WO2019004160A1 - Light modulating member, sun visor, and movable body - Google Patents

Light modulating member, sun visor, and movable body Download PDF

Info

Publication number
WO2019004160A1
WO2019004160A1 PCT/JP2018/024102 JP2018024102W WO2019004160A1 WO 2019004160 A1 WO2019004160 A1 WO 2019004160A1 JP 2018024102 W JP2018024102 W JP 2018024102W WO 2019004160 A1 WO2019004160 A1 WO 2019004160A1
Authority
WO
WIPO (PCT)
Prior art keywords
light control
light
layer
transparent
control member
Prior art date
Application number
PCT/JP2018/024102
Other languages
French (fr)
Japanese (ja)
Inventor
秀 森戸
悠子 中西
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2019503592A priority Critical patent/JPWO2019004160A1/en
Publication of WO2019004160A1 publication Critical patent/WO2019004160A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a light control member, a sun visor including the light control member, and a movable body including the sun visor.
  • a light control member capable of changing the light transmittance is known.
  • a method of adjusting the light transmittance of the light control member a method using liquid crystal as shown in Patent Document 1 (JP6071094B) can be considered.
  • the light control member of the system using the liquid crystal can be simply configured, the response of switching between the transmission state and the light shielding state is quick, and very high light shielding performance can be secured.
  • liquid crystal is disposed between the transparent substrates for protection. It is desirable that the transparent substrate be made of resin so as not to be damaged and that the edges of the fragments of the transparent substrate are not sharpened at the time of breakage.
  • the first invention is made in consideration of such a point, and an object thereof is to suppress a local color change in a light control member.
  • color unevenness in which colors are dispersed in a rainbow shape may be observed.
  • Rainbow unevenness is not preferable because it deteriorates the visibility through the light control member.
  • the second invention and the third invention are made in consideration of such a point, and an object thereof is to suppress the occurrence of rainbow unevenness in a light control member using liquid crystal.
  • the first invention aims to suppress local discoloration in a light control member.
  • the light control member of the first invention is A pair of transparent substrates, A light control cell disposed between the pair of transparent substrates; It comprises: two bonding layers disposed between the transparent base and the light control cell and bonding the transparent base and the light control cell; The light control cell can adjust the visible light transmittance by electronic control,
  • the storage elastic modulus of the bonding layer is 6 ⁇ 10 6 Pa or less at 1 ° C. or more and 30 ° C. or less.
  • the storage elastic modulus of the bonding layer may be 1.4 ⁇ 10 6 Pa or less at 1 ° C. or more and 30 ° C. or less.
  • the thickness of at least one of the bonding layers may be 50 ⁇ m or more.
  • the storage elastic modulus of the bonding layer may be 3 ⁇ 10 4 Pa or more at 1 ° C. or more and 30 ° C. or less.
  • the storage elastic modulus of the bonding layer may be 1 ⁇ 10 5 Pa or more at 1 ° C. or more and 30 ° C. or less.
  • the light control member of the first invention may further include an easy adhesion layer disposed between the transparent substrate and the bonding layer.
  • the light control member of the first invention may further include a barrier layer disposed between the transparent substrate and the bonding layer.
  • the light control member of the first invention may further include an antireflective layer on the side of the transparent substrate opposite to the side on which the bonding layer is disposed.
  • the light control cell may include a film liquid crystal of a TN type, a VA type, an IPS type or a GH type.
  • the light control cell may include a TN type, a VA type, an IPS type, or a GH type glass liquid crystal.
  • the sun visor of the first invention comprises any of the light control members of the first invention.
  • the movable body of the first invention comprises any one of the light control members of the first invention or the sun visor of the first invention.
  • the first invention it is possible to suppress local discoloration in the light control member.
  • a second invention and an object of the present invention are to suppress the occurrence of rainbow unevenness in a light control member using liquid crystal.
  • the light control member of the second invention is A transparent substrate, A light control cell laminated on the transparent substrate, The light control cell can adjust the visible light transmittance by electronic control, The difference between the maximum value and the minimum value of retardation in the region where the light control cells of the transparent base material overlap is 100 nm or less.
  • the transparent substrate comprises polycarbonate,
  • the average value of retardation in a region where the light control cells of the transparent base material overlap may be 2000 nm or more.
  • the transparent substrate comprises polycarbonate,
  • the average value of retardation in a region where the light control cells of the transparent base material overlap may be 400 nm or less.
  • melt volume flow rate of the transparent substrate may be equal to or less than 10 cm 3/10 min.
  • the transparent substrate includes a curved surface,
  • the curvature radius of the curved surface of the transparent substrate may be 10 cm or more.
  • the sun visor of the second invention comprises any of the light control members of the second invention.
  • the movable body of the second invention comprises any one of the light control members of the second invention or the sun visor of the second invention.
  • the second invention it is possible to suppress the occurrence of rainbow unevenness in the light control member.
  • a third aspect of the present invention is to suppress the occurrence of rainbow unevenness in a light control member using liquid crystal.
  • the light control member of the third invention is A transparent support, A light control unit supported by the transparent support;
  • the light control unit can adjust the visible light transmittance by electronic control,
  • the transparent support has a base layer having optical anisotropy, and a high retardation layer laminated on the base layer, The retardation of the high retardation layer is 4000 nm or more.
  • the slow axis direction of the high retardation layer and the transmission axis direction of the two polarizing plates are 40 ° or more between the two polarizing plates in which the high retardation layer is disposed in cross nicol Transmittance of light having a wavelength of 550 nm or more and 650 nm or less that transmits the two polarizing plates in a direction inclined 45 ° from the normal direction of the high retardation layer in a state where the light is arranged at an angle of 50 ° or less [%
  • the difference between the maximum value and the minimum value of the spectrum distribution of [1] may be 10 [%] or more.
  • the difference between the maximum value and the minimum value of the spectral distribution of the transmittance [%] may be 10 [%] or more.
  • the transparent support further includes a functional layer provided at a position separated from the light control unit from the base layer and the high retardation layer,
  • the functional layer may have at least one of an antireflective function and an antiglare function.
  • a sun visor according to a third aspect of the present invention includes any one of the light control members according to the third aspect.
  • the movable body of the third invention comprises any one of the light control members of the third invention or the sun visor of the third invention.
  • the third invention it is possible to suppress the occurrence of rainbow unevenness in the light control member.
  • FIG. 1 is a perspective view schematically showing an automobile in which a sun visor equipped with a light control member is disposed.
  • FIG. 2 is a schematic cross-sectional view showing a light control member according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a light control cell of the light control member.
  • FIG. 4 is a schematic exploded perspective view showing a light control member according to a second embodiment.
  • FIG. 5 is a schematic cross-sectional view for explaining a light control cell of the light control member.
  • FIG. 6 is a view for explaining the manufacturing process of the light control member.
  • FIG. 7 is a view for explaining the manufacturing process of the light control member.
  • FIG. 8 is a view for explaining the manufacturing process of the light control member.
  • FIG. 1 is a perspective view schematically showing an automobile in which a sun visor equipped with a light control member is disposed.
  • FIG. 2 is a schematic cross-sectional view showing a light control member according to the first embodiment
  • FIG. 9 is a view for explaining rainbow unevenness generated in the light control member.
  • FIG. 10 is a graph for explaining that the polarization state changes due to reflection.
  • FIG. 11 is a diagram for explaining that the polarization state changes due to reflection.
  • FIG. 12 is a schematic exploded perspective view showing a light control member of the third embodiment.
  • FIG. 13 is a schematic cross-sectional view for explaining the light control unit.
  • FIG. 14 is a view for explaining the manufacturing process of the light control member.
  • FIG. 15 is a diagram for describing a manufacturing process of the light control member.
  • FIG. 16 is a view for explaining the manufacturing process of the light control member.
  • FIG. 17 is a diagram for explaining a method of measuring rainbow unevenness.
  • FIG. 10 is a graph for explaining that the polarization state changes due to reflection.
  • FIG. 11 is a diagram for explaining that the polarization state changes due to reflection.
  • FIG. 12 is a schematic exploded perspective view showing a light control member of
  • FIG. 18 is a graph of the transmittance of each wavelength of the base material layer measured in the state shown in FIG.
  • FIG. 19 is a graph of the transmittance of each wavelength of the high retardation layer measured in the state shown in FIG.
  • FIG. 20 is a graph of the transmittance of each wavelength of the transparent support measured in the state shown in FIG.
  • FIG. 21 is a schematic cross-sectional view for explaining a modified example of the light control unit.
  • FIG. 22 is a schematic cross-sectional view for explaining another modification of the light control unit.
  • FIG. 1 shows a sun visor 10 provided with a light control member 20 as an example to which the light control member 20 is applied.
  • a sun visor 10 is disposed inside the automobile 1 at a position facing the windshield.
  • the sun visor 10 can reduce sunlight and the like incident through the windshield, and can provide an occupant of the automobile 1 with a good visibility.
  • the light control member 20 can adjust the transmittance of visible light, and can be, for example, 25% or more when the transmittance is adjusted high, and 10% or less when the transmittance is adjusted low. As shown in FIG. 2, the light control member 20 is provided between the first transparent base 21 and the second transparent base 22, which are a pair of transparent bases, and the first transparent base 21 and the second transparent base 22.
  • a second light-adjusting cell 30 disposed in the second light-transmitting device, the first bonding layer 23 for bonding the first transparent base 21 and the light-modulating cell 30, and a second bonding for connecting the second transparent base 22 and the light-modulating cell 30 And a layer 24.
  • the first transparent base 21 and the second transparent base 22 will be described.
  • the first transparent base 21 and the second transparent base 22 keep the shape of the light control cell 30 constant, and protect the light control cell 30 from scratches and dirt.
  • the first transparent base 21 and the second transparent base 22 have rigidity.
  • the bending strength of the first transparent base 21 and the second transparent base 22 is preferably 1000 MPa or more. The bending strength is defined in JIS K 7171 and can be measured, for example, by a universal testing machine manufactured by Instron.
  • the 1st transparent base material 21 and the 2nd transparent base material 22 are formed with resin, and contain the polycarbonate which is resin with high glass transition temperature. By forming with resin, the 1st transparent substrate 21 and the 2nd transparent substrate 22 may become difficult to be damaged. It is preferable that the first transparent base 21 and the second transparent base 22 be formed so as to have a Charpy impact value of 1 kJ / m 2 or more.
  • the molecular weight of the polycarbonate contained in the first transparent substrate 21 and the second transparent substrate 22 is preferably 17,000 or more, and more preferably 20,000 or more.
  • first transparent base 21 and the second transparent base 22 are formed of such a material, even if the first transparent base 21 and the second transparent base 22 are damaged, the first transparent base is formed. The edges of the fragments of the material 21 and the second transparent substrate 22 are not sharpened, and the risk of injury to the user of the light control member 20 can be reduced.
  • having "transparency” has transparency of the grade which can see through the other side from the one side of the said transparent base material via the 1st transparent base material 21 and the 2nd transparent base material 22.
  • it means having a visible light transmittance of 30% or more, more preferably 70% or more.
  • the visible light transmittance is measured at a wavelength of 380 nm to 780 nm using a spectrophotometer (“UV-3100 PC” manufactured by Shimadzu Corporation, a product conforming to JIS K 0115) at each wavelength. Identified as the average value of
  • the 1st transparent base material 21 and the 2nd transparent base material 22 have a thickness of 1 mm or more and 5 mm or less. With such a thickness, it is possible to obtain the first transparent base 21 and the second transparent base 22 which are excellent in strength and optical properties.
  • the first transparent base 21 and the second transparent base 22 may be made of the same material and the same, or may be different from each other in at least one of the material and the configuration.
  • the first bonding layer 23 and the second bonding layer 24 will be described.
  • the first bonding layer 23 bonds the first transparent base 21 and the light control cell 30, and the second bonding layer 24 bonds the second transparent base 22 and the light control cell 30.
  • the first bonding layer 23 and the second bonding layer 24 are so-called OCA (Optical Clear Adhesive) or OCR (Optical Clear Resin). That is, the first bonding layer 23 and the second bonding layer 24 are layers of an optically transparent adhesive.
  • the first bonding layer 23 and the second bonding layer 24 preferably have substantially the same refractive index as the first transparent base 21 and the second transparent base 22. In this case, reflection of light at each interface between the first transparent base 21 and the second transparent base 22 and the first bonding layer 23 and the second bonding layer 24 can be reduced.
  • the first bonding layer 23 and the second bonding layer 24 are in a room temperature environment (for example, 1 ° C. or more and 30 ° C. or less, in particular, in order to avoid uneven distribution of liquid crystals in the liquid crystal cell 35
  • the storage elastic modulus at 15 ° C. or more and 25 ° C. or less is 6 ⁇ 10 6 Pa or less, preferably 1.4 ⁇ 10 6 Pa or less.
  • the first bonding layer 23 and the second bonding layer 24 have a storage elastic modulus of 3 ⁇ in a room temperature environment in order to prevent generation of air bubbles by peeling from the first transparent base 21 and the second transparent base 22. It is preferably 10 4 Pa or more, and more preferably 1 ⁇ 10 5 Pa or more. The relationship between these defects and the storage modulus will be described in detail later.
  • the storage elastic modulus can be measured by a dynamic viscoelasticity measurement method according to JIS K 7244-1 by a solid viscoelasticity analyzer ("RSA-III" manufactured by TA Instruments). .
  • the storage elastic modulus was measured at a temperature of ⁇ 50 to 150 ° C., a frequency of 1 Hz, an attachment mode of torsional shear mode, and a temperature rising rate of 5 ° C./min.
  • the thickness of at least one of the first bonding layer 23 and the second bonding layer 24 is preferably 50 ⁇ m or more.
  • air which has entered between the bonding layer and the member having rigidity is difficult to escape between the bonding layer and the member having rigidity, and enters as air bubbles. . Therefore, for example, when the first bonding layer 23 laminated with the second transparent base material 22 and the light control cell 30 is laminated on the first transparent base material 21 when the first bonding layer 23 is thinner than 50 ⁇ m, the first transparent Since both the base 21 and the second transparent base 22 have rigidity, air bubbles can easily enter between the first bonding layer 23 and the first transparent base 21.
  • the non-rigid member when laminating a rigid member and a non-rigid member through the bonding layer, the non-rigid member is curved even if air enters between the bonding layer and the non-rigid member. It is possible to induce the discharge of air by laminating while letting the air flow. Therefore, for example, even when the second bonding layer 24 is thinner than 50 ⁇ m, when laminating the light control cell 30 on the second bonding layer 24, air bubbles are generated between the second bonding layer 24 and the second transparent base 22. It is hard to get in.
  • the first bonding layer 23 and the second bonding layer 24 preferably have a thickness of 1000 ⁇ m or less.
  • the first bonding layer 23 and the second bonding layer 24 may be made of the same material and the same, or may be different from each other in at least one of the material and the configuration.
  • the light control cell 30 includes a first polarizing plate 31, a second polarizing plate 32, and a liquid crystal cell 35 disposed between the first polarizing plate 31 and the second polarizing plate 32.
  • the light control cell 30 can change the alignment state of the liquid crystal of the liquid crystal cell 35 by electronic control such as voltage application. By changing the orientation of the liquid crystal, the polarization state of light traveling between the first polarizing plate 31 and the second polarizing plate 32 is controlled. Thereby, for example, it is possible to adjust the visible light transmittance of light traveling between the first polarizing plate 31 and the second polarizing plate 32 arranged in cross nicol or parallel nicol.
  • the thickness of the light control cell 30 is 100 micrometers or more and 800 micrometers or less, for example.
  • Cross Nicol means that the transmission axes of the two polarizers are orthogonal to each other
  • parallel Nicol means that the transmission axes of the two polarizers are parallel to each other
  • the first polarizing plate 31 and the second polarizing plate 32 decompose the incident light into two orthogonal polarization components (p polarization component and s polarization component) and vibrate in one direction (direction parallel to the transmission axis)
  • Linearly polarized light component for example, s-polarized light component
  • which transmits the linearly polarized light component for example, p-polarized light component
  • liquid crystal cell 35 for example, liquid crystal of VA (Vertical Alignment) system, TN (Twisted Nematic) system, IPS (In Plane Switching) system or FFS (Fringe Field Switching) system can be used.
  • the liquid crystal cell 35 may be a film liquid crystal in which liquid crystal is held by using a film made of resin as a base material, or may be a glass liquid crystal in which liquid crystal is held by using thin film glass as a base.
  • the light control cell 30 has a wire 30 c.
  • the wiring 30 c is connected to, for example, a control device (not shown) provided in the automobile 1 and provides drive power and control signals to the dimming cell 30.
  • the orientation of the liquid crystal of the liquid crystal cell 35 can be changed by performing electronic control such as applying a voltage via the wiring 30 c to the light control cell 30.
  • the polarization direction of light transmitted through the liquid crystal cell 35 may change.
  • the first polarizing plate 31 and the second polarizing plate 32 are arranged in cross nicol, light can be transmitted through the second polarizing plate 32 by rotating the polarization direction by 90 °.
  • the light control cell 30 can adjust the visible light transmittance by electronic control.
  • the light control member 20 is not limited to the illustrated example, and may be provided with other functional layers expected to exhibit a specific function.
  • one functional layer may exhibit two or more functions, and, for example, the first transparent base 21, the second transparent base 22, the first bonding layer 23 of the light control member 20, the first Some function may be given to at least one of the second bonding layer 24 and the light control cell 30.
  • a hard coat (HC) function having scratch resistance
  • an infrared ray shielding (reflection) function an ultraviolet ray shielding (reflection) function
  • an antifouling function etc.
  • the second bonding layer 24 is laminated on the second transparent base material 22.
  • the second bonding layer 24 is provided by being applied by, for example, a dispenser. Even if a level difference is generated on the surface of the second transparent base material 22 laminated with the second bonding layer 24, the level difference is compensated by the application of the second bonding layer 24. Air bubbles are less likely to occur between the second bonding layer 24 and the second bonding layer 24.
  • the light control cell 30 is stacked on the second bonding layer 24. Since the light control cell 30 does not have rigidity, it can be laminated while pushing out the air between the light control cell 30 and the second bonding layer 24. Therefore, regardless of the thickness of the second bonding layer 24, bubbles are unlikely to be generated between the second bonding layer 24 and the dimming cell 30.
  • the first bonding layer 23 is stacked on the light control cell 30.
  • the first bonding layer 23 is provided by being applied by, for example, a dispenser. Even if there is a step in the light control cell 30, the step is compensated by the application of the first bonding layer 23, so that bubbles are unlikely to occur between the light control cell 30 and the first bonding layer 23.
  • the first transparent substrate 21 is laminated on the first bonding layer 23. Since the second transparent base material 22 laminated on the first transparent base material 21 and the first bonding layer 23 has rigidity, a step is generated on the surface of the first transparent base material 21 stacked on the first bonding layer 23 If you do, air may get into the steps. However, if the first bonding layer 23 has a sufficient thickness, the first bonding layer 23 deforms and thereby enters the step, which makes it easy to discharge the air in the step. Therefore, it is preferable that the thickness of the first bonding layer 23 be a sufficient thickness, specifically 50 ⁇ m or more, in order not to leave air bubbles in the step.
  • Each of the above steps is preferably performed in a low pressure environment or a vacuum environment. By this, it can suppress that a bubble mixes in the interface between each layer of the light control member 20. As shown in FIG.
  • such a light control member 20 may have local discoloration.
  • the local discoloration of the light control member 20 causes pressure to be applied to the light control cell due to the deformation of the transparent base material formed of resin, and the liquid crystal is unevenly distributed in the liquid crystal cell of the light control cell. was estimated to occur. Furthermore, it confirmed that the local discoloration of the light control member could be effectively suppressed by the countermeasure corresponding to this presumed cause.
  • Deformation of the transparent substrate formed of resin can be caused by heat.
  • the light control member 20 when used inside a car 1 as a sun visor, it may be exposed to high temperatures.
  • the glass transition temperature of the first transparent base 21 and the second transparent base 22 formed of resin is about 100 to 150.degree. Therefore, the first transparent base 21 and the second transparent base 22 may deform when exposed to a temperature of about 80.degree.
  • the pressure applied to the light control cell 30 due to the deformation of the first transparent base 21 and the second transparent base 22 due to the heat, the liquid crystal is unevenly distributed in the liquid crystal cell 35 of the light control cell 30. It is thought that it is causing a color change.
  • the first transparent group is obtained. Even if the material 21 and the second transparent base material 22 were deformed by heat, it was confirmed that no local color change occurs in the light control member 20.
  • air bubbles may be generated between the first transparent base 21 and the first bonding layer 23 and between the second transparent base 22 and the second bonding layer 24.
  • the air bubbles are generated by being introduced when laminating the first transparent base material 21 and the first bonding layer 23 as described above, and the light control member 20 is exposed to high temperature However, it was estimated that it might occur.
  • the first transparent base material 21 and the second transparent base material 22 may be deformed and peeled off from the first bonding layer 23 and the second bonding layer 24. Air can be generated as air enters.
  • the moisture and the like contained in the first transparent base 21 and the second transparent base 22 become a gas, and the gas is the first transparent base 21 and the first bonding layer 23 It is thought that air bubbles may be generated by peeling and entering between the second transparent base material 22 and the second bonding layer 24 and between the second transparent base material 22 and the second bonding layer 24.
  • the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 in a room temperature environment is 3 ⁇ 10 4 Pa or more, preferably 1 ⁇ 10 5 Pa or more, even if exposed to high temperature It was confirmed that peeling between the first transparent base 21 and the first bonding layer 23 and between the second transparent base 22 and the second bonding layer 24 was prevented, and the generation of air bubbles was suppressed.
  • the light control member 20 includes the pair of transparent bases 21 and 22, the light control cell 30 disposed between the pair of transparent bases 21 and 22, and the transparent base
  • the light control cell 30 includes two bonding layers 23 and 24 disposed between the materials 21 and 22 and the light control cell 30, and bonding the transparent base members 21 and 22 and the light control cell 30.
  • the visible light transmittance can be adjusted by control, and the storage elastic modulus of the bonding layers 23 and 24 is 6 ⁇ 10 6 Pa or less at 1 ° C. or more and 30 ° C. or less. According to such a light control member 20, even if the first transparent base 21 and the second transparent base 22 are deformed by heat, the deformation of the first transparent base 21 and the second transparent base 22 can be reduced.
  • the light control cell 30 is not affected by the deformation of the first transparent base 21 and the second transparent base 22, and it is possible to make it difficult to cause uneven distribution of liquid crystal in the liquid crystal cell 35 of the light control cell 30. That is, it is possible to make it difficult for the light control member 20 to cause a local color change.
  • the thickness of at least one of the first bonding layer 23 and the second bonding layer 24 is 50 ⁇ m or more.
  • the thickness of the first bonding layer 23 is 50 ⁇ m or more. According to such a light control member 20, even if a step is generated on the surface of the first transparent base 21 laminated with the first bonding layer 23, the step is compensated by the deformation of the first bonding layer 23. Air can not enter the level difference, and air bubbles do not easily enter. Therefore, generation of air bubbles in the light control member 20 can be suppressed.
  • the storage elastic modulus of the bonding layers 23 and 24 is 3 ⁇ 10 4 Pa or more at 1 ° C. or more and 30 ° C. or less. According to such a light control member 20, peeling is prevented between the first transparent base material 21 and the first bonding layer 23 and between the second transparent base material 22 and the second bonding layer 24 so that air bubbles can be prevented. Can be suppressed.
  • the light control member 20 may be provided between the first transparent substrate 21 and the first bonding layer 23 and / or between the second transparent substrate 22 and the second bonding layer 24. You may further provide the easily bonding layer arrange
  • the easy adhesion layer 21 a is disposed between the first transparent base 21 and the first bonding layer 23.
  • the easy adhesion layer 21a is a layer for improving the adhesion and adhesiveness of the members on both sides of the easy adhesion layer.
  • the adhesion between the easy adhesion layer 21 a and the first transparent base 21 and the adhesion between the easy adhesion layer 21 a and the first bonding layer 23 are the adhesion between the first transparent base 21 and the first bonding layer 23. It is stronger than that. Also in the case where the easy adhesion layer is disposed between the second transparent substrate 22 and the second bonding layer 24, the adhesion between the easy adhesion layer and the second transparent substrate 22 and the easy adhesion layer and the second adhesion layer are also possible. The adhesion to the bonding layer 24 is stronger than the adhesion to the second transparent substrate 22 and the second bonding layer 24.
  • the adhesion strength of the two layers can be measured by a peeling test in accordance with JIS K 6854, for example, a universal tester manufactured by Instron.
  • the easy adhesion layer is made of a transparent material, such as a resin containing acrylic or urethane.
  • the thickness of the easily bonding layer is, for example, 3 ⁇ m or more and 50 ⁇ m or less.
  • the adhesion and adhesiveness between the first transparent base 21 and the first bonding layer 23 and / or the second transparent base 22 and the second bonding layer 24 are improved,
  • the peeling between the first transparent base 21 and the first bonding layer 23 and between the second transparent base 22 and the second bonding layer 24 can be prevented. Therefore, the generation of air bubbles between the first bonding layer 23 and between the second transparent base material 22 and the second bonding layer 24 can be suppressed.
  • the light control member 20 is configured between the first transparent base 21 and the first bonding layer 23 and / or between the second transparent base 22 and the second bonding layer 24.
  • the device may further comprise a barrier layer disposed on In the example shown in FIG. 2, the barrier layer 22 a is disposed between the second transparent substrate 22 and the second bonding layer 24.
  • the barrier layer 22 a is a layer for blocking the gas generated from the second transparent substrate 22 and preventing the second bonding layer 24 from being affected by the gas.
  • the water vapor permeability of the barrier layer 22a is preferably 1 g / m 2 ⁇ da or less.
  • the barrier layer blocks the gas generated from the first transparent base 21, and the first bonding layer is formed. It is possible to prevent 23 from being influenced by gas.
  • the water vapor transmission rate can be measured at a temperature of 40 ° C. and a humidity of 100% RH using a water vapor transmission rate measuring apparatus (manufactured by MOCON, PERMATRAN-W3 / 31).
  • the barrier layer is made of a transparent material, and a vapor deposited film of silicon oxycarbide (SiOC), for example, is used.
  • the thickness of the barrier layer in this case is, for example, 50 nm or more and 1 ⁇ m or less.
  • the production method may be produced by another method such as coating.
  • a gas such as moisture generated from the first transparent base 21 and / or the second transparent base 22 acts as the first bonding layer 23 and the like. And / or reaching the second bonding layer 24 can be suppressed. Therefore, it is possible to suppress air bubbles which may be generated by causing the gas to peel off and enter between the first transparent base 21 and the first bonding layer 23 and between the second transparent base 22 and the second bonding layer 24. Can.
  • the light control member 20 of the first embodiment described above is the side opposite to the side on which the first bonding layer 23 of the first transparent base material 21 is disposed, and / or the second side of the second transparent base material 22. You may further provide the anti-reflective layer arrange
  • the anti-reflection layer 21 b is disposed on the side opposite to the side on which the first bonding layer 23 of the first transparent substrate 21 is disposed.
  • the antireflection layer is a layer for suppressing the reflection of visible light on the surface of the light control member 20 to improve the visible light transmittance.
  • the antireflective layer is made of a transparent material, for example, a material having a refractive index lower than that of the first transparent substrate 21 and the second transparent substrate 22.
  • the antireflective layer may also have microprotrusions arranged at a pitch less than the shortest wavelength of visible light (for example, 380 nm).
  • the thickness of the antireflective layer is, for example, 20 ⁇ m or more and 500 ⁇ m or less in the case of bonding a film provided with the antireflective layer, and 10 ⁇ m or less in the case of coating or deposition.
  • the liquid crystal cell 35 of the light control cell 30 uses a liquid crystal of a method that uses two polarizing plates 31 and 32 such as the VA method.
  • liquid crystal of GH Guest Host
  • the transmittance can be controlled by changing the state in which the liquid crystal composition and the dichroic dye composition are randomly aligned and the state in which so-called twist alignment is performed by voltage control.
  • the liquid crystal cell 35 which is a liquid crystal of GH system, it is not necessary to arrange one or both of the first polarizing plate 31 and the second polarizing plate 32 as shown in FIG.
  • the light control member 20 receives the supply of power from the outside, but a solar cell (not shown) is provided on a part of the light control member 20, and this solar cell May be configured to supply power. Furthermore, the irradiation light amount may be determined based on the output of the solar cell, and the transmittance may be automatically controlled accordingly.
  • the application of the light control member 20 is not limited to the sun visor.
  • the light control member 20 in which at least one of the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 and the thickness of the first bonding layer 23 are different is prepared.
  • the 1st transparent substrate 21 and the 2nd transparent substrate 22 in light control member 20 of an example and a comparative example consist of polycarbonate, and thickness is 3 mm.
  • the storage elastic modulus can be adjusted, for example, by adding a tackifying resin such as terpene or a plasticizer such as dioctyl phthalate (DOP) or dioctyl adipate (DOA).
  • a tackifying resin such as terpene
  • a plasticizer such as dioctyl phthalate (DOP) or dioctyl adipate (DOA).
  • the storage elastic modulus can be adjusted by adjusting the amount of the crosslinking agent or increasing or decreasing the number of functional groups of the main polymer of the material of the bonding layer.
  • the results of bubble generation after the heat resistance test and the uneven distribution of the liquid crystal after the heat resistance test are shown in Tables 1 and 2 below.
  • the occurrence of air bubbles and the uneven distribution of liquid crystal were not observed with the magnifying glass but with A, and was not observed visually, but was observed with the magnifying glass with B visually C is added to each item.
  • Tables 1 to 3 referred to in the following the result of bubble generation immediately after production is set as result 1
  • the result of bubble generation after heat resistance test is set as result 2
  • result of uneven distribution of liquid crystal after heat resistance test Are shown as result 3, respectively.
  • the uneven distribution of the liquid crystal can be suppressed by setting the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 to 60 ⁇ 10 5 Pa or less.
  • the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 is 14 ⁇ 10 5 Pa or less. It is understood.
  • the generation of air bubbles can be suppressed by the thickness of the first bonding layer 23 being 50 ⁇ m or more.
  • the thickness of the first bonding layer 23 is 75 ⁇ m or more, which is preferable for suppressing the generation of air bubbles.
  • the easy adhesion layer between the transparent base material and the bonding layer, the adhesion and adhesiveness between the transparent base material and the bonding layer are improved, and the transparent base material and the bonding layer It is possible to prevent peeling between them. Therefore, it is considered that the generation of air bubbles after the heat resistance test can be suppressed by arranging the easy adhesion layer.
  • the barrier layer between the transparent base and the bonding layer, it is possible to suppress that the gas generated from the transparent base reaches the bonding layer. Therefore, it is thought that the air bubbles which may be generated by gas coming in between the transparent base material and the bonding layer can be suppressed. That is, by disposing the barrier layer, it is considered that the generation of air bubbles after the heat resistance test can be suppressed.
  • Example 10 an easy adhesion layer made of an acrylic resin is provided as an additional layer, and an easy adhesion layer made of a urethane resin is provided as an additional layer. It is set as Example 11.
  • Example 12 in which a barrier layer was provided as an additional layer in Example 6 was taken.
  • Example 13 what provided the easily bonding layer as an additional layer in Example 7 was set as Example 13, and what provided the barrier layer as an additional layer was set as Example 14.
  • FIG. Furthermore, what provided the easily bonding layer as an additional layer in the comparative example 3 was set as the comparative example 6, and what provided the barrier layer as an additional layer was set as the comparative example 7.
  • the glass transition temperature (Tg) of the transparent base material made of polycarbonate used in the above-mentioned Examples 1 to 9 is 145 ° C.
  • the transparent substrate is a transparent substrate containing polycarbonate as the main component but also containing other components, the glass transition temperature may be lowered.
  • Example 3 to 5 the component configurations of the transparent base material were changed, and light control members having a glass transition temperature of 125 ° C. were produced, and were set to Examples 15 to 17.
  • the results of Examples 3-5 and 15-17 are shown in Table 4 below.
  • the sun visor 10 shown in FIG. 1 can be illustrated as an example to which the light control member 120 is applied. As shown in FIG. 1, a sun visor 10 is disposed inside the automobile 1 at a position facing the windshield 5. The sun visor 10 can reduce sunlight and the like incident through the windshield 5 and can provide a good view to the occupants of the automobile 1.
  • the light control member 120 can adjust the transmittance of visible light. As shown in FIG. 4, the light control member 120 is laminated on the first transparent substrate 121 and the second transparent substrate 122, which are a pair of substrates, and the first transparent substrate 121 and the second transparent substrate 122. Light control cell 130, a first bonding layer 123 for bonding the first transparent base material 121 and the light control cell 130, and a second bonding layer 124 for bonding the second transparent base material 122 and the light control cell 130 And.
  • the first transparent base material 121 and the second transparent base material 122 are for maintaining the shape of the light control cell 130 constant and protecting the light control cell 130 from scratches and dirt. It is preferable that the first transparent substrate 121 and the second transparent substrate 122 contain polycarbonate. When the first transparent base material 121 and the second transparent base material 122 contain polycarbonate, the retardation of the first transparent base material 121 and the second transparent base material 122 described later can be easily controlled and manufactured. . Moreover, in the light control member 120 according to the second embodiment, the molecular weight of polycarbonate contained in the first transparent base material 121 and the second transparent base material 122 is preferably 17,000 or more, and 20,000 or more.
  • the first transparent substrate 121 and the second transparent substrate 122 are formed of such a material, even if the first transparent substrate 121 and the second transparent substrate 122 are broken, the first transparent substrate 121 is formed. And the edge of the fragments of the second transparent substrate 122 is not sharpened, and the risk of injury to the user of the light control member 120 can be reduced.
  • the present invention is not limited to this, and the first transparent base 121 and the second transparent base 122 may be formed of a glass plate.
  • the user of the light control member 120 is injured when the first transparent substrate 121 and the second transparent substrate 122 are broken.
  • having "transparency” has transparency of the grade which can see through the other side from the one side of the said transparent base material through the 1st transparent base material 121 and the 2nd transparent base material 122.
  • transparency means having a visible light transmittance of 30% or more, more preferably 70% or more.
  • the visible light transmittance is measured at a wavelength of 380 nm to 780 nm using a spectrophotometer (“UV-3100 PC” manufactured by Shimadzu Corporation, a product conforming to JIS K 0115) at each wavelength. Identified as the average value of
  • the 1st transparent base material 121 and the 2nd transparent base material 122 have a thickness of 0.1 mm or more and 10 mm or less, preferably 0.5 mm or more and 5 mm or less. If it is such thickness, the 1st transparent substrate 121 and the 2nd transparent substrate 122 which were excellent in intensity and an optical characteristic can be obtained.
  • the first transparent substrate 121 and the second transparent substrate 122 may be made of the same material and the same, or may be different from each other in at least one of the material and the configuration.
  • the first transparent base 121 and the second transparent base 122 are preferably manufactured by extrusion. According to extrusion molding, the first transparent base material 121 and the second transparent base material 122 can be formed in a uniform and flat plate shape. In order to manufacture in plate shape by extrusion molding, it is preferable that the melt volume flow rate of the 1st transparent substrate 121 and the 2nd transparent substrate 122 is 10 cm ⁇ 3 > / 10 minutes or less. The melt volume flow rate is measured at a temperature of 300 ° C. and a weight of 1.2 kg according to ISO1133.
  • the first bonding layer 123 and the second bonding layer 124 will be described. As described above, the first bonding layer 123 bonds the first transparent base material 121 and the light control cell 130, and the second bonding layer 124 bonds the second transparent base material 122 and the light control cell 130. .
  • the first bonding layer 123 and the second bonding layer 124 are so-called OCA (Optically Clear Adhesive) or OCR (Optically Clear Resin). That is, the first bonding layer 123 and the second bonding layer 124 are transparent and have adhesiveness.
  • the first bonding layer 123 and the second bonding layer 124 preferably have substantially the same refractive index as the first transparent base 121 and the second transparent base 122. In this case, reflection of light at each interface between the first transparent base 121 and the second transparent base 122 and the first bonding layer 123 and the second bonding layer 124 can be reduced.
  • the first bonding layer 123 and the second bonding layer 124 preferably have a thickness of 25 ⁇ m to 1000 ⁇ m. If the thickness is smaller than 25 ⁇ m, the distortion of the light control member can not be absorbed by the bonding surface, so that defects of the air bubble and the light control member (for example, color unevenness due to a liquid crystal GAP failure) tend to occur. On the other hand, if the thickness is thicker than 1000 ⁇ m, it is disadvantageous in terms of mass productivity, cost and strength.
  • the first bonding layer 123 and the second bonding layer 124 may be made of the same material and the same, or may be different from each other in at least one of the material and the configuration.
  • the light control cell 130 includes a first polarizing plate 131, a second polarizing plate 132, and a liquid crystal cell 135 disposed between the first polarizing plate 131 and the second polarizing plate 132. Including.
  • the first polarizing plate 131 and the second polarizing plate 132 decompose the incident light into two orthogonal polarization components (p polarization component and s polarization component) and vibrate in one direction (direction parallel to the transmission axis)
  • a linearly polarized light component eg, p-polarized light component
  • a linearly polarized light component eg, s-polarized light component
  • liquid crystal cell 135 for example, liquid crystal of VA (Vertical Alignment) system, TN (Twisted Nematic) system, IPS (In Plane Switching) system or FFS (Fringe Field Switching) system can be used.
  • the light control cell 130 can change the alignment of the liquid crystal of the liquid crystal cell 135 by electronic control such as voltage application. By changing the orientation of the liquid crystal, the polarization state of light traveling between the first polarizing plate 131 and the second polarizing plate 132 is controlled. Thereby, for example, it is possible to adjust the visible light transmittance of light traveling between the first polarizing plate 131 and the second polarizing plate 132 arranged in cross nicol or parallel nicol.
  • Cross Nicol means that the transmission axes of the two polarizers are orthogonal to each other
  • parallel Nicol means that the transmission axes of the two polarizers are parallel to each other
  • the thickness of the light control cell 130 is 100 micrometers or more and 800 micrometers or less, for example.
  • the liquid crystal cell 135 may be a film liquid crystal in which liquid crystal is held by using a film made of resin as a base material, or may be a glass liquid crystal in which liquid crystal is held by using thin film glass as a base. In the case of film liquid crystal, the liquid crystal cell 135 can be provided with flexibility.
  • the light control cell 130 has a wire 130 c.
  • the wiring 130 c is connected to a control device (not shown) provided in the automobile 1 and provides drive power and control signals to the dimming cell 130.
  • the wiring 130c is preferably formed of a transparent conductor. In this case, the wiring 130c is not substantially visible from the outside, and the appearance of the light control member 120 can be improved.
  • the orientation of the liquid crystal of the liquid crystal cell 135 can be changed by performing electronic control such as applying a voltage through the wiring 130 c to the light control cell 130.
  • the polarization direction of light transmitted through the liquid crystal cell 135 may change.
  • the first polarizing plate 131 and the second polarizing plate 132 are disposed in cross nicol, light can be transmitted through the second polarizing plate 132 by rotating the polarization direction by 90 °.
  • the light control cell 130 can adjust the visible light transmittance by electronic control.
  • the first transparent base material 121, the second transparent base material 122, the first bonding layer 123, the second bonding layer 124, and the light control cell 130 which are components of the light control member 120, It has substantially the same shape.
  • each component of the light adjustment member 120 has a rectangular shape in plan view.
  • the light control cell 130 includes a region overlapping with the first transparent substrate 121 and the second transparent substrate 122.
  • the light control cell 130 does not protrude from the first transparent base 121 and the second transparent base 122 in a plan view. That is, the dimension of the light control cell 130 in plan view is preferably smaller than the dimensions of the first transparent base 121 and the second transparent base 122.
  • the light control member 120 is not limited to the illustrated example, and may be provided with other functional layers expected to exhibit a specific function.
  • one functional layer may exhibit two or more functions, and, for example, the first transparent substrate 121, the second transparent substrate 122, the first bonding layer 123, and the first light modulation member 120 may be used. Some function may be given to at least one of the second bonding layer 124 and the light control cell 130.
  • functions that can be imparted to the light control member 120 include an anti-reflection (AR) function, a hard coat (HC) function having scratch resistance, an infrared ray shielding (reflection) function, an ultraviolet ray shielding (reflection) function, A dirty function etc. can be illustrated.
  • the first transparent base 121 and the second transparent base 122 are manufactured in a flat plate shape by extrusion molding.
  • the first bonding layer 123 is bonded to one side of the first transparent base 121.
  • the second bonding layer 124 is bonded to one side of the second transparent base 122.
  • the second transparent base 122 is bonded to one surface of the light control cell 130 via the second bonding layer 124, whereby the light control cell 130 is connected to the second transparent base 122.
  • the light control cell 130 is provided with a wire 130 c.
  • the first transparent base 121 is bonded to the other surface of the light control cell 130, whereby the light control cell 130 is stacked on the first transparent base 121.
  • This bonding is realized by the first bonding layer 123 previously bonded to the first transparent substrate 121.
  • Each of the above steps is preferably performed in a low pressure environment, preferably in a vacuum environment.
  • the retardation is the refractive index (n x in the direction of the slow axis) in which the refractive index at each position in the plane of the first transparent substrate 121 is measured using light having a measurement wavelength of 548.2 nm. product of the refractive index in the direction (fast axis direction) and (the difference between n y) (n x -n y ), the thickness of the first transparent substrate 121 (d) orthogonal to) the slow axis direction It is defined by (d ⁇ (n x ⁇ n y )) and is expressed in units of length (nm).
  • the transparent base material 155 having retardation is disposed between the incident side polarizing plate 151 and the output side polarizing plate 152 and light L1 is made incident from the incident side polarizing plate 151 side, it is transparent.
  • the amount of light emitted from the output side polarizing plate 152 changes according to the retardation of the transparent substrate 155 as compared to the case where the substrate 155 is not disposed. That is, when the transparent substrate 155 having retardation is disposed between the incident side polarizing plate 151 and the output side polarizing plate 152, the visible light transmittance from the incident side polarizing plate 151 to the output side polarizing plate 152 is changed.
  • the variation of the visible light transmittance varies depending on the wavelength. Therefore, the wavelength at which the visible light transmittance is high changes according to the retardation of the transparent substrate 155, and the light emitted from the output side polarizing plate 152 is visually recognized in a color according to the retardation of the transparent substrate 155.
  • the polarization state of light transmitted through the transparent substrate 155 varies in accordance with the retardation at each position in the plane of the transparent substrate 155. For this reason, at each position in the plane of the transparent substrate 155, the wavelength at which the visible light transmittance is high changes. Therefore, as shown in FIG. 9, when the transparent base material 155 having a variation in retardation is disposed between the incident side polarizing plate 151 and the output side polarizing plate 152 and light L1 is made incident from the incident side polarizing plate 151 side, The light emitted from the output side polarizing plate 152 has high transmittance of light of different wavelengths at each position of the output side polarizing plate 152.
  • the light emitted from each position of the output side polarizing plate 152 becomes light of different wavelengths, and the color varies, and is recognized as rainbow unevenness.
  • Such rainbow unevenness is not dependent on the incident side polarizing plate 151 and the output side polarizing plate 152, and for example, even if the incident side polarizing plate 151 and the output side polarizing plate 152 are arranged in cross nicol, they are arranged in parallel nicols Even if, it will occur.
  • the rainbow unevenness is caused by the fact that light in a polarized state is transmitted through a member having variation in retardation and is further changed in the polarized state.
  • a polarizer such as a polarizing plate as shown in FIG. 9, light in a polarized state is generated in the following case.
  • a polarization component p polarization component
  • s polarization component a polarization component perpendicular to the incidence surface.
  • the rates are different.
  • light incident at a certain angle has a reflectance of zero for the polarization component parallel to the plane of incidence. That is, when incident light is reflected, the polarization state changes. This angle is known as the Brewster's angle. For example, at an interface of glass and air, light incident at an incident angle of about 60 degrees changes its polarization state when it is reflected.
  • the light L3 incident on the windshield 5 at about 60 degrees changes its polarization state when it is reflected.
  • the transparent substrate on the side facing the windshield 5 here, the first transparent substrate 121
  • Rainbow unevenness occurs in accordance with the variation in retardation in the area overlapping the light control cell 130 of FIG.
  • the suppression of the occurrence of rainbow unevenness can be achieved by avoiding the dispersion of the wavelength at which the transmittance increases at each position in the plane of the transparent substrate.
  • the variation in retardation of the first transparent substrate 121 is set to 100 nm or less, it is possible to suppress the occurrence of variation in color that is visually recognized as rainbow unevenness.
  • the change in visible light transmittance for each wavelength with respect to the change in retardation decreases. That is, even if there is a variation in retardation, the visible light transmittance for each wavelength hardly changes. Therefore, when the variation in retardation is sufficiently small, rainbow unevenness does not occur as much as visually confirmed.
  • the average of retardation in a region overlapping with the light control cell 130 of the first transparent substrate 121 is 400 nm or less, preferably 200 nm or less, the variation of visible light transmittance for each wavelength according to the retardation is It becomes sufficiently small, and rainbow unevenness due to variations in retardation can be effectively made inconspicuous.
  • the change in visible light transmittance for each wavelength with respect to the change in retardation increases.
  • the retardation increases, light of a plurality of wavelengths is more likely to be transmitted, so the transmitted light is likely to be mixed and perceived. That is, even if there is variation in retardation, the visible light transmittance for each wavelength fluctuates greatly, so the transmittance for another wavelength is high even if the transmittance for a certain wavelength is low. For this reason, it is hard to visually recognize the change of the color mixing of the light to permeate
  • the average of retardation in a region overlapping the light control cell 130 of the first transparent substrate 121 is 2000 nm or more, preferably 3000 nm or more, the variation of visible light transmittance for each wavelength according to retardation is Even if the visible light transmittance fluctuates due to the dispersion of retardation, the color mixture is visually recognized and it is difficult to visually recognize a change in color. That is, rainbow unevenness can be effectively made inconspicuous.
  • region which overlaps with the light control cell 130 of the 1st transparent base material 121 is measured as follows. First, the transparent base material 155 as an object as shown in FIG. 9 is disposed between the incident side polarizing plate 151 and the output side polarizing plate 152, and light is made to enter from the incident side polarizing plate 151 side. Then, when observed from the side of the exit-side polarizing plate, the portion of the transparent base material 155 that is the object of the change in color when viewed visually is divided by 6 cm square.
  • the incident side polarizing plate 151 and the output side polarizing plate 152 are arranged in parallel nicol, for example.
  • the divided portion of the target transparent base material 155 is divided into three in the longitudinal direction and three in the lateral direction, and the retardation is measured at the respective central portions of the divided portions. That is, nine points of retardation are measured at equal intervals in the transparent substrate 155 partitioned by 6 cm square.
  • the retardation can be measured by a parallel Nicol rotation method using KOBRA-WR (manufactured by Oji Scientific Instruments Co., Ltd.) or by a rotation analyzer method using RETS-1250VA (manufactured by Otsuka Electronics Co., Ltd.).
  • the difference between the maximum value and the minimum value of the nine measured retardations is taken as the variation of retardation. Also, the average of the nine measured retardation values is taken as the average of the retardation.
  • the light control member 120 of the second embodiment includes the first transparent base material 121, the light control cell 130 stacked on the first transparent base material 121, the first transparent base material 121, and the light control member 120. And a first bonding layer 123 for bonding to the optical cell 130.
  • the light control cell 130 can adjust the visible light transmittance by electronic control.
  • the difference between the maximum value and the minimum value of retardation in the region where the light control cells 130 of the first transparent base material 121 overlap is 100 nm or less. According to such a light control member 120, since the variation in retardation is small, it is possible to avoid that the wavelength of light with high transmittance is different at each position in the plane of the first transparent base material 121.
  • the transmittance of the first transparent base material 121 has less variation due to wavelength, so that light emitted from the light control cell 130 has rainbow unevenness.
  • the occurrence can be effectively suppressed. That is, the generation of rainbow unevenness caused by the retardation of the first transparent base material 121 in the light control member 120 can be suppressed.
  • the first transparent base material 121 contains polycarbonate, and the average value of retardation in the region where the light control cells 130 of the first transparent base material 121 overlap is 2000 nm. It is above. According to such a light control member 120, since the retardation of the first transparent substrate 121 is sufficiently large, the change in visible light transmittance for each wavelength with respect to the change in retardation is large, and the transmitted light is mixed and perceived It will be easier. For this reason, even if the visible light transmittance fluctuates due to the variation in retardation, it becomes difficult to visually recognize a change in color that may cause rainbow unevenness. That is, the generation of rainbow unevenness caused by the retardation of the first transparent base material 121 in the light control member 120 can be suppressed.
  • the first transparent base material 121 contains polycarbonate, and the average value of retardation in a region where the light control cells 130 of the first transparent base material 121 overlap is 400 nm. It is below. According to such a light control member 120, since the retardation of the first transparent base material 121 is sufficiently small, the variation of the visible light transmittance for each wavelength with respect to the variation of the retardation becomes small. For this reason, even if the visible light transmittance fluctuates due to the variation in retardation, it becomes difficult to visually recognize a change in color that may cause rainbow unevenness. That is, the generation of rainbow unevenness caused by the retardation of the first transparent base material 121 in the light control member 120 can be suppressed.
  • the first transparent base material 121 and the second transparent base material 122 are stacked on both sides of the light control cell 130, but only on one side of the light control cell 130.
  • a transparent substrate may be laminated. That is, for example, only the first transparent base material 121 may be stacked on the light control cell 130.
  • the liquid crystal cell 135 of the light control cell 130 uses a liquid crystal of a system that uses two polarizing plates 131 and 132 such as the VA system.
  • liquid crystal of GH (Guest Host) type may be used as the light control cell 130.
  • the transmittance can be controlled by changing the state in which the liquid crystal composition and the dichroic dye composition are randomly aligned and the state in which so-called twist alignment is performed by voltage control. Therefore, it is not necessary to use a polarizing plate in the GH type liquid crystal.
  • one side of the light control member 120 because the dichroic dye composition contained in the GH liquid crystal functions as a polarizer.
  • the retardation of the first transparent base material 121 varies, when light in a polarized state is incident from the side of the first transparent base material 121, rainbow unevenness occurs as in the second embodiment described above.
  • the first transparent base material 121 and the second transparent base material 122 are manufactured by extrusion molding
  • the first transparent base material 121 and the second transparent base material 122 are , May be manufactured by injection molding.
  • Transparent substrates produced by injection molding may have a three-dimensional shape.
  • the transparent substrate produced by injection molding may include a curved surface as a three-dimensional shape.
  • variation in retardation arises in a transparent base material, and it becomes easy to produce a rainbow nonuniformity in the light control member 120.
  • the radius of curvature of the curved surface of the transparent substrate is preferably large.
  • the radius of curvature of the curved surface of the transparent base material in the area overlapping the light control cell 130 is preferably 10 cm or more, and more preferably 20 cm or more.
  • variation in the retardation of the transparent base material manufactured by injection molding can be made small, for example by performing compression molding at the time of injection molding.
  • OCA is employed as the first bonding layer 123 and the second bonding layer 124 for bonding the first transparent base material 121 and the second transparent base material 122 to the light control cell 130.
  • the first transparent base material 121 and the second transparent base material 122 can be bonded to both surfaces of the light control cell 130 in one process, there is no need to bond each surface one by one, and the manufacturing process is simplified. be able to.
  • the light control member 120 receives power supply from the outside, but a solar cell (not shown) is provided on a part of the light control member 120, and this solar cell May be configured to supply power. Furthermore, the irradiation light amount may be determined based on the output of the solar cell, and the transmittance may be automatically controlled accordingly.
  • the application of the light control member 120 is not limited to the sun visor.
  • Examples 1 to 6 and Comparative Example 1 are transparent substrates produced by extrusion.
  • Example 7 and Comparative Examples 2 to 6 are transparent substrates manufactured by injection molding.
  • the transparent substrate 155 was disposed between the incident side polarizing plate 151 and the output side polarizing plate 152.
  • the incident side polarizing plate 151 and the output side polarizing plate 152 were arranged in cross nicol.
  • the portion of the transparent base material that is the subject of the most visual change in color was divided by 6 cm square, and retardation was measured at regular intervals at nine points on the transparent base plate partitioned by 6 cm square.
  • the variation and average of retardation measured at 9 points and the results of Examples and Comparative Examples visually observed for rainbow unevenness are shown in Table 5 below.
  • the variation in retardation represents the difference between the maximum value and the minimum value of the nine measured retardations
  • the average of the retardations represents the average of the measured nine retardation values.
  • the sun visor 10 shown in FIG. 1 can be illustrated as an example to which the light control member 220 is applied. As shown in FIG. 1, a sun visor 10 is disposed inside the automobile 1 at a position facing the windshield 5. The sun visor 10 can reduce sunlight and the like incident through the windshield 5 and can provide a good view to the occupants of the automobile 1.
  • the light control member 220 can adjust the transmittance of visible light. As shown in FIG. 12, the light control member 220 is supported by the first transparent support 230 and the second transparent support 240, which are a pair of supports, and the first transparent support 230 and the second transparent support 240. Light control unit 250, a first bonding layer 223 bonding the first transparent support 230 and the light control unit 250, and a second bond connecting the second transparent support 240 and the light control unit 250. And a layer 224.
  • the first transparent support 230 and the second transparent support 240 are members for protecting the light control unit 250 from scratches and dirt while supporting the light control unit 250 so as to maintain a constant shape.
  • the first transparent support 230 includes a first base layer 231, a first high retardation layer 232 laminated on the first base layer 231, a first base layer 231, and a first base layer 231. And a first functional layer 233 provided at a position farther from the light adjustment unit 250 than the high retardation layer 232.
  • the second transparent support 240 also has a second base layer 241. In the example shown in FIG.
  • the first high retardation layer 232 is provided between the first base layer 231 and the first functional layer 233, and the first functional layer 233. Is a layer forming one surface of the light control member 220.
  • the transparent support provided with the first functional layer 233 that is, the first transparent support 230, uses the light control member 220 in order to effectively exhibit the function of the first functional layer 233 as described later by the user. Sometimes, it is preferable that the side facing the user is provided.
  • having "transparency” has transparency which can see through the other side from the one side of the said transparent support body via the 1st transparent support body 230 and the 2nd transparent support body 240.
  • transparency means having a visible light transmittance of 30% or more, more preferably 70% or more.
  • the visible light transmittance is measured at a wavelength of 380 nm to 780 nm using a spectrophotometer (“UV-3100 PC” manufactured by Shimadzu Corporation, a product conforming to JIS K 0115) at each wavelength. Identified as the average value of
  • the first and second base layers 231 and 241 are layers serving as the base of the first and second transparent supports 230 and 240, and are formed of a resin having a sufficient thickness.
  • the resin forming the first and second base layers 231 and 241 generally has optical anisotropy. That is, the first and second base layers 231 and 241 have retardation.
  • the retardation of the first and second base layers 231 and 241 is 50 nm or more and 12000 nm or less.
  • the retardation of the first and second base material layers 231 and 241 may vary by 100 nm or more at each position in the plane.
  • the retardation means the refractive index (n x ) in the direction (slow axis direction) in which the refractive index at each position in the plane of the base layer is measured using light having a measurement wavelength of 548.2 nm.
  • the retardation is measured at nine points at equal intervals in the first and second base material layers 231 and 241 partitioned by 6 cm square, and the maximum value and the minimum value of the nine measured retardations are measured.
  • Means the difference between The retardation can be measured by a parallel Nicol rotation method using KOBRA-WR (manufactured by Oji Scientific Instruments Co., Ltd.) or by a rotation analyzer method using RETS-1250VA (manufactured by Otsuka Electronics Co., Ltd.).
  • the first and second base layers 231 and 241 preferably contain at least one of acrylic and polycarbonate, and more preferably contain acrylic.
  • the first and second base layers 231 and 241 may have a configuration in which polycarbonate is laminated between two acrylics.
  • the molecular weight of the acrylic or polycarbonate contained in the first and second base material layers 231 and 241 is preferably 17,000 or more, and more preferably 20,000 or more.
  • the 1st and 2nd substrate layers 231 and 241 may be formed with a glass film. If the first and second base layers 231 and 241 are formed of glass film, there is a risk that the user of the light control member 220 may be injured when the first and second base layers 231 and 241 are broken. In order to reduce, it is preferable to provide an anti-scattering sheet on the surface.
  • the first and second base layers 231 and 241 preferably have a thickness of 0.1 mm or more and 10 mm or less, preferably 0.5 mm or more and 5 mm or less. With such a thickness, it is possible to obtain the first and second base layers 231 and 241 excellent in strength and optical properties.
  • the first and second base layers 231 and 241 may be identical to each other with the same material, or may be different from each other in at least one of the material and the structure.
  • the first and second base layers 231 and 241 can be manufactured by injection molding. Manufactured by injection molding, the first and second base layers 231 and 241 can have a three-dimensional shape, for example, a curved surface. However, when manufactured by injection molding, the retardation of the first and second base material layers 231 and 241 tends to vary. The variation in retardation of the first and second base material layers 231 and 241 can be reduced to a certain extent by, for example, compression molding at the time of injection molding, but the variation in retardation can not be eliminated.
  • the first high retardation layer 232 has higher retardation than the first base layer 231.
  • the retardation of the first high retardation layer 232 is, for example, 4000 nm or more on average.
  • the first high retardation layer 232 contains a resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), for example.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the first high retardation layer 232 can be manufactured by stretching such a resin. Since the first high retardation layer 232 has retardation, it has a slow axis direction and a fast axis direction.
  • the thickness of the first high retardation layer 232 is, for example, 10 ⁇ m or more and 300 ⁇ m or less.
  • the first functional layer 233 may have at least one of an antireflective function (also referred to as an AR function or an LR function) and an antiglare function (also referred to as an AG function). In addition, the first functional layer 233 may have other functions.
  • the thickness of the first functional layer 233 is, for example, 50 nm or more and 20 ⁇ m or less.
  • the first bonding layer 223 and the second bonding layer 224 will be described. As described above, the first bonding layer 223 bonds the first transparent support 230 and the light control unit 250, and the second bonding layer 224 bonds the second transparent support 240 and the light control unit 250. .
  • the first bonding layer 223 and the second bonding layer 224 are so-called OCA (Optically Clear Adhesive) or OCR (Optically Clear Resin). That is, the first bonding layer 223 and the second bonding layer 224 are transparent and have adhesiveness.
  • the first bonding layer 223 and the second bonding layer 224 preferably have substantially the same refractive index as the first transparent support 230 and the second transparent support 240. In this case, the reflection of light at each interface between the first transparent support 230 and the second transparent support 240, and the first bonding layer 223 and the second bonding layer 224 can be reduced.
  • the first bonding layer 223 and the second bonding layer 224 preferably have a thickness of 25 ⁇ m to 1000 ⁇ m. If the thickness is smaller than 25 ⁇ m, the distortion of the light control member can not be absorbed by the bonding surface, so that defects of the air bubble and the light control member (for example, color unevenness due to a liquid crystal GAP failure) tend to occur. On the other hand, if the thickness is thicker than 1000 ⁇ m, it is disadvantageous in terms of mass productivity, cost and strength.
  • the first bonding layer 223 and the second bonding layer 224 may be made of the same material and the same, or may be different from each other in at least one of the material and the configuration.
  • the light control unit 250 includes a first polarizing plate 251, a second polarizing plate 252, and a liquid crystal unit 255 disposed between the first polarizing plate 251 and the second polarizing plate 252.
  • the first bonding layer 223 is provided on the side of the first polarizing plate 251 of the light control unit 250, and the first transparent support 230 is stacked.
  • the second bonding layer 224 is provided on the side of the second polarizing plate 252 of the light control unit 250, and the second transparent support 240 is stacked.
  • the light control unit 250 has the wiring 250c.
  • the wiring 250 c is connected to a control device (not shown) provided in the automobile 1 and provides drive power and control signals to the dimming unit 250.
  • the wiring 250c is preferably formed of a transparent conductor. In this case, the wiring 250c is not substantially visible from the outside, and the appearance of the light control member 220 can be improved.
  • the thickness of the light control unit 250 is, for example, 100 ⁇ m or more and 3 mm or less.
  • the first polarizing plate 251 and the second polarizing plate 252 separate the incident light into two orthogonal polarization components (p polarization component and s polarization component) and vibrate in one direction (direction parallel to the transmission axis)
  • the first polarizing plate 251 and the second polarizing plate 252 are arranged in cross nicol or parallel nicol.
  • Cross Nicol means that the transmission axes of the two polarizers are orthogonal to each other
  • parallel Nicol means that the transmission axes of the two polarizers are parallel to each other
  • liquid crystal unit 255 for example, liquid crystal of VA (Vertical Alignment) system, TN (Twisted Nematic) system, IPS (In Plane Switching) system or FFS (Fringe Field Switching) system can be used.
  • the liquid crystal unit 255 may be a film liquid crystal in which liquid crystal is held by using a film made of resin as a base material, or may be a glass liquid crystal in which liquid crystal is held by using thin film glass as a base. In the case of film liquid crystal, the liquid crystal unit 255 can be provided with flexibility.
  • the light control unit 250 can change the orientation of the liquid crystal of the liquid crystal unit 255 by performing electronic control such as applying a voltage through the wiring 250 c.
  • the polarization direction of light transmitted through the liquid crystal unit 255 may change. For example, when light having a polarization component in a specific direction transmitted through the first polarizing plate 251 passes through the liquid crystal unit 255 in which the voltage is applied and the orientation of the liquid crystal is changed, the light transmitted through the liquid crystal unit 255 has its polarization direction Rotate 90 degrees.
  • the first polarizing plate 251 and the second polarizing plate 252 are arranged in cross nicol, light can be transmitted through the second polarizing plate 252 by rotating the polarization direction by 90 °.
  • the light control unit 250 can adjust the visible light transmittance by electronic control.
  • each component of the light adjustment member 220 has a rectangular shape in plan view.
  • the dimming unit 250 includes an area overlapping the first transparent support 230 and the second transparent support 240.
  • the light control unit 250 does not protrude from the first transparent support 230 and the second transparent support 240. That is, the dimension of the light adjustment unit 250 in plan view is preferably smaller than the dimensions of the first transparent support 230 and the second transparent support 240.
  • the light control member 220 is not limited to the illustrated example, and may be provided with a functional layer expected to exhibit a specific function other than the first functional layer 233 of the first transparent support. good.
  • one functional layer may exhibit two or more functions, and, for example, the first transparent support 230, the second transparent support 240, the first bonding layer 223, and the first light modulation member 220 may be used. Some function may be given to at least one of the second bonding layer 224 and the light control unit 250.
  • a hard coat (HC) function having scratch resistance As a function that can be imparted to the light control member 220, for example, a hard coat (HC) function having scratch resistance, an infrared ray shielding (reflection) function, an ultraviolet ray shielding (reflection) function, an antifouling function, etc. Can.
  • HC hard coat
  • infrared ray shielding (reflection) function As a function that can be imparted to the light control member 220, for example, a hard coat (HC) function having scratch resistance, an infrared ray shielding (reflection) function, an ultraviolet ray shielding (reflection) function, an antifouling function, etc.
  • the first base layer 231 and the second base layer 241 are manufactured by injection molding.
  • the first high retardation layer 232 and the first functional layer 233 are stacked on the first base layer 231, and the first transparent support 230 is manufactured.
  • the first functional layer 233 is formed to be the surface of the first transparent support 230.
  • the first bonding layer 223 is bonded to the surface of the first transparent support 230 opposite to the side on which the first functional layer 233 is provided.
  • the second bonding layer 224 is bonded to one surface of the second transparent support 240.
  • the second transparent support 240 is bonded to one surface of the light control unit 250 via the second bonding layer 224, whereby the light control unit 250 is fixed to the second transparent support 240.
  • the light adjustment unit 250 is provided with a wire 250 c.
  • the first transparent support 230 is bonded to the other surface of the light control unit 250, whereby the light control unit 250 is stacked on the first transparent support 230.
  • This bonding is realized by the first bonding layer 223 previously bonded to the first transparent support 230.
  • Each of the above steps is preferably performed in a low pressure environment, preferably in a vacuum environment.
  • the transparent support (first transparent support 230) on the side opposite to the side facing the user of the light control member 220 includes a member having variation in retardation. It was confirmed that rainbow unevenness could be observed. That is, the rainbow unevenness occurred due to the variation in the retardation of the first base layer 231 of the first transparent support 230. When these phenomena were repeatedly examined, it was estimated that rainbow unevenness would occur due to the cause described below, and it was further confirmed that rainbow unevenness could be effectively suppressed by measures corresponding to this presumed cause.
  • the polarization state of the light changes. Therefore, as shown in FIG. 17, when a member having retardation is disposed between the incident side polarization plate 271 and the emission side polarization plate 272 and the light L5 is made incident from the incident side polarization plate 271 side, the first transparent support Compared to the case where the body 230 is not disposed, the amount of light emitted from the exit side polarizing plate 272, that is, the visible light transmittance, changes according to the retardation of the member disposed between the polarizing plates. The change in the visible light transmittance varies depending on the wavelength.
  • the wavelength at which the visible light transmittance is high changes according to the retardation of the member disposed between the polarizing plates, and the light L6 emitted from the output side polarizing plate 272 corresponds to the retardation of the member disposed between the polarizing plates It is visible in the color.
  • the polarization state of light transmitted through a member having a variation in retardation at each position in the plane varies depending on the retardation at each position in the plane of the member. For this reason, the wavelength with high visible light transmittance changes at each position in the plane of the member. Therefore, as shown in FIG. 17, when a member having variation in retardation is disposed between the incident side polarizing plate 271 and the output side polarizing plate 272 and the light L5 is made incident from the incident side polarizing plate 271 side, the output side polarized light The light L 6 emitted from the plate 272 has high transmittance of light of different wavelengths at each position of the output side polarizing plate 272.
  • the light emitted from each position of the output side polarizing plate 272 becomes light of different wavelengths, and the color varies, and is recognized as rainbow unevenness.
  • Such rainbow unevenness does not depend on the arrangement of the incident side polarizing plate 271 and the output side polarizing plate 272, and for example, even when the incident side polarizing plate 271 and the output side polarizing plate 272 are arranged in cross nicol, parallel nicol Even if arranged by, it occurs.
  • the rainbow unevenness is caused by the fact that light in a polarized state is transmitted through a member having variation in retardation, and is further changed in polarization state.
  • the refractive index (n x ) in the direction in which the refractive index of the member is large (slow axis direction) and the refractive index (n in the fast axis direction) in the direction orthogonal to the slow axis direction the difference between y) (the n x -n y), the product (d ⁇ (n x -n y between the thickness of the member (d) [nm])) is defined by [nm]. Therefore, as shown in FIG.
  • light in a polarized state is generated in the following case.
  • a polarizer such as a polarizing plate as shown in FIG. 17
  • light incident at an angle to the interface of an object with different refractive index in other words light incident at an incident angle larger than 0 °
  • the reflectance differs with the polarization component (s-polarization component) perpendicular to.
  • s-polarization component perpendicular to.
  • light incident at a certain incident angle has a reflectance of zero for the polarization component parallel to the incident surface. That is, when incident light is reflected, the polarization state changes. This angle is known as the Brewster's angle.
  • light incident at an incident angle of about 60 ° changes its polarization state when it is reflected.
  • the light L3 incident on the windshield 5 at an incident angle of about 60 ° changes its polarization state when it is reflected.
  • the transparent support on the side facing the windshield 5 here, the first transparent support 230
  • Rainbow unevenness occurs according to the variation of retardation in the area overlapping the light control unit 250 of FIG.
  • the inventors of the present invention repeatedly study, and by providing the first high retardation layer 232 with large retardation on the first transparent support 230 to enlarge the retardation of the first transparent support 230, the occurrence of rainbow unevenness is realized. We have found that it can be effectively suppressed.
  • the change in visible light transmittance for each wavelength of light transmitted through the member with respect to the change in retardation increases due to the difference in the transmittance of each polarization component.
  • the retardation increases, light of various wavelengths is more likely to be transmitted, so the transmitted light is likely to be mixed and perceived.
  • the visible light transmittance for each wavelength greatly fluctuates and light of various wavelengths is transmitted, so the color of the transmitted light is difficult to be visually recognized visually due to color mixing.
  • the retardation in the region overlapping the light control unit 250 of the first transparent support 230 is 4000 nm or more, the variation of the visible light transmittance for each wavelength according to the retardation becomes very large, and the retardation Even if the visible light transmittance fluctuates due to the variation, the color mixture is visually recognized and the color is difficult to be recognized. That is, rainbow unevenness can be effectively made inconspicuous.
  • the light control member 220 including the first transparent support 230 in order to prevent rainbow unevenness from being observed in the light control member 220 including the first transparent support 230, not only the normal direction (front direction) of the first transparent support 230 but also the normal to the first transparent support 230 It is preferable that the occurrence of rainbow unevenness is suppressed also in the direction inclined from the direction and the observation becomes difficult. Since the light control member 220 is often used in a mode observed at an angle within 45 ° from the normal direction, particularly, a mode observed at an angle within 35 °, the first transparent support In the direction inclined 45 ° from the normal direction of 230, preferably in the direction inclined 35 °, the occurrence of rainbow unevenness is preferably suppressed.
  • the first transparent support 230 is placed between two polarizing plates 271 and 272 arranged in cross nicol as shown in FIG. 2 with the slow axis direction of the first high retardation layer 232 and the transmission axis direction of the two polarizing plates 271 and 272 in the first transparent support 230 disposed at an angle of 40 ° to 50 °.
  • Maximum and minimum values of the spectral distribution [%] of light having a wavelength of 550 nm or more and 650 nm or less that transmits two polarizing plates 271 and 272 in a direction inclined 45 ° from the normal direction of the first transparent support 230 Is preferably 10% or more, and the wavelength of transmitting the two polarizing plates 271 and 272 in the direction inclined 35.degree. From the normal direction of the first transparent support 230 is 550 nm to 650 nm.
  • the difference between the maximum value and the minimum value of the spectral distribution of the light transmittance of the lower [%] is and finding a more preferable to be 12.5 [%] or more.
  • the slow axis direction of the first high retardation layer 232 and the two polarizing plates between the two polarizing plates 271 and 272 disposed in cross nicol Two polarizing plates 271 and 272 are inclined in the direction inclined 45 ° from the normal direction of the first high retardation layer 232 in a state where the transmission axis direction of 271 and 272 is arranged to form an angle of 40 ° to 50 °.
  • the difference between the maximum value and the minimum value of the spectral distribution of the transmittance [%] of light having a wavelength of 550 nm or more and 650 nm or less which transmits light be 10% or more.
  • the difference between the maximum value and the minimum value of the spectral distribution of] has been finding more preferable to be 12.5 [%] or more.
  • the transmittance of light passing through the first high retardation layer 232 and the first transparent support 230 described above is considered to be light with a wavelength of 550 nm or more and 650 nm or less, the retardation of the first high retardation layer 232 is sufficiently large. Because the variation in visible light transmittance for each wavelength of light transmitted is increased due to the fact that there is a difference of 10% or more between the maximum value and the minimum value of transmittance in this wavelength range, in other wavelength ranges This is because it is considered that light of sufficient transmittance is generated and light of various wavelengths is transmitted.
  • FIG. 18 shows the first base material layer 231 having a retardation of 450 nm and a variation of retardation of 150 nm at each in-plane position of the two polarizing plates 271 and 272 arranged in cross nicol as shown in FIG. With the first base layer 231 interposed therebetween in directions inclined 0 °, 20 °, 40 °, 60 ° from the normal direction of the first base layer 231, with the first base layer 231 interposed therebetween. It is a graph showing the spectral distribution of light transmittance [%] in each wavelength range which transmits 272. As understood from FIG. 18, depending on the inclination angle from the normal direction of the first base layer 231, the wavelength range in which the transmittance is increased is largely different.
  • light in the wavelength range of 490 nm to 510 nm is strongly observed in the direction (front direction) tilted by 0 ° from the normal direction of the first base layer 231, and in the direction tilted by 20 °, the wavelength range of 410 nm to 420 nm and The light of 600 nm to 700 nm is strongly observed, the light of wavelength 430 nm to 550 nm is strongly observed in the direction inclined 40 °, and the light of wavelength 560 nm to 620 nm is strongly observed in the direction inclined 60 °.
  • rainbow unevenness occurs in the light control member 220 including the first transparent support of only the layer having retardation like the first base layer 231. It can.
  • FIG. 19 shows the first high retardation layer between two polarizing plates 271 and 272 arranged in crossed nicols as shown in FIG. 17 with a first high retardation layer 232 having a retardation of 4000 nm or more, specifically 8400 nm.
  • the color is not recognized due to color mixture, and no rainbow unevenness occurs. Therefore, in the first transparent support 230 having the first high retardation layer 232, even if it has the first base layer 231 with some variation in retardation, it is considered that no rainbow unevenness occurs.
  • FIG. 20 shows the first transparent support 230 having the first base layer 231 and the first high retardation layer 232, as shown in FIG. 17, between the two polarizing plates 271 and 272 arranged in cross nicol.
  • the slow axis direction of the high retardation layer 232 and the two polarizing plates 271 and 272 are disposed at an angle of 45 °, 0 ° and 20 ° from the normal direction of the first transparent support 230
  • Table 6 below shows the retardation of the first high retardation layer 232 between two polarizing plates 271 and 272 arranged in crossed nicols as shown in FIG. 17 for the first high retardation layer 232 having a retardation of 4000 nm or more.
  • the first high retardation layer 232 is inclined at an angle of 5 ° from 0 ° to 65 ° from the normal direction of the first high retardation layer 232
  • the presence or absence of rainbow unevenness was visually observed.
  • the code “A” in the table represents that no rainbow unevenness was visually observed, the code “B” represents that rainbow unevenness was observed only to such an extent that the view would not be disturbed, and the code “C” "" Indicates that the rainbow non-uniformity was clearly observed to such an extent that the view was obstructed.
  • the difference between the maximum value and the minimum value of the spectral distribution of the transmittance is 10% or more. Therefore, when the inclination angle from the normal direction of the first high retardation layer 232 is 45 ° or less, rainbow unevenness that hinders visibility is not observed. In particular, in the direction inclined 35 ° from the normal direction of the first high retardation layer 232, the difference between the maximum value and the minimum value of the spectral distribution of the transmittance is 12.5% or more. Therefore, no rainbow unevenness is observed when the inclination angle from the normal direction of the first high retardation layer 232 is within 35 °.
  • the slow axis direction of the first high retardation layer 232 and the transmission of the two polarizing plates 271 and 272 between the two polarizing plates 271 and 272 in which the first high retardation layer 232 is disposed in cross nicol A wavelength range in which the two polarizing plates 271 and 272 are transmitted in the direction inclined 45 ° from the normal direction of the first high retardation layer 232 in a state where the axial direction is disposed at an angle of 40 ° to 50 °.
  • the difference between the maximum value and the minimum value of the spectral distribution of the light transmittance of 550 nm to 650 nm is preferably 10% or more, preferably a direction inclined 35 ° from the normal direction of the first high retardation layer 232
  • the difference between the maximum value and the minimum value of the spectral distribution of the transmittance of light in the wavelength range of 550 nm to 650 nm incident on the high retardation layer transmitted through By it is understood that it can effectively suppress the occurrence of rainbow unevenness.
  • the light control member 220 includes the first transparent support 230 and the light control unit 250 supported by the first transparent support 230, and the light control unit 250 includes the light control unit 250.
  • the visible light transmittance can be adjusted by electronic control, and the first transparent support 230 includes a first base layer 231 having optical anisotropy and a first high retardation laminated on the first base layer 231. And the first high retardation layer 232 has a retardation of 4000 nm or more. According to such a light control member 220, since the retardation of the first transparent support 230 is sufficiently large, the change in visible light transmittance for each wavelength with respect to the change in retardation is large, and light of various wavelengths is transmitted.
  • the transmitted light is mixed and becomes easy to be recognized. For this reason, even if the visible light transmittance fluctuates due to the variation of retardation, it becomes difficult to visually recognize a color that may become rainbow unevenness. That is, it is possible to suppress the occurrence of rainbow unevenness caused by the variation in retardation of the first base material layer 231 in the light control member 220.
  • the slow axis direction of the first high retardation layer 232 between the two polarizing plates 271 and 272 in which the first high retardation layer 232 is disposed in cross nicol Two polarizations in the direction inclined 45 ° from the normal direction of the first high retardation layer 232 in a state where the transmission axis directions of the two polarizing plates 271 and 272 form an angle of 40 ° to 50 °.
  • the difference between the maximum value and the minimum value of the spectral distribution of the transmittance [%] of light in the wavelength range of 550 nm to 650 nm transmitted through the plates 271 and 272 is 10 [%] or more.
  • the first high retardation layer 232 has a sufficiently large retardation, the variation of the visible light transmittance for each wavelength of the transmitted light becomes large.
  • the difference in magnitude between the maximum value and the minimum value of the transmittance occurs in the above, and light of various wavelengths is easily transmitted. As a result, it is difficult to visually recognize the color of the transmitted light. Therefore, even in the direction inclined 45 ° from the normal direction of the first transparent support 230, it is difficult to observe rainbow unevenness.
  • the normal direction of the first transparent support 230 is 45 °
  • the difference between the maximum value and the minimum value of the spectral distribution of the transmittance [%] of light in the wavelength range of 550 nm to 650 nm transmitted through the two polarizing plates 271 and 272 in the inclined direction is 10 [%] or more.
  • the first high retardation layer 232 of the first transparent support 230 has a sufficiently large retardation, the variation of the visible light transmittance for each wavelength of the transmitted light becomes large. Therefore, in the wavelength range of visible light, a difference of a sufficient magnitude occurs between the maximum value and the minimum value of the transmittance, and light of various wavelengths is easily transmitted. As a result, it is difficult to visually recognize the color of the transmitted light. Therefore, even in the direction inclined 45 ° from the normal direction of the first transparent support 230, it is difficult to observe rainbow unevenness.
  • the first transparent support 230 is provided at a position separated from the light control unit 250 from the first base layer 231 and the first high retardation layer 232. It further has one functional layer 233, and the first functional layer 233 has at least one of an antireflection function and an antiglare function. According to such a light control member 220, the light control member 220 can be effectively provided with a reflection preventing function and an antiglare function.
  • the second transparent support 240 may further have a second high retardation layer laminated to the second base layer 241.
  • the retardation of the second transparent support 240 to be disposed between the second polarizing plate 252 of the light control unit 250 and the polarized sunglasses Rainbow unevenness can be observed due to the variation of
  • the retardation of the second transparent support 240 can be increased.
  • the occurrence of rainbow unevenness caused by the variation in retardation of the second base layer 241 can be suppressed in the same manner as the rainbow unevenness due to the variation in retardation of the first base layer 231 described above is suppressed. it can.
  • the second transparent support 240 may further have a second functional layer provided at a position farther from the light control unit 250 than the second base layer 241. Similar to the first functional layer 233, the second functional layer may have at least one of an antireflective function and an antiglare function.
  • the first high retardation layer 232 is provided between the first base layer 231 and the first functional layer 233. It is done.
  • the first base layer 231 may be provided between the first high retardation layer 232 and the first functional layer 233. That is, the first base material layer 231 and the first high retardation layer shown in FIG. 12 may be arranged in reverse. In any case, it is possible to suppress the occurrence of rainbow unevenness caused by the variation in retardation of the first base layer 231 in the light control member 220.
  • the second base layer 241 may be provided on the side closer to the second bonding layer 224 or the side closer to the second bonding layer 224 A second high retardation layer may be provided. In any case, it is possible to suppress the occurrence of rainbow unevenness caused by the variation in retardation of the second base material layer 241.
  • the light control unit 250 is disposed between the first polarizing plate 251, the second polarizing plate 252, the first polarizing plate 251, and the second polarizing plate 252.
  • the configuration of the light control unit 250 is not limited to this example.
  • the light control unit may include a plurality of liquid crystal units, an absorption-type polarizing plate provided corresponding to the liquid crystal unit, and a reflection-type polarizing plate disposed between two liquid crystal units.
  • the absorption type polarizing plate transmits one polarization component of light and absorbs the other polarization component, similarly to the polarization plates 251 and 252 in the third embodiment described above.
  • the reflective polarizer transmits one polarization component of light and reflects the other polarization component.
  • the reflective polarizer transmits one polarization component of light and reflects the other polarization component.
  • a first absorption polarizing plate 351, a first liquid crystal unit 355, a reflection polarizing plate 354, a second absorption polarizing plate 352, and a second liquid crystal unit 356 The operation of the light control unit 350 in which the third absorption polarizing plate 353 and the third absorption polarizing plate 353 are stacked in this order will be described.
  • the transmission axes of the first absorption polarizing plate 351 and the third absorption polarizing plate 353 are the same, and are orthogonal to the transmission axes of the reflection polarizing plate 354 and the second absorption polarizing plate 352. There is.
  • a TN type liquid crystal is used for the first liquid crystal unit 355, and the polarization direction of transmitted light is rotated by 90 ° when no voltage is applied, and the transmitted light is transmitted when a voltage is applied. Do not change the polarization direction.
  • the second liquid crystal unit 356 uses a VA type liquid crystal, and does not change the polarization direction of the transmitted light when no voltage is applied, and the liquid crystal falls when the voltage is applied. The birefringence of the second liquid crystal unit 356 is changed to transmit light while changing the polarization direction by 90 °.
  • the light L7 incident on the light adjustment unit 350 from the first absorption polarizing plate 351 side will be described.
  • the light L7 is transmitted through the first liquid crystal unit 355, reflected by the reflective polarizing plate 354 and transmitted again through the first liquid crystal unit 355, The light is emitted from the absorption polarizing plate 351. That is, the light L7 incident from the first absorption polarizing plate 351 side is reflected.
  • the light L7 rotates the polarization direction by the first liquid crystal unit 355, and the reflective polarizing plate 354 and the second absorbing polarizing plate 352 To Penetrate.
  • the light passes through the second liquid crystal unit 356 but is absorbed by the third absorption polarizing plate 353. That is, the light L7 incident from the first absorption polarizing plate 351 side is blocked.
  • the light L7 rotates its polarization direction by the first liquid crystal unit 355, and the reflective polarizer 354 And the second absorption polarizing plate 352.
  • the polarization direction is changed by the second liquid crystal unit 356, and the third absorption polarizing plate 353 transmits and emits. That is, the light L7 incident from the first absorption polarizing plate 351 side passes through the light control unit 350.
  • the light L8 incident on the light adjustment unit 350 from the third absorption polarizing plate 353 side will be described.
  • the light L8 is transmitted through the second liquid crystal unit 356 and absorbed by the second absorption type polarizing plate 352. That is, the light L8 incident from the third absorption polarizing plate 353 side is blocked.
  • the light L8 changes the polarization direction by the second liquid crystal unit 356, and the second absorption polarizing plate 352 and the reflection polarizing plate 354 are changed.
  • the light passes through the first liquid crystal unit 355 but is absorbed by the first absorption type polarizing plate 351. That is, the light L8 incident from the third absorption polarizing plate 353 side is blocked.
  • the light L8 changes the polarization direction by the second liquid crystal unit 356, and the second absorption type polarized light
  • the light passes through the plate 352 and the reflective polarizing plate 354.
  • the polarization direction is rotated by the first liquid crystal unit 355, and the first absorption type polarizing plate 351 is transmitted and emitted. That is, the light L 8 incident from the third absorption polarizing plate 353 side passes through the light control unit 350.
  • the application of the voltage to each liquid crystal unit it is possible to appropriately switch transmission, shielding, and reflection of light incident on the light control member.
  • a first absorption polarizing plate 451, a first liquid crystal unit 455, a reflection polarizing plate 454, a second liquid crystal unit 456, and a second absorption polarization The operation of the light control unit 450 in which the plate 452 and the plate 452 are stacked in this order will be described.
  • the transmission axes of the first absorption polarizing plate 451 and the second absorption polarizing plate 452 are the same, and are orthogonal to the transmission axis of the reflection polarizing plate 454.
  • a TN type liquid crystal is used for the first liquid crystal unit 455, and a VA type liquid crystal is used for the second liquid crystal unit 456.
  • the light L9 incident on the light adjustment unit 450 from the first absorption polarizing plate 451 side will be described.
  • the light L9 is transmitted through the first liquid crystal unit 455, reflected by the reflective polarizer 454, and transmitted again through the first liquid crystal unit 455, The light is emitted from the absorption polarizing plate 451. That is, the light L9 incident from the first absorption polarizing plate 451 side is reflected.
  • the light L 9 rotates the polarization direction by the first liquid crystal unit 455, and transmits the light of the reflective polarizer 454.
  • the light passes through the second liquid crystal unit 456 but is absorbed by the second absorption type polarizing plate 452. That is, the light L9 incident from the first absorption polarizing plate 451 side is blocked.
  • the light L 9 rotates its polarization direction by the first liquid crystal unit 455, and the reflective polarizer 454. Through.
  • the polarization direction is changed by the second liquid crystal unit 456, and the second absorption type polarizing plate 452 transmits and emits. That is, the light L 9 incident from the first absorption type polarizing plate 451 is transmitted through the light control unit 450.
  • the light L10 that has entered the light adjustment unit 450 from the second absorption polarizing plate 452 side will be described.
  • the light L10 is transmitted through the second liquid crystal unit 456, reflected by the reflective polarizing plate 454, transmitted again through the second liquid crystal unit 456, and then subjected to the second absorption.
  • the light is emitted from the polarizing plate 452. That is, the light L10 incident from the second absorption polarizing plate 452 side is reflected.
  • a voltage is applied to the second liquid crystal unit 456 and the first liquid crystal unit 455, the light L 10 changes the polarization direction by the second liquid crystal unit 456, and passes through the reflective polarizing plate 454.
  • the light passes through the first liquid crystal unit 455 but is absorbed by the first absorption type polarizing plate 451. That is, the light L10 incident from the second absorption polarizing plate 452 side is blocked.
  • the light L 10 changes the polarization direction by the second liquid crystal unit 456, and the reflective polarizer 454. Through.
  • the polarization direction is rotated by the first liquid crystal unit 455, and the light is transmitted through the first absorption polarizing plate 451 and is emitted. That is, the light L10 incident from the second absorption polarizing plate 452 side passes through the light control unit 450.
  • the voltage to each liquid crystal unit, it is possible to appropriately switch transmission, shielding, and reflection of light incident on the light control member.
  • each function of transmission, light shielding and reflection by the light control unit 350 can be more reliably exhibited.
  • the light transmittance of the light control unit 350 can be further lowered.
  • each function of transmission, light shielding and reflection by the light adjustment unit 450 can be appropriately switched with a simple configuration.
  • the first transparent support 230 and the second transparent support 240 are stacked on both sides of the light control unit 250, but only on one side of the light control unit 250.
  • a transparent support may be laminated. That is, for example, only the first transparent support 230 may be stacked on the light control unit 250.
  • the light control member 220 receives power supply from the outside, but a solar cell (not shown) is provided on a part of the light control member 220, and this solar cell May be configured to supply power. Furthermore, the irradiation light amount may be determined based on the output of the solar cell, and the transmittance may be automatically controlled accordingly.
  • the application of the light control member 220 is not limited to the sun visor.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A light modulating member (20) comprises: a pair of transparent base members (21, 22); a light modulating cell (30) disposed between the pair of the transparent base members (21, 22); and two joining layers (23, 24) which are disposed between the transparent base members (21, 22) and the light modulating cell (30) and which are for joining the transparent base members (21, 22) and the light modulating cell (30). The light modulating cell (30) can adjust the visible light transmission rate by electronic control. The storage elastic modulus of the joining layers (23, 24) is no more than 6×106Pa at 1 to 30ºC.

Description

調光部材、サンバイザ及び移動体Light control member, sun visor and moving body
 本発明は、調光部材、調光部材を備えるサンバイザ、及び、サンバイザを備える移動体に関する。 The present invention relates to a light control member, a sun visor including the light control member, and a movable body including the sun visor.
 従来、光の透過率を変更可能な調光部材が知られている。調光部材の光透過率の調節方式として、特許文献1(JP6071094B)に示すような液晶を利用する方式が考えられる。液晶を利用する方式の調光部材は、簡素に構成可能であり、透過状態と遮光状態の切り替えの応答が早く、非常に高い遮光性能を確保することができる。 Conventionally, a light control member capable of changing the light transmittance is known. As a method of adjusting the light transmittance of the light control member, a method using liquid crystal as shown in Patent Document 1 (JP6071094B) can be considered. The light control member of the system using the liquid crystal can be simply configured, the response of switching between the transmission state and the light shielding state is quick, and very high light shielding performance can be secured.
 調光部材において、液晶は、保護のために透明基材の間に配置される。透明基材は、破損しにくいよう、また、破損時に透明基材の破片の縁部が鋭利にならないよう、樹脂で形成されることが望まれる。 In the light control member, liquid crystal is disposed between the transparent substrates for protection. It is desirable that the transparent substrate be made of resin so as not to be damaged and that the edges of the fragments of the transparent substrate are not sharpened at the time of breakage.
 しかしながら、樹脂で形成された透明基材を含む調光部材には、局所的な変色が生じることがあった。調光部材における局所的な変色は、調光部材を介した視界を悪化させてしまうため、好ましくない。第1の発明は、このような点を考慮してなされたものであり、調光部材における局所的な変色を抑制することを目的とする。 However, local discoloration may occur in a light control member including a transparent base material formed of a resin. The local color change in the light control member is not preferable because it deteriorates the visibility through the light control member. The first invention is made in consideration of such a point, and an object thereof is to suppress a local color change in a light control member.
 また、液晶を利用した調光部材には、虹状に色分散した色ムラ(以下、単に「虹ムラ」という)が観察されることがあった。虹ムラは調光部材を介した視界を悪化させるため、好ましくない。第2の発明及び第3の発明は、このような点を考慮してなされたものであり、液晶を利用した調光部材における虹ムラの発生を抑制することを目的とする。 Moreover, in the light control member using a liquid crystal, color unevenness (hereinafter, simply referred to as "rainbow unevenness") in which colors are dispersed in a rainbow shape may be observed. Rainbow unevenness is not preferable because it deteriorates the visibility through the light control member. The second invention and the third invention are made in consideration of such a point, and an object thereof is to suppress the occurrence of rainbow unevenness in a light control member using liquid crystal.
<第1の発明>
 第1の発明は、調光部材における局所的な変色を抑制することを目的とする。
<First Invention>
The first invention aims to suppress local discoloration in a light control member.
 第1の発明の調光部材は、
 一対の透明基材と、
 前記一対の透明基材の間に配置された調光セルと、
 前記透明基材と前記調光セルとの間に配置され、前記透明基材と前記調光セルとを接合する2つの接合層と、を備え、
 前記調光セルは、電子制御により可視光透過率を調節可能であり、
 前記接合層の貯蔵弾性率は、1℃以上30℃以下で、6×10Pa以下である。
The light control member of the first invention is
A pair of transparent substrates,
A light control cell disposed between the pair of transparent substrates;
It comprises: two bonding layers disposed between the transparent base and the light control cell and bonding the transparent base and the light control cell;
The light control cell can adjust the visible light transmittance by electronic control,
The storage elastic modulus of the bonding layer is 6 × 10 6 Pa or less at 1 ° C. or more and 30 ° C. or less.
 第1の発明の調光部材において、前記接合層の貯蔵弾性率は、1℃以上30℃以下で、1.4×10Pa以下であってもよい。 In the light control member of the first invention, the storage elastic modulus of the bonding layer may be 1.4 × 10 6 Pa or less at 1 ° C. or more and 30 ° C. or less.
 第1の発明の調光部材において、前記接合層の少なくとも一方の厚さは、50μm以上であってもよい。 In the light control member of the first invention, the thickness of at least one of the bonding layers may be 50 μm or more.
 第1の発明の調光部材において、前記接合層の貯蔵弾性率は、1℃以上30℃以下で、3×10Pa以上であってもよい。 In the light control member of the first invention, the storage elastic modulus of the bonding layer may be 3 × 10 4 Pa or more at 1 ° C. or more and 30 ° C. or less.
 第1の発明の調光部材において、前記接合層の貯蔵弾性率は、1℃以上30℃以下で、1×10Pa以上であってもよい。 In the light control member of the first invention, the storage elastic modulus of the bonding layer may be 1 × 10 5 Pa or more at 1 ° C. or more and 30 ° C. or less.
 第1の発明の調光部材は、前記透明基材と前記接合層との間に配置された易接着層をさらに備えてもよい。 The light control member of the first invention may further include an easy adhesion layer disposed between the transparent substrate and the bonding layer.
 第1の発明の調光部材は、前記透明基材と前記接合層との間に配置されたバリア層をさらに備えてもよい。 The light control member of the first invention may further include a barrier layer disposed between the transparent substrate and the bonding layer.
 第1の発明の調光部材は、前記透明基材の前記接合層が配置された側とは反対側に、反射防止層をさらに備えてもよい。 The light control member of the first invention may further include an antireflective layer on the side of the transparent substrate opposite to the side on which the bonding layer is disposed.
 第1の発明の調光部材において、前記調光セルは、TN方式、VA方式、IPS方式またはGH方式のフィルム液晶を含んでもよい。 In the light control member of the first invention, the light control cell may include a film liquid crystal of a TN type, a VA type, an IPS type or a GH type.
 第1の発明の調光部材において、前記調光セルは、TN方式、VA方式、IPS方式またはGH方式のガラス液晶を含んでもよい。 In the light control member of the first invention, the light control cell may include a TN type, a VA type, an IPS type, or a GH type glass liquid crystal.
 第1の発明のサンバイザは、第1の発明の調光部材のいずれかを備える。 The sun visor of the first invention comprises any of the light control members of the first invention.
 第1の発明の移動体は、第1の発明の調光部材いずれか、または第1の発明のサンバイザを備える。 The movable body of the first invention comprises any one of the light control members of the first invention or the sun visor of the first invention.
 第1の発明によれば、調光部材における局所的な変色を抑制することができる。 According to the first invention, it is possible to suppress local discoloration in the light control member.
<第2の発明>
 第2の発明及は、液晶を利用した調光部材における虹ムラの発生を抑制することを目的とする。
<Second invention>
A second invention and an object of the present invention are to suppress the occurrence of rainbow unevenness in a light control member using liquid crystal.
 第2の発明の調光部材は、
 透明基材と、
 前記透明基材に積層された調光セルと、を備え、
 前記調光セルは、電子制御により可視光透過率を調節可能であり、
 前記透明基材の前記調光セルが重なっている領域におけるリタデーションの最大値と最小値との差が、100nm以下である。
The light control member of the second invention is
A transparent substrate,
A light control cell laminated on the transparent substrate,
The light control cell can adjust the visible light transmittance by electronic control,
The difference between the maximum value and the minimum value of retardation in the region where the light control cells of the transparent base material overlap is 100 nm or less.
 第2の発明の調光部材において、
 前記透明基材は、ポリカーボネートを含み、
 前記透明基材の前記調光セルが重なっている領域におけるリタデーションの平均値が2000nm以上であってもよい。
In the light control member of the second invention,
The transparent substrate comprises polycarbonate,
The average value of retardation in a region where the light control cells of the transparent base material overlap may be 2000 nm or more.
 第2の発明の調光部材において、
 前記透明基材は、ポリカーボネートを含み、
 前記透明基材の前記調光セルが重なっている領域におけるリタデーションの平均値が400nm以下であってもよい。
In the light control member of the second invention,
The transparent substrate comprises polycarbonate,
The average value of retardation in a region where the light control cells of the transparent base material overlap may be 400 nm or less.
 第2の発明の調光部材において、前記透明基材のメルトボリュームフローレートが、10cm/10分以下であってもよい。 In the light adjusting member of the second aspect of the invention, melt volume flow rate of the transparent substrate may be equal to or less than 10 cm 3/10 min.
 第2の発明の調光部材において、
 前記透明基材は、曲面を含み、
 前記透明基材の前記曲面の曲率半径は、10cm以上であってもよい。
In the light control member of the second invention,
The transparent substrate includes a curved surface,
The curvature radius of the curved surface of the transparent substrate may be 10 cm or more.
 第2の発明のサンバイザは、第2の発明の調光部材のいずれかを備える。 The sun visor of the second invention comprises any of the light control members of the second invention.
 第2の発明の移動体は、第2の発明の調光部材いずれか、または第2の発明のサンバイザを備える。 The movable body of the second invention comprises any one of the light control members of the second invention or the sun visor of the second invention.
 第2の発明によれば、調光部材における虹ムラの発生を抑制することができる。 According to the second invention, it is possible to suppress the occurrence of rainbow unevenness in the light control member.
<第3の発明>
 第3の発明及は、液晶を利用した調光部材における虹ムラの発生を抑制することを目的とする。
<Third Invention>
A third aspect of the present invention is to suppress the occurrence of rainbow unevenness in a light control member using liquid crystal.
 第3の発明の調光部材は、
 透明支持体と、
 前記透明支持体に支持された調光ユニットと、を備え、
 前記調光ユニットは、電子制御により可視光透過率を調節可能であり、
 前記透明支持体は、光学異方性を有する基材層と、前記基材層に積層された高リタデーション層と、を有し、
 前記高リタデーション層のリタデーションは、4000nm以上である。
The light control member of the third invention is
A transparent support,
A light control unit supported by the transparent support;
The light control unit can adjust the visible light transmittance by electronic control,
The transparent support has a base layer having optical anisotropy, and a high retardation layer laminated on the base layer,
The retardation of the high retardation layer is 4000 nm or more.
 第3の発明の調光部材において、前記高リタデーション層をクロスニコルで配置された2つの偏光板の間に当該高リタデーション層の遅相軸方向と前記2つの偏光板の透過軸方向とが40°以上50°以下の角度をなすように配置した状態で、前記高リタデーション層の法線方向から45°傾斜した方向に前記2つの偏光板を透過する波長が550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値と最小値との差が、10〔%〕以上であってもよい。 In the light control member according to the third aspect of the present invention, the slow axis direction of the high retardation layer and the transmission axis direction of the two polarizing plates are 40 ° or more between the two polarizing plates in which the high retardation layer is disposed in cross nicol Transmittance of light having a wavelength of 550 nm or more and 650 nm or less that transmits the two polarizing plates in a direction inclined 45 ° from the normal direction of the high retardation layer in a state where the light is arranged at an angle of 50 ° or less [% The difference between the maximum value and the minimum value of the spectrum distribution of [1] may be 10 [%] or more.
 第3の発明の調光部材において、前記透明支持体をクロスニコルで配置された2つの偏光板の間に当該透明支持体における前記高リタデーション層の遅相軸方向と前記2つの偏光板の透過軸方向とが40°以上50°以下の角度をなすように配置した状態で、前記透明支持体の法線方向から45°傾斜した方向に前記2つの偏光板を透過する波長が550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値と最小値との差が、10〔%〕以上であってもよい。 In the light control member of the third invention, the slow axis direction of the high retardation layer and the transmission axis direction of the two polarizing plates in the transparent support between the two polarizing plates in which the transparent support is arranged in cross nicol Light having a wavelength of 550 nm or more and 650 nm or less that transmits through the two polarizing plates in the direction inclined 45 ° from the normal direction of the transparent support in a state in which The difference between the maximum value and the minimum value of the spectral distribution of the transmittance [%] may be 10 [%] or more.
 第3の発明の調光部材において、
 前記透明支持体は、前記基材層および前記高リタデーション層より前記調光ユニットから離間した位置に設けられた機能層をさらに有し、
 前記機能層は、反射防止機能および防眩機能の少なくとも一方を有してもよい。
In the light control member of the third invention,
The transparent support further includes a functional layer provided at a position separated from the light control unit from the base layer and the high retardation layer,
The functional layer may have at least one of an antireflective function and an antiglare function.
 第3の発明のサンバイザは、第3の発明の調光部材いずれかを備える。 A sun visor according to a third aspect of the present invention includes any one of the light control members according to the third aspect.
 第3の発明の移動体は、第3の発明の調光部材いずれか、または第3の発明のサンバイザを備える。 The movable body of the third invention comprises any one of the light control members of the third invention or the sun visor of the third invention.
 第3の発明によれば、調光部材における虹ムラの発生を抑制することができる。 According to the third invention, it is possible to suppress the occurrence of rainbow unevenness in the light control member.
図1は、調光部材を備えたサンバイザが内部に配置された自動車を概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing an automobile in which a sun visor equipped with a light control member is disposed. 図2は、第1の実施の形態に係る調光部材を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a light control member according to the first embodiment. 図3は、調光部材の調光セルを示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing a light control cell of the light control member. 図4は、第2の実施形態に係る調光部材を示す概略的な分解斜視図である。FIG. 4 is a schematic exploded perspective view showing a light control member according to a second embodiment. 図5は、調光部材の調光セルを説明するための概略断面図である。FIG. 5 is a schematic cross-sectional view for explaining a light control cell of the light control member. 図6は、調光部材の製造工程を説明するための図である。FIG. 6 is a view for explaining the manufacturing process of the light control member. 図7は、調光部材の製造工程を説明するための図である。FIG. 7 is a view for explaining the manufacturing process of the light control member. 図8は、調光部材の製造工程を説明するための図である。FIG. 8 is a view for explaining the manufacturing process of the light control member. 図9は、調光部材に発生する虹ムラについて説明するための図である。FIG. 9 is a view for explaining rainbow unevenness generated in the light control member. 図10は、反射によって偏光状態が変化することを説明するためのグラフである。FIG. 10 is a graph for explaining that the polarization state changes due to reflection. 図11は、反射によって偏光状態が変化することを説明するための図である。FIG. 11 is a diagram for explaining that the polarization state changes due to reflection. 図12は、第3の実施の形態の調光部材を示す概略的な分解斜視図である。FIG. 12 is a schematic exploded perspective view showing a light control member of the third embodiment. 図13は、調光ユニットを説明するための概略断面図である。FIG. 13 is a schematic cross-sectional view for explaining the light control unit. 図14は、調光部材の製造工程を説明するための図である。FIG. 14 is a view for explaining the manufacturing process of the light control member. 図15は、調光部材の製造工程を説明するための図である。FIG. 15 is a diagram for describing a manufacturing process of the light control member. 図16は、調光部材の製造工程を説明するための図である。FIG. 16 is a view for explaining the manufacturing process of the light control member. 図17は、虹ムラの測定方法について説明するための図である。FIG. 17 is a diagram for explaining a method of measuring rainbow unevenness. 図18は、図17に示された状態で測定された基材層の各波長の透過率のグラフである。FIG. 18 is a graph of the transmittance of each wavelength of the base material layer measured in the state shown in FIG. 図19は、図17に示された状態で測定された高リタデーション層の各波長の透過率のグラフである。FIG. 19 is a graph of the transmittance of each wavelength of the high retardation layer measured in the state shown in FIG. 図20は、図17に示された状態で測定された透明支持体の各波長の透過率のグラフである。FIG. 20 is a graph of the transmittance of each wavelength of the transparent support measured in the state shown in FIG. 図21は、調光ユニットの一変形例を説明するための概略断面図である。FIG. 21 is a schematic cross-sectional view for explaining a modified example of the light control unit. 図22は、調光ユニットの他の変形例を説明するための概略断面図である。FIG. 22 is a schematic cross-sectional view for explaining another modification of the light control unit.
 以下、図面を参照して発明の実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。 Hereinafter, embodiments of the invention will be described with reference to the drawings. In the drawings attached to the present specification, for the sake of easy illustration and understanding, the scale, the dimensional ratio in the vertical and horizontal directions, etc. are appropriately changed from those of the actual one and exaggerated.
<第1の実施の形態>
 まず、図1~図3を参照しながら、第1の発明に関連した第1の実施の形態について説明する。
First Embodiment
First, with reference to FIGS. 1 to 3, a first embodiment related to the first invention will be described.
 図1には、調光部材20が適用される一例として、調光部材20を備えたサンバイザ10が示されている。図1に示されているように、自動車1には、その内部であってフロントガラスに対面する位置に、サンバイザ10が配置されている。サンバイザ10は、フロントガラスを通って入射する太陽光等を低減し、自動車1の乗員に良好な視界を与えることができる。 FIG. 1 shows a sun visor 10 provided with a light control member 20 as an example to which the light control member 20 is applied. As shown in FIG. 1, a sun visor 10 is disposed inside the automobile 1 at a position facing the windshield. The sun visor 10 can reduce sunlight and the like incident through the windshield, and can provide an occupant of the automobile 1 with a good visibility.
 調光部材20は、可視光の透過率を調節可能であり、例えば透過率を高く調節する場合には25%以上、低く調節する場合には10%以下とすることができる。図2に示すように、調光部材20は、一対の透明基材である第1透明基材21及び第2透明基材22と、第1透明基材21及び第2透明基材22の間に配置された調光セル30と、第1透明基材21と調光セル30とを接合する第1接合層23と、第2透明基材22と調光セル30とを接合する第2接合層24と、を備える。 The light control member 20 can adjust the transmittance of visible light, and can be, for example, 25% or more when the transmittance is adjusted high, and 10% or less when the transmittance is adjusted low. As shown in FIG. 2, the light control member 20 is provided between the first transparent base 21 and the second transparent base 22, which are a pair of transparent bases, and the first transparent base 21 and the second transparent base 22. A second light-adjusting cell 30 disposed in the second light-transmitting device, the first bonding layer 23 for bonding the first transparent base 21 and the light-modulating cell 30, and a second bonding for connecting the second transparent base 22 and the light-modulating cell 30 And a layer 24.
 以下、調光部材20の各構成要素について、説明する。 Hereinafter, each component of the light control member 20 will be described.
 まず、第1透明基材21及び第2透明基材22について説明する。第1透明基材21及び第2透明基材22は、調光セル30の形状を一定に維持し、調光セル30を傷や汚れから保護するためのものである。調光セル30の形状を一定に維持するために、第1透明基材21及び第2透明基材22は、剛性を有する。具体的には、第1透明基材21及び第2透明基材22の曲げ強さは、1000MPa以上であることが好ましい。曲げ強さは、JIS K 7171で規定されており、例えば、インストロン社製 万能試験機によって測定することができる。 First, the first transparent base 21 and the second transparent base 22 will be described. The first transparent base 21 and the second transparent base 22 keep the shape of the light control cell 30 constant, and protect the light control cell 30 from scratches and dirt. In order to maintain the shape of the light control cell 30 constant, the first transparent base 21 and the second transparent base 22 have rigidity. Specifically, the bending strength of the first transparent base 21 and the second transparent base 22 is preferably 1000 MPa or more. The bending strength is defined in JIS K 7171 and can be measured, for example, by a universal testing machine manufactured by Instron.
 また、第1透明基材21及び第2透明基材22は、樹脂によって形成されており、ガラス転移温度の高い樹脂であるポリカーボネートを含んでいることが好ましい。樹脂によって形成されることで、第1透明基材21及び第2透明基材22は、破損しにくくなり得る。第1透明基材21及び第2透明基材22は、シャルピー衝撃値が1kJ/m以上となるように形成されることが好ましい。また、第1透明基材21及び第2透明基材22に含まれるポリカーボネートの分子量が、17,000以上であることが好ましく、20,000以上であることがより好ましい。第1透明基材21及び第2透明基材22がこのような材料で形成されていると、第1透明基材21及び第2透明基材22が破損してしまっても、第1透明基材21及び第2透明基材22の破片の縁部が鋭利にならず、調光部材20の使用者を負傷させる危険性を低減することができる。 Moreover, it is preferable that the 1st transparent base material 21 and the 2nd transparent base material 22 are formed with resin, and contain the polycarbonate which is resin with high glass transition temperature. By forming with resin, the 1st transparent substrate 21 and the 2nd transparent substrate 22 may become difficult to be damaged. It is preferable that the first transparent base 21 and the second transparent base 22 be formed so as to have a Charpy impact value of 1 kJ / m 2 or more. The molecular weight of the polycarbonate contained in the first transparent substrate 21 and the second transparent substrate 22 is preferably 17,000 or more, and more preferably 20,000 or more. When the first transparent base 21 and the second transparent base 22 are formed of such a material, even if the first transparent base 21 and the second transparent base 22 are damaged, the first transparent base is formed. The edges of the fragments of the material 21 and the second transparent substrate 22 are not sharpened, and the risk of injury to the user of the light control member 20 can be reduced.
 なお、「透明」とは、第1透明基材21及び第2透明基材22を介して当該透明基材の一方の側から他方の側を透視し得る程度の透明性を有していることを意味しており、例えば、30%以上、より好ましくは70%以上の可視光透過率を有していることを意味する。可視光透過率は、分光光度計((株)島津製作所製「UV-3100PC」、JIS K 0115準拠品)を用いて測定波長380nm~780nmの範囲内で測定したときの、各波長における透過率の平均値として特定される。 In addition, having "transparency" has transparency of the grade which can see through the other side from the one side of the said transparent base material via the 1st transparent base material 21 and the 2nd transparent base material 22. For example, it means having a visible light transmittance of 30% or more, more preferably 70% or more. The visible light transmittance is measured at a wavelength of 380 nm to 780 nm using a spectrophotometer (“UV-3100 PC” manufactured by Shimadzu Corporation, a product conforming to JIS K 0115) at each wavelength. Identified as the average value of
 また、第1透明基材21及び第2透明基材22は、1mm以上5mm以下の厚みを有していることが好ましい。このような厚みであると、強度及び光学特性に優れた第1透明基材21及び第2透明基材22を得ることができる。第1透明基材21及び第2透明基材22は、同一の材料で同一に構成されていてもよいし、或いは、材料および構成の少なくとも一方において互いに異なるようにしてもよい。 Moreover, it is preferable that the 1st transparent base material 21 and the 2nd transparent base material 22 have a thickness of 1 mm or more and 5 mm or less. With such a thickness, it is possible to obtain the first transparent base 21 and the second transparent base 22 which are excellent in strength and optical properties. The first transparent base 21 and the second transparent base 22 may be made of the same material and the same, or may be different from each other in at least one of the material and the configuration.
 次に、第1接合層23及び第2接合層24について説明する。上述したように、第1接合層23は、第1透明基材21と調光セル30とを接合し、第2接合層24は、第2透明基材22と調光セル30とを接合する。第1接合層23及び第2接合層24は、いわゆるOCA(Optical Clear Adhesive)やOCR(Optical Clear Resin)である。すなわち、第1接合層23及び第2接合層24は、光学的に透明な接着剤の層である。また、第1接合層23及び第2接合層24は、第1透明基材21及び第2透明基材22と実質的に同じ屈折率を有していることが好ましい。この場合、第1透明基材21及び第2透明基材22と第1接合層23及び第2接合層24との各界面における光の反射を低減することができる。 Next, the first bonding layer 23 and the second bonding layer 24 will be described. As described above, the first bonding layer 23 bonds the first transparent base 21 and the light control cell 30, and the second bonding layer 24 bonds the second transparent base 22 and the light control cell 30. . The first bonding layer 23 and the second bonding layer 24 are so-called OCA (Optical Clear Adhesive) or OCR (Optical Clear Resin). That is, the first bonding layer 23 and the second bonding layer 24 are layers of an optically transparent adhesive. The first bonding layer 23 and the second bonding layer 24 preferably have substantially the same refractive index as the first transparent base 21 and the second transparent base 22. In this case, reflection of light at each interface between the first transparent base 21 and the second transparent base 22 and the first bonding layer 23 and the second bonding layer 24 can be reduced.
 また、第1接合層23及び第2接合層24は、後述する調光セル30に含まれる液晶セル35において液晶が偏在することを避けるために、室温環境(例えば1℃以上30℃以下、特に好ましくは15℃以上25℃以下)における貯蔵弾性率が6×10Pa以下、好ましくは1.4×10Pa以下となっている。また、第1接合層23及び第2接合層24は、第1透明基材21及び第2透明基材22から剥離して気泡が生じることを避けるために、室温環境における貯蔵弾性率が3×10Pa以上となっていることが好ましく、1×10Pa以上となっていることがより好ましい。これらの不具合と貯蔵弾性率との関係については、後に詳しく説明する。 In addition, the first bonding layer 23 and the second bonding layer 24 are in a room temperature environment (for example, 1 ° C. or more and 30 ° C. or less, in particular, in order to avoid uneven distribution of liquid crystals in the liquid crystal cell 35 Preferably, the storage elastic modulus at 15 ° C. or more and 25 ° C. or less is 6 × 10 6 Pa or less, preferably 1.4 × 10 6 Pa or less. In addition, the first bonding layer 23 and the second bonding layer 24 have a storage elastic modulus of 3 × in a room temperature environment in order to prevent generation of air bubbles by peeling from the first transparent base 21 and the second transparent base 22. It is preferably 10 4 Pa or more, and more preferably 1 × 10 5 Pa or more. The relationship between these defects and the storage modulus will be described in detail later.
 なお、貯蔵弾性率は、固体粘弾性アナライザ(ティー・エイ・インスツルメント社製「RSA-III」)によって、JIS K 7244-1に準拠した動的粘弾性測定法によって測定されることができる。貯蔵弾性率は、温度-50~150℃の範囲で、周波数1Hz、アタッチメントモード ねじりせん断モード、昇温速度5℃/分の条件で測定を行った。 The storage elastic modulus can be measured by a dynamic viscoelasticity measurement method according to JIS K 7244-1 by a solid viscoelasticity analyzer ("RSA-III" manufactured by TA Instruments). . The storage elastic modulus was measured at a temperature of −50 to 150 ° C., a frequency of 1 Hz, an attachment mode of torsional shear mode, and a temperature rising rate of 5 ° C./min.
 第1接合層23及び第2接合層24の少なくとも一方の厚さは、50μm以上であることが好ましい。2つの剛性を有する部材を接合層を介して積層させる場合、接合層と剛性を有する部材との間に入り込んだ空気は、接合層と剛性を有する部材の間から抜けにくく、気泡として入り込んでしまう。したがって、例えば第1接合層23が50μmより薄いと、第2透明基材22及び調光セル30等と積層した第1接合層23を第1透明基材21に積層する際に、第1透明基材21及び第2透明基材22が共に剛性を有することから、第1接合層23と第1透明基材21との間に気泡が入り込みやすくなる。他方、剛性を有する部材と剛性を有さない部材とを接合層を介して積層させる場合、接合層と剛性を有さない部材との間に空気が入り込んでも、剛性を有さない部材が湾曲させながら積層していくことで空気の排出を誘導することができる。したがって、例えば第2接合層24が50μmより薄くても、調光セル30を第2接合層24に積層する際には、第2接合層24と第2透明基材22との間に気泡は入り込みにくい。また、第1接合層23及び第2接合層24は、厚みが1000μm以下であることが好ましい。厚みが1000μmよりも厚いと、量産性、価格及び強度の点で不利となる。第1接合層23及び第2接合層24は、同一の材料で同一に構成されていてもよいし、或いは、材料および構成の少なくとも一方において互いに異なるようにしてもよい。 The thickness of at least one of the first bonding layer 23 and the second bonding layer 24 is preferably 50 μm or more. When two members having rigidity are laminated via the bonding layer, air which has entered between the bonding layer and the member having rigidity is difficult to escape between the bonding layer and the member having rigidity, and enters as air bubbles. . Therefore, for example, when the first bonding layer 23 laminated with the second transparent base material 22 and the light control cell 30 is laminated on the first transparent base material 21 when the first bonding layer 23 is thinner than 50 μm, the first transparent Since both the base 21 and the second transparent base 22 have rigidity, air bubbles can easily enter between the first bonding layer 23 and the first transparent base 21. On the other hand, when laminating a rigid member and a non-rigid member through the bonding layer, the non-rigid member is curved even if air enters between the bonding layer and the non-rigid member. It is possible to induce the discharge of air by laminating while letting the air flow. Therefore, for example, even when the second bonding layer 24 is thinner than 50 μm, when laminating the light control cell 30 on the second bonding layer 24, air bubbles are generated between the second bonding layer 24 and the second transparent base 22. It is hard to get in. The first bonding layer 23 and the second bonding layer 24 preferably have a thickness of 1000 μm or less. When the thickness is thicker than 1000 μm, it is disadvantageous in terms of mass productivity, cost and strength. The first bonding layer 23 and the second bonding layer 24 may be made of the same material and the same, or may be different from each other in at least one of the material and the configuration.
 次に、調光セル30について説明する。図3に示すように、調光セル30は、第1偏光板31と、第2偏光板32と、第1偏光板31と第2偏光板32との間に配置された液晶セル35とを含む。調光セル30は、電圧印加等の電子制御によって液晶セル35の液晶の配向状態を変化させることができる。液晶の配向を変化させることで、第1偏光板31及び第2偏光板32の間を進む光の偏光状態を制御する。これにより、例えばクロスニコルやパラレルニコルで配置された第1偏光板31及び第2偏光板32の間を進む光の可視光透過率を調節することができる。また、調光セル30の厚みは、例えば100μm以上800μm以下である。 Next, the light control cell 30 will be described. As shown in FIG. 3, the light control cell 30 includes a first polarizing plate 31, a second polarizing plate 32, and a liquid crystal cell 35 disposed between the first polarizing plate 31 and the second polarizing plate 32. Including. The light control cell 30 can change the alignment state of the liquid crystal of the liquid crystal cell 35 by electronic control such as voltage application. By changing the orientation of the liquid crystal, the polarization state of light traveling between the first polarizing plate 31 and the second polarizing plate 32 is controlled. Thereby, for example, it is possible to adjust the visible light transmittance of light traveling between the first polarizing plate 31 and the second polarizing plate 32 arranged in cross nicol or parallel nicol. Moreover, the thickness of the light control cell 30 is 100 micrometers or more and 800 micrometers or less, for example.
 なお、クロスニコルとは、2つの偏光板の透過軸が互いに直交するように配置されていることをいい、パラレルニコルとは、2つの偏光板の透過軸が互いに平行になるように配置されていることをいう。 Cross Nicol means that the transmission axes of the two polarizers are orthogonal to each other, and parallel Nicol means that the transmission axes of the two polarizers are parallel to each other Say that
 第1偏光板31及び第2偏光板32は、入射した光を直交する二つの偏光成分(p偏光成分及びs偏光成分)に分解し、一方の方向(透過軸と平行な方向)に振動する直線偏光成分(例えば、p偏光成分)をより高い透過率で透過させ、前記一方の方向に直交する他方の方向(吸収軸と平行な方向)に振動する直線偏光成分(例えば、s偏光成分)をより高い吸収率で吸収する機能を有している。すなわち、第1偏光板31及び第2偏光板32を通すことで、一方の方向(透過軸と平行な方向)に振動する直線偏光成分を選択して取り出すことができる。 The first polarizing plate 31 and the second polarizing plate 32 decompose the incident light into two orthogonal polarization components (p polarization component and s polarization component) and vibrate in one direction (direction parallel to the transmission axis) Linearly polarized light component (for example, s-polarized light component) which transmits the linearly polarized light component (for example, p-polarized light component) with higher transmittance and vibrates in the other direction (parallel to the absorption axis) orthogonal to the one direction Has a function to absorb at a higher absorption rate. That is, by passing the first polarizing plate 31 and the second polarizing plate 32, it is possible to select and extract a linearly polarized light component vibrating in one direction (a direction parallel to the transmission axis).
 液晶セル35には、例えばVA(Vertical Alignment)方式、TN(Twisted Nematic)方式、IPS(In Plane Switching)方式またはFFS(Fringe Field Switching)方式の液晶を用いることができる。液晶セル35は、樹脂からなるフィルムを基材として液晶が保持されたフィルム液晶であってもよいし、薄膜状のガラスを基材として液晶が保持されたガラス液晶であってもよい。 As the liquid crystal cell 35, for example, liquid crystal of VA (Vertical Alignment) system, TN (Twisted Nematic) system, IPS (In Plane Switching) system or FFS (Fringe Field Switching) system can be used. The liquid crystal cell 35 may be a film liquid crystal in which liquid crystal is held by using a film made of resin as a base material, or may be a glass liquid crystal in which liquid crystal is held by using thin film glass as a base.
 調光セル30は、配線30cを有している。配線30cは、例えば自動車1に設けられた制御装置(図示せず)に接続され、駆動電力や制御信号を調光セル30に提供する。 The light control cell 30 has a wire 30 c. The wiring 30 c is connected to, for example, a control device (not shown) provided in the automobile 1 and provides drive power and control signals to the dimming cell 30.
 調光セル30には、配線30cを介して電圧を印加する等の電子制御を行うことにより、液晶セル35の液晶の配向を変化させることができる。液晶の配向によって、液晶セル35を透過する光の偏光方向は変化し得る。例えば、電圧が印加され液晶の配向が変化した液晶セル35を、第1偏光板31を透過した特定方向の偏光成分を有する光が通過する場合、液晶セル35を透過する光は、その偏光方向を90°回転させる。第1偏光板31及び第2偏光板32がクロスニコルで配置されていると、偏光方向を90°回転したことで、光は第2偏光板32を透過することができる。一方、電圧が印加されておらず液晶の配向が変化していない液晶セル35を、第1偏光板31を透過した特定方向の偏光成分を有する光が通過する場合、液晶セル35を透過する光は、その偏光方向を回転させない。第1偏光板31及び第2偏光板32がクロスニコルで配置されていると、偏光方向を回転しなかった光は第2偏光板32を透過することができない。このように、液晶セル35の液晶の配向の変化の有無によって、光の透過を制御することができる。したがって、調光セル30は、電子制御により可視光透過率を調節することができる。 The orientation of the liquid crystal of the liquid crystal cell 35 can be changed by performing electronic control such as applying a voltage via the wiring 30 c to the light control cell 30. Depending on the orientation of the liquid crystal, the polarization direction of light transmitted through the liquid crystal cell 35 may change. For example, when light having a polarization component in a specific direction transmitted through the first polarizing plate 31 passes through the liquid crystal cell 35 in which the voltage is applied and the alignment of the liquid crystal is changed, the light transmitted through the liquid crystal cell 35 has its polarization direction Rotate 90 degrees. When the first polarizing plate 31 and the second polarizing plate 32 are arranged in cross nicol, light can be transmitted through the second polarizing plate 32 by rotating the polarization direction by 90 °. On the other hand, when light having a polarization component in a specific direction transmitted through the first polarizing plate 31 passes through the liquid crystal cell 35 in which the voltage is not applied and the orientation of the liquid crystal does not change, light passing through the liquid crystal cell 35 Does not rotate its polarization direction. When the first polarizing plate 31 and the second polarizing plate 32 are arranged in cross nicol, the light whose polarization direction has not been rotated can not be transmitted through the second polarizing plate 32. Thus, the transmission of light can be controlled by the presence or absence of the change in the alignment of the liquid crystals of the liquid crystal cell 35. Therefore, the light control cell 30 can adjust the visible light transmittance by electronic control.
 なお、調光部材20には、図示された例に限られず、特定の機能を発揮することを期待されたその他の機能層が設けられても良い。また、1つの機能層が2つ以上の機能を発揮するようにしてもよいし、例えば、調光部材20の第1透明基材21、第2透明基材22、第1接合層23、第2接合層24及び調光セル30の少なくとも一つに、何らかの機能を付与するようにしてもよい。調光部材20に付与され得る機能としては、一例として、耐擦傷性を有したハードコート(HC)機能、赤外線遮蔽(反射)機能、紫外線遮蔽(反射)機能、防汚機能等を例示することができる。 The light control member 20 is not limited to the illustrated example, and may be provided with other functional layers expected to exhibit a specific function. In addition, one functional layer may exhibit two or more functions, and, for example, the first transparent base 21, the second transparent base 22, the first bonding layer 23 of the light control member 20, the first Some function may be given to at least one of the second bonding layer 24 and the light control cell 30. As a function that can be imparted to the light control member 20, as an example, a hard coat (HC) function having scratch resistance, an infrared ray shielding (reflection) function, an ultraviolet ray shielding (reflection) function, an antifouling function, etc. Can.
 次に、調光部材20の製造方法の一例について説明する。 Next, an example of a method of manufacturing the light control member 20 will be described.
 まず、第2透明基材22上に第2接合層24が積層される。第2接合層24は、例えばディスペンサによって塗布されることで設けられる。第2接合層24と積層する第2透明基材22の面に段差が生じていたとしても、第2接合層24が塗布されることで段差は埋め合わされるため、第2透明基材22と第2接合層24との間に気泡は生じにくい。 First, the second bonding layer 24 is laminated on the second transparent base material 22. The second bonding layer 24 is provided by being applied by, for example, a dispenser. Even if a level difference is generated on the surface of the second transparent base material 22 laminated with the second bonding layer 24, the level difference is compensated by the application of the second bonding layer 24. Air bubbles are less likely to occur between the second bonding layer 24 and the second bonding layer 24.
 次に、第2接合層24上に調光セル30を積層する。調光セル30は、剛性を有さないため、調光セル30と第2接合層24との間の空気を押し出しながら積層することができる。したがって、第2接合層24の厚さにかかわらず、第2接合層24と調光セル30との間に気泡は生じにくい。 Next, the light control cell 30 is stacked on the second bonding layer 24. Since the light control cell 30 does not have rigidity, it can be laminated while pushing out the air between the light control cell 30 and the second bonding layer 24. Therefore, regardless of the thickness of the second bonding layer 24, bubbles are unlikely to be generated between the second bonding layer 24 and the dimming cell 30.
 次に、調光セル30上に第1接合層23が積層される。第1接合層23は、例えばディスペンサによって塗布されることで設けられる。調光セル30に段差が生じていたとしても、第1接合層23が塗布されることで段差は埋め合わされるため、調光セル30と第1接合層23との間に気泡は生じにくい。 Next, the first bonding layer 23 is stacked on the light control cell 30. The first bonding layer 23 is provided by being applied by, for example, a dispenser. Even if there is a step in the light control cell 30, the step is compensated by the application of the first bonding layer 23, so that bubbles are unlikely to occur between the light control cell 30 and the first bonding layer 23.
 その後、第1接合層23に、第1透明基材21が積層される。第1透明基材21及び第1接合層23に積層している第2透明基材22が剛性を有するため、第1接合層23と積層する第1透明基材21の面に段差が生じていると、段差に空気が入り込むことがある。しかしながら、第1接合層23が十分な厚さであると、第1接合層23が変形することによって段差内に入り込み、段差内の空気を排出しやすくなる。したがって、段差に気泡を残留させないために、第1接合層23の厚さが十分な厚さであること、具体的には50μm以上であることが好ましい。 Thereafter, the first transparent substrate 21 is laminated on the first bonding layer 23. Since the second transparent base material 22 laminated on the first transparent base material 21 and the first bonding layer 23 has rigidity, a step is generated on the surface of the first transparent base material 21 stacked on the first bonding layer 23 If you do, air may get into the steps. However, if the first bonding layer 23 has a sufficient thickness, the first bonding layer 23 deforms and thereby enters the step, which makes it easy to discharge the air in the step. Therefore, it is preferable that the thickness of the first bonding layer 23 be a sufficient thickness, specifically 50 μm or more, in order not to leave air bubbles in the step.
 以上の各工程は、低圧環境下または真空環境下で行われることが好ましい。このことにより、調光部材20の各層の間の界面に気泡が混入することを抑制することができる。 Each of the above steps is preferably performed in a low pressure environment or a vacuum environment. By this, it can suppress that a bubble mixes in the interface between each layer of the light control member 20. As shown in FIG.
 ところで、このような調光部材20には、局所的な変色が生じることがあった。本件発明者らが検討したところ、調光部材20の局所的な変色は、樹脂で形成された透明基材の変形によって調光セルに圧力がかかり、調光セルの液晶セルにおいて液晶が偏在することで発生すると推定された。さらに、この推定原因に対応した対策によって調光部材の局所的な変色を効果的に抑制し得ることを確認した。 By the way, such a light control member 20 may have local discoloration. As examined by the present inventors, the local discoloration of the light control member 20 causes pressure to be applied to the light control cell due to the deformation of the transparent base material formed of resin, and the liquid crystal is unevenly distributed in the liquid crystal cell of the light control cell. Was estimated to occur. Furthermore, it confirmed that the local discoloration of the light control member could be effectively suppressed by the countermeasure corresponding to this presumed cause.
 樹脂で形成された透明基材の変形は、熱によって起こり得る。例えば、調光部材20がサンバイザとして自動車1の内部で用いられる場合、高温に晒され得る。樹脂で形成された第1透明基材21及び第2透明基材22のガラス転移温度は、100~150℃程度である。したがって、第1透明基材21及び第2透明基材22は、80℃程度の温度に晒されると、変形し得る。この熱による第1透明基材21及び第2透明基材22の変形によって、調光セル30に圧力がかかり、調光セル30の液晶セル35において液晶が偏在した結果、調光部材20に局所的な変色を生じさせていると考えられる。 Deformation of the transparent substrate formed of resin can be caused by heat. For example, when the light control member 20 is used inside a car 1 as a sun visor, it may be exposed to high temperatures. The glass transition temperature of the first transparent base 21 and the second transparent base 22 formed of resin is about 100 to 150.degree. Therefore, the first transparent base 21 and the second transparent base 22 may deform when exposed to a temperature of about 80.degree. As a result of the pressure applied to the light control cell 30 due to the deformation of the first transparent base 21 and the second transparent base 22 due to the heat, the liquid crystal is unevenly distributed in the liquid crystal cell 35 of the light control cell 30. It is thought that it is causing a color change.
 調光部材20に局所的な変色を生じさせないために、調光セル30の液晶セル35における液晶の偏在を防止することが望まれる。本件発明者らが鋭意検討した結果、第1接合層23及び第2接合層24の貯蔵弾性率を低くすることで、第1透明基材21及び第2透明基材22の変形を第1接合層23及び第2接合層24で吸収して、調光セル30が第1透明基材21及び第2透明基材22の変形の影響を受けないようにすることができることを確認した。具体的には、室温環境における第1接合層23及び第2接合層24の貯蔵弾性率を6×10Pa以下、好ましくは1.4×10Pa以下とすることで、第1透明基材21及び第2透明基材22が熱によって変形したとしても、調光部材20に局所的な変色が生じないことが確認された。 It is desirable to prevent the uneven distribution of liquid crystal in the liquid crystal cell 35 of the light control cell 30 in order to prevent the light control member 20 from being locally discolored. As a result of intensive studies by the present inventors, it is possible to lower the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 so that the deformation of the first transparent base material 21 and the second transparent base material 22 is performed as the first bonding. It was confirmed that absorption by the layer 23 and the second bonding layer 24 can prevent the light control cell 30 from being affected by the deformation of the first transparent base 21 and the second transparent base 22. Specifically, by setting the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 in a room temperature environment to 6 × 10 6 Pa or less, preferably 1.4 × 10 6 Pa or less, the first transparent group is obtained. Even if the material 21 and the second transparent base material 22 were deformed by heat, it was confirmed that no local color change occurs in the light control member 20.
 また、このような調光部材20には、第1透明基材21と第1接合層23との間及び第2透明基材22と第2接合層24との間に気泡が生じることがあった。本件発明者らが検討したところ、気泡は、上述したような第1透明基材21と第1接合層23とを積層する際に入り込むことで生じるほか、調光部材20が高温に晒されることでも生じることがあると推定された。 Also, in such a light control member 20, air bubbles may be generated between the first transparent base 21 and the first bonding layer 23 and between the second transparent base 22 and the second bonding layer 24. The As examined by the present inventors, the air bubbles are generated by being introduced when laminating the first transparent base material 21 and the first bonding layer 23 as described above, and the light control member 20 is exposed to high temperature However, it was estimated that it might occur.
 調光部材20が高温に晒されると、第1透明基材21及び第2透明基材22が変形して第1接合層23及び第2接合層24から剥離することがあり、剥離した隙間に空気が入り込むことで気泡が発生し得る。また、調光部材20が高温に晒されると、第1透明基材21及び第2透明基材22に含まれる水分等がガスとなり、そのガスが第1透明基材21と第1接合層23との間及び第2透明基材22と第2接合層24との間を剥離させて入り込むことで、気泡が発生し得ると考えられる。 When the light control member 20 is exposed to a high temperature, the first transparent base material 21 and the second transparent base material 22 may be deformed and peeled off from the first bonding layer 23 and the second bonding layer 24. Air can be generated as air enters. In addition, when the light control member 20 is exposed to a high temperature, the moisture and the like contained in the first transparent base 21 and the second transparent base 22 become a gas, and the gas is the first transparent base 21 and the first bonding layer 23 It is thought that air bubbles may be generated by peeling and entering between the second transparent base material 22 and the second bonding layer 24 and between the second transparent base material 22 and the second bonding layer 24.
 本件発明者らが鋭意検討した結果、調光部材20の第1透明基材21と第1接合層23との間及び第2透明基材22と第2接合層24との間に気泡を発生させないために、第1接合層23及び第2接合層24の貯蔵弾性率を高くすることで、第1透明基材21と第1接合層23との間及び第2透明基材22と第2接合層24との間の剥離を防止して、気泡の発生を抑制することができることを確認した。具体的には、室温環境における第1接合層23及び第2接合層24の貯蔵弾性率を3×10Pa以上、好ましくは1×10Pa以上とすることで、高温に晒されても第1透明基材21と第1接合層23との間及び第2透明基材22と第2接合層24との間の剥離が防止され、気泡の発生が抑制されることが確認された。 As a result of intensive studies by the present inventors, air bubbles are generated between the first transparent base 21 and the first bonding layer 23 of the light control member 20 and between the second transparent base 22 and the second bonding layer 24. By setting the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 high in order to prevent the second bonding material 22 and the second transparent substrate 22 and the second It was confirmed that the generation of air bubbles can be suppressed by preventing the peeling between the bonding layer 24 and the other. Specifically, the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 in a room temperature environment is 3 × 10 4 Pa or more, preferably 1 × 10 5 Pa or more, even if exposed to high temperature It was confirmed that peeling between the first transparent base 21 and the first bonding layer 23 and between the second transparent base 22 and the second bonding layer 24 was prevented, and the generation of air bubbles was suppressed.
 以上のように、第1の実施の形態の調光部材20は、一対の透明基材21,22と、一対の透明基材21,22の間に配置された調光セル30と、透明基材21,22と調光セル30との間に配置され、透明基材21,22と調光セル30とを接合する2つの接合層23,24と、を備え、調光セル30は、電子制御により可視光透過率を調節可能であり、接合層23,24の貯蔵弾性率は、1℃以上30℃以下で、6×10Pa以下である。このような調光部材20によれば、第1透明基材21及び第2透明基材22が熱によって変形したとしても、第1透明基材21及び第2透明基材22の変形を第1接合層23及び第2接合層24で吸収することができる。したがって、調光セル30が第1透明基材21及び第2透明基材22の変形の影響を受けず、調光セル30の液晶セル35に液晶の偏在を生じにくくすることができる。すなわち、調光部材20に局所的な変色を生じにくくすることができる。 As described above, the light control member 20 according to the first embodiment includes the pair of transparent bases 21 and 22, the light control cell 30 disposed between the pair of transparent bases 21 and 22, and the transparent base The light control cell 30 includes two bonding layers 23 and 24 disposed between the materials 21 and 22 and the light control cell 30, and bonding the transparent base members 21 and 22 and the light control cell 30. The visible light transmittance can be adjusted by control, and the storage elastic modulus of the bonding layers 23 and 24 is 6 × 10 6 Pa or less at 1 ° C. or more and 30 ° C. or less. According to such a light control member 20, even if the first transparent base 21 and the second transparent base 22 are deformed by heat, the deformation of the first transparent base 21 and the second transparent base 22 can be reduced. It can be absorbed by the bonding layer 23 and the second bonding layer 24. Therefore, the light control cell 30 is not affected by the deformation of the first transparent base 21 and the second transparent base 22, and it is possible to make it difficult to cause uneven distribution of liquid crystal in the liquid crystal cell 35 of the light control cell 30. That is, it is possible to make it difficult for the light control member 20 to cause a local color change.
 また、第1の実施の形態の調光部材20において、第1接合層23及び第2接合層24の少なくとも一方の厚さは、50μm以上である。上述した第1の実施の形態では、第1接合層23の厚さが、50μm以上となっている。このような調光部材20によれば、第1接合層23と積層する第1透明基材21の面に段差が生じていても、第1接合層23が変形することによって段差が埋め合わされることができ、段差に空気が入らず、気泡が入り込みにくい。したがって、調光部材20に気泡が発生することを抑制することができる。 In the light control member 20 of the first embodiment, the thickness of at least one of the first bonding layer 23 and the second bonding layer 24 is 50 μm or more. In the first embodiment described above, the thickness of the first bonding layer 23 is 50 μm or more. According to such a light control member 20, even if a step is generated on the surface of the first transparent base 21 laminated with the first bonding layer 23, the step is compensated by the deformation of the first bonding layer 23. Air can not enter the level difference, and air bubbles do not easily enter. Therefore, generation of air bubbles in the light control member 20 can be suppressed.
 さらに、第1の実施の形態の調光部材20において、接合層23,24の貯蔵弾性率は、1℃以上30℃以下で、3×10Pa以上である。このような調光部材20によれば、第1透明基材21と第1接合層23との間及び第2透明基材22と第2接合層24との間の剥離を防止して、気泡の発生を抑制することができる。 Furthermore, in the light control member 20 according to the first embodiment, the storage elastic modulus of the bonding layers 23 and 24 is 3 × 10 4 Pa or more at 1 ° C. or more and 30 ° C. or less. According to such a light control member 20, peeling is prevented between the first transparent base material 21 and the first bonding layer 23 and between the second transparent base material 22 and the second bonding layer 24 so that air bubbles can be prevented. Can be suppressed.
 なお、上述した第1の実施の形態に対して様々な変更を加えることが可能である。 Note that various changes can be made to the above-described first embodiment.
 例えば、上述した第1の施の形態の調光部材20は、第1透明基材21と第1接合層23との間及び/又は第2透明基材22と第2接合層24との間に配置された易接着層を、さらに備えてもよい。図2に示された例では、第1透明基材21と第1接合層23との間に易接着層21aが配置されている。易接着層21aは、当該易接着層の両面の部材の密着性及び接着性を向上させるための層である。すなわち、易接着層21aと第1透明基材21との接着力および易接着層21aと第1接合層23との接着力は、第1透明基材21と第1接合層23との接着力よりも強くなっている。また、第2透明基材22と第2接合層24との間に易接着層が配置されている場合も、易接着層と第2透明基材22との接着力および易接着層と第2接合層24との接着力は、第2透明基材22と第2接合層24との接着力よりも強くなっている。ここで二つの層の接着力の強さは、JIS K 6854に準拠した剥離試験、例えば、インストロン社製 万能試験機によって測定することができる。易接着層は、透明な材料からなり、例えばアクリルまたはウレタンを含む樹脂である。また、易接着層の厚さは、例えば3μm以上50μm以下である。 For example, the light control member 20 according to the first embodiment described above may be provided between the first transparent substrate 21 and the first bonding layer 23 and / or between the second transparent substrate 22 and the second bonding layer 24. You may further provide the easily bonding layer arrange | positioned at. In the example shown in FIG. 2, the easy adhesion layer 21 a is disposed between the first transparent base 21 and the first bonding layer 23. The easy adhesion layer 21a is a layer for improving the adhesion and adhesiveness of the members on both sides of the easy adhesion layer. That is, the adhesion between the easy adhesion layer 21 a and the first transparent base 21 and the adhesion between the easy adhesion layer 21 a and the first bonding layer 23 are the adhesion between the first transparent base 21 and the first bonding layer 23. It is stronger than that. Also in the case where the easy adhesion layer is disposed between the second transparent substrate 22 and the second bonding layer 24, the adhesion between the easy adhesion layer and the second transparent substrate 22 and the easy adhesion layer and the second adhesion layer are also possible. The adhesion to the bonding layer 24 is stronger than the adhesion to the second transparent substrate 22 and the second bonding layer 24. Here, the adhesion strength of the two layers can be measured by a peeling test in accordance with JIS K 6854, for example, a universal tester manufactured by Instron. The easy adhesion layer is made of a transparent material, such as a resin containing acrylic or urethane. Moreover, the thickness of the easily bonding layer is, for example, 3 μm or more and 50 μm or less.
 このような易接着層によれば、第1透明基材21と第1接合層23及び/又は第2透明基材22と第2接合層24との密着性及び接着性を向上させて、第1透明基材21と第1接合層23との間及び第2透明基材22と第2接合層24との間の剥離を防止することができる。したがって、第1接合層23との間及び第2透明基材22と第2接合層24との間の気泡の発生を抑制することができる。 According to such an easily adhesive layer, the adhesion and adhesiveness between the first transparent base 21 and the first bonding layer 23 and / or the second transparent base 22 and the second bonding layer 24 are improved, The peeling between the first transparent base 21 and the first bonding layer 23 and between the second transparent base 22 and the second bonding layer 24 can be prevented. Therefore, the generation of air bubbles between the first bonding layer 23 and between the second transparent base material 22 and the second bonding layer 24 can be suppressed.
 また、上述した第1の実施の形態の調光部材20は、第1透明基材21と第1接合層23との間及び/又は第2透明基材22と第2接合層24との間に配置されたバリア層を、さらに備えてもよい。図2に示された例では、第2透明基材22と第2接合層24との間にバリア層22aが配置されている。バリア層22aは、第2透明基材22から発生するガスを遮断し、第2接合層24にガスの影響を及ぼさないようにするための層である。このために、バリア層22aの水蒸気透過率が1g/m・da以下であることが好ましい。また、第1透明基材21と第1接合層23との間にバリア層が配置されている場合も、バリア層は、第1透明基材21から発生するガスを遮断し、第1接合層23にガスの影響を及ぼさないようにすることができる。なお水蒸気透過率は、水蒸気透過率測定装置(MOCON社製、PERMATRAN-W3/31)を用い、温度40℃、湿度100%RHで測定可能である。バリア層は、透明な材料からなり、例えば酸炭化ケイ素(SiOC)の蒸着膜が使用される。この場合のバリア層の厚さは、例えば50nm以上1μm以下である。しかし、バリア層は透明であれば、作製方法は塗工など他の手法で作製してもよい。 Further, the light control member 20 according to the first embodiment described above is configured between the first transparent base 21 and the first bonding layer 23 and / or between the second transparent base 22 and the second bonding layer 24. The device may further comprise a barrier layer disposed on In the example shown in FIG. 2, the barrier layer 22 a is disposed between the second transparent substrate 22 and the second bonding layer 24. The barrier layer 22 a is a layer for blocking the gas generated from the second transparent substrate 22 and preventing the second bonding layer 24 from being affected by the gas. For this purpose, the water vapor permeability of the barrier layer 22a is preferably 1 g / m 2 · da or less. In addition, even when the barrier layer is disposed between the first transparent base 21 and the first bonding layer 23, the barrier layer blocks the gas generated from the first transparent base 21, and the first bonding layer is formed. It is possible to prevent 23 from being influenced by gas. The water vapor transmission rate can be measured at a temperature of 40 ° C. and a humidity of 100% RH using a water vapor transmission rate measuring apparatus (manufactured by MOCON, PERMATRAN-W3 / 31). The barrier layer is made of a transparent material, and a vapor deposited film of silicon oxycarbide (SiOC), for example, is used. The thickness of the barrier layer in this case is, for example, 50 nm or more and 1 μm or less. However, as long as the barrier layer is transparent, the production method may be produced by another method such as coating.
 このようなバリア層によれば、調光部材20に熱が加わった際に、第1透明基材21及び/又は第2透明基材22から発生する水分等によるガスが第1接合層23及び/又は第2接合層24に達することを抑制することができる。したがって、ガスが第1透明基材21と第1接合層23との間及び第2透明基材22と第2接合層24との間を剥離させて入り込むことで発生し得る気泡を抑制することができる。 According to such a barrier layer, when heat is applied to the light control member 20, a gas such as moisture generated from the first transparent base 21 and / or the second transparent base 22 acts as the first bonding layer 23 and the like. And / or reaching the second bonding layer 24 can be suppressed. Therefore, it is possible to suppress air bubbles which may be generated by causing the gas to peel off and enter between the first transparent base 21 and the first bonding layer 23 and between the second transparent base 22 and the second bonding layer 24. Can.
 さらに、上述した第1の実施の形態の調光部材20は、第1透明基材21の第1接合層23が配置された側とは反対側及び/又は第2透明基材22の第2接合層24が配置された側とは反対側に配置された反射防止層を、さらに備えてもよい。図2に示された例では、第1透明基材21の第1接合層23が配置された側とは反対側に反射防止層21bが配置されている。反射防止層は、調光部材20の表面における可視光の反射を抑止して、可視光透過率を向上させるための層である。反射防止層は、透明な材料からなり、例えば第1透明基材21及び第2透明基材22より屈折率の低い材料からなる。また、反射防止層は、可視光の最短波長(例えば380nm)未満のピッチで配列された微小突起を有してもよい。反射防止層の厚さは、例えば反射防止層を設けたフィルムを貼合する場合は20μm以上500μm以下、塗工または蒸着で設ける場合は、10μm以下である。 Furthermore, the light control member 20 of the first embodiment described above is the side opposite to the side on which the first bonding layer 23 of the first transparent base material 21 is disposed, and / or the second side of the second transparent base material 22. You may further provide the anti-reflective layer arrange | positioned on the opposite side to the side by which the joining layer 24 is arrange | positioned. In the example shown in FIG. 2, the anti-reflection layer 21 b is disposed on the side opposite to the side on which the first bonding layer 23 of the first transparent substrate 21 is disposed. The antireflection layer is a layer for suppressing the reflection of visible light on the surface of the light control member 20 to improve the visible light transmittance. The antireflective layer is made of a transparent material, for example, a material having a refractive index lower than that of the first transparent substrate 21 and the second transparent substrate 22. The antireflective layer may also have microprotrusions arranged at a pitch less than the shortest wavelength of visible light (for example, 380 nm). The thickness of the antireflective layer is, for example, 20 μm or more and 500 μm or less in the case of bonding a film provided with the antireflective layer, and 10 μm or less in the case of coating or deposition.
 また、上述した第1の実施の形態では、調光セル30の液晶セル35は、VA方式等の2つの偏光板31,32を伴って用いる方式の液晶が用いられている。しかしながら、調光セル30として、GH(Guest Host)方式の液晶が用いられてもよい。GH方式の液晶は、液晶組成物と二色性色素組成物とがランダムに配向した状態と、いわゆるツイスト配向した状態とを電圧の制御により変化させて透過率を制御することができる。GH方式の液晶である液晶セル35を用いる場合、図3に示すような第1偏光板31及び第2偏光板32の一方あるいは両方を配置しなくてもよい。 Further, in the first embodiment described above, the liquid crystal cell 35 of the light control cell 30 uses a liquid crystal of a method that uses two polarizing plates 31 and 32 such as the VA method. However, liquid crystal of GH (Guest Host) system may be used as the light control cell 30. In the liquid crystal of the GH system, the transmittance can be controlled by changing the state in which the liquid crystal composition and the dichroic dye composition are randomly aligned and the state in which so-called twist alignment is performed by voltage control. When using the liquid crystal cell 35 which is a liquid crystal of GH system, it is not necessary to arrange one or both of the first polarizing plate 31 and the second polarizing plate 32 as shown in FIG.
 さらに、上述した第1の実施の形態では、調光部材20は、外部から電力の供給を受けていたが、調光部材20の一部に太陽電池(図示せず)を設け、この太陽電池から電力を供給するように構成されても良い。更には、太陽電池の出力により照射光量を判断し、それに応じて透過率を自動制御してもよい。 Furthermore, in the first embodiment described above, the light control member 20 receives the supply of power from the outside, but a solar cell (not shown) is provided on a part of the light control member 20, and this solar cell May be configured to supply power. Furthermore, the irradiation light amount may be determined based on the output of the solar cell, and the transmittance may be automatically controlled accordingly.
 以上の説明においては、調光部材20がサンバイザ10に採用された例を用いたが、調光部材20の用途は、サンバイザには限定されない。他の用途の例としては、自動車のサイドウィンドウやサンルーフ、あるいは電車や航空機などの移動体の窓部分に採用することが可能である。さらに、建築物の窓部分に採用することも可能である。 Although the example in which the light control member 20 is adopted for the sun visor 10 is used in the above description, the application of the light control member 20 is not limited to the sun visor. As an example of another application, it is possible to adopt to the window part of a car, such as a side window or a sunroof of a car, or a train or an aircraft. Furthermore, it is also possible to adopt it to the window part of a building.
 以上において上述した第1の実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。 Although some modifications to the above-described first embodiment have been described above, it is of course possible to apply a plurality of modifications in combination as appropriate.
<実施例>
 以下、実施例を用いて第1の発明をより詳細に説明するが、第1の発明はこの実施例に限定されるものではない。
<Example>
Hereinafter, the first invention will be described in more detail using examples, but the first invention is not limited to these examples.
 実施例1~9および比較例1~5として、第1接合層23及び第2接合層24の貯蔵弾性率及び第1接合層23の厚さの少なくとも一方がそれぞれ異なる調光部材20を用意した。実施例及び比較例の調光部材20における第1透明基材21及び第2透明基材22は、ポリカーボネートからなり、厚さは3mmである。 In Examples 1 to 9 and Comparative Examples 1 to 5, the light control member 20 in which at least one of the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 and the thickness of the first bonding layer 23 are different is prepared. . The 1st transparent substrate 21 and the 2nd transparent substrate 22 in light control member 20 of an example and a comparative example consist of polycarbonate, and thickness is 3 mm.
 なお、貯蔵弾性率は、例えばテルペンのような粘着付与性樹脂や、フタル酸ジオクチル(DOP)やアジピン酸ジオクチル(DOA)のような可塑剤を添加することで、調節することができる。あるいは、架橋剤の分量を調節することや、接合層の材料の主ポリマーの官能基数を増減させることでも、貯蔵弾性率を調節することができる。 The storage elastic modulus can be adjusted, for example, by adding a tackifying resin such as terpene or a plasticizer such as dioctyl phthalate (DOP) or dioctyl adipate (DOA). Alternatively, the storage elastic modulus can be adjusted by adjusting the amount of the crosslinking agent or increasing or decreasing the number of functional groups of the main polymer of the material of the bonding layer.
 各実施例及び比較例について、調光部材20が製造された直後、すなわち後述する耐熱試験前に気泡が発生しているかを、目視及び拡大鏡を用いることによって観察して確認した。また、調光部材20が高温に晒されて用いられることを想定して、調光部材20を恒温槽にて80℃の条件で400時間保管する耐熱試験を行い、耐熱試験後に気泡が発生しているか及び液晶の偏在による変色が発生しているかを、目視及び拡大鏡を用いることによって観察して確認した。なお、液晶の偏在による変色の確認は、調光部材20の透過率を高くした状態及び低くした状態の両方で行い、いずれかで液晶の偏在が確認されれば液晶の偏在が生じているとした。 About each Example and comparative example, immediately after manufacture of the light control member 20, ie, before a heat resistance test mentioned below, it observed and checked by using visual observation and using a magnifying glass whether bubbles were generated. Also, assuming that the light control member 20 is exposed to high temperature and used, a heat resistance test is performed to store the light control member 20 in a thermostatic bath at 80 ° C. for 400 hours, and air bubbles are generated after the heat resistance test. It was confirmed by visual observation and by using a magnifying glass whether or not discoloration due to uneven distribution of liquid crystal occurred. It should be noted that the confirmation of the color change due to the uneven distribution of the liquid crystal is performed in both the state where the transmittance of the light control member 20 is increased and decreased, and if the uneven distribution of liquid crystal is confirmed in any of them did.
 実施例1~9及び比較例1~5における、第1接合層23及び第2接合層24の室温環境における貯蔵弾性率、第1接合層23の厚さ、調光部材20の製造直後の気泡、耐熱試験後の気泡の発生及び耐熱試験後の液晶の偏在についての結果を、以下の表1及び表2に示す。気泡の発生及び液晶の偏在について、拡大鏡を用いても観察されなかったものにはAを、目視では観察されなかったが拡大鏡を用いると観察されたものにはBを、目視で観察されたものにはCを、それぞれ付している。以下において言及する表1~表3において、製造直後の気泡の発生についての結果を結果1として、耐熱試験後の気泡の発生についての結果を結果2として、耐熱試験後の液晶の偏在についての結果を結果3として、それぞれ、示している。 The storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 in a room temperature environment, the thickness of the first bonding layer 23, and the air bubbles immediately after the manufacture of the light control member 20 in Examples 1 to 9 and Comparative Examples 1 to 5. The results of bubble generation after the heat resistance test and the uneven distribution of the liquid crystal after the heat resistance test are shown in Tables 1 and 2 below. The occurrence of air bubbles and the uneven distribution of liquid crystal were not observed with the magnifying glass but with A, and was not observed visually, but was observed with the magnifying glass with B visually C is added to each item. In Tables 1 to 3 referred to in the following, the result of bubble generation immediately after production is set as result 1, the result of bubble generation after heat resistance test is set as result 2, result of uneven distribution of liquid crystal after heat resistance test Are shown as result 3, respectively.
 まず、第1接合層23及び第2接合層24の貯蔵弾性率の異なる実施例及び比較例の結果を、以下の表1に示す。 First, the results of Examples and Comparative Examples in which the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 are different are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に表された実施例1~7及び比較例1,2の結果から理解されるように、第1接合層23及び第2接合層24の貯蔵弾性率が60×10Paより大きいサンプル、すなわち比較例1及び比較例2では、耐熱試験後の調光部材20に目視でも液晶の偏在が確認された。この液晶の偏在は、上述したように、第1接合層23及び第2接合層24の貯蔵弾性率が高すぎて、熱による第1透明基材21及び第2透明基材22の変形を第1接合層23及び第2接合層24で吸収できなかったために生じたと考えられる。 As understood from the results of Examples 1 to 7 and Comparative Examples 1 and 2 shown in Table 1, samples in which the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 is larger than 60 × 10 5 Pa That is, in Comparative Example 1 and Comparative Example 2, uneven distribution of the liquid crystal was confirmed in the light control member 20 after the heat resistance test visually. As described above, the uneven distribution of the liquid crystal causes the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 to be too high, and the deformation of the first transparent base 21 and the second transparent base 22 due to heat is It is considered that this occurs because the first bonding layer 23 and the second bonding layer 24 can not absorb.
 表1に示された結果から、第1接合層23及び第2接合層24の貯蔵弾性率を60×10Pa以下とすることで、液晶の偏在を抑制することができることが理解される。とりわけ、実施例1および実施例2の比較から、第1接合層23及び第2接合層24の貯蔵弾性率が14×10Pa以下であることが、液晶の偏在を抑制することには好ましいことが理解される。 From the results shown in Table 1, it is understood that the uneven distribution of the liquid crystal can be suppressed by setting the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 to 60 × 10 5 Pa or less. In particular, from the comparison of Example 1 and Example 2, it is preferable for suppressing the uneven distribution of the liquid crystal that the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 is 14 × 10 5 Pa or less. It is understood.
 また、実施例1~7及び比較例3の結果から理解されるように、第1接合層23及び第2接合層24の貯蔵弾性率が0.3×10Paより小さい場合、耐熱試験後の調光部材20に目視でも気泡の発生が確認された。この気泡は、上述したように、第1接合層23及び第2接合層24の貯蔵弾性率が低すぎて、熱による第1透明基材21及び第2透明基材22の変形や第1透明基材21及び第2透明基材22から発生したガスによって、第1透明基材21と第1接合層23との間及び第2透明基材22と第2接合層24との間が剥離したために生じたと考えられる。 Further, as understood from the results of Examples 1 to 7 and Comparative Example 3, when the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 is smaller than 0.3 × 10 5 Pa, after the heat resistance test In the light control member 20 of the above, generation of air bubbles was also confirmed visually. As described above, the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 is too low, and the bubbles cause deformation of the first transparent base 21 and the second transparent base 22 due to heat, and the first transparent. Between the first transparent substrate 21 and the first bonding layer 23 and between the second transparent substrate 22 and the second bonding layer 24 by the gas generated from the substrate 21 and the second transparent substrate 22 It is thought that it occurred to
 表1に示された結果から、第1接合層23及び第2接合層24の貯蔵弾性率が0.3×10Pa以上であることで、気泡の発生を抑制することができることが理解される。とりわけ、実施例5および実施例6の比較から、第1接合層23及び第2接合層24の貯蔵弾性率が1×10Pa以上であることが、気泡の発生を抑制することには好ましいことが理解される。 From the results shown in Table 1, it is understood that the generation of air bubbles can be suppressed by the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 being 0.3 × 10 5 Pa or more. Ru. In particular, from the comparison of Example 5 and Example 6, it is preferable for suppressing the generation of air bubbles that the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 is 1 × 10 5 Pa or more. It is understood.
 次に、第1接合層23の厚さの異なる実施例及び比較例の結果を、以下の表2に示す。 Next, the results of Examples and Comparative Examples in which the thickness of the first bonding layer 23 is different are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示された実施例5,8,9及び比較例4,5の結果から理解されるように、第1接合層23の厚さが50μmより小さい場合、調光部材20の製造直後において気泡が生じていた。この気泡は、上述したように、第1接合層23の厚さが薄すぎるため、第1透明基材21と第1接合層23とを積層する際に、第1接合層23と積層する第1透明基材21の面の段差に入り込んだと考えられる。なお、表2の結果において、比較例4,5で耐熱試験後の結果2でも気泡が観察されているのは、製造直後に気泡が生じていたため、耐熱試験後もその気泡が観察されるためである。 As understood from the results of Examples 5, 8 and 9 and Comparative Examples 4 and 5 shown in Table 2, when the thickness of the first bonding layer 23 is smaller than 50 μm, immediately after the manufacture of the light control member 20. Air bubbles were generated. As described above, since the thickness of the first bonding layer 23 is too thin, the air bubbles are stacked on the first bonding layer 23 when the first transparent base 21 and the first bonding layer 23 are stacked. (1) It is considered that the surface of the transparent base material 21 enters a step. In the results of Table 2, the bubbles were observed even in the results 2 after the heat resistance test in Comparative Examples 4 and 5 because the bubbles were generated immediately after the production, so the bubbles were observed even after the heat resistance test It is.
 表2に示された結果から、第1接合層23の厚さが50μm以上であることで、気泡の発生を抑制することができることが理解される。とりわけ、実施例8および実施例9の比較から、第1接合層23の厚さが75μm以上であることが、気泡の発生を抑制することには好ましいことが理解される。 From the results shown in Table 2, it is understood that the generation of air bubbles can be suppressed by the thickness of the first bonding layer 23 being 50 μm or more. In particular, it is understood from the comparison of Example 8 and Example 9 that the thickness of the first bonding layer 23 is 75 μm or more, which is preferable for suppressing the generation of air bubbles.
 ところで、上述したように、透明基材と接合層との間に易接着層を配置することで、透明基材と接合層との密着性及び接着性を向上させて、透明基材と接合層との間の剥離を防止することができる。したがって、易接着層を配置することで、耐熱試験後の気泡の発生を抑制することができると考えられる。 By the way, as described above, by arranging the easy adhesion layer between the transparent base material and the bonding layer, the adhesion and adhesiveness between the transparent base material and the bonding layer are improved, and the transparent base material and the bonding layer It is possible to prevent peeling between them. Therefore, it is considered that the generation of air bubbles after the heat resistance test can be suppressed by arranging the easy adhesion layer.
 また、上述したように、透明基材と接合層との間にバリア層を配置することで、透明基材から発生するガスが接合層に達することを抑制することができる。したがって、ガスが透明基材と接合層との間を剥離させて入り込むことで発生し得る気泡を抑制することができると考えられる。すなわち、バリア層を配置することで、耐熱試験後の気泡の発生を抑制することができると考えられる。 Further, as described above, by disposing the barrier layer between the transparent base and the bonding layer, it is possible to suppress that the gas generated from the transparent base reaches the bonding layer. Therefore, it is thought that the air bubbles which may be generated by gas coming in between the transparent base material and the bonding layer can be suppressed. That is, by disposing the barrier layer, it is considered that the generation of air bubbles after the heat resistance test can be suppressed.
 易接着層又はバリア層を配置した実施例及び比較例について、以下に示す。実施例6にアクリルを含む樹脂を材料とする易接着層を追加の層として設けたものを実施例10とし、ウレタンを含む樹脂を材料とする易接着層を追加の層として設けたものを実施例11とした。また、実施例6にバリア層を追加の層として設けたものを実施例12とした。また、実施例7に易接着層を追加の層として設けたものを実施例13とし、バリア層を追加の層として設けたものを実施例14とした。さらに、比較例3に易接着層を追加の層として設けたものを比較例6とし、バリア層を追加の層として設けたものを比較例7とした。 About the Example and comparative example which have arrange | positioned the easily bonding layer or the barrier layer, it shows below. In Example 10, an easy adhesion layer made of an acrylic resin is provided as an additional layer, and an easy adhesion layer made of a urethane resin is provided as an additional layer. It is set as Example 11. In addition, Example 12 in which a barrier layer was provided as an additional layer in Example 6 was taken. Moreover, what provided the easily bonding layer as an additional layer in Example 7 was set as Example 13, and what provided the barrier layer as an additional layer was set as Example 14. FIG. Furthermore, what provided the easily bonding layer as an additional layer in the comparative example 3 was set as the comparative example 6, and what provided the barrier layer as an additional layer was set as the comparative example 7. FIG.
 実施例6,7,10~14及び比較例3,6,7の結果を、以下の表3に示す。 The results of Examples 6, 7 and 10 to 14 and Comparative Examples 3, 6 and 7 are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示された実施例6,7と実施例10~14の結果の比較から理解されるように、易接着層またはバリア層を設けることで、耐熱試験後の気泡の発生をより抑制することができることが確認された。一方、比較例3,6,7の結果から理解されるように、第1接合層23及び第2接合層24の貯蔵弾性率が低すぎると、易接着層またはバリア層を設けたとしても、耐熱試験後に気泡の発生が確認された。この気泡は、貯蔵弾性率が低すぎると、易接着層またはバリア層を設けたとしても、接合層が剥離してしまうために生じたと考えられる。 As understood from the comparison of the results of Examples 6 and 7 and Examples 10 to 14 shown in Table 3, the provision of the easily adhesive layer or the barrier layer further suppresses the generation of air bubbles after the heat resistance test. It was confirmed that it was possible. On the other hand, as understood from the results of Comparative Examples 3, 6, and 7, when the storage elastic modulus of the first bonding layer 23 and the second bonding layer 24 is too low, even if the easily adhesive layer or the barrier layer is provided, After the heat resistance test, the generation of air bubbles was confirmed. It is considered that the air bubbles are generated when the storage elastic modulus is too low, even if the easily adhesive layer or the barrier layer is provided, the bonding layer peels off.
 また、熱による第1透明基材21及び第2透明基材22の変形は、ガラス転移温度が低いほど生じやすい。上述の実施例1~9で用いたポリカーボネートからなる透明基材のガラス転移温度(Tg)は145℃である。しかしながら、透明基材がポリカーボネートを主成分としながらも他の成分を含む透明基材であると、ガラス転移温度は低下し得る。 Further, deformation of the first transparent base 21 and the second transparent base 22 due to heat is more likely to occur as the glass transition temperature is lower. The glass transition temperature (Tg) of the transparent base material made of polycarbonate used in the above-mentioned Examples 1 to 9 is 145 ° C. However, if the transparent substrate is a transparent substrate containing polycarbonate as the main component but also containing other components, the glass transition temperature may be lowered.
 実施例3~5について、透明基材の成分構成を変更し、ガラス転移温度が125℃となっている調光部材を作成し、実施例15~17とした。実施例3~5,15~17の結果を、以下の表4に示す。 In Examples 3 to 5, the component configurations of the transparent base material were changed, and light control members having a glass transition temperature of 125 ° C. were produced, and were set to Examples 15 to 17. The results of Examples 3-5 and 15-17 are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示された結果から理解されるように、透明基材のガラス転移温度を125℃としても、耐熱試験後の結果に変化はないことが確認された。したがって、透明基材のガラス転移温度が少なくとも125℃以上であれば、気泡の発生および液晶の偏在の発生といった調光部材を介した視界を悪化させるような問題が生じにくいということが理解される。 As understood from the results shown in Table 4, it was confirmed that the results after the heat resistance test did not change even when the glass transition temperature of the transparent substrate was 125 ° C. Therefore, it is understood that when the glass transition temperature of the transparent substrate is at least 125 ° C. or more, problems such as generation of air bubbles and generation of uneven distribution of liquid crystal are less likely to deteriorate the visibility through the light control member. .
<第2の実施の形態>
 第1の実施の形態と同様に、調光部材120が適用される一例として、図1に示されたサンバイザ10を例示することができる。図1に示されているように、自動車1には、その内部であってフロントガラス5に対面する位置に、サンバイザ10が配置されている。サンバイザ10は、フロントガラス5を通って入射する太陽光等を低減し、自動車1の乗員に良好な視界を与えることができる。
Second Embodiment
Similar to the first embodiment, the sun visor 10 shown in FIG. 1 can be illustrated as an example to which the light control member 120 is applied. As shown in FIG. 1, a sun visor 10 is disposed inside the automobile 1 at a position facing the windshield 5. The sun visor 10 can reduce sunlight and the like incident through the windshield 5 and can provide a good view to the occupants of the automobile 1.
 以下、図4~図11を参照しながら、第2の発明に関連した第2の実施の形態について説明する。 The second embodiment related to the second invention will be described below with reference to FIGS. 4 to 11.
 調光部材120は、可視光の透過率を調節可能である。図4に示すように、調光部材120は、一対の基材である第1透明基材121及び第2透明基材122と、第1透明基材121及び第2透明基材122に積層された調光セル130と、第1透明基材121と調光セル130とを接合する第1接合層123と、第2透明基材122と調光セル130とを接合する第2接合層124と、を備える。 The light control member 120 can adjust the transmittance of visible light. As shown in FIG. 4, the light control member 120 is laminated on the first transparent substrate 121 and the second transparent substrate 122, which are a pair of substrates, and the first transparent substrate 121 and the second transparent substrate 122. Light control cell 130, a first bonding layer 123 for bonding the first transparent base material 121 and the light control cell 130, and a second bonding layer 124 for bonding the second transparent base material 122 and the light control cell 130 And.
 以下、調光部材120の各構成要素について、説明する。 Hereinafter, each component of the light control member 120 will be described.
 まず、第1透明基材121及び第2透明基材122について説明する。第1透明基材121及び第2透明基材122は、調光セル130の形状を一定に維持し、調光セル130を傷や汚れから保護するためのものである。第1透明基材121及び第2透明基材122は、ポリカーボネートを含んでいることが好ましい。第1透明基材121及び第2透明基材122にポリカーボネートが含まれていると、後述する第1透明基材121及び第2透明基材122のリタデーションを容易に制御して製造することができる。また、第2の実施の形態による調光部材120では、第1透明基材121及び第2透明基材122に含まれるポリカーボネートの分子量が、17,000以上であることが好ましく、20,000以上であることがより好ましい。第1透明基材121及び第2透明基材122がこのような材料で形成されていると、第1透明基材121及び第2透明基材122が破損しても、第1透明基材121及び第2透明基材122の破片の縁部が鋭利にならず、調光部材120の使用者を負傷させる危険性を低減することができる。しかしながら、これに限らず、第1透明基材121及び第2透明基材122は、ガラス板で形成されていてもよい。第1透明基材121及び第2透明基材122がガラス板で形成されている場合、第1透明基材121及び第2透明基材122が破損した際に調光部材120の使用者を負傷させる危険性を低減するために、表面に飛散防止用のシートを設けることが好ましい。 First, the first transparent base 121 and the second transparent base 122 will be described. The first transparent base material 121 and the second transparent base material 122 are for maintaining the shape of the light control cell 130 constant and protecting the light control cell 130 from scratches and dirt. It is preferable that the first transparent substrate 121 and the second transparent substrate 122 contain polycarbonate. When the first transparent base material 121 and the second transparent base material 122 contain polycarbonate, the retardation of the first transparent base material 121 and the second transparent base material 122 described later can be easily controlled and manufactured. . Moreover, in the light control member 120 according to the second embodiment, the molecular weight of polycarbonate contained in the first transparent base material 121 and the second transparent base material 122 is preferably 17,000 or more, and 20,000 or more. It is more preferable that When the first transparent substrate 121 and the second transparent substrate 122 are formed of such a material, even if the first transparent substrate 121 and the second transparent substrate 122 are broken, the first transparent substrate 121 is formed. And the edge of the fragments of the second transparent substrate 122 is not sharpened, and the risk of injury to the user of the light control member 120 can be reduced. However, the present invention is not limited to this, and the first transparent base 121 and the second transparent base 122 may be formed of a glass plate. When the first transparent substrate 121 and the second transparent substrate 122 are formed of a glass plate, the user of the light control member 120 is injured when the first transparent substrate 121 and the second transparent substrate 122 are broken. In order to reduce the risk of causing it, it is preferable to provide an anti-scattering sheet on the surface.
 なお、「透明」とは、第1透明基材121及び第2透明基材122を介して当該透明基材の一方の側から他方の側を透視し得る程度の透明性を有していることを意味しており、例えば、30%以上、より好ましくは70%以上の可視光透過率を有していることを意味する。可視光透過率は、分光光度計((株)島津製作所製「UV-3100PC」、JIS K 0115準拠品)を用いて測定波長380nm~780nmの範囲内で測定したときの、各波長における透過率の平均値として特定される。 In addition, having "transparency" has transparency of the grade which can see through the other side from the one side of the said transparent base material through the 1st transparent base material 121 and the 2nd transparent base material 122. For example, it means having a visible light transmittance of 30% or more, more preferably 70% or more. The visible light transmittance is measured at a wavelength of 380 nm to 780 nm using a spectrophotometer (“UV-3100 PC” manufactured by Shimadzu Corporation, a product conforming to JIS K 0115) at each wavelength. Identified as the average value of
 また、第1透明基材121及び第2透明基材122は、0.1mm以上10mm以下、好ましくは0.5mm以上5mm以下の厚みを有していることが好ましい。このような厚みであると、強度及び光学特性に優れた第1透明基材121及び第2透明基材122を得ることができる。第1透明基材121及び第2透明基材122は、同一の材料で同一に構成されていてもよいし、或いは、材料および構成の少なくとも一方において互いに異なるようにしてもよい。 Moreover, it is preferable that the 1st transparent base material 121 and the 2nd transparent base material 122 have a thickness of 0.1 mm or more and 10 mm or less, preferably 0.5 mm or more and 5 mm or less. If it is such thickness, the 1st transparent substrate 121 and the 2nd transparent substrate 122 which were excellent in intensity and an optical characteristic can be obtained. The first transparent substrate 121 and the second transparent substrate 122 may be made of the same material and the same, or may be different from each other in at least one of the material and the configuration.
 第1透明基材121及び第2透明基材122は、押出成形によって製造されることが好ましい。押出成形によれば、第1透明基材121及び第2透明基材122を、均質で平板状に形成することができる。押出成形によって平板状に製造するために、第1透明基材121及び第2透明基材122のメルトボリュームフローレートが、10cm/10分以下となっていることが好ましい。なお、メルトボリュームフローレートは、ISO1133に従った温度300℃で加重1.2kgの条件で測定する。 The first transparent base 121 and the second transparent base 122 are preferably manufactured by extrusion. According to extrusion molding, the first transparent base material 121 and the second transparent base material 122 can be formed in a uniform and flat plate shape. In order to manufacture in plate shape by extrusion molding, it is preferable that the melt volume flow rate of the 1st transparent substrate 121 and the 2nd transparent substrate 122 is 10 cm < 3 > / 10 minutes or less. The melt volume flow rate is measured at a temperature of 300 ° C. and a weight of 1.2 kg according to ISO1133.
 次に、第1接合層123及び第2接合層124について説明する。上述したように、第1接合層123は、第1透明基材121と調光セル130とを接合し、第2接合層124は、第2透明基材122と調光セル130とを接合する。第2の実施の形態において、第1接合層123及び第2接合層124は、いわゆるOCA(Optically Clear Adhesive)またはOCR(Optically Clear Resin)である。すなわち、第1接合層123及び第2接合層124は、透明で、粘着性を有する。また、第1接合層123及び第2接合層124は、第1透明基材121及び第2透明基材122と実質的に同じ屈折率を有していることが好ましい。この場合、第1透明基材121及び第2透明基材122と第1接合層123及び第2接合層124との各界面における光の反射を低減することができる。 Next, the first bonding layer 123 and the second bonding layer 124 will be described. As described above, the first bonding layer 123 bonds the first transparent base material 121 and the light control cell 130, and the second bonding layer 124 bonds the second transparent base material 122 and the light control cell 130. . In the second embodiment, the first bonding layer 123 and the second bonding layer 124 are so-called OCA (Optically Clear Adhesive) or OCR (Optically Clear Resin). That is, the first bonding layer 123 and the second bonding layer 124 are transparent and have adhesiveness. The first bonding layer 123 and the second bonding layer 124 preferably have substantially the same refractive index as the first transparent base 121 and the second transparent base 122. In this case, reflection of light at each interface between the first transparent base 121 and the second transparent base 122 and the first bonding layer 123 and the second bonding layer 124 can be reduced.
 第1接合層123及び第2接合層124は、厚みが25μm以上1000μm以下であることが好ましい。厚みが25μmよりも薄いと、調光部材の歪みを接合面で吸収できないため、気泡や調光部材の不具合(たとえば液晶GAP不良に伴う色ムラ)を生じやすい。その一方で、厚みが1000μmよりも厚いと、量産性、価格及び強度の点で不利となる。第1接合層123及び第2接合層124は、同一の材料で同一に構成されていてもよいし、或いは、材料および構成の少なくとも一方において互いに異なるようにしてもよい。 The first bonding layer 123 and the second bonding layer 124 preferably have a thickness of 25 μm to 1000 μm. If the thickness is smaller than 25 μm, the distortion of the light control member can not be absorbed by the bonding surface, so that defects of the air bubble and the light control member (for example, color unevenness due to a liquid crystal GAP failure) tend to occur. On the other hand, if the thickness is thicker than 1000 μm, it is disadvantageous in terms of mass productivity, cost and strength. The first bonding layer 123 and the second bonding layer 124 may be made of the same material and the same, or may be different from each other in at least one of the material and the configuration.
 次に、調光セル130について説明する。図5に示すように、調光セル130は、第1偏光板131と、第2偏光板132と、第1偏光板131と第2偏光板132との間に配置された液晶セル135とを含む。第1偏光板131及び第2偏光板132は、入射した光を直交する二つの偏光成分(p偏光成分及びs偏光成分)に分解し、一方の方向(透過軸と平行な方向)に振動する直線偏光成分(例えば、p偏光成分)を透過させ、前記一方の方向に直交する他方の方向(吸収軸と平行な方向)に振動する直線偏光成分(例えば、s偏光成分)を吸収する機能を有している。液晶セル135には、例えばVA(Vertical Alignment)方式、TN(Twisted Nematic)方式、IPS(In Plane Switching)方式またはFFS(Fringe Field Switching)方式の液晶を用いることができる。調光セル130は、電圧印加等の電子制御によって液晶セル135の液晶の配向を変化させることができる。液晶の配向を変化させることで、第1偏光板131及び第2偏光板132の間を進む光の偏光状態を制御する。これにより、例えばクロスニコルやパラレルニコルで配置された第1偏光板131及び第2偏光板132の間を進む光の可視光透過率を調節することができる。なお、クロスニコルとは、2つの偏光板の透過軸が互いに直交するように配置されていることをいい、パラレルニコルとは、2つの偏光板の透過軸が互いに平行になるように配置されていることをいう。また、調光セル130の厚みは、例えば100μm以上800μm以下である。 Next, the light control cell 130 will be described. As shown in FIG. 5, the light control cell 130 includes a first polarizing plate 131, a second polarizing plate 132, and a liquid crystal cell 135 disposed between the first polarizing plate 131 and the second polarizing plate 132. Including. The first polarizing plate 131 and the second polarizing plate 132 decompose the incident light into two orthogonal polarization components (p polarization component and s polarization component) and vibrate in one direction (direction parallel to the transmission axis) A function of transmitting a linearly polarized light component (eg, p-polarized light component) and absorbing a linearly polarized light component (eg, s-polarized light component) oscillating in the other direction (a direction parallel to the absorption axis) orthogonal to the one direction. Have. As the liquid crystal cell 135, for example, liquid crystal of VA (Vertical Alignment) system, TN (Twisted Nematic) system, IPS (In Plane Switching) system or FFS (Fringe Field Switching) system can be used. The light control cell 130 can change the alignment of the liquid crystal of the liquid crystal cell 135 by electronic control such as voltage application. By changing the orientation of the liquid crystal, the polarization state of light traveling between the first polarizing plate 131 and the second polarizing plate 132 is controlled. Thereby, for example, it is possible to adjust the visible light transmittance of light traveling between the first polarizing plate 131 and the second polarizing plate 132 arranged in cross nicol or parallel nicol. Cross Nicol means that the transmission axes of the two polarizers are orthogonal to each other, and parallel Nicol means that the transmission axes of the two polarizers are parallel to each other Say that Moreover, the thickness of the light control cell 130 is 100 micrometers or more and 800 micrometers or less, for example.
 液晶セル135は、樹脂からなるフィルムを基材として液晶が保持されたフィルム液晶であってもよいし、薄膜状のガラスを基材として液晶が保持されたガラス液晶であってもよい。フィルム液晶である場合、液晶セル135に可撓性を付与することができる。 The liquid crystal cell 135 may be a film liquid crystal in which liquid crystal is held by using a film made of resin as a base material, or may be a glass liquid crystal in which liquid crystal is held by using thin film glass as a base. In the case of film liquid crystal, the liquid crystal cell 135 can be provided with flexibility.
 図4に示すように、調光セル130は、配線130cを有している。配線130cは、自動車1に設けられた制御装置(図示せず)に接続され、駆動電力や制御信号を調光セル130に提供する。配線130cは、透明な導電体によって形成されることが好ましい。この場合、外部から配線130cが実質的に視認されなくなり、調光部材120の外観を向上させることができる。 As shown in FIG. 4, the light control cell 130 has a wire 130 c. The wiring 130 c is connected to a control device (not shown) provided in the automobile 1 and provides drive power and control signals to the dimming cell 130. The wiring 130c is preferably formed of a transparent conductor. In this case, the wiring 130c is not substantially visible from the outside, and the appearance of the light control member 120 can be improved.
 調光セル130には、配線130cを介して電圧を印加する等の電子制御を行うことにより、液晶セル135の液晶の配向を変化させることができる。液晶の配向によって、液晶セル135を透過する光の偏光方向は変化し得る。例えば、電圧が印加され液晶の配向が変化した液晶セル135を、第1偏光板131を透過した特定方向の偏光成分を有する光が通過する場合、液晶セル135を透過する光は、その偏光方向を90°回転させる。第1偏光板131及び第2偏光板132がクロスニコルで配置されていると、偏光方向を90°回転したことで、光は第2偏光板132を透過することができる。一方、電圧が印加されておらず液晶の配向が変化していない液晶セル135を、第1偏光板131を透過した特定方向の偏光成分を有する光が通過する場合、液晶セル135を透過する光は、その偏光方向を回転させない。第1偏光板131及び第2偏光板132がクロスニコルで配置されていると、偏光方向を回転しなかった光は第2偏光板132を透過することができない。このように、液晶セル135の液晶の配向の変化の有無によって、光の透過を制御することができる。したがって、調光セル130は、電子制御により可視光透過率を調節することができる。 The orientation of the liquid crystal of the liquid crystal cell 135 can be changed by performing electronic control such as applying a voltage through the wiring 130 c to the light control cell 130. Depending on the orientation of the liquid crystal, the polarization direction of light transmitted through the liquid crystal cell 135 may change. For example, when light having a polarization component in a specific direction transmitted through the first polarizing plate 131 passes through the liquid crystal cell 135 in which the voltage is applied and the alignment of the liquid crystal is changed, the light transmitted through the liquid crystal cell 135 has its polarization direction Rotate 90 degrees. When the first polarizing plate 131 and the second polarizing plate 132 are disposed in cross nicol, light can be transmitted through the second polarizing plate 132 by rotating the polarization direction by 90 °. On the other hand, when light having a polarization component in a specific direction transmitted through the first polarizing plate 131 passes through the liquid crystal cell 135 in which the voltage is not applied and the orientation of the liquid crystal does not change, light passing through the liquid crystal cell 135 Does not rotate its polarization direction. When the first polarizing plate 131 and the second polarizing plate 132 are arranged in cross nicol, light whose polarization direction has not been rotated can not be transmitted through the second polarizing plate 132. Thus, the transmission of light can be controlled by the presence or absence of the change in the alignment of the liquid crystals in the liquid crystal cell 135. Therefore, the light control cell 130 can adjust the visible light transmittance by electronic control.
 調光部材120の平面視において、調光部材120の構成要素である第1透明基材121、第2透明基材122、第1接合層123、第2接合層124及び調光セル130は、略同一の形状を有している。図4に示された例では、調光部材120の各構成要素は、平面視において矩形形状を有している。調光セル130は、第1透明基材121及び第2透明基材122と重なっている領域を含んでいる。また、平面視において、調光セル130は、第1透明基材121及び第2透明基材122からはみ出さないことが好ましい。すなわち、平面視における調光セル130の寸法は、第1透明基材121および第2透明基材122の寸法より小さいことが好ましい。 In a plan view of the light control member 120, the first transparent base material 121, the second transparent base material 122, the first bonding layer 123, the second bonding layer 124, and the light control cell 130, which are components of the light control member 120, It has substantially the same shape. In the example shown in FIG. 4, each component of the light adjustment member 120 has a rectangular shape in plan view. The light control cell 130 includes a region overlapping with the first transparent substrate 121 and the second transparent substrate 122. Moreover, it is preferable that the light control cell 130 does not protrude from the first transparent base 121 and the second transparent base 122 in a plan view. That is, the dimension of the light control cell 130 in plan view is preferably smaller than the dimensions of the first transparent base 121 and the second transparent base 122.
 なお、調光部材120には、図示された例に限られず、特定の機能を発揮することを期待されたその他の機能層が設けられても良い。また、1つの機能層が2つ以上の機能を発揮するようにしてもよいし、例えば、調光部材120の第1透明基材121、第2透明基材122、第1接合層123、第2接合層124及び調光セル130の少なくとも一つに、何らかの機能を付与するようにしてもよい。調光部材120に付与され得る機能としては、一例として、反射防止(AR)機能、耐擦傷性を有したハードコート(HC)機能、赤外線遮蔽(反射)機能、紫外線遮蔽(反射)機能、防汚機能等を例示することができる。 The light control member 120 is not limited to the illustrated example, and may be provided with other functional layers expected to exhibit a specific function. In addition, one functional layer may exhibit two or more functions, and, for example, the first transparent substrate 121, the second transparent substrate 122, the first bonding layer 123, and the first light modulation member 120 may be used. Some function may be given to at least one of the second bonding layer 124 and the light control cell 130. Examples of functions that can be imparted to the light control member 120 include an anti-reflection (AR) function, a hard coat (HC) function having scratch resistance, an infrared ray shielding (reflection) function, an ultraviolet ray shielding (reflection) function, A dirty function etc. can be illustrated.
 次に、図6~図8を参照して、調光部材120の製造方法の一例について説明する。 Next, an example of a method of manufacturing the light control member 120 will be described with reference to FIGS.
 まず、押出成形により、第1透明基材121及び第2透明基材122が平板状に製造される。 First, the first transparent base 121 and the second transparent base 122 are manufactured in a flat plate shape by extrusion molding.
 次に、図6に示すように、第1透明基材121の片面に第1接合層123が貼合される。同様に、第2透明基材122の片面に第2接合層124が貼合される。 Next, as shown in FIG. 6, the first bonding layer 123 is bonded to one side of the first transparent base 121. Similarly, the second bonding layer 124 is bonded to one side of the second transparent base 122.
 その後、図7に示すように、調光セル130の一方の面に第2接合層124を介して第2透明基材122が接合されることで、第2透明基材122に調光セル130が積層される。調光セル130には、配線130cが設けられている。 Thereafter, as shown in FIG. 7, the second transparent base 122 is bonded to one surface of the light control cell 130 via the second bonding layer 124, whereby the light control cell 130 is connected to the second transparent base 122. Are stacked. The light control cell 130 is provided with a wire 130 c.
 そして、図8に示すように、調光セル130の他方の面に第1透明基材121が接合されることで、第1透明基材121に調光セル130が積層される。この接合は、第1透明基材121に予め貼合された第1接合層123によって実現される。 Then, as shown in FIG. 8, the first transparent base 121 is bonded to the other surface of the light control cell 130, whereby the light control cell 130 is stacked on the first transparent base 121. This bonding is realized by the first bonding layer 123 previously bonded to the first transparent substrate 121.
 以上の各工程は、低圧環境下、好ましくは真空環境下で、行われることが好ましい。このことにより、第1接合層123及び第2接合層124を貼合する際に、界面に気泡が混入することを回避することができる。 Each of the above steps is preferably performed in a low pressure environment, preferably in a vacuum environment. By this, when bonding the 1st bonding layer 123 and the 2nd bonding layer 124, it can avoid that a bubble mixes in an interface.
 ところで、上述したように、調光部材120には、虹ムラが観察されることがあった。とりわけ、調光部材120を備えるサンバイザ10を自動車1の内部に配置すると、虹ムラが観察されていた。虹ムラが生じると、調光部材120を介した視界を悪化させてしまう。本件発明者らが鋭意検討したところ、調光部材120の使用者に対面する側とは逆側の透明基材(第1透明基材121)においてリタデーションに大きなばらつきがあると、虹ムラが観察され得ることが確認された。このような現象について検討を重ねたところ、次に説明する原因によって虹ムラが発生すると推測され、さらに、この推定原因に対応した対策によって虹ムラを効果的に抑制し得ることを確認した。 By the way, as above-mentioned, in the light control member 120, rainbow nonuniformity may be observed. In particular, when the sun visor 10 including the light control member 120 is disposed inside the automobile 1, rainbow unevenness has been observed. If rainbow unevenness occurs, the view through the light control member 120 will be deteriorated. As a result of intensive investigations by the present inventors, if there is a large variation in retardation in the transparent substrate (first transparent substrate 121) on the side opposite to the side of the light control member 120 facing the user, rainbow unevenness is observed It is confirmed that it can be done. When these phenomena were repeatedly examined, it was estimated that rainbow unevenness would occur due to the cause described below, and it was further confirmed that rainbow unevenness could be effectively suppressed by measures corresponding to this presumed cause.
 なお、リタデーションとは、測定波長548.2nmの光を用いて測定された、第1透明基材121の面内の各位置における屈折率が大きい方向(遅相軸方向)の屈折率(n)と遅相軸方向と直交する方向(進相軸方向)の屈折率(n)との差(n-n)と、第1透明基材121の厚さ(d)との積(d×(n-n))によって規定され、長さ(nm)の単位で表される。 The retardation is the refractive index (n x in the direction of the slow axis) in which the refractive index at each position in the plane of the first transparent substrate 121 is measured using light having a measurement wavelength of 548.2 nm. product of the refractive index in the direction (fast axis direction) and (the difference between n y) (n x -n y ), the thickness of the first transparent substrate 121 (d) orthogonal to) the slow axis direction It is defined by (d × (n x −n y )) and is expressed in units of length (nm).
 リタデーションを有する部材を光が透過すると、偏光状態が変化する。したがって、図9に示すように、リタデーションを有する透明基材155を入射側偏光板151及び出射側偏光板152の間に配置し、入射側偏光板151の側から光L1を入射させると、透明基材155を配置しない場合に比べて、透明基材155のリタデーションに応じて、出射側偏光板152から出射する光の量が変化する。すなわち、入射側偏光板151及び出射側偏光板152の間にリタデーションを有する透明基材155を配置すると、入射側偏光板151から出射側偏光板152までの可視光透過率が変化する。この可視光透過率の変動は、波長に応じて異なる。したがって、透明基材155のリタデーションに応じて、可視光透過率の高い波長が変化し、出射側偏光板152から出射する光が、透明基材155のリタデーションに応じた色に視認される。 When light passes through a member having retardation, the polarization state changes. Therefore, as shown in FIG. 9, when the transparent base material 155 having retardation is disposed between the incident side polarizing plate 151 and the output side polarizing plate 152 and light L1 is made incident from the incident side polarizing plate 151 side, it is transparent. The amount of light emitted from the output side polarizing plate 152 changes according to the retardation of the transparent substrate 155 as compared to the case where the substrate 155 is not disposed. That is, when the transparent substrate 155 having retardation is disposed between the incident side polarizing plate 151 and the output side polarizing plate 152, the visible light transmittance from the incident side polarizing plate 151 to the output side polarizing plate 152 is changed. The variation of the visible light transmittance varies depending on the wavelength. Therefore, the wavelength at which the visible light transmittance is high changes according to the retardation of the transparent substrate 155, and the light emitted from the output side polarizing plate 152 is visually recognized in a color according to the retardation of the transparent substrate 155.
 透明基材155の面内の各位置におけるリタデーションにばらつきがあると、透明基材155を透過する光の偏光状態は、透明基材155の面内の各位置におけるリタデーションに応じてばらつく。このため、透明基材155の面内の各位置において、可視光透過率の高い波長が変化する。したがって、図9に示すようにリタデーションにばらつきのある透明基材155を入射側偏光板151及び出射側偏光板152の間に配置し、入射側偏光板151の側から光L1を入射させると、出射側偏光板152から出射する光は、出射側偏光板152の各位置において異なった波長の光の透過率が高くなる。このため、出射側偏光板152の各位置から出射する光が異なる波長の光となって色がばらつき、虹ムラとして視認される。このような虹ムラは、入射側偏光板151及び出射側偏光板152に依存することなく、例えば、入射側偏光板151及び出射側偏光板152をクロスニコルで配置したとしても、パラレルニコルで配置したとしても、生じる。 When the retardation at each position in the plane of the transparent substrate 155 varies, the polarization state of light transmitted through the transparent substrate 155 varies in accordance with the retardation at each position in the plane of the transparent substrate 155. For this reason, at each position in the plane of the transparent substrate 155, the wavelength at which the visible light transmittance is high changes. Therefore, as shown in FIG. 9, when the transparent base material 155 having a variation in retardation is disposed between the incident side polarizing plate 151 and the output side polarizing plate 152 and light L1 is made incident from the incident side polarizing plate 151 side, The light emitted from the output side polarizing plate 152 has high transmittance of light of different wavelengths at each position of the output side polarizing plate 152. For this reason, the light emitted from each position of the output side polarizing plate 152 becomes light of different wavelengths, and the color varies, and is recognized as rainbow unevenness. Such rainbow unevenness is not dependent on the incident side polarizing plate 151 and the output side polarizing plate 152, and for example, even if the incident side polarizing plate 151 and the output side polarizing plate 152 are arranged in cross nicol, they are arranged in parallel nicols Even if, it will occur.
 すなわち、虹ムラは、偏光状態にある光が、リタデーションにばらつきのある部材を透過し、さらに偏光状態を変化されることで生じることに起因すると推測された。 That is, it was inferred that the rainbow unevenness is caused by the fact that light in a polarized state is transmitted through a member having variation in retardation and is further changed in the polarized state.
 一方、図9に示すような偏光板等の偏光子によらなくても、次のような場合には偏光状態の光が生じる。図10に示すように、屈折率の異なる物体の界面に角度をもって入射した光は、入射面に平行な偏光成分(p偏光成分)と入射面に垂直な偏光成分(s偏光成分)とで反射率が異なる。とりわけ、ある角度で入射した光は、入射面に平行な偏光成分の反射率が0になる。すなわち、入射光が反射されると偏光状態が変化する。この角度は、ブリュースター角として知られている。例えば、ガラスと空気の界面において、約60度の入射角で入射した光は、反射されると偏光状態が変化する。 On the other hand, even without using a polarizer such as a polarizing plate as shown in FIG. 9, light in a polarized state is generated in the following case. As shown in FIG. 10, light incident at an angle on the interface of an object of different refractive index is reflected by a polarization component (p polarization component) parallel to the incidence surface and a polarization component (s polarization component) perpendicular to the incidence surface. The rates are different. In particular, light incident at a certain angle has a reflectance of zero for the polarization component parallel to the plane of incidence. That is, when incident light is reflected, the polarization state changes. This angle is known as the Brewster's angle. For example, at an interface of glass and air, light incident at an incident angle of about 60 degrees changes its polarization state when it is reflected.
 したがって、図11に示すように、例えば自動車1の内部において、フロントガラス5に約60度で入射した光L3は、反射されると偏光状態が変化する。偏光状態が変化した光L4が上述した第2の実施の形態の調光部材120を備えるサンバイザ10に入射すると、フロントガラス5に対面する側の透明基材(ここでは第1透明基材121)の調光セル130と重なっている領域におけるリタデーションのばらつきに応じた虹ムラが生じることになる。 Therefore, as shown in FIG. 11, for example, in the interior of the automobile 1, the light L3 incident on the windshield 5 at about 60 degrees changes its polarization state when it is reflected. When light L4 whose polarization state has changed is incident on the sun visor 10 provided with the light control member 120 of the second embodiment described above, the transparent substrate on the side facing the windshield 5 (here, the first transparent substrate 121) Rainbow unevenness occurs in accordance with the variation in retardation in the area overlapping the light control cell 130 of FIG.
 虹ムラの発生を抑制することは、透明基材の面内の各位置において透過率の高くなる波長がばらつくことを避けることで達成され得る。そのためには、第1透明基材121の調光セル130と重なっている領域におけるリタデーションのばらつきを抑制することが考えられる。具体的には、第1透明基材121のリタデーションのばらつきを100nm以下とすることで、虹ムラとして視認されるような色のばらつきの発生を抑制することができる。 The suppression of the occurrence of rainbow unevenness can be achieved by avoiding the dispersion of the wavelength at which the transmittance increases at each position in the plane of the transparent substrate. For this purpose, it is conceivable to suppress the variation in retardation in the area overlapping the light control cell 130 of the first transparent base material 121. Specifically, by setting the variation in retardation of the first transparent substrate 121 to 100 nm or less, it is possible to suppress the occurrence of variation in color that is visually recognized as rainbow unevenness.
 また、リタデーションが小さくなるほど、リタデーションの変動に対する波長ごとの可視光透過率の変動が小さくなる。すなわち、リタデーションのばらつきがあっても、波長ごとの可視光透過率がほとんど変化しない。したがって、リタデーションのばらつきが十分に小さいと、目視で確認されるほどの虹ムラが生じなくなる。具体的には、第1透明基材121の調光セル130と重なっている領域におけるリタデーションの平均を400nm以下、好ましくは200nm以下とすると、リタデーションに応じた波長ごとの可視光透過率の変動が十分に小さくなり、リタデーションのばらつきによる虹ムラを効果的に目立たなくさせることができる。 In addition, as the retardation decreases, the change in visible light transmittance for each wavelength with respect to the change in retardation decreases. That is, even if there is a variation in retardation, the visible light transmittance for each wavelength hardly changes. Therefore, when the variation in retardation is sufficiently small, rainbow unevenness does not occur as much as visually confirmed. Specifically, when the average of retardation in a region overlapping with the light control cell 130 of the first transparent substrate 121 is 400 nm or less, preferably 200 nm or less, the variation of visible light transmittance for each wavelength according to the retardation is It becomes sufficiently small, and rainbow unevenness due to variations in retardation can be effectively made inconspicuous.
 あるいは、リタデーションが大きくなるほど、リタデーションの変動に対する波長ごとの可視光透過率の変動が大きくなる。また、リタデーションが大きくなるほど、複数の波長の光が透過しやすくなるため、透過した光が混色して視認されやすくなる。すなわち、リタデーションのばらつきがあっても、波長ごとの可視光透過率が大きく変動するため、ある波長の透過率が低くなっても別の波長の透過率が高くなる。このため、透過する光の混色の変化が目視においては視認されにくい。具体的には、第1透明基材121の調光セル130と重なっている領域におけるリタデーションの平均を2000nm以上、好ましくは3000nm以上とすると、リタデーションに応じた波長ごとの可視光透過率の変動が大きくなり、リタデーションのばらつきによって可視光透過率が変動しても、混色して視認され、色の変化が視認されにくい。すなわち、虹ムラを効果的に目立たなくさせることができる。 Alternatively, as the retardation increases, the change in visible light transmittance for each wavelength with respect to the change in retardation increases. Further, as the retardation increases, light of a plurality of wavelengths is more likely to be transmitted, so the transmitted light is likely to be mixed and perceived. That is, even if there is variation in retardation, the visible light transmittance for each wavelength fluctuates greatly, so the transmittance for another wavelength is high even if the transmittance for a certain wavelength is low. For this reason, it is hard to visually recognize the change of the color mixing of the light to permeate | transmit. Specifically, when the average of retardation in a region overlapping the light control cell 130 of the first transparent substrate 121 is 2000 nm or more, preferably 3000 nm or more, the variation of visible light transmittance for each wavelength according to retardation is Even if the visible light transmittance fluctuates due to the dispersion of retardation, the color mixture is visually recognized and it is difficult to visually recognize a change in color. That is, rainbow unevenness can be effectively made inconspicuous.
 なお、第1透明基材121の調光セル130と重なっている領域におけるリタデーションは、以下のようにして測定される。まず、図9に示したような対象となる透明基材155を入射側偏光板151及び出射側偏光板152の間に配置して、入射側偏光板151の側から光を入光させる。そして、出射側偏光板の側から観察した際に、目視において対象となる透明基材155の最も色の変化が生じている部分を6cm角で区画する。入射側偏光板151及び出射側偏光板152は、例えばパラレルニコルで配置する。対象となる透明基材155の区画された部分を、縦方向に3分割、横方向に3分割し、分割されたそれぞれの中央部でリタデーションを測定する。すなわち、6cm角で区画された透明基材155においてリタデーションを等間隔に9点測定する。リタデーションは、KOBRA-WR(王子計測器株式会社製)を使用し平行ニコル回転法で又はRETS-1250VA(大塚電子株式会社製)を使用し回転検光子法で、測定することができる。 In addition, the retardation in the area | region which overlaps with the light control cell 130 of the 1st transparent base material 121 is measured as follows. First, the transparent base material 155 as an object as shown in FIG. 9 is disposed between the incident side polarizing plate 151 and the output side polarizing plate 152, and light is made to enter from the incident side polarizing plate 151 side. Then, when observed from the side of the exit-side polarizing plate, the portion of the transparent base material 155 that is the object of the change in color when viewed visually is divided by 6 cm square. The incident side polarizing plate 151 and the output side polarizing plate 152 are arranged in parallel nicol, for example. The divided portion of the target transparent base material 155 is divided into three in the longitudinal direction and three in the lateral direction, and the retardation is measured at the respective central portions of the divided portions. That is, nine points of retardation are measured at equal intervals in the transparent substrate 155 partitioned by 6 cm square. The retardation can be measured by a parallel Nicol rotation method using KOBRA-WR (manufactured by Oji Scientific Instruments Co., Ltd.) or by a rotation analyzer method using RETS-1250VA (manufactured by Otsuka Electronics Co., Ltd.).
 測定された9つのリタデーションの最大値と最小値との差を、リタデーションのばらつきとする。また、測定された9つのリタデーションの値の平均を、リタデーションの平均とする。 The difference between the maximum value and the minimum value of the nine measured retardations is taken as the variation of retardation. Also, the average of the nine measured retardation values is taken as the average of the retardation.
 以上のように、第2の実施の形態の調光部材120は、第1透明基材121と、第1透明基材121に積層された調光セル130と、第1透明基材121と調光セル130とを接合する第1接合層123と、を備える。調光セル130は、電子制御により可視光透過率を調節することができる。第1透明基材121の調光セル130が重なっている領域におけるリタデーションの最大値と最小値との差が、100nm以下である。このような調光部材120によれば、リタデーションのばらつきが小さいため、第1透明基材121の面内の各位置において透過率の高い光の波長が異なることを避けることができる。したがって、偏光状態の光が第1透明基材121に入射したとしても、第1透明基材121での透過率は波長によるばらつきが小さくなるため、調光セル130から出射する光に虹ムラが発生することを効果的に抑制することができる。すなわち、調光部材120における第1透明基材121のリタデーションを原因とする虹ムラの発生を抑制することができる。 As described above, the light control member 120 of the second embodiment includes the first transparent base material 121, the light control cell 130 stacked on the first transparent base material 121, the first transparent base material 121, and the light control member 120. And a first bonding layer 123 for bonding to the optical cell 130. The light control cell 130 can adjust the visible light transmittance by electronic control. The difference between the maximum value and the minimum value of retardation in the region where the light control cells 130 of the first transparent base material 121 overlap is 100 nm or less. According to such a light control member 120, since the variation in retardation is small, it is possible to avoid that the wavelength of light with high transmittance is different at each position in the plane of the first transparent base material 121. Therefore, even if light in a polarized state is incident on the first transparent base material 121, the transmittance of the first transparent base material 121 has less variation due to wavelength, so that light emitted from the light control cell 130 has rainbow unevenness. The occurrence can be effectively suppressed. That is, the generation of rainbow unevenness caused by the retardation of the first transparent base material 121 in the light control member 120 can be suppressed.
 また、第2の実施の形態の調光部材120において、第1透明基材121は、ポリカーボネートを含み、第1透明基材121の調光セル130が重なっている領域におけるリタデーションの平均値が2000nm以上である。このような調光部材120によれば、第1透明基材121のリタデーションが十分に大きいため、リタデーションの変動に対する波長ごとの可視光透過率の変動が大きく、透過した光が混色して視認されやすくなる。このため、リタデーションのばらつきによって可視光透過率が変動しても、虹ムラとなり得る色の変化が視認されにくくなる。すなわち、調光部材120における第1透明基材121のリタデーションを原因とする虹ムラの発生を抑制することができる。 Moreover, in the light control member 120 of the second embodiment, the first transparent base material 121 contains polycarbonate, and the average value of retardation in the region where the light control cells 130 of the first transparent base material 121 overlap is 2000 nm. It is above. According to such a light control member 120, since the retardation of the first transparent substrate 121 is sufficiently large, the change in visible light transmittance for each wavelength with respect to the change in retardation is large, and the transmitted light is mixed and perceived It will be easier. For this reason, even if the visible light transmittance fluctuates due to the variation in retardation, it becomes difficult to visually recognize a change in color that may cause rainbow unevenness. That is, the generation of rainbow unevenness caused by the retardation of the first transparent base material 121 in the light control member 120 can be suppressed.
 さらに、第2の実施の形態の調光部材120において、第1透明基材121は、ポリカーボネートを含み、第1透明基材121の調光セル130が重なっている領域におけるリタデーションの平均値が400nm以下である。このような調光部材120によれば、第1透明基材121のリタデーションが十分に小さいため、リタデーションの変動に対する波長ごとの可視光透過率の変動が小さくなる。このため、リタデーションのばらつきによって可視光透過率が変動しても、虹ムラとなり得る色の変化が視認されにくくなる。すなわち、調光部材120における第1透明基材121のリタデーションを原因とする虹ムラの発生を抑制することができる。 Furthermore, in the light control member 120 according to the second embodiment, the first transparent base material 121 contains polycarbonate, and the average value of retardation in a region where the light control cells 130 of the first transparent base material 121 overlap is 400 nm. It is below. According to such a light control member 120, since the retardation of the first transparent base material 121 is sufficiently small, the variation of the visible light transmittance for each wavelength with respect to the variation of the retardation becomes small. For this reason, even if the visible light transmittance fluctuates due to the variation in retardation, it becomes difficult to visually recognize a change in color that may cause rainbow unevenness. That is, the generation of rainbow unevenness caused by the retardation of the first transparent base material 121 in the light control member 120 can be suppressed.
 なお、上述した第2の実施の形態に対して様々な変更を加えることが可能である。 Note that various changes can be made to the above-described second embodiment.
 上述した第2の実施の形態による調光部材120では、調光セル130の両面に第1透明基材121及び第2透明基材122が積層されているが、調光セル130の片面のみに透明基材が積層されていてもよい。すなわち、例えば調光セル130には第1透明基材121のみが積層されていてもよい。 In the light control member 120 according to the second embodiment described above, the first transparent base material 121 and the second transparent base material 122 are stacked on both sides of the light control cell 130, but only on one side of the light control cell 130. A transparent substrate may be laminated. That is, for example, only the first transparent base material 121 may be stacked on the light control cell 130.
 また、上述した第2の実施の形態では、調光セル130の液晶セル135は、VA方式等の2つの偏光板131,132を伴って用いる方式の液晶が用いられている。しかしながら、調光セル130として、GH(Guest Host)方式の液晶が用いられてもよい。GH方式の液晶は、液晶組成物と二色性色素組成物とがランダムに配向した状態と、いわゆるツイスト配向した状態とを電圧の制御により変化させて透過率を制御することができる。したがって、GH方式の液晶では、偏光板を用いることを要しない。 Further, in the second embodiment described above, the liquid crystal cell 135 of the light control cell 130 uses a liquid crystal of a system that uses two polarizing plates 131 and 132 such as the VA system. However, liquid crystal of GH (Guest Host) type may be used as the light control cell 130. In the liquid crystal of the GH system, the transmittance can be controlled by changing the state in which the liquid crystal composition and the dichroic dye composition are randomly aligned and the state in which so-called twist alignment is performed by voltage control. Therefore, it is not necessary to use a polarizing plate in the GH type liquid crystal.
 調光セル130として、偏光板を要しないGH方式の液晶を用いる場合でも、GH方式の液晶に含まれる二色性色素組成物が、偏光子として機能するため、調光部材120の一方の側、例えば第1透明基材121のリタデーションにばらつきがある場合、第1透明基材121の側から偏光状態の光が入射すると、上述した第2の実施の形態と同様に、虹ムラが生じる。 Even when a GH type liquid crystal that does not require a polarizing plate is used as the light control cell 130, one side of the light control member 120 because the dichroic dye composition contained in the GH liquid crystal functions as a polarizer. For example, in the case where the retardation of the first transparent base material 121 varies, when light in a polarized state is incident from the side of the first transparent base material 121, rainbow unevenness occurs as in the second embodiment described above.
 この場合でも、上述したように、第1透明基材121のリタデーションのばらつきを100nm以下とすることで、虹ムラを目視で確認されなくすることができる。 Even in this case, as described above, by setting the variation in retardation of the first transparent substrate 121 to 100 nm or less, it is possible to make the rainbow unevenness not visually confirmed.
 さらに、上述した第2の実施の形態では、第1透明基材121及び第2透明基材122は、押出成形によって製造されているが、第1透明基材121及び第2透明基材122は、射出成型によって製造されてもよい。射出成型によって製造された透明基材は、3次元形状を有し得る。射出成型によって製造された透明基材は、3次元形状として、曲面を含んでいてもよい。ただし、透明基材の曲面が曲率半径の小さな3次元形状を有していると、透明基材の製造時にリタデーションを意図したように調節することが困難になる。したがって、透明基材にリタデーションのばらつきが生じてしまい、調光部材120に虹ムラが生じやすくなる。したがって、透明基材の曲面の曲率半径は、大きいことが好ましい。具体的には、調光セル130と重なっている領域における透明基材の曲面の曲率半径は、10cm以上であることが好ましく、20cm以上であることがより好ましい。なお、射出成型によって製造された透明基材のリタデーションのばらつきは、例えば射出成形時に圧縮成型を行うことで、小さくすることができる。 Furthermore, in the second embodiment described above, although the first transparent base material 121 and the second transparent base material 122 are manufactured by extrusion molding, the first transparent base material 121 and the second transparent base material 122 are , May be manufactured by injection molding. Transparent substrates produced by injection molding may have a three-dimensional shape. The transparent substrate produced by injection molding may include a curved surface as a three-dimensional shape. However, if the curved surface of the transparent substrate has a three-dimensional shape with a small radius of curvature, it becomes difficult to adjust the retardation as intended during the production of the transparent substrate. Therefore, the dispersion | variation in retardation arises in a transparent base material, and it becomes easy to produce a rainbow nonuniformity in the light control member 120. FIG. Therefore, the radius of curvature of the curved surface of the transparent substrate is preferably large. Specifically, the radius of curvature of the curved surface of the transparent base material in the area overlapping the light control cell 130 is preferably 10 cm or more, and more preferably 20 cm or more. In addition, the dispersion | variation in the retardation of the transparent base material manufactured by injection molding can be made small, for example by performing compression molding at the time of injection molding.
 また、上述した第2の実施の形態においては、第1透明基材121及び第2透明基材122と調光セル130とを接合させる第1接合層123及び第2接合層124としてOCAが採用されたが、例えばヒートシールによって接合させることも可能である。この場合、1回の工程で調光セル130の両面に第1透明基材121及び第2透明基材122を接合することができるため、片面ずつ接合する必要が無く、製造工程を簡素化することができる。 In the second embodiment described above, OCA is employed as the first bonding layer 123 and the second bonding layer 124 for bonding the first transparent base material 121 and the second transparent base material 122 to the light control cell 130. However, it is also possible to join them by heat sealing, for example. In this case, since the first transparent base material 121 and the second transparent base material 122 can be bonded to both surfaces of the light control cell 130 in one process, there is no need to bond each surface one by one, and the manufacturing process is simplified. be able to.
 さらに、上述した第2の実施の形態では、調光部材120は、外部から電力の供給を受けていたが、調光部材120の一部に太陽電池(図示せず)を設け、この太陽電池から電力を供給するように構成されても良い。更には、太陽電池の出力により照射光量を判断し、それに応じて透過率を自動制御してもよい。 Furthermore, in the second embodiment described above, the light control member 120 receives power supply from the outside, but a solar cell (not shown) is provided on a part of the light control member 120, and this solar cell May be configured to supply power. Furthermore, the irradiation light amount may be determined based on the output of the solar cell, and the transmittance may be automatically controlled accordingly.
 以上の説明においては、調光部材120がサンバイザ10に採用された例を用いたが、調光部材120の用途は、サンバイザには限定されない。他の用途の例としては、自動車のサイドウィンドウやサンルーフ、あるいは電車や航空機などの移動体の窓部分に採用することが可能である。さらに、建築物の窓部分に採用することも可能である。 Although the example in which the light control member 120 is adopted for the sun visor 10 is used in the above description, the application of the light control member 120 is not limited to the sun visor. As an example of another application, it is possible to adopt to the window part of a car, such as a side window or a sunroof of a car, or a train or an aircraft. Furthermore, it is also possible to adopt it to the window part of a building.
<実施例>
 以下、実施例を用いて第2の発明をより詳細に説明するが、第2の発明はこの実施例に限定されるものではない。
<Example>
Hereinafter, the second invention will be described in more detail using Examples, but the second invention is not limited to these Examples.
 実施例および比較例として、異なる透明基材を用意した。実施例1~6および比較例1は、押出成形によって製造された透明基材である。実施例7および比較例2~6は、射出成型によって製造された透明基材である。 Different transparent substrates were prepared as examples and comparative examples. Examples 1 to 6 and Comparative Example 1 are transparent substrates produced by extrusion. Example 7 and Comparative Examples 2 to 6 are transparent substrates manufactured by injection molding.
 図9に示すように、透明基材155を入射側偏光板151及び出射側偏光板152の間に配置した。入射側偏光板151及び出射側偏光板152は、クロスニコルで配置した。入射側偏光板151の側に光源を配置して出射側偏光板152の側から観察した際に、虹ムラの有無を確認した。また、目視において対象となる透明基材の最も色の変化が生じている部分を6cm角で区画し、6cm角で区画された透明基材においてリタデーションを等間隔に9点測定した。 As shown in FIG. 9, the transparent substrate 155 was disposed between the incident side polarizing plate 151 and the output side polarizing plate 152. The incident side polarizing plate 151 and the output side polarizing plate 152 were arranged in cross nicol. When the light source was arranged on the incident side polarizing plate 151 side and observed from the output side polarizing plate 152 side, the presence or absence of rainbow unevenness was confirmed. In addition, the portion of the transparent base material that is the subject of the most visual change in color was divided by 6 cm square, and retardation was measured at regular intervals at nine points on the transparent base plate partitioned by 6 cm square.
 測定した9点でのリタデーションのばらつき及び平均と、虹ムラについて目視で観察した各実施例および比較例の結果を以下の表5に示す。リタデーションのばらつきとは、上述したように、測定された9つのリタデーションの最大値と最小値との差を表し、リタデーションの平均とは、測定された9つのリタデーションの値の平均を表している。虹ムラについて、目視では確認されなかったものにはAを、目視で注意深く観察するとわずかに確認されたが視界の妨げにはならない程度のものにはBを、目視で確認されたが視界の妨げにはならない程度のものにはCを、目視ではっきり確認され視界の妨げとなったものにはDを、それぞれ付している。 The variation and average of retardation measured at 9 points and the results of Examples and Comparative Examples visually observed for rainbow unevenness are shown in Table 5 below. As described above, the variation in retardation represents the difference between the maximum value and the minimum value of the nine measured retardations, and the average of the retardations represents the average of the measured nine retardation values. As for rainbow unevenness, A was not confirmed visually, B was slightly confirmed by careful visual observation, but B was visually confirmed but not visually impaired C is attached to the extent that it does not become and D is attached to those that are clearly confirmed visually and obstruct the view.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~7と比較例1~6から理解されるように、リタデーションのばらつきが100nm以下であると、虹ムラが目視において視界の妨げにはならなくなる。また、リタデーションの平均が、400nm以下または2000nm以上であっても、リタデーションのばらつきが100nmより大きいと、虹ムラが目視において確認された。この実施例1~7及び比較例1~6から、リタデーションの最大値と最小値との差が、100nm以下であることで、透明基材のリタデーションを原因とする虹ムラの発生を抑制することができることが理解される。 As understood from the examples 1 to 7 and the comparative examples 1 to 6, when the variation in retardation is 100 nm or less, the rainbow unevenness does not obstruct the visual field. Moreover, even if the average of retardation is 400 nm or less or 2000 nm or more, rainbow unevenness was visually confirmed when the variation in retardation is greater than 100 nm. From Examples 1 to 7 and Comparative Examples 1 to 6, when the difference between the maximum value and the minimum value of retardation is 100 nm or less, the occurrence of rainbow unevenness caused by the retardation of the transparent substrate is suppressed. It is understood that
 また、実施例1,3,5の比較から理解されるように、リタデーションの平均が2000nm以上となると、虹ムラがわずかに確認される程度になり、3000nm以上となると、虹ムラが目視では確認されなくなる。したがって、リタデーションの平均が2000nm以上、好ましくは3000nm以上となると、透明基材のリタデーションを原因とする虹ムラの発生を、より抑制することができるということができる。 Moreover, as understood from the comparison of Examples 1, 3 and 5, when the average of retardation is 2000 nm or more, rainbow unevenness is slightly confirmed, and when 3000 nm or more, rainbow unevenness is visually confirmed. It will not be done. Therefore, when the average of retardation is 2000 nm or more, preferably 3000 nm or more, generation of rainbow unevenness caused by retardation of the transparent substrate can be further suppressed.
 さらに、実施例2,4,6の比較から理解されるように、リタデーションの平均が400nm以下となると、虹ムラがわずかに確認される程度になり、200nm以下となると、虹ムラが目視では確認されなくなる。したがって、リタデーションの平均が400nm以下、好ましくは200nm以下となると、透明基材のリタデーションを原因とする虹ムラの発生を、より抑制することができるということができる。 Furthermore, as understood from the comparison of Examples 2, 4 and 6, when the average of retardation is 400 nm or less, rainbow unevenness is slightly confirmed, and when 200 nm or less, rainbow unevenness is visually confirmed. It will not be done. Therefore, when the average of retardation is 400 nm or less, preferably 200 nm or less, it can be said that the generation of rainbow unevenness caused by the retardation of the transparent substrate can be further suppressed.
<第3の実施の形態>
 第1及び第2の実施の形態と同様に、調光部材220が適用される一例として、図1に示されたサンバイザ10を例示することができる。図1に示されているように、自動車1には、その内部であってフロントガラス5に対面する位置に、サンバイザ10が配置されている。サンバイザ10は、フロントガラス5を通って入射する太陽光等を低減し、自動車1の乗員に良好な視界を与えることができる。
Third Embodiment
Similar to the first and second embodiments, the sun visor 10 shown in FIG. 1 can be illustrated as an example to which the light control member 220 is applied. As shown in FIG. 1, a sun visor 10 is disposed inside the automobile 1 at a position facing the windshield 5. The sun visor 10 can reduce sunlight and the like incident through the windshield 5 and can provide a good view to the occupants of the automobile 1.
 以下、図12~図22を参照しながら、第3の発明に関連した第3の実施の形態について説明する。 The third embodiment relating to the third invention will be described below with reference to FIGS. 12 to 22.
 調光部材220は、可視光の透過率を調節可能である。図12に示すように、調光部材220は、一対の支持体である第1透明支持体230及び第2透明支持体240と、第1透明支持体230及び第2透明支持体240に支持されて積層された調光ユニット250と、第1透明支持体230と調光ユニット250とを接合する第1接合層223と、第2透明支持体240と調光ユニット250とを接合する第2接合層224と、を備える。 The light control member 220 can adjust the transmittance of visible light. As shown in FIG. 12, the light control member 220 is supported by the first transparent support 230 and the second transparent support 240, which are a pair of supports, and the first transparent support 230 and the second transparent support 240. Light control unit 250, a first bonding layer 223 bonding the first transparent support 230 and the light control unit 250, and a second bond connecting the second transparent support 240 and the light control unit 250. And a layer 224.
 以下、調光部材220の各構成要素について、説明する。 Hereinafter, each component of the light control member 220 will be described.
 まず、第1透明支持体230及び第2透明支持体240について説明する。第1透明支持体230及び第2透明支持体240は、調光ユニット250の形状を一定に維持するように支持しながら、調光ユニット250を傷や汚れから保護するための部材である。図12に示すように、第1透明支持体230は、第1基材層231と、第1基材層231に積層された第1高リタデーション層232と、第1基材層231および第1高リタデーション層232より調光ユニット250から離れた位置に設けられた第1機能層233と、を有している。また、第2透明支持体240は、第2基材層241を有している。図12に示された例では、第1透明支持体230では、第1基材層231と第1機能層233との間に第1高リタデーション層232が設けられており、第1機能層233が調光部材220の一方の表面を形成する層となっている。後述するような第1機能層233の機能を使用者により有効に発揮するために、第1機能層233が設けられた透明支持体、すなわち第1透明支持体230が、調光部材220の使用時に、使用者に対面する側となるように設けられていることが好ましい。 First, the first transparent support 230 and the second transparent support 240 will be described. The first transparent support 230 and the second transparent support 240 are members for protecting the light control unit 250 from scratches and dirt while supporting the light control unit 250 so as to maintain a constant shape. As shown in FIG. 12, the first transparent support 230 includes a first base layer 231, a first high retardation layer 232 laminated on the first base layer 231, a first base layer 231, and a first base layer 231. And a first functional layer 233 provided at a position farther from the light adjustment unit 250 than the high retardation layer 232. The second transparent support 240 also has a second base layer 241. In the example shown in FIG. 12, in the first transparent support 230, the first high retardation layer 232 is provided between the first base layer 231 and the first functional layer 233, and the first functional layer 233. Is a layer forming one surface of the light control member 220. The transparent support provided with the first functional layer 233, that is, the first transparent support 230, uses the light control member 220 in order to effectively exhibit the function of the first functional layer 233 as described later by the user. Sometimes, it is preferable that the side facing the user is provided.
 なお、「透明」とは、第1透明支持体230及び第2透明支持体240を介して当該透明支持体の一方の側から他方の側を透視し得る程度の透明性を有していることを意味しており、例えば、30%以上、より好ましくは70%以上の可視光透過率を有していることを意味する。可視光透過率は、分光光度計((株)島津製作所製「UV-3100PC」、JIS K 0115準拠品)を用いて測定波長380nm~780nmの範囲内で測定したときの、各波長における透過率の平均値として特定される。 In addition, having "transparency" has transparency which can see through the other side from the one side of the said transparent support body via the 1st transparent support body 230 and the 2nd transparent support body 240. For example, it means having a visible light transmittance of 30% or more, more preferably 70% or more. The visible light transmittance is measured at a wavelength of 380 nm to 780 nm using a spectrophotometer (“UV-3100 PC” manufactured by Shimadzu Corporation, a product conforming to JIS K 0115) at each wavelength. Identified as the average value of
 第1及び第2基材層231,241は、第1及び第2透明支持体230,240の基材となる層であり、十分な厚さを有する樹脂によって形成される。第1及び第2基材層231,241を形成する樹脂は、一般に、光学異方性を有する。すなわち、第1及び第2基材層231,241は、リタデーションを有する。例えば、第1及び第2基材層231,241のリタデーションは、50nm以上12000nm以下である。また、第1及び第2基材層231,241のリタデーションは、面内の各位置で、100nm以上ばらついていることもある。なお、リタデーションとは、測定波長548.2nmの光を用いて測定された、当該基材層の面内の各位置における屈折率が大きい方向(遅相軸方向)の屈折率(n)と遅相軸方向と直交する方向(進相軸方向)の屈折率(n)との差(n-n)と、当該基材層の厚さ(d)との積(d×(n-n))によって規定され、長さ(nm)の単位で表される。また、リタデーションのばらつきとは、例えば6cm角で区画された第1及び第2基材層231,241においてリタデーションを等間隔に9点測定し、測定された9つのリタデーションの最大値と最小値との差のことを意味する。リタデーションは、KOBRA-WR(王子計測器株式会社製)を使用し平行ニコル回転法で又はRETS-1250VA(大塚電子株式会社製)を使用し回転検光子法で、測定することができる。 The first and second base layers 231 and 241 are layers serving as the base of the first and second transparent supports 230 and 240, and are formed of a resin having a sufficient thickness. The resin forming the first and second base layers 231 and 241 generally has optical anisotropy. That is, the first and second base layers 231 and 241 have retardation. For example, the retardation of the first and second base layers 231 and 241 is 50 nm or more and 12000 nm or less. In addition, the retardation of the first and second base material layers 231 and 241 may vary by 100 nm or more at each position in the plane. The retardation means the refractive index (n x ) in the direction (slow axis direction) in which the refractive index at each position in the plane of the base layer is measured using light having a measurement wavelength of 548.2 nm. The product (d × (d × (a)) of the difference (n x −n y ) with the refractive index (n y ) in the direction (fast axis direction) orthogonal to the slow axis direction and the thickness (d) of the substrate layer It is defined by n x- n y )) and is expressed in units of length (nm). In addition, with the variation of retardation, for example, the retardation is measured at nine points at equal intervals in the first and second base material layers 231 and 241 partitioned by 6 cm square, and the maximum value and the minimum value of the nine measured retardations are measured. Means the difference between The retardation can be measured by a parallel Nicol rotation method using KOBRA-WR (manufactured by Oji Scientific Instruments Co., Ltd.) or by a rotation analyzer method using RETS-1250VA (manufactured by Otsuka Electronics Co., Ltd.).
 第1及び第2基材層231,241は、アクリルおよびポリカーボネートの少なくとも一方を含んでいることが好ましく、アクリルを含んでいることがより好ましい。例えば、第1及び第2基材層231,241は、2つのアクリルの間にポリカーボネートが積層された構成であってよい。また、第1及び第2基材層231,241に含まれるアクリルまたはポリカーボネートの分子量が、17,000以上であることが好ましく、20,000以上であることがより好ましい。第1及び第2基材層231,241がこのような材料で形成されていると、第1及び第2基材層231,241が破損しても、第1及び第2基材層231,241の破片の縁部が鋭利にならず、調光部材220の使用者を負傷させる危険性を低減することができる。しかしながら、これに限らず、第1及び第2基材層231,241は、ガラスフィルムで形成されていてもよい。第1及び第2基材層231,241がガラスフィルムで形成されている場合、第1及び第2基材層231,241が破損した際に調光部材220の使用者を負傷させる危険性を低減するために、表面に飛散防止用のシートを設けることが好ましい。 The first and second base layers 231 and 241 preferably contain at least one of acrylic and polycarbonate, and more preferably contain acrylic. For example, the first and second base layers 231 and 241 may have a configuration in which polycarbonate is laminated between two acrylics. In addition, the molecular weight of the acrylic or polycarbonate contained in the first and second base material layers 231 and 241 is preferably 17,000 or more, and more preferably 20,000 or more. When the first and second base layers 231 and 241 are formed of such a material, even if the first and second base layers 231 and 241 are broken, the first and second base layers 231, The edges of the 241 fragments are not sharpened, and the risk of injury to the user of the light control member 220 can be reduced. However, not only this but the 1st and 2nd substrate layers 231 and 241 may be formed with a glass film. If the first and second base layers 231 and 241 are formed of glass film, there is a risk that the user of the light control member 220 may be injured when the first and second base layers 231 and 241 are broken. In order to reduce, it is preferable to provide an anti-scattering sheet on the surface.
 第1及び第2基材層231,241は、0.1mm以上10mm以下、好ましくは0.5mm以上5mm以下の厚みを有していることが好ましい。このような厚みであると、強度及び光学特性に優れた第1及び第2基材層231,241を得ることができる。第1及び第2基材層231,241は、同一の材料で同一に構成されていてもよいし、或いは、材料および構成の少なくとも一方において互いに異なるようにしてもよい。 The first and second base layers 231 and 241 preferably have a thickness of 0.1 mm or more and 10 mm or less, preferably 0.5 mm or more and 5 mm or less. With such a thickness, it is possible to obtain the first and second base layers 231 and 241 excellent in strength and optical properties. The first and second base layers 231 and 241 may be identical to each other with the same material, or may be different from each other in at least one of the material and the structure.
 第1及び第2基材層231,241は、射出成型によって製造することができる。射出成型によって製造されることで、第1及び第2基材層231,241は、3次元形状、例えば曲面を有することができる。しかしながら、射出成型によって製造されると、第1及び第2基材層231,241のリタデーションにはばらつきが生じやすくなる。第1及び第2基材層231,241のリタデーションのばらつきは、例えば射出成形時に圧縮成型を行うことである程度小さくすることはできるが、リタデーションのばらつきを無くすことはできない。 The first and second base layers 231 and 241 can be manufactured by injection molding. Manufactured by injection molding, the first and second base layers 231 and 241 can have a three-dimensional shape, for example, a curved surface. However, when manufactured by injection molding, the retardation of the first and second base material layers 231 and 241 tends to vary. The variation in retardation of the first and second base material layers 231 and 241 can be reduced to a certain extent by, for example, compression molding at the time of injection molding, but the variation in retardation can not be eliminated.
 第1高リタデーション層232は、第1基材層231より高いリタデーションを有する。第1高リタデーション層232のリタデーションは、例えば平均が4000nm以上である。また、第1高リタデーション層232は、例えばポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等の樹脂を含んでいる。第1高リタデーション層232は、このような樹脂を延伸させることで製造することができる。第1高リタデーション層232は、リタデーションを有するため、遅相軸方向および進相軸方向を有する。また、第1高リタデーション層232の厚さは、例えば10μm以上300μm以下である。 The first high retardation layer 232 has higher retardation than the first base layer 231. The retardation of the first high retardation layer 232 is, for example, 4000 nm or more on average. The first high retardation layer 232 contains a resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), for example. The first high retardation layer 232 can be manufactured by stretching such a resin. Since the first high retardation layer 232 has retardation, it has a slow axis direction and a fast axis direction. The thickness of the first high retardation layer 232 is, for example, 10 μm or more and 300 μm or less.
 第1機能層233は、反射防止機能(AR機能又はLR機能ともいう)および防眩機能(AG機能ともいう)の少なくとも一方を有していてもよい。また、第1機能層233は、その他の機能を有していてもよい。第1機能層233の厚さは、例えば50nm以上20μm以下である。 The first functional layer 233 may have at least one of an antireflective function (also referred to as an AR function or an LR function) and an antiglare function (also referred to as an AG function). In addition, the first functional layer 233 may have other functions. The thickness of the first functional layer 233 is, for example, 50 nm or more and 20 μm or less.
 次に、第1接合層223及び第2接合層224について説明する。上述したように、第1接合層223は、第1透明支持体230と調光ユニット250とを接合し、第2接合層224は、第2透明支持体240と調光ユニット250とを接合する。第3の実施の形態において、第1接合層223及び第2接合層224は、いわゆるOCA(Optically Clear Adhesive)またはOCR(Optically Clear Resin)である。すなわち、第1接合層223及び第2接合層224は、透明で、粘着性を有する。また、第1接合層223及び第2接合層224は、第1透明支持体230及び第2透明支持体240と実質的に同じ屈折率を有していることが好ましい。この場合、第1透明支持体230及び第2透明支持体240と第1接合層223及び第2接合層224との各界面における光の反射を低減することができる。 Next, the first bonding layer 223 and the second bonding layer 224 will be described. As described above, the first bonding layer 223 bonds the first transparent support 230 and the light control unit 250, and the second bonding layer 224 bonds the second transparent support 240 and the light control unit 250. . In the third embodiment, the first bonding layer 223 and the second bonding layer 224 are so-called OCA (Optically Clear Adhesive) or OCR (Optically Clear Resin). That is, the first bonding layer 223 and the second bonding layer 224 are transparent and have adhesiveness. The first bonding layer 223 and the second bonding layer 224 preferably have substantially the same refractive index as the first transparent support 230 and the second transparent support 240. In this case, the reflection of light at each interface between the first transparent support 230 and the second transparent support 240, and the first bonding layer 223 and the second bonding layer 224 can be reduced.
 第1接合層223及び第2接合層224は、厚みが25μm以上1000μm以下であることが好ましい。厚みが25μmよりも薄いと、調光部材の歪みを接合面で吸収できないため、気泡や調光部材の不具合(たとえば液晶GAP不良に伴う色ムラ)を生じやすい。その一方で、厚みが1000μmよりも厚いと、量産性、価格及び強度の点で不利となる。第1接合層223及び第2接合層224は、同一の材料で同一に構成されていてもよいし、或いは、材料および構成の少なくとも一方において互いに異なるようにしてもよい。 The first bonding layer 223 and the second bonding layer 224 preferably have a thickness of 25 μm to 1000 μm. If the thickness is smaller than 25 μm, the distortion of the light control member can not be absorbed by the bonding surface, so that defects of the air bubble and the light control member (for example, color unevenness due to a liquid crystal GAP failure) tend to occur. On the other hand, if the thickness is thicker than 1000 μm, it is disadvantageous in terms of mass productivity, cost and strength. The first bonding layer 223 and the second bonding layer 224 may be made of the same material and the same, or may be different from each other in at least one of the material and the configuration.
 次に、調光ユニット250について説明する。図13に示すように、調光ユニット250は、第1偏光板251と、第2偏光板252と、第1偏光板251と第2偏光板252との間に配置された液晶ユニット255とを含む。調光ユニット250の第1偏光板251の側に第1接合層223が設けられ、第1透明支持体230が積層される。同様に、調光ユニット250の第2偏光板252の側に第2接合層224が設けられ、第2透明支持体240が積層される。また、図12に示すように、調光ユニット250は、配線250cを有している。配線250cは、自動車1に設けられた制御装置(図示せず)に接続され、駆動電力や制御信号を調光ユニット250に提供する。配線250cは、透明な導電体によって形成されることが好ましい。この場合、外部から配線250cが実質的に視認されなくなり、調光部材220の外観を向上させることができる。調光ユニット250の厚みは、例えば100μm以上3mm以下である。 Next, the light control unit 250 will be described. As shown in FIG. 13, the light control unit 250 includes a first polarizing plate 251, a second polarizing plate 252, and a liquid crystal unit 255 disposed between the first polarizing plate 251 and the second polarizing plate 252. Including. The first bonding layer 223 is provided on the side of the first polarizing plate 251 of the light control unit 250, and the first transparent support 230 is stacked. Similarly, the second bonding layer 224 is provided on the side of the second polarizing plate 252 of the light control unit 250, and the second transparent support 240 is stacked. Moreover, as shown in FIG. 12, the light control unit 250 has the wiring 250c. The wiring 250 c is connected to a control device (not shown) provided in the automobile 1 and provides drive power and control signals to the dimming unit 250. The wiring 250c is preferably formed of a transparent conductor. In this case, the wiring 250c is not substantially visible from the outside, and the appearance of the light control member 220 can be improved. The thickness of the light control unit 250 is, for example, 100 μm or more and 3 mm or less.
 第1偏光板251及び第2偏光板252は、入射した光を直交する二つの偏光成分(p偏光成分及びs偏光成分)に分解し、一方の方向(透過軸と平行な方向)に振動する直線偏光成分(例えば、p偏光成分)を透過させ、前記一方の方向に直交する他方の方向(吸収軸と平行な方向)に振動する直線偏光成分(例えば、s偏光成分)を吸収する機能を有している。第1偏光板251及び第2偏光板252は、クロスニコルまたはパラレルニコルで配置されている。クロスニコルとは、2つの偏光板の透過軸が互いに直交するように配置されていることをいい、パラレルニコルとは、2つの偏光板の透過軸が互いに平行になるように配置されていることをいう。 The first polarizing plate 251 and the second polarizing plate 252 separate the incident light into two orthogonal polarization components (p polarization component and s polarization component) and vibrate in one direction (direction parallel to the transmission axis) A function of transmitting a linearly polarized light component (eg, p-polarized light component) and absorbing a linearly polarized light component (eg, s-polarized light component) oscillating in the other direction (a direction parallel to the absorption axis) orthogonal to the one direction. Have. The first polarizing plate 251 and the second polarizing plate 252 are arranged in cross nicol or parallel nicol. Cross Nicol means that the transmission axes of the two polarizers are orthogonal to each other, and parallel Nicol means that the transmission axes of the two polarizers are parallel to each other Say
 液晶ユニット255には、例えばVA(Vertical Alignment)方式、TN(Twisted Nematic)方式、IPS(In Plane Switching)方式またはFFS(Fringe Field Switching)方式の液晶を用いることができる。液晶ユニット255は、樹脂からなるフィルムを基材として液晶が保持されたフィルム液晶であってもよいし、薄膜状のガラスを基材として液晶が保持されたガラス液晶であってもよい。フィルム液晶である場合、液晶ユニット255に可撓性を付与することができる。 As the liquid crystal unit 255, for example, liquid crystal of VA (Vertical Alignment) system, TN (Twisted Nematic) system, IPS (In Plane Switching) system or FFS (Fringe Field Switching) system can be used. The liquid crystal unit 255 may be a film liquid crystal in which liquid crystal is held by using a film made of resin as a base material, or may be a glass liquid crystal in which liquid crystal is held by using thin film glass as a base. In the case of film liquid crystal, the liquid crystal unit 255 can be provided with flexibility.
 調光ユニット250には、配線250cを介して電圧を印加する等の電子制御を行うことにより、液晶ユニット255の液晶の配向を変化させることができる。液晶の配向によって、液晶ユニット255を透過する光の偏光方向は変化し得る。例えば、電圧が印加され液晶の配向が変化した液晶ユニット255を、第1偏光板251を透過した特定方向の偏光成分を有する光が通過する場合、液晶ユニット255を透過する光は、その偏光方向を90°回転させる。第1偏光板251及び第2偏光板252がクロスニコルで配置されていると、偏光方向を90°回転したことで、光は第2偏光板252を透過することができる。一方、電圧が印加されておらず液晶の配向が変化していない液晶ユニット255を、第1偏光板251を透過した特定方向の偏光成分を有する光が通過する場合、液晶ユニット255を透過する光は、その偏光方向を回転させない。第1偏光板251及び第2偏光板252がクロスニコルで配置されていると、偏光方向を回転しなかった光は第2偏光板252を透過することができない。このように、液晶ユニット255の液晶の配向の変化の有無によって、光の透過を制御することができる。したがって、調光ユニット250は、電子制御により可視光透過率を調節することができる。 The light control unit 250 can change the orientation of the liquid crystal of the liquid crystal unit 255 by performing electronic control such as applying a voltage through the wiring 250 c. Depending on the orientation of the liquid crystal, the polarization direction of light transmitted through the liquid crystal unit 255 may change. For example, when light having a polarization component in a specific direction transmitted through the first polarizing plate 251 passes through the liquid crystal unit 255 in which the voltage is applied and the orientation of the liquid crystal is changed, the light transmitted through the liquid crystal unit 255 has its polarization direction Rotate 90 degrees. When the first polarizing plate 251 and the second polarizing plate 252 are arranged in cross nicol, light can be transmitted through the second polarizing plate 252 by rotating the polarization direction by 90 °. On the other hand, when light having a polarization component in a specific direction transmitted through the first polarizing plate 251 passes through the liquid crystal unit 255 in which the voltage is not applied and the orientation of the liquid crystal does not change, light passing through the liquid crystal unit 255 Does not rotate its polarization direction. When the first polarizing plate 251 and the second polarizing plate 252 are arranged in cross nicol, light whose polarization direction has not been rotated can not be transmitted through the second polarizing plate 252. Thus, the transmission of light can be controlled by the presence or absence of the change in the orientation of the liquid crystal of the liquid crystal unit 255. Therefore, the light control unit 250 can adjust the visible light transmittance by electronic control.
 調光部材220の平面視において、調光部材220の構成要素である第1透明支持体230、第2透明支持体240、第1接合層223、第2接合層224及び調光ユニット250は、略同一の形状を有している。図12に示された例では、調光部材220の各構成要素は、平面視において矩形形状を有している。調光ユニット250は、第1透明支持体230及び第2透明支持体240と重なっている領域を含んでいる。また、平面視において、調光ユニット250は、第1透明支持体230及び第2透明支持体240からはみ出さないことが好ましい。すなわち、平面視における調光ユニット250の寸法は、第1透明支持体230および第2透明支持体240の寸法より小さいことが好ましい。 In plan view of the light control member 220, the first transparent support 230, the second transparent support 240, the first bonding layer 223, the second bonding layer 224, and the light control unit 250, which are components of the light control member 220, It has substantially the same shape. In the example shown in FIG. 12, each component of the light adjustment member 220 has a rectangular shape in plan view. The dimming unit 250 includes an area overlapping the first transparent support 230 and the second transparent support 240. Moreover, in plan view, it is preferable that the light control unit 250 does not protrude from the first transparent support 230 and the second transparent support 240. That is, the dimension of the light adjustment unit 250 in plan view is preferably smaller than the dimensions of the first transparent support 230 and the second transparent support 240.
 なお、調光部材220には、図示された例に限られず、第1透明支持体の第1機能層233とは別の特定の機能を発揮することを期待された機能層が設けられても良い。また、1つの機能層が2つ以上の機能を発揮するようにしてもよいし、例えば、調光部材220の第1透明支持体230、第2透明支持体240、第1接合層223、第2接合層224及び調光ユニット250の少なくとも一つに、何らかの機能を付与するようにしてもよい。調光部材220に付与され得る機能としては、一例として、耐擦傷性を有したハードコート(HC)機能、赤外線遮蔽(反射)機能、紫外線遮蔽(反射)機能、防汚機能等を例示することができる。 The light control member 220 is not limited to the illustrated example, and may be provided with a functional layer expected to exhibit a specific function other than the first functional layer 233 of the first transparent support. good. In addition, one functional layer may exhibit two or more functions, and, for example, the first transparent support 230, the second transparent support 240, the first bonding layer 223, and the first light modulation member 220 may be used. Some function may be given to at least one of the second bonding layer 224 and the light control unit 250. As a function that can be imparted to the light control member 220, for example, a hard coat (HC) function having scratch resistance, an infrared ray shielding (reflection) function, an ultraviolet ray shielding (reflection) function, an antifouling function, etc. Can.
 次に、図14~図16を参照して、調光部材220の製造方法の一例について説明する。 Next, an example of a method of manufacturing the light adjusting member 220 will be described with reference to FIGS.
 まず、射出成型により、第1基材層231及び第2基材層241が製造される。第1基材層231には、第1高リタデーション層232および第1機能層233が積層され、第1透明支持体230が製造される。第1機能層233は、第1透明支持体230の表面をなすように形成される。 First, the first base layer 231 and the second base layer 241 are manufactured by injection molding. The first high retardation layer 232 and the first functional layer 233 are stacked on the first base layer 231, and the first transparent support 230 is manufactured. The first functional layer 233 is formed to be the surface of the first transparent support 230.
 次に、図14に示すように、第1透明支持体230の第1機能層233が設けられた側とは反対側の面に第1接合層223が貼合される。また、第2透明支持体240の片面に第2接合層224が貼合される。 Next, as shown in FIG. 14, the first bonding layer 223 is bonded to the surface of the first transparent support 230 opposite to the side on which the first functional layer 233 is provided. In addition, the second bonding layer 224 is bonded to one surface of the second transparent support 240.
 その後、図15に示すように、調光ユニット250の一方の面に第2接合層224を介して第2透明支持体240が接合されることで、第2透明支持体240に調光ユニット250が積層される。調光ユニット250には、配線250cが設けられている。 Thereafter, as shown in FIG. 15, the second transparent support 240 is bonded to one surface of the light control unit 250 via the second bonding layer 224, whereby the light control unit 250 is fixed to the second transparent support 240. Are stacked. The light adjustment unit 250 is provided with a wire 250 c.
 そして、図16に示すように、調光ユニット250の他方の面に第1透明支持体230が接合されることで、第1透明支持体230に調光ユニット250が積層される。この接合は、第1透明支持体230に予め貼合された第1接合層223によって実現される。 Then, as shown in FIG. 16, the first transparent support 230 is bonded to the other surface of the light control unit 250, whereby the light control unit 250 is stacked on the first transparent support 230. This bonding is realized by the first bonding layer 223 previously bonded to the first transparent support 230.
 以上の各工程は、低圧環境下、好ましくは真空環境下で、行われることが好ましい。このことにより、第1接合層223及び第2接合層224を貼合する際に、界面に気泡が混入することを回避することができる。 Each of the above steps is preferably performed in a low pressure environment, preferably in a vacuum environment. By this, when bonding the 1st bonding layer 223 and the 2nd bonding layer 224, it can avoid that a bubble mixes in an interface.
 ところで、上述したように、調光部材220には、虹ムラが観察されることがあった。とりわけ、調光部材220を備えるサンバイザ10を自動車1の内部に配置すると、虹ムラが観察されていた。虹ムラが生じると、調光部材220を介した視界を悪化させてしまう。本件発明者らが鋭意検討したところ、調光部材220の使用者に対面する側とは逆側の透明支持体(第1透明支持体230)においてリタデーションにばらつきがある部材が含まれていると、虹ムラが観察され得ることが確認された。すなわち、第1透明支持体230の第1基材層231のリダテーションのばらつきに起因して、虹ムラは発生していた。このような現象について検討を重ねたところ、次に説明する原因によって虹ムラが発生すると推測され、さらに、この推定原因に対応した対策によって虹ムラを効果的に抑制し得ることを確認した。 By the way, as above-mentioned, in the light control member 220, rainbow nonuniformity may be observed. In particular, when the sun visor 10 including the light control member 220 is disposed inside the automobile 1, rainbow unevenness has been observed. If rainbow unevenness occurs, the view through the light control member 220 will be deteriorated. As a result of intensive investigations by the inventors of the present invention, it is considered that the transparent support (first transparent support 230) on the side opposite to the side facing the user of the light control member 220 includes a member having variation in retardation. It was confirmed that rainbow unevenness could be observed. That is, the rainbow unevenness occurred due to the variation in the retardation of the first base layer 231 of the first transparent support 230. When these phenomena were repeatedly examined, it was estimated that rainbow unevenness would occur due to the cause described below, and it was further confirmed that rainbow unevenness could be effectively suppressed by measures corresponding to this presumed cause.
 リタデーションを有する部材を光が透過すると、当該光の偏光状態が変化する。したがって、図17に示すように、リタデーションを有する部材を入射側偏光板271及び出射側偏光板272の間に配置し、入射側偏光板271の側から光L5を入射させると、第1透明支持体230を配置しない場合に比べて、偏光板の間に配置された部材のリタデーションに応じて、出射側偏光板272から出射する光の量、すなわち可視光透過率が変化する。この可視光透過率の変化は、波長に応じて異なる。したがって、偏光板の間に配置される部材のリタデーションに応じて、可視光透過率の高い波長が変化し、出射側偏光板272から出射する光L6が、偏光板の間に配置される部材のリタデーションに応じた色に視認される。 When light passes through a member having retardation, the polarization state of the light changes. Therefore, as shown in FIG. 17, when a member having retardation is disposed between the incident side polarization plate 271 and the emission side polarization plate 272 and the light L5 is made incident from the incident side polarization plate 271 side, the first transparent support Compared to the case where the body 230 is not disposed, the amount of light emitted from the exit side polarizing plate 272, that is, the visible light transmittance, changes according to the retardation of the member disposed between the polarizing plates. The change in the visible light transmittance varies depending on the wavelength. Therefore, the wavelength at which the visible light transmittance is high changes according to the retardation of the member disposed between the polarizing plates, and the light L6 emitted from the output side polarizing plate 272 corresponds to the retardation of the member disposed between the polarizing plates It is visible in the color.
 面内の各位置にリタデーションのばらつきがある部材を透過する光の偏光状態は、当該部材の面内の各位置におけるリタデーションに応じてばらつく。このため、当該部材の面内の各位置において、可視光透過率の高い波長が変化する。したがって、図17に示すようにリタデーションにばらつきのある部材を入射側偏光板271及び出射側偏光板272の間に配置し、入射側偏光板271の側から光L5を入射させると、出射側偏光板272から出射する光L6は、出射側偏光板272の各位置において異なった波長の光の透過率が高くなる。このため、出射側偏光板272の各位置から出射する光が異なる波長の光となって色がばらつき、虹ムラとして視認される。このような虹ムラは、入射側偏光板271及び出射側偏光板272の配置に依存することなく、例えば、入射側偏光板271及び出射側偏光板272をクロスニコルで配置したとしても、パラレルニコルで配置したとしても、生じる。 The polarization state of light transmitted through a member having a variation in retardation at each position in the plane varies depending on the retardation at each position in the plane of the member. For this reason, the wavelength with high visible light transmittance changes at each position in the plane of the member. Therefore, as shown in FIG. 17, when a member having variation in retardation is disposed between the incident side polarizing plate 271 and the output side polarizing plate 272 and the light L5 is made incident from the incident side polarizing plate 271 side, the output side polarized light The light L 6 emitted from the plate 272 has high transmittance of light of different wavelengths at each position of the output side polarizing plate 272. For this reason, the light emitted from each position of the output side polarizing plate 272 becomes light of different wavelengths, and the color varies, and is recognized as rainbow unevenness. Such rainbow unevenness does not depend on the arrangement of the incident side polarizing plate 271 and the output side polarizing plate 272, and for example, even when the incident side polarizing plate 271 and the output side polarizing plate 272 are arranged in cross nicol, parallel nicol Even if arranged by, it occurs.
 すなわち、虹ムラは、偏光状態にある光が、リタデーションにばらつきのある部材を透過し、さらに偏光状態が変化することで生じることに起因すると推測された。とりわけ、リタデーションは、上述したように、部材の屈折率が大きい方向(遅相軸方向)の屈折率(n)と遅相軸方向と直交する方向(進相軸方向)の屈折率(n)との差(n-n)と、当該部材の厚さ(d)〔nm〕との積(d×(n-n))〔nm〕によって規定される。したがって、図17に示すように、部材の法線方向(正面方向)から角度θだけ傾斜した方向から観察する場合、部材の実質的な厚さはd/cosθ〔nm〕となるため、リタデーションがより大きくなる。すなわち、リタデーションのばらつきも大きくなる。このため、正面方向から角度θだけ傾斜した方向から観察する場合、正面方向から観察する場合に比べ、虹ムラがより観察されやすくなる。 That is, it was inferred that the rainbow unevenness is caused by the fact that light in a polarized state is transmitted through a member having variation in retardation, and is further changed in polarization state. In particular, as described above, in the retardation, the refractive index (n x ) in the direction in which the refractive index of the member is large (slow axis direction) and the refractive index (n in the fast axis direction) in the direction orthogonal to the slow axis direction the difference between y) (the n x -n y), the product (d × (n x -n y between the thickness of the member (d) [nm])) is defined by [nm]. Therefore, as shown in FIG. 17, when observed from a direction inclined by an angle θ from the normal direction (front direction) of the member, the substantial thickness of the member is d / cos θ [nm], and therefore the retardation is It gets bigger. That is, the variation in retardation also increases. For this reason, when observing from a direction inclined by an angle θ from the front direction, rainbow unevenness is more easily observed than when observing from the front direction.
 一方、図17に示すような偏光板等の偏光子によらなくても、次のような場合には偏光状態の光が生じる。図10に示すように、屈折率の異なる物体の界面に角度をもって入射した光、言い換えると0°より大きな入射角で入射する光は、入射面に平行な偏光成分(p偏光成分)と入射面に垂直な偏光成分(s偏光成分)とで反射率が異なる。とりわけ、ある入射角で入射した光は、入射面に平行な偏光成分の反射率が0になる。すなわち、入射光が反射されると偏光状態が変化する。この角度は、ブリュースター角として知られている。例えば、ガラスと空気の界面において、約60°の入射角で入射した光は、反射されると偏光状態が変化する。 On the other hand, even without using a polarizer such as a polarizing plate as shown in FIG. 17, light in a polarized state is generated in the following case. As shown in FIG. 10, light incident at an angle to the interface of an object with different refractive index, in other words light incident at an incident angle larger than 0 °, has a polarization component (p-polarization component) parallel to the incident surface and the incident surface. The reflectance differs with the polarization component (s-polarization component) perpendicular to. In particular, light incident at a certain incident angle has a reflectance of zero for the polarization component parallel to the incident surface. That is, when incident light is reflected, the polarization state changes. This angle is known as the Brewster's angle. For example, at an interface of glass and air, light incident at an incident angle of about 60 ° changes its polarization state when it is reflected.
 したがって、図11に示すように、例えば自動車1の内部において、フロントガラス5に約60°の入射角で入射した光L3は、反射されると偏光状態が変化する。偏光状態が変化した光L4が上述した第3の実施の形態の調光部材220を備えるサンバイザ10に入射すると、フロントガラス5に対面する側の透明支持体(ここでは第1透明支持体230)の調光ユニット250と重なっている領域におけるリタデーションのばらつきに応じた虹ムラが生じることになる。 Therefore, as shown in FIG. 11, for example, inside the automobile 1, the light L3 incident on the windshield 5 at an incident angle of about 60 ° changes its polarization state when it is reflected. When the light L4 whose polarization state has changed is incident on the sun visor 10 including the light control member 220 of the third embodiment described above, the transparent support on the side facing the windshield 5 (here, the first transparent support 230) Rainbow unevenness occurs according to the variation of retardation in the area overlapping the light control unit 250 of FIG.
 虹ムラの発生を抑制するために、部材のリダテーションのばらつきを抑制することが考えられた。しかしながら、第1基材層231のリダテーションのばらつきは、上述したように、第1基材層231を射出成型で製造したことで生じており、第1基材層231のリダテーションのばらつきを虹ムラが発生しない程度にまで抑制することは困難であった。そこで、本件発明者らは検討を重ね、第1透明支持体230にリタデーションの大きな第1高リタデーション層232を設けて第1透明支持体230のリダテーションを大きくすることで、虹ムラの発生を効果的に抑制できることを知見した。 In order to suppress the occurrence of rainbow unevenness, it has been considered to suppress variations in the retardation of members. However, as described above, the variation in the rediation of the first base material layer 231 is caused by the production of the first base material layer 231 by injection molding, and the variation in the retardation of the first base material layer 231 is It was difficult to suppress it to such an extent that rainbow unevenness did not occur. Therefore, the inventors of the present invention repeatedly study, and by providing the first high retardation layer 232 with large retardation on the first transparent support 230 to enlarge the retardation of the first transparent support 230, the occurrence of rainbow unevenness is realized. We have found that it can be effectively suppressed.
 部材のリタデーションが大きくなるほど、各偏光成分の透過率の違いから、リタデーションの変動に対する当該部材を透過する光の波長ごとの可視光透過率の変動が大きくなる。リタデーションが大きくなるほど、様々な波長の光が透過しやすくなるため、透過した光が混色して視認されやすくなる。部材にリタデーションのばらつきがあっても、波長ごとの可視光透過率が大きく変動して様々な波長の光が透過するため、透過する光の色は、混色により、目視においては視認されにくくなる。具体的には、第1透明支持体230の調光ユニット250と重なっている領域におけるリタデーションを4000nm以上とすると、リタデーションに応じた波長ごとの可視光透過率の変動が非常に大きくなり、リタデーションのばらつきによって可視光透過率が変動しても、混色して視認され、色が認識されにくい。すなわち、虹ムラを効果的に目立たなくさせることができる。 As the retardation of the member increases, the change in visible light transmittance for each wavelength of light transmitted through the member with respect to the change in retardation increases due to the difference in the transmittance of each polarization component. As the retardation increases, light of various wavelengths is more likely to be transmitted, so the transmitted light is likely to be mixed and perceived. Even if the member has a variation in retardation, the visible light transmittance for each wavelength greatly fluctuates and light of various wavelengths is transmitted, so the color of the transmitted light is difficult to be visually recognized visually due to color mixing. Specifically, when the retardation in the region overlapping the light control unit 250 of the first transparent support 230 is 4000 nm or more, the variation of the visible light transmittance for each wavelength according to the retardation becomes very large, and the retardation Even if the visible light transmittance fluctuates due to the variation, the color mixture is visually recognized and the color is difficult to be recognized. That is, rainbow unevenness can be effectively made inconspicuous.
 また、第1透明支持体230を備える調光部材220において虹ムラが観察されないためには、第1透明支持体230の法線方向(正面方向)だけでなく第1透明支持体230の法線方向から傾斜した方向においても虹ムラの発生が抑制されて観察されにくくなることが好ましい。調光部材220は法線方向から45°以内の角度で観察される態様で用いられることが多く、とりわけ35°以内の角度で観察される態様で用いられることが多いため、第1透明支持体230の法線方向から45°傾斜した方向において、好ましくは35°傾斜した方向において、虹ムラの発生が抑制されていることが好ましい。 In addition, in order to prevent rainbow unevenness from being observed in the light control member 220 including the first transparent support 230, not only the normal direction (front direction) of the first transparent support 230 but also the normal to the first transparent support 230 It is preferable that the occurrence of rainbow unevenness is suppressed also in the direction inclined from the direction and the observation becomes difficult. Since the light control member 220 is often used in a mode observed at an angle within 45 ° from the normal direction, particularly, a mode observed at an angle within 35 °, the first transparent support In the direction inclined 45 ° from the normal direction of 230, preferably in the direction inclined 35 °, the occurrence of rainbow unevenness is preferably suppressed.
 上述したように、虹ムラを目立たなくさせるには、光が混色して視認され、色が認識されにくくなればよい。本件発明者らが検討を重ねた結果、虹ムラを目立たなくさせるには、第1透明支持体230を図17に示すようなクロスニコルで配置された2つの偏光板271,272の間に当該第1透明支持体230における第1高リタデーション層232の遅相軸方向と2つの偏光板271,272の透過軸方向とが40°以上50°以下の角度をなすように配置した状態で、2つの偏光板271,272を第1透明支持体230の法線方向から45°傾斜した方向に透過する波長が550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値と最小値との差が、10〔%〕以上であることが好ましく、2つの偏光板271,272を第1透明支持体230の法線方向から35°傾斜した方向に透過する波長が550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値と最小値との差が、12.5〔%〕以上であることがより好ましいことを知見した。 As described above, in order to make the rainbow unevenness inconspicuous, it is only necessary that the light is mixed and visually recognized and the color is not easily recognized. As a result of repeated investigations by the present inventors, in order to make rainbow unevenness inconspicuous, the first transparent support 230 is placed between two polarizing plates 271 and 272 arranged in cross nicol as shown in FIG. 2 with the slow axis direction of the first high retardation layer 232 and the transmission axis direction of the two polarizing plates 271 and 272 in the first transparent support 230 disposed at an angle of 40 ° to 50 °. Maximum and minimum values of the spectral distribution [%] of light having a wavelength of 550 nm or more and 650 nm or less that transmits two polarizing plates 271 and 272 in a direction inclined 45 ° from the normal direction of the first transparent support 230 Is preferably 10% or more, and the wavelength of transmitting the two polarizing plates 271 and 272 in the direction inclined 35.degree. From the normal direction of the first transparent support 230 is 550 nm to 650 nm. The difference between the maximum value and the minimum value of the spectral distribution of the light transmittance of the lower [%] is and finding a more preferable to be 12.5 [%] or more.
 さらに、第1高リタデーション層232において虹ムラが目立たなければ、透過する光の色が混色により認識されなくなっていると考えられる。したがって、第1高リタデーション層232と第1基材層231とを有する第1透明支持体230でも、様々な波長の光が透過して虹ムラの発生を抑制することができると考えられる。本件発明者らが検討を重ねた結果、第1高リタデーション層232をクロスニコルで配置された2つの偏光板271,272の間に第1高リタデーション層232の遅相軸方向と2つの偏光板271,272の透過軸方向とが40°以上50°以下の角度をなすように配置した状態で、第1高リタデーション層232の法線方向から45°傾斜した方向に2つの偏光板271,272を透過する波長が550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値と最小値との差が、10〔%〕以上であることが好ましく、2つの偏光板271,272を第1高リタデーション層232の法線方向から35°傾斜した方向に透過する第1高リタデーション層232に入射した波長が550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値と最小値との差が、12.5〔%〕以上であることがより好ましいことを知見した。 Furthermore, if rainbow unevenness is not noticeable in the first high retardation layer 232, it is considered that the color of the transmitted light is not recognized due to color mixture. Therefore, it is considered that even with the first transparent support 230 having the first high retardation layer 232 and the first base layer 231, light of various wavelengths can be transmitted to suppress the occurrence of rainbow unevenness. As a result of investigations by the present inventors, as a result of the first high retardation layer 232, the slow axis direction of the first high retardation layer 232 and the two polarizing plates between the two polarizing plates 271 and 272 disposed in cross nicol Two polarizing plates 271 and 272 are inclined in the direction inclined 45 ° from the normal direction of the first high retardation layer 232 in a state where the transmission axis direction of 271 and 272 is arranged to form an angle of 40 ° to 50 °. It is preferable that the difference between the maximum value and the minimum value of the spectral distribution of the transmittance [%] of light having a wavelength of 550 nm or more and 650 nm or less which transmits light be 10% or more. Transmittance of light having a wavelength of 550 nm or more and 650 nm or less incident on the first high retardation layer 232 transmitted in the direction inclined 35 ° from the normal direction of the first high retardation layer 232 [ The difference between the maximum value and the minimum value of the spectral distribution of] has been finding more preferable to be 12.5 [%] or more.
 上述の第1高リタデーション層232や第1透明支持体230を透過する光の透過率について、波長が550nm以上650nm以下の光で考えているのは、第1高リタデーション層232が十分に大きなリタデーションを有することから透過する光の波長ごとの可視光透過率の変動が大きくなるため、この波長域で透過率の最大値と最小値とに10%以上の差があれば、その他の波長域においても十分な大きさの透過率の光が生じて、様々な波長の光が透過すると考えられるからである。 The transmittance of light passing through the first high retardation layer 232 and the first transparent support 230 described above is considered to be light with a wavelength of 550 nm or more and 650 nm or less, the retardation of the first high retardation layer 232 is sufficiently large. Because the variation in visible light transmittance for each wavelength of light transmitted is increased due to the fact that there is a difference of 10% or more between the maximum value and the minimum value of transmittance in this wavelength range, in other wavelength ranges This is because it is considered that light of sufficient transmittance is generated and light of various wavelengths is transmitted.
 以下において、第1透明支持体230に第1高リタデーション層232を設けることで虹ムラを目立たなくさせる上述の効果について、具体例を用いて説明する。 In the following, the above-described effect of making the rainbow unevenness inconspicuous by providing the first high retardation layer 232 on the first transparent support 230 will be described using a specific example.
 図18は、リタデーションが450nm、面内の各位置でのリダテーションのばらつきが150nmの第1基材層231を、図17に示すようにクロスニコルで配置された2つの偏光板271,272の間に配置した状態で、第1基材層231の法線方向から0°、20°、40°、60°傾斜した方向に第1基材層231を間に挟んだ2つの偏光板271,272を透過する各波長域での光の透過率〔%〕のスペクトル分布を表しているグラフである。図18から理解されるように、第1基材層231の法線方向からの傾斜角度によって、透過率が大きくなる波長域が大きく異なっている。具体的には、第1基材層231の法線方向から0°傾斜した方向(正面方向)では波長域490nm~510nmの光が強く観察され、20°傾斜した方向では波長域410nm~420nm及び600nm~700nmの光が強く観察され、40°傾斜した方向では波長域430nm~550nmの光が強く観察され、60°傾斜した方向では波長域560nm~620nmの光が強く観察される。このように、観察する角度によって強く観察される光の波長が異なるため、第1基材層231のようなリタデーションを有する層のみの第1透明支持体を備える調光部材220では虹ムラが発生し得る。 FIG. 18 shows the first base material layer 231 having a retardation of 450 nm and a variation of retardation of 150 nm at each in-plane position of the two polarizing plates 271 and 272 arranged in cross nicol as shown in FIG. With the first base layer 231 interposed therebetween in directions inclined 0 °, 20 °, 40 °, 60 ° from the normal direction of the first base layer 231, with the first base layer 231 interposed therebetween. It is a graph showing the spectral distribution of light transmittance [%] in each wavelength range which transmits 272. As understood from FIG. 18, depending on the inclination angle from the normal direction of the first base layer 231, the wavelength range in which the transmittance is increased is largely different. Specifically, light in the wavelength range of 490 nm to 510 nm is strongly observed in the direction (front direction) tilted by 0 ° from the normal direction of the first base layer 231, and in the direction tilted by 20 °, the wavelength range of 410 nm to 420 nm and The light of 600 nm to 700 nm is strongly observed, the light of wavelength 430 nm to 550 nm is strongly observed in the direction inclined 40 °, and the light of wavelength 560 nm to 620 nm is strongly observed in the direction inclined 60 °. As described above, since the wavelength of light strongly observed differs depending on the angle to be observed, rainbow unevenness occurs in the light control member 220 including the first transparent support of only the layer having retardation like the first base layer 231. It can.
 図19は、リタデーションが4000nm以上、具体的には8400nmの第1高リタデーション層232を図17に示すようにクロスニコルで配置された2つの偏光板271,272の間に当該第1高リタデーション層232の遅相軸方向と2つの偏光板271,272とが45°の角度をなすように配置した状態で、第1高リタデーション層232の法線方向から0°、20°、40°、60°傾斜した方向に第1高リタデーション層232を間に挟んだ2つの偏光板271,272を透過する各波長域での光の透過率のスペクトル分布を表しているグラフである。図19から理解されるように、第1高リタデーション層232の法線方向からの傾斜角度が異なる各グラフにおいて、透過率の高くなっている波長域が多数存在する。すなわち、各傾斜角度において、色が混色により認識されなくなり、虹ムラは発生しない。したがって、第1高リタデーション層232を有する第1透明支持体230では、リタデーションにいくらかのばらつきがある第1基材層231を有しても、虹ムラは発生しないと考えられる。 FIG. 19 shows the first high retardation layer between two polarizing plates 271 and 272 arranged in crossed nicols as shown in FIG. 17 with a first high retardation layer 232 having a retardation of 4000 nm or more, specifically 8400 nm. With the slow axis direction of 232 and the two polarizing plates 271 and 272 arranged at an angle of 45 °, 0 °, 20 °, 40 °, 60 ° from the normal direction of the first high retardation layer 232 It is a graph showing the spectral distribution of the transmittance | permeability of the light in each wavelength range which permeate | transmits two polarizing plates 271 and 272 which pinched | interposed the 1st high retardation layer 232 in the direction which inclined (degree). As understood from FIG. 19, in each graph in which the inclination angles from the normal direction of the first high retardation layer 232 are different, there are many wavelength regions in which the transmittance is high. That is, at each inclination angle, the color is not recognized due to color mixture, and no rainbow unevenness occurs. Therefore, in the first transparent support 230 having the first high retardation layer 232, even if it has the first base layer 231 with some variation in retardation, it is considered that no rainbow unevenness occurs.
 図20は、第1基材層231および第1高リタデーション層232を有する第1透明支持体230を図17に示すようにクロスニコルで配置された2つの偏光板271,272の間に当該第1高リタデーション層232の遅相軸方向と2つの偏光板271,272とが45°の角度をなすように配置した状態で、第1透明支持体230の法線方向から0°、20°、40°、60°傾斜した方向に第1透明支持体230を間に挟んだ2つの偏光板271,272を透過する各波長域での光の透過率のスペクトル分布を表しているグラフである。図20から理解されるように、第1透明支持体230の法線方向からの傾斜角度が異なる各グラフにおいて、透過率の高くなっている波長域が多数存在する。すなわち、各傾斜角度において、色が混色により認識されなくなり、虹ムラは発生しないと考えられる。 FIG. 20 shows the first transparent support 230 having the first base layer 231 and the first high retardation layer 232, as shown in FIG. 17, between the two polarizing plates 271 and 272 arranged in cross nicol. In a state in which the slow axis direction of the high retardation layer 232 and the two polarizing plates 271 and 272 are disposed at an angle of 45 °, 0 ° and 20 ° from the normal direction of the first transparent support 230 It is a graph showing the spectral distribution of the transmittance | permeability of the light in each wavelength range which permeate | transmits two polarizing plates 271 and 272 which pinched | interposed the 1st transparent support body 230 in the direction inclined 40 degrees and 60 degrees. As understood from FIG. 20, in each of the graphs in which the inclination angles from the normal direction of the first transparent support 230 are different, there are many wavelength ranges in which the transmittance is high. That is, it is considered that at each inclination angle, the color is not recognized due to color mixture, and rainbow unevenness does not occur.
 以下の表6は、リタデーションが4000nm以上の第1高リタデーション層232を図17に示すようにクロスニコルで配置された2つの偏光板271,272の間に当該第1高リタデーション層232の遅相軸方向と2つの偏光板271,272とが45°の角度をなすように配置した状態で、第1高リタデーション層232の法線方向から0°から65°まで5°ずつ傾斜した方向でそれぞれ観察した場合における、第1高リタデーション層232を挟んだ2つの偏光板271,272を透過する波長域550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値、最小値、および最大値と最小値との差を示している。また、各角度において、目視にて虹ムラの有無を観察した。表の符号「A」は、目視で虹ムラが観察されなかったことを表し、符号「B」は、視界の妨げにならない程度にわずかにだけ虹ムラが観察されたことを表し、符号「C」は、視界の妨げになる程に虹ムラがはっきりと観察されたことを表している。 Table 6 below shows the retardation of the first high retardation layer 232 between two polarizing plates 271 and 272 arranged in crossed nicols as shown in FIG. 17 for the first high retardation layer 232 having a retardation of 4000 nm or more. With the axial direction and the two polarizing plates 271 and 272 arranged at an angle of 45 °, the first high retardation layer 232 is inclined at an angle of 5 ° from 0 ° to 65 ° from the normal direction of the first high retardation layer 232 Maximum value, minimum value, and maximum value of the spectral distribution of the transmittance [%] of light in the wavelength range of 550 nm to 650 nm transmitted through the two polarizing plates 271 and 272 sandwiching the first high retardation layer 232 when observed It shows the difference between the value and the minimum value. Moreover, at each angle, the presence or absence of rainbow unevenness was visually observed. The code “A” in the table represents that no rainbow unevenness was visually observed, the code “B” represents that rainbow unevenness was observed only to such an extent that the view would not be disturbed, and the code “C” "" Indicates that the rainbow non-uniformity was clearly observed to such an extent that the view was obstructed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6から理解されるように、第1高リタデーション層232の法線方向からの傾斜角度が大きくなるにつれて、透過率のスペクトル分布の最大値と最小値との差が小さくなっていく傾向がある。また、透過率のスペクトル分布の最大値と最小値との差が10%以上であれば、虹ムラは視界の妨げにならない程度にしか観察されなくなった。とりわけ、透過率のスペクトル分布の最大値と最小値との差が12.5%以上であれば、目視では虹ムラは観察されなくなった。 As understood from Table 6, as the inclination angle of the first high retardation layer 232 from the normal direction increases, the difference between the maximum value and the minimum value of the spectral distribution of transmittance tends to decrease. . In addition, when the difference between the maximum value and the minimum value of the spectral distribution of transmittance is 10% or more, rainbow unevenness is observed only to such an extent that the view is not hindered. In particular, when the difference between the maximum value and the minimum value of the spectral distribution of transmittance is 12.5% or more, rainbow unevenness is not observed visually.
 また、第1高リタデーション層232の法線方向から45°傾斜した方向において、透過率のスペクトル分布の最大値と最小値との差が10%以上となっている。したがって、第1高リタデーション層232の法線方向からの傾斜角度が45°以内では、視界の妨げとなるような虹ムラが観察されていない。とりわけ、第1高リタデーション層232の法線方向から35°傾斜した方向において、透過率のスペクトル分布の最大値と最小値との差が12.5%以上となっている。したがって、第1高リタデーション層232の法線方向からの傾斜角度が35°以内では、虹ムラが観察されていない。すなわち、表6から、第1高リタデーション層232をクロスニコルで配置された2つの偏光板271,272の間に第1高リタデーション層232の遅相軸方向と2つの偏光板271,272の透過軸方向とが40°以上50°以下の角度をなすように配置した状態で、2つの偏光板271,272を第1高リタデーション層232の法線方向から45°傾斜した方向に透過する波長域550nm以上650nm以下の光の透過率のスペクトル分布の最大値と最小値との差が、10%以上であることで、好ましくは、第1高リタデーション層232の法線方向から35°傾斜した方向に透過する当該高リタデーション層に入射した波長域550nm以上650nm以下の光の透過率のスペクトル分布の最大値と最小値との差が、12.5%以上であることで、虹ムラの発生を効果的に抑制することができていることが理解される。 Further, in the direction inclined 45 ° from the normal direction of the first high retardation layer 232, the difference between the maximum value and the minimum value of the spectral distribution of the transmittance is 10% or more. Therefore, when the inclination angle from the normal direction of the first high retardation layer 232 is 45 ° or less, rainbow unevenness that hinders visibility is not observed. In particular, in the direction inclined 35 ° from the normal direction of the first high retardation layer 232, the difference between the maximum value and the minimum value of the spectral distribution of the transmittance is 12.5% or more. Therefore, no rainbow unevenness is observed when the inclination angle from the normal direction of the first high retardation layer 232 is within 35 °. That is, from Table 6, the slow axis direction of the first high retardation layer 232 and the transmission of the two polarizing plates 271 and 272 between the two polarizing plates 271 and 272 in which the first high retardation layer 232 is disposed in cross nicol A wavelength range in which the two polarizing plates 271 and 272 are transmitted in the direction inclined 45 ° from the normal direction of the first high retardation layer 232 in a state where the axial direction is disposed at an angle of 40 ° to 50 °. The difference between the maximum value and the minimum value of the spectral distribution of the light transmittance of 550 nm to 650 nm is preferably 10% or more, preferably a direction inclined 35 ° from the normal direction of the first high retardation layer 232 The difference between the maximum value and the minimum value of the spectral distribution of the transmittance of light in the wavelength range of 550 nm to 650 nm incident on the high retardation layer transmitted through By it it is understood that it can effectively suppress the occurrence of rainbow unevenness.
 なお、図18乃至図20に示した各波長域での光の透過率のスペクトル分布の測定においては、2つの偏光板271,272として日東電工製のCWQを用いた。 In the measurement of the spectral distribution of the light transmittance in each wavelength range shown in FIGS. 18 to 20, CWQ manufactured by Nitto Denko Corporation was used as the two polarizing plates 271 and 272.
 以上のように、第3の実施の形態の調光部材220は、第1透明支持体230と、第1透明支持体230に支持された調光ユニット250と、を備え、調光ユニット250は、電子制御により可視光透過率を調節可能であり、第1透明支持体230は、光学異方性を有する第1基材層231と、第1基材層231に積層された第1高リタデーション層232と、を有し、第1高リタデーション層232のリタデーションは、4000nm以上である。このような調光部材220によれば、第1透明支持体230のリタデーションが十分に大きいため、リタデーションの変動に対する波長ごとの可視光透過率の変動が大きく、様々な波長の光が透過するため、透過した光が混色して視認されやすくなる。このため、リタデーションのばらつきによって可視光透過率が変動しても、虹ムラとなり得る色が視認されにくくなる。すなわち、調光部材220における第1基材層231のリタデーションのばらつきを原因とする虹ムラの発生を抑制することができる。 As described above, the light control member 220 according to the third embodiment includes the first transparent support 230 and the light control unit 250 supported by the first transparent support 230, and the light control unit 250 includes the light control unit 250. The visible light transmittance can be adjusted by electronic control, and the first transparent support 230 includes a first base layer 231 having optical anisotropy and a first high retardation laminated on the first base layer 231. And the first high retardation layer 232 has a retardation of 4000 nm or more. According to such a light control member 220, since the retardation of the first transparent support 230 is sufficiently large, the change in visible light transmittance for each wavelength with respect to the change in retardation is large, and light of various wavelengths is transmitted. The transmitted light is mixed and becomes easy to be recognized. For this reason, even if the visible light transmittance fluctuates due to the variation of retardation, it becomes difficult to visually recognize a color that may become rainbow unevenness. That is, it is possible to suppress the occurrence of rainbow unevenness caused by the variation in retardation of the first base material layer 231 in the light control member 220.
 また、第3の実施の形態の調光部材220において、第1高リタデーション層232をクロスニコルで配置された2つの偏光板271,272の間に第1高リタデーション層232の遅相軸方向と2つの偏光板271,272の透過軸方向とが40°以上50°以下の角度をなすように配置した状態で、第1高リタデーション層232の法線方向から45°傾斜した方向に2つの偏光板271,272を透過する波長域550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値と最小値との差が、10〔%〕以上である。このような調光部材220によれば、第1高リタデーション層232が十分に大きなリタデーションを有することから、透過する光の波長ごとの可視光透過率の変動が大きくなるため、可視光の波長域において透過率の最大値と最小値とに十分な大きさの差が生じて、様々な波長の光が透過しやすくなる。この結果、透過する光の色が目視においては視認されにくくなる。したがって、第1透明支持体230の法線方向から45°傾斜した方向においても、虹ムラが観察されにくくなる。 Further, in the light control member 220 of the third embodiment, the slow axis direction of the first high retardation layer 232 between the two polarizing plates 271 and 272 in which the first high retardation layer 232 is disposed in cross nicol Two polarizations in the direction inclined 45 ° from the normal direction of the first high retardation layer 232 in a state where the transmission axis directions of the two polarizing plates 271 and 272 form an angle of 40 ° to 50 °. The difference between the maximum value and the minimum value of the spectral distribution of the transmittance [%] of light in the wavelength range of 550 nm to 650 nm transmitted through the plates 271 and 272 is 10 [%] or more. According to such a light control member 220, since the first high retardation layer 232 has a sufficiently large retardation, the variation of the visible light transmittance for each wavelength of the transmitted light becomes large. The difference in magnitude between the maximum value and the minimum value of the transmittance occurs in the above, and light of various wavelengths is easily transmitted. As a result, it is difficult to visually recognize the color of the transmitted light. Therefore, even in the direction inclined 45 ° from the normal direction of the first transparent support 230, it is difficult to observe rainbow unevenness.
 さらに、第3の実施の形態の調光部材220において、第1透明支持体230をクロスニコルで配置された2つの偏光板271,272の間に第1透明支持体230における第1高リタデーション層232の遅相軸方向と2つの偏光板271,272の透過軸方向とが40°以上50°以下の角度をなすように配置した状態で、第1透明支持体230の法線方向から45°傾斜した方向に2つの偏光板271,272を透過する波長域550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値と最小値との差が、10〔%〕以上である。このような調光部材220によれば、第1透明支持体230の第1高リタデーション層232が十分に大きなリタデーションを有することから、透過する光の波長ごとの可視光透過率の変動が大きくなるため、可視光の波長域において透過率の最大値と最小値とに十分な大きさの差が生じて、様々な波長の光が透過しやすくなる。この結果、透過する光の色が目視においては視認されにくくなる。したがって、第1透明支持体230の法線方向から45°傾斜した方向においても、虹ムラが観察されにくくなる。 Furthermore, in the light control member 220 according to the third embodiment, the first high retardation layer in the first transparent support 230 between the two polarizing plates 271 and 272 in which the first transparent support 230 is arranged in cross nicol. With the slow axis direction of 232 and the transmission axis directions of the two polarizing plates 271 and 272 arranged at an angle of 40 ° to 50 °, the normal direction of the first transparent support 230 is 45 ° The difference between the maximum value and the minimum value of the spectral distribution of the transmittance [%] of light in the wavelength range of 550 nm to 650 nm transmitted through the two polarizing plates 271 and 272 in the inclined direction is 10 [%] or more. According to such a light control member 220, since the first high retardation layer 232 of the first transparent support 230 has a sufficiently large retardation, the variation of the visible light transmittance for each wavelength of the transmitted light becomes large. Therefore, in the wavelength range of visible light, a difference of a sufficient magnitude occurs between the maximum value and the minimum value of the transmittance, and light of various wavelengths is easily transmitted. As a result, it is difficult to visually recognize the color of the transmitted light. Therefore, even in the direction inclined 45 ° from the normal direction of the first transparent support 230, it is difficult to observe rainbow unevenness.
 また、第3の実施の形態の調光部材220において、第1透明支持体230は、第1基材層231および第1高リタデーション層232より調光ユニット250から離間した位置に設けられた第1機能層233をさらに有し、第1機能層233は、反射防止機能および防眩機能の少なくとも一方を有する。このような調光部材220によれば、調光部材220に効果的に反射防止機能や防眩機能を付与することができる。 In the light control member 220 of the third embodiment, the first transparent support 230 is provided at a position separated from the light control unit 250 from the first base layer 231 and the first high retardation layer 232. It further has one functional layer 233, and the first functional layer 233 has at least one of an antireflection function and an antiglare function. According to such a light control member 220, the light control member 220 can be effectively provided with a reflection preventing function and an antiglare function.
 なお、上述した第3の実施の形態に対して様々な変更を加えることが可能である。 Note that various changes can be made to the third embodiment described above.
 例えば、第2透明支持体240は、第2基材層241に積層された第2高リタデーション層をさらに有していてもよい。調光部材220の使用者が、例えば偏光サングラスを使用している場合、調光ユニット250の第2偏光板252と偏光サングラスとの間に配置されることになる第2透明支持体240のリタデーションのばらつきによって、虹ムラが観察され得る。第2透明支持体240に第2高リタデーション層を設けることで、第2透明支持体240のリタデーションを大きくすることができる。これにより、上述した第1基材層231のリタデーションのばらつきによる虹ムラが抑制されることと同様に、第2基材層241のリタデーションのばらつきを原因とする虹ムラの発生を抑制することができる。 For example, the second transparent support 240 may further have a second high retardation layer laminated to the second base layer 241. When the user of the light control member 220 uses, for example, polarized sunglasses, the retardation of the second transparent support 240 to be disposed between the second polarizing plate 252 of the light control unit 250 and the polarized sunglasses Rainbow unevenness can be observed due to the variation of By providing the second high retardation layer on the second transparent support 240, the retardation of the second transparent support 240 can be increased. As a result, the occurrence of rainbow unevenness caused by the variation in retardation of the second base layer 241 can be suppressed in the same manner as the rainbow unevenness due to the variation in retardation of the first base layer 231 described above is suppressed. it can.
 また、第2透明支持体240は、第2基材層241より調光ユニット250から離れた位置に設けられた第2機能層をさらに有していてもよい。第2機能層は、第1機能層233と同様に、反射防止機能および防眩機能の少なくとも一方を有し得る。 The second transparent support 240 may further have a second functional layer provided at a position farther from the light control unit 250 than the second base layer 241. Similar to the first functional layer 233, the second functional layer may have at least one of an antireflective function and an antiglare function.
 上述した第3の実施の形態では、図12に示すように、第1透明支持体230では、第1基材層231と第1機能層233との間に、第1高リタデーション層232が設けられている。しかしながら、第1高リタデーション層232と第1機能層233との間に、第1基材層231が設けられていてもよい。すなわち、図12に示す第1基材層231と第1高リタデーション層とが、逆に配置されていてもよい。いずれの場合でも、調光部材220における第1基材層231のリタデーションのばらつきを原因とする虹ムラの発生を抑制することができる。同様に、第2透明支持体240が第2高リタデーション層を有する場合、第2接合層224に近い側に第2基材層241が設けられてもよいし、第2接合層224に近い側に第2高リタデーション層が設けられてもよい。いずれの場合でも、第2基材層241のリタデーションのばらつきを原因とする虹ムラの発生を抑制することができる。 In the third embodiment described above, as shown in FIG. 12, in the first transparent support 230, the first high retardation layer 232 is provided between the first base layer 231 and the first functional layer 233. It is done. However, the first base layer 231 may be provided between the first high retardation layer 232 and the first functional layer 233. That is, the first base material layer 231 and the first high retardation layer shown in FIG. 12 may be arranged in reverse. In any case, it is possible to suppress the occurrence of rainbow unevenness caused by the variation in retardation of the first base layer 231 in the light control member 220. Similarly, when the second transparent support 240 has the second high retardation layer, the second base layer 241 may be provided on the side closer to the second bonding layer 224 or the side closer to the second bonding layer 224 A second high retardation layer may be provided. In any case, it is possible to suppress the occurrence of rainbow unevenness caused by the variation in retardation of the second base material layer 241.
 上述した第3の実施の形態による調光部材220では、調光ユニット250が第1偏光板251と、第2偏光板252と、第1偏光板251と第2偏光板252との間に配置された液晶ユニット255とを含む例を示したが、調光ユニット250の構成はこの例に限られない。例えば、調光ユニットは、複数の液晶ユニットと、液晶ユニットに対応して設けられた吸収型偏光板と、2つの液晶ユニットの間に配置された反射型偏光板と、を含んでもよい。吸収型偏光板は、上述した第3の実施の形態における偏光板251,252と同様に、光の一方の偏光成分を透過させ、他方の偏光成分を吸収する。反射型偏光板は、光の一方の偏光成分を透過させ、他方の偏光成分を反射する。この場合、各液晶ユニットに電圧を印加して液晶ユニットを透過する光の偏光方向を変化させることで、調光部材における光の透過(逆に言えば「遮光」)を制御することができるだけでなく、光の反射をも制御することができる。 In the light control member 220 according to the third embodiment described above, the light control unit 250 is disposed between the first polarizing plate 251, the second polarizing plate 252, the first polarizing plate 251, and the second polarizing plate 252. Although the example which includes the liquid crystal unit 255 having been described is shown, the configuration of the light control unit 250 is not limited to this example. For example, the light control unit may include a plurality of liquid crystal units, an absorption-type polarizing plate provided corresponding to the liquid crystal unit, and a reflection-type polarizing plate disposed between two liquid crystal units. The absorption type polarizing plate transmits one polarization component of light and absorbs the other polarization component, similarly to the polarization plates 251 and 252 in the third embodiment described above. The reflective polarizer transmits one polarization component of light and reflects the other polarization component. In this case, by only applying a voltage to each liquid crystal unit to change the polarization direction of light transmitted through the liquid crystal unit, it is only possible to control the transmission of light in the light control member (in other words, "light blocking"). It is also possible to control the reflection of light.
 一例として、図21に示されているような、第1吸収型偏光板351と、第1液晶ユニット355と、反射型偏光板354と、第2吸収型偏光板352と、第2液晶ユニット356と、第3吸収型偏光板353と、がこの順で積層された調光ユニット350の作用を説明する。ここで説明する例では、第1吸収型偏光板351および第3吸収型偏光板353の透過軸は同一であり、反射型偏光板354および第2吸収型偏光板352の透過軸と直交している。第1液晶ユニット355には、TN方式の液晶が用いられており、電圧を印加されていない状態では透過する光の偏光方向を90°回転させ、電圧が印加されている状態では透過する光の偏光方向を変化させない。第2液晶ユニット356には、VA方式の液晶が用いられており、電圧を印加されていない状態では透過する光の偏光方向を変化させず、電圧が印加されている状態では液晶が倒れて当該第2液晶ユニット356の複屈折率を変化させ、偏光方向を90°変化させながら光を透過させる。 As an example, as shown in FIG. 21, a first absorption polarizing plate 351, a first liquid crystal unit 355, a reflection polarizing plate 354, a second absorption polarizing plate 352, and a second liquid crystal unit 356. The operation of the light control unit 350 in which the third absorption polarizing plate 353 and the third absorption polarizing plate 353 are stacked in this order will be described. In the example described here, the transmission axes of the first absorption polarizing plate 351 and the third absorption polarizing plate 353 are the same, and are orthogonal to the transmission axes of the reflection polarizing plate 354 and the second absorption polarizing plate 352. There is. A TN type liquid crystal is used for the first liquid crystal unit 355, and the polarization direction of transmitted light is rotated by 90 ° when no voltage is applied, and the transmitted light is transmitted when a voltage is applied. Do not change the polarization direction. The second liquid crystal unit 356 uses a VA type liquid crystal, and does not change the polarization direction of the transmitted light when no voltage is applied, and the liquid crystal falls when the voltage is applied. The birefringence of the second liquid crystal unit 356 is changed to transmit light while changing the polarization direction by 90 °.
 まず、調光ユニット350に第1吸収型偏光板351側から入射した光L7について説明する。第1液晶ユニット355に電圧が印加されている場合、光L7は、第1液晶ユニット355を透過して反射型偏光板354にて反射され、再度第1液晶ユニット355を透過した後、第1吸収型偏光板351から出射する。すなわち、第1吸収型偏光板351側から入射した光L7は反射される。第1液晶ユニット355及び第2液晶ユニット356に電圧が印加されていない場合、光L7は、第1液晶ユニット355によって偏光方向を回転させ、反射型偏光板354及び第2吸収型偏光板352を透過する。その後、第2液晶ユニット356を透過するが、第3吸収型偏光板353に吸収される。すなわち、第1吸収型偏光板351側から入射した光L7は遮光される。第1液晶ユニット355には電圧が印加されていないが第2液晶ユニット356には電圧が印加されている場合、光L7は、第1液晶ユニット355によって偏光方向を回転させ、反射型偏光板354及び第2吸収型偏光板352を透過する。その後、第2液晶ユニット356によって偏光方向を変化させ、第3吸収型偏光板353を透過して出射する。すなわち、第1吸収型偏光板351側から入射した光L7は調光ユニット350を透過する。 First, the light L7 incident on the light adjustment unit 350 from the first absorption polarizing plate 351 side will be described. When a voltage is applied to the first liquid crystal unit 355, the light L7 is transmitted through the first liquid crystal unit 355, reflected by the reflective polarizing plate 354 and transmitted again through the first liquid crystal unit 355, The light is emitted from the absorption polarizing plate 351. That is, the light L7 incident from the first absorption polarizing plate 351 side is reflected. When no voltage is applied to the first liquid crystal unit 355 and the second liquid crystal unit 356, the light L7 rotates the polarization direction by the first liquid crystal unit 355, and the reflective polarizing plate 354 and the second absorbing polarizing plate 352 To Penetrate. Thereafter, the light passes through the second liquid crystal unit 356 but is absorbed by the third absorption polarizing plate 353. That is, the light L7 incident from the first absorption polarizing plate 351 side is blocked. When a voltage is not applied to the first liquid crystal unit 355 but a voltage is applied to the second liquid crystal unit 356, the light L7 rotates its polarization direction by the first liquid crystal unit 355, and the reflective polarizer 354 And the second absorption polarizing plate 352. Thereafter, the polarization direction is changed by the second liquid crystal unit 356, and the third absorption polarizing plate 353 transmits and emits. That is, the light L7 incident from the first absorption polarizing plate 351 side passes through the light control unit 350.
 次に、調光ユニット350に第3吸収型偏光板353側から入射した光L8について説明する。第2液晶ユニット356に電圧が印加されていない場合、光L8は、第2液晶ユニット356を透過して第2吸収型偏光板352に吸収される。すなわち、第3吸収型偏光板353側から入射した光L8は遮光される。第2液晶ユニット356及び第1液晶ユニット355に電圧が印加されている場合、光L8は、第2液晶ユニット356によって偏光方向を変化させ、第2吸収型偏光板352及び反射型偏光板354を透過する。その後、第1液晶ユニット355を透過するが、第1吸収型偏光板351に吸収される。すなわち、第3吸収型偏光板353側から入射した光L8は遮光される。第2液晶ユニット356には電圧が印加されているが第1液晶ユニット355には電圧が印加されていない場合、光L8は、第2液晶ユニット356によって偏光方向を変化させ、第2吸収型偏光板352及び反射型偏光板354を透過する。その後、第1液晶ユニット355によって偏光方向を回転させ、第1吸収型偏光板351を透過して出射する。すなわち、第3吸収型偏光板353側から入射した光L8は調光ユニット350を透過する。このように、各液晶ユニットへの電圧の印加を制御することで、調光部材に入射した光の透過、遮光、反射を、適宜に切り換えることができる。 Next, the light L8 incident on the light adjustment unit 350 from the third absorption polarizing plate 353 side will be described. When a voltage is not applied to the second liquid crystal unit 356, the light L8 is transmitted through the second liquid crystal unit 356 and absorbed by the second absorption type polarizing plate 352. That is, the light L8 incident from the third absorption polarizing plate 353 side is blocked. When a voltage is applied to the second liquid crystal unit 356 and the first liquid crystal unit 355, the light L8 changes the polarization direction by the second liquid crystal unit 356, and the second absorption polarizing plate 352 and the reflection polarizing plate 354 are changed. To Penetrate. Thereafter, the light passes through the first liquid crystal unit 355 but is absorbed by the first absorption type polarizing plate 351. That is, the light L8 incident from the third absorption polarizing plate 353 side is blocked. When a voltage is applied to the second liquid crystal unit 356 but no voltage is applied to the first liquid crystal unit 355, the light L8 changes the polarization direction by the second liquid crystal unit 356, and the second absorption type polarized light The light passes through the plate 352 and the reflective polarizing plate 354. After that, the polarization direction is rotated by the first liquid crystal unit 355, and the first absorption type polarizing plate 351 is transmitted and emitted. That is, the light L 8 incident from the third absorption polarizing plate 353 side passes through the light control unit 350. As described above, by controlling the application of the voltage to each liquid crystal unit, it is possible to appropriately switch transmission, shielding, and reflection of light incident on the light control member.
 別の例として、図22に示されているような、第1吸収型偏光板451と、第1液晶ユニット455と、反射型偏光板454と、第2液晶ユニット456と、第2吸収型偏光板452と、がこの順で積層された調光ユニット450の作用を説明する。ここで説明する例では、第1吸収型偏光板451および第2吸収型偏光板452の透過軸は同一であり、反射型偏光板454の透過軸と直交している。図21に示した例と同様に、第1液晶ユニット455には、TN方式の液晶が用いられており、第2液晶ユニット456には、VA方式の液晶が用いられている。 As another example, as shown in FIG. 22, a first absorption polarizing plate 451, a first liquid crystal unit 455, a reflection polarizing plate 454, a second liquid crystal unit 456, and a second absorption polarization. The operation of the light control unit 450 in which the plate 452 and the plate 452 are stacked in this order will be described. In the example described here, the transmission axes of the first absorption polarizing plate 451 and the second absorption polarizing plate 452 are the same, and are orthogonal to the transmission axis of the reflection polarizing plate 454. Similar to the example shown in FIG. 21, a TN type liquid crystal is used for the first liquid crystal unit 455, and a VA type liquid crystal is used for the second liquid crystal unit 456.
 まず、調光ユニット450に第1吸収型偏光板451側から入射した光L9について説明する。第1液晶ユニット455に電圧が印加されている場合、光L9は、第1液晶ユニット455を透過して反射型偏光板454にて反射され、再度第1液晶ユニット455を透過した後、第1吸収型偏光板451から出射する。すなわち、第1吸収型偏光板451側から入射した光L9は反射される。第1液晶ユニット455及び第2液晶ユニット456に電圧が印加されていない場合、光L9は、第1液晶ユニット455によって偏光方向を回転させ、反射型偏光板454を透過する。その後、第2液晶ユニット456を透過するが、第2吸収型偏光板452に吸収される。すなわち、第1吸収型偏光板451側から入射した光L9は遮光される。第1液晶ユニット455には電圧が印加されていないが第2液晶ユニット456には電圧が印加されている場合、光L9は、第1液晶ユニット455によって偏光方向を回転させ、反射型偏光板454を透過する。その後、第2液晶ユニット456によって偏光方向を変化させ、第2吸収型偏光板452を透過して出射する。すなわち、第1吸収型偏光板451側から入射した光L9は調光ユニット450を透過する。 First, the light L9 incident on the light adjustment unit 450 from the first absorption polarizing plate 451 side will be described. When a voltage is applied to the first liquid crystal unit 455, the light L9 is transmitted through the first liquid crystal unit 455, reflected by the reflective polarizer 454, and transmitted again through the first liquid crystal unit 455, The light is emitted from the absorption polarizing plate 451. That is, the light L9 incident from the first absorption polarizing plate 451 side is reflected. When a voltage is not applied to the first liquid crystal unit 455 and the second liquid crystal unit 456, the light L 9 rotates the polarization direction by the first liquid crystal unit 455, and transmits the light of the reflective polarizer 454. Thereafter, the light passes through the second liquid crystal unit 456 but is absorbed by the second absorption type polarizing plate 452. That is, the light L9 incident from the first absorption polarizing plate 451 side is blocked. When a voltage is not applied to the first liquid crystal unit 455 but a voltage is applied to the second liquid crystal unit 456, the light L 9 rotates its polarization direction by the first liquid crystal unit 455, and the reflective polarizer 454. Through. After that, the polarization direction is changed by the second liquid crystal unit 456, and the second absorption type polarizing plate 452 transmits and emits. That is, the light L 9 incident from the first absorption type polarizing plate 451 is transmitted through the light control unit 450.
 次に、調光ユニット450に第2吸収型偏光板452側から入射した光L10について説明する。第2液晶ユニット456に電圧が印加されていない場合、光L10は、第2液晶ユニット456を透過して反射型偏光板454で反射され、再度第2液晶ユニット456を透過した後、第2吸収型偏光板452から出射する。すなわち、第2吸収型偏光板452側から入射した光L10は反射される。第2液晶ユニット456及び第1液晶ユニット455に電圧が印加されている場合、光L10は、第2液晶ユニット456によって偏光方向を変化させ、反射型偏光板454を透過する。その後、第1液晶ユニット455を透過するが、第1吸収型偏光板451に吸収される。すなわち、第2吸収型偏光板452側から入射した光L10は遮光される。第2液晶ユニット456には電圧が印加されているが第1液晶ユニット455には電圧が印加されていない場合、光L10は、第2液晶ユニット456によって偏光方向を変化させ、反射型偏光板454を透過する。その後、第1液晶ユニット455によって偏光方向を回転させ、第1吸収型偏光板451を透過して出射する。すなわち、第2吸収型偏光板452側から入射した光L10は調光ユニット450を透過する。このように、各液晶ユニットへの電圧の印加を制御することで、調光部材に入射した光の透過、遮光、反射を、適宜に切り換えることができる。 Next, the light L10 that has entered the light adjustment unit 450 from the second absorption polarizing plate 452 side will be described. When a voltage is not applied to the second liquid crystal unit 456, the light L10 is transmitted through the second liquid crystal unit 456, reflected by the reflective polarizing plate 454, transmitted again through the second liquid crystal unit 456, and then subjected to the second absorption. The light is emitted from the polarizing plate 452. That is, the light L10 incident from the second absorption polarizing plate 452 side is reflected. When a voltage is applied to the second liquid crystal unit 456 and the first liquid crystal unit 455, the light L 10 changes the polarization direction by the second liquid crystal unit 456, and passes through the reflective polarizing plate 454. Thereafter, the light passes through the first liquid crystal unit 455 but is absorbed by the first absorption type polarizing plate 451. That is, the light L10 incident from the second absorption polarizing plate 452 side is blocked. When a voltage is applied to the second liquid crystal unit 456 but no voltage is applied to the first liquid crystal unit 455, the light L 10 changes the polarization direction by the second liquid crystal unit 456, and the reflective polarizer 454. Through. Thereafter, the polarization direction is rotated by the first liquid crystal unit 455, and the light is transmitted through the first absorption polarizing plate 451 and is emitted. That is, the light L10 incident from the second absorption polarizing plate 452 side passes through the light control unit 450. As described above, by controlling the application of the voltage to each liquid crystal unit, it is possible to appropriately switch transmission, shielding, and reflection of light incident on the light control member.
 図21に示した例の構成の調光ユニット350によれば、調光ユニット350による透過、遮光、反射の各機能を、より確実に発揮させることができる。例えば、各液晶ユニットへの電圧の印加を制御して、調光ユニット350で光を遮光させようとする場合に、調光ユニット350の光の透過率をより低くすることができる。一方、図22に示した例の構成の調光ユニット450によれば、調光ユニット450による透過、遮光、反射の各機能を、簡易な構成で適宜に切り換えることができる。 According to the light control unit 350 of the configuration of the example shown in FIG. 21, each function of transmission, light shielding and reflection by the light control unit 350 can be more reliably exhibited. For example, when controlling the application of voltage to each liquid crystal unit to block light by the light control unit 350, the light transmittance of the light control unit 350 can be further lowered. On the other hand, according to the light adjustment unit 450 of the configuration of the example shown in FIG. 22, each function of transmission, light shielding and reflection by the light adjustment unit 450 can be appropriately switched with a simple configuration.
 上述した第3の実施の形態による調光部材220では、調光ユニット250の両面に第1透明支持体230及び第2透明支持体240が積層されているが、調光ユニット250の片面のみに透明支持体が積層されていてもよい。すなわち、例えば調光ユニット250には第1透明支持体230のみが積層されていてもよい。 In the light control member 220 according to the third embodiment described above, the first transparent support 230 and the second transparent support 240 are stacked on both sides of the light control unit 250, but only on one side of the light control unit 250. A transparent support may be laminated. That is, for example, only the first transparent support 230 may be stacked on the light control unit 250.
 また、上述した第3の実施の形態では、調光部材220は、外部から電力の供給を受けていたが、調光部材220の一部に太陽電池(図示せず)を設け、この太陽電池から電力を供給するように構成されても良い。更には、太陽電池の出力により照射光量を判断し、それに応じて透過率を自動制御してもよい。 In the third embodiment described above, the light control member 220 receives power supply from the outside, but a solar cell (not shown) is provided on a part of the light control member 220, and this solar cell May be configured to supply power. Furthermore, the irradiation light amount may be determined based on the output of the solar cell, and the transmittance may be automatically controlled accordingly.
 以上の説明においては、調光部材220がサンバイザ10に採用された例を用いたが、調光部材220の用途は、サンバイザには限定されない。他の用途の例としては、自動車のサイドウィンドウやサンルーフ、あるいは電車や航空機などの移動体の窓部分に採用することが可能である。さらに、建築物の窓部分に採用することも可能である。 Although the example in which the light control member 220 is adopted for the sun visor 10 is used in the above description, the application of the light control member 220 is not limited to the sun visor. As an example of another application, it is possible to adopt to the window part of a car, such as a side window or a sunroof of a car, or a train or an aircraft. Furthermore, it is also possible to adopt it to the window part of a building.

Claims (19)

  1.  一対の透明基材と、
     前記一対の透明基材の間に配置された調光セルと、
     前記透明基材と前記調光セルとの間に配置され、前記透明基材と前記調光セルとを接合する2つの接合層と、を備え、
     前記調光セルは、電子制御により可視光透過率を調節可能であり、
     前記接合層の貯蔵弾性率は、1℃以上30℃以下で、6×10Pa以下である、調光部材。
    A pair of transparent substrates,
    A light control cell disposed between the pair of transparent substrates;
    It comprises: two bonding layers disposed between the transparent base and the light control cell and bonding the transparent base and the light control cell;
    The light control cell can adjust the visible light transmittance by electronic control,
    The storage modulus of the bonding layer at 1 ℃ above 30 ° C. or less, 6 × is 10 6 Pa or less, the light adjusting member.
  2.  前記接合層の貯蔵弾性率は、1℃以上30℃以下で、1.4×10Pa以下である、請求項1に記載の調光部材。 The light control member according to claim 1, wherein the storage elastic modulus of the bonding layer is 1.4 × 10 6 Pa or less at 1 ° C. or more and 30 ° C. or less.
  3.  前記接合層の少なくとも一方の厚さは、50μm以上である、請求項1または2に記載の調光部材。 The light control member according to claim 1, wherein a thickness of at least one of the bonding layers is 50 μm or more.
  4.  前記接合層の貯蔵弾性率は、1℃以上30℃以下で、3×10Pa以上である、請求項3に記載の調光部材。 The light control member according to claim 3, wherein the storage elastic modulus of the bonding layer is 3 × 10 4 Pa or more at 1 ° C. or more and 30 ° C. or less.
  5.  前記接合層の貯蔵弾性率は、1℃以上30℃以下で、1×10Pa以上である、請求項4に記載の調光部材。 The light control member according to claim 4, wherein the storage elastic modulus of the bonding layer is 1 × 10 5 Pa or more at 1 ° C. or more and 30 ° C. or less.
  6.  前記透明基材と前記接合層との間に配置された易接着層をさらに備える、請求項4または5に記載の調光部材。 The light control member according to claim 4 or 5, further comprising an easy adhesion layer disposed between the transparent substrate and the bonding layer.
  7.  前記透明基材と前記接合層との間に配置されたバリア層をさらに備える、請求項4乃至6のいずれか一項に記載の調光部材。 The light control member according to any one of claims 4 to 6, further comprising a barrier layer disposed between the transparent substrate and the bonding layer.
  8.  前記透明基材の前記接合層が配置された側とは反対側に、反射防止層をさらに備える、請求項1乃至7のいずれか一項に記載の調光部材。 The light control member according to any one of claims 1 to 7, further comprising an antireflective layer on the side of the transparent substrate opposite to the side on which the bonding layer is disposed.
  9.  透明基材と、
     前記透明基材に積層された調光セルと、を備え、
     前記調光セルは、電子制御により可視光透過率を調節可能であり、
     前記透明基材の前記調光セルが重なっている領域におけるリタデーションの最大値と最小値との差が、100nm以下である、調光部材。
    A transparent substrate,
    A light control cell laminated on the transparent substrate,
    The light control cell can adjust the visible light transmittance by electronic control,
    The light control member whose difference of the maximum value and minimum value of the retardation in the area | region which the said light control cell of the said transparent base material has overlapped is 100 nm or less.
  10.  前記透明基材は、ポリカーボネートを含み、
     前記透明基材の前記調光セルが重なっている領域におけるリタデーションの平均値が2000nm以上である、請求項9に記載の調光部材。
    The transparent substrate comprises polycarbonate,
    The light control member according to claim 9, wherein an average value of retardation in a region where the light control cells of the transparent base material overlap is 2000 nm or more.
  11.  前記透明基材は、ポリカーボネートを含み、
     前記透明基材の前記調光セルが重なっている領域におけるリタデーションの平均値が400nm以下である、請求項9に記載の調光部材。
    The transparent substrate comprises polycarbonate,
    The light control member according to claim 9, wherein an average value of retardation in a region where the light control cells of the transparent base material overlap is 400 nm or less.
  12.  前記透明基材のメルトボリュームフローレートが、10cm/10分以下である、請求項9乃至11のいずれか一項に記載の調光部材。 The melt volume flow rate of the transparent substrate is less 10 cm 3/10 min, the light adjusting member according to any one of claims 9 to 11.
  13.  前記透明基材は、曲面を含み、
     前記透明基材の前記曲面の曲率半径は、10cm以上である、請求項9乃至11のいずれか一項に記載の調光部材。
    The transparent substrate includes a curved surface,
    The light control member according to any one of claims 9 to 11, wherein a curvature radius of the curved surface of the transparent substrate is 10 cm or more.
  14.  透明支持体と、
     前記透明支持体に支持された調光ユニットと、を備え、
     前記調光ユニットは、電子制御により可視光透過率を調節可能であり、
     前記透明支持体は、光学異方性を有する基材層と、前記基材層に積層された高リタデーション層と、を有し、
     前記高リタデーション層のリタデーションは、4000nm以上である、調光部材。
    A transparent support,
    A light control unit supported by the transparent support;
    The light control unit can adjust the visible light transmittance by electronic control,
    The transparent support has a base layer having optical anisotropy, and a high retardation layer laminated on the base layer,
    The light control member whose retardation of the said high retardation layer is 4000 nm or more.
  15.  前記高リタデーション層をクロスニコルで配置された2つの偏光板の間に当該高リタデーション層の遅相軸方向と前記2つの偏光板の透過軸方向とが40°以上50°以下の角度をなすように配置した状態で、前記高リタデーション層の法線方向から45°傾斜した方向に前記2つの偏光板を透過する波長が550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値と最小値との差が、10〔%〕以上である、請求項14に記載の調光部材。 The high retardation layer is disposed so that the slow axis direction of the high retardation layer and the transmission axis direction of the two polarizing plates form an angle of 40 ° or more and 50 ° or less between the two polarizing plates disposed in cross nicol Maximum and minimum values of the spectral distribution [%] of light having a wavelength of 550 nm or more and 650 nm or less that transmits the two polarizing plates in the direction inclined 45 ° from the normal direction of the high retardation layer The light control member according to claim 14, wherein the difference between and is 10% or more.
  16.  前記透明支持体をクロスニコルで配置された2つの偏光板の間に当該透明支持体における前記高リタデーション層の遅相軸方向と前記2つの偏光板の透過軸方向とが40°以上50°以下の角度をなすように配置した状態で、前記透明支持体の法線方向から45°傾斜した方向に前記2つの偏光板を透過する波長が550nm以上650nm以下の光の透過率〔%〕のスペクトル分布の最大値と最小値との差が、10〔%〕以上である、請求項14に記載の調光部材。 An angle between the slow axis direction of the high retardation layer in the transparent support and the transmission axis direction of the two polarizing plates in the transparent support between 40 ° and 50 ° between two polarizing plates arranged in cross nicol on the transparent support Wavelength of light transmitted through the two polarizing plates in a direction inclined 45 ° from the normal direction of the transparent support in the state of being arranged in a spectral distribution [%] of light having a wavelength of 550 nm or more and 650 nm or less The light adjusting member according to claim 14, wherein the difference between the maximum value and the minimum value is 10% or more.
  17.  前記透明支持体は、前記基材層および前記高リタデーション層より前記調光ユニットから離間した位置に設けられた機能層をさらに有し、
     前記機能層は、反射防止機能および防眩機能の少なくとも一方を有する、請求項14乃至16のいずれか一項に記載の調光部材。
    The transparent support further includes a functional layer provided at a position separated from the light control unit from the base layer and the high retardation layer,
    The light control member according to any one of claims 14 to 16, wherein the functional layer has at least one of an antireflective function and an antiglare function.
  18.  請求項1乃至17のいずれか一項に記載の調光部材を備える、サンバイザ。 A sun visor comprising the light control member according to any one of claims 1 to 17.
  19.  請求項18に記載のサンバイザを備える、移動体。 A mobile comprising the visor according to claim 18.
PCT/JP2018/024102 2017-06-26 2018-06-26 Light modulating member, sun visor, and movable body WO2019004160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019503592A JPWO2019004160A1 (en) 2017-06-26 2018-06-26 Light control member, sun visor and moving body

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-124515 2017-06-26
JP2017124515 2017-06-26
JP2017134827 2017-07-10
JP2017-134827 2017-07-10
JP2018043278 2018-03-09
JP2018-043278 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019004160A1 true WO2019004160A1 (en) 2019-01-03

Family

ID=64741587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024102 WO2019004160A1 (en) 2017-06-26 2018-06-26 Light modulating member, sun visor, and movable body

Country Status (2)

Country Link
JP (3) JPWO2019004160A1 (en)
WO (1) WO2019004160A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138762A1 (en) * 2020-12-24 2022-06-30 大日本印刷株式会社 Dimmer device, method for manufacturing same, and liquid crystal device
US11899317B2 (en) 2020-08-21 2024-02-13 AGC Inc. Laminated glass, and method for manufacturing laminated glass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240036400A1 (en) * 2020-07-24 2024-02-01 Lg Chem, Ltd. Light Modulating Device and Automobile
WO2023100677A1 (en) * 2021-12-02 2023-06-08 株式会社ジャパンディスプレイ Dimmer device and panel unit
KR102609521B1 (en) * 2022-07-18 2023-12-04 주식회사 옵티플 Transmittance variable film cell for attaching on a curved surface and optical device using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085978A (en) * 2008-09-03 2010-04-15 Sumitomo Chemical Co Ltd Liquid crystal display protection plate
JP2010208861A (en) * 2007-07-03 2010-09-24 Asahi Glass Co Ltd Toning window material
JP2014013367A (en) * 2012-06-04 2014-01-23 Dainippon Printing Co Ltd Optical laminate and picture display unit
JP2014198798A (en) * 2013-03-29 2014-10-23 日東電工株式会社 Pressure sensitive adhesive and image display device using the same
JP6059831B1 (en) * 2016-01-08 2017-01-11 大日本印刷株式会社 Image display device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599410Y2 (en) * 1993-02-09 1999-09-06 日本板硝子株式会社 Sun visor for anti-glare of automobile
JP4544009B2 (en) * 2005-04-07 2010-09-15 トヨタ自動車株式会社 Front side window structure of the vehicle
JP5591477B2 (en) * 2008-03-13 2014-09-17 日東電工株式会社 Optical member pressure-sensitive adhesive composition, optical member pressure-sensitive adhesive layer, pressure-sensitive adhesive optical member, transparent conductive laminate, touch panel, and image display device
CN101725316B (en) * 2008-10-31 2012-07-04 比亚迪股份有限公司 Dimming glass and manufacturing method thereof
JP5871788B2 (en) * 2010-02-17 2016-03-01 フクビ化学工業株式会社 Transparent protective plate for display panel and display device
WO2011158840A1 (en) * 2010-06-16 2011-12-22 旭硝子株式会社 Curable resin composition, laminate comprising same, and process for production of the laminate
JP2013003368A (en) * 2011-06-17 2013-01-07 Seiko Epson Corp Polarization conversion element, polarization conversion unit and projection device
JP6186185B2 (en) * 2013-01-24 2017-08-23 三菱ケミカル株式会社 Game machine parts, partitions, touch panels, card sheets, keyboard parts, button parts, switch parts, building windows or vehicle windows
JP6155062B2 (en) * 2013-03-19 2017-06-28 本田技研工業株式会社 Light control panel structure and manufacturing method thereof
WO2015093037A1 (en) * 2013-12-19 2015-06-25 株式会社クラレ Method for producing resin plate
JP2016048363A (en) * 2014-06-03 2016-04-07 株式会社クラレ Resin film
JP2016016805A (en) * 2014-07-10 2016-02-01 小島プレス工業株式会社 Liquid crystal sun visor
JP2016087813A (en) * 2014-10-30 2016-05-23 旭硝子株式会社 Laminate and manufacturing method therefor, and adhesive composition kit for forming adhesive layer of laminate
JP2016126804A (en) * 2014-12-26 2016-07-11 新日鉄住金化学株式会社 Polarizing optical element and polarization state controller
JP6213653B2 (en) * 2015-11-13 2017-10-18 大日本印刷株式会社 Light control film and laminated glass
EP3388403B1 (en) * 2015-12-09 2020-12-02 AGC Inc. Laminated glass
JP6071094B1 (en) * 2016-05-24 2017-02-01 大日本印刷株式会社 Light control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010208861A (en) * 2007-07-03 2010-09-24 Asahi Glass Co Ltd Toning window material
JP2010085978A (en) * 2008-09-03 2010-04-15 Sumitomo Chemical Co Ltd Liquid crystal display protection plate
JP2014013367A (en) * 2012-06-04 2014-01-23 Dainippon Printing Co Ltd Optical laminate and picture display unit
JP2014198798A (en) * 2013-03-29 2014-10-23 日東電工株式会社 Pressure sensitive adhesive and image display device using the same
JP6059831B1 (en) * 2016-01-08 2017-01-11 大日本印刷株式会社 Image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11899317B2 (en) 2020-08-21 2024-02-13 AGC Inc. Laminated glass, and method for manufacturing laminated glass
WO2022138762A1 (en) * 2020-12-24 2022-06-30 大日本印刷株式会社 Dimmer device, method for manufacturing same, and liquid crystal device

Also Published As

Publication number Publication date
JP6696616B2 (en) 2020-05-20
JP2019207420A (en) 2019-12-05
JP2020129126A (en) 2020-08-27
JPWO2019004160A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6696616B2 (en) Light control member, sun visor and moving body
US11556028B2 (en) Light modulating device
KR101900530B1 (en) Polarizing plate and liquid crystal display apparatus comprising the same
KR101397702B1 (en) Polarizing plate and liquid crystal display comprising the same
TW528882B (en) Optically compensatory polarizer and liquid-crystal display device
CN108027470B (en) Optical film
WO2020122023A1 (en) Projection image displaying member, windshield glass, and head-up display system
JP6425570B2 (en) Vehicle with mirror with image display
US10996387B2 (en) Optical device
JP6858206B2 (en) Liquid crystal display device
WO2020179787A1 (en) Laminated film for displaying projection image, laminated glass for displaying projection image, and image display system
WO2006054695A1 (en) Liquid crystal display
JP2018084621A (en) Dimmer and vehicle
KR20170028848A (en) Polarizing plate, anti-reflective laminate, and image display system
CN105842901A (en) Image display mirror for a vehicle
CN114341709A (en) Image display system and head-up display system
JP2011242538A (en) Liquid chrystal panel
KR101991999B1 (en) Polarizing plate and liquid crystal display apparatus comprising the same
JP2018084817A (en) Dimmer
JP2006293399A (en) Wide viewing angle polarizing plate
JPH10142423A (en) Polarizing plate with wide visual field
JP2019113879A (en) Dimmer
KR102024266B1 (en) Optical Film
JP5550869B2 (en) Liquid crystal display
KR20170040563A (en) Optical Film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019503592

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823207

Country of ref document: EP

Kind code of ref document: A1