を有する化合物が混入する場合をも含むものとする。 Here, in the case where the “compound (b) having one hydroxyl group and two or more (meth) acrylic groups in the molecule” (b) ”is produced by partially reacting two or more compounds with the compound In addition, the case where a compound having two or more hydroxyl groups is mixed in the molecule, and the case where a compound having one (meth) acrylic group is mixed are included.
 化合物(b)のうち、「分子中にp個(pは3以上の整数)の水酸基を有する化合物(b-1)に、(メタ)アクリル酸が(p-1)個反応した化合物」における、「分子中に3個以上の水酸基を有する化合物(b-1)」としては特に限定はないが、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、テトラメチロールエタン、ジグリセリン、ジトリメチロールエタン、ジトリメチロールプロパン、ジペンタエリスリトール、ジテトラメチロールエタン;これらのエチレンオキサイド変性化合物;これらのプロピレンオキサイド変性化合物;イソシアヌル酸のエチレンオキサイド変性化合物、プロピレンオキサイド変性化合物、ε-カプロラクトン変性化合物;オリゴエステル等が挙げられる。 In the compound (b), “a compound in which (meth) acrylic acid is reacted (p-1) times with a compound (b-1) having p (p is an integer of 3 or more) hydroxyl groups in the molecule” There are no particular limitations on the “compound (b-1) having three or more hydroxyl groups in the molecule”, and examples thereof include glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, tetramethylolethane, diglycerin and ditriol. Methylol ethane, ditrimethylol propane, dipentaerythritol, ditetramethylol ethane; ethylene oxide-modified compounds thereof; propylene oxide-modified compounds thereof; ethylene oxide-modified compounds of isocyanuric acid, propylene oxide-modified compounds, ε-caprolactone-modified compounds; Ester etc. .
 化合物(b-1)における水酸基の数は、得られるウレタン(メタ)アクリレート中の官能基の数を多くできる点で、4個以上が特に好ましく、6個以上が更に好ましい。具体的には例えば、ジグリセリン、ジトリメチロールエタン、ジトリメチロールプロパン、ジペンタエリスリトール、ジテトラメチロールエタン等が特に好ましい。 The number of hydroxyl groups in the compound (b-1) is particularly preferably 4 or more, and more preferably 6 or more, in that the number of functional groups in the resulting urethane (meth) acrylate can be increased. Specifically, for example, diglycerin, ditrimethylolethane, ditrimethylolpropane, dipentaerythritol, ditetramethylolethane and the like are particularly preferable.
 ジグリセリンを例にとると、ジグリセリンの4個の水酸基のうちの3個の水酸基に(メタ)アクリル酸が反応することによって、分子中に1個の水酸基と2個以上の(この場合は3個の)(メタ)アクリル基を有する化合物(b)が合成される。更に、多価イソシアネート化合物(a)が、イソホロンジイソシアネートである場合を例にとると、イソホロンジイソシアネートの2個のイソシアネート基に、上記水酸基を1個と2個以上の(メタ)アクリル基を有する化合物(b)が2個反応し、「4官能以上のウレタン(メタ)アクリレート」が合成される。このとき、分子中に1個の水酸基と3個の(メタ)アクリル基を有する化合物(b)がイソホロンジイソシアネートに反応すれば、結果として、分子中に(メタ)アクリル基を6個有する「4官能以上のウレタン(メタ)アクリレート」が合成される。 In the case of diglycerin, for example, (meth) acrylic acid is reacted with three hydroxyl groups of four hydroxyl groups of diglycerin to give one hydroxyl group and two or more hydroxyl groups (in this case) A compound (b) having three (meth) acrylic groups is synthesized. Furthermore, when the case where polyvalent isocyanate compound (a) is isophorone diisocyanate is taken as an example, the compound which has one said hydroxyl group and two or more (meth) acryl groups in two isocyanate groups of isophorone diisocyanate. Two (b) react with each other to synthesize “a tetrafunctional or higher urethane (meth) acrylate”. At this time, if the compound (b) having one hydroxyl group and three (meth) acrylic groups in the molecule reacts with isophorone diisocyanate, as a result, it has six (meth) acrylic groups in the molecule [4] A functional or higher urethane (meth) acrylate "is synthesized.
 2官能の(メタ)アクリレートとは、(メタ)アクリロイル基を1分子中に2個有する多官能アクリレートを意味する。
 2官能の(メタ)アクリレートの具体例としては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等の直鎖アルカンジオールジ(メタ)アクリレート;
 エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート(ポリエチレングリコール#200ジ(メタ)アクリレート、ポリエチレングリコール#300ジ(メタ)アクリレート、ポリエチレングリコール#400ジ(メタ)アクリレート、ポリエチレングリコール#600ジ(メタ)アクリレート等)、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール#400ジ(メタ)アクリレート、ポリプロピレングリコール#700ジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;
 ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、ペンタエリスリトールジ(メタ)アクリレートモノベンゾエート等の3価以上のアルコールの部分(メタ)アクリル酸エステル;
 ビスフェノールAジ(メタ)アクリレート、テトラブロモビスフェノールAジ(メタ)アクリレート、ビスフェノールSジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、水素化ビスフェノールAジ(メタ)アクリレート、EO変性水素化ビスフェノールAジ(メタ)アクリレート、PO変性水素化ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、PO変性ビスフェノールFジ(メタ)アクリレート、EO変性テトラブロモビスフェノールAジ(メタ)アクリレート等のビスフェノール系ジ(メタ)アクリレート;
 ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールPO変性ジ(メタ)アクリレート;ヒドロキシピバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルのカプロラクトン付加物ジ(メタ)アクリレート;1,6-ヘキサンジオールビス(2-ヒドロキシ-3-アクリロイルオキシプロピル)エーテル;トリシクロデカンジメチロールジ(メタ)アクリレート、イソシアヌル酸EO変性ジ(メタ)アクリレート;プロピレンジ(メタ)アクリレート;フタル酸ジ(メタ)アクリレート;トリシクロデカンメタノールジ(メタ)アクリレート等のジ(メタ)アクリレート等が挙げられる。これらの2官能の(メタ)アクリレートは、1種単独で、又は2種以上を組み合わせて用いることができる。
 2官能(メタ)アクリレートの含有量は、活性エネルギー線硬化性樹脂組成物の全硬化性成分に対して、10質量%以上60質量%以下であることが好ましく、30質量%以上45質量%以下であることがより好ましい。
The bifunctional (meth) acrylate means a polyfunctional acrylate having two (meth) acryloyl groups in one molecule.
Specific examples of the difunctional (meth) acrylate include, for example, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate Etc. straight chain alkanediol di (meth) acrylates;
Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate (polyethylene glycol # 200 di (meth) acrylate) Polyethylene glycol # 300 di (meth) acrylate, polyethylene glycol # 400 di (meth) acrylate, polyethylene glycol # 600 di (meth) acrylate etc., dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate , Tetrapropylene glycol di (meth) acrylate, polypropylene glycol # 400 di (meth) acrylate, polypropylene glyco Alkylene glycol di (meth) acrylates such as Le # 700 di (meth) acrylate;
Partial (meth) acrylic acid esters of trihydric or higher alcohols such as pentaerythritol di (meth) acrylate, pentaerythritol di (meth) acrylate monostearate and pentaerythritol di (meth) acrylate monobenzoate;
Bisphenol A di (meth) acrylate, tetrabromobisphenol A di (meth) acrylate, bisphenol S di (meth) acrylate, EO modified bisphenol A di (meth) acrylate, PO modified bisphenol A di (meth) acrylate, hydrogenated bisphenol A Di (meth) acrylate, EO modified hydrogenated bisphenol A di (meth) acrylate, PO modified hydrogenated bisphenol A di (meth) acrylate, bisphenol F di (meth) acrylate, EO modified bisphenol F di (meth) acrylate, PO modified Bisphenol-based di (meth) acrylates such as bisphenol F di (meth) acrylate and EO-modified tetrabromobisphenol A di (meth) acrylate;
Neopentyl glycol di (meth) acrylate, neopentyl glycol PO modified di (meth) acrylate; hydroxypivalic acid neopentyl glycol ester di (meth) acrylate, caprolactone adduct of hydroxypivalic acid neopentyl glycol ester di (meth) acrylate; 1,6-Hexanediol bis (2-hydroxy-3-acryloyloxypropyl) ether; tricyclodecane dimethylol di (meth) acrylate, isocyanuric acid EO modified di (meth) acrylate; propylene di (meth) acrylate; phthalic acid Di (meth) acrylate; di (meth) acrylates such as tricyclodecanemethanol di (meth) acrylate and the like can be mentioned. These difunctional (meth) acrylates can be used alone or in combination of two or more.
The content of the bifunctional (meth) acrylate is preferably 10% by mass or more and 60% by mass or less, and 30% by mass or more and 45% by mass or less based on all the curable components of the active energy ray curable resin composition. It is more preferable that
 活性エネルギー線硬化性樹脂組成物の硬化物が適度な硬さを有する点から、前記2官能の(メタ)アクリレートの分子量(Mw)は、好適には100以上5,000以下であり、より好適には100以上4,000以下、更に好適には100以上2,000以下である。前記2官能の(メタ)アクリレートの分子量(Mw)が100以上の場合には、前記硬化物が適度な柔軟性を有する結果、得られる回折光学素子の耐スティッキング性がより良好となる。また、前記2官能の(メタ)アクリレートの分子量(Mw)が5,000以下の場合には、前記硬化物が適度な硬さを維持できる結果、得られる回折光学素子においてパターンもげが生じ難い。 The molecular weight (Mw) of the bifunctional (meth) acrylate is preferably 100 or more and 5,000 or less, from the viewpoint that the cured product of the active energy ray curable resin composition has an appropriate hardness, and is more preferable. 100 or more and 4,000 or less, more preferably 100 or more and 2,000 or less. When the molecular weight (Mw) of the bifunctional (meth) acrylate is 100 or more, as a result of the cured product having appropriate flexibility, the sticking resistance of the resulting diffractive optical element becomes better. In addition, when the molecular weight (Mw) of the bifunctional (meth) acrylate is 5,000 or less, as a result of the cured product being able to maintain an appropriate hardness, it is difficult to form a pattern in the obtained diffractive optical element.
 2官能の(メタ)アクリレートは、2官能のウレタン(メタ)アクリレートを含んでいてもよい。2官能のウレタン(メタ)アクリレートの含有量は、活性エネルギー線硬化性樹脂組成物の全硬化性成分に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましく、0質量%であることが特に好ましい。
 2官能の(メタ)アクリレートは、2官能のウレタン(メタ)アクリレート以外の2官能の(メタ)アクリレートを含んでいてもよい。2官能のウレタン(メタ)アクリレート以外の2官能の(メタ)アクリレートの含有量は、活性エネルギー線硬化性樹脂組成物の全硬化性成分に対して、10質量%以上50質量%以下であることが好ましく、20質量%以上45質量%以下であることがより好ましい。
The difunctional (meth) acrylate may contain a difunctional urethane (meth) acrylate. The content of the bifunctional urethane (meth) acrylate is preferably 30% by mass or less, and more preferably 20% by mass or less, based on all the curable components of the active energy ray curable resin composition. The content is more preferably 10% by mass or less, and particularly preferably 0% by mass.
The difunctional (meth) acrylate may contain a difunctional (meth) acrylate other than the difunctional urethane (meth) acrylate. The content of the bifunctional (meth) acrylate other than the bifunctional urethane (meth) acrylate is 10% by mass or more and 50% by mass or less with respect to the entire curable component of the active energy ray curable resin composition Is preferable, and 20 to 45% by mass is more preferable.
 2官能のウレタン(メタ)アクリレートは、分子の両末端にそれぞれ1個ずつの(メタ)アクリル基を有する2官能のウレタン(メタ)アクリレートであることが好ましい。
 かかる2官能のウレタン(メタ)アクリレートの化学構造には特に限定はなく、その重量平均分子量は、1,000以上30,000以下であることが好ましく、2,000以上5,000以下であることが特に好ましい。分子量が小さすぎると、柔軟性が低下する場合があり、分子量が大きすぎると、貯蔵弾性率の低下をまねく場合がある。
The bifunctional urethane (meth) acrylate is preferably a bifunctional urethane (meth) acrylate having one (meth) acrylic group at each end of the molecule.
There is no particular limitation on the chemical structure of the bifunctional urethane (meth) acrylate, and the weight average molecular weight is preferably 1,000 to 30,000, and 2,000 to 5,000. Is particularly preferred. If the molecular weight is too low, the flexibility may decrease, and if the molecular weight is too high, it may lead to a decrease in storage modulus.
 かかる2官能ウレタン(メタ)アクリレートとしては特に限定はないが、以下のものが特に好ましい。すなわち、両末端が水酸基、アミノ基等のポリマー若しくはオリゴマー(c)の両末端に、ジイソシアネート化合物(d)を反応させ、得られた「両末端にイソシアネート基を有するポリマー若しくはオリゴマー」に、更に、分子中に水酸基と(メタ)アクリル基を有する化合物(e)を、その両末端に反応させたものが特に好ましい。 The bifunctional urethane (meth) acrylate is not particularly limited, but the following are particularly preferable. That is, the diisocyanate compound (d) is reacted with both ends of the polymer or oligomer (c) such as hydroxyl group and amino group at both ends, and the obtained “polymer or oligomer having isocyanate group at both ends” is further added It is particularly preferable to react the compound (e) having a hydroxyl group and a (meth) acrylic group in the molecule at its both terminals.
 両末端が水酸基のポリマー若しくはオリゴマー(c)としては特に限定はないが、例えば、エステルオリゴマー、エステルポリマー、ウレタンオリゴマー、ウレタンポリマー、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。このうち、特に好ましくは、エステルオリゴマーやエステルポリマーが挙げられる。かかるオリゴマーやポリマーの分子量は特に限定はないが、重量平均分子量として、1,000~5,000の範囲が硬化性の点で好ましく、2,000~3,000が特に好ましい。 The polymer or oligomer (c) having hydroxyl groups at both ends is not particularly limited, and examples thereof include ester oligomers, ester polymers, urethane oligomers, urethane polymers, polyethylene glycol, polypropylene glycol and the like. Among these, particularly preferred are ester oligomers and ester polymers. The molecular weight of such an oligomer or polymer is not particularly limited, but a weight average molecular weight of 1,000 to 5,000 is preferable in view of curability, and 2,000 to 3,000 is particularly preferable.
 上記エステルのジオール成分としては特に限定はないが、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、2,2’-チオジエタノール等が挙げられる。特に好ましくは、1,4-ブタンジオール、1,6-ヘキサンジオール等である。 The diol component of the above-mentioned ester is not particularly limited, but ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, 2,2'-thiodiethanol Etc. Particularly preferred are 1,4-butanediol, 1,6-hexanediol and the like.
 上記エステルのジカルボン酸成分としては特に限定はないが、蓚酸、コハク酸、マレイン酸、アジピン酸等のアルキレンジカルボン酸;テレフタル酸、フタル酸等の芳香族ジカルボン酸等が挙げられる。特に好ましくは、アジピン酸、テレフタル酸等である。 The dicarboxylic acid component of the ester is not particularly limited, and examples thereof include alkylene dicarboxylic acids such as oxalic acid, succinic acid, maleic acid and adipic acid; and aromatic dicarboxylic acids such as terephthalic acid and phthalic acid. Particularly preferred are adipic acid and terephthalic acid.
 かかるポリマー又はオリゴマーの両末端に反応させるジイソシアネート化合物(d)としては、特に限定はなく、上記の多価イソシアネート化合物(a)の項目で記載したうちのジイソシアネート化合物と同様のものが使用できる。特に好ましくは、イソホロンジイソシアネート等が挙げられる。 There is no particular limitation on the diisocyanate compound (d) to be reacted at both ends of the polymer or oligomer, and the same diisocyanate compounds as those described in the item of the polyvalent isocyanate compound (a) above can be used. Particularly preferred is isophorone diisocyanate and the like.
 更に、上記で得られた両末端にイソシアネート基を有するポリマー若しくはオリゴマーの両末端に反応させる、「分子中に水酸基と(メタ)アクリル基を有する化合物(e)」としては特に限定はないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、エチレングリコールモノ(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート等が挙げられる。 Furthermore, the “compound (e) having a hydroxyl group and a (meth) acrylic group in the molecule, which is reacted at both ends of the polymer or oligomer having an isocyanate group at both ends obtained above, is not particularly limited, For example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, ethylene glycol mono (meth) acrylate, propylene glycol mono (meth) acrylate and the like can be mentioned.
 活性エネルギー線硬化性樹脂組成物は、4官能以上の(メタ)アクリレート、2官能の(メタ)アクリレート以外にも、単官能の(メタ)アクリレート、及び/又は3官能の(メタ)アクリレートを含んでいてもよい。単官能の(メタ)アクリレートとは、(メタ)アクリロイル基を1分子中に1個有するアクリレートを意味する。3官能の(メタ)アクリレートとは、(メタ)アクリロイル基を1分子中に3個有する多官能アクリレートを意味する。
 しかし、単官能の(メタ)アクリレート及び3官能の(メタ)アクリレートの含有量は、少なければ少ないほどよい。具体的には、単官能の(メタ)アクリレート及び3官能の(メタ)アクリレートの総含有量は、活性エネルギー線硬化性樹脂組成物の全硬化性成分に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、0質量%であることがさらに好ましい。
 単官能の(メタ)アクリレートとしては、例えば、フェノキシエチルアクリレート、トリメチルシクロヘキサノールアクリレート、イソボルニルアクリレート、フェニルフェノールアクリレート、ノニルフェノールアクリレート等が挙げられる。
 3官能の(メタ)アクリレートとしては、例えば、グリセリンPO変性トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、トリメチロールプロパンPO変性トリ(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート、イソシアヌル酸EO変性ε-カプロラクトン変性トリ(メタ)アクリレート、1,3,5-トリアクリロイルヘキサヒドロ-s-トリアジン、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレートトリプロピオネート等が挙げられる。
The active energy ray-curable resin composition contains monofunctional (meth) acrylate and / or trifunctional (meth) acrylate besides tetrafunctional (meth) acrylate and bifunctional (meth) acrylate. It may be. The monofunctional (meth) acrylate means an acrylate having one (meth) acryloyl group in one molecule. The trifunctional (meth) acrylate means a polyfunctional acrylate having three (meth) acryloyl groups in one molecule.
However, the lower the content of monofunctional (meth) acrylate and trifunctional (meth) acrylate, the better. Specifically, the total content of monofunctional (meth) acrylate and trifunctional (meth) acrylate is 10% by mass or less with respect to the total curable component of the active energy ray curable resin composition. Is preferable, 5% by mass or less is more preferable, and 0% by mass is more preferable.
Examples of monofunctional (meth) acrylates include phenoxyethyl acrylate, trimethylcyclohexanol acrylate, isobornyl acrylate, phenylphenol acrylate, nonylphenol acrylate and the like.
Examples of trifunctional (meth) acrylates include glycerin PO-modified tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-modified tri (meth) acrylate, trimethylolpropane PO-modified tri (meth) Acrylate, EO modified triisocyanurate (meth) acrylate, EO modified isocyanurate E-caprolactone modified tri (meth) acrylate, 1,3,5-triacryloylhexahydro-s-triazine, pentaerythritol tri (meth) acrylate, di- Pentaerythritol tri (meth) acrylate tripropionate and the like can be mentioned.
 活性エネルギー線硬化性樹脂組成物中の硬化性成分は、その分子量の大小に依存する架橋密度が、湿熱条件下における貯蔵弾性率を決定する一因となる場合がある。 As for the curable component in the active energy ray-curable resin composition, the crosslinking density depending on the magnitude of the molecular weight may contribute to the determination of the storage elastic modulus under wet heat conditions.
 アクリル系樹脂組成物は、必要に応じて1種類または2種類以上の光重合開始剤を含有してもよい。当該光重合開始剤の含有量は、通常、アクリル系樹脂組成物の全固形分に対して0.2~15質量%であり、0.3~13質量%であることが好ましく、0.5~10質量%であることが更に好ましい。
 光重合開始剤としては特に限定はないが、ラジカル重合に対して従来用いられている公知のもの、例えば、アセトフェノン類、ベンゾフェノン類、アルキルアミノベンゾフェノン類、ベンジル類、ベンゾイン類、ベンゾインエーテル類、ベンジルジメチルアセタール類、ベンゾイルベンゾエート類、α-アシロキシムエステル類等のアリールケトン系光重合開始剤;スルフィド類、チオキサントン類などの含硫黄系光重合開始剤;アシルジアリールホスフィンオキシド等のアシルホスフィンオキシド類;アントラキノン類等が挙げられる。また、光増感剤を併用させることもできる。
The acrylic resin composition may contain one or more photopolymerization initiators, if necessary. The content of the photopolymerization initiator is usually 0.2 to 15% by mass, preferably 0.3 to 13% by mass, based on the total solid content of the acrylic resin composition. It is more preferable that the content be 10% by mass.
The photopolymerization initiator is not particularly limited, but known ones conventionally used for radical polymerization, such as acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers, benzyl Aryl ketone photopolymerization initiators such as dimethyl acetals, benzoyl benzoates, α-acyloxime esters; sulfur-containing photo polymerization initiators such as sulfides and thioxanthones; acyl phosphine oxides such as acyl diaryl phosphine oxides; Anthraquinones etc. are mentioned. Moreover, a photosensitizer can also be used together.
 アクリル系樹脂組成物は、離型剤(離型性を有する材料)を含有することが好ましい。離型剤は、アクリル系樹脂組成物の硬化物の離型性を向上させることにより、当該硬化物のパターンもげを抑えることができる。それと共に、離型剤の種類を適切に選択することによって、前記硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)を0.90×10Pa以上2.6×10Pa以下の範囲に調整することができ、当該硬化物に耐スティッキング性を付与することもできる。すなわち、離型剤は、前記硬化物におけるパターンもげの抑制とスティッキング防止の両面において、より良い効果をもたらす。
 また、アクリル系樹脂組成物の硬化物を形成する段階においては、離型剤の添加により、離型時における樹脂詰まりによる金型寿命の低下を防ぐことができる。
 離型剤は、回折光学素子の製造に通常用いられるものであれば、特に限定されない。離型剤は、必要に応じてシリコーン系、フッ素系、リン酸系などの公知の離型剤から適宜選定して使用することができる。またこれら離型剤はアクリル系樹脂組成物の架橋構造に固定されるものや遊離した状態で存在するものを用途に応じて選定できる。
 中でも、離型剤としては、非反応性シリコーン、反応性シリコーン、リン酸系離型剤を使用することが好ましく、これらの中では非反応性シリコーンがより好ましい。
 非反応性シリコーンとしては、KF-352A、KF-354L、KF-4003、KF-412、KF-413、KF-414、KF-415、KF-4701、KF-4917、KF-53、KF-54、KF-6004、KF-643、KF-7235B、X-22-1877、X-22-2516、X-22-7322、PC-88A(以上商品名、信越シリコーン社製)、TEGO Glide 100、TEGO Glide 410、TEGO Glide 432、TEGO Glide 435、TEGO Glide 440、TEGO Glide 450、TEGO Glide ZG400(以上商品名、エボニックジャパン社製)等が挙げられる。
 反応性シリコーンとしては、KF-2012、KF-393、KF-684、KF-8002、KF-8004、KF-8005、KF-8021、KF-860、KF-861、KF-865、KF-867、KF-868、KF-869、KF-869、KF-877、KF-880、KF-889、KF-99、KF-9901、X-22-170、X-22-173、X-22-174、X-22-176、X-22-2404、X-22-2426、X-22-3939A(以上商品名、信越シリコーン社製)、TEGO Rad 2010、TEGO Rad 2011、TEGO Rad 2100、TEGO Rad 2200N、TEGO Rad 2250、TEGO Rad 2300、TEGO Rad 2500、TEGO Rad 2650、TEGO Rad 2700、TEGO Rad 2800(以上商品名、エボニックジャパン社製)等が挙げられる。
The acrylic resin composition preferably contains a release agent (material having releasability). The mold release agent can suppress the pattern of the cured product by improving the release property of the cured product of the acrylic resin composition. At the same time, the storage elastic modulus (E ') at 60 ° C. and 95% relative humidity of the cured product is 0.90 × 10 9 Pa or more 2.6 × 10 9 by appropriately selecting the type of the release agent. It can be adjusted to the range of Pa or less, and the cured product can also be provided with sticking resistance. That is, the release agent brings about a better effect in both of the suppression of the pattern scum and the sticking prevention in the cured product.
In addition, at the stage of forming the cured product of the acrylic resin composition, the addition of the release agent can prevent the reduction of the mold life due to the resin clogging at the time of release.
The release agent is not particularly limited as long as it is usually used for producing a diffractive optical element. The mold release agent can be appropriately selected from known mold release agents such as silicone type, fluorine type, and phosphoric acid type as needed, and used. Further, as these releasing agents, those fixed to the cross-linked structure of the acrylic resin composition and those existing in a free state can be selected according to the application.
Among them, as the release agent, non-reactive silicone, reactive silicone, and phosphoric acid-based release agent are preferably used, and among these, non-reactive silicone is more preferable.
As non-reactive silicones, KF-352A, KF-354L, KF-4003, KF-412, KF-413, KF-414, KF-415, KF-4701, KF-4917, KF-53, KF-54 , KF-6004, KF-643, KF-7235B, X-22-1877, X-22-2516, X-22-7322, PC-88A (trade name, manufactured by Shin-Etsu Silicone Co., Ltd.), TEGO Glide 100, TEGO Glide 410, TEGO Glide 432, TEGO Glide 435, TEGO Glide 440, TEGO Glide 450, TEGO Glide ZG400 (trade name, manufactured by Evonik Japan) and the like.
As reactive silicones, KF-2012, KF-393, KF-684, KF-8002, KF-8004, KF-8021, KF-8021, KF-860, KF-861, KF-865, KF-867, KF-868, KF-869, KF-869, KF-877, KF-880, KF-89, KF-99, KF-9901, X-22-170, X-22-173, X-22-174, X-22-176, X-22-2404, X-22-2426, X-22-3939A (all trade names, manufactured by Shin-Etsu Silicone Co., Ltd.), TEGO Rad 2010, TEGO Rad 2011, TEGO Rad 2100, TEGO Rad 2200 N, TEGO Rad 2250, TEGO Rad 2300, TEGO Rad 2500, TEGO Rad 2 650, TEGO Rad 2700, TEGO Rad 2800 (trade names, manufactured by Evonik Japan Co., Ltd.) and the like.
 アクリル系樹脂組成物は、少なくとも上記活性エネルギー線硬化性成分を含有していればよく、必要に応じて、更に他の成分を含有してもよい。
 他の成分としては、帯電防止剤や、紫外線吸収剤、赤外線吸収剤、光安定化剤、酸化防止剤などを複数添加することができる。帯電防止剤は加工プロセスや使用時のほこり付着防止に有効であり、紫外線吸収剤、赤外線吸収剤、光安定化剤、酸化防止剤は耐久性向上に有効である。光を吸収する材料を添加する場合は、回折光学素子の対象波長に影響を与えないよう配慮が必要である。耐熱性を改善させる目的でシルセスキオキサン等の無機材料との複合化なども有効である。
 また、アクリル系樹脂組成物は環境への配慮から溶剤を実質的に含有しないことが好ましいが、基材への密着や粘度調整、面質改善などを考慮して溶剤を含有するものであってもよい。溶剤を含有する場合は基材ないし金型に樹脂を塗布後、溶剤を乾燥させた後に賦型する。
 さらに、アクリル系樹脂組成物は、アクリル樹脂以外の樹脂を含有していてもよい。アクリル系樹脂組成物は、例えば、アクリル樹脂以外のエチレン性不飽和二重結合をもつ化合物、具体的には、トリエチレングリコールジビニルエーテル、アクリル酸2-(2-ビニロキシエトキシ)エチル等のビニル系化合物等を含有していてもよい。
The acrylic resin composition only needs to contain at least the above-mentioned active energy ray curable component, and may further contain other components as necessary.
As other components, a plurality of antistatic agents, ultraviolet light absorbers, infrared light absorbers, light stabilizers, antioxidants and the like can be added. Antistatic agents are effective in preventing dust deposition during processing and use, and ultraviolet absorbers, infrared absorbers, light stabilizers and antioxidants are effective in improving durability. In the case of adding a material that absorbs light, it is necessary to take care not to affect the target wavelength of the diffractive optical element. For the purpose of improving heat resistance, compounding with an inorganic material such as silsesquioxane is also effective.
In addition, although it is preferable that the acrylic resin composition does not substantially contain a solvent in consideration of the environment, it contains a solvent in consideration of adhesion to a substrate, adjustment of viscosity, improvement of surface quality, etc. It is also good. When the solvent is contained, the resin is applied to the substrate or the mold, and the solvent is dried and then shaped.
Furthermore, the acrylic resin composition may contain a resin other than the acrylic resin. The acrylic resin composition is, for example, a compound having an ethylenically unsaturated double bond other than an acrylic resin, specifically, vinyl such as triethylene glycol divinyl ether, 2- (2-vinyloxyethoxy) ethyl acrylate, etc. You may contain a system compound etc.
 本開示の回折光学素子は、優れたリフロー耐性を有することが好ましい。ここで、「優れたリフロー耐性」とは、加熱(例えば、260℃、1.5分間)前後の質量変化率が2%以下、かつ当該加熱前後の透過率変動が1%以下であることを意味する。
 後述する「2.回折光学素子の製造方法」の「(5)その他の工程」において示すように、回折光学素子を用いて照明装置を製造する場合には、回折光学素子を含む仮組み立て体をリフロー炉に入れ、高温条件下で加熱する工程(リフロー工程)が実施されることがある。このリフロー工程により、例えばハンダ等により、光源やそれを囲む枠体を実装基板に電気的に接続することができ、照明装置を効率よく製造することができる。
 しかし、リフロー工程においては、照明装置を構成する材料に対し瞬間的に200℃以上の高い温度が付与されるため、当該材料が溶解したり、昇華したりするおそれがある。特に、回折格子部中の高屈折率凸部は微細構造を形作っているため、当該高屈折率凸部を構成するアクリル系樹脂組成物の硬化物が溶解しやすかったり、昇華しやすかったりする場合には、当該高屈折率凸部の形状が変形する結果、回折光学素子において透過率変動が生じるおそれがある。また、たとえ当該高屈折率凸部の形状が維持されたとしても、アクリル系樹脂組成物の硬化物が分解する場合には、当該高屈折率凸部の質量が減るおそれもある。
 したがって、本開示の回折光学素子は、優れたリフロー耐性を有することが好ましい。優れたリフロー耐性を有する回折光学素子は、リフロー工程において高屈折率凸部の形状が損なわれにくいため、賦形性に優れるとも言える。
 優れたリフロー耐性を有する回折光学素子としては、例えば、4官能以上の(メタ)アクリレートを含むアクリル系樹脂組成物の硬化物が、高屈折率凸部の形成に使用されている回折光学素子が挙げられる。
The diffractive optical element of the present disclosure preferably has excellent reflow resistance. Here, “excellent reflow resistance” means that the mass change rate before and after heating (for example, 260 ° C. for 1.5 minutes) is 2% or less, and the transmittance fluctuation before and after the heating is 1% or less. means.
As shown in “(5) Other steps” of “2. Method of manufacturing diffractive optical element” described later, in the case of manufacturing an illumination device using the diffractive optical element, a temporary assembly including the diffractive optical element is used. The process (reflow process) put into a reflow oven and heated on high temperature conditions may be implemented. By this reflow process, the light source and the frame surrounding the same can be electrically connected to the mounting substrate by, for example, solder or the like, and the lighting device can be efficiently manufactured.
However, in the reflow process, since a high temperature of 200 ° C. or higher is instantaneously applied to the material constituting the lighting device, the material may be dissolved or sublimated. In particular, when the high refractive index convex portion in the diffraction grating portion forms a fine structure, in the case where the cured product of the acrylic resin composition constituting the high refractive index convex portion easily dissolves or sublimes easily As a result of the deformation of the shape of the high refractive index convex portion, there is a possibility that the transmittance fluctuation may occur in the diffractive optical element. Moreover, even if the shape of the high refractive index convex portion is maintained, when the cured product of the acrylic resin composition is decomposed, the mass of the high refractive index convex portion may be reduced.
Therefore, the diffractive optical element of the present disclosure preferably has excellent reflow resistance. The diffractive optical element having excellent reflow resistance can be said to be excellent in formability because the shape of the high refractive index convex portion is not easily damaged in the reflow step.
As a diffractive optical element having excellent reflow resistance, for example, a diffractive optical element in which a cured product of an acrylic resin composition containing a tetrafunctional or higher functional (meth) acrylate is used to form a high refractive index convex portion is It can be mentioned.
 質量変化率及び透過率変動の算出方法は、以下の通りである。
 (回折光学素子の質量変化率の算出方法)
 リフロー前、及びリフロー後における回折光学素子の質量を測定し、下記式Iから質量変化率aを算出する。
  式I  a={(M-M)/M}×100
(上記式I中、aは質量変化率(%)、Mはリフロー前の回折光学素子の質量(mg)、Mはリフロー後の回折光学素子の質量(mg)をそれぞれ示す。)
 (回折光学素子の透過率変動の算出方法)
 リフロー前、及びリフロー後における回折光学素子の透過率(%)を測定する。透過率は、紫外可視近赤外(UV-Vis-NIR)分光光度計(例えば、島津製作所社製、UV-3150)等を用いて測定する。この装置より、850nmの波長の回折光学素子の透明基材及び回折格子部の透過率を測定する。
 リフロー前における回折光学素子の透過率と、リフロー後における回折光学素子の透過率との差の絶対値を、その回折光学素子の透過率変動(%)とする。
The calculation method of mass change rate and transmittance fluctuation is as follows.
(Calculation method of mass change rate of diffractive optical element)
The mass of the diffractive optical element before and after the reflow is measured, and the mass change rate a is calculated from the following formula I.
Formula I a = {(M 0 -M 1 ) / M 0 } × 100
(In the above formula I, a represents a mass change rate (%), M 0 represents a mass of the diffractive optical element before reflow (mg), and M 1 represents a mass of the diffractive optical element after reflow (mg).)
(Method of calculating transmittance fluctuation of diffractive optical element)
The transmittance (%) of the diffractive optical element before and after reflow is measured. The transmittance is measured using an ultraviolet visible near infrared (UV-Vis-NIR) spectrophotometer (for example, UV-3150 manufactured by Shimadzu Corporation). The transmittance of the transparent base and the diffraction grating portion of the diffractive optical element having a wavelength of 850 nm is measured by this device.
The absolute value of the difference between the transmittance of the diffractive optical element before reflow and the transmittance of the diffractive optical element after reflow is taken as the transmittance fluctuation (%) of the diffractive optical element.
 高屈折率凸部を構成するアクリル系樹脂組成物の硬化物の屈折率は、特に限定されないが、1.4~2.0であることが好ましく、1.45~1.8であることがより好ましい。本開示によれば、アスペクト比が2以上の形状を安定して形成することができ、酸化ケイ素などと比較して屈折率の低い樹脂であっても良好な回折光学素子を得ることができる。
 また、本開示において、高屈折率凸部を構成する樹脂組成物の硬化物の透過率は、特に限定されないが、赤外線透過率(波長850nm)が90%以上であることが好ましく、92%以上であることがより好ましい。
The refractive index of the cured product of the acrylic resin composition constituting the high refractive index convex portion is not particularly limited, but is preferably 1.4 to 2.0 and 1.45 to 1.8. More preferable. According to the present disclosure, a shape having an aspect ratio of 2 or more can be stably formed, and a favorable diffractive optical element can be obtained even with a resin having a lower refractive index than silicon oxide and the like.
Further, in the present disclosure, the transmittance of the cured product of the resin composition constituting the high refractive index convex portion is not particularly limited, but the infrared transmittance (wavelength 850 nm) is preferably 90% or more, 92% or more It is more preferable that
 スティッキングを抑制する点から、アクリル系樹脂組成物の硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)に対する損失弾性率(E”)の比(tanδ(=E”/E’))は、好適には0.12以下であり、より好適には0.11以下であり、さらに好適には0.10以下である。湿熱条件下における前記比(tanδ(=E”/E’))が0.12以下であることにより、アクリル系樹脂組成物の硬化物において粘性の寄与よりも弾性の寄与の方が高くなり、当該硬化物が弾性体としての性質をより強く示すため、回折光学素子が湿熱条件下において優れた耐スティッキング性を有する。
 なお、アクリル系樹脂組成物の硬化物の60℃かつ相対湿度95%における損失弾性率(E”)は、貯蔵弾性率(E’)と同様の方法により測定することができる。
From the viewpoint of suppressing sticking, the ratio (tan δ (= E ′ ′) / E ′) of loss elastic modulus (E ′ ′) to storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of a cured product of acrylic resin composition ) Is preferably 0.12 or less, more preferably 0.11 or less, and still more preferably 0.10 or less. When the ratio (tan δ (= E ′ ′ / E ′)) under wet heat conditions is 0.12 or less, the contribution of elasticity is higher than the contribution of viscosity in the cured product of the acrylic resin composition, The diffractive optical element has excellent sticking resistance under wet heat conditions because the cured product exhibits the property as an elastic body more strongly.
The loss modulus (E ′ ′) at 60 ° C. and 95% relative humidity of the cured product of the acrylic resin composition can be measured by the same method as the storage modulus (E ′).
 アクリル系樹脂組成物の硬化物の復元率が、60%以上であることが好ましい。このような復元率を有する硬化物は、より優れた耐スティッキング性を有するためである。
 前記復元率が60%以上となるという点から、アクリル系樹脂組成物中のアクリル系樹脂は、ウレタン結合を含むことが好ましく、4官能以上のウレタン(メタ)アクリレートを含むことがより好ましい。
It is preferable that the restoration rate of the hardened | cured material of an acrylic resin composition is 60% or more. It is because a cured product having such a recovery rate has better resistance to sticking.
The acrylic resin in the acrylic resin composition preferably contains a urethane bond, and more preferably contains a tetrafunctional or higher functional urethane (meth) acrylate, from the viewpoint that the recovery rate is 60% or more.
 復元率の測定条件は以下の通りである。
 復元率の測定に供するアクリル系樹脂組成物の硬化物としては、回折光学素子から切り出したテストピースを用いてもよいし、アクリル系樹脂組成物を別途重合させて得られたテストピースを用いてもよい。これらテストピースの調製方法は、上述した通りである。
 JIS Z2244(2003)に準拠し、下記測定条件下にてビッカース硬さ試験を実施する。具体的には、テストピース表面に、下記測定条件で圧子を押し込んで、テストピース表面の復元率(%)を測定する。測定装置には、例えば、フィッシャーインストルメンツ社製PICODENTER HM-500を使用することができる。
<測定条件>
・最大荷重 0.2mN
・荷重速度 0.2mN/10秒
・保持時間 5秒間
・荷重除荷速度 0.2mN/10秒
・圧子 ビッカース圧子
・測定温度 25℃
The measurement conditions of the recovery rate are as follows.
As a cured product of the acrylic resin composition to be used for the measurement of recovery rate, a test piece cut out from a diffractive optical element may be used, or a test piece obtained by separately polymerizing the acrylic resin composition is used. It is also good. The method of preparing these test pieces is as described above.
Based on JIS Z 2244 (2003), the Vickers hardness test is carried out under the following measurement conditions. Specifically, an indenter is pressed into the surface of the test piece under the following measurement conditions, and the recovery rate (%) of the surface of the test piece is measured. As a measuring device, for example, PICODENTER HM-500 manufactured by Fisher Instruments can be used.
<Measurement conditions>
・ Maximum load 0.2mN
・ Loading speed 0.2 mN / 10 sec ・ Holding time 5 seconds ・ Load unloading speed 0.2 mN / 10 sec ・ Indenter Vickers indenter ・ Measuring temperature 25 ° C
 (2)回折光学素子の構造
 図1は、本開示の回折光学素子の一実施形態を模式的に示す平面図である。図2は、図1の回折光学素子の一実施形態を模式的に示す斜視図である。図3は、図2のA-A’切断面の一例を模式的に示す断面図である。
 図3に示すように本開示の回折光学素子10は、透明基材1の一面側に回折格子部2を備える。回折格子部2は、透明基材1の表面から突出する一つ以上の高屈折率凸部2aと、一つ以上の低屈折率部2bとが配置されてなる。図3に示すように、高屈折率凸部2aと低屈折率部2bとをそれぞれ二つ以上用いる場合には、これらが周期的に交互に現れるよう配置される。
 回折格子部2は透明基材1の一方の面側に設けられていてもよく、透明基材1の両面側に設けられていてもよい。
 本開示の回折光学素子は、通常、異なる周期構造を持つ複数の領域(例えば図1の2A~2D領域)を有している。なお、図1の例では部分周期構造2A~2D領域は凹凸の2値(2-level)(例えば図3の回折格子部2等)であるが、光を所望に整形するために領域の形状や深さは適宜設計する必要がある。
(2) Structure of Diffractive Optical Element FIG. 1 is a plan view schematically showing an embodiment of the diffractive optical element of the present disclosure. FIG. 2 is a perspective view schematically showing an embodiment of the diffractive optical element of FIG. FIG. 3 is a cross-sectional view schematically showing an example of a cross section taken along line AA ′ of FIG.
As shown in FIG. 3, the diffractive optical element 10 of the present disclosure includes the diffraction grating portion 2 on one surface side of the transparent substrate 1. The diffraction grating portion 2 includes one or more high refractive index convex portions 2 a protruding from the surface of the transparent substrate 1 and one or more low refractive index portions 2 b. As shown in FIG. 3, when two or more high refractive index convex portions 2 a and two or more low refractive index portions 2 b are used, they are arranged so as to alternately appear periodically.
The diffraction grating portion 2 may be provided on one side of the transparent substrate 1 or may be provided on both sides of the transparent substrate 1.
The diffractive optical element of the present disclosure generally has a plurality of regions (for example, 2A to 2D regions in FIG. 1) having different periodic structures. In the example of FIG. 1, the partial periodic structure 2A to 2D is a binary (2-level) of concavities and convexities (for example, the diffraction grating portion 2 of FIG. 3), but the shape of the region is required to shape the light as desired. The depth must be designed appropriately.
 図4~図7Bは、本開示の回折光学素子に関する他の実施形態を模式的に示す断面図である。
 図4は、透明基材1と回折格子部2との間に基部3が存在する実施形態を示す。高屈折率凸部2aを二つ以上用いる場合には、高屈折率凸部2aは互いに孤立したものであってもよいし(図3)、高屈折率凸部2a同士が基部3を介して連結していてもよい(図4)。後述するように金型を用いて高屈折率凸部2aを形成する際には、図4に示すように、実際には、厚みのごく薄い基部3が透明基材1上に形成される場合があるため、回折光学素子10は、このような基部3を備えていてもよい。
 図5A及び図5Bは、回折格子部2を挟んで透明基材1の反対側に被覆層5を備える実施形態を示す。被覆層5は、回折格子部2と直に接していてもよいし、粘着層(接着層)を介して回折格子部2上に設けられていてもよい。なお、図3に示す実施形態に被覆層5を加えたものが図5Aに示す実施形態に相当し、図4に示す実施形態に被覆層5を加えたものが図5Bに示す実施形態に相当する。
 図6A及び図6Bは、低屈折率部3に低屈折率樹脂7が充填された実施形態を示す。屈折率差を大きくする点からは、低屈折率部が空気であることが好ましい。一方、機械強度に優れる回折光学素子が得られるという点からは、低屈折率部3が低屈折率樹脂7からなることが好ましい。なお、図3に示す実施形態に低屈折率樹脂7を添加したものが図6Aに示す実施形態に相当し、図4に示す実施形態に低屈折率樹脂7を添加したものが図6Bに示す実施形態に相当する。
4 to 7B are cross-sectional views schematically showing other embodiments of the diffractive optical element of the present disclosure.
FIG. 4 shows an embodiment in which a base 3 is present between the transparent substrate 1 and the diffraction grating portion 2. When two or more high refractive index convex portions 2 a are used, the high refractive index convex portions 2 a may be isolated from each other (FIG. 3), or the high refractive index convex portions 2 a may be separated by the base 3. It may be connected (FIG. 4). When the high refractive index convex portion 2a is formed using a mold as described later, actually, a very thin base 3 is formed on the transparent substrate 1, as shown in FIG. Therefore, the diffractive optical element 10 may include such a base 3.
FIGS. 5A and 5B show an embodiment in which the covering layer 5 is provided on the opposite side of the transparent substrate 1 with the diffraction grating portion 2 interposed therebetween. The covering layer 5 may be in direct contact with the diffraction grating portion 2 or may be provided on the diffraction grating portion 2 via an adhesive layer (adhesive layer). Note that adding the covering layer 5 to the embodiment shown in FIG. 3 corresponds to the embodiment shown in FIG. 5A, and adding the covering layer 5 to the embodiment shown in FIG. 4 corresponds to the embodiment shown in FIG. 5B. Do.
6A and 6B show an embodiment in which the low refractive index portion 3 is filled with the low refractive index resin 7. From the viewpoint of increasing the refractive index difference, the low refractive index portion is preferably air. On the other hand, the low refractive index portion 3 is preferably made of the low refractive index resin 7 from the viewpoint that a diffractive optical element excellent in mechanical strength can be obtained. The low refractive index resin 7 added to the embodiment shown in FIG. 3 corresponds to the embodiment shown in FIG. 6A, and the low refractive index resin 7 added to the embodiment shown in FIG. 4 is shown in FIG. 6B. It corresponds to the embodiment.
 図7A及び図7Bは、透明基材1を挟んで回折格子部2の反対側に反射防止層9を備える実施形態を示す。このように反射防止層9を備えることにより、反射光を抑制して光の利用効率を高めることができる。反射防止層9は透明基材1に直に接して設けられていてもよいし、反射防止層9と透明基材1との間に他の部材(ガラス層や粘着層等)が介在していてもよい。なお、図3に示す実施形態にさらに反射防止層9を加えたものが図7Aに示す実施形態に相当し、図4に示す実施形態にさらに反射防止層9を加えたものが図7Bに示す実施形態に相当する。 7A and 7B show an embodiment in which the anti-reflection layer 9 is provided on the opposite side of the diffraction grating portion 2 with the transparent substrate 1 interposed therebetween. By providing the anti-reflection layer 9 in this manner, it is possible to suppress the reflected light and to improve the light utilization efficiency. The antireflective layer 9 may be provided in direct contact with the transparent substrate 1, or another member (such as a glass layer or an adhesive layer) may be interposed between the antireflective layer 9 and the transparent substrate 1. May be The embodiment shown in FIG. 3 with the addition of the antireflection layer 9 corresponds to the embodiment shown in FIG. 7A, and the embodiment shown in FIG. 4 with the addition of the antireflection layer 9 shown in FIG. 7B. It corresponds to the embodiment.
 前記高屈折率凸部は、「幅に対する高さの比」或いは「突起の細長さ」と概念されるアスペクト比が2以上である部分を有することが好ましい。
 アスペクト比が2以上である高屈折率凸部を含む回折光学素子は、従来よりも長波長の赤外線(例えば780nm以上の赤外線)であっても所望の形状の回折光が得られ、且つ、当該回折光において0次光を抑制できる。また後述するように、このようにアスペクト比が比較的大きい回折光学素子は、透過型回折光学素子であることが好ましい。
It is preferable that the high refractive index convex portion have a portion having an aspect ratio of 2 or more, which is conceptualized as “the ratio of height to width” or “the length of the protrusion”.
A diffractive optical element including a high refractive index convex portion having an aspect ratio of 2 or more can obtain diffracted light of a desired shape even if it is an infrared ray (for example, an infrared ray of 780 nm or more) having a longer wavelength than conventional It is possible to suppress zero-order light in diffracted light. Also, as described later, it is preferable that the diffractive optical element having a relatively large aspect ratio as described above is a transmissive diffractive optical element.
 ただし本開示において高屈折率凸部は、2値形状の場合と多段形状の場合がある。例えば、図8Aは2値形状の高屈折率凸部の断面模式図であり、図8Bは多段形状(4-level)の高屈折率凸部の断面模式図である。なお、高屈折率凸部2aの根元41は、透明基材であってもよく、又は基部であってもよい。
 そのため、本開示における高屈折率凸部のアスペクト比は、以下のように定義される。
 先ず、高屈折率凸部が2値形状である場合のアスペクト比は、図8Aに示すように、(高屈折率凸部の高さH)/(高屈折率凸部の高さの半分の高さ(H/2)の位置における高屈折率凸部の幅W)と定義される。ここで、高屈折率凸部の高さHとは、高屈折率凸部の頂上から凹部(隣接する他の高屈折率凸部との間にある谷底の位置)までの高低差を意味する。
 また、高屈折率凸部が多段形状である場合のアスペクト比は、図8Bに示すように、(高屈折率凸部の高さH)/(高屈折率凸部の最小加工幅Wmin)と定義される。ここで、本開示における高屈折率凸部の最小加工幅Wminとは、図8Bに示すように、図中の高さhに相当する部分、つまり、多段形状の高屈折率凸部の中腹にある平坦部のなかで最も高い位置の平坦部から、当該多段形状の高屈折率凸部の頂上までの部分に注目し、この部分の2分の1高さの位置(h/2)における幅と定義される。別の言い方をすれば、図8Bに示すように、高屈折率凸部の最上段の平坦部(高さ:H)を上端とし、高屈折率凸部の上から2段目の平坦部(高さ:H-h)を下端として、下端から半分の高さ(h/2)における幅が、その高屈折率凸部の最小加工幅Wminである。
 したがって、本開示において、2値形状の高屈折率凸部である場合と多段形状の高屈折率凸部である場合の両方を包含する広義の「高屈折率凸部のアスペクト比」とは、当該高屈折率凸部の頂上を上端と定め、当該高屈折率凸部と隣接する他の高屈折率凸部との間にある谷底の位置、又は、高屈折率凸部の頂上から最も近い平坦部の位置のうち高屈折率凸部の頂上から近い方を下端と定めるとき、当該高屈折率凸部の下端から上端に向かって、上端と下端の高低差の半分に当たる高さの位置における当該高屈折率凸部の幅に対する当該高屈折率凸部の高さの比であると定義される。
 アスペクト比をこのように定義することで、回折格子部を光学的に緻密に設計でき、かつ高屈折率凸部の金型からの抜けやすさと高屈折率凸部のアスペクト比との相関性を高くすることができる。
 高屈折率凸部の高さH、幅W及び最小加工幅Wminは、例えば、回折格子部の断面形状のSEM画像から算出できる。
However, in the present disclosure, the high refractive index convex portion may have a binary shape or a multistage shape. For example, FIG. 8A is a schematic cross-sectional view of a binary high-refractive-index convex part, and FIG. 8B is a schematic cross-sectional view of a multi-level (4-level) high-refractive-index convex. The root 41 of the high refractive index convex portion 2a may be a transparent base material or a base.
Therefore, the aspect ratio of the high refractive index convex portion in the present disclosure is defined as follows.
First, as shown in FIG. 8A, the aspect ratio when the high refractive index convex portion has a binary shape is as follows: (height H of high refractive index convex portion) / (half of height of high refractive index convex portion) It is defined as the width W) of the high refractive index convex portion at the position of the height (H / 2). Here, the height H of the high refractive index convex portion means the height difference from the top of the high refractive index convex portion to the concave portion (the position of the valley bottom between the adjacent high refractive index convex portions) .
Further, as shown in FIG. 8B, the aspect ratio when the high refractive index convex portion has a multi-stage shape is as follows: (height H of high refractive index convex portion) / (minimum processing width W min of high refractive index convex portion) It is defined as Here, the minimum processing width W min of the high refractive index convex portion in the present disclosure is a portion corresponding to the height h in the figure as shown in FIG. 8B, that is, the middle belly of the high refractive index convex portion having a multistage shape. Focusing on the portion from the flat portion at the highest position among the flat portions at the top to the top of the high refractive index convex portion of the multistage shape, at the half height position (h / 2) of this portion It is defined as the width. In other words, as shown in FIG. 8B, the uppermost flat portion (height: H) of the high refractive index convex portion is the upper end, and the flat portion of the second stage from the top of the high refractive index convex portion The width at half height (h / 2) from the lower end with the height: H−h) as the lower end is the minimum processing width W min of the high refractive index convex portion.
Therefore, in the present disclosure, the “aspect ratio of the high refractive index convex portion” in a broad sense, which includes both the high refractive index convex portion having the binary shape and the high refractive index convex portion having the multistage shape, The top of the high refractive index convex portion is defined as the upper end, and the position of the valley bottom between the high refractive index convex portion and another high refractive index convex portion adjacent thereto, or the closest from the top of the high refractive index convex portion When the one closer to the top of the high refractive index convex portion among the positions of the flat portion is defined as the lower end, the height from the lower end to the upper end of the high refractive index convex portion corresponds to half the height difference between the upper end and the lower end It is defined as the ratio of the height of the high refractive index convex portion to the width of the high refractive index convex portion.
By defining the aspect ratio in this manner, it is possible to design the diffraction grating portion precisely in an optical manner, and to correlate the correlation between the ease of removal of the high refractive index convex portion from the mold and the aspect ratio of the high refractive index convex portion. It can be raised.
The height H, the width W, and the minimum processing width W min of the high refractive index convex portion can be calculated from, for example, an SEM image of the cross-sectional shape of the diffraction grating portion.
 一般に、回折格子の形状は光の波長、光が透過する材料の屈折率(差)、及び必要とする回折角で決まる。例えば空気中で屈折率1.5の材料を用い、レーザー光を回折光学素子の回折格子部の側の面に垂直入射させる場合、光の波長が長くなるほど最適な回折格子の溝の深さは深くなり、波長850nmの赤外線に対しては850nmの深さが必要となる。即ち本開示の回折光学素子においては、回折格子部の断面形状において、前記高屈折率凸部部は、高さ850nm以上の部分を含むことが好ましく、活性エネルギー線による硬化収縮(例えば10%)を加味すると高さ944nm以上となることがより好ましく、製造誤差(例えば5%)を加味すると高さ994nm程度とすることが好ましい。
 また、回折角30°の方向に光を回折させるためには、高屈折率凸部のアスペクト比は1.1程度、70°の方向に回折させるにはアスペクト比は2.1程度あればよい。
 しかしこれは光を1方向のみに回折させる場合であり、実際にセンサーの光源として使う場合にはある所定の領域に対して均一に回折光を行き渡らせる必要がある。そのためには種々の回折角度、回折方向を持った領域を複雑に組み合わせる必要があるが、その結果としてピッチがλ/4まで狭くなる領域が含まれてしまう。ここで回折格子の最適深さは光の波長と屈折率、level数で決まるため、ピッチが狭くなることでアスペクト比は2.1以上となり、時には4を越えることもある。例えば、850nmのレーザー光に対し、材質を石英とし、長辺±50°×短辺±3.3°に広がる矩形の拡散形状を2-levelで設計する場合には、回折格子の原版の最適深さは994nm、最も細かい形状のピッチを212nmとした場合、最大アスペクト比は4を越える。
 これらの設計は、例えば厳密結合波解析(RCWA)アルゴリズムを用いたGratingMOD(Rsoft社製)や、反復フーリエ変換アルゴリズム(IFTA)を用いたVirtuallab(LightTrans社製)などの各種シミュレーションツールを用いて行うことができる。光源がレーザーでなくLEDの場合には、斜めの入射光を考慮した設計を行えばよい。
In general, the shape of the diffraction grating is determined by the wavelength of light, the refractive index (difference) of the material through which light is transmitted, and the required diffraction angle. For example, in the case of using a material having a refractive index of 1.5 in the air and making the laser light vertically incident on the side of the diffraction grating portion of the diffractive optical element, the groove depth of the diffraction grating is optimum as the wavelength of light becomes longer. It becomes deeper, and a 850 nm depth is required for infrared rays of wavelength 850 nm. That is, in the diffractive optical element of the present disclosure, in the cross-sectional shape of the diffraction grating portion, the high refractive index convex portion preferably includes a portion having a height of 850 nm or more, and curing shrinkage (eg, 10%) by active energy rays It is more preferable that the height is 944 nm or more in consideration of the above, and it is preferable that the height be about 994 nm in consideration of the manufacturing error (for example, 5%).
Also, in order to diffract light in the direction of a diffraction angle of 30 °, the aspect ratio of the high refractive index convex portion is about 1.1, and for diffracting in the direction of 70 °, the aspect ratio of about 2.1 is sufficient. .
However, this is a case where light is diffracted in only one direction, and when actually used as a light source of a sensor, it is necessary to spread diffracted light uniformly over a predetermined area. For this purpose, it is necessary to combine regions having various diffraction angles and diffraction directions in a complicated manner, but as a result, a region in which the pitch is narrowed to λ / 4 is included. Here, since the optimum depth of the diffraction grating is determined by the wavelength of light, the refractive index, and the number of levels, the aspect ratio may be 2.1 or more, sometimes exceeding 4, when the pitch is narrow. For example, for a laser beam of 850 nm, the material is quartz, and when designing a rectangular diffusion shape extending at long sides ± 50 ° × short side ± 3.3 ° at 2-level, the original of the diffraction grating is optimum. The maximum aspect ratio exceeds 4 when the depth is 994 nm and the pitch of the narrowest feature is 212 nm.
These designs are performed, for example, using various simulation tools such as GratingMOD (made by Rsoft) using an exact coupled wave analysis (RCWA) algorithm, and Virtuallab (made by LightTrans) using an iterative Fourier transform algorithm (IFTA). be able to. When the light source is not a laser but an LED, it may be designed in consideration of oblique incident light.
 波長780nm以上の赤外線を所望の形状に整形することができるという点から、高屈折率凸部は、アスペクト比が2以上である部分を有することが好ましい。 It is preferable that the high refractive index convex portion have a portion having an aspect ratio of 2 or more from the viewpoint that infrared rays with a wavelength of 780 nm or more can be shaped into a desired shape.
 回折格子部の断面形状は、図3~図7Bに示されるような矩形であってもよく、他の形状であってもよい。図9A~図9Dは、回折格子部の断面形状の他の実施形態を示す断面模式図である。なお、高屈折率凸部2aの根元41は、透明基材であってもよく、又は基部であってもよい。
 図9A~図9Dに示す例は、いずれも、高屈折率凸部の断面形状が先細り形状となっており、このため、製造時における金型からの離型性に優れている。
 高屈折率凸部2aの太さは、その先端から根元にかけて断続的に増加してもよい(図9A)し、その先端から根元にかけて連続的に増加してもよい(図9B)。
 また、回折光学素子の回折効率を上げるには、回折格子部の断面形状を、通常の2値(2-level:図3~図7B)から多段形状(4-level(図9C)、8-level(図9D))と増やすのが効果的である。しかし、回折格子部の断面形状の段数を増やしすぎると、金型作成工程が複雑となりコストアップにつながるため、本開示においては、2値~8値の中から適宜選択することが好ましい。
 回折格子部の断面形状の段数を増やすほど、溝深さは深くなる。例えば、前記アクリル系樹脂組成物の硬化物の屈折率が1.5である場合、4-levelのときの溝深さは対象波長の1.5倍であり、8-levelのときの溝深さは対象波長の1.75倍である。対象波長が長いほど、必要となる溝深さは深いため加工の難易度も増す。
 設計の際に設定される最小加工溝幅は、通常、対象波長の1/4程度である。効率を上げるため、最小加工溝幅をさらに細かくしてもよい。ただし、最小加工溝幅が細かすぎる場合には加工が難しく時間もかかるため、最小加工溝幅は、80~100nm程度とするのが好ましい。
 アクリル系樹脂組成物を用いて高屈折率凸部を形成することにより、本開示の回折光学素子がアスペクト比2以上、更にはアスペクト比4以上のものを含む場合であっても、信頼性に優れる。
The cross-sectional shape of the diffraction grating portion may be rectangular as shown in FIGS. 3 to 7B, or may be another shape. 9A to 9D are schematic cross-sectional views showing other embodiments of the cross-sectional shape of the diffraction grating portion. The root 41 of the high refractive index convex portion 2a may be a transparent base material or a base.
In each of the examples shown in FIGS. 9A to 9D, the cross-sectional shape of the high refractive index convex portion is tapered, and therefore, the releasability from the mold at the time of manufacture is excellent.
The thickness of the high refractive index convex portion 2a may increase intermittently from the tip to the root (FIG. 9A), and may continuously increase from the tip to the root (FIG. 9B).
In order to increase the diffraction efficiency of the diffractive optical element, the cross-sectional shape of the diffraction grating portion may be changed from a usual binary (2-level: FIGS. 3 to 7B) to a multistage (4-level (FIG. 9C), 8- It is effective to increase the level (FIG. 9D)). However, if the number of steps of the cross-sectional shape of the diffraction grating portion is excessively increased, the mold making process becomes complicated and the cost is increased. Therefore, in the present disclosure, it is preferable to appropriately select from two values to eight values.
As the number of steps of the cross-sectional shape of the diffraction grating portion is increased, the groove depth becomes deeper. For example, when the refractive index of the cured product of the acrylic resin composition is 1.5, the groove depth at 4-level is 1.5 times the target wavelength, and the groove depth at 8-level Is 1.75 times the target wavelength. The longer the target wavelength, the deeper the required groove depth, and the more difficult the processing.
The minimum machined groove width set at the time of design is usually about 1⁄4 of the target wavelength. In order to increase the efficiency, the minimum machined groove width may be made finer. However, if the minimum machined groove width is too narrow, machining is difficult and time-consuming, so the minimum machined groove width is preferably about 80 to 100 nm.
By forming a high refractive index convex portion using an acrylic resin composition, even in the case where the diffractive optical element of the present disclosure includes an aspect ratio of 2 or more, and further, an aspect ratio of 4 or more, reliability can be obtained. Excellent.
 本開示の回折光学素子において、高屈折率凸部をライン(L)、低屈折率部をスペース(S)としたときのライン&スペース比(L/S)は特に限定されない。ライン&スペース比(L/S)は、下記式(A)より求められる。
  式(A)  (L/S)=l/(l+s)
(上記式(A)中、(L/S)はライン&スペース比を、lはライン幅(nm)を、sはスペース幅(nm)を、それぞれ示す。)
 ライン&スペース比(L/S)は、所望の回折光が得られるように適宜設定すればよいものであるが、例えば、0.1~0.9の範囲で適宜設定することができ、回折効率の点から0.4~0.6の範囲が好ましい。
In the diffractive optical element of the present disclosure, the line & space ratio (L / S) is not particularly limited when the high refractive index convex portion is a line (L) and the low refractive index portion is a space (S). The line and space ratio (L / S) is determined by the following equation (A).
Formula (A) (L / S) = l / (l + s)
(In the above formula (A), (L / S) represents a line & space ratio, l represents a line width (nm), and s represents a space width (nm).)
The line and space ratio (L / S) may be appropriately set so as to obtain desired diffracted light, but can be appropriately set, for example, in the range of 0.1 to 0.9. The range of 0.4 to 0.6 is preferable from the point of efficiency.
 また、本開示の回折光学素子においては、回折角を大きくしやすい点から、2以上の平坦部を有する多段形状であることが好ましい。
 本開示の回折光学素子は、アスペクト比が2以上である場合には、0次光を弱めることができるものであるが、回折角を大きくした場合には、回折光の投影領域から0次光を外しながら所望の形状の回折光を得ることもできる。このことについて図を参照して説明する。図10A及び図10Bは、回折光学素子の説明の用に供する図面である。図11Aは、図10Aに示すスクリーン22の正面図であり、図11Bは、図10Bに示すスクリーン22の正面図である。
 図10Aは、照射光21が回折光学素子10により回折され、スクリーン22上の中央に正方形の像24が形成される様子を示した斜視模式図である。図11Aに示されるように、正方形の像24は0次光照射位置27を含んでいるため、像24の中に0次光が含まれている。アスペクト比が2以上である場合には、0次光が抑制されるため、像24の中に0次光が含まれる場合であっても良好な回折光が得られる。
 図10Bは、照射光21が回折光学素子10により回折され、スクリーン22上の上部に正方形の像24が形成される様子を示した斜視模式図である。図10Bに示す例においては、1次光26a~26dの回折角が、図10Aに示す例よりも大きく設定されている。したがって、図11Bに示されるように、正方形の像24は0次光照射位置27を含まない。
 図10Bに示すように、最大回折角を大きく設定することにより、0次光を含まない回折光が得られる回折光学素子を得ることができる。以上の点から、本開示の回折光学素子においては、回折格子部が、2以上の平坦部を有する多段形状であることが好ましく、更にアスペクト比が3.5以上であることが好ましい。
Further, in the diffractive optical element of the present disclosure, it is preferable that the diffractive optical element have a multistage shape having two or more flat portions in terms of easily increasing the diffraction angle.
The diffractive optical element of the present disclosure can weaken 0th-order light when the aspect ratio is 2 or more, but when the diffraction angle is increased, the 0th-order light from the projection region of the diffracted light can be obtained. It is also possible to obtain diffracted light of a desired shape while removing. This will be described with reference to the drawings. FIG. 10A and FIG. 10B are drawings for explaining the diffractive optical element. 11A is a front view of the screen 22 shown in FIG. 10A, and FIG. 11B is a front view of the screen 22 shown in FIG. 10B.
FIG. 10A is a schematic perspective view showing how the irradiation light 21 is diffracted by the diffractive optical element 10 and a square image 24 is formed at the center of the screen 22. FIG. As shown in FIG. 11A, since the square image 24 includes the zero-order light irradiation position 27, the zero-order light is included in the image 24. When the aspect ratio is 2 or more, the zeroth-order light is suppressed, and therefore, even when the zeroth-order light is included in the image 24, good diffracted light can be obtained.
FIG. 10B is a schematic perspective view showing that the irradiation light 21 is diffracted by the diffractive optical element 10 and a square image 24 is formed on the screen 22. In the example shown in FIG. 10B, the diffraction angles of the first-order lights 26a to 26d are set larger than in the example shown in FIG. 10A. Therefore, as shown in FIG. 11B, the square image 24 does not include the zero-order light irradiation position 27.
As shown in FIG. 10B, by setting the maximum diffraction angle to a large value, it is possible to obtain a diffractive optical element capable of obtaining diffracted light that does not contain zero-order light. From the above points, in the diffractive optical element of the present disclosure, the diffraction grating portion preferably has a multistage shape having two or more flat portions, and further preferably has an aspect ratio of 3.5 or more.
 本開示に用いられる透明基材は、公知の透明基材の中から用途に応じて適宜選択して用いることができる。透明基材に用いられる材料の具体例としては、例えば、トリアセチルセルロース等のアセチルセルロース系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリエチレンやポリメチルペンテン等のオレフィン系樹脂、アクリル系樹脂、ポリウレタン系樹脂、ポリエーテルサルホンやポリカーボネート、ポリスルホン、ポリイミド、ポリエーテル、ポリエーテルケトン、アクロニトリル、メタクリロニトリル、シクロオレフィンポリマー、シクロオレフィンコポリマー等の透明樹脂や、ソーダ硝子、カリ硝子、鉛ガラス等の硝子、PLZT等のセラミックス、石英、蛍石等の透明無機材料等が挙げられる。透明基材の複屈折は回折光学素子の効果自体には影響を与えないが、回折光学素子に入射する光、拡散する光の位相差を問題にする場合には適宜、適した複屈折をもつ基材を選定すればよい。
 なおここでいう透明とは、目視で向こうが透けて見えるという状態のことをいうが、回折光学素子で設計した対象波長の光を透過することができれば、目視で色がついていても実用上問題はない。また、透明基材側から活性エネルギー線を照射してアクリル系樹脂組成物を硬化させる場合には、透明基材は照射する活性エネルギー線をなるべくカットしないものが好ましい。
 前記透明基材の厚みは、本開示の用途に応じて適宜設定することができ、特に限定されないが、通常5~5,000μmであり、前記透明基材は、ロールの形で供給されるもの、巻き取れるほどには曲がらないが負荷をかけることによって湾曲するもの、完全に曲がらないもののいずれであってもよい。
 本開示に用いられる透明基材の構成は、単一の層からなる構成に限られるものではなく、複数の層が積層された構成を有してもよい。複数の層が積層された構成を有する場合は、同一組成の層が積層されてもよく、また、異なった組成を有する複数の層が積層されてもよい。
 また、透明基材にはアクリル系樹脂組成物との密着性を向上させるための表面処理や、プライマー層形成を行ってもよい。表面処理としてはコロナ処理や大気圧プラズマ処理などの一般的な密着改善処理が適用できる。またプライマー層は、透明基材および樹脂組成物との双方に密着性を有し、対象波長の光を透過するものが好ましい。ただし、用途によっては意図的に透明基材と樹脂組成物の間の密着を低く保つことで、賦型後の回折格子部を透明基材から剥がして使用するという使い方も可能である。このような使い方は特に回折光学素子の厚みを薄くしたい場合に有効である。
The transparent substrate used in the present disclosure can be appropriately selected and used according to the application from among known transparent substrates. Specific examples of the material used for the transparent substrate include, for example, acetyl cellulose resins such as triacetyl cellulose, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, olefin resins such as polyethylene and polymethylpentene, and acrylic resins Transparent resin such as resin, polyurethane resin, polyether sulfone and polycarbonate, polysulfone, polyimide, polyether, polyether ketone, acronitrile, methacrylonitrile, cycloolefin polymer, cycloolefin copolymer, soda glass, potash glass, Glass such as lead glass, ceramics such as PLZT, quartz, transparent inorganic materials such as fluorite, etc. may be mentioned. Although the birefringence of the transparent substrate does not affect the effect itself of the diffractive optical element, it has an appropriate birefringence when the phase difference of the light incident on the diffractive optical element and the diffused light is an issue. The base material may be selected.
The term "transparent" as used herein refers to a state in which the other side can be seen through visually, but if light of the target wavelength designed by the diffractive optical element can be transmitted, it is practically problematic even if it is colored visually There is no. Moreover, when irradiating an active energy ray from a transparent base material side and hardening an acrylic resin composition, the thing which cuts an active energy ray to irradiate as much as possible of a transparent base material is preferable.
The thickness of the transparent substrate can be appropriately set according to the application of the present disclosure, and is not particularly limited, but is usually 5 to 5,000 μm, and the transparent substrate is supplied in the form of a roll However, it may be one that does not bend enough to be wound, but that bends under load or does not bend completely.
The configuration of the transparent substrate used in the present disclosure is not limited to the configuration composed of a single layer, and may have a configuration in which a plurality of layers are laminated. When a plurality of layers are stacked, layers of the same composition may be stacked, or a plurality of layers having different compositions may be stacked.
Moreover, you may perform surface treatment for improving adhesiveness with an acrylic resin composition, and a primer layer formation to a transparent base material. As surface treatment, general adhesion improvement treatment such as corona treatment and atmospheric pressure plasma treatment can be applied. The primer layer preferably has adhesiveness to both the transparent substrate and the resin composition, and transmits light of the target wavelength. However, depending on the application, by intentionally keeping the adhesion between the transparent substrate and the resin composition low, it is possible to use it by peeling off the diffraction grating portion after shaping from the transparent substrate. Such use is particularly effective when it is desired to reduce the thickness of the diffractive optical element.
 (3)回折光学素子のその他の構成
 また、回折格子部の傷つき等を防止でき、かつ機械強度に優れる点から、本開示の回折光学素子は、透明基材上に、前記回折格子部と、被覆層とを、この順に有する構成であってもよい(図5A及び図5B)。被覆層としては、特に限定されないが、前記透明基材と同様のものを用いることが好ましい。また、回折格子部上に被覆層を設ける場合、回折格子部と被覆層との間に粘着剤(接着剤)層を設けてもよい。粘着層(接着層)用の粘着剤又は接着剤としては、従来公知のものの中から適宜選択すればよく、感圧接着剤(粘着剤)、2液硬化型接着剤、紫外線硬化型接着剤、熱硬化型接着剤、熱溶融型接着剤等、いずれの接着形態のもの好適に用いることができるが、低屈折率部が空気の場合には、流動性の低い粘着剤又は接着剤を用いることが好ましい。なお、低屈折率部の一部が粘着剤又は接着剤により埋まる場合には、その分を考慮して回折格子部の設計を行えば良い。なおこのような被覆層を設けることで、回折格子部の凹凸を型にしたリバースエンジニアリングを防止することが可能という副次的な効果も期待できる。
 さらに被覆層を形成することで、回折格子部に異物が入り込むことを防止でき、回折光学素子及び照明装置の長期信頼性を向上することが可能である。
(3) Other Configurations of Diffractive Optical Element In addition, the diffractive optical element of the present disclosure has the above-mentioned diffraction grating part on a transparent base material from the viewpoint of preventing damage and the like of the diffraction grating part and having excellent mechanical strength. It may be the composition which has a covering layer in this order (Drawing 5A and Drawing 5B). Although it does not specifically limit as a coating layer, It is preferable to use the thing similar to the said transparent base material. Moreover, when providing a coating layer on a diffraction grating part, you may provide an adhesive (adhesive agent) layer between a diffraction grating part and a coating layer. The pressure-sensitive adhesive or adhesive for the pressure-sensitive adhesive layer (adhesive layer) may be appropriately selected from conventionally known ones, such as a pressure-sensitive adhesive (pressure-sensitive adhesive), a two-component curable adhesive, an ultraviolet curable adhesive, A thermosetting adhesive, a heat melting adhesive, etc. can be suitably used in any bonding form, but when the low refractive index portion is air, an adhesive or adhesive having low flowability should be used. Is preferred. In the case where a part of the low refractive index portion is filled with the adhesive or the adhesive, the diffraction grating portion may be designed in consideration of the amount. In addition, by providing such a covering layer, the secondary effect that it is possible to prevent the reverse engineering which used the unevenness | corrugation of the diffraction grating part as a type | mold can also be anticipated.
Furthermore, by forming the covering layer, it is possible to prevent foreign matter from entering the diffraction grating portion, and it is possible to improve the long-term reliability of the diffractive optical element and the illumination device.
 また、更に、前記透明基材、又は、前記被覆層の、回折格子部とは反対側の面に、更に反射防止層を設けてもよい(図7A及び図7B)。反射防止層としては、従来公知のものの中から適宜選択すればよく、例えば、低屈折率層又は高屈折率層の単層からなる屈折率層であってもよく、低屈折率層と高屈折率層とを順次積層した多層膜であってもよく、微細凹凸形状が形成された反射防止層であってもよい。反射防止層を設けることにより、回折光学素子の回折効率を向上することが可能である。 Furthermore, an anti-reflection layer may be further provided on the surface of the transparent base material or the surface of the covering layer opposite to the diffraction grating portion (FIGS. 7A and 7B). The antireflection layer may be appropriately selected from conventionally known ones. For example, it may be a refractive index layer consisting of a low refractive index layer or a single layer of a high refractive index layer, and the low refractive index layer and high refractive index It may be a multilayer film in which layers with a rate layer are sequentially laminated, or it may be an antireflection layer in which a fine concavo-convex shape is formed. By providing the antireflection layer, it is possible to improve the diffraction efficiency of the diffractive optical element.
 また、前記透明基材、前記被覆層、前記粘着層(接着層)は、本開示の効果を損なわない範囲で、従来公知の添加剤を含有してもよい。このような添加剤としては、例えば、紫外線吸収剤、赤外線吸収剤、光安定化剤、酸化防止剤等が挙げられる。
 本開示の回折光学素子は、透過型回折光学素子であってもよく、反射型回折光学素子であってもよい。これらのうち、本開示の回折光学素子は、透過型回折光学素子であることが好ましい。透過型回折光学素子は、反射型回折光学素子と比較して、回折格子部における高屈折率凸部のアスペクト比を大きく設定する必要があり、その結果としてスティッキングの問題が生じ易い傾向にある。したがって、上述した湿熱条件下における貯蔵弾性率(E’)の条件を満たす高屈折率凸部を備える透過型回折光学素子は、同様の高屈折率凸部を備える反射型回折光学素子よりも、スティッキング防止の効果が高い。
Moreover, the said transparent base material, the said coating layer, the said adhesion layer (adhesion layer) may contain the conventionally well-known additive in the range which does not impair the effect of this indication. Examples of such additives include ultraviolet light absorbers, infrared light absorbers, light stabilizers, and antioxidants.
The diffractive optical element of the present disclosure may be a transmissive diffractive optical element or a reflective diffractive optical element. Among these, the diffractive optical element of the present disclosure is preferably a transmissive diffractive optical element. In the transmission type diffractive optical element, the aspect ratio of the high refractive index convex portion in the diffraction grating portion needs to be set larger than that of the reflection type diffractive optical element, and as a result, the problem of sticking tends to occur easily. Therefore, a transmissive diffractive optical element having a high refractive index convex portion satisfying the storage elastic modulus (E ′) under the moist heat conditions described above has a higher refractive index convex portion than a reflective diffractive optical element having a similar high refractive index convex portion. Highly effective in preventing sticking.
 2.回折光学素子の製造方法
 本開示の製造方法は、透明基材の少なくとも一面側に、透明基材の表面から突出する一つ以上の高屈折率凸部と、一つ以上の低屈折率部とを配置した回折格子部を備え、光源からの光を整形する回折光学素子の製造方法であって、
 前記高屈折率凸部と前記低屈折率部を形成するためのキャビティ形状を有する金型を準備する工程(以下、金型準備工程という)、
 前記金型のキャビティに、アクリル系樹脂組成物であって、当該アクリル系樹脂組成物に対し積算光量が1,000mJ/cmになるように紫外線を照射し硬化させて得られる硬化物サンプルの60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下であるアクリル系樹脂組成物を充填する工程(以下、アクリル系樹脂組成物充填工程という)、
 前記金型のキャビティ開口部側において、前記透明基材と前記アクリル系樹脂組成物とを接触させ、かつ活性エネルギー線を照射することにより、前記アクリル系樹脂組成物を硬化させる工程(以下、アクリル系樹脂組成物硬化工程という)、及び
 前記透明基材から前記金型を引き離すことにより、透明基材上にアクリル系樹脂組成物の硬化物で形成された高屈折率凸部を有する回折格子部を形成する工程(以下、離型工程という)、
を有することを特徴とする。
2. Method of Manufacturing Diffractive Optical Element In the method of manufacturing of the present disclosure, at least one surface side of a transparent substrate, one or more high refractive index convex portions protruding from the surface of the transparent substrate, and one or more low refractive index portions It is a manufacturing method of a diffractive optical element provided with the diffraction grating part which arranges, and shapes light from a light source,
Preparing a mold having a cavity shape for forming the high refractive index convex portion and the low refractive index portion (hereinafter referred to as a mold preparing step);
A cured product sample obtained by irradiating an acrylic resin composition to a cavity of the mold, and curing the acrylic resin composition with ultraviolet light so that the integrated light amount is 1,000 mJ / cm 2 . A step of filling an acrylic resin composition having a storage elastic modulus (E ′) at 60 ° C. and a relative humidity of 95% of 0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less (hereinafter, acrylic resin Composition filling process),
A step of curing the acrylic resin composition by contacting the transparent substrate and the acrylic resin composition on the side of the cavity opening of the mold and irradiating the active energy ray (hereinafter, acrylic) And a diffraction grating portion having a high refractive index convex portion formed of a cured product of an acrylic resin composition on a transparent substrate by pulling the mold away from the transparent substrate. A process of forming a mold (hereinafter referred to as a mold release process),
It is characterized by having.
 図12A~図12Eは、回折光学素子の製造方法の一例を模式的に示す工程図である。
 まず、図12Aに示されるように、目的とする回折格子部の表面構造に対応するキャビティ形状を有する金型31を準備する(金型準備工程)。
 次に、図12B及び図12Cに示されるように、金型のキャビティ31aに、アクリル系樹脂組成物32を充填する(アクリル系樹脂組成物充填工程)。ここで、アクリル系樹脂組成物32は、上記「1.回折光学素子」にて説明したアクリル系樹脂組成物と同様の組成物である。充填方法は特に限定されず、従来公知の方法を適宜選択すればよい。例えば、図12B及び図12Cに示されるように、金型31の表面にアクリル系樹脂組成物32を塗布することにより、アクリル系樹脂組成物32をキャビティ31aに充填してもよい。より具体的な例としては、まず、金型31の表面にアクリル系樹脂組成物32を載置し(図12B)、その上から透明基材33を載置する。次にその上から加圧ローラ34により透明基材33越しにアクリル系樹脂組成物32を金型31表面に均一に延ばして塗布し(図12C)、キャビティ31a内にアクリル系樹脂組成物32を充填する。図12C及び図12Dに示すように、アクリル系樹脂組成物32の一部は金型のキャビティ31aからはみ出していてもよい。アクリル系樹脂組成物32のはみ出た部分が、硬化後に基部となる。また、アクリル系樹脂組成物32の全てが金型のキャビティ31aに充填されてもよい。
 続いて、図12Dに示されるように、金型のキャビティ開口部側から、アクリル系樹脂組成物32の塗膜に対し活性エネルギー線を照射して(35)、アクリル系樹脂組成物32を硬化させる(アクリル系樹脂組成物硬化工程)。なお、透明基材とアクリル系樹脂組成物との接触は、アクリル系樹脂組成物の充填と同時期に行ってもよいし、アクリル系樹脂組成物の充填よりも後に行ってもよい。
 その後、図12Eに示されるように、得られた硬化物36を金型31から離型することにより、回折光学素子が得られる(離型工程)。
 以下、当該製造方法の各工程の詳細について説明する。なお、前記本開示の回折光学素子と同様の説明については省略する。
12A to 12E are process diagrams schematically showing an example of a method of manufacturing a diffractive optical element.
First, as shown in FIG. 12A, a mold 31 having a cavity shape corresponding to the surface structure of a target diffraction grating portion is prepared (mold preparation step).
Next, as shown in FIGS. 12B and 12C, the acrylic resin composition 32 is filled in the cavity 31a of the mold (acrylic resin composition filling step). Here, the acrylic resin composition 32 is the same composition as the acrylic resin composition described in the above “1. Diffractive optical element”. The filling method is not particularly limited, and a conventionally known method may be appropriately selected. For example, as shown in FIGS. 12B and 12C, the acrylic resin composition 32 may be filled in the cavity 31a by applying the acrylic resin composition 32 to the surface of the mold 31. As a more specific example, first, the acrylic resin composition 32 is placed on the surface of the mold 31 (FIG. 12B), and the transparent substrate 33 is placed thereon. Next, the acrylic resin composition 32 is uniformly spread on the surface of the mold 31 over the transparent base material 33 by the pressure roller 34 (FIG. 12C), and the acrylic resin composition 32 is placed in the cavity 31a. To fill. As shown in FIGS. 12C and 12D, a part of the acrylic resin composition 32 may protrude from the cavity 31a of the mold. The protruding portion of the acrylic resin composition 32 becomes a base after curing. Alternatively, all of the acrylic resin composition 32 may be filled in the mold cavity 31a.
Subsequently, as shown in FIG. 12D, the coating film of the acrylic resin composition 32 is irradiated with active energy rays from the side of the cavity opening of the mold (35) to cure the acrylic resin composition 32. (Acrylic resin composition curing step). The contact between the transparent substrate and the acrylic resin composition may be performed at the same time as the filling of the acrylic resin composition, or may be performed later than the filling of the acrylic resin composition.
Thereafter, as shown in FIG. 12E, the obtained cured product 36 is released from the mold 31 to obtain a diffractive optical element (releasing step).
Hereinafter, the detail of each process of the said manufacturing method is demonstrated. The description similar to that of the diffractive optical element of the present disclosure will be omitted.
 (1)金型準備工程
 回折光学素子製造用金型は、レーザーリソグラフィや電子線リソグラフィ、FIB(Focused Ion Beam)などの技術によって加工することができるが、通常は電子線リソグラフィが好適に用いられる。
 材質は高アスペクト比の加工が可能なものであれば使用可能であるが、通常は石英やSiが用いられる。また、これらの金型から樹脂で複製したコピー金型(ソフトモールド)や、Ni電鋳で複製したコピー金型を使用することも可能である。
 また必要に応じて、金型表面には離型処理を施すことができる。フッ素系やシリコン系などの離型剤、ダイヤモンドライクカーボン、Niめっきなどが適用可能である。処理手法は蒸着やスパッタ、ALD(Atomic Layer Deposition)などの気相処理、コーティングやディッピング、めっきなどの液相処理などから適宜選択できる。
 回折光学素子に必要とされる形状は通常数mm角~数cm角と小さいため、1つの金型内に複数の回折格子部の形状を並べて加工することにより複製の効率を上げることができる。スループットを重視する場合は、上記の金型またはコピー金型を並べて複製し、多面付の金型として賦型に供してもよい。
(1) Mold Preparation Process A mold for manufacturing a diffractive optical element can be processed by techniques such as laser lithography, electron beam lithography, FIB (Focused Ion Beam), etc., but electron beam lithography is usually suitably used. .
The material may be any material that can be processed at a high aspect ratio, but usually quartz or Si is used. Moreover, it is also possible to use a copy mold (soft mold) replicated by resin from these molds or a copy mold replicated by Ni electroforming.
In addition, the mold surface can be subjected to a release treatment, if necessary. A fluorine-based or silicon-based mold release agent, diamond like carbon, Ni plating, etc. can be applied. The processing method can be appropriately selected from vapor phase processing such as vapor deposition or sputtering, ALD (Atomic Layer Deposition) or the like, and liquid phase processing such as coating or dipping or plating.
Since the shape required for the diffractive optical element is usually as small as several mm square to several cm square, the efficiency of replication can be increased by arranging and processing the shapes of a plurality of diffraction grating parts in one mold. When emphasis is placed on throughput, the above-mentioned molds or copy molds may be arranged side by side and replicated to be used as a multi-faced mold.
 アクリル系樹脂組成物の硬化時の体積変化が問題になる場合はそれを補正して金型設計を行うこともできる。また離型のしやすさを考慮し、金型の微細構造の奥より開口部側の間口が広くなる構造としてもよい(図9A~図9D)。この場合、得られた回折光学素子の回折格子部は表面側が細くなる形となる。
 また、本開示の回折光学素子は、通常、異なる周期構造の領域が複数存在するため、1つの回折光学素子に対しピッチ(間口)が異なる溝が複数含まれることになるが、このような金型を作る場合、ピッチ(間口)に応じてドライエッチングでの深さがバラつく傾向がある。しかしこのようなばらつきは効率の低下につながるため、加工プロセスの最適化を行い、所望する深さの±10%以下に抑えることが重要である。
 アスペクト比が2以上の高屈折率凸部を形成する場合には、高屈折率凸部の高さばらつきが生じやすい傾向にある。その場合、金型の深さを、設計値よりやや深く狙って作製することにより、高さばらつきを持ちながらも所望の光学特性を持った回折光学素子が得られやすくなる。
When volume change at the time of hardening of an acrylic resin composition becomes a problem, it can also be corrected and mold design can be performed. Further, in consideration of ease of mold release, the opening on the opening side may be wider than the back of the fine structure of the mold (FIGS. 9A to 9D). In this case, the surface of the diffraction grating portion of the obtained diffractive optical element becomes thin.
Further, the diffractive optical element of the present disclosure generally includes a plurality of grooves having different pitches (openings) with respect to one diffractive optical element, since there are a plurality of regions with different periodic structures. When forming a mold, the depth in dry etching tends to vary depending on the pitch (opening). However, since such variations lead to a reduction in efficiency, it is important to optimize the machining process and keep it within ± 10% of the desired depth.
When forming a high refractive index convex portion having an aspect ratio of 2 or more, the height unevenness of the high refractive index convex portion tends to easily occur. In such a case, by aiming the depth of the mold slightly deeper than the design value, it is easy to obtain a diffractive optical element having desired optical characteristics while having height variations.
 (2)アクリル系樹脂組成物充填工程
 「アクリル系樹脂組成物に対し積算光量が1,000mJ/cmになるように紫外線を照射し硬化させて得られる硬化物サンプル」とは、得られる回折光学素子の回折格子部中に実際に含まれるであろうアクリル系樹脂組成物の硬化物を模擬したものである。このように、硬化物サンプルにおける60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下であるアクリル系樹脂組成物を用いることにより、湿熱条件下におけるスティッキングを防止でき、かつ離型時のパターンもげを少なくすることができる回折光学素子が得られる。その理由は、上記「1.回折光学素子」において説明した通りである。
 前述の例は、金型側にアクリル系樹脂組成物の塗膜を形成するものであったが、透明基材側に塗膜を形成してもよい。塗膜の形成方法は、前述の例の他、ダイコートやバーコート、グラビアコート、スピンコートなど従来公知の塗布方法から好適なものを選定することができる。
 透明基材については、上記「1.回折光学素子」において説明したものを使用できる。透明基材は、枚葉のものであってもよく、また長尺なものを用いてロールトゥロール方式により塗布工程、アクリル系樹脂組成物硬化工程、及び離型工程を順次行ってもよい。金型が曲げにくい硬質の材料である場合は、透明基材は柔軟性があるものが泡をかみにくく好ましい。逆に透明基材として硬質なものを用いる場合は、金型はソフトモールドを使うのが好ましい。
(2) Acrylic resin composition filling step "A cured product sample obtained by irradiating and curing ultraviolet light so that the integrated light amount is 1,000 mJ / cm 2 to the acrylic resin composition" means the diffraction obtained It simulates the cured product of the acrylic resin composition that will actually be contained in the diffraction grating portion of the optical element. Thus, using the acrylic resin composition whose storage elastic modulus (E ') at 60 ° C. and 95% relative humidity in the cured product sample is 0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less As a result, it is possible to obtain a diffractive optical element that can prevent sticking under moist heat conditions and can reduce pattern peeling at the time of mold release. The reason is as described above in “1. Diffractive optical element”.
Although the above-mentioned example was what forms the coating film of an acrylic resin composition in the metal mold | die side, you may form a coating film in the transparent base material side. As a method of forming a coating film, in addition to the examples described above, a suitable coating method can be selected from conventionally known coating methods such as die coating, bar coating, gravure coating, and spin coating.
As the transparent substrate, those described in the above "1. Diffractive optical element" can be used. The transparent substrate may be a sheet-like one, or a long one may be used to sequentially perform the coating step, the acrylic resin composition curing step, and the release step by a roll-to-roll method. In the case where the mold is a hard material that is hard to bend, it is preferable that the transparent substrate be flexible so as to resist bubbles. Conversely, when using a hard transparent substrate, it is preferable to use a soft mold as the mold.
 (3)アクリル系樹脂組成物硬化工程
 透明基材とアクリル系樹脂組成物とを接触させる工程(以下、接触工程という。)と、アクリル系樹脂組成物に活性エネルギー線を照射する工程(以下、照射工程という。)とは、同時に行ってもよいし、接触工程を照射工程より先に行ってもよい。
 紫外線や電子線の照射は1回で照射しても複数回に分けて照射してもよく、複数回に分ける場合はある程度硬化させて離型した後に追加照射してもよい。
(3) Acrylic resin composition curing step A step of contacting the transparent substrate with the acrylic resin composition (hereinafter referred to as a contacting step) and a step of irradiating the acrylic resin composition with an active energy ray (hereinafter referred to as The irradiation step may be performed simultaneously, or the contact step may be performed prior to the irradiation step.
The irradiation of ultraviolet light or electron beam may be performed at one time or divided into multiple times, and when divided into multiple times, additional irradiation may be performed after curing to some extent and releasing.
 (4)離型工程
 上述したように、本開示の製造方法では特定のアクリル系樹脂組成物を使用するため、透明基材から金型を引き離す際にパターンもげを少なく抑えることができる。特に、得られる回折光学素子において、高屈折率凸部のアスペクト比が2以上の場合には、従来は離型時にパターンもげが生じやすかったが、本開示の製造方法によればこのようなパターンもげを少なく抑えることができる。
(4) Releasing Step As described above, since the specific acrylic resin composition is used in the manufacturing method of the present disclosure, it is possible to reduce the amount of pattern cracking when the mold is separated from the transparent substrate. Particularly, in the diffractive optical element to be obtained, when the aspect ratio of the high refractive index convex portion is 2 or more, in the past, pattern peeling was likely to occur during mold release, but according to the manufacturing method of the present disclosure, such pattern It is possible to reduce the number of baldness.
 (5)その他の工程
 得られた回折光学素子を用いて、さらに照明装置を製造する場合には、例えば、以下の工程を実施することが考えられる。ただし、照明装置の製造方法は、以下に記載の方法に限定されるものではない。
 以下、図13に示す符号に即して説明する。まず、導通部11a及び内部空間11cを備える枠体11を用意する。枠体11は、2以上の部材の組み合わせ(例えば、平面基板と中空の筒の組み合わせ等)であってもよい。次に、枠体11の内部空間11cに光源12を載置し、導線13等を用いて光源12と導通部11aとを電気的に接続する。続いて、枠体11の上に回折光学素子10を載置する。このようにして得られる構造体を実装基板14上に載せることにより、仮組み立て体が得られる。このとき、実装基板14上に載置されたハンダボールの位置が、枠体11の導通部11aの位置と重なるよう、位置合わせを行う。
 この仮組み立て体をリフロー炉に入れ、260~280℃の温度条件下で0.5~1.5分間加熱することにより、実装基板14と枠体11とをハンダ付けし、照明装置20が得られる。
(5) Other Steps In the case of further manufacturing an illumination device using the obtained diffractive optical element, it is conceivable to carry out, for example, the following steps. However, the method of manufacturing the lighting device is not limited to the method described below.
The following description is based on the reference numerals shown in FIG. First, the frame 11 provided with the conduction part 11a and the internal space 11c is prepared. The frame 11 may be a combination of two or more members (for example, a combination of a flat substrate and a hollow cylinder). Next, the light source 12 is placed in the internal space 11c of the frame 11, and the light source 12 and the conducting part 11a are electrically connected using the lead 13 and the like. Subsequently, the diffractive optical element 10 is mounted on the frame 11. By mounting the structure obtained in this manner on the mounting substrate 14, a temporary assembly can be obtained. At this time, alignment is performed such that the position of the solder ball placed on the mounting substrate 14 overlaps the position of the conductive portion 11 a of the frame 11.
The temporary assembly is placed in a reflow furnace and heated at a temperature of 260 to 280 ° C. for 0.5 to 1.5 minutes to solder the mounting substrate 14 and the frame 11 to obtain the lighting device 20. Be
 3.アクリル系樹脂組成物
 本開示のアクリル系樹脂組成物は、透明基材の少なくとも一面側に、透明基材の表面から突出する一つ以上の高屈折率凸部と、一つ以上の低屈折率部とを配置した回折格子部を備え、光源からの光を整形する回折光学素子の高屈折率凸部を形成するためのアクリル系樹脂組成物であって、当該アクリル系樹脂組成物に対し積算光量が1,000mJ/cmになるように紫外線を照射し硬化させて得られる硬化物サンプルの60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下であることを特徴とする。
3. Acrylic Resin Composition The acrylic resin composition of the present disclosure comprises, on at least one side of a transparent substrate, one or more high refractive index protrusions projecting from the surface of the transparent substrate, and one or more low refractive indexes An acrylic resin composition for forming a high refractive index convex portion of a diffractive optical element having a diffraction grating portion in which the light from the light source is shaped, wherein the integration is performed with respect to the acrylic resin composition The storage elastic modulus (E ') at 60 ° C. and 95% relative humidity of a cured product sample obtained by curing by irradiation with ultraviolet light so that the amount of light is 1,000 mJ / cm 2 is 0.90 × 10 9 Pa or more It is characterized in that it is 2.6 × 10 9 Pa or less.
 アクリル系樹脂組成物は、活性エネルギー線硬化性成分を含み、硬化後に上記物性が得られるものが好ましい。また設計した対象波長の光を透過することができれば、硬化後に目視で色がついていても実用上問題はない。
 本開示のアクリル系樹脂組成物の詳細は、上述した「1.回折光学素子」の「(1)アクリル系樹脂組成物の硬化物」で説明した通りである。
 また、本開示のアクリル系樹脂組成物を用いた高屈折率凸部の形成方法は、上述した「2.回折光学素子の製造方法」で説明した通りである。
The acrylic resin composition preferably contains an active energy ray curable component, and the above physical properties can be obtained after curing. Moreover, if light of the designed target wavelength can be transmitted, there is no practical problem even if it is visually colored after curing.
The details of the acrylic resin composition of the present disclosure are as described in “(1) Cured product of acrylic resin composition” in “1. Diffractive optical element” described above.
Further, the method of forming the high refractive index convex portion using the acrylic resin composition of the present disclosure is as described in the above-mentioned “2. Method of manufacturing a diffractive optical element”.
 高屈折率凸部形成用のアクリル系樹脂組成物は、金型に充填する際、流動性が低すぎると微細な溝に入っていきにくく、高すぎると当該組成物が薄く広がってしまい所定の厚みを確保できないことがある。またロール賦型の場合、流動性が高すぎるとインキたれの原因となる。本開示においては、アクリル系樹脂組成物の25℃における粘度が数十[mPas]~数千[mPas]程度となるようなアクリル系樹脂が好ましい。粘度は温度でも変わるため、本開示のアクリル系樹脂組成物を用いて高屈折率凸部を形成する際には、適切な温度調節を適宜行うことが好ましい。 When the acrylic resin composition for forming the high refractive index convex portion is filled in the mold, if the fluidity is too low, it is difficult to enter into the fine groove, and if it is too high, the composition spreads thinly, and the predetermined It may not be possible to secure the thickness. In the case of roll forming, too high fluidity causes ink drop. In the present disclosure, an acrylic resin is preferable such that the viscosity at 25 ° C. of the acrylic resin composition is about several tens of mPas to several thousands of mPas. Since viscosity changes also with temperature, when forming a high refractive index convex part using the acrylic resin composition of this indication, it is preferable to perform suitable temperature control suitably.
 4.照明装置
 (1)照明装置の構成
 本開示に係る照明装置は、外部から給電可能な導通部と出光面となる開口部を有する枠体、光源、及び、上述した回折光学素子を備え、前記枠体の内部空間に前記光源が固定されるとともに前記導通部と接続され、前記開口部に前記回折光学素子が配置されていることを特徴とする。
 本開示の照明装置によれば、所望の形状に整形された光を照射することができる。
4. Lighting Device (1) Configuration of Lighting Device A lighting device according to the present disclosure includes a frame having a conductive portion capable of supplying power from the outside and an opening serving as a light exit surface, a light source, and the above-described diffractive optical element The light source is fixed in an internal space of the body and connected to the conductive portion, and the diffractive optical element is disposed in the opening.
According to the illumination device of the present disclosure, light shaped into a desired shape can be emitted.
 本開示の照明装置を、図を参照して説明する。図13は本開示に係る光照射装置の一実施形態を模式的に示す断面図である。図13の例に示される照明装置20は、枠体11、光源12、及び、上述した回折光学素子10を備える。枠体11は、外部から給電可能な導通部11aと、出光面となる開口部11bを有する。図13に示すように、枠体11は、さらに内部空間11cを有し、当該内部空間11cに光源12が固定される。さらに、光源12は導通部11aと接続される。光源12は、導通部11aと直に接して接続されていてもよいし、図13に示すような導線13を介して導通部11aと接続されていてもよい。そして、開口部11bに回折光学素子10が配置される。
 枠体11は、2以上の部材の組み合わせであってもよい。例えば、枠体11は、光源制御用の平面基板(ベース部分)と、その上に載置された中空の筒との組合せ等であってもよい。
 枠体11を実装基板14(マザーボード)上に載置し、光源12を実装基板14の電気回路に接続することにより、実装基板14上の他の機器と光源12とを連動させることができる。
A lighting device of the present disclosure will be described with reference to the drawings. FIG. 13 is a cross-sectional view schematically showing an embodiment of a light irradiation apparatus according to the present disclosure. The illumination device 20 shown in the example of FIG. 13 includes a frame 11, a light source 12, and the above-described diffractive optical element 10. The frame 11 has a conducting portion 11 a which can be supplied with power from the outside, and an opening 11 b which is a light emitting surface. As shown in FIG. 13, the frame 11 further includes an internal space 11 c, and the light source 12 is fixed to the internal space 11 c. Furthermore, the light source 12 is connected to the conducting part 11a. The light source 12 may be connected in direct contact with the conducting portion 11a, or may be connected to the conducting portion 11a via the conducting wire 13 as shown in FIG. Then, the diffractive optical element 10 is disposed in the opening 11 b.
The frame 11 may be a combination of two or more members. For example, the frame 11 may be a combination of a flat substrate (base portion) for light source control and a hollow cylinder placed thereon.
By mounting the frame 11 on the mounting substrate 14 (motherboard) and connecting the light source 12 to the electric circuit of the mounting substrate 14, the light source 12 can be interlocked with other devices on the mounting substrate 14.
 本開示の照明装置において、光源は、特に限定されず、公知の光源を用いることができる。前記本開示に係る回折光学素子が特定波長の回折を目的として設計されることから、光源として、特定波長の強度が高いレーザー光源やLED(発光ダイオード)光源などを用いることが好ましい。本開示においては、指向性を有するレーザー光源、拡散性のあるLED(発光ダイオード)光源など、いずれの光源であっても好適に用いることができる。本開示において光源は、前記本開示に係る回折光学素子の設計の際にシミュレーション対象とした光源を再現可能なものの中から適宜選択することが好ましい。中でも、波長780nm以上の赤外線を回折する回折光学素子を用いる場合は、波長780nm以上の赤外線を発し得る光源を選択することが好ましい。 In the illumination device of the present disclosure, the light source is not particularly limited, and a known light source can be used. Since the diffractive optical element according to the present disclosure is designed for the purpose of diffraction of a specific wavelength, it is preferable to use a laser light source having a high intensity of the specific wavelength, an LED (light emitting diode) light source or the like as a light source. In the present disclosure, any light source such as a directional laser light source or a diffusive LED (light emitting diode) light source can be suitably used. In the present disclosure, it is preferable that the light source be appropriately selected from among reproducible light sources to be simulated in designing the diffractive optical element according to the present disclosure. Among them, in the case of using a diffractive optical element that diffracts an infrared ray having a wavelength of 780 nm or more, it is preferable to select a light source capable of emitting an infrared ray having a wavelength of 780 nm or more.
 本開示の照明装置は、前記本開示に係る回折格子を少なくとも1つ備えればよく、必要に応じて更に他の光学素子を備えていてもよい。他の光学素子としては、例えば、偏光板、レンズ、プリズム、特定波長、中でも回折光学素子の対象波長を透過するパスフィルターなどが挙げられる。複数の光学素子を組み合わせて用いる場合は、界面反射を抑制する点から、光学素子同士を貼り合わせることが好ましい。 The illumination device of the present disclosure may include at least one diffraction grating according to the present disclosure, and may further include other optical elements as needed. Other optical elements include, for example, a polarizing plate, a lens, a prism, and a pass filter that transmits a target wavelength of a specific wavelength, particularly a diffractive optical element. When using it combining a several optical element, it is preferable to bond optical elements together from the point which suppresses interface reflection.
 (2)照明装置の用途
 本開示に係る照明装置は、所望の形状に整形された光を照射することができ、また、赤外線が利用可能な点から、センサー用の照明装置として好適に用いることができる。光を効果的に整形できる点から例えば夜間の赤外線照明、防犯センサー用照明、人感知センサー用照明、無人航空機や自動車等の衝突防止センサー用照明、個人認証装置用の照明、検査装置用の照明、などに使用することができ、光源の簡略化、小型化や省電力化が可能となる。
(2) Use of lighting device The lighting device according to the present disclosure can emit light shaped into a desired shape, and is preferably used as a lighting device for a sensor from the viewpoint that infrared rays can be used. Can. For example, infrared illumination for nighttime, illumination for security sensor, illumination for human detection sensor, illumination for collision prevention sensor for unmanned aerial vehicles and automobiles, illumination for personal identification device, illumination for inspection device, from the point that light can be effectively shaped , Etc., and simplification, downsizing and power saving of the light source become possible.
 以下、本開示について実施例を示して具体的に説明する。これらの記載により本開示を制限するものではない。 Hereinafter, the present disclosure will be specifically described with reference to examples. These descriptions do not limit the present disclosure.
1.光学回折格子の製造
[実施例1~9、比較例1~4]
(回折格子の設計)
 シミュレーションツールを使い、下記の条件にて形状設計を行った。
 対象光源:波長980nmのレーザー光
 材料屈折率:1.456
 拡散形状:長辺±50°×短辺±3.3°に広がる矩形
 エリアサイズ:5mm角
 回折格子のレベル:2-level(2値)
 得られた回折格子形状の最適深さは1087nm、最も細かい形状のピッチは250nmとなり、最大アスペクト比は4.35となった。
1. Production of Optical Diffraction Grating [Examples 1 to 9, Comparative Examples 1 to 4]
(Diffraction grating design)
The shape design was performed under the following conditions using a simulation tool.
Target light source: Laser light of wavelength 980 nm Material refractive index: 1.456
Diffusion shape: A rectangular area that spreads to the long side ± 50 ° × short side ± 3.3 ° Area size: 5 mm square Diffraction grating level: 2-level (binary)
The optimum depth of the obtained diffraction grating shape was 1087 nm, the pitch of the narrowest shape was 250 nm, and the maximum aspect ratio was 4.35.
(金型作成)
 6インチ角サイズの合成石英板を用い、電子線描画装置とドライエッチング装置を使用した電子線リソグラフィプロセスにより、設計した形状の石英DOEを作成した。
 SEM観察では所定の寸法に仕上がっていることを確認でき、また980nmのレーザーを入射させ、回折光をスクリーンに投影し赤外線カメラで観察したところ、所定の矩形形状に広がっていることを確認できた。
(Molding)
Using a 6-inch square synthetic quartz plate, a designed shape of quartz DOE was produced by an electron beam lithography process using an electron beam drawing apparatus and a dry etching apparatus.
In SEM observation, it could be confirmed that it had finished to a predetermined size, and when a laser of 980 nm was made incident and the diffracted light was projected on a screen and observed with an infrared camera, it could be confirmed that it had spread into a predetermined rectangular shape. .
(アクリル系樹脂組成物の調製)
 下記表1に示す(メタ)アクリレート化合物(4官能以上(メタ)アクリレート、2官能(メタ)アクリレート)と光重合開始剤を表1に示した量で配合し、アクリル系樹脂組成物1~13を調製した。なお、表1中のこれら化合物に関する数値は質量部を示し、(メタ)アクリレート化合物の合計量は、100質量部となる。
(Preparation of acrylic resin composition)
The acrylic resin composition 1 to 13 is prepared by blending the (meth) acrylate compound (tetra- or higher functional (meth) acrylate, bifunctional (meth) acrylate) shown in Table 1 below and the photopolymerization initiator in the amounts shown in Table 1 Was prepared. In addition, the numerical value regarding these compounds in Table 1 shows a mass part, and the total amount of a (meth) acrylate compound will be 100 mass parts.
(樹脂賦型方法)
 回折格子部の樹脂賦型は次の通り行った。
 まず前記石英DOEを金型とし、回折面にアクリル系樹脂組成物1~11及び13のうちいずれか1つを滴下した。次に透明基材としてPETフィルム(東洋紡コスモシャインA4300、100μm厚)を上からローラでラミネートし、前記アクリル系樹脂組成物を均一に広げた。さらにその状態のまま積算光量が1,000mJ/cmになるように紫外線を透明基材側から照射し、前記アクリル系樹脂組成物を硬化させた後に、透明基材と賦型層を金型から剥離し、回折光学素子を得た(実施例1~9、比較例1、2、4)。なお、アクリル系樹脂組成物12は粘度が高く、金型のキャビティに当該組成物12が充填できなかったため、硬化物が賦型できず、回折光学素子が得られなかった(比較例3)。
 得られた回折光学素子の回折格子部は、以下の周期構造1を有する。この周期構造1は、20本程度の高屈折率凸部を有する。各高屈折率凸部は、その平面視形状が直線状、その断面形状が矩形であり、高さ(H)は一定となるように形成されている。ただし、各高屈折率凸部の幅(W)は、下記の範囲内で互いに異なるように形成されている。
 [周期構造1]
 高屈折率凸部の高さ(H):500nm
 高屈折率凸部の幅(W):50nm~500nmの範囲の一定幅
(Resin molding method)
Resin molding of the diffraction grating portion was performed as follows.
First, using the above-mentioned quartz DOE as a mold, any one of acrylic resin compositions 1 to 11 and 13 was dropped on the diffractive surface. Next, a PET film (Toyobo Co., Ltd., A4300, 100 μm thick) as a transparent substrate was laminated from above with a roller, and the acrylic resin composition was spread uniformly. Furthermore, after irradiating an ultraviolet-ray from the transparent base material side so that an accumulated light quantity may be 1,000 mJ / cm < 2 > in that state, and hardening the said acrylic resin composition, a transparent base material and a shaping layer are mold-formed. Peeling was performed to obtain a diffractive optical element (Examples 1 to 9, Comparative Examples 1, 2 and 4). In addition, since the viscosity of the acrylic resin composition 12 was high and the composition 12 could not be filled in the cavity of the mold, the cured product could not be shaped, and a diffractive optical element could not be obtained (Comparative Example 3).
The diffraction grating portion of the obtained diffractive optical element has the following periodic structure 1. The periodic structure 1 has about 20 high refractive index convex portions. Each high refractive index convex portion has a linear shape in a plan view, a rectangular cross section, and a constant height (H). However, the widths (W) of the respective high refractive index convex portions are formed to be different from one another within the following range.
[Periodic structure 1]
High refractive index convex part height (H): 500 nm
Width (W) of high refractive index convex part: fixed width in the range of 50 nm to 500 nm
2.照明装置の製造及びリフロー耐性の評価
 上記実施例6及び比較例2の回折光学素子を用いて、照明装置を製造した。
 以下、図13に示す符号に即して説明する。まず、枠体11の内部空間11cに光源12を載置し、導線13を用いて光源12と導通部11aとを電気的に接続した。次に、枠体11の上に実施例6又は比較例2の回折光学素子を載置した。このようにして得られた構造体を実装基板14上に載せることにより、仮組み立て体が得られた。このとき、実装基板14上に載置されたハンダボールの位置が、枠体11の導通部11aの位置と重なるよう、位置合わせを行った。
 この仮組み立て体をリフロー炉に入れ、260℃の温度条件下で1.5分間加熱し、実装基板14と枠体11とをハンダ付けし、実施例6又は比較例2の照明装置を製造した。
2. Production of Lighting Device and Evaluation of Reflow Resistance A lighting device was produced using the diffractive optical elements of Example 6 and Comparative Example 2 described above.
The following description is based on the reference numerals shown in FIG. First, the light source 12 was placed in the internal space 11 c of the frame 11, and the light source 12 and the conductive portion 11 a were electrically connected using the conducting wire 13. Next, the diffractive optical element of Example 6 or Comparative Example 2 was placed on the frame 11. By placing the structure obtained in this manner on the mounting substrate 14, a temporary assembly was obtained. At this time, alignment was performed so that the position of the solder ball placed on the mounting substrate 14 overlapped with the position of the conductive portion 11 a of the frame 11.
The temporary assembly was placed in a reflow furnace, heated under a temperature condition of 260 ° C. for 1.5 minutes, and the mounting substrate 14 and the frame 11 were soldered to manufacture the lighting device of Example 6 or Comparative Example 2. .
 実施例6及び比較例2の照明装置に含まれる回折光学素子について、下記の方法により、それぞれリフロー前後の質量変化率及び透過率変動を調べた。
 (回折光学素子の質量変化率の算出方法)
 リフロー前、及びリフロー後における回折光学素子の質量を測定し、下記式Iから質量変化率aを算出した。
  式I  a={(M-M)/M}×100
(上記式I中、aは質量変化率(%)、Mはリフロー前の回折光学素子の質量(mg)、Mはリフロー後の回折光学素子の質量(mg)をそれぞれ示す。)
 質量変化率の許容範囲は、2.0%以下とする。
 (回折光学素子の透過率変動の算出方法)
 リフロー前、及びリフロー後における回折光学素子の透過率(%)を測定した。透過率は、紫外可視近赤外(UV-Vis-NIR)分光光度計(島津製作所社製、UV-3150)等を用いて測定した。この装置より、850nmの波長の回折光学素子の透明基材及び回折格子部の透過率を測定した。
 リフロー前における回折光学素子の透過率と、リフロー後における回折光学素子の透過率との差の絶対値を、その回折光学素子の透過率変動(%)とした。
 透過率変動の許容範囲は、1.0%以下とする。
About the diffractive optical element contained in the illuminating device of Example 6 and Comparative Example 2, the mass change rate and the transmittance | permeability fluctuation | variation before and behind reflow were investigated by the following method, respectively.
(Calculation method of mass change rate of diffractive optical element)
The mass of the diffractive optical element before and after the reflow was measured, and the mass change rate a was calculated from the following formula I.
Formula I a = {(M 0 -M 1 ) / M 0 } × 100
(In the above formula I, a represents a mass change rate (%), M 0 represents a mass of the diffractive optical element before reflow (mg), and M 1 represents a mass of the diffractive optical element after reflow (mg).)
The allowable range of mass change rate is 2.0% or less.
(Method of calculating transmittance fluctuation of diffractive optical element)
The transmittance (%) of the diffractive optical element before and after the reflow was measured. The transmittance was measured using an ultraviolet visible near infrared (UV-Vis-NIR) spectrophotometer (UV-3150 manufactured by Shimadzu Corporation). The transmittance of the transparent substrate and the diffraction grating portion of the diffractive optical element having a wavelength of 850 nm was measured from this device.
The absolute value of the difference between the transmittance of the diffractive optical element before reflow and the transmittance of the diffractive optical element after reflow was taken as the transmittance fluctuation (%) of the diffractive optical element.
The allowable range of the transmittance fluctuation is 1.0% or less.
 比較例2の照明装置に含まれる回折光学素子につき、260℃、1.5分間のリフローについて、リフロー前後の質量変化率は3.8%であり、リフロー前後の透過率変動は0.0%である。したがって、この結果は、上記質量変化率の許容範囲を超えるものである。その理由としては、比較例2の回折光学素子に使用された化合物が2官能のアクリル系樹脂であるため、瞬間的に260℃の高温環境に曝された際、この2官能のアクリル系樹脂が昇華する結果、回折格子部の微細構造が変化することが考えられる。
 これに対し、実施例6の照明装置に含まれる回折光学素子につき、260℃、1.5分間のリフローについて、リフロー前後の質量変化率は1.5%であり、リフロー前後の透過率変動は0.1%である。これらの結果はいずれも許容範囲内である。その理由としては、実施例6の回折光学素子に使用されたアクリル系樹脂組成物が、耐熱性の高い4官能以上のウレタンアクリレートを多く含むものであるため、瞬間的に260℃の高温環境に曝された場合であっても、質量変動が起こりにくく、その結果、回折格子部の微細構造の変化が最小限に抑えられることが考えられる。
Regarding the diffractive optical element included in the illumination device of Comparative Example 2, the mass change rate before and after reflow for the reflow at 260 ° C. for 1.5 minutes is 3.8%, and the transmittance fluctuation before and after the reflow is 0.0% It is. Therefore, this result is beyond the allowable range of the mass change rate. The reason is that, since the compound used for the diffractive optical element of Comparative Example 2 is a bifunctional acrylic resin, this bifunctional acrylic resin is instantaneously exposed to a high temperature environment of 260 ° C. As a result of sublimation, it is conceivable that the fine structure of the diffraction grating portion changes.
On the other hand, for the diffractive optical element included in the illumination device of Example 6, the mass change rate before and after reflow for the reflow at 260 ° C. for 1.5 minutes is 1.5%, and the transmittance change before and after the reflow is It is 0.1%. All these results are within the acceptable range. The reason is that the acrylic resin composition used for the diffractive optical element of Example 6 is exposed to a high temperature environment of 260 ° C. instantaneously because it contains a large amount of highly heat resistant tetrafunctional or higher urethane acrylate. Even in this case, mass fluctuation hardly occurs, and as a result, it is considered that the change in the fine structure of the diffraction grating portion can be minimized.
3.アクリル系樹脂組成物の硬化物の粘弾性測定
 アクリル系樹脂組成物1~13に対し、それぞれ積算光量が1,000mJ/cmになるように紫外線を照射し硬化させて、基材及び凹凸形状を有しない、厚さ0.1mm、幅5mm、長さ15mmの試験用単膜をそれぞれ得た。
 次いで、JIS K7244に準拠し、測定温度60℃及び相対湿度95%の条件、かつ下記表Aに示す測定条件に基づき動的粘弾性を測定することにより、60℃、相対湿度95%における、貯蔵弾性率E’、及び損失弾性率E”を求めた。また、当該E’及びE”の結果からtanδを算出した。測定装置はUBM製Rheogel E4000を用いた。貯蔵弾性率E’(60℃,95%)とtanδ(60℃,95%)の各値を表1に示す。
 さらに、同様の試験用単膜を用いて、JIS K7244に準拠し、測定温度30℃及び相対湿度30%の条件、かつ下記表Aに示す測定条件に基づき動的粘弾性を測定することにより、30℃、相対湿度30%における、貯蔵弾性率E’を求めた。貯蔵弾性率E’(30℃,30%)の各値を表1に示す。
3. Measurement of Viscoelasticity of Cured Product of Acrylic Resin Composition Acrylic resin compositions 1 to 13 are irradiated with ultraviolet light and cured so that the integrated light amount is 1,000 mJ / cm 2 , and the substrate and the uneven shape A test single film having a thickness of 0.1 mm, a width of 5 mm and a length of 15 mm was obtained.
Next, storage at 60 ° C. and 95% relative humidity by measuring the dynamic viscoelasticity based on JIS K 7244 and conditions of measurement temperature 60 ° C. and relative humidity 95% and measurement conditions shown in Table A below. The elastic modulus E ′ and the loss elastic modulus E ′ ′ were determined, and tan δ was calculated from the results of the E ′ and E ′ ′. The measurement apparatus used Rheogel E4000 made from UBM. The storage modulus E ′ (60 ° C., 95%) and tan δ (60 ° C., 95%) are shown in Table 1.
Furthermore, by measuring the dynamic viscoelasticity based on the conditions of a measurement temperature of 30 ° C. and a relative humidity of 30% and the measurement conditions shown in Table A below, using the same test single film, in accordance with JIS K7244. The storage elastic modulus E ′ was determined at 30 ° C. and 30% relative humidity. Each value of storage elastic modulus E ′ (30 ° C., 30%) is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
4.アクリル系樹脂組成物の硬化物の復元率測定
 上記「3.アクリル系樹脂組成物の硬化物の粘弾性測定」と同様に、アクリル系樹脂組成物1~13について、それぞれ試験用単膜を作製した。
 JIS Z2244(2003)に準拠し、下記測定条件下にてビッカース硬さ試験を実施した。具体的には、各試験用単膜表面に、下記測定条件で圧子を押し込んで、試験用単膜表面の復元率(%)を測定した。測定装置は、フィッシャーインストルメンツ社製PICODENTER HM-500を用いた。結果を表1に示す。
<測定条件>
・最大荷重 0.2mN
・荷重速度 0.2mN/10秒
・保持時間 5秒間
・荷重除荷速度 0.2mN/10秒
・圧子 ビッカース圧子
・測定温度 25℃
Figure JPOXMLDOC01-appb-T000001
4. Measurement of recovery rate of cured product of acrylic resin composition As in the case of "3. Measurement of visco-elasticity of cured product of acrylic resin composition" described above, test single films for acrylic resin compositions 1 to 13 were prepared. did.
According to JIS Z 2244 (2003), a Vickers hardness test was carried out under the following measurement conditions. Specifically, an indenter was pressed into the surface of each test single membrane under the following measurement conditions, and the recovery rate (%) of the surface of the test single membrane was measured. As a measuring apparatus, PICDENTER HM-500 manufactured by Fisher Instruments was used. The results are shown in Table 1.
<Measurement conditions>
・ Maximum load 0.2mN
・ Loading speed 0.2 mN / 10 sec ・ Holding time 5 seconds ・ Load unloading speed 0.2 mN / 10 sec ・ Indenter Vickers indenter ・ Measuring temperature 25 ° C
5.アクリル系樹脂組成物のガラス転移温度(Tg)測定
 アクリル系樹脂組成物1~13に対し、それぞれ積算光量が1,000mJ/cmになるように紫外線を照射し硬化させて、基材及び凹凸形状を有しない、厚さ0.1mm、幅5mm、長さ20mmの試験用単膜をそれぞれ得た。
 動的粘弾性試験機(セイコーインスツルメント社製、DMS6100)を用いて、上記各テストピースの長さ方向に周波数10Hzで周期的外力を加え、-20℃から200℃の範囲で測定し、それぞれの貯蔵弾性率E’、及び損失弾性率E”を求めた。当該E’及びE”の結果からtanδ=E”/E’を算出した。tanδが最大値のときの温度を、そのアクリル系樹脂組成物のガラス転移温度Tg(℃)とした。
5. Measurement of Glass Transition Temperature (Tg) of Acrylic Resin Composition With respect to acrylic resin compositions 1 to 13, ultraviolet rays are irradiated and cured so that the integrated light amount is 1,000 mJ / cm 2 , and the substrate and the unevenness are obtained. Test single films each having a thickness of 0.1 mm, a width of 5 mm, and a length of 20 mm were obtained without any shape.
Using a dynamic viscoelasticity tester (DMS6100 manufactured by Seiko Instruments Inc.), apply a periodic external force at a frequency of 10 Hz in the length direction of each test piece, and measure in the range of -20 ° C to 200 ° C. Each storage elastic modulus E ′ and loss elastic modulus E ′ ′ were determined. From the results of E ′ and E ′ ′, tan δ = E ′ ′ / E ′ was calculated. It was set as the glass transition temperature Tg (degreeC) of a system resin composition.
6.スティッキング評価及びパターンもげ評価
 実施例1~9、比較例1、2、4の回折光学素子をSEM観察した。なお、上記の通り、比較例3(アクリル系樹脂組成物12を使用)は回折光学素子が得られなかったため、以下の評価は行わなかった。
 スティッキング評価は以下の通り行った。まず、周期構造1(高さH=500nm)について、スティッキングが生じていない高屈折率凸部のうち、最も幅の小さい高屈折率凸部を特定した。そして、当該高屈折率凸部の幅を、スティッキング評価における最小幅W min(nm)とし、高さH(500nm)を当該最小幅W minで除して得られる値を、スティッキング評価における最大アスペクト比とした。最小幅W minが小さく、最大アスペクト比が大きいほど、その高屈折率凸部を形成する硬化物は適度な硬さを有するため、スティッキングが生じにくいといえる。
 パターンもげ評価は以下の通り行った。まず、周期構造1について、パターンもげが生じていない高屈折率凸部のうち、最も幅の小さい高屈折率凸部を特定した。そして、当該高屈折率凸部の幅を、パターンもげ評価における最小幅W min(nm)とした。あとは、上記スティッキング評価と同様に最大アスペクト比を算出した。最小幅W minが小さく、最大アスペクト比が大きいほど、その高屈折率凸部を形成する硬化物は適度な柔軟性を有するため、パターンもげが生じにくいといえる。
6. Sticking Evaluation and Pattern Molar Evaluation The diffractive optical elements of Examples 1 to 9 and Comparative Examples 1, 2 and 4 were observed by SEM. In addition, since the diffractive optical element was not obtained as Comparative Example 3 (using the acrylic resin composition 12) as described above, the following evaluation was not performed.
The sticking evaluation was performed as follows. First, for the periodic structure 1 (height H = 500 nm), among the high refractive index convex portions in which sticking did not occur, the high refractive index convex portion having the smallest width was specified. Then, the width of the high refractive index convex portion is taken as the minimum width W 1 min (nm) in the sticking evaluation, and the value obtained by dividing the height H (500 nm) by the minimum width W 1 min in the sticking evaluation The maximum aspect ratio was used. As the minimum width W 1 min is smaller and the maximum aspect ratio is larger, it can be said that the cured product forming the high refractive index convex portion has an appropriate hardness, so that sticking is less likely to occur.
Pattern haze evaluation was performed as follows. First, for the periodic structure 1, among the high refractive index convex portions in which no pattern burrs were generated, the high refractive index convex portion having the smallest width was specified. Then, the width of the high refractive index convex portion, and a minimum width W 2 min (nm) in the pattern Moge evaluation. After that, the maximum aspect ratio was calculated in the same manner as the above-mentioned sticking evaluation. As the minimum width W 2 min is smaller and the maximum aspect ratio is larger, it can be said that the cured product forming the high refractive index convex portion has appropriate flexibility, so that the pattern is less likely to occur.
7.考察
 下記表1は、実施例1~9、比較例1~4に用いたアクリル系樹脂組成物の組成、並びに物性値及び評価結果をまとめたものである。
 なお、下記表1中、スティッキング評価の最大幅について「>500」とあるのは、50nm~500nmの範囲内の幅(W)を有する高屈折率凸部の全てについてスティッキングが生じたことを意味する。したがって、この場合、アスペクト比は算出していない。
 また、比較例3については、上記の通り回折光学素子が得られなかったため、スティッキング評価結果及びパターンもげ評価結果の記載はない。
7. Discussion Table 1 below summarizes the compositions, physical property values, and evaluation results of the acrylic resin compositions used in Examples 1 to 9 and Comparative Examples 1 to 4.
In Table 1 below, “> 500” for the maximum width of the sticking evaluation means that sticking occurred for all of the high refractive index convex portions having the width (W) within the range of 50 nm to 500 nm. Do. Therefore, in this case, the aspect ratio is not calculated.
In addition, in Comparative Example 3, no diffractive optical element was obtained as described above, so there is no description of the sticking evaluation result and the pattern evaluation result.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1中、化合物(1)は、PETA―IPDI―PETAで示される6官能のウレタンアクリレート(Mw:1,400)である。なお、「PETA」はペンタエリスリトールトリアクリレートを、「IPDI」はイソホロンジイソシアネートを、「―」はウレタン結合を、それぞれ示す。 In Table 1, compound (1) is a hexafunctional urethane acrylate (Mw: 1,400) represented by PETA-IPDI-PETA. "PETA" indicates pentaerythritol triacrylate, "IPDI" indicates isophorone diisocyanate, and "-" indicates a urethane bond.
 表1中、化合物(2)は、下記式(i)で示される9官能のウレタンアクリレート(Mw:11,000)である。 In Table 1, the compound (2) is a 9-functional urethane acrylate (Mw: 11,000) represented by the following formula (i).
Figure JPOXMLDOC01-appb-C000003

(上記式(i)中、「PETA」はペンタエリスリトールトリアクリレートを、「HDI」はヘキサメチレンジイソシアネートを、「―」はウレタン結合を、それぞれ示す。)
Figure JPOXMLDOC01-appb-C000003

(In the above formula (i), “PETA” represents pentaerythritol triacrylate, “HDI” represents hexamethylene diisocyanate, and “-” represents a urethane bond, respectively).
 表1中、化合物(3)は、DPPA―IPDI―DPPAで示される10官能のウレタンアクリレート(Mw:2,000)である。なお、「DPPA」はジペンタエリスリトールペンタアクリレートを、「IPDI」はイソホロンジイソシアネートを、「―」はウレタン結合を、それぞれ示す。 In Table 1, compound (3) is a 10-functional urethane acrylate (Mw: 2,000) represented by DPPA-IPDI-DPPA. "DPPA" indicates dipentaerythritol pentaacrylate, "IPDI" indicates isophorone diisocyanate, and "-" indicates a urethane bond.
 表1中、化合物(4)は、下記式(ii)で示される15官能のウレタンアクリレート(Mw:2,300)である。 In Table 1, the compound (4) is a 15-functional urethane acrylate (Mw: 2,300) represented by the following formula (ii).
Figure JPOXMLDOC01-appb-C000004

(上記式(ii)中、「DPPA」はジペンタエリスリトールペンタアクリレートを、「HDI」はヘキサメチレンジイソシアネートを、「―」はウレタン結合を、それぞれ示す。)
Figure JPOXMLDOC01-appb-C000004

(In the above formula (ii), “DPPA” indicates dipentaerythritol pentaacrylate, “HDI” indicates hexamethylene diisocyanate, and “-” indicates a urethane bond, respectively).
 表1中、化合物(5)は、カプロラクトン変性HEA―水添MDI―カプロラクトン変性HEAで示される2官能のウレタンアクリレート(Mw:2,000)である。なお、「HEA」はヒドロキシエチルアクリレートを、「MDI」はジフェニルメタンジイソシアネートを、「―」はウレタン結合を、それぞれ示す。 In Table 1, the compound (5) is a bifunctional urethane acrylate (Mw: 2,000) represented by caprolactone modified HEA-hydrogenated MDI-caprolactone modified HEA. "HEA" indicates hydroxyethyl acrylate, "MDI" indicates diphenylmethane diisocyanate, and "-" indicates a urethane bond.
 表1中、化合物(6)は、1,9-ノナンジオールジアクリレート(CAS No.107481-28-7、Mw:268)である。 In Table 1, the compound (6) is 1,9-nonanediol diacrylate (CAS No. 107481-28-7, Mw: 268).
 表1中、化合物(7)は、ポリエチレングリコール#600ジアクリレート(Mw:700)である。 In Table 1, compound (7) is polyethylene glycol # 600 diacrylate (Mw: 700).
 まず、比較例1について検討する。比較例1には、硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.42×10Paであるアクリル樹脂組成物10が使用されている。
 比較例1は、パターンもげが生じていない高屈折率凸部の最小幅W minが90nmであり、最大アスペクト比が5.6である。したがって、高屈折率凸部の柔軟性については問題がない。
 しかし、比較例1は、高屈折率凸部の幅Wが500nmであってもスティッキングが生じている。これは、湿熱条件下の貯蔵弾性率(E’)が0.90×10Paよりも小さく、高屈折率凸部が柔らか過ぎるためであると考えられる。
First, Comparative Example 1 will be examined. In Comparative Example 1, an acrylic resin composition 10 having a storage elastic modulus (E ′) at 60 ° C. and a relative humidity of 95% of 0.42 × 10 9 Pa is used in Comparative Example 1.
In Comparative Example 1, the minimum width W 2 min of the high refractive index convex portion in which no pattern burrs are generated is 90 nm, and the maximum aspect ratio is 5.6. Therefore, there is no problem in the flexibility of the high refractive index convex portion.
However, in Comparative Example 1, sticking occurs even if the width W of the high refractive index convex portion is 500 nm. This is considered to be because the storage elastic modulus (E ′) under wet heat conditions is smaller than 0.90 × 10 9 Pa and the high refractive index convex portion is too soft.
 次に、比較例2について検討する。比較例2には、硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.06×10Paであるアクリル樹脂組成物11が使用されている。
 比較例2は、パターンもげが生じていない高屈折率凸部の最小幅W minが85nmであり、最大アスペクト比が5.9である。したがって、高屈折率凸部の柔軟性については問題がない。
 しかし、比較例2は、スティッキングが生じていない高屈折率凸部の最小幅W minが250nmと大きく、最大アスペクト比が2.0と小さい。したがって、比較例2の回折光学素子は、スティッキングが生じやすいと言える。これは、湿熱条件下の貯蔵弾性率(E’)が0.90×10Paよりも小さい上に、アクリル樹脂組成物11が4官能以上の(メタ)アクリレートを含まない結果、形成される高屈折率凸部が柔らか過ぎるためであると考えられる。
Next, Comparative Example 2 will be examined. The acrylic resin composition 11 whose storage elastic modulus (E ') at 60 ° C. and 95% relative humidity of the cured product is 0.06 × 10 9 Pa is used in Comparative Example 2.
In Comparative Example 2, the minimum width W 2 min of the high refractive index convex portion in which no pattern burrs are generated is 85 nm, and the maximum aspect ratio is 5.9. Therefore, there is no problem in the flexibility of the high refractive index convex portion.
However, in Comparative Example 2, the minimum width W 1 min of the high refractive index convex portion in which sticking does not occur is as large as 250 nm, and the maximum aspect ratio is as small as 2.0. Therefore, it can be said that the diffractive optical element of Comparative Example 2 is susceptible to sticking. This is formed as a result that the acrylic resin composition 11 does not contain a tetrafunctional or higher functional (meth) acrylate while the storage elastic modulus (E ') under wet heat conditions is smaller than 0.90 × 10 9 Pa. It is considered that the high refractive index convex portion is too soft.
 続いて、比較例3について検討する。比較例3には、硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)が、3.10×10Paであるアクリル樹脂組成物12が使用されている。
 上記の通り、アクリル系樹脂組成物12は粘度が高く、金型のキャビティに当該組成物12が充填できなかったため、硬化物が賦型できず、回折光学素子が得られなかった。これは、湿熱条件下の貯蔵弾性率(E’)が2.6×10Paよりも大きすぎる結果、アクリル系樹脂組成物12が柔軟性に欠けるためと考えられる。
Subsequently, Comparative Example 3 will be examined. In Comparative Example 3, an acrylic resin composition 12 whose storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of a cured product is 3.10 × 10 9 Pa is used.
As described above, since the acrylic resin composition 12 has a high viscosity and the composition 12 can not be filled in the cavity of the mold, the cured product can not be shaped, and a diffractive optical element can not be obtained. It is considered that this is because, as a result of the storage elastic modulus (E ′) under wet heat conditions being greater than 2.6 × 10 9 Pa, the acrylic resin composition 12 lacks flexibility.
 続いて、比較例4について検討する。比較例4には、硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.18×10Paであるアクリル樹脂組成物13が使用されている。
 比較例4は、パターンもげが生じていない高屈折率凸部の最小幅W minが90nmであり、最大アスペクト比が5.6である。したがって、高屈折率凸部の柔軟性については問題がない。
 しかし、比較例4は、高屈折率凸部の幅Wが500nmであってもスティッキングが生じている。これは、湿熱条件下の貯蔵弾性率(E’)が0.90×10Paよりも小さく、高屈折率凸部が柔らか過ぎるためであると考えられる。
Subsequently, Comparative Example 4 will be examined. In Comparative Example 4, an acrylic resin composition 13 whose storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of a cured product is 0.18 × 10 9 Pa is used.
In Comparative Example 4, the minimum width W 2 min of the high refractive index convex portion in which no pattern haze occurs is 90 nm, and the maximum aspect ratio is 5.6. Therefore, there is no problem in the flexibility of the high refractive index convex portion.
However, in Comparative Example 4, sticking occurs even if the width W of the high refractive index convex portion is 500 nm. This is considered to be because the storage elastic modulus (E ′) under wet heat conditions is smaller than 0.90 × 10 9 Pa and the high refractive index convex portion is too soft.
 実施例1~9の結果に示される通り、硬化後の60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下であるアクリル系樹脂組成物を用いることにより、湿熱条件下におけるスティッキングを防止でき、かつパターンもげを少なくすることができることが明らかとなった。 As shown in the results of Examples 1 to 9, the storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity after curing is 0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less It has become clear that, by using the acrylic resin composition, sticking can be prevented under moist heat conditions, and pattern burrs can be reduced.
 表1より、実施例1~9のうち、硬化後の60℃かつ相対湿度95%における貯蔵弾性率(E’)が、1.0×10Pa以上2.0×10Pa以下であり、さらに復元率が60%以上のアクリル系樹脂組成物を用いた実施例1~2及び4~6においては、その他の実施例と比較して、スティッキングが生じていない高屈折率凸部の最小幅W minが120nm以下と小さく、最大アスペクト比が4.2以上と大きいことが分かる。これは、湿熱条件下で適度な貯蔵弾性率(E’)を有し、かつ復元率が高いことにより、スティッキングが生じにくいためといえる。 From Table 1, the storage elastic modulus (E ') at 60 ° C. after curing and at a relative humidity of 95% is 1.0 × 10 9 Pa or more and 2.0 × 10 9 Pa or less from Examples 1 to 9 Further, in Examples 1 to 2 and 4 to 6 using an acrylic resin composition having a restitution ratio of 60% or more, the highest refractive index convex portion where sticking does not occur as compared with the other examples. It can be seen that the small width W 1 min is as small as 120 nm or less, and the maximum aspect ratio is as large as 4.2 or more. This can be said to be due to the fact that sticking is difficult to occur due to having a suitable storage elastic modulus (E ′) under moist heat conditions and a high recovery rate.
1 透明基材
2 回折格子部
2a 高屈折率凸部
2b 低屈折率部
2A,2B,2C,2D 部分周期構造(領域)
3 基部
5 被覆層
7 低屈折率樹脂
9 反射防止層
10 回折光学素子
11 枠体
11a 導通部
11b 開口部
11c 内部空間
12 光源
13 導線
14 実装基板
20 照明装置
21 照射光
22 スクリーン
23 照射光の照射領域
24 回折光学素子を通過した光の照射領域
25 0次光
26a,26b,26c,26d 1次光(回折光)
27 0次光照射位置
31 金型
31a 金型のキャビティ
32 アクリル系樹脂組成物
33 透明基材
34 加圧ローラ
35 活性エネルギー線照射
36 硬化膜
41 透明基材又は基部
50 スティッキングが生じた回折光学素子
51 水分
101 基材
102 破断した硬化物
103 金型
1 Transparent Substrate 2 Diffraction Grating Part 2a High Refractive Index Convex Part 2b Low Refractive Index Part 2A, 2B, 2C, 2D Partial Periodic Structure (Area)
Reference Signs List 3 base 5 coating layer 7 low refractive index resin 9 anti-reflection layer 10 diffractive optical element 11 frame 11 a conductive portion 11 b opening 11 c internal space 12 light source 13 lead 14 mounting substrate 20 illumination device 21 irradiation light 22 screen 23 irradiation irradiation light Region 24 Irradiated region of light passing through diffractive optical element 250 0th- order light 26a, 26b, 26c, 26d 1st-order light (diffracted light)
27 0th order light irradiation position 31 mold 31a mold cavity 32 acrylic resin composition 33 transparent substrate 34 pressure roller 35 active energy ray irradiation 36 cured film 41 transparent substrate or base 50 diffractive optical element with sticking occurred 51 moisture 101 substrate 102 broken cured product 103 mold

Claims (36)

  1.  光源からの光を整形する回折光学素子であって、
     透明基材の少なくとも一面側に、透明基材の表面から突出する一つ以上の高屈折率凸部と、一つ以上の低屈折率部とを配置した回折格子部を備えており、
     前記高屈折率凸部は、
     アクリル系樹脂組成物の硬化物で形成されており、
     当該硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下である、回折光学素子。
    A diffractive optical element for shaping light from a light source,
    A diffraction grating portion in which one or more high refractive index convex portions protruding from the surface of the transparent substrate and one or more low refractive index portions are arranged on at least one surface side of the transparent substrate,
    The high refractive index convex portion is
    It is formed of a cured product of an acrylic resin composition,
    A diffractive optical element, wherein the storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of the cured product is 0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less.
  2.  前記アクリル系樹脂組成物の硬化物の30℃かつ相対湿度30%における貯蔵弾性率(E’)が、1×10Pa以上5×10Pa以下である、請求項1に記載の回折光学素子。 The diffractive optical element according to claim 1, wherein the storage elastic modulus (E ') at 30 ° C and a relative humidity of 30% of the cured product of the acrylic resin composition is 1 × 10 8 Pa or more and 5 × 10 9 Pa or less. element.
  3.  前記アクリル系樹脂組成物の硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)に対する損失弾性率(E”)の比(tanδ(=E”/E’))が、0.12以下である、請求項1又は2に記載の回折光学素子。 The ratio (tan δ (= E ′ ′ / E ′)) of loss elastic modulus (E ′ ′) to storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of the cured product of the acrylic resin composition is 0. The diffractive optical element according to claim 1, which is 12 or less.
  4.  前記アクリル系樹脂組成物は、ウレタン結合を含むものである、請求項1乃至3のいずれか一項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 3, wherein the acrylic resin composition contains a urethane bond.
  5.  前記アクリル系樹脂組成物は、4官能以上の(メタ)アクリレートと、2官能の(メタ)アクリレートを含む活性エネルギー線硬化性樹脂組成物である、請求項1乃至4のいずれか一項に記載の回折光学素子。 The said acrylic resin composition is an active energy ray curable resin composition containing tetrafunctional or more (meth) acrylate and bifunctional (meth) acrylate as described in any one of Claims 1 to 4. Diffractive optical element.
  6.  前記活性エネルギー線硬化性樹脂組成物は、全硬化性成分に対し、前記4官能以上の(メタ)アクリレートを40質量%以上80質量%以下、及び、前記2官能の(メタ)アクリレートを10質量%以上60質量%以下含有する、請求項5に記載の回折光学素子。 The active energy ray-curable resin composition contains 40% by mass or more and 80% by mass or less of the tetrafunctional or higher functional (meth) acrylate and 10% by mass of the bifunctional (meth) acrylate with respect to all the curable components. The diffractive optical element according to claim 5, wherein the diffractive optical element contains at least 60% by mass.
  7.  前記4官能以上の(メタ)アクリレートは、4官能以上のウレタン(メタ)アクリレートを含む、請求項5又は6に記載の回折光学素子。 The diffractive optical element according to claim 5, wherein the tetrafunctional or higher functional (meth) acrylate comprises a tetrafunctional or higher functional urethane (meth) acrylate.
  8.  前記4官能以上のウレタン(メタ)アクリレートは、多価イソシアネート化合物のイソシアネート基と、分子中に1個の水酸基と2個以上の(メタ)アクリル基を有する化合物の水酸基とがウレタン結合した化合物である、請求項7に記載の回折光学素子。 The tetrafunctional or higher urethane (meth) acrylate is a compound in which an isocyanate group of a polyvalent isocyanate compound and a hydroxyl group of a compound having one hydroxyl group and two or more (meth) acrylic groups in the molecule form a urethane bond The diffractive optical element according to claim 7.
  9.  前記2官能の(メタ)アクリレートは、分子量(Mw)が100以上5,000以下である、請求項5乃至8のいずれか一項に記載の回折光学素子。 The diffractive optical element according to any one of claims 5 to 8, wherein the bifunctional (meth) acrylate has a molecular weight (Mw) of 100 or more and 5,000 or less.
  10.  JIS Z2244(2003)に準拠し、かつ最大荷重0.2mN、保持時間10秒の測定条件下にて行われるビッカース硬さ試験により測定される、前記アクリル系樹脂組成物の硬化物の復元率が、60%以上である、請求項1乃至9のいずれか一項に記載の回折光学素子。 The recovery rate of the cured product of the acrylic resin composition is measured by a Vickers hardness test conducted under measurement conditions of maximum load 0.2 mN and holding time 10 seconds in accordance with JIS Z 2244 (2003). The diffractive optical element according to any one of claims 1 to 9, which is 60% or more.
  11.  前記高屈折率凸部は、高さ400nm以上の部分を有する、請求項1乃至10のいずれか一項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 10, wherein the high refractive index convex portion has a portion having a height of 400 nm or more.
  12.  前記高屈折率凸部の頂上を上端と定め、当該高屈折率凸部と隣接する他の高屈折率凸部との間にある谷底の位置、又は、当該高屈折率凸部の頂上から最も近い平坦部の位置のうち、当該高屈折率凸部の頂上から近い方を下端と定めるとき、当該高屈折率凸部の下端から上端に向かって、上端と下端の高低差の半分に当たる高さの位置における当該高屈折率凸部の幅に対する当該高屈折率凸部の高さの比を、当該高屈折率凸部のアスペクト比と定義するとき、
     前記高屈折率凸部のアスペクト比は2以上である、請求項1乃至11のいずれか一項に記載の回折光学素子。
    The top of the high refractive index convex portion is defined as the upper end, and the position of the valley bottom between the high refractive index convex portion and another high refractive index convex portion adjacent thereto, or the highest from the top of the high refractive index convex portion When the lower end of the high-refractive-index convex portion is defined as the lower end of the near flat portions, the height corresponding to half the height difference between the upper end and the lower end from the lower end to the upper end of the high-refractive-index convex portion When the ratio of the height of the high refractive index convex portion to the width of the high refractive index convex portion at the position of is defined as the aspect ratio of the high refractive index convex portion,
    The diffractive optical element according to any one of claims 1 to 11, wherein an aspect ratio of the high refractive index convex portion is 2 or more.
  13.  透明基材の少なくとも一面側に、透明基材の表面から突出する一つ以上の高屈折率凸部と、一つ以上の低屈折率部とを配置した回折格子部を備え、光源からの光を整形する回折光学素子の製造方法であって、
     前記高屈折率凸部と前記低屈折率部を形成するためのキャビティ形状を有する金型を準備する工程、
     前記金型のキャビティに、アクリル系樹脂組成物であって、当該アクリル系樹脂組成物に対し積算光量が1,000mJ/cmになるように紫外線を照射し硬化させて得られる硬化物サンプルの60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下であるアクリル系樹脂組成物を充填する工程、
     前記金型のキャビティ開口部側において、前記透明基材と前記アクリル系樹脂組成物とを接触させ、かつ活性エネルギー線を照射することにより、前記アクリル系樹脂組成物を硬化させる工程、及び
     前記透明基材から前記金型を引き離すことにより、透明基材上にアクリル系樹脂組成物の硬化物で形成された高屈折率凸部を有する回折格子部を形成する工程、
    を有する、回折光学素子の製造方法。
    A light from a light source is provided with a diffraction grating portion in which one or more high refractive index convex portions protruding from the surface of the transparent base and one or more low refractive index portions are arranged on at least one surface side of the transparent base A method of manufacturing a diffractive optical element for shaping
    Preparing a mold having a cavity shape for forming the high refractive index convex portion and the low refractive index portion;
    A cured product sample obtained by irradiating an acrylic resin composition to a cavity of the mold, and curing the acrylic resin composition with ultraviolet light so that the integrated light amount is 1,000 mJ / cm 2 . Filling an acrylic resin composition having a storage elastic modulus (E ′) at 60 ° C. and a relative humidity of 95% of 0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less,
    A step of curing the acrylic resin composition by bringing the transparent substrate and the acrylic resin composition into contact with each other on the side of the cavity opening of the mold and irradiating active energy rays; Forming a diffraction grating portion having a high refractive index convex portion formed of a cured product of an acrylic resin composition on a transparent substrate by pulling the mold away from the substrate;
    A method of manufacturing a diffractive optical element, comprising:
  14.  前記アクリル系樹脂組成物の硬化物の30℃かつ相対湿度30%における貯蔵弾性率(E’)が、1×10Pa以上5×10Pa以下である、請求項13に記載の製造方法。 The manufacturing method according to claim 13, wherein a storage elastic modulus (E ') at 30 ° C and a relative humidity of 30% of a cured product of the acrylic resin composition is 1 × 10 8 Pa or more and 5 × 10 9 Pa or less. .
  15.  前記アクリル系樹脂組成物の硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)に対する損失弾性率(E”)の比(tanδ(=E”/E’))が、0.12以下である、請求項13又は14に記載の製造方法。 The ratio (tan δ (= E ′ ′ / E ′)) of loss elastic modulus (E ′ ′) to storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of the cured product of the acrylic resin composition is 0. The production method according to claim 13 or 14, which is 12 or less.
  16.  前記アクリル系樹脂組成物は、ウレタン結合を含むものである、請求項13乃至15のいずれか一項に記載の製造方法。 The production method according to any one of claims 13 to 15, wherein the acrylic resin composition contains a urethane bond.
  17.  前記アクリル系樹脂組成物は、4官能以上の(メタ)アクリレートと、2官能の(メタ)アクリレートを含む活性エネルギー線硬化性樹脂組成物である、請求項13乃至16のいずれか一項に記載の製造方法。 The said acrylic resin composition is an active energy ray curable resin composition containing tetrafunctional or more (meth) acrylate and bifunctional (meth) acrylate as described in any one of Claims 13 to 16. Manufacturing method.
  18.  前記活性エネルギー線硬化性樹脂組成物は、全硬化性成分に対し、前記4官能以上の(メタ)アクリレートを40質量%以上80質量%以下、及び、前記2官能の(メタ)アクリレートを10質量%以上60質量%以下含有する、請求項17に記載の製造方法。 The active energy ray-curable resin composition contains 40% by mass or more and 80% by mass or less of the tetrafunctional or higher functional (meth) acrylate and 10% by mass of the bifunctional (meth) acrylate with respect to all the curable components. The production method according to claim 17, wherein the content is from 60% by mass to 60% by mass.
  19.  前記4官能以上の(メタ)アクリレートは、4官能以上のウレタン(メタ)アクリレートを含む、請求項17又は18に記載の製造方法。 The manufacturing method according to claim 17 or 18, wherein the tetrafunctional or higher functional (meth) acrylate comprises a tetrafunctional or higher functional urethane (meth) acrylate.
  20.  前記4官能以上のウレタン(メタ)アクリレートは、多価イソシアネート化合物のイソシアネート基と、分子中に1個の水酸基と2個以上の(メタ)アクリル基を有する化合物の水酸基とがウレタン結合した化合物である、請求項19に記載の製造方法。 The tetrafunctional or higher urethane (meth) acrylate is a compound in which an isocyanate group of a polyvalent isocyanate compound and a hydroxyl group of a compound having one hydroxyl group and two or more (meth) acrylic groups in the molecule form a urethane bond 20. The method of claim 19, wherein
  21.  前記2官能の(メタ)アクリレートは、分子量(Mw)が100以上5,000以下である、請求項17乃至20のいずれか一項に記載の製造方法。 21. The method according to any one of claims 17 to 20, wherein the bifunctional (meth) acrylate has a molecular weight (Mw) of 100 or more and 5,000 or less.
  22.  JIS Z2244(2003)に準拠し、かつ最大荷重0.2mN、保持時間10秒の測定条件下にて行われるビッカース硬さ試験により測定される、前記アクリル系樹脂組成物の硬化物の復元率が、60%以上である、請求項13乃至21のいずれか一項に記載の製造方法。 The recovery rate of the cured product of the acrylic resin composition is measured by a Vickers hardness test conducted under measurement conditions of maximum load 0.2 mN and holding time 10 seconds in accordance with JIS Z 2244 (2003). The method according to any one of claims 13 to 21, which is 60% or more.
  23.  前記高屈折率凸部は、高さ400nm以上の部分を有する、請求項13乃至22のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 13 to 22, wherein the high refractive index convex portion has a portion having a height of 400 nm or more.
  24.  前記高屈折率凸部の頂上を上端と定め、当該高屈折率凸部と隣接する他の高屈折率凸部との間にある谷底の位置、又は、当該高屈折率凸部の頂上から最も近い平坦部の位置のうち、当該高屈折率凸部の頂上から近い方を下端と定めるとき、当該高屈折率凸部の下端から上端に向かって、上端と下端の高低差の半分に当たる高さの位置における当該高屈折率凸部の幅に対する当該高屈折率凸部の高さの比を、当該高屈折率凸部のアスペクト比と定義するとき、
     前記高屈折率凸部のアスペクト比は2以上である、請求項13乃至23のいずれか一項に記載の製造方法。
    The top of the high refractive index convex portion is defined as the upper end, and the position of the valley bottom between the high refractive index convex portion and another high refractive index convex portion adjacent thereto, or the highest from the top of the high refractive index convex portion When the lower end of the high-refractive-index convex portion is defined as the lower end of the near flat portions, the height corresponding to half the height difference between the upper end and the lower end from the lower end to the upper end of the high-refractive-index convex portion When the ratio of the height of the high refractive index convex portion to the width of the high refractive index convex portion at the position of is defined as the aspect ratio of the high refractive index convex portion,
    The method according to any one of claims 13 to 23, wherein an aspect ratio of the high refractive index convex portion is 2 or more.
  25.  透明基材の少なくとも一面側に、透明基材の表面から突出する一つ以上の高屈折率凸部と、一つ以上の低屈折率部とを配置した回折格子部を備え、光源からの光を整形する回折光学素子の高屈折率凸部を形成するためのアクリル系樹脂組成物であって、
     当該アクリル系樹脂組成物に対し積算光量が1,000mJ/cmになるように紫外線を照射し硬化させて得られる硬化物サンプルの60℃かつ相対湿度95%における貯蔵弾性率(E’)が、0.90×10Pa以上2.6×10Pa以下である、アクリル系樹脂組成物。
    A light from a light source is provided with a diffraction grating portion in which one or more high refractive index convex portions protruding from the surface of the transparent base and one or more low refractive index portions are arranged on at least one surface side of the transparent base An acrylic resin composition for forming a high refractive index convex portion of a diffractive optical element for shaping
    The storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of a cured product sample obtained by irradiating and curing ultraviolet light so that the integrated light amount is 1,000 mJ / cm 2 with respect to the acrylic resin composition is And an acrylic resin composition which is 0.90 × 10 9 Pa or more and 2.6 × 10 9 Pa or less.
  26.  前記アクリル系樹脂組成物の硬化物の30℃かつ相対湿度30%における貯蔵弾性率(E’)が、1×10Pa以上5×10Pa以下である、請求項25に記載のアクリル系樹脂組成物。 The acrylic resin according to claim 25, wherein a storage elastic modulus (E ') at 30 ° C and a relative humidity of 30% of a cured product of the acrylic resin composition is 1 × 10 8 Pa or more and 5 × 10 9 Pa or less. Resin composition.
  27.  前記アクリル系樹脂組成物の硬化物の60℃かつ相対湿度95%における貯蔵弾性率(E’)に対する損失弾性率(E”)の比(tanδ(=E”/E’))が、0.12以下である、請求項25又は26に記載のアクリル系樹脂組成物。 The ratio (tan δ (= E ′ ′ / E ′)) of loss elastic modulus (E ′ ′) to storage elastic modulus (E ′) at 60 ° C. and 95% relative humidity of the cured product of the acrylic resin composition is 0. The acrylic resin composition according to claim 25 or 26, which is 12 or less.
  28.  前記アクリル系樹脂組成物は、ウレタン結合を含むものである、請求項25乃至27のいずれか一項に記載のアクリル系樹脂組成物。 The acrylic resin composition according to any one of claims 25 to 27, wherein the acrylic resin composition contains a urethane bond.
  29.  前記アクリル系樹脂組成物は、4官能以上の(メタ)アクリレートと、2官能の(メタ)アクリレートを含む活性エネルギー線硬化性樹脂組成物である、請求項25乃至28のいずれか一項に記載のアクリル系樹脂組成物。 The said acrylic resin composition is an active energy ray curable resin composition according to any one of claims 25 to 28, which is a tetrafunctional or higher functional (meth) acrylate and a bifunctional (meth) acrylate. Acrylic resin composition.
  30.  前記活性エネルギー線硬化性樹脂組成物は、全硬化性成分に対し、前記4官能以上の(メタ)アクリレートを40質量%以上80質量%以下、及び、前記2官能の(メタ)アクリレートを10質量%以上60質量%以下含有する、請求項29に記載のアクリル系樹脂組成物。 The active energy ray-curable resin composition contains 40% by mass or more and 80% by mass or less of the tetrafunctional or higher functional (meth) acrylate and 10% by mass of the bifunctional (meth) acrylate with respect to all the curable components. 30. The acrylic resin composition according to claim 29, which contains at least 60% by mass.
  31.  前記4官能以上の(メタ)アクリレートは、4官能以上のウレタン(メタ)アクリレートを含む、請求項29又は30に記載のアクリル系樹脂組成物。 The acrylic resin composition according to claim 29 or 30, wherein the tetrafunctional or higher functional (meth) acrylate comprises a tetrafunctional or higher functional urethane (meth) acrylate.
  32.  前記4官能以上のウレタン(メタ)アクリレートは、多価イソシアネート化合物のイソシアネート基と、分子中に1個の水酸基と2個以上の(メタ)アクリル基を有する化合物の水酸基とがウレタン結合した化合物である、請求項31に記載のアクリル系樹脂組成物。 The tetrafunctional or higher urethane (meth) acrylate is a compound in which an isocyanate group of a polyvalent isocyanate compound and a hydroxyl group of a compound having one hydroxyl group and two or more (meth) acrylic groups in the molecule form a urethane bond The acrylic resin composition according to claim 31.
  33.  前記2官能の(メタ)アクリレートは、分子量(Mw)が100以上5,000以下である、請求項29乃至32のいずれか一項に記載のアクリル系樹脂組成物。 The acrylic resin composition according to any one of claims 29 to 32, wherein the bifunctional (meth) acrylate has a molecular weight (Mw) of 100 or more and 5,000 or less.
  34.  JIS Z2244(2003)に準拠し、かつ最大荷重0.2mN、保持時間10秒の測定条件下にて行われるビッカース硬さ試験により測定される、前記アクリル系樹脂組成物の硬化物の復元率が、60%以上である、請求項25乃至33のいずれか一項に記載のアクリル系樹脂組成物。 The recovery rate of the cured product of the acrylic resin composition is measured by a Vickers hardness test conducted under measurement conditions of maximum load 0.2 mN and holding time 10 seconds in accordance with JIS Z 2244 (2003). The acrylic resin composition according to any one of claims 25 to 33, which is 60% or more.
  35.  外部から給電可能な導通部と出光面となる開口部を有する枠体、光源、及び、前記請求項1乃至12のいずれか一項に記載の回折光学素子を備え、前記枠体の内部空間に前記光源が固定されるとともに前記導通部と接続され、前記開口部に前記回折光学素子が配置されている、照明装置。 A frame, a light source, and a diffractive optical element according to any one of claims 1 to 12, further comprising: An illumination device, wherein the light source is fixed and connected to the conduction portion, and the diffractive optical element is disposed in the opening.
  36.  前記光源は波長780nm以上の赤外線を放射する光源である、請求項35に記載の照明装置。 The lighting device according to claim 35, wherein the light source is a light source that emits infrared light having a wavelength of 780 nm or more.
PCT/JP2018/024734 2017-06-30 2018-06-28 Diffraction optical element, manufacturing method therefor, acrylic resin composition for forming diffraction optical element, and illumination device WO2019004406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-129802 2017-06-30
JP2017129802 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004406A1 true WO2019004406A1 (en) 2019-01-03

Family

ID=64742396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024734 WO2019004406A1 (en) 2017-06-30 2018-06-28 Diffraction optical element, manufacturing method therefor, acrylic resin composition for forming diffraction optical element, and illumination device

Country Status (2)

Country Link
JP (2) JP7186524B2 (en)
WO (1) WO2019004406A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384618A (en) * 2022-03-23 2022-04-22 深圳珑璟光电科技有限公司 Two-dimensional grating and forming method thereof, optical waveguide and near-to-eye display device
WO2023032804A1 (en) * 2021-09-06 2023-03-09 デクセリアルズ株式会社 Method for manufacturing electronic device, and cover glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004515A (en) * 2002-03-29 2004-01-08 Dainippon Printing Co Ltd Material for forming fine rugged pattern, method of forming fine rugged pattern, transfer foil, optical article, and stamper
JP2005084561A (en) * 2003-09-11 2005-03-31 Dainippon Printing Co Ltd Fine pattern formed body and its manufacturing method
JP2007178724A (en) * 2005-12-28 2007-07-12 Mitsubishi Rayon Co Ltd Method of manufacturing molding having uneven microstructure on its surface, and antireflection article
JP2015087762A (en) * 2013-09-25 2015-05-07 大日本印刷株式会社 Reflection member
JP2016112869A (en) * 2014-12-18 2016-06-23 三菱レイヨン株式会社 Producing method of transparent film
JP2017065173A (en) * 2015-09-30 2017-04-06 旭化成株式会社 Mold and processing laminate
WO2017119400A1 (en) * 2016-01-08 2017-07-13 大日本印刷株式会社 Diffractive optical element, and light irradiation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644429B2 (en) * 2004-02-02 2011-03-02 三菱瓦斯化学株式会社 Photochromic lens and manufacturing method thereof
JP4380396B2 (en) * 2004-04-09 2009-12-09 住友ベークライト株式会社 UV-curable paint and transparent plastic substrate with paint film
JP2012131900A (en) * 2010-12-21 2012-07-12 Sumitomo Bakelite Co Ltd Cured product of ultraviolet-curable resin composition, resin laminate and ultraviolet-curable resin composition
JP2014081413A (en) * 2012-10-12 2014-05-08 Fujifilm Corp Polarizing plate and liquid crystal display
CN105209940A (en) * 2013-03-28 2015-12-30 三菱丽阳株式会社 Optical film, optical film manufacturing method and surface light-emitting body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004515A (en) * 2002-03-29 2004-01-08 Dainippon Printing Co Ltd Material for forming fine rugged pattern, method of forming fine rugged pattern, transfer foil, optical article, and stamper
JP2005084561A (en) * 2003-09-11 2005-03-31 Dainippon Printing Co Ltd Fine pattern formed body and its manufacturing method
JP2007178724A (en) * 2005-12-28 2007-07-12 Mitsubishi Rayon Co Ltd Method of manufacturing molding having uneven microstructure on its surface, and antireflection article
JP2015087762A (en) * 2013-09-25 2015-05-07 大日本印刷株式会社 Reflection member
JP2016112869A (en) * 2014-12-18 2016-06-23 三菱レイヨン株式会社 Producing method of transparent film
JP2017065173A (en) * 2015-09-30 2017-04-06 旭化成株式会社 Mold and processing laminate
WO2017119400A1 (en) * 2016-01-08 2017-07-13 大日本印刷株式会社 Diffractive optical element, and light irradiation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032804A1 (en) * 2021-09-06 2023-03-09 デクセリアルズ株式会社 Method for manufacturing electronic device, and cover glass
CN114384618A (en) * 2022-03-23 2022-04-22 深圳珑璟光电科技有限公司 Two-dimensional grating and forming method thereof, optical waveguide and near-to-eye display device
CN114384618B (en) * 2022-03-23 2022-06-10 深圳珑璟光电科技有限公司 Two-dimensional grating and forming method thereof, optical waveguide and near-to-eye display device

Also Published As

Publication number Publication date
JP2023029913A (en) 2023-03-07
JP7186524B2 (en) 2022-12-09
JP2019012266A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
US10591133B2 (en) Diffractive optical element and light irradiation apparatus
US10766169B2 (en) Resin mold
JP5413195B2 (en) Fine pattern formed body, method for producing fine pattern formed body, optical element, and photocurable composition
JP2023029913A (en) Diffraction optical element formation acrylic resin composition
CN107111002B (en) Optical body, optical film adhesive body, and method for producing optical body
JP4736953B2 (en) Fly-eye lens sheet with light-shielding layer and method for manufacturing the same, transmissive screen, and rear projection image display device
EP2827361A1 (en) Mold, resist laminate and manufacturing process therefor, and microrelief structure
KR20170032382A (en) Multilayer optical adhesives and methods of making same
WO2014021088A1 (en) Light extraction film for el elements, surface light emitting body, and method for producing light extraction film for el elements
JP5144826B1 (en) Optical element
EP1921470A2 (en) Water Repellent Anti-Reflective Structure and Method of Manufacturing the Same
JP2012118501A (en) Optical element
JP2020531908A (en) Diffractive light guide plate and manufacturing method of diffractive light guide plate
JP5803208B2 (en) Optical sheet, surface light source device, and image display device
JP2013061612A (en) Optical element
EP2980610B1 (en) Optical film production method and optical film production device
CN112424649A (en) Resin laminated optical body, light source unit, method for producing resin laminated optical body, method for producing light source unit, optical unit, light irradiation device, and image display device
JPH1039118A (en) Ray-directional sheet, and directional surface light source formed by using the same
JP2017126064A (en) Diffractive optical element and light irradiation device
JP2021110779A (en) Diffractive optical element, lighting device, and method of manufacturing diffractive optical element
JP2017191190A (en) Method for producing optical film
JP2012003074A (en) Optical film and optical device using the same
JP2016090945A (en) Optical member, method for manufacturing optical member, surface light source device, image source unit, and liquid crystal display device
JP6024800B2 (en) Optical sheet, surface light source device, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825004

Country of ref document: EP

Kind code of ref document: A1