WO2019004015A1 - 多段直流チョッパ回路、及び電力変換装置 - Google Patents

多段直流チョッパ回路、及び電力変換装置 Download PDF

Info

Publication number
WO2019004015A1
WO2019004015A1 PCT/JP2018/023384 JP2018023384W WO2019004015A1 WO 2019004015 A1 WO2019004015 A1 WO 2019004015A1 JP 2018023384 W JP2018023384 W JP 2018023384W WO 2019004015 A1 WO2019004015 A1 WO 2019004015A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
chopper circuit
stage
chopper
switching element
Prior art date
Application number
PCT/JP2018/023384
Other languages
English (en)
French (fr)
Inventor
篤男 河村
弦田 幸憲
秀嶺 小原
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2019526829A priority Critical patent/JP7023531B2/ja
Publication of WO2019004015A1 publication Critical patent/WO2019004015A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to a direct current chopper circuit that converts direct current power into direct current power, and a power conversion device that converts direct current power into alternating current power.
  • single-phase voltage inverters are mainly used for generating single-phase commercial AC voltage from batteries, solar cells, fuel cells, and rectified DC voltage.
  • the single-phase voltage source inverter uses a half bridge inverter as a configuration for generating a single-phase AC voltage using one power supply.
  • the half-bridge inverter is composed of legs in which arms composed of diodes connected in reverse parallel with the switching elements are arranged above and below (between the positive voltage side and the negative voltage side), and a voltage source obtained by dividing the DC power supply into two. It constitutes a half bridge.
  • Patent Documents 1 and 2 a configuration is also proposed in which power converters in the power converter are multi-staged.
  • the power conversion device of Patent Document 2 is compatible with a plurality of DC power supplies and each DC power supply, with the problem of eliminating the problem of variations in withstand voltage of switching elements included in the configuration of Patent Document 1 and loss of the power converter.
  • a plurality of power converters for converting direct current power to alternating current power is provided, and a configuration is described in which output powers of the plurality of power converters are superimposed to output a plurality of voltage levels.
  • the switching elements of the two arms connected in series are switched on and off to convert a DC voltage into a DC voltage having a different value. At the time of switching of this switching element, switching loss of turn-on loss and turn-off loss occurs.
  • An object of the present invention is to solve the above problems, reduce switching loss and conduction loss, and improve power conversion efficiency.
  • the multistage DC chopper circuit relates to a chopper circuit that converts DC power to DC power by turning on and off switching elements, and is a circuit that superimposes output power of a plurality of chopper circuits connected in multiple stages and outputs DC power.
  • the DC power of the multistage DC chopper circuit of the present invention is smoothed by the smoothing circuit, and then the half wave is made a negative voltage by the folding circuit, and the half wave of the positive voltage and the half wave of the negative voltage And a converter to generate AC power.
  • the multistage DC chopper circuit and the power conversion device of the present invention reduce switching loss and conduction loss by superimposing output power of a plurality of chopper circuits and outputting DC power, and further, each chopper circuit is connected in series
  • the number of switching elements constituting the multistage DC chopper circuit and the number of times of switching are reduced by comprising two switching elements and connecting them in multiple stages together with a plurality of voltage sources. Switching loss and conduction loss are reduced.
  • a leg is formed by a chopper circuit in which two arms connected in series up and down are configured by arms constituted by switching elements having antiparallel-connected diodes, and the chopper circuits of this leg are connected in multiple stages It is constituted by doing.
  • upper and lower refer to the side connected to the high voltage side of the DC power supply in the leg as the upper arm with the upper arm of the series connected legs as the upper arm and the side connected to the low voltage side of the DC power supply
  • the lower arm of the series-connected leg is the lower arm with the lower side as the lower arm.
  • the connection point of the upper arm and the lower arm is used as an output end.
  • the other end opposite to the output end is a corresponding one of a plurality of voltage sources in a DC power supply in which a plurality of voltage sources having different output voltages are connected in series. It is connected to the high voltage side.
  • the other end of the lower arm opposite to the output end is connected to the output end of the first leg of the multistage connection, and the other end of the lower arm lower end is opposite to the output end.
  • the other end of the side is connected to the low voltage side of the DC power supply.
  • the output end of the chopper circuit of each leg is connected to the end of the lower arm of the next stage leg of the multistage connection.
  • the output end of the multistage DC chopper circuit is the output end of the last leg of the plurality of legs connected in multiple stages.
  • each chopper circuit on / off control of the switching elements of the upper and lower arms connected in series in the chopper circuit of each leg allows each chopper circuit to be a chopper circuit of that stage among a plurality of voltage sources constituting a DC power supply.
  • the chopper operation is performed with the voltage amplitude of one corresponding voltage source, and the DC voltage obtained by the chopper operation is output with the voltage obtained by adding the voltages of the stages preceding that stage as the base voltage.
  • the multistage DC chopper circuit comprises two switching elements in which the chopper circuits connected in multiple stages are connected in series, applies the voltage of each voltage source to each chopper circuit, and By using the voltage obtained by adding the voltage of the corresponding voltage source as the base voltage, the number of switching elements constituting the multistage DC chopper circuit is reduced, and the number of times of switching is reduced accordingly, thereby reducing the switching loss. Moreover, the voltage applied to the switching element is reduced by the above configuration. Since the switching loss is proportional to the magnitude of the applied voltage and current, the reduction of the applied voltage to the switching element also reduces the switching loss.
  • the voltage of the DC power supply is the sum of the voltages of the respective voltage sources applied to the chopper circuits of the legs of each stage of the multistage configuration.
  • the final stage of the chopper circuit outputs an output voltage whose peak value is the sum of voltages of the voltage sources.
  • the voltage ratio of each voltage source is such that the sum of switching loss and conduction loss generated in the chopper circuit of each leg by the applied voltage applied to the chopper circuit of each leg within the period of the alternating voltage to be converted is minimized.
  • This voltage ratio takes as a parameter the position and width of the section for driving the chopper circuit of each leg in the cycle of the AC voltage to be converted, and the total of the switching loss and conduction loss of the entire multistage DC chopper circuit is minimized. It obtains by setting the section.
  • the setting method of the application voltage of the multistage DC chopper circuit is a setting method of setting the application voltage of each voltage source applied to the chopper circuit of the leg of each stage in the multistage DC chopper circuit of the present invention
  • the following steps are included in the voltage cycle. (a) dividing the period of the AC voltage into the same number of sections as the number of legs, and determining the temporarily applied voltage to be applied to each leg in each section based on the AC waveform. In this process, when making an alternating current waveform into a sine waveform, the half period of a sine waveform is divided into the same number of sections as the number of legs.
  • the voltage value of the applied voltage depends on the section in the cycle, and the section applied in the cycle is a parameter, and the applied voltage of each leg for which the total loss is minimized You can ask for a combination of
  • the power conversion device of the present invention is configured using the multistage DC chopper circuit of the present invention, and includes a multistage DC chopper circuit, a smoothing filter that smoothes the DC output of the multistage DC chopper circuit, and a half cycle of the DC output of the smoothing filter. It is constituted by a folding circuit which inverts a half wave each time and converts the DC output into an AC output.
  • the smoothing filter smoothes the DC output of the multistage DC chopper circuit and outputs a DC voltage.
  • the smoothing filter can be configured by an LC filter.
  • the smoothing filter LC filter
  • the smoothing filter LC filter
  • the smoothing filter LC filter according to this configuration is a multistage DC chopper. A half wave current of an AC waveform is introduced from a DC output terminal of the circuit, and a DC voltage of the same waveform is applied.
  • the fundamental wave amplitude of the first approximation of the voltage and current input from the DC output terminal of the multistage series chopper circuit is about 1/2 of the AC sine wave amplitude of the final output of the power conversion device. is there. Therefore, since the loss due to the series equivalent resistance of capacitor C is proportional to the square of the current amplitude, the loss in which the LC filter is disposed on the DC side of the multistage DC chopper circuit is the LC filter disposed on the AC side of the inverter having the conventional configuration. It is 1/4 compared to the configuration.
  • the rated capacity of the LC filter disposed on the DC side of the multistage DC chopper circuit is also half the rated capacity of the LC filter disposed on the AC side of the inverter having the conventional configuration.
  • the folding circuit can be configured by a full bridge circuit configured by four arms of a switching element having a diode connected in reverse parallel.
  • the folding circuit is configured to invert a half wave of a sine wave to form a full wave of a sine wave, and is realized by two switching operations in one fundamental wave period.
  • the folding circuit according to the present invention is used, while multiple switching operations corresponding to the switching frequency of PWM are required in one fundamental wave period. In the configuration described above, two switching operations are required in one fundamental wave cycle, and the conduction loss of the switching device becomes dominant, so that the switching loss can be greatly reduced.
  • the switching loss and the conduction loss can be reduced, and the power conversion efficiency can be improved.
  • FIGS. 1A to 1C The schematic configuration of the multistage DC chopper circuit of the present invention will be described below with reference to FIGS. 1A to 1C, and the configuration and operation of the two-stage DC chopper circuit of the present invention using FIGS. 2A to 2F and 3A to 3D. 4A to 4G and 5A to 5E to describe the configuration and operation of the three-stage DC chopper circuit of the present invention, and FIG. 6 to use the applied voltage of the multistage DC chopper circuit of the present invention.
  • the setting will be described.
  • the schematic configuration of the power converter of the present invention will be described using FIG.
  • FIGS. 7 and 11 the configuration and operation of the power converter having the two-stage DC chopper circuit of the present invention will be described using FIGS.
  • the configurations of the power conversion device including the three-stage DC chopper circuit of the present invention and the power conversion device including the n-stage DC chopper circuit will be described using 10 and 11.
  • FIG. 1A, FIG. 1B, and FIG. 1C are figures for demonstrating the multistage direct current
  • FIGS. 1A, 1B, and 1C show, as configuration examples of the multistage DC chopper circuit 10, configuration examples of a two-stage DC chopper circuit 10A, a three-stage DC chopper circuit 10B, and an n-stage DC chopper circuit 10C, respectively. .
  • a two-stage DC chopper circuit 10A includes two chopper circuits 2a and 2b in a multistage configuration.
  • the chopper circuit 2a is configured by connecting two switching elements S1 and S2 in series, and constitutes a half bridge leg 11a in which the switching elements S1 and S2 are a lower arm and an upper arm.
  • connection point between the switching elements S1 and S2 constitutes the output end 3a of the leg, the other end of the switching element S1 is connected to the low voltage side of the voltage source 1a, and the other end of the switching element S2 is the high voltage side of the voltage source 1a Connected to
  • the chopper circuit 2b is configured by connecting two switching elements S3 and S4 in series, and configures a half bridge leg 11b in which the switching elements S3 and S4 are a lower arm and an upper arm.
  • connection point between the switching elements S3 and S4 constitutes the output end 3b of the leg, the other end of the switching element S3 is connected to the output end 3a of the chopper circuit 2a, and the other end of the switching element S4 is the high voltage side of the voltage source 1b.
  • the chopper circuit 2a and the chopper circuit 2b are configured in multiple stages, and the output end 3a of the first-stage chopper circuit 2a is connected to the other end of the switching element S3 of the lower arm of the second-stage chopper circuit 2b.
  • the configuration is formed, and the output end 3b of the second stage chopper circuit 2b is the output end of the two-stage DC chopper circuit 10A.
  • Voltage source 1a and voltage source 1b are connected in series to constitute DC power supply 1, and the connection point between voltage source 1a and voltage source 1b is connected to the other end of switching element S2 on the upper arm side of chopper circuit 2a.
  • the high voltage side of 1b is connected to the other end of the switching element S4 on the upper arm side of the chopper circuit 2b.
  • the three-stage DC chopper circuit 10B includes three chopper circuits 2a and 2b and a chopper circuit 2c in a multistage configuration.
  • the configurations of the chopper circuit 2a and the chopper circuit 2b are the same as those of the chopper circuit provided in the two-stage DC chopper circuit 10A of FIG. 1A.
  • the third-stage chopper circuit 2c is configured by connecting two switching elements S5 and S6 in series, and configures a half bridge leg 11c in which the switching elements S5 and S6 are a lower arm and an upper arm. .
  • connection point between switching elements S5 and S6 constitutes output end 3c of the leg, the other end of switching element S5 is connected to the low voltage side of voltage source 1c, and the other end of switching element S6 is the high voltage side of voltage source 1c.
  • the chopper circuit 2a, the chopper circuit 2b, and the chopper circuit 2c are configured in multiple stages, and the output end 3a of the first stage chopper circuit 2a is connected to the other end of the switching element S3 of the lower arm of the second stage chopper circuit 2b.
  • a three-stage configuration is formed by connecting the output end 3b of the second stage chopper circuit 2b to the other end of the switching element S5 of the lower arm of the third stage chopper circuit 2c, and the third stage chopper circuit 2c
  • the output end 3c is an output end of the three-stage DC chopper circuit 10B.
  • Voltage source 1a, voltage source 1b, and voltage source 1c are connected in series to form DC power supply 1, and the connection point between voltage source 1a and voltage source 1b is the other end of switching element S2 on the upper arm side of chopper circuit 2a.
  • the connection point between the voltage source 1b and the voltage source 1c is connected to the other end of the switching element S4 on the upper arm side of the chopper circuit 2b, and the high voltage side of the voltage source 1c is the switching element on the upper arm side of the chopper circuit 2c It is connected to the other end of S6.
  • the n-stage DC chopper circuit 10C includes n chopper circuits 2a, 2b,..., 2k,.
  • the configurations of the chopper circuit 2a and the chopper circuit 2b are the same as those of the chopper circuit provided in the two-stage DC chopper circuit 10A of FIG. 1A.
  • the k-th stage chopper circuit 2k is configured by connecting two switching elements S2k-1 and S2k in series, and the legs 11k of a half bridge in which each switching element S2k-1 and S2k is a lower arm and an upper arm Configured.
  • connection point between the switching elements S2k-1 and S2k forms the output end 3k of the leg, and the other end of the switching element S2k-1 is connected to the low voltage side of the voltage source 1k-1 (not shown). The other end of S2k is connected to the high voltage side of the voltage source 1k.
  • the n-th stage chopper circuit 2n is configured by connecting two switching elements S2 n-1 and switching elements S2 n in series, and the legs 11 n of a half bridge in which each switching element S2 n-1 and S2 n is a lower arm and an upper arm Configured.
  • connection point between the switching elements S2 n-1 and S2 n constitutes the output end 3 n of the leg, and the other end of the switching element S2 n-1 is connected to the low voltage side of the voltage source 1 n-1 (not shown) The other end of S2 n is connected to the high voltage side of the voltage source 1 n.
  • the chopper circuit 2a, the chopper circuit 2b, the chopper circuit 2c, ..., the chopper circuit 2k, ..., and the chopper circuit 2n are configured in multiple stages, and the output end 3a of the first stage chopper circuit 2a is the second stage chopper circuit 2b.
  • the other end of the lower arm switching element S3 is connected, and the output end 3b of the second stage chopper circuit 2b is connected to the other end of the lower arm switching element S5 of the third stage chopper circuit 2c.
  • the output end 3k of the chopper circuit 2k is connected to the other end of the switching element S2k + 1 (not shown) of the lower arm of the k + 1th chopper circuit 2k + 1 (not shown), and the n-1st stage N stage configuration by connecting the output end 3n-1 (not shown) of the chopper circuit 2n-1 (not shown) to the other end of the switching element S2n of the lower arm of the n-th chopper circuit 2n Is formed, and the nth stage chopper circuit 2
  • the output terminal 3n of n is an output terminal of the n-stage DC chopper circuit 10C.
  • Voltage source 1a, voltage source 1b,..., Voltage source 1k,..., And voltage source 1n are connected in series to constitute DC power supply 1, and the connection point between voltage source 1a and voltage source 1b is the upper arm side of chopper circuit 2a.
  • the connection point between the voltage source 1b and the voltage source 1c is connected to the other end of the switching element S2 on the upper arm side of the chopper circuit 2b, and the voltage source 1k and the voltage source 1k + 1
  • the connection point (not shown) is connected to the other end of the switching element S2k on the upper arm side of the chopper circuit 2k, and the high voltage side of the voltage source 1n is on the other end of the switching element S2n on the upper arm side of the chopper circuit 2n.
  • FIGS. 2D and 2E show the operating states A to C of the two-stage DC chopper circuit
  • FIG. 2D shows control signals for controlling the driving of the switching elements S1 to S4
  • FIG. 2E shows the operating states A to C
  • FIG. 2F shows the chopper output of the two-stage DC chopper circuit.
  • the symbols A, B, and C in FIGS. 2D and 2E correspond to the operation states A to C in FIGS. 2A, 2B, and 2C, respectively.
  • FIG. 2A shows an operation state A when the voltage 0 is output from the output terminal.
  • the operating state A is formed by turning on the switching element S1 and the switching element S3 and turning off the switching element S2 and the switching element S4.
  • the output terminal is connected to the low voltage side of the voltage source 1a and outputs a voltage 0.
  • FIG. 2B shows an operating state B when the voltage E1 is output from the output terminal.
  • the operation state B is formed by turning on the switching element S2 and the switching element S3 and turning off the switching element S1 and the switching element S4.
  • the output terminal is connected to the high voltage side of the voltage source 1a and outputs a voltage E1.
  • FIG. 2C shows the operating state C when the voltage E1 + E2 is output from the output terminal.
  • the operating state C is formed by turning on the switching element S4, and turning off the switching element S1, the switching element S2, and the switching element S3.
  • the output terminal is connected to the high voltage side of the voltage source 1b, and outputs a voltage (E1 + E2) obtained by adding the voltage E1 of the voltage source 1a and the voltage E2 of the voltage source 1b.
  • an average voltage V1 (FIG. 2F) of voltage 0 and voltage E1 determined according to the duty ratio is formed, and the operating state B and the operating state C are alternated.
  • an average voltage V2 (FIG. 2F) of the voltage E1 and the voltage E2 determined according to the duty ratio is formed.
  • FIGS. 3A to 3D show a voltage waveform after converting a DC voltage
  • FIG. 3B shows a chopper operation of the first stage chopper circuit
  • FIG. 3C shows a chopper operation of the second stage chopper circuit
  • FIG. 3D shows a first stage
  • the voltage waveform which superimposed the voltage waveform converted by the chopper circuit of the eye and the voltage waveform converted by the chopper circuit of the second stage is shown.
  • FIG. 3A shows a voltage waveform after conversion as a sine waveform, and shows a quarter cycle of “0” to “ ⁇ / 2” of the sine wave.
  • the chopper operation is performed with the voltage amplitude E1 in the section ⁇ 1 (FIG. 3B), and the chopper operation is performed with the voltage amplitude E2 in the section ⁇ 2 (FIG. 3C).
  • the multistage DC chopper circuit of the present invention connects a plurality of chopper circuits in multiple stages and performs chopper operation of each chopper circuit with a plurality of voltage widths, thereby switching loss of turn-on loss and turn-off loss generated in each chopper circuit. To reduce the total loss generated in the entire DC chopper circuit.
  • Equation (1) indicates that the efficiency can be improved by increasing n.
  • Increasing the power ratio n of the power supply corresponds to making the output power W1 of the first stage voltage source larger than the output power W2 of the second stage voltage source.
  • ⁇ total 1 1 (2) It becomes.
  • ⁇ 1 is the conversion efficiency of the first stage chopper circuit.
  • the power conversion efficiency can be obtained from a combination of these two overall efficiencies.
  • the overall efficiency obtained by power-weighting averaging the two overall efficiencies totaltotal shown by the equations (1) and (2) is the first stage conversion efficiency ⁇ 1 or The value is larger than any value of the conversion efficiency ⁇ 2 of the first stage.
  • the voltage E1 is represented by E0 ⁇ sin ⁇
  • the voltage E2 is represented by (E0 ⁇ E0 ⁇ sin ⁇ ).
  • ⁇ which makes the total loss Wloss minimum is obtained by differentiation, but it is not limited to this, and may be obtained by other methods such as simulation calculation.
  • FIGS. 4E and 4F show the operating states A to D of the three-stage DC chopper circuit
  • FIG. 4E shows control signals for controlling the driving of the switching elements S1 to S6
  • FIG. 4F shows the voltage states of the operating states A to D
  • FIG. 4G shows the chopper output of the three-stage DC chopper circuit.
  • the symbols A, B, C, and D in FIGS. 4E and 4F correspond to the operation states A to D in FIGS. 4A, 4B, 4C, and 4D, respectively.
  • FIG. 4A shows an operation state A when the voltage 0 is output from the output terminal.
  • the operating state A is formed by turning on the switching element S1, the switching element S3 and the switching element S5 and turning off the switching element S2, the switching element S4 and the switching element S6.
  • the output terminal is connected to the low voltage side of the voltage source 1a and outputs a voltage 0.
  • FIG. 4B shows an operating state B when the voltage E1 is output from the output terminal.
  • the operating state B is formed by turning on the switching element S2, the switching element S3 and the switching element S5 and turning off the switching element S1, the switching element S4 and the switching element S6.
  • the output terminal is connected to the high voltage side of the voltage source 1a and outputs a voltage E1.
  • FIG. 4C shows the operating state C when the voltage E1 + E2 is output from the output terminal.
  • the operating state C is formed by turning on the switching element S4 and the switching element S5 and turning off the switching element S1, the switching element S2, the switching element S3 and the switching element S6.
  • the output terminal is connected to the high voltage side of the voltage source 1b, and outputs a voltage (E1 + E2) obtained by adding the voltage E1 of the voltage source 1a and the voltage E2 of the voltage source 1b.
  • FIG. 4D shows the operating state D when the voltage E1 + E2 + E3 is output from the output terminal.
  • the operating state D is formed by turning on the switching element S6 and turning off the switching elements S1 to S4.
  • the output terminal is connected to the high voltage side of the voltage source 1c, and outputs a voltage (E1 + E2 + E3) obtained by adding the voltage E1 of the voltage source 1a, the voltage E2 of the voltage source 1b and the voltage E3 of the voltage source 1c.
  • the chopper operation which alternately repeats the operating state A and the operating state B forms an average voltage V1 (FIG. 4G) of voltage 0 and voltage E1 determined according to the duty ratio, and alternately operates state B and operating state C.
  • Repeated chopper operation forms an average voltage V2 (FIG. 4G) of voltage E1 and voltage E2 determined according to duty ratio, and determined according to duty ratio by chopper operation alternately repeating operating state C and operating state D
  • An average voltage V3 (FIG. 4G) of the voltage E2 and the voltage E3 is formed.
  • FIGS. 5A to 5E show a voltage waveform after converting a direct current voltage
  • FIG. 5B shows a chopper operation of the first stage chopper circuit
  • FIG. 5C shows a chopper operation of the second stage chopper circuit
  • FIG. 5D shows three stages
  • FIG. 5E shows a chopper operation of the chopper circuit of the eye
  • FIG. 5E shows a voltage waveform in which voltage waveforms converted by the chopper circuits of the first, second and third stages are superimposed.
  • FIG. 5A shows a voltage waveform after conversion as a sine waveform, and shows a quarter cycle of “0” to “ ⁇ / 2” of the sine wave.
  • the three-stage DC chopper circuit has a section ⁇ 1 from “0” to “ ⁇ 1”, a section from ⁇ 2 from “ ⁇ 1” to “ ⁇ 2”, and a section “0” to “ ⁇ / 2”,
  • the chopper operation is performed according to the voltage amplitude E1 in the section ⁇ 1 (FIG. 5B), and the chopper operation is performed with the voltage amplitude E2 in the section ⁇ 2 (section ⁇ 2 ′ ′ to “ ⁇ / 2”) 5C), the chopper operation is performed with the voltage amplitude E3 in the section ⁇ 3 (FIG. 5D).
  • the conversion efficiency of the three-stage DC chopper circuit will be described based on the conversion efficiency of the chopper circuit in each stage.
  • ⁇ 1 is the conversion efficiency of the first stage chopper circuit.
  • Equations (6) and (7) indicate that the efficiency can be improved by increasing n.
  • increasing the power ratio n of the power supply corresponds to making the output powers W1 and W2 of the first and second stage voltage sources larger than the output power W3 of the third stage voltage source.
  • increasing the power ratio n of the power supply corresponds to making the output power W1 of the first stage voltage source larger than the output power W2 of the second stage voltage source.
  • the power conversion efficiency is obtained from a combination of these three overall efficiencies.
  • the overall efficiency obtained by performing power-weighted averaging of the three overall efficiencies total total 3, total total 2 and total total 1 shown in equations (6) to (8) It becomes a value larger than any value of conversion efficiency (eta) 1, (eta) 2, (eta) 3.
  • the first chopper circuit The sum of switching loss and conduction loss of the second-stage chopper circuit is Wloss2, and the sum of switching loss and conduction loss of the third-stage chopper circuit is Wloss3.
  • the loss of each is generally represented by the following equation.
  • ⁇ 1 and ⁇ 2 are angles at which the ⁇ / 2 cycle is divided into three stages, which correspond to ⁇ 1 and ⁇ 2 in FIGS. 5A to 5E, and F1, F2 and F3 are ⁇ 1, ⁇ 2 and It is a function that takes E0, E1, and E2 as parameters.
  • each Wloss1, Wloss2 and Wloss3 can be represented by the parameters ⁇ 1 and ⁇ 2.
  • E1 E0 ⁇ sin ⁇ 1 between E1 and ⁇ 1
  • E2 E0 ⁇ sin ⁇ 2 between E2 and ⁇ 2.
  • Wloss1, Wloss2 and Wloss3 can be represented by the parameters ⁇ 1 and ⁇ 2 by representing the parameter E1 and the parameter E2 by the parameters ⁇ 1 and ⁇ 2, respectively.
  • the voltages E1, E2, and E3 of the voltage sources can be determined by determining the total loss Wloss using ⁇ 1 and ⁇ 2 as parameters and determining ⁇ 1 and ⁇ 2 giving minimum values.
  • the calculation of the parameters ⁇ 1 and ⁇ 2 for minimizing the total loss Wloss can use a solution of local minima and local maxima in a multivariate function or simulation calculation.
  • Step S1 The period of the AC waveform obtained by AC conversion is divided by the number n of stages of the n-stage DC chopper circuit, and n sections are temporarily set.
  • the 1 ⁇ 4 cycle is divided into n, and ⁇ 1 to ⁇ n ⁇ 1 are temporarily set in the interval of 0 to ⁇ / 4. Since ⁇ 1 to ⁇ n-1 are parameters of the total loss Wloss, adjusting the parameters ⁇ 1 to ⁇ n-1 to obtain a value at which the total loss Wloss becomes a minimum enables each total loss Wloss to be minimized.
  • the voltage distribution of the voltage source can be set.
  • Step S2 The provisional application voltage of the voltage source to be applied in each section is determined based on the AC waveform.
  • Step S4 The losses Wloss1 to Wlossn of the chopper circuits obtained in the step S3 are added to obtain the total loss Wloss.
  • Step S5 The combination ⁇ 1 to ⁇ n-1 of the section in which the total loss Wloss is minimized is determined.
  • Step S6 Each voltage on the AC waveform corresponding to ⁇ 1 to ⁇ n-1 determined in step S5 is determined.
  • FIG. 7 (a) shows a schematic configuration
  • FIG. 7 (b) shows a DC output of a multistage DC chopper circuit
  • FIG. 7 (c) shows a half wave output inverted by the folding circuit
  • FIG. 7 (d) Indicates the output of the folding circuit.
  • the power conversion device 40 of the present invention is composed of the multistage DC chopper circuit 10 of the present invention, the smoothing filter 20 and the folding circuit 30.
  • a DC power supply 1 in which a plurality of voltage sources are connected in series is connected to the multistage DC chopper circuit 10.
  • the DC power supply 1 supplies voltages of a plurality of voltage sources to the multistage DC chopper circuit 10.
  • the multistage DC chopper circuit 10 converts the applied voltage into a predetermined DC voltage by a chopper operation by a plurality of chopper circuits configured in multiple stages, and outputs a half wave DC output (FIG. 7 (b)).
  • the smoothing filter 20 outputs a DC output obtained by removing the ripple component and the like from the DC output of the multistage DC chopper circuit 10 (FIG. 7 (b)).
  • the smoothing filter 20 can be configured, for example, using an LC filter.
  • the folding circuit 30 alternately inverts half-waves of the DC output of the smoothing filter 20 (FIG. 7 (c)) and combines with the half-waves not inverted to output an AC output (FIG. 7 (d)).
  • the power converter 40 of the present invention passes the half-wave output of the multi-stage DC chopper circuit 10 to the smoothing filter 20 and then converts it to an AC output at the folding circuit 30.
  • the smoothing filter 20 a half-wave current flows into the input side, and a voltage of the same waveform is applied to both ends of the input side of the smoothing filter 20 (FIG. 7 (b)). is there.
  • the conventional DC / AC inverter is an AC arrangement in which the smoothing filter is installed on the AC output side, and an AC sine wave current flows in the smoothing filter. Is applied.
  • the fundamental wave amplitude of the first order approximation of the voltage current of the LC filter is a half wave, and this direct current arrangement makes it about half of the AC sine wave amplitude of the final output.
  • the series resistance loss of the inductor L is proportional to the square of the current amplitude
  • the loss due to the series equivalent resistance of the capacitor C is also proportional to the square of the current amplitude.
  • the loss in the LC filter disposed on the direct current side is reduced to 1 ⁇ 4 compared to the LC filter disposed on the alternating current side.
  • the rated capacity of the LC filter by the DC side arrangement is also half that of the LC filter by the AC side arrangement, and the size reduction is possible by reducing the rated capacity.
  • FIG. 8 shows an example of a circuit of a power conversion device provided with a two-stage DC chopper circuit
  • FIG. 9 shows the voltage of each part.
  • Power conversion device 40A is formed of a two-stage DC chopper circuit 10A, a smoothing filter 20, and a folding circuit 30.
  • Two-stage DC chopper circuit 10A has a configuration shown in FIG. 1A, and includes a lower arm of switching element S1 having a diode connected in antiparallel and a top arm of switching element S2 having a diode connected in antiparallel.
  • Switching the chopper circuit 2a having a series connection of legs formed by connecting the drain of the switching element S1 and the source of the switching element S2, and the lower arm of the switching element S3 having a diode connected in reverse parallel.
  • a chopper circuit 2b having series-connected legs formed by connecting the drain of the element S3 and the source of the switching element S4 is connected in two stages.
  • the low voltage side of the voltage source 1a is connected to the source of the switching element S1, and the connection end of the voltage source 1a and the voltage source 1b is connected to the drain of the switching element S2.
  • the chopper circuit 2a and the chopper circuit 2b are connected by connecting the output end 3a of the chopper circuit 2a to the source side of the switching element S3 of the chopper circuit 2b.
  • the high voltage side of the voltage source 1b is connected to the source of the switching element S4.
  • the smoothing filter 20 is formed of an LC filter.
  • the inductor L1 is connected in series to the output terminal of the chopper circuit 2b, and the capacitor C0 is connected in parallel.
  • the folding circuit 30 includes a lower arm of the switching element S5 including a diode connected in reverse parallel and an upper arm of the switching element S6 including a diode connected in reverse parallel, a drain of the switching element S5 and a switching element S6.
  • a series connection leg formed by connecting the drain of the switching element S7 and the source of the switching element S8 is formed by a full bridge in which the neutral points of both legs are connected by a load.
  • the high voltage side of the smoothing filter 20 is connected to the drains of the switching elements S6 and S8, and the low voltage side of the smoothing filter 20 is connected to the sources of the switching elements S5 and S7.
  • the switching element S6 and the switching element S7, and the switching element S5 and the switching element S8 are paired, and the pair is alternately switched between the on state and the off state to switch the current direction of the load.
  • An alternating current is supplied and an alternating voltage is applied across the load.
  • the current direction of the load and the direction of the applied voltage are different in the operation mode when the load is a pure resistance and the operation mode when the load is an inductive load.
  • the load when the load is a pure resistance, when the switching element S6 and the switching element S7 are turned on in the folding circuit 30, and the switching element S5 and the switching element S8 are turned off, the load shown in FIG.
  • the load shown in FIG. When a current flows from one side to the right and the switching element S5 and the switching element S8 are turned on, and the switching element S6 and the switching element S7 are turned off, the load shown in FIG. Current flows toward the FIG. 8 shows a state in which current flows from the right to the left.
  • the alternating voltage Vac is applied to the load by alternately switching the on / off states of the switching elements S5 to S8 described above.
  • the voltage E1 of the voltage source 1a is applied, and the switching elements S1 and S2 are chopper-operated to output the DC voltage Vdc1 (FIG. 9B) whose DC voltage is converted.
  • the voltage E2 of the voltage source 1b is applied, and the switching elements S3 and S4 are chopper-operated to form a DC voltage Vdc2 (FIG. 9A).
  • the DC voltage Vdc2 is superimposed on the voltage E1 as a base voltage.
  • the output voltage of the smoothing filter 20 is a DC positive half-wave output obtained by smoothing the DC voltage Vdc (FIG. 9 (d)).
  • the folding circuit 30 alternately inverts this half wave output (Fig. 9 (e), Fig. 9 (f)), and forms an AC voltage combining these half waves (Fig. 9 (g)).
  • FIG. 10 shows a circuit example of a power conversion device provided with a three-stage DC chopper circuit.
  • the power conversion device 40B is configured of a three-stage DC chopper circuit 10A, a smoothing filter 20, and a folding circuit 30.
  • the three-stage DC chopper circuit 10B has the configuration shown in FIG. 1B, and has a chopper circuit 2c of switching elements S5 and S6 connected to the chopper circuit 2a and the chopper circuit 2b of the two-stage DC chopper circuit 10A. is there.
  • the configurations of the chopper circuit 2a and the chopper circuit 2b are the same as those described in the power conversion device 40A, and thus the description thereof is omitted here.
  • the chopper circuit 2c includes a lower arm of the switching element S5 including a diode connected in reverse parallel and an upper arm of the switching element S6 including a diode connected in reverse parallel, the drain of the switching element S5 and the switching element S6. Composed of legs connected in series with the source.
  • the chopper circuit 2b and the chopper circuit 2c are connected by connecting the output end 3b of the chopper circuit 2b to the source side of the switching element S5 of the chopper circuit 2c. Further, in the chopper circuit 2c, the high voltage side of the voltage source 1c is connected to the source of the switching element S6.
  • the smoothing filter 20 is formed of an LC filter.
  • the inductor L1 is connected in series to the output terminal of the chopper circuit 2c, and the capacitor C0 is connected in parallel.
  • the folding circuit 30 is the same as the folding circuit included in the power conversion device 40A, and includes the lower arm of the switching element S7 including a diode connected in antiparallel and the upper arm of the switching element S8 including a diode connected in antiparallel. And a series connected leg formed by connecting the drain of the switching element S7 and the source of the switching element S8, and a lower arm of the switching element S9 having a diode connected in antiparallel and in antiparallel. A series connection leg formed by connecting the drain of switching element S9 and the source of switching element S10 with the upper arm of switching element S10 provided with a diode is connected between the neutral points of both legs with a load It consists of a full bridge.
  • the high voltage side of the smoothing filter 20 is connected to the drains of the switching elements S8 and S10, and the low voltage side of the smoothing filter 20 is connected to the sources of the switching elements S7 and S10.
  • the folding circuit 30 alternately switches on and off states of the switching elements S5 to S8 by the same operation as the folding circuit included in the power conversion device 40A, and applies an AC voltage Vac to the load.
  • the voltage E1 of the voltage source 1a is applied, and the switching elements S1 and S2 are chopper-operated to output the DC voltage Vdc1 obtained by DC conversion of the voltage E1.
  • the voltage of the voltage source 1b E2 is applied, and chopper operation of switching elements S3 and S4 forms DC voltage Vdc2 in which voltage E2 is DC converted, and voltage E3 of voltage source 1c is applied in chopper circuit 2c, and switching elements S5 and S6
  • the chopper operation causes the voltage E3 to be converted into a direct current voltage Vdc3.
  • the DC voltage Vdc2 has the voltage E1 superimposed as a base voltage
  • the DC voltage Vdc3 has a voltage E1 + E2 superimposed as a base voltage.
  • the smoothing filter 20 smoothes the DC voltage Vdc to output a DC positive half-wave output, and the folding circuit 30 alternately inverts the half-wave output and outputs an AC voltage obtained by combining these half-waves.
  • FIG. 11 shows a circuit example of a power conversion device provided with an n-stage DC chopper circuit.
  • Power conversion device 40C is configured of n-stage DC chopper circuit 10C, smoothing filter 20, and folding circuit 30.
  • the n-stage DC chopper circuit 10C is configured as shown in FIG. 1C.
  • the chopper circuit 2a, the chopper circuit 2b, and the chopper circuit 2c are the same as the configurations of the power conversion device 40A and the power conversion device 40B described above, so here the chopper circuit 2k of the kth stage and the chopper circuit 2n of the nth stage explain.
  • the k-th stage chopper circuit 2k includes a lower arm of switching element S2k-1 including a diode connected in anti-parallel and an upper arm of switching element S2k including a diode connected in anti-parallel. 1 and a source of the switching element S2k connected in series.
  • connection between the (k-1) th stage chopper circuit 2k-1 and the kth stage chopper circuit 2k connects the output end of the chopper circuit 2k-1 to the source side of the switching element S2k-1 of the chopper circuit 2k Is done.
  • the high voltage side of the voltage source 1k is connected to the source of the switching element S2k of the chopper circuit 2k.
  • the uppermost n-th stage chopper circuit 2n switches the lower arm of the switching element S2 n-1 including a diode connected in anti-parallel and the upper arm of the switching element S2 n including a diode connected in anti-parallel It comprises the leg which connected in series the drain of element S2 n-1, and the source of switching element S2 n.
  • connection between the (n-1) th stage chopper circuit 2n-1 and the nth stage chopper circuit 2n connects the output end of the chopper circuit 2n-1 to the source side of the switching element S2n-1 of the chopper circuit 2n. Is done. Further, the high voltage side of the voltage source 1n is connected to the source of the switching element S2n of the chopper circuit 2n.
  • the smoothing filter 20 is formed of an LC filter, and the inductor L1 is connected in series to the output terminal of the chopper circuit 2n, and the capacitor C0 is connected in parallel.
  • the folding circuit 30 is similar to the folding circuit included in the power conversion device 40A and the power conversion device 40B, and includes a lower arm of a switching element S2n + 1 including a diode connected in antiparallel and a diode connected in reverse parallel. And an upper arm of the switching element S2n + 2, a series connected leg formed by connecting the drain of the switching element S2n + 1 and the source of the switching element S2n + 2, and a diode connected in reverse parallel. Connecting the drain of switching element S2 n + 3 to the source of switching element S2 n + 4
  • the legs of the series connection to be formed are constituted by a full bridge in which the neutral points of both legs are connected by a load.
  • the high voltage side of the smoothing filter 20 is connected to the drains of the switching elements S2n + 2 and S2n + 4, and the low voltage side of the smoothing filter 20 is connected to the sources of the switching elements S2n + 1 and S2n + 3. Ru.
  • the folding circuit 30 alternately switches on and off states of the switching elements S2n + 1 to S2n + 4 by the same operation as the folding circuits included in the power conversion devices 40A and 40B, and applies an AC voltage Vac to the load.
  • the voltage Ek of the voltage source 1k is applied, and the switching elements S2k-1 and S2k are chopper-operated to form a DC voltage Vdck in which the voltage Ek is DC-converted.
  • the voltage En of the voltage source 1n is applied, and the switching elements S2n-1 and S2n are chopper-operated to form a DC voltage Vdcn converted to DC.
  • the DC voltage Vdck is superimposed as a base voltage of the voltages E1 + E2 +... + E2k-1, and the DC voltage Vdcn is superimposed as a base voltage of the voltages E1 + E2 +.
  • the smoothing filter 20 smoothes the DC voltage Vdcn and outputs a DC positive half-wave output, and the folding circuit 30 alternately inverts the half-wave output and outputs an AC voltage obtained by combining these half-waves.
  • the switching element is not limited to the MOSFET, and semiconductor devices such as IGBT, JFET, SIT, HEMT can be used.
  • semiconductor devices such as IGBT, JFET, SIT, HEMT can be used.
  • Si, SiC, GaN, gallium oxide, diamond or the like can be applied as a semiconductor material constituting the semiconductor device.
  • the multistage DC chopper circuit and the power conversion device of the present invention can be applied to a battery, a solar cell, a fuel cell, and an application of generating a single-phase commercial AC voltage from a rectified DC voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

多段直流チョッパ回路は、スイッチング素子のオンオフによって直流電力を直流電力に変換するチョッパ回路において、多段接続した複数のチョッパ回路の出力電力を重畳して直流電力を出力する。電力変換装置は、多段直流チョッパ回路の直流電力を平滑回路で平滑化した後、折り返し回路によって半波を負電圧とし、正電圧の半波と負電圧の半波とを組み合わせて交流電力を生成する。複数のチョッパ回路の出力電力を重畳して直流電力を出力することによって損失を低減し、さらに、各チョッパ回路を直列接続した2つのスイッチング素子で構成し、これらのチョッパ回路に複数の電圧源と共に多段に接続して構成する。これにより、電力変換装置の損失を低減させ、電力変換効率を向上させる。

Description

多段直流チョッパ回路、及び電力変換装置
 本発明は、直流電力を直流電力に変換する直流チョッパ回路、及び直流電力を交流電力に変換する電力変換装置に関する。
 直流電力を交流電力に変換する電力変換装置の内、単相電圧形インバータは、主に、バッテリー、太陽電池、燃料電池や整流後の直流電圧から単相商用交流電圧を生成する用途に用いられる。単相電圧形インバータは、一つの電源を用いて単相交流電圧を生成する構成としてハーフブリッジインバータが用いられている。
 ハーフブリッジインバータは、スイッチング素子と逆並列接続されたダイオードにより構成されたアームを上下(正電圧側と負電圧側の間)に配置したレグと、直流電源を二つに分割した電圧源とによりハーフブリッジを構成している。
 また、直流電力を交流電力に変換する電力変換装置において、電力変換器装置内の電力変換器を多段化する構成も提案されている(特許文献1,2)。
 特許文献1の電力変換装置は、複数の単相インバータの直流側に電圧比を異にする複数の直流電源を接続し、各単相インバータの交流側を直列接続し、各単相インバータの発生電圧の総和によって出力電圧を階調制御し、これによって、昇圧率を低減して損失を低減することが記載されている。
 特許文献2の電力変換装置は、特許文献1の構成が備えるスイッチング素子の耐圧のばらつき、及び電力変換器の損失の問題を解消することを課題として、複数の直流電源と、各直流電源に対応して設けられた直流電力を交流電力に変換する複数の電力変換器とを備え、複数の電力変換器の出力電力を重畳して複数の電圧レベルを出力する構成が記載されている。
特開2010-94024号公報 国際公開第WO2014/199422号
 ハーフブリッジインバータの単相電圧形インバータでは、直列接続された2つのアームのスイッチング素子のオンオフを切り替えて直流電圧を値が異なる直流電圧に変換する。このスイッチング素子の切り替え時には、ターンオン損失及びターンオフ損失のスイッチング損失が発生する。
 スイッチング損失や導通損は直流チョッパ回路及び電力変換装置の電力変換効率を低下させる要因となるため、スイッチング損失や導通損の低減、及び電力変換効率の向上が求められている。
 本発明は、上記の課題を解決して、スイッチング損失や導通損を低減させ、電力変換効率を向上させることを目的とする。
 本発明の多段直流チョッパ回路は、スイッチング素子のオンオフによって直流電力を直流電力に変換するチョッパ回路に関し、多段接続した複数のチョッパ回路の出力電力を重畳して直流電力を出力する回路である。また、本発明の電力変換装置は、本発明の多段直流チョッパ回路の直流電力を平滑回路で平滑化した後、折り返し回路によって半波を負電圧とし、正電圧の半波と負電圧の半波とを組み合わせて交流電力を生成する変換装置である。
 本発明の多段直流チョッパ回路、及び電力変換装置は、複数のチョッパ回路の出力電力を重畳して直流電力を出力することによってスイッチング損失や導通損を低減し、さらに、各チョッパ回路を直列接続した2つのスイッチング素子で構成し、これらのチョッパ回路に複数の電圧源と共に多段に接続して構成することによって、多段直流チョッパ回路を構成するスイッチング素子の個数、及びこれに伴ってスイッチング回数が低減して、スイッチング損失や導通損が低減する。
 (多段直流チョッパ回路)
 本発明の多段直流チョッパ回路は、逆並列接続されたダイオードを備えたスイッチング素子によって構成されるアームを上下に2つ直列接続したチョッパ回路でレグを構成し、このレグのチョッパ回路を多段に接続することによって構成される。ここで、上下とは、レグにおいて、直流電源の高電圧側に接続される側を上として、直列接続されたレグの上側のアームを上アームとし、直流電源の低電圧側に接続される側を下として、直列接続されたレグの下側のアームを下アームとしている。
 多段接続の各段のレグのチョッパ回路において、上方アームと下方アームの接続点を出力端とする。上方アームの2端の内で出力端と反対側の他端は、出力電圧を異にする複数の電圧源が直列接続された直流電源において、複数の電圧源の内で対応する一電圧源の高電圧側に接続される。一方、下方アームの2端の内で出力端と反対側の他端は、多段接続の前段のレグの出力端に接続され、最下段のレグの下方アームの2端の内で出力端と反対側の他端は、直流電源の低電圧側に接続される。各レグのチョッパ回路の出力端は、多段接続の次段のレグの下方アームの端部に接続される。多段直流チョッパ回路の出力端は、多段接続される複数のレグの内で最後段に配置されたレグの出力端となる。
 この構成により、各レグのチョッパ回路において、直列接続された上下アームのスイッチング素子をオンオフ制御することによって、各チョッパ回路は、直流電源を構成する複数の電圧源の内、その段のチョッパ回路に対応する一つの電圧源の電圧振幅でチョッパ動作を行うと共に、その段より前にある各段の電圧を加算した電圧をベース電圧として、チョッパ動作で得られた直流電圧を出力する。
 本発明の多段直流チョッパ回路は、多段接続するチョッパ回路を直列接続された2つのスイッチング素子で構成すると共に、各チョッパ回路に対して各電圧源の電圧を印加すると共に、前段までのチョッパ回路に対応する電圧源の電圧を加算した電圧をベース電圧とする構成によって、多段直流チョッパ回路を構成するスイッチング素子の個数が減り、これに伴ってスイッチング回数が低減して、スイッチング損失が低減する。また、上記構成によってスイッチング素子に印加される電圧が低減する。スイッチング損失は印加される電圧及び電流の大きさに比例するため、このスイッチング素子への印加電圧の低減によってもスイッチング損失が低減する。
 本発明の多段直流チョッパ回路に印加電圧を供給する直流電源において、直流電源の電圧は、多段構成の各段のレグのチョッパ回路に印加される各電圧源の電圧の加算和であり、多段構成の最終段のチョッパ回路は、波高値が各電圧源の電圧の加算和の出力電圧を出力する。
 各電圧源の電圧の電圧比は、変換される交流電圧の周期内において、各レグのチョッパ回路に印加される印加電圧によって各レグのチョッパ回路で発生するスイッチング損失や導通損の総和を極小とする値である。この電圧比は、変換される交流電圧の周期内において、各レグのチョッパ回路を駆動する区間の位置及び幅をパラメータとし、多段直流チョッパ回路の全体のスイッチング損失や導通損の総和が極小となる区間を設定することで求める。
 (多段直流チョッパ回路の印加電圧の設定方法)
 多段直流チョッパ回路の印加電圧の設定方法は、本発明の多段直流チョッパ回路において、各段のレグのチョッパ回路に印加される各電圧源の印加電圧を設定する設定方法であり、変換される交流電圧の周期内において、以下の各工程を備える。
 (a) 交流電圧の周期をレグの個数と同数の区間に区分し、各区間において各レグに印加する仮印加電圧を交流波形に基づいて求める工程。この工程において、交流波形を正弦波形とする場合には、正弦波形の半周期をレグの個数と同数の区間に区分する。
 (b) 仮印加電圧と区間の時間幅とに基づいて各レグのスイッチング損失を求める工程。スイッチング損失は、ターンオン時、及びターンオフ時における電圧、電流、及び区間の時間幅の積に比例する。電流は電圧に比例するとした場合には、スイッチング損失は印加電圧の二乗と区間の時間幅の積に比例する。
 (c) 各レグのチョッパ回路のスイッチング損失、導通損を全レグについて加算した総和損失を求める工程。
 (d) 総和損失を極小とする各レグの印加電圧を求める工程。総和損失は、各レグのチョッパ回路のスイッチング損失及び導通損の総和であり、各スイッチング損失は、各レグにおける印加電圧の二乗と区間の時間幅の積に比例する。ここで、交流電圧の交流波形が定まっている場合には、印加電圧の電圧値は周期内の区間に依存するため、周期内の区間をパラメータとして、総和損失が極小となる各レグの印加電圧の組み合わせを求めることができる。
(電力変換装置)
 本発明の電力変換装置は、本発明の多段直流チョッパ回路を用いて構成され、多段直流チョッパ回路と、多段直流チョッパ回路の直流出力を平滑化する平滑フィルタと、平滑フィルタの直流出力の半周期毎に半波を反転させ、前記直流出力を交流出力に変換する折り返し回路とによって構成される。
 平滑フィルタは、多段直流チョッパ回路の直流出力を平滑化し直流電圧を出力する。平滑フィルタはLCフィルタで構成することができる。LCフィルタをインバータの交流出力側に配置する従来構成のDC-ACインバータでは、交流の正弦波電流がLCフィルタに流れ、交流電圧が印加される。これに対して、本発明の電力変換装置は、平滑フィルタ(LCフィルタ)を多段直流チョッパ回路の直流出力側に配置する構成であり、この構成による平滑フィルタ(LCフィルタ)には、多段直流チョッパ回路の直流出力端から交流波形の半波の電流が導入され、同様の波形の直流電圧が印加される。
 本発明の平滑フィルタ構成において、多段直列チョッパ回路の直流出力端から入力される電圧及び電流の1次近似の基本波振幅は、電力変換装置の最終出力の交流正弦波振幅の約1/2である。したがって、キャパシタCの直列等価抵抗による損失は電流振幅の2乗に比例するため、多段直流チョッパ回路の直流側にLCフィルタを配置した損失は、従来構成のインバータの交流側にLCフィルタを配置した構成と比較して1/4となる。また、多段直流チョッパ回路の直流側に配置するLCフィルタの定格容量も、従来構成のインバータの交流側に配置するLCフィルタの定格容量の半分となる。
 折り返し回路は、逆並列接続されたダイオードを備えたスイッチング素子の4つのアームで構成したフルブリッジ回路で構成することができる。
 折り返し回路は、正弦波の半波を反転させて正弦波の全波を形成する構成であり、基本波1周期において2回のスイッチング動作で実現される。通常の4つのスイッチング素子を用いて構成されるフルブリッジのPWMインバータでは、基本波1周期において、PWMのスイッチング周波数分に当たる多数回のスイッチング動作を要するのに対して、本発明の折り返し回路を用いた構成では、基本波1周期において2回のスイッチング動作で済み、スイッチングデバイスの導通損が支配的になるため、スイッチング損失を大きく低減することができる。
 以上説明したように、本発明の多段直流チョッパ回路及び電力変換装置によれば、スイッチング損失、導通損を低減させ、電力変換効率を向上させることができる。
本発明の多段直流チョッパ回路の概略構成を説明するための図である。 本発明の多段直流チョッパ回路の概略構成を説明するための図である。 本発明の多段直流チョッパ回路の概略構成を説明するための図である。 本発明の2段直流チョッパ回路の動作例を説明するための図である。 本発明の2段直流チョッパ回路の動作例を説明するための図である。 本発明の2段直流チョッパ回路の動作例を説明するための図である。 本発明の2段直流チョッパ回路の動作例を説明するための図であり、制御信号を示す図である。 本発明の2段直流チョッパ回路の動作例を説明するための図であり、電圧状態を示す図である。 本発明の2段直流チョッパ回路の動作例を説明するための図であり、チョッパ出力を示す図である。 本発明の2段直流チョッパ回路の生成電圧を説明するための図であり、電圧波形を示す図である。 本発明の2段直流チョッパ回路の生成電圧を説明するための図であり、1段目のチョッパ回路のチョッパ動作を示す図である。 本発明の2段直流チョッパ回路の生成電圧を説明するための図であり、2段目のチョッパ回路のチョッパ動作を示す図である。 本発明の2段直流チョッパ回路の生成電圧を説明するための図であり、重畳した電圧波形を示す図である。 本発明の3段直流チョッパ回路の概略構成例及び動作例を説明するための図である。 本発明の3段直流チョッパ回路の概略構成例及び動作例を説明するための図である。 本発明の3段直流チョッパ回路の概略構成例及び動作例を説明するための図である。 本発明の3段直流チョッパ回路の概略構成例及び動作例を説明するための図である。 本発明の3段直流チョッパ回路の概略構成例及び動作例を説明するための図であり、制御信号を示す図である。 本発明の3段直流チョッパ回路の概略構成例及び動作例を説明するための図であり、電圧状態を示す図である。 本発明の3段直流チョッパ回路の概略構成例及び動作例を説明するための図であり、チョッパ出力を示す図である。 本発明の3段直流チョッパ回路の生成電圧を説明するための図であり、電圧波形を示す図である。 本発明の3段直流チョッパ回路の生成電圧を説明するための図であり、1段目のチョッパ回路のチョッパ動作を示す図である。 本発明の3段直流チョッパ回路の生成電圧を説明するための図であり、2段目のチョッパ回路のチョッパ動作を示す図である。 本発明の3段直流チョッパ回路の生成電圧を説明するための図であり、3段目のチョッパ回路のチョッパ動作を示す図である。 本発明の3段直流チョッパ回路の生成電圧を説明するための図であり、重畳した電圧波形を示す図である。 本発明の多段直流チョッパ回路の印加電圧の設定を説明するためのフローチャートである。 本発明の電力変換装置の概略構成を説明するための図である。 本発明の2段直流チョッパ回路を備えた電力変換装置の構成例を説明するための図である。 本発明の2段直流チョッパ回路を備えた電力変換装置の構成例の生成電圧を説明するための図である。 本発明の3段直流チョッパ回路を備えた電力変換装置の構成例を説明するための図である。 本発明のn段直流チョッパ回路を備えた電力変換装置の構成例を説明するための図である。
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。以下、図1A~図1Cを用いて本発明の多段直流チョッパ回路の概略構成を説明し、図2A~図2F,図3A~図3Dを用いて本発明の2段直流チョッパ回路の構成及び動作を説明し、図4A~図4G,図5A~図5Eを用いて本発明の3段直流チョッパ回路の構成及び動作を説明し、図6を用いて本発明の多段直流チョッパ回路の印加電圧の設定について説明する。また、図7を用いて本発明の電力変換装置の概略構成を説明し、図8,9を用いて本発明の2段直流チョッパ回路を備えた電力変換装置の構成及び動作を説明し、図10,11を用いて本発明の3段直流チョッパ回路を備えた電力変換装置、及びn段直流チョッパ回路を備えた電力変換装置の構成を説明する。
[多段直流チョッパ回路の概要]
 図1A,図1B,図1Cは本発明の多段直流チョッパ回路を説明するための図である。図1A,図1B,及び図1Cは、多段直流チョッパ回路10の構成例として、それぞれ2段直流チョッパ回路10A、3段直流チョッパ回路10B、及びn段直流チョッパ回路10Cの構成例を示している。
(2段直流チョッパ回路)
 図1Aにおいて、2段直流チョッパ回路10Aは、2つのチョッパ回路2a及びチョッパ回路2bを多段構成で備える。
 チョッパ回路2aは、2つのスイッチング素子S1及びスイッチング素子S2を直列接続して構成され、各スイッチング素子S1,S2を下アームと上アームとするハーフブリッジのレグ11aを構成している。
 スイッチング素子S1,S2の接続点はレグの出力端3aを構成し、スイッチング素子S1の他端は電圧源1aの低電圧側に接続され、スイッチング素子S2の他端は電圧源1aの高電圧側に接続される。
 チョッパ回路2bは、2つのスイッチング素子S3及びスイッチング素子S4を直列接続して構成され、各スイッチング素子S3,S4を下アームと上アームとするハーフブリッジのレグ11bを構成している。
 スイッチング素子S3,S4の接続点はレグの出力端3bを構成し、スイッチング素子S3の他端はチョッパ回路2aの出力端3aに接続され、スイッチング素子S4の他端は電圧源1bの高電圧側に接続される。
 チョッパ回路2aとチョッパ回路2bとは多段に構成され、1段目のチョッパ回路2aの出力端3aを2段目のチョッパ回路2bの下アームのスイッチング素子S3の他端に接続することで2段構成が形成され、2段目のチョッパ回路2bの出力端3bは2段直流チョッパ回路10Aの出力端となる。
 電圧源1aと電圧源1bは直列接続されて直流電源1を構成し、電圧源1aと電圧源1bの接続点はチョッパ回路2aの上アーム側のスイッチング素子S2の他端に接続され、電圧源1bの高電圧側はチョッパ回路2bの上アーム側のスイッチング素子S4の他端に接続される。
(3段直流チョッパ回路)
 図1Bにおいて、3段直流チョッパ回路10Bは、3つのチョッパ回路2a、2b、及びチョッパ回路2cを多段構成で備える。
 チョッパ回路2a及びチョッパ回路2bの構成は、図1Aの2段直流チョッパ回路10Aが備えるチョッパ回路と同様の構成である。
 3段目のチョッパ回路2cは、2つのスイッチング素子S5及びスイッチング素子S6を直列接続して構成され、各スイッチング素子S5,S6を下アームと上アームとするハーフブリッジのレグ11cを構成している。
 スイッチング素子S5,S6の接続点はレグの出力端3cを構成し、スイッチング素子S5の他端は電圧源1cの低電圧側に接続され、スイッチング素子S6の他端は電圧源1cの高電圧側に接続される。
 チョッパ回路2a、チョッパ回路2b、及びチョッパ回路2cは多段に構成され、1段目のチョッパ回路2aの出力端3aを2段目のチョッパ回路2bの下アームのスイッチング素子S3の他端に接続し、2段目のチョッパ回路2bの出力端3bを3段目のチョッパ回路2cの下アームのスイッチング素子S5の他端に接続することで3段構成が形成され、3段目のチョッパ回路2cの出力端3cは3段直流チョッパ回路10Bの出力端となる。
 電圧源1a、電圧源1b、及び電圧源1cは直列接続されて直流電源1を構成し、電圧源1aと電圧源1bの接続点はチョッパ回路2aの上アーム側のスイッチング素子S2の他端に接続され、電圧源1bと電圧源1cの接続点はチョッパ回路2bの上アーム側のスイッチング素子S4の他端に接続され、電圧源1cの高電圧側はチョッパ回路2cの上アーム側のスイッチング素子S6の他端に接続される。
(n段直流チョッパ回路)
 図1Cにおいて、n段直流チョッパ回路10Cは、n個のチョッパ回路2a,2b,…,2k,…,2nを多段構成で備える。
 チョッパ回路2a及びチョッパ回路2bの構成は、図1Aの2段直流チョッパ回路10Aが備えるチョッパ回路と同様の構成である。
 k段目のチョッパ回路2kは、2つのスイッチング素子S2k-1及びスイッチング素子S2kを直列接続して構成され、各スイッチング素子S2k-1,S2kを下アームと上アームとするハーフブリッジのレグ11kを構成している。
 スイッチング素子S2k-1,S2kの接続点はレグの出力端3kを構成し、スイッチング素子S2k-1の他端は電圧源1k-1(図示していない)の低電圧側に接続され、スイッチング素子S2kの他端は電圧源1kの高電圧側に接続される。
 n段目のチョッパ回路2nは、2つのスイッチング素子S2n-1及びスイッチング素子S2nを直列接続して構成され、各スイッチング素子S2n-1,S2nを下アームと上アームとするハーフブリッジのレグ11nを構成している。
 スイッチング素子S2n-1,S2nの接続点はレグの出力端3nを構成し、スイッチング素子S2n-1の他端は電圧源1n-1(図示していない)の低電圧側に接続され、スイッチング素子S2nの他端は電圧源1nの高電圧側に接続される。
 チョッパ回路2a,チョッパ回路2b,チョッパ回路2c,…,チョッパ回路2k,…,及びチョッパ回路2nは多段に構成され、1段目のチョッパ回路2aの出力端3aを2段目のチョッパ回路2bの下アームのスイッチング素子S3の他端に接続し、2段目のチョッパ回路2bの出力端3bを3段目のチョッパ回路2cの下アームのスイッチング素子S5の他端に接続し、k段目のチョッパ回路2kの出力端3kをk+1段目のチョッパ回路2k+1(図示していない)の下アームのスイッチング素子S2k+1(図示していない)の他端に接続し、n-1段目のチョッパ回路2n-1(図示していない)の出力端3n-1(図示していない)をn段目のチョッパ回路2nの下アームのスイッチング素子S2nの他端に接続することでn段構成が形成され、n段目のチョッパ回路2nの出力端3nはn段直流チョッパ回路10Cの出力端となる。
 電圧源1a,電圧源1b,…,電圧源1k,…,及び電圧源1nは直列接続されて直流電源1を構成し、電圧源1aと電圧源1bの接続点はチョッパ回路2aの上アーム側のスイッチング素子S2の他端に接続され、電圧源1bと電圧源1cの接続点はチョッパ回路2bの上アーム側のスイッチング素子S2の他端に接続され、電圧源1kと電圧源1k+1(図示していない)の接続点はチョッパ回路2kの上アーム側のスイッチング素子S2kの他端に接続され、電圧源1nの高電圧側はチョッパ回路2nの上アーム側のスイッチング素子S2nの他端に接続される。
(2段直流チョッパ回路の動作)
 図2A,図2B,図2Cは2段直流チョッパ回路の動作状態A~Cを示し、図2Dはスイッチング素子S1~S4の駆動を制御する制御信号を示し、図2Eは動作状態A~Cの電圧状態を示し、図2Fは2段直流チョッパ回路のチョッパ出力を示している。なお、図2D、図2E中のA,B,及びCの各符号は、それぞれ図2A、図2B、及び図2Cの動作状態A~Cと対応している。
 図2Aは出力端から電圧0を出力するときの動作状態Aを示している。この動作状態Aは、スイッチング素子S1及びスイッチング素子S3をオン状態とし、スイッチング素子S2及びスイッチング素子S4をオフ状態とすることで形成される。出力端は電圧源1aの低電圧側と接続され、電圧0を出力する。
 図2Bは出力端から電圧E1を出力するときの動作状態Bを示している。この動作状態Bは、スイッチング素子S2及びスイッチング素子S3をオン状態とし、スイッチング素子S1及びスイッチング素子S4をオフ状態とすることで形成される。出力端は電圧源1aの高電圧側と接続され、電圧E1を出力する。
 図2Cは出力端から電圧E1+E2を出力するときの動作状態Cを示している。この動作状態Cは、スイッチング素子S4をオン状態とし、スイッチング素子S1,スイッチング素子S2,及びスイッチング素子S3をオフ状態とすることで形成される。出力端は電圧源1bの高電圧側と接続され、電圧源1aの電圧E1と電圧源1bの電圧E2とが加算された電圧(E1+E2)を出力する。
 動作状態Aと動作状態Bとを交互に繰り返すチョッパ動作によって、デューティー比に応じて定まる電圧0と電圧E1の平均電圧V1(図2F)が形成され、動作状態Bと動作状態Cとを交互に繰り返すチョッパ動作によって、デューティー比に応じて定まる電圧E1と電圧E2の平均電圧V2(図2F)が形成される。
(2段直流チョッパ回路の変換効率)
 次に、図3A~図3Dを用いて本発明の2段直流チョッパ回路の変換効率について説明する。図3Aは直流電圧を変換した後の電圧波形を示し、図3Bは1段目のチョッパ回路のチョッパ動作を示し、図3Cは2段目のチョッパ回路のチョッパ動作を示し、図3Dは1段目のチョッパ回路で変換された電圧波形と2段目のチョッパ回路で変換された電圧波形とを重畳させた電圧波形を示している。
 図3Aは、変換後の電圧波形を正弦波形とし、正弦波の“0”から“π/2”までの1/4周期分について示している。2段直流チョッパ回路は、“0”から“π/2”の周期内を“0”から“θ1”までの区間Δθ1と、“θ1“から“π/2”までのΔθ2の幅の区間の2領域に区分し、区間Δθ1では電圧振幅E1によってチョッパ動作を行い(図3B)、区間Δθ2では電圧振幅E2でチョッパ動作を行う(図3C)。なお、Δθ1とΔθ2とはΔθ1+Δθ2=π/2の関係を有している。
 本発明の多段直流チョッパ回路は、複数のチョッパ回路を多段に接続すると共に、各チョッパ回路のチョッパ動作を複数の電圧幅で行うことによって、各チョッパ回路で発生するターンオン損失とターンオフ損失のスイッチング損失を低減させ、直流チョッパ回路全体で発生する総和損失を低減させる。
 以下では、各段におけるチョッパ回路の変換効率に基づいて、2段直流チョッパ回路の変換効率を説明する。
 波高値E1の電圧源と波高値E2の電圧源の各出力パワーをそれぞれW1,W2とし、2段目のチョッパ回路の変換効率をη2とすると、2段目のチョッパ回路が動作している時のおよその総合効率ηtotalは、
  ηtotal =(W12W2)/(W1+W2)=1-(1-η2/(n+1))  …(1)
で表される。
 ここで、n=W1/W2と仮定し、η2は2段目のチョッパ回路の変換効率を表している。式(1)は、nを増やすことで高効率化されることを示している。電源の電力比nを増やすことは、1段目の電圧源の出力パワーW1を2段目の電圧源の出力パワーW2よりも大きくするに相当する。
 1段目が動作している時のおよその総合効率ηtotalは、
  ηtotal =η1  …(2)
となる。ただし、η1は1段目のチョッパ回路の変換効率である。
 チョッパ出力を図3A~図3Dに示すように正弦波の正の半波のように制御する場合は、これら2つの総合効率の組み合わせから求まる電力変換効率となる。2つの電源の電力比nを最適化することで、式(1)及び式(2)で示した2つの総合効率ηtotalを電力重み付け平均して求まる総合効率は、1段目の変換効率η1や1段目の変換効率η2のいずれの値よりも大きい値となる。
 以下では、各段のチョッパ回路の損失に基づいて、多段直流チョッパ回路の変換効率を
説明する。
 2つの電圧源の電圧E1及び電圧E2の和を直流電源の電圧E0とし、2段のチョッパ動作によって正弦波の正の半波を形成する場合には、1段目のチョッパ回路のスイッチング損失と導通損の合計をWloss1とし、2段目のチョッパ回路のスイッチング損失と導通損の合計をWloss2とすると、合計の損失はそれぞれ以下の式で一般的に表される。
 Wloss1=F1(θ,E0,E1)         …(3)
 Wloss2=F2(θ,E0,E1)         …(4)
 なお、ここでは、θはπ/2周期を2段に区分する際の角度であり、図3A~図3D中のθ1に相当し、F1及びF2はθ,E0,E1をパラメータとする関数である。
 2段直流チョッパ回路の総合損失Wlossは、Wloss=Wloss1+Wloss2で表される。総合損失Wlossはθをパラメータとするため、Wlossをθについて微分すると、
 総合損失Wlossは、π/2周期内において、
 dWloss/dθ=0     …(5)
を満たすθで極値をとる。
 このことから、上記のθを境界として2段直流チョッパ回路を2段でチョッパ動作させることによって、総合損失Wlossを低減させることができる。なお、この場合には、電圧E1はE0・sinθで表され、電圧E2は(E0-E0・sinθ)で表される。総合損失Wlossを極小とするθについて式(5)では微分によって求めているが、これに限らず、シミュレーション演算等の他の手法によって求めても良い。
(3段直流チョッパ回路の動作)
 図4A~図4Dは3段直流チョッパ回路の動作状態A~Dを示し、図4Eはスイッチング素子S1~S6の駆動を制御する制御信号を示し、図4Fは動作状態A~Dの電圧状態を示し、図4Gは3段直流チョッパ回路のチョッパ出力を示している。なお、図4E、図4F中のA,B,C,及びDの各符号は、それぞれ図4A、図4B、図4C、及び図4Dの動作状態A~Dと対応している。
 図4Aは出力端から電圧0を出力するときの動作状態Aを示している。この動作状態Aは、スイッチング素子S1,スイッチング素子S3,及びスイッチング素子S5をオン状態とし、スイッチング素子S2,スイッチング素子S4,及びスイッチング素子S6をオフ状態とすることで形成される。出力端は電圧源1aの低電圧側と接続され、電圧0を出力する。
 図4Bは出力端から電圧E1を出力するときの動作状態Bを示している。この動作状態Bは、スイッチング素子S2,スイッチング素子S3,及びスイッチング素子S5をオン状態とし、スイッチング素子S1,スイッチング素子S4,及びスイッチング素子S6をオフ状態とすることで形成される。出力端は電圧源1aの高電圧側と接続され、電圧E1を出力する。
 図4Cは出力端から電圧E1+E2を出力するときの動作状態Cを示している。この動作状態Cは、スイッチング素子S4及びスイッチング素子S5をオン状態とし、スイッチング素子S1,スイッチング素子S2,スイッチング素子S3,及びスイッチング素子S6をオフ状態とすることで形成される。出力端は電圧源1bの高電圧側と接続され、電圧源1aの電圧E1と電圧源1bの電圧E2とが加算された電圧(E1+E2)を出力する。
 図4Dは出力端から電圧E1+E2+E3を出力するときの動作状態Dを示している。この動作状態Dは、スイッチング素子S6をオン状態とし、スイッチング素子S1~スイッチング素子S4をオフ状態とすることで形成される。出力端は電圧源1cの高電圧側と接続され、電圧源1aの電圧E1と電圧源1bの電圧E2と電圧源1cの電圧E3が加算された電圧(E1+E2+E3)を出力する。
 動作状態Aと動作状態Bとを交互に繰り返すチョッパ動作によって、デューティー比に応じて定まる電圧0と電圧E1の平均電圧V1(図4G)が形成され、動作状態Bと動作状態Cとを交互に繰り返すチョッパ動作によって、デューティー比に応じて定まる電圧E1と電圧E2の平均電圧V2(図4G)が形成され、動作状態Cと動作状態Dとを交互に繰り返すチョッパ動作によって、デューティー比に応じて定まる電圧E2と電圧E3の平均電圧V3(図4G)が形成される。
(3段直流チョッパ回路の変換効率)
 次に、図5A~図5Eを用いて本発明の3段直流チョッパ回路の変換効率について説明する。図5Aは直流電圧を変換した後の電圧波形を示し、図5Bは1段目のチョッパ回路のチョッパ動作を示し、図5Cは2段目のチョッパ回路のチョッパ動作を示し、図5Dは3段目のチョッパ回路のチョッパ動作を示し、図5Eは1段目,2段目,及び3段目の各段のチョッパ回路で変換された電圧波形を重畳させた電圧波形を示している。
 図5Aは、変換後の電圧波形を正弦波形とし、正弦波の“0”から“π/2”までの1/4周期分について示している。3段直流チョッパ回路は、“0”から“π/2”の周期内を“0”から“θ1”までの区間Δθ1と、“θ1”から“θ2”までのΔθ2の幅の区間と、“θ2”から“π/2”までのΔθ3の幅の区間の3領域に区分し、区間Δθ1では電圧振幅E1によってチョッパ動作を行い(図5B)、区間Δθ2では電圧振幅E2でチョッパ動作を行い(図5C)、区間Δθ3では電圧振幅E3でチョッパ動作を行う(図5D)。なお、Δθ1とΔθ2とΔθ3はΔθ1+Δθ2+Δθ3=π/2の関係を有している。
 各段におけるチョッパ回路の変換効率に基づいて、3段直流チョッパ回路の変換効率を説明する。
 波高値E1の電圧源と波高値E2の電圧源と波高値E3の電圧源の各出力パワーをそれぞれW1,W2,及びW3とし、3段目のチョッパ回路の変換効率をη3とし、2段目のチョッパ回路の変換効率をη2とし、n=W1/W3=W2/W3と仮定すると、3段目のチョッパ回路が動作している時のおよその総合効率ηtotal3、及び2段目のチョッパ回路が動作している時のおよその総合効率ηtotal2はそれぞれ以下の式(6),(7)で表される。
  ηtotal3 =(W1+ W23W3)/(W1+W2+W3)=1-(1-η3/(2n+1))  …(6)
  ηtotal2 =(W1+ η2W2)/(W1+W2)=1-(1-η2/(n+1))      …(7)
 1段目が動作している時のおよその総合効率ηtotal1は、
  ηtotal1 =η1       …(8)
となる。ただし、η1は1段目のチョッパ回路の変換効率である。
 式(6),(7)は、nを増やすことで高効率化されることを示している。式(6)において電源の電力比nを増やすことは、1段目および2段目の電圧源の出力パワーW1,W2を3段目の電圧源の出力パワーW3よりも大きくすることに相当し、式(7)において、電源の電力比nを増やすことは、1段目の電圧源の出力パワーW1を2段目の電圧源の出力パワーW2よりも大きくすることに相当する。
 チョッパ出力を図5A~図5Eに示すように正弦波の正の半波のように制御する場合は、これら3つの総合効率の組み合わせから求まる電力変換効率となる。3つの電源の電力比nを最適化することで、式(6)~式(8)で示した3つの総合効率ηtotal3,ηtotal2,ηtotal1を電力重み付け平均して求まる総合効率は、各段目の変換効率η1,η2,η3のいずれの値よりも大きい値となる。
 3つの電圧源の電圧E1,電圧E2,及び電圧E3の和を直流電源の電圧E0とし、3段のチョッパ動作によって正弦波の正の半波を形成する場合には、1段目のチョッパ回路のスイッチング損失と導通損の合計をWloss1とし,2段目のチョッパ回路のスイッチング損失と導通損の合計をWloss2とし、3段目のチョッパ回路のスイッチング損失と導通損の合計をWloss3とすると、合計の損失はそれぞれ以下の式で一般的に表される。
 Wloss1=F1(θ1,θ2,E0,E1,E2)         …(9)
 Wloss2=F2(θ1,θ2,E0,E1,E2)                …(10)
 Wloss3=F3(θ1,θ2,E0,E1,E2)                …(11)
 なお、ここでは、θ1,θ2はπ/2周期を3段に区分する際の角度であり、図5A~図5E中のθ1,θ2に相当し、F1、F2、F3は、θ1,θ2,E0,E1,E2をパラメータとする関数である。
 3段直流チョッパ回路の総合損失Wlossは、Wloss=Wloss1+Wloss2+Wloss3で表される。
 電圧波形において、パラメータθ1,θ2とパラメータE0,E1,E2との間にはその波形に基づいた関係性があるため、各Wloss1,Wloss2,Wloss3はパラメータθ1,θ2で表すことができる。例えば、電圧波形を正弦波形とした場合には、E1とθ1との間にはE1=E0・sinθ1の関係があり、E2とθ2との間にはE2=E0・sinθ2の関係があるため、パラメータE1、及びパラメータE2をそれぞれパラメータθ1とθ2で表すことによって、Wloss1,Wloss2,Wloss3をパラメータθ1,θ2で表すことができる。したがって、総合損失Wlossはθ1,θ2をパラメータとし、極小値を与えるθ1,θ2を求めることで、各電圧源の電圧E1、E2、及びE3を求めることができる。総合損失Wlossを極小とするパラメータθ1,θ2の算出は、多変数関数における極小、極大の解法や、シミュレーション演算を用いることができる。
 本発明のn段直流チョッパ回路において、各段のチョッパ回路に印加する電圧源の電圧を設定する手順について図6のフローチャートを用いて説明する。フローチャートでは“S”の符号で各工程を示している。
 工程S1:交流変換によって得る交流波形の周期を、n段直流チョッパ回路の段数nの個数で区分し、n区間を仮設定する。例えば、電圧波形が正弦波形である場合には、1/4周期をn分割し、0~π/4の区間内にθ1~θn-1を仮設定する。θ1~θn-1は総和損失Wlossのパラメータであるため、このパラメータθ1~θn-1を調整して総和損失Wlossが極小となる値を求めることで、総和損失Wlossが極小となる直流電源の各電圧源の電圧配分を設定することができる。
 工程S2:各区間で印加する電圧源の仮印加電圧を交流波形に基づいて求める。
 工程S3:各チョッパ回路の損失Wloss1~ Wlossnを仮印加電圧と区間の時間幅に基づいて求める。
 工程S4:工程S3で求めた各チョッパ回路の損失Wloss1~ Wlossnを加算して総和損失Wlossを求める。
 工程S5:総和損失Wlossが極小となる区間の組み合わせθ1~θn-1を求める。
 工程S6:工程S5で求めたθ1~θn-1に対応する交流波形上の各電圧を求める。
 工程S7:工程S6で求めた各電圧の比率を求め、直流電源の電源電圧と求めた比率から各電圧源の電圧を求めて設定する。
[電力変換装置の概要]
 次に、図7を用いて本発明の多段直流チョッパ回路を備えた電力変換装置の概略構成について説明する。図7(a)は概略構成を示し、図7(b)は多段直流チョッパ回路の直流出力を示し、図7(c)は折り返し回路により反転された半波出力を示し、図7(d)は折り返し回路の出力を示している。
 本発明の電力変換装置40は、本発明の多段直流チョッパ回路10と平滑フィルタ20と折り返し回路30とにより構成される。
 多段直流チョッパ回路10には、複数の電圧源が直列接続された直流電源1が接続される。直流電源1は複数の電圧源の電圧を多段直流チョッパ回路10に供給する。
 多段直流チョッパ回路10は、多段構成された複数のチョッパ回路によって、印加された電圧をチョッパ動作によって所定の直流電圧に変換し、半波の直流出力を出力する(図7(b))。
 平滑フィルタ20は、多段直流チョッパ回路10の直流出力からリプル成分等を除去した直流出力を出力する(図7(b))。平滑フィルタ20は、例えば、LCフィルタを用いて構成することができる。
 折り返し回路30は、平滑フィルタ20の直流出力の半波を交互に反転させ(図7(c))、反転させなかった半波と合わせることによって交流出力を出力する(図7(d))。
 本発明の電力変換装置40は、多段直流チョッパ回路10の半波出力を平滑フィルタ20に通した後、折り返し回路30で交流出力に変換する。平滑フィルタ20では、半波の電流が入力側に流入し、同様の波形の電圧が平滑フィルタ20の入力側の両端に印加される(図7(b))、いわば直流側に配置した構成である。この本発明の直流配置の平滑フィルタに対して、従来のDC/ACインバータでは交流出力側に平滑フィルタが設置された交流配置であり、平滑フィルタには交流の正弦波電流が流れ、交流の電圧が印加される。
 本発明の電力変換装置40は、LCフィルタの電圧電流の1次近似の基本波振幅は半波であることから、この直流配置によって最終出力の交流正弦波振幅の約1/2となる。その結果、インダクタLの直列抵抗損失は電流振幅の2乗、キャパシタCの直列等価抵抗による損失も電流振幅の2乗に比例する。これにより、直流側に配置したLCフィルタでの損失は、交流側に配置したLCフィルタに比べて1/4に低減される。また、直流側配置によるLCフィルタの定格容量についても、交流側配置のLCフィルタの半分となり、定格容量を低減して小型化が可能となる。
 本発明の電力変換装置の回路例を図8~図11を用いて説明する。
(2段直流チョッパ回路を備えた電力変換装置の回路例)
 図8は2段直流チョッパ回路を備えた電力変換装置の回路例を示し、図9は各部の電圧を示している。
 電力変換装置40Aは、2段直流チョッパ回路10Aと平滑フィルタ20と折り返し回路30とにより構成される。2段直流チョッパ回路10Aは図1Aで示した構成であり、逆並列接続されたダイオードを備えたスイッチング素子S1の下アームと、逆並列接続されたダイオードを備えたスイッチング素子S2の上アームとを、スイッチング素子S1のドレインとスイッチング素子S2のソースとを接続して形成される直列接続のレグを備えたチョッパ回路2aと、逆並列接続されたダイオードを備えたスイッチング素子S3の下アームとをスイッチング素子S3のドレインとスイッチング素子S4のソースとを接続して形成される直列接続のレグを備えたチョッパ回路2bとが2段に接続されて構成される。
 チョッパ回路2aにおいて、スイッチング素子S1のソースには電圧源1aの低電圧側が接続され、スイッチング素子S2のドレインには電圧源1aと電圧源1bの接続端が接続される。
 チョッパ回路2aとチョッパ回路2bとの接続は、チョッパ回路2aの出力端3aをチョッパ回路2bのスイッチング素子S3のソース側に接続することで行われる。また、チョッパ回路2bにおいて、スイッチング素子S4のソースには電圧源1bの高電圧側が接続される。
 平滑フィルタ20はLCフィルタで構成され、チョッパ回路2bの出力端にインダクタL1が直列接続され、キャパシタC0が並列接続されて形成される。
 折り返し回路30は、逆並列接続されたダイオードを備えたスイッチング素子S5の下アームと、逆並列接続されたダイオードを備えたスイッチング素子S6の上アームとを、スイッチング素子S5のドレインとスイッチング素子S6のソースとを接続して形成される直列接続のレグと、逆並列接続されたダイオードを備えたスイッチング素子S7の下アームと、逆並列接続されたダイオードを備えたスイッチング素子S8の上アームとを、スイッチング素子S7のドレインとスイッチング素子S8のソースとを接続して形成される直列接続のレグとを、両レグの中性点間を負荷で接続したフルブリッジで構成される。
 折り返し回路30において、スイッチング素子S6,S8のドレインには平滑フィルタ20の高電圧側が接続され、スイッチング素子S5,S7のソースには平滑フィルタ20の低電圧側が接続される。
 折り返し回路30において、スイッチング素子S6とスイッチング素子S7、及びスイッチング素子S5とスイッチング素子S8をペアとし、各ペアを交互にオン状態とオフ状態で切り替えることによって負荷の電流方向を切り替え、負荷に対して交流電流を供給し、負荷の両端に交流電圧を印加する。
 負荷の電流方向と印加電圧の向きは、負荷が純抵抗の場合の動作モードと負荷が誘導負荷である場合の動作モードで異なる。
 例えば、負荷が純抵抗であるときには、折り返し回路30において、スイッチング素子S6とスイッチング素子S7をオン状態とし、スイッチング素子S5とスイッチング素子S8をオフ状態とした場合には、負荷には図中の左方から右方に向かって電流が流れ、スイッチング素子S5とスイッチング素子S8をオン状態とし、スイッチング素子S6とスイッチング素子S7をオフ状態とした場合には、負荷には図中の右方から左方に向かって電流が流れる。図8は、右方から左方に向かって電流が流れる状態を示している。
 また、負荷が誘導負荷であるときは、スイッチング素子と逆並列接続されたダイオードを通る、電圧が正方向で電流が負方向となる動作モードと、あるいは電圧が負方向で電流が正方向となる動作モードで動作する。
 上記したスイッチング素子S5~スイッチング素子S8のオンオフ状態を交互に切り替えることによって、負荷には交流電圧Vacが印加される。
 チョッパ回路2aにおいて、電圧源1aの電圧E1が印加され、スイッチング素子S1,S2をチョッパ動作させることによって電圧E1は直流変換された直流電圧Vdc1(図9(b))が出力される。一方、チョッパ回路2bにおいて、電圧源1bの電圧E2が印加され、スイッチング素子S3,S4をチョッパ動作させることによって電圧E2は直流変換された直流電圧Vdc2(図9(a))が形成される。この直流電圧Vdc2は、電圧E1がベース電圧として重畳されている。チョッパ回路2bの出力端の電圧は、Vdc1とVdc2とが重畳された直流電圧Vdc(=Vdc1+Vdc2)である(図9(c))。
 平滑フィルタ20の出力電圧は直流電圧Vdcを平滑した直流の正の半波出力である(図9(d))。折り返し回路30は、この半波出力を交互に反転させ(図9(e)、図9(f))、これらの半波を合わせた交流電圧を形成する(図9(g))。
(3段直流チョッパ回路を備えた電力変換装置の回路例)
 図10は3段直流チョッパ回路を備えた電力変換装置の回路例を示している。
 電力変換装置40Bは、3段直流チョッパ回路10Aと平滑フィルタ20と折り返し回路30とにより構成される。3段直流チョッパ回路10Bは図1Bで示した構成であり、2段直流チョッパ回路10Aの構成のチョッパ回路2a及びチョッパ回路2bに、スイッチング素子S5、S6のチョッパ回路2cを接続した3段構成である。なお、チョッパ回路2a及びチョッパ回路2bの構成は電力変換装置40Aで説明した構成と同様であるため、ここでの説明は省略する。
 チョッパ回路2cは、逆並列接続されたダイオードを備えたスイッチング素子S5の下アームと、逆並列接続されたダイオードを備えたスイッチング素子S6の上アームとを、スイッチング素子S5のドレインとスイッチング素子S6のソースとを直列接続したレグで構成される。
 チョッパ回路2bとチョッパ回路2cとの接続は、チョッパ回路2bの出力端3bをチョッパ回路2cのスイッチング素子S5のソース側に接続することで行われる。また、チョッパ回路2cにおいて、スイッチング素子S6のソースには電圧源1cの高電圧側が接続される。
 平滑フィルタ20はLCフィルタで構成され、チョッパ回路2cの出力端にインダクタL1が直列接続され、キャパシタC0が並列接続されて形成される。
 折り返し回路30は、電力変換装置40Aが備える折り返し回路と同様であり、逆並列接続されたダイオードを備えたスイッチング素子S7の下アームと、逆並列接続されたダイオードを備えたスイッチング素子S8の上アームとを、スイッチング素子S7のドレインとスイッチング素子S8のソースとを接続して形成される直列接続のレグと、逆並列接続されたダイオードを備えたスイッチング素子S9の下アームと、逆並列接続されたダイオードを備えたスイッチング素子S10の上アームとを、スイッチング素子S9のドレインとスイッチング素子S10のソースとを接続して形成される直列接続のレグとを、両レグの中性点間を負荷で接続したフルブリッジで構成される。
 折り返し回路30において、スイッチング素子S8,S10のドレインには平滑フィルタ20の高電圧側が接続され、スイッチング素子S7,S10のソースには平滑フィルタ20の低電圧側が接続される。
 折り返し回路30は、電力変換装置40Aが備える折り返し回路と同様の動作によって、スイッチング素子S5~スイッチング素子S8のオンオフ状態を交互に切り替え、負荷に交流電圧Vacを印加する。
 チョッパ回路2aにおいて、電圧源1aの電圧E1が印加され、スイッチング素子S1,S2をチョッパ動作させることによって電圧E1は直流変換された直流電圧Vdc1が出力され、チョッパ回路2bにおいて、電圧源1bの電圧E2が印加され、スイッチング素子S3,S4をチョッパ動作させることによって電圧E2は直流変換された直流電圧Vdc2が形成され、チョッパ回路2cにおいて、電圧源1cの電圧E3が印加され、スイッチング素子S5,S6をチョッパ動作させることによって電圧E3は直流変換された直流電圧Vdc3が形成される。直流電圧Vdc2は電圧E1がベース電圧として重畳され、直流電圧Vdc3は電圧E1+E2がベース電圧として重畳される。チョッパ回路2cの出力端の電圧は、Vdc1とVdc2とVdc3が重畳された直流電圧Vdc(=Vdc1+Vdc2+Vdc3)である。
 平滑フィルタ20は直流電圧Vdcを平滑した直流の正の半波出力を出力し、折り返し回路30は、この半波出力を交互に反転させ、これらの半波を合わせた交流電圧を出力する。
(n段直流チョッパ回路を備えた電力変換装置の回路例)
 図11はn段直流チョッパ回路を備えた電力変換装置の回路例を示している。
 電力変換装置40Cは、n段直流チョッパ回路10Cと平滑フィルタ20と折り返し回路30とにより構成される。n段直流チョッパ回路10Cは図1Cで示した構成である。
 チョッパ回路2a、チョッパ回路2b、チョッパ回路2cは、前記した電力変換装置40A、電力変換装置40Bの構成と同様であるため、ここではk段目のチョッパ回路2k及びn段目のチョッパ回路2nについて説明する。
 k段目のチョッパ回路2kは、逆並列接続されたダイオードを備えたスイッチング素子S2k-1の下アームと、逆並列接続されたダイオードを備えたスイッチング素子S2kの上アームとを、スイッチング素子S2k-1のドレインとスイッチング素子S2kのソースとを直列接続したレグで構成される。
 (k-1)段目のチョッパ回路2k-1とk段目のチョッパ回路2kとの接続は、チョッパ回路2k-1の出力端をチョッパ回路2kのスイッチング素子S2k-1のソース側に接続することで行われる。また、チョッパ回路2kのスイッチング素子S2kのソースには電圧源1kの高電圧側が接続される。
 最上段のn段目のチョッパ回路2nは、逆並列接続されたダイオードを備えたスイッチング素子S2n-1の下アームと、逆並列接続されたダイオードを備えたスイッチング素子S2nの上アームとを、スイッチング素子S2n-1のドレインとスイッチング素子S2nのソースとを直列接続したレグで構成される。
 (n-1)段目のチョッパ回路2n-1とn段目のチョッパ回路2nとの接続は、チョッパ回路2n-1の出力端をチョッパ回路2nのスイッチング素子S2n-1のソース側に接続することで行われる。また、チョッパ回路2nのスイッチング素子S2nのソースには電圧源1nの高電圧側が接続される。
 平滑フィルタ20はLCフィルタで構成され、チョッパ回路2nの出力端にインダクタL1が直列接続され、キャパシタC0が並列接続されて形成される。
 折り返し回路30は、電力変換装置40A、電力変換装置40Bが備える折り返し回路と同様であり、逆並列接続されたダイオードを備えたスイッチング素子S2n+1の下アームと、逆並列接続されたダイオードを備えたスイッチング素子S2n+2の上アームとを、スイッチング素子S2n+1のドレインとスイッチング素子S2n+2のソースとを接続して形成される直列接続のレグと、逆並列接続されたダイオードを備えたスイッチング素子S2n+3の下アームと、逆並列接続されたダイオードを備えたスイッチング素子S2n+4の上アームとを、スイッチング素子S2n+3のドレインとスイッチング素子S2n+4のソースとを接続して形成される直列接続のレグとを、両レグの中性点間を負荷で接続したフルブリッジで構成される。
 折り返し回路30において、スイッチング素子S2n+2,S2n+4のドレインには平滑フィルタ20の高電圧側が接続され、スイッチング素子S2n+1,S2n+3のソースには平滑フィルタ20の低電圧側が接続される。
 折り返し回路30は、電力変換装置40A、40Bが備える折り返し回路と同様の動作によって、スイッチング素子S2n+1~スイッチング素子S2n+4のオンオフ状態を交互に切り替え、負荷に交流電圧Vacを印加する。
 チョッパ回路2kにおいて、電圧源1kの電圧Ekが印加され、スイッチング素子S2k-1,S2kをチョッパ動作させることによって電圧Ekは直流変換された直流電圧Vdckが形成される。最上段のチョッパ回路2nにおいて、電圧源1nの電圧Enが印加され、スイッチング素子S2n-1,S2nをチョッパ動作させることによって電圧Enは直流変換された直流電圧Vdcnが形成される。
 直流電圧Vdckは電圧E1+E2+…+E2k-1がベース電圧として重畳され、直流電圧Vdcnは電圧E1+E2+…+E2n-1がベース電圧として重畳される。
 チョッパ回路2nの出力端の電圧は、Vdc1~Vdcn-1が重畳された直流電圧Vdc(=Vdc1+Vdc2+…+Vdck+…+Vdcn-1)である。
 平滑フィルタ20は直流電圧Vdcnを平滑した直流の正の半波出力を出力し、折り返し回路30は、この半波出力を交互に反転させ、これらの半波を合わせた交流電圧を出力する。
 上記した構成において、図面ではスイッチング素子としてMOSFETの例を示しているが、スイッチング素子は、MOSFETに限らず、IGBT、JFET、SIT、HEMTなどの半導体デバイスを用いることができる。また、半導体デバイスを構成する半導体材料として、Si、SiC、GaN、酸化ガリウム、ダイヤモンド等を適用することができる。
 なお、本発明は前記各実施の形態に限定されるものではない。本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。
 本発明の多段直流チョッパ回路、及び電力変換装置は、バッテリー、太陽電池、燃料電池や整流後の直流電圧から単相商用交流電圧を生成する用途に適用することができる。
 この出願は、2017年6月28日に出願された日本出願特願2017-126044を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 直流電
 1a、1b、1c、1k-1、1k、1n-1、1n  電圧源
 1a  2段直流チョッパ回路
 2a,2b,…,2k,2k-1,2n-1,2n  チョッパ回路
 3a,3b,3c,3k,3n-1,3n  出力端
 10  多段直流チョッパ回路
 10A   2段直流チョッパ回路
 10B    3段直流チョッパ回路
 10C    n段直流チョッパ回路
 11a,11b,11c,11k,11n  レグ
 20  平滑フィルタ
 30  折り返し回路
 40,40A,40B,40C  電力変換装置
 S1-S10 スイッチング素子
 S2k-1,S2k,S2n-1,S2n,S2n+1~S2n+4   スイッチング素子

Claims (5)

  1.  逆並列接続されたダイオードを備えたスイッチング素子のアームが上下に2つ直列接続されて成るレグが多段に接続され、
     各レグは、
     上方アームと下方アームの接続点を出力端とし、
     上方アームの他端は、出力電圧を異にする複数の電圧源が直列接続された直流電源において、複数の電圧源の内で対応する一電圧源の高電圧側に接続され、
     下方アームの他端は、前段のレグの出力端に接続され、
     最下段のレグの下方アームの他端は、前記直流電源の低電圧側に接続され、
     前記出力端は、次段のレグの下方アームの端部に接続されることを特徴とする多段直流チョッパ回路。
  2.  前記直流電源の電圧は、多段構成の各段のレグに印加される各電圧源の電圧の加算和であり、
     前記各電圧源の電圧の電圧比は、変換される交流電圧の周期内において、各レグに印加される印加電圧によって各レグで発生する損失の総和を極小とする値である、請求項1に記載の多段直流チョッパ回路。
  3.  請求項2の多段直流チョッパ回路において、各段のレグに印加される各電圧源の印加電圧を設定する設定方法であって、
     変換される交流電圧の周期内において、
     (a) 前記周期を前記レグの個数と同数に区分した各区間において、各レグに印加する仮印加電圧を交流波形に基づいて求め、
     (b) 前記仮印加電圧と前記区間の時間幅とに基づいて各レグの損失を求め、
     (c) 前記各レグの損失を全レグについて加算した総和損失を求め、
     (d) 前記総和損失を極小とする各レグの印加電圧を求める、
     多段直流チョッパ回路の印加電圧の設定方法。
  4.  請求項1又は請求項2に記載された前記多段直流チョッパ回路と、
     前記多段直流チョッパ回路の直流出力を平滑化する平滑フィルタと、
     前記平滑フィルタの直流出力の半周期毎に半波を反転させ、前記直流出力を交流出力に変換する折り返し回路とを備える電力変換装置。
  5. 前記折り返し回路は、逆並列接続されたダイオードを備えたスイッチング素子の4つのアームで構成したフルブリッジ回路である、請求項4に記載の電力変換装置。
PCT/JP2018/023384 2017-06-28 2018-06-20 多段直流チョッパ回路、及び電力変換装置 WO2019004015A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019526829A JP7023531B2 (ja) 2017-06-28 2018-06-20 多段直流チョッパ回路、及び電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-126044 2017-06-28
JP2017126044 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019004015A1 true WO2019004015A1 (ja) 2019-01-03

Family

ID=64741501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023384 WO2019004015A1 (ja) 2017-06-28 2018-06-20 多段直流チョッパ回路、及び電力変換装置

Country Status (2)

Country Link
JP (1) JP7023531B2 (ja)
WO (1) WO2019004015A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020131349B3 (de) 2020-11-26 2021-12-23 Technische Universität Ilmenau, Körperschaft des öffentlichen Rechts Schaltungsanordnung und Verfahren zum Steuern und Freischalten der Verbindung von elektrischen Betriebsmitteln und/oder Netzleitungsabschnitten
WO2022112273A2 (de) 2020-11-26 2022-06-02 Technische Universität Ilmenau Schaltungsanordnung und verfahren zum steuern von elektrischen betriebsmitteln und/oder netzleitungsabschnitten
JP2022187720A (ja) * 2021-06-08 2022-12-20 本田技研工業株式会社 電源システム及び移動体
JP2022187721A (ja) * 2021-06-08 2022-12-20 本田技研工業株式会社 電源システム及び移動体
JP2022187641A (ja) * 2021-06-08 2022-12-20 本田技研工業株式会社 電力変換装置、電力変換装置の制御方法、およびプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225985B2 (ja) 2005-06-01 2009-02-18 ジャパン・フィールド株式会社 被洗浄物の洗浄方法及びその装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341732A (ja) * 2004-05-27 2005-12-08 Toyota Motor Corp 電圧変換装置ならびにそれを備えた負荷駆動装置および車両
JP2013102674A (ja) * 2011-10-14 2013-05-23 Meidensha Corp マルチレベル電力変換器
JP2014100015A (ja) * 2012-11-15 2014-05-29 Ntt Facilities Inc 電力変換装置及び電力変換回路
US20150288284A1 (en) * 2014-04-03 2015-10-08 Schneider Toshiba Inverter Europe Sas Multi-level power converter
JP2016015848A (ja) * 2014-07-03 2016-01-28 株式会社明電舎 5レベル電力変換装置
US20160336872A1 (en) * 2015-05-13 2016-11-17 Rockwell Automation Technologies, Inc. Sparse matrix multilevel actively clamped power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341732A (ja) * 2004-05-27 2005-12-08 Toyota Motor Corp 電圧変換装置ならびにそれを備えた負荷駆動装置および車両
JP2013102674A (ja) * 2011-10-14 2013-05-23 Meidensha Corp マルチレベル電力変換器
JP2014100015A (ja) * 2012-11-15 2014-05-29 Ntt Facilities Inc 電力変換装置及び電力変換回路
US20150288284A1 (en) * 2014-04-03 2015-10-08 Schneider Toshiba Inverter Europe Sas Multi-level power converter
JP2016015848A (ja) * 2014-07-03 2016-01-28 株式会社明電舎 5レベル電力変換装置
US20160336872A1 (en) * 2015-05-13 2016-11-17 Rockwell Automation Technologies, Inc. Sparse matrix multilevel actively clamped power converter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020131349B3 (de) 2020-11-26 2021-12-23 Technische Universität Ilmenau, Körperschaft des öffentlichen Rechts Schaltungsanordnung und Verfahren zum Steuern und Freischalten der Verbindung von elektrischen Betriebsmitteln und/oder Netzleitungsabschnitten
WO2022112273A2 (de) 2020-11-26 2022-06-02 Technische Universität Ilmenau Schaltungsanordnung und verfahren zum steuern von elektrischen betriebsmitteln und/oder netzleitungsabschnitten
WO2022112273A3 (de) * 2020-11-26 2022-07-28 Technische Universität Ilmenau Schaltungsanordnung und verfahren zum steuern von elektrischen betriebsmitteln und/oder netzleitungsabschnitten
JP2022187720A (ja) * 2021-06-08 2022-12-20 本田技研工業株式会社 電源システム及び移動体
JP2022187721A (ja) * 2021-06-08 2022-12-20 本田技研工業株式会社 電源システム及び移動体
JP2022187641A (ja) * 2021-06-08 2022-12-20 本田技研工業株式会社 電力変換装置、電力変換装置の制御方法、およびプログラム
JP7257449B2 (ja) 2021-06-08 2023-04-13 本田技研工業株式会社 電力変換装置、電力変換装置の制御方法、およびプログラム
JP7274524B2 (ja) 2021-06-08 2023-05-16 本田技研工業株式会社 電源システム及び移動体
JP7312787B2 (ja) 2021-06-08 2023-07-21 本田技研工業株式会社 電源システム及び移動体

Also Published As

Publication number Publication date
JP7023531B2 (ja) 2022-02-22
JPWO2019004015A1 (ja) 2020-04-30

Similar Documents

Publication Publication Date Title
JP7023531B2 (ja) 多段直流チョッパ回路、及び電力変換装置
WO2018141283A1 (zh) 一种无桥pfc电路
JP6176103B2 (ja) ゼロ電流スイッチング電力変換装置
US20170110977A1 (en) Medium voltage hybrid multilevel converter and method for controlling a medium voltage hybrid multilevel converter
Hosseini et al. An attempt to improve output voltage quality of developed multi-level inverter topology by increasing the number of levels
Nguyen et al. Single-phase Z-source cycloconverter with safe-commutation strategy
Zhang et al. A hybrid modulation method for single-phase quasi-Z source inverter
Gaur et al. Various control strategies for medium voltage high power multilevel converters: A review
Nilkar et al. A new single-phase cascade multilevel inverter topology using four-level cells
Ghosh et al. A comparative study of different multilevel inverters
Babaei et al. A new basic unit for symmetric and asymmetric cascaded multilevel inverter with reduced number of components
CN103888010A (zh) 基于推挽变换器的高频隔离式三电平逆变器
Bharatkar et al. Analysis of three phase cascaded H-bridge multilevel inverter for symmetrical & asymmetrical configuration
Khatoonabad et al. Photovoltaic‐based switched‐capacitor multi‐level inverters with self‐voltage balancing and step‐up capabilities
WO2013151542A1 (en) Multilevel converter
Sayed et al. Modeling and control of bidirectional isolated battery charging and discharging converter based high-frequency link transformer
Gohari et al. New symmetric cascaded multilevel inverter with reduced number of controlled devices and low blocked voltage by switches
Shahir et al. 16-level basic topology for cascaded multilevel inverters with reduced number of components
Boora et al. A new general topology for asymmetrical multilevel inverter with reduced number of switching components
Sangeetha et al. A new trinary source-based multilevel inverter for renewable applications
KR101312589B1 (ko) 멀티레벨 인버터 및 그 인버터의 구동 방법
Priyadashi et al. Harmonics mitigation of single-phase modified source switched multilevel inverter topology using ohsw-pwm technique
Nguyen et al. Space vector modulation for single-input dual-output indirect matrix converter
Shaikh et al. Single phase seven level inverter
Hosseini et al. New cascaded multilevel inverter topology with reduced number of switches and sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824105

Country of ref document: EP

Kind code of ref document: A1