WO2019003984A1 - Electrical resistor, honeycomb structure and electrically heated catalyst device - Google Patents

Electrical resistor, honeycomb structure and electrically heated catalyst device Download PDF

Info

Publication number
WO2019003984A1
WO2019003984A1 PCT/JP2018/023137 JP2018023137W WO2019003984A1 WO 2019003984 A1 WO2019003984 A1 WO 2019003984A1 JP 2018023137 W JP2018023137 W JP 2018023137W WO 2019003984 A1 WO2019003984 A1 WO 2019003984A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
electric
sample
matrix
electrical
Prior art date
Application number
PCT/JP2018/023137
Other languages
French (fr)
Japanese (ja)
Inventor
剛大 徳野
淳一 成瀬
平田 和希
美香 川北
泰史 ▲高▼山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017243080A external-priority patent/JP6740995B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880042219.4A priority Critical patent/CN110786075A/en
Priority to DE112018003319.8T priority patent/DE112018003319T5/en
Publication of WO2019003984A1 publication Critical patent/WO2019003984A1/en
Priority to US16/728,261 priority patent/US20200154524A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material

Definitions

  • the present disclosure relates to an electric resistor, a honeycomb structure, and an electrically heated catalyst device.
  • electric resistors are used for electric heating.
  • an electrically heated catalyst device in which a honeycomb structure supporting a catalyst is formed of an electric resistor such as SiC and the honeycomb structure is heated by electric heating.
  • water is added to a mixed powder consisting of 20 to 35 wt% of metal Si powder, 5 to 15 wt% of quartz powder, 20 to 30 wt% of borosilicate glass, and 30 to 40 wt% of clay powder and kneaded.
  • a conductive ceramic is described which is formed and heat treated at a temperature of 1200 to 1300 ° C. in the atmosphere.
  • the electrical resistivity of the electrical resistor changes significantly with temperature, for example, in a constant voltage control electrical circuit, the fluctuation range of the current flowing through the electrical resistor becomes large. Therefore, the electric circuit becomes complicated to avoid this, and the cost of the electric circuit increases.
  • an electrical resistor that exhibits NTC characteristics such as SiC
  • the temperature change of the electrical resistivity is large and the electrical resistivity decreases as the temperature rises
  • the current is concentrated in a short distance between electrodes during current heating. Flow locally and generate heat locally. Therefore, an electrical resistor exhibiting NTC characteristics is likely to cause temperature distribution.
  • a thermal expansion difference is generated inside the electric resistor, and the electric resistor is easily broken.
  • the characteristic that the electrical resistivity increases as the temperature rises is called a PTC characteristic.
  • the present disclosure is an electric resistor having a small temperature dependence of the electric resistivity and exhibiting an PTC characteristic of the electric resistivity, or having little temperature dependence of the electric resistivity, and a honeycomb structure using the electric resistor.
  • An object of the present invention is to provide an electrically heated catalyst device using a body and the honeycomb structure.
  • One aspect of the present disclosure is a borosilicate including at least one alkali-based atom selected from the group consisting of Na, Mg, K, Ca, Li, Be, Rb, Sr, Cs, Ba, Fr, and Ra.
  • the electric resistor has a matrix composed of:
  • Another aspect of the present disclosure is a honeycomb structure configured to include the electric resistor.
  • Yet another aspect of the present disclosure is an electrically heated catalyst device having the above honeycomb structure.
  • the electric resistor is made of borosilicate containing at least one alkali-based atom selected from the group consisting of Na, Mg, K, Ca, Li, Be, Rb, Sr, Cs, Ba, Fr, and Ra. It has a matrix that is configured.
  • the region that governs the electrical resistance at the time of electric current heating is the matrix that is the base material.
  • the matrix has a smaller temperature dependency of the electrical resistivity than SiC, and the electrical resistivity exhibits a PTC characteristic. Therefore, when the electrical resistivity of another substance different from the matrix that can be included in the electrical resistor exhibits PTC characteristics, the electrical resistivity of the electrical resistor has a small temperature dependency, and the PTC is It can show the characteristics.
  • the electric resistivity of the other substance shows NTC characteristics
  • the electric resistance of the matrix showing the PTC characteristic and the electric resistivity of the other substance showing the NTC characteristic gives the electric resistance.
  • the electrical resistivity of the body can be designed to have low temperature dependence and to exhibit PTC properties or to have little temperature dependence.
  • the electric resistor by adopting the matrix, the temperature dependency of the electric resistivity is small, and the electric resistivity exhibits the PTC characteristic, or the temperature dependency of the electric resistivity is almost the same. No electrical resistor is obtained.
  • the electric resistor can be configured such that the electric resistivity does not have the NTC characteristic, it becomes possible to avoid current concentration at the time of current heating. Therefore, in the electric resistor, temperature distribution is hard to occur inside, and cracking due to the thermal expansion difference is hard to occur. In addition, although it is possible to prevent generation of a crack due to a thermal expansion coefficient difference by electrically heating SiC with a small current, it takes time to sufficiently heat it.
  • the said electrical resistor can achieve the low electrical resistance of a matrix by employ
  • the honeycomb structure includes the electric resistor. Therefore, in the above-mentioned honeycomb structure, temperature distribution does not easily occur inside the structure at the time of electric current heating, and cracking due to the difference in thermal expansion hardly occurs. In addition, since the above-mentioned electric resistor is used in the above-mentioned honeycomb structure, heat can be generated earlier at a lower temperature at the time of electric heating.
  • the electrically heated catalyst device has the honeycomb structure. Therefore, in the electrically heated catalyst device, the honeycomb structure is less likely to be broken during electric heating, and the reliability can be improved. Further, since the electrically heated catalyst device uses the honeycomb structure, the honeycomb structure can generate heat earlier at a lower temperature during electric heating, which is advantageous for early activation of the catalyst.
  • FIG. 1 is an explanatory view schematically showing a fine structure of the electric resistor according to the first embodiment
  • FIG. 2 is an explanatory view schematically showing a fine structure of the electric resistor according to the second embodiment
  • FIG. 3 is an explanatory view schematically showing a honeycomb structure of Embodiment 3.
  • FIG. 4 is an explanatory view schematically showing an electrically heated catalyst device of Embodiment 4.
  • FIG. 5 is a graph showing the relationship between the temperature and the electrical resistivity of Sample 1 and Sample 2 in Experimental Example 1, FIG.
  • FIG. 6 is a graph showing the relationship between the temperature and the electrical resistivity of Sample 2 and Sample 1C in Experimental Example 1
  • FIG. 7 is a graph showing the relationship between the addition ratio of sodium carbonate and the electrical resistivity of the sample in Experimental Example 2
  • FIG. 8 shows (a) an atomic mapping image of aluminum of sample 2 and (b) an optical microscope image of the periphery of the emission portion in Experimental Example 3
  • FIG. 9 is an atomic mapping image of aluminum in the vicinity of the emission part of Sample 2 in Experimental Example 4
  • FIG. 10 shows the result of analysis of the composition of Sample 2 by SEM-EDX in Experimental Example 5
  • 11 is a graph showing the relationship between the temperature and the electrical resistivity of Sample 6 and Sample 7 in Experimental Example 6, FIG.
  • FIG. 12 is an atomic mapping image of a cross section of a material of Sample 6 in Experimental Example 6
  • FIG. 13 is an atomic mapping image of a cross section of a material of sample 7 in Experimental Example 6
  • FIG. 14 is a line profile of Ca in the depth direction from the material surface of sample 6 in Experimental Example 6
  • FIG. 15 is a line profile of Ca in the depth direction from the material surface of sample 7 in Experimental Example 6
  • FIG. 16 is a graph showing the relationship between the temperature and the electrical resistivity of Samples 8 and 9 (baked product at 1250 ° C.) in Experimental Example 7
  • FIG. 17 is a graph showing the relationship between the temperature and the electrical resistivity of Samples 10 to 12 (baked article at 1300 ° C.) in Experimental Example 7.
  • the electric resistor 1 of the present embodiment has a matrix 10.
  • the matrix 10 is a portion to be a base material of the electric resistor 1.
  • the matrix 10 may be amorphous or crystalline.
  • the matrix 10 is made of Na (sodium), Mg (magnesium), K (potassium), Ca (calcium), Li (lithium), Be (beryllium), Rb (rubidium), Sr (strontium), Cs (cesium), Ba. It is comprised from the borosilicate containing at least 1 sort (s) of alkali-type atom selected from the group which consists of (barium), Fr (francium), and Ra (radium). Each alkali-based atom may be contained in the borosilicate singly or in any combination. That is, the borosilicate may contain one or more alkali metal atoms, one or more alkaline earth metal atoms, or a combination of these. It is also good.
  • the borosilicate preferably contains at least one selected from the group consisting of Na, Mg, K, and Ca as an alkali atom, from the viewpoint of facilitating reduction of the electrical resistance of the matrix 10 and the like.
  • the borosilicate can include at least Na, K, or both Na and K.
  • the total content of alkali-based atoms can be 10% by mass or less. According to this configuration, the reduction of the electrical resistance of the matrix 10 can be facilitated. Moreover, according to this configuration, the temperature dependence of the electrical resistivity is smaller than that of SiC, and the matrix 10 in which the electrical resistivity exhibits the PTC characteristic can be made reliable.
  • total content of an alkali type atom means the mass% of one type of alkali type atom, when borosilicate contains 1 type of alkali type atoms. Moreover, when borosilicate contains multiple types of alkali-type atoms, the total content (mass%) which added each content (mass%) of each of these several alkali-type atoms is meant.
  • the total content of alkali-based atoms is preferably 8% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, from the viewpoint of suppression of shape change due to softening point reduction of matrix 10 It can be done.
  • the total content of alkali atoms is more preferably 2 in view of suppression of formation of insulating glass film by segregation of alkali atoms to the surface side of electric resistor 1 at the time of firing in an oxidizing atmosphere.
  • the content may be less than or equal to mass%, more preferably less than or equal to 1.5 mass%, still more preferably less than or equal to 1.2 mass%, and most preferably less than or equal to 1 mass%.
  • the borosilicate specifically includes at least one selected from the group consisting of Na, Mg, K, and Ca as alkali atoms, and the total content of the alkali atoms is 2 It can be set as the mass% or less. According to this configuration, even if the gas barrier film for blocking the oxygen gas is not formed at the time of firing in the atmosphere containing the oxygen gas, the oxygen in the atmosphere is an alkali-based atom eluted and segregated to the surface side of the electric resistor 1 It is easy to suppress the formation of an insulating glass film by reacting with In addition, when using the electric resistor 1 as a material of the conductive honeycomb structure, it is not necessary to remove the insulating glass film in advance when forming the electrode on the surface of the honeycomb structure, and the productivity of the honeycomb structure There is also an advantage that The total content of alkali atoms in this case is preferably 1.5% by mass or less, more preferably 1.2% by mass or less, from the viewpoint of suppression of formation of insulating glass film
  • alkali atoms may be intentionally added. Therefore, it is important to appropriately select the total content of the alkali-based atoms described above depending on the manufacturing conditions, the method of use, and the like.
  • an alkali-based atom is an element which is relatively easy to be mixed from the raw material of the electric resistor 1.
  • the total content of alkali-based atoms is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, still more preferably 0. It can be 2% by mass or more.
  • the electric resistance body 1 it becomes possible to aim at reduction of an alkali type atom by using a boric acid as a raw material, without using the borosilicate glass containing an alkali type atom. The details will be described later in experimental examples.
  • the borosilicate can contain B (boron) atoms of 0.1% by mass or more and 5% by mass or less. According to this configuration, there is an advantage that the PTC characteristics can be easily expressed.
  • the content of B atoms is preferably 0.2% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass from the viewpoint of facilitating reduction of the electrical resistance of the matrix 10 and the like. % Or more, still more preferably 1.2% by mass or more, still more preferably 1.5% by mass or more, still more preferably the temperature dependence of the electrical resistivity is small, and the electrical resistivity is PTC From the viewpoint of easily showing characteristics, etc., it can be more than 2% by mass.
  • the content of B atoms is limited in the amount of doping to the silicate, and when not doped, it is unevenly distributed in the material as B 2 O 3 which is an insulator, which causes a decrease in conductivity, etc. From this, preferably, it can be 4% by mass or less, more preferably, 3.5% by mass or less, and still more preferably, 3% by mass or less.
  • the borosilicate can contain 5 mass% or more and 40 mass% or less of Si (silicon) atoms. According to this configuration, the electrical resistivity of the borosilicate tends to exhibit PTC characteristics.
  • the content of the Si atom is preferably 7% by mass or more, more preferably 10% by mass or more, and still more preferably 15 from the viewpoint of ensuring the above effects and raising the softening point of the matrix. It can be made to be% by mass or more.
  • the content of Si atoms is preferably 30% by mass or less, more preferably 26% by mass or less, and still more preferably 24% by mass or less from the viewpoint of ensuring the above effects and the like. Can.
  • the borosilicate can contain 40% by mass or more and 85% by mass or less of O (oxygen) atoms. According to this configuration, there is an advantage that the PTC characteristics can be easily expressed.
  • the content of O atom is preferably 45% by mass or more, more preferably 50% by mass or more, still more preferably 55% by mass or more, and still more preferably, from the viewpoint of ensuring the above effects and the like. , 60 mass% or more.
  • the content of O atom is preferably 82% by mass or less, more preferably 80% by mass or less, and still more preferably 78% by mass or less from the viewpoint of ensuring the above effects and the like. Can.
  • the borosilicate can be specifically an aluminoborosilicate or the like. According to this configuration, the temperature dependency of the electrical resistivity is small, and the electrical resistivity exhibits PTC characteristics, or the temperature resistance of the electrical resistivity has almost no temperature dependency. Can.
  • the aluminoborosilicate can contain an Al atom content of 0.5% by mass or more and 10% by mass or less.
  • the content of Al (aluminum) atom is preferably 1% by mass or more, more preferably 2% by mass or more, and still more preferably 3% by mass or more from the viewpoint of ensuring the above effects and the like. be able to.
  • the content of Al atoms is preferably 8% by mass or less, more preferably 6% by mass or less, and still more preferably 5% by mass or less from the viewpoint of ensuring the above effects and the like. Can.
  • content of each atom in the borosilicate mentioned above can be selected from the range mentioned above so that it may be 100 mass% in total.
  • the electric resistor 1 can be made sure that the temperature dependence of the electric resistivity is small and the electric resistivity exhibits a PTC characteristic or the temperature dependence of the electric resistivity is hardly present.
  • an atom which may be contained in the borosilicate which comprises the matrix 10 Fe, C, etc. can be illustrated in addition to the above.
  • each content of an alkali type atom, Si, O, and Al among each atom mentioned above it measures using an electron beam micro analyzer (EPMA) analyzer.
  • EPMA electron beam micro analyzer
  • the content of B is measured using an inductively coupled plasma (ICP) analyzer.
  • ICP inductively coupled plasma
  • the electric resistor 1 may have only the matrix 10 or may have one or more other substances besides the matrix 10.
  • other substances include fillers, materials that lower the coefficient of thermal expansion, materials that increase the thermal conductivity, and materials that improve the strength.
  • the electric resistor 1 further includes a conductive filler 11 as illustrated in FIG. 1.
  • the electric resistivity of the entire electric resistor 1 is determined by the addition of the electric resistivity of the matrix 10 and the electric resistivity of the conductive filler 11. Be done. Therefore, according to this configuration, by adjusting the conductivity of the conductive filler 11 and the content of the conductive filler 11, control of the electric resistivity of the electric resistor 1 becomes possible.
  • the electrical resistivity of the conductive filler 11 may show any of a PTC characteristic and an NTC characteristic, and there may be no temperature dependency of the electrical resistivity.
  • the electric resistor 1 can have the microstructure of the sea-island structure which makes the matrix 10 the sea-like part, and makes the conductive filler 11 an island-like part, as illustrated in FIG.
  • the conductive filler 11 preferably contains Si atoms.
  • the Si atoms of the conductive filler 11 diffuse into the borosilicate, and the borosilicate
  • the silicon enrichment of the salt is promoted, and the softening point of the matrix 10 can be improved. Therefore, according to this configuration, it is possible to improve the shape retentivity of the electric resistor 1, and the electric resistor 1 useful as a material of the structure can be obtained.
  • the honeycomb structure is a structure having thin cell walls. Therefore, the electric resistor 1 according to the above configuration is useful as a material of a conductive honeycomb structure having high structural reliability.
  • Si particles, Fe-Si based particles, Si-W based particles, Si-C based particles, Si- Examples include Mo-based particles and Si-Ti-based particles. These can be used alone or in combination of two or more.
  • the electric resistor 1 When the electric resistor 1 has the matrix 10 and the conductive filler 11, specifically, the electric resistor 1 can be configured to contain the matrix 10 and the conductive filler 11 in a total of 50 vol% or more. .
  • the electric resistor 1 since the matrix 10 composed of the borosilicate described above is adopted, the electric resistance of the matrix 10 can be reduced, and the matrix 10 can also transmit electrons. According to the above configuration, although it depends on the shape of the electric resistor 1, the conductivity of the electric resistor 1 can be reliably ensured by the known percolation theory.
  • the total content of the matrix 10 and the conductive filler 11 is preferably 52 vol% or more, more preferably 55 vol% or more, still more preferably 57 vol% or more, further preferably from the viewpoint of conductivity by formation of percolation, etc. Preferably, it can be 60 vol% or more.
  • the electric resistor 1 has the matrix 10 and the conductive filler 11, electrons flow while traveling through the conductive filler 11 and the matrix 10.
  • the reason why the electric resistor 1 exhibits the PTC characteristic is presumed to be that the electrons moving in the electric resistor 1 are affected by lattice vibration. Specifically, it is presumed that the large polaron reported for Na x WO 3 substances and the like is also generated in the electric resistor 1.
  • the electric resistor 1 can be configured such that a glass film containing an alkali-based atom is not substantially formed on the surface. According to this configuration, when the electric resistor 1 is used as a material of the conductive honeycomb structure, it is not necessary to remove the insulating glass film in advance when forming the electrode on the surface of the honeycomb structure, and the honeycomb structure The improvement of the manufacturability of the body can be ensured.
  • the glass film containing an alkali type atom is not substantially formed on the surface has the following meaning. Even if the glass coating is slightly formed on the surface of the electric resistor 1, the electric heating generates heat in the electric resistor 1 even if the glass coating is not removed when forming the electrode on the surface of the electric resistor 1. In the case where there is no problem in causing the glass coating, it can be assumed that the glass coating is not substantially formed on the surface.
  • the electric resistor 1 In the temperature range from 25 ° C. to 500 ° C., the electric resistor 1 has an electrical resistivity of 0.0001 ⁇ ⁇ m or more and 1 ⁇ ⁇ m or less, and an electric resistance increase rate of 0.01 ⁇ 10 ⁇ 6 / K or more 5
  • the configuration can be in the range of not more than 0 ⁇ 10 ⁇ 4 / K.
  • the electric resistor 1 In the temperature range of 25 ° C. to 500 ° C., the electric resistor 1 has an electric resistivity of 0.0001 ⁇ ⁇ m or more and 1 ⁇ ⁇ m or less, and an electric resistance increase rate of 0 or more and 0.01 ⁇ 10 ⁇ 6. It can be configured to be in the range of less than / K.
  • the electric resistor 1 in which the temperature distribution is not easily generated at the time of electric current heating and the crack due to the thermal expansion difference is not easily generated. Moreover, according to the above configuration, since the electric resistor 1 can generate heat earlier at a lower temperature during electric heating, the material of the honeycomb structure is required to be heated early for early activation of the catalyst. Useful as. When the rate of increase in electrical resistance is in the range of 0 or more and less than 0.01 ⁇ 10 ⁇ 6 / K, it can be considered that the temperature dependence of the electrical resistivity is almost nonexistent.
  • the electrical resistivity of the electrical resistor 1 varies depending on the required specification of the system using the electrical resistor 1 and the like, but from the viewpoint of reducing the electrical resistance of the electrical resistor 1, for example, preferably 0.5 ⁇ ⁇ m or less , More preferably 0.3 ⁇ ⁇ m or less, still more preferably 0.1 ⁇ ⁇ m or less, still more preferably 0.05 ⁇ ⁇ m or less, still more preferably 0.01 ⁇ ⁇ m or less, still more still Preferably, it may be less than 0.01 ⁇ ⁇ m, most preferably 0.005 ⁇ ⁇ m or less.
  • the electrical resistivity of the electrical resistor 1 is preferably 0.0002 ⁇ ⁇ m or more, more preferably 0.0005 ⁇ ⁇ m or more, still more preferably 0.001 ⁇ , from the viewpoint of increase in calorific value at the time of electric current heating. It can be m or more. According to this configuration, the electric resistor 1 suitable for the material of the honeycomb structure used for the electrically heated catalyst device can be obtained.
  • the electrical resistance increase rate of the electric resistor 1 is preferably 0.001 ⁇ 10 ⁇ 6 / K or more, more preferably 0.01 ⁇ 10 6 from the viewpoint of facilitating suppression of the temperature distribution by electric heating. It can be made ⁇ 6 / K or more, more preferably 0.1 ⁇ 10 ⁇ 6 / K or more. It is ideal that the rate of increase in electrical resistance of the electrical resistor 1 does not change from the viewpoint of the presence of an electrical resistance value that is optimal for current heating in an electrical circuit. From this point of view, the rate of increase in electrical resistance of the electrical resistor 1 is preferably 100 ⁇ 10 ⁇ 6 / K or less, more preferably 10 ⁇ 10 ⁇ 6 / K or less, still more preferably 1 ⁇ 10 ⁇ 6 / K. It can be less than or equal to K.
  • the electrical resistor 1 can be manufactured, for example, as follows, but is not limited thereto.
  • a boric acid, a Si atom containing substance, and kaolin are mixed. Or you may mix the borosilicate containing an alkali type atom, Si atom containing substance, and kaolin.
  • the shape of the borosilicate may be fibrous, particulate or the like.
  • the shape of the borosilicate is preferably fibrous from the viewpoint of improving the extrudability of the mixture and the like.
  • the electroconductive filler etc. which contain the Si atom mentioned above can be illustrated.
  • the mass ratio of boric acid can be, for example, 4 or more and 8 or less.
  • the mass ratio of boric acid is within the above range, it becomes easy to obtain the electric resistor 1 having a small temperature dependency of the electric resistivity.
  • content of the boron contained in borosilicate becomes easy to raise by raising the calcination temperature mentioned later.
  • the amount of boron doped in the silicate increases, it is advantageous for reducing the electrical resistance of the electrical resistor 1.
  • binder water
  • binder organic binders, such as a methyl cellulose, can be used, for example.
  • content of a binder can be about 2 mass%, for example.
  • the resulting mixture is then shaped into a predetermined shape.
  • the obtained molded body is fired.
  • the firing conditions can be, for example, under an inert gas atmosphere or in the air, under atmospheric pressure, a firing temperature of 1150 ° C. to 1350 ° C., and a firing time of 0.1 to 50 hours.
  • the firing atmosphere may be, for example, an inert gas atmosphere, and the pressure during firing may be normal pressure or the like.
  • the atmosphere at the time of firing is set to a high vacuum of 1.0 ⁇ 10 ⁇ 4 Pa or more. It is good to purge and bake an inert gas later.
  • the inert gas atmosphere an N 2 gas atmosphere, a helium gas atmosphere, an argon gas atmosphere, and the like can be exemplified.
  • the said molded object can also be calcined as needed.
  • the calcination conditions can be a calcination temperature of 500 ° C. to 700 ° C. and an calcination time of 1 to 50 hours in an air atmosphere or an inert gas atmosphere.
  • the electric resistor 1 can be obtained.
  • the temperature dependence of the electric resistivity is small, and the electric resistivity exhibits PTC characteristics, or the electric resistivity 1 has almost no temperature dependence of the electric resistivity. It can be realized.
  • the electrical resistor 1 of the present embodiment can be configured such that the electrical resistivity does not have NTC characteristics, it becomes possible to avoid current concentration at the time of current heating. Therefore, in the electric resistor 1 of the present embodiment, temperature distribution is hard to occur inside, and cracking due to thermal expansion difference is hard to occur.
  • the electrical resistor 1 of the present embodiment has an advantage that the temperature dependency of the electrical resistivity can be reduced with a lower electrical resistance than the resistor or SiC or the like in which the entire bulk is made of the matrix 10 described above. is there.
  • the electrical resistor 1 of the present embodiment contains another substance in addition to the matrix 10, and the other substance is the nonconductive filler 12 in that the embodiment is implemented. It is different from Form 1. According to this configuration, by combining the matrix 10 and the nonconductive filler 12, the electric resistivity of the entire electric resistor 1 is obtained by the addition of the electric resistivity of the matrix 10 and the electric resistivity of the nonconductive filler 12. Is determined. Therefore, according to this configuration, it is possible to control the electrical resistivity of the electrical resistor 1 by adjusting the content of the nonconductive filler 12 or the like.
  • the nonconductive filler 12 preferably contains Si atoms. According to this configuration, when manufacturing the electric resistor 1 by sintering the raw material containing the borosilicate and the nonconductive filler 12, Si atoms of the nonconductive filler 12 diffuse into the borosilicate, The silicon enrichment of the borosilicate is promoted and the softening point of the matrix 10 can be improved. Therefore, according to this configuration, it is possible to improve the shape retentivity of the electric resistor 1, and the electric resistor 1 useful as a material of the structure can be obtained.
  • the nonconductive filler 12 containing Si atoms is not particularly limited as long as Si atoms can be diffused into the borosilicate, and for example, SiO 2 particles, Si 3 N 4 particles, etc. may be exemplified. it can. These can be used alone or in combination of two or more. Moreover, specifically, the electric resistor 1 can be configured to contain 50 vol% or more of the matrix 10 and the nonconductive filler 12 in total.
  • the honeycomb structure 2 of the present embodiment is configured to include the electric resistor 1 of the first embodiment.
  • the honeycomb structure 2 is configured of the electric resistor 1 of the first embodiment.
  • a well-known structure can be applied to the honeycomb structure 1, and it is not limited to the structure of FIG.
  • FIG. 3 shows an example in which the cell 20 has a rectangular shape in cross section, the cell 20 may also have a hexagonal shape in cross section.
  • the honeycomb structure 2 of the present embodiment is configured to include the electric resistor 1 of the present embodiment. Therefore, in the honeycomb structure 2 of the present embodiment, temperature distribution is less likely to occur inside the structure at the time of electric heating, and cracking due to the thermal expansion difference is less likely to occur. In addition, since the honeycomb structure 2 of the present embodiment uses the electric resistor 1 of the present embodiment, it can generate heat earlier at a lower temperature at the time of electric heating.
  • the electrically heated catalyst device 3 of the present embodiment includes the honeycomb structure 2 of the third embodiment.
  • the electrically heated catalyst device 3 includes the honeycomb structure 2, a three-way catalyst (not shown) supported on the cell walls 21 of the honeycomb structure 2, and the honeycomb structure 2.
  • a pair of electrodes 31 and 32 disposed opposite to the outer peripheral wall 22 and a voltage application unit 33 for applying a voltage to the electrodes 31 and 32 are provided.
  • a well-known structure can be applied to the electrically heated catalyst device 3, and it is not limited to the structure of FIG.
  • the electrically heated catalyst device 3 of the present embodiment has the honeycomb structure 2 of the present embodiment. Therefore, in the electrically heated catalyst device 3 of the present embodiment, the honeycomb structure 2 is not easily broken at the time of electric current heating, and the reliability can be improved. Further, since the electrically heated catalyst device 3 of the present embodiment uses the honeycomb structure 2 of the present embodiment, the honeycomb structure 2 can generate heat earlier at a lower temperature during electric heating, which is a catalyst It is advantageous for the early activation of
  • the matrix in sample 1 is 2.9 mass% in total of alkali type atoms (Na, Mg, K and Ca), Si: 24.7 mass%, O: 69.5 mass% , Al: contained 1.1% by mass. Further, according to ICP measurement, the matrix in Sample 1 contained B: 0.8% by mass.
  • the EPMA analyzer "JXA-8500F” manufactured by Nippon Denshi Co., Ltd. was used.
  • ICP analyzer "SPS-3520 UV” manufactured by Hitachi High-Tech Science Co., Ltd. was used. The same applies below.
  • Sample 2 was obtained in the same manner as in sample 1 except that borosilicate glass particles, Si particles and kaolin were mixed at a mass ratio of 29:31:40. Note that according to EPMA measurement, the matrix in sample 2 has a total of 2.4 mass% of alkali type atoms (Na, Mg, K and Ca), Si: 22.7 mass%, O: 68.1 % By mass and Al: 5.4% by mass. Further, according to ICP measurement, the matrix in Sample 2 contained B: 0.6% by mass.
  • sample 1C was used as sample 1C.
  • the electrical resistivity was measured for each of the obtained samples.
  • the electrical resistivity was measured by a four-terminal method using a thermoelectric characteristic evaluation apparatus (“ZEM-2” manufactured by ULVAC-RIKO, Inc.) on a 5 mm ⁇ 5 mm ⁇ 18 mm prism sample.
  • ZEM-2 thermoelectric characteristic evaluation apparatus manufactured by ULVAC-RIKO, Inc.
  • both sample 1 and sample 2 have significantly smaller temperature dependence of electrical resistivity than SiC of sample 1C, and the electrical resistivity exhibits PTC characteristics. Recognize.
  • the sample 1 and the sample 2 have smaller electric resistivity in the measurement temperature range as compared to the SiC of the sample 1C.
  • the electrical resistivity exhibits PTC characteristics without using kaolin.
  • Samples 1 and 2 have an electrical resistivity of 0.0001 ⁇ ⁇ m or more and 1 ⁇ ⁇ m or less and an electric resistance increase rate of 0.01 ⁇ 10 ⁇ 6 / K or more in a temperature range of 25 ° C. to 500 ° C. It turns out that it exists in the range below 5.0 * 10 ⁇ -4 > / K.
  • Example 3- Borosilicate glass particles containing Na, Mg, K, Ca, Si particles and kaolin were mixed in a mass ratio of 29:31:40. Next, 0.4 mass% of sodium carbonate (Na 2 CO 3 ) and 2 mass% of methyl cellulose as a binder were added to this mixture, water was added, and the mixture was kneaded. Next, the obtained mixture was formed into pellets by an extruder and fired. The firing conditions were as follows: atmosphere pressure: atmospheric pressure, firing temperature 1300 ° C., firing time 30 minutes, heating rate 200 ° C./hour under argon gas atmosphere. This obtained sample 3 which has a shape of 5 mm x 5 mm x 18 mm.
  • the matrix in the sample 3 is 3.1 mass% in total of alkali-based atoms (Na, Mg, K and Ca), Si: 22.3 mass%, O: 67.7 % By mass, and Al: 5.3% by mass. Further, according to ICP measurement, the matrix in Sample 3 contained B: 0.6% by mass.
  • sample 4 was obtained in the same manner as in the preparation of the sample 3, except that the addition amount of sodium carbonate was 0.8 mass%.
  • the matrix in the sample 4 contains 3.5 mass% in total of alkali atoms (Na, Mg, K and Ca), Si: 22.4 mass%, O: 66.7 % By mass, and Al: 5.5% by mass.
  • the matrix in sample 4 contained B: 0.6% by mass.
  • sample 5 was obtained in the same manner as in the preparation of the sample 3, except that sodium carbonate was not added.
  • the matrix in the sample 5 has a total of 2.4 mass% of alkali type atoms (Na, Mg, K and Ca), Si: 22.7 mass%, O: 68.1 % By mass, and Al: 5.7% by mass.
  • the matrix in Sample 5 contained B: 0.6% by mass.
  • the electrical resistivity at room temperature was measured for each of the obtained samples. As shown in FIG. 7, the electrical resistivity of the sample decreased by adding an alkali-based atom-containing compound such as sodium carbonate. It is considered that the electrical resistivity of the sample is lowered by the addition of the alkali-based atom-containing compound because the oxidation of the Si particles is suppressed. In addition, it was confirmed that the total content of alkali-based atoms is increased in the samples 3 and 4 to which sodium carbonate is added as compared with the sample 5 to which sodium carbonate is not added. This is because the borosilicate glass used as the raw material is doped with Na by the addition of sodium carbonate, and the total content of alkali atoms is increased.
  • an alkali-based atom-containing compound such as sodium carbonate.
  • FIG. 8 (a) shows an atomic mapping image of aluminum around the Au electrode pads 9 with an emission microscope ("PHEMOS-1000" manufactured by Hamamatsu Photonics Co., Ltd.)
  • FIG. 8 (b) shows an optical microscope image of the periphery of the emission part E in the sample 2.
  • reference numeral 101 denotes a matrix
  • reference numeral 111 denotes Si particles.
  • the arrow Y indicates the estimated conductive path.
  • FIG. 8 it can be seen that electrons flow while traveling through Si and the matrix. Further, it can be seen that the Si site does not generate heat, but generates heat in the portion of the matrix made of borosilicate glass. From this result, it was confirmed that the region that governs the electric resistance at the time of electric current heating is a matrix which is a base material.
  • FIG. 9 shows an atomic mapping image of aluminum in the vicinity of the emission part of sample 2.
  • the circled part is an emission part.
  • the chemical composition at each site of the symbols a to l in FIG. 9 was measured. The results are shown in Table 1.
  • symbol a is an electrode.
  • the part i and the part j corresponding to the emission part were aluminosilicates.
  • the site b, the site e, the site f, the site k, and the site 1 were also aluminosilicates.
  • the part c and the part d were borosilicate glass.
  • the site g and the site h were silicon.
  • B is contained in the part i and the part j corresponding to the emission part. Therefore, the part i and the part j corresponding to the emission part are presumed to be aluminoborosilicate.
  • boron may not be detected due to low detection sensitivity.
  • the reason why a large amount of Fe was detected at the part a was because the point at which Fe was segregated was measured.
  • FIG. 10 (a) shows a base site to be subjected to composition analysis.
  • FIG. 10 (b) shows the composition ratio of Phase 1 shown in Table 2 or a region having the composition ratio.
  • FIG. 10C shows a composition ratio of Phase 2 shown in Table 2 or a region having the composition ratio.
  • FIG. 10D shows the composition ratio of Phase 5 shown in Table 2 or a region having the composition ratio.
  • FIG. 10E shows a composition ratio of Phase 6 shown in Table 2 or a region having the composition ratio. It can be seen that Phase 2 is a Si portion, and Phases 1, 5 and 6 are matrix portions.
  • the matrix part is composed of an aluminoborosilicate containing at least one selected from the group consisting of Na, Mg, K, and Ca, and this aluminoborosilicate is alkaline-based.
  • Total 0.01 to 10 mass% of atoms, 0.1 to 5 mass% of B atoms, 5 to 40 mass% of Si atoms, 40 to 85 mass of O atoms
  • the Al atom is contained in an amount of 0.5% by mass or more and 10% by mass or less.
  • kaolin was used for the raw material that the matrix part became an alumino borosilicate containing an alkali-type atom. Therefore, when kaolin is not used as the raw material, it can be said that the matrix part is a borosilicate containing an alkali atom.
  • the conditions for the primary firing were a firing temperature of 700 ° C., a temperature raising time of 100 ° C./hour, a holding time of 1 hour, and an atmospheric pressure / atmospheric pressure.
  • the primarily fired fired body was secondarily fired.
  • Conditions of the secondary firing N 2 gas atmosphere and pressure, the firing temperature 1300 ° C., firing time 30 min, and the heating rate 200 ° C. / hour.
  • This obtained sample 6 which has a shape of 5 mm x 5 mm x 18 mm.
  • the matrix in the sample 6 has a total of 6.4 mass% of alkali atoms (Na, Mg, K and Ca), Si: 21.4 mass%, O: 65.4 mass% , Al: contained 5.1% by mass.
  • the matrix in Sample 6 contained B: 0.8 mass%.
  • Example 7 The boric acid, the Si particles and the kaolin were mixed in a mass ratio of 4:42:54. Subsequently, 2 mass% of methylcellulose was added to this mixture as a binder, water was added, and it knead
  • the conditions for the primary firing were a firing temperature of 700 ° C., a temperature raising time of 100 ° C./hour, a holding time of 1 hour, and an atmospheric pressure / atmospheric pressure. Next, the primarily fired fired body was secondarily fired.
  • the matrix in sample 7 is 0.5 mass% in total of alkali type atoms (Na, Mg, K and Ca), Si: 22.7 mass%, O: 68.1 mass% , Al: contained 5.7% by mass. Further, according to ICP measurement, the matrix in Sample 7 contained B: 0.9% by mass.
  • the electrical resistivity of each of the obtained samples was measured in the same manner as in Experimental Example 1. As shown in FIG. 11, the temperature dependence of the electrical resistivity of each of the samples 6 and 7 is significantly smaller than that of the SiC of the sample 1C described in the experimental example 1, and the electrical resistivity has PTC characteristics. It can be seen that Samples 6 and 7 have an electrical resistivity of 0.0001 ⁇ ⁇ m or more and 1 ⁇ ⁇ m or less and an electric resistance increase rate of 0.01 ⁇ 10 ⁇ 6 / K or more in a temperature range of 25 ° C. to 500 ° C. It turns out that it exists in the range below 5.0 * 10 ⁇ -4 > / K. Although the sample 7 is fired at a lower temperature than the sample 6, predetermined characteristics are obtained.
  • Experimental Example 7 -Sample 8- A sample 8 was obtained in the same manner as the sample 7 of Experimental Example 6 except that the boric acid, the Si particles, and the kaolin were mixed at a mass ratio of 6:41:53, and the firing temperature was 1250 ° C.
  • the matrix in sample 8 contains 0.5 mass% of alkali-based atoms in total, 23.6 mass% of Si, 66.8 mass% of O, and 5.8 mass% of Al. It was. Further, according to ICP measurement, the matrix in Sample 8 contained B: 1.3% by mass.
  • sample 9 was obtained in the same manner as the sample 7 of Experimental Example 6 except that the boric acid, the Si particles, and the kaolin were mixed at a mass ratio of 8:40:52, and the baking temperature was 1250 ° C.
  • the matrix in sample 9 contains 0.4 mass% of alkali-based atoms in total, 23.9 mass% of Si, 66.1 mass% of O, and 5.6 mass% of Al. It was. Further, according to ICP measurement, the matrix in Sample 9 contained B: 2.1% by mass.
  • sample 10 was obtained in the same manner as the sample 7 of Experimental Example 6 except that the boric acid, the Si particles, and the kaolin were mixed at a mass ratio of 4:42:54, and the firing temperature was 1300.degree.
  • the matrix in the sample 10 contains 0.4 mass% of alkali-based atoms in total, 24.1 mass% of Si, 65.9 mass% of O, and 5.9 mass% of Al. It was. Further, according to ICP measurement, the matrix in sample 10 contained B: 0.9% by mass.
  • sample 11 was obtained in the same manner as the sample 7 of the experimental example 6, except that the boric acid, the Si particles, and the kaolin were mixed at a mass ratio of 6:41:53, and the firing temperature was 1300.degree.
  • the matrix in the sample 11 contains 0.4 mass% in total of alkali-based atoms, 23.0 mass% of Si, 67.1 mass% of O, and 5.5 mass% of Al. It was. Further, according to ICP measurement, the matrix in the sample 11 contained B: 1.4% by mass.
  • sample 12 was obtained in the same manner as the sample 7 of Experimental Example 6 except that the boric acid, the Si particles, and the kaolin were mixed at a mass ratio of 8:40:52, and the baking temperature was 1300 ° C.
  • the matrix in the sample 12 contains 0.4 mass% of alkali-based atoms in total, 22.8 mass% of Si, 68.2 mass% of O, and 5.4 mass% of Al. It was. Further, according to ICP measurement, the matrix in the sample 12 contained B: 2.0% by mass.
  • the electrical resistivity of each of the obtained samples was measured in the same manner as in Experimental Example 1. The results are shown in FIG. 16 and FIG. As shown in FIG. 16 and FIG. 17, it was confirmed that, as the baking temperature is higher and the preparation amount of boric acid is larger, boron doping to the aluminosilicate is promoted and the electrical resistivity is lowered.
  • the following can be said by using a borosilicate containing at least one or more alkali atoms such as Na, Mg, K and Ca as a matrix of the electric resistor.
  • the region that governs the electrical resistance at the time of electric current heating is the matrix that is the base material.
  • the matrix has a smaller temperature dependency of the electrical resistivity than SiC, and the electrical resistivity exhibits a PTC characteristic. Therefore, when the electrical resistivity of another substance different from the matrix that can be included in the electrical resistor shows PTC characteristics, the temperature dependence of the electrical resistivity of the electrical resistor is small, and the PTC characteristics are It can be configured as shown.
  • the electrical resistivity of the other substance when the electrical resistivity of the other substance exhibits NTC characteristics, the electrical resistivity of the matrix exhibiting the PTC characteristic and the electrical resistivity of the other substance exhibiting the NTC characteristic add up to the electrical resistance of the electrical resistor.
  • the resistivity can be designed to have a small temperature dependence and to exhibit PTC characteristics or to have little temperature dependence. Therefore, by employing the above matrix, it is possible to obtain an electric resistor having a small temperature dependency of the electrical resistivity and exhibiting a PTC characteristic of the electrical resistivity or having little temperature dependency of the electrical resistivity. It will be possible.
  • the electric resistor can be configured such that the electric resistivity does not have the NTC characteristic, it becomes possible to avoid current concentration at the time of current heating.
  • the electric resistor in which a temperature distribution does not easily occur inside and a crack due to a thermal expansion difference is not easily produced. Furthermore, by adopting the matrix, the electric resistor can achieve low electric resistance of the matrix, and obtains an electric resistor with low electric resistance and small temperature dependency of electric resistivity. It becomes possible.
  • the present disclosure is not limited to the above embodiments and experimental examples, and various modifications can be made without departing from the scope of the invention. Moreover, each structure shown by each embodiment and each experiment example can each be combined arbitrarily. That is, although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments, structures, and the like. The present disclosure includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.
  • the honeycomb structure is formed of the electrical resistor of the first embodiment is described. However, the honeycomb structure may be formed of the electrical resistor of the second embodiment.
  • the electrically heated catalyst device can also apply the honeycomb structure configured of the electric resistor of the second embodiment. It is.

Abstract

An electrical resistor (1) comprises a matrix (10) which is configured of a borosilicate containing at least one alkali atom selected from the group consisting of Na, Mg, K, Ca, Li, Be, Rb, Sr, Cs, Ba, Fr and Ra. Preferably, the electrical resistor (1) comprises an electrically conductive filler (11). A honeycomb structure (2) is configured including the electrical resistor (1). An electrically heated catalyst device (3) comprises the honeycomb structure (2). Preferably, the electrical resistor (1) has an electrical resistivity of 0.0001-1 Ω∙m and an electrical resistivity rise rate of 0.01×10-6 to5.0×10-4/K in a temperature range of 25-500°C.

Description

電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置Electric resistor, honeycomb structure, and electrically heated catalyst device 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年6月30日に出願された日本出願番号2017-129229号、および、2017年12月19日に出願された日本出願番号2017-243080号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-129229 filed on June 30, 2017, and Japanese Patent Application No. 2017-243080 filed on December 19, 2017, as described herein. The contents are incorporated.
 本開示は、電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置に関する。 The present disclosure relates to an electric resistor, a honeycomb structure, and an electrically heated catalyst device.
 従来、様々な分野において、通電加熱に電気抵抗体が用いられている。例えば、車両分野では、触媒を担持するハニカム構造体をSiC等の電気抵抗体より構成し、通電加熱によってハニカム構造体を発熱させる電気加熱式触媒装置が公知である。 Conventionally, in various fields, electric resistors are used for electric heating. For example, in the field of vehicles, there is known an electrically heated catalyst device in which a honeycomb structure supporting a catalyst is formed of an electric resistor such as SiC and the honeycomb structure is heated by electric heating.
 なお、先行する特許文献1には、金属Si粉末20~35wt%、石英粉末5~15wt%、ホウケイ酸ガラス20~30wt%、粘土粉末30~40wt%からなる混合粉末に、水を加え混練、成形した後、大気中にて1200~1300℃の温度で熱処理してなる導電性セラミックスが記載されている。 Incidentally, in the prior patent document 1, water is added to a mixed powder consisting of 20 to 35 wt% of metal Si powder, 5 to 15 wt% of quartz powder, 20 to 30 wt% of borosilicate glass, and 30 to 40 wt% of clay powder and kneaded. A conductive ceramic is described which is formed and heat treated at a temperature of 1200 to 1300 ° C. in the atmosphere.
特開2004-131302号公報JP 2004-131302 A
 通電加熱により電気抵抗体を効率よく発熱させるためには、電気抵抗体の電気抵抗率に対して電流電圧の最適値がある。しかしながら、SiCに代表されるように、多くの電気抵抗体では、電気抵抗率の温度依存性が大きく、電流電圧の最適値が電気抵抗体の温度によって変化する。そのため、電気抵抗率の温度依存性が小さい電気抵抗体が必要となる。 In order to cause the electric resistor to generate heat efficiently by current heating, there is an optimum value of the current voltage with respect to the electric resistivity of the electric resistor. However, as represented by SiC, in many electric resistors, the temperature dependency of electric resistivity is large, and the optimum value of the current voltage changes with the temperature of the electric resistor. Therefore, an electrical resistor having a small temperature dependency of electrical resistivity is required.
 電気抵抗体の電気抵抗率が温度によって大きく変化すると、例えば、定電圧制御の電気回路では、電気抵抗体を流れる電流の変動幅が大きくなる。そのため、これを回避するために電気回路が複雑となって、電気回路のコストが増加する。SiCのように、電気抵抗率の温度変化が大きい上、温度が高くなるにつれて電気抵抗率が減少するNTC特性を示す電気抵抗体では、通電加熱時に電極間距離の短い部分等に電流が集中して流れて局所的に発熱する。そのため、NTC特性を示す電気抵抗体は温度分布を生じやすい。電気抵抗体に温度分布が生じると、電気抵抗体の内部に熱膨張差が発生し、電気抵抗体が割れやすくなる。なお、温度が高くなるにつれて電気抵抗率が増加する特性は、PTC特性と呼ばれる。 If the electrical resistivity of the electrical resistor changes significantly with temperature, for example, in a constant voltage control electrical circuit, the fluctuation range of the current flowing through the electrical resistor becomes large. Therefore, the electric circuit becomes complicated to avoid this, and the cost of the electric circuit increases. In the case of an electrical resistor that exhibits NTC characteristics, such as SiC, in which the temperature change of the electrical resistivity is large and the electrical resistivity decreases as the temperature rises, the current is concentrated in a short distance between electrodes during current heating. Flow locally and generate heat locally. Therefore, an electrical resistor exhibiting NTC characteristics is likely to cause temperature distribution. When temperature distribution occurs in the electric resistor, a thermal expansion difference is generated inside the electric resistor, and the electric resistor is easily broken. The characteristic that the electrical resistivity increases as the temperature rises is called a PTC characteristic.
 本開示は、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示す、または、電気抵抗率の温度依存性がほとんどない電気抵抗体、当該電気抵抗体を用いたハニカム構造体、当該ハニカム構造体を用いた電気加熱式触媒装置を提供することを目的とする。 The present disclosure is an electric resistor having a small temperature dependence of the electric resistivity and exhibiting an PTC characteristic of the electric resistivity, or having little temperature dependence of the electric resistivity, and a honeycomb structure using the electric resistor. An object of the present invention is to provide an electrically heated catalyst device using a body and the honeycomb structure.
 本開示の一態様は、Na、Mg、K、Ca、Li、Be、Rb、Sr、Cs、Ba、Fr、および、Raからなる群より選択される少なくとも1つのアルカリ系原子を含むホウケイ酸塩より構成されるマトリックスを有する、電気抵抗体にある。 One aspect of the present disclosure is a borosilicate including at least one alkali-based atom selected from the group consisting of Na, Mg, K, Ca, Li, Be, Rb, Sr, Cs, Ba, Fr, and Ra. The electric resistor has a matrix composed of:
 本開示の他の態様は、上記電気抵抗体を含んで構成されている、ハニカム構造体にある。 Another aspect of the present disclosure is a honeycomb structure configured to include the electric resistor.
 本開示のさらに他の態様は、上記ハニカム構造体を有する、電気加熱式触媒装置にある。 Yet another aspect of the present disclosure is an electrically heated catalyst device having the above honeycomb structure.
 上記電気抵抗体は、Na、Mg、K、Ca、Li、Be、Rb、Sr、Cs、Ba、Fr、および、Raからなる群より選択される少なくとも1つのアルカリ系原子を含むホウケイ酸塩より構成されるマトリックスを有している。 The electric resistor is made of borosilicate containing at least one alkali-based atom selected from the group consisting of Na, Mg, K, Ca, Li, Be, Rb, Sr, Cs, Ba, Fr, and Ra. It has a matrix that is configured.
 上記電気抵抗体によれば、通電加熱時に電気抵抗を支配する領域が、母材である上記マトリックスとなる。上記マトリックスは、SiCに比べ、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示す。そのため、上記電気抵抗体に含まれうる上記マトリックスとは異なる他の物質の電気抵抗率がPTC特性を示す場合には、上記電気抵抗体の電気抵抗率は、温度依存性が小さく、かつ、PTC特性を示すことができる。一方、上記他の物質の電気抵抗率がNTC特性を示す場合には、PTC特性を示すマトリックスの電気抵抗率とNTC特性を示す上記他の物質の電気抵抗率との足し合わせにより、上記電気抵抗体の電気抵抗率を、温度依存性が小さく、かつ、PTC特性を示す、または、温度依存性がほとんどないように設計することができる。 According to the electrical resistor, the region that governs the electrical resistance at the time of electric current heating is the matrix that is the base material. The matrix has a smaller temperature dependency of the electrical resistivity than SiC, and the electrical resistivity exhibits a PTC characteristic. Therefore, when the electrical resistivity of another substance different from the matrix that can be included in the electrical resistor exhibits PTC characteristics, the electrical resistivity of the electrical resistor has a small temperature dependency, and the PTC is It can show the characteristics. On the other hand, when the electric resistivity of the other substance shows NTC characteristics, the electric resistance of the matrix showing the PTC characteristic and the electric resistivity of the other substance showing the NTC characteristic gives the electric resistance. The electrical resistivity of the body can be designed to have low temperature dependence and to exhibit PTC properties or to have little temperature dependence.
 したがって、上記電気抵抗体によれば、上記マトリックスを採用したことにより、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示す、または、電気抵抗率の温度依存性がほとんどない電気抵抗体が得られる。 Therefore, according to the electric resistor, by adopting the matrix, the temperature dependency of the electric resistivity is small, and the electric resistivity exhibits the PTC characteristic, or the temperature dependency of the electric resistivity is almost the same. No electrical resistor is obtained.
 また、上記電気抵抗体は、上記の通り、電気抵抗率がNTC特性とならないように構成することができることから、通電加熱時の電流集中を回避することが可能となる。そのため、上記電気抵抗体は、内部に温度分布が生じ難く、熱膨張差による割れが生じ難い。なお、SiCは、小さな電流で通電加熱することにより、熱膨張率差による割れを発生させないようにすることも可能ではあるが、十分に加熱するためには時間を要する。 Further, as described above, since the electric resistor can be configured such that the electric resistivity does not have the NTC characteristic, it becomes possible to avoid current concentration at the time of current heating. Therefore, in the electric resistor, temperature distribution is hard to occur inside, and cracking due to the thermal expansion difference is hard to occur. In addition, although it is possible to prevent generation of a crack due to a thermal expansion coefficient difference by electrically heating SiC with a small current, it takes time to sufficiently heat it.
 さらに、上記電気抵抗体は、上記マトリックスを採用したことにより、マトリックスの低電気抵抗化を図ることができる。そのため、上記電気抵抗体は、上記他の物質を含有させる場合に、例えば、上記他の物質として電気抵抗率の低いものを選択し、かつ、その含有量を増加させることで、上記電気抵抗体の電気抵抗率を低下させやすい。したがって、上記電気抵抗体は、バルク全体が上記マトリックスからなる抵抗体やSiC等に比べ、低電気抵抗で、かつ、電気抵抗率の温度依存性を小さくすることができる利点がある。 Furthermore, the said electrical resistor can achieve the low electrical resistance of a matrix by employ | adopting the said matrix. Therefore, when the above-mentioned electric resistor is made to contain the above-mentioned other substance, for example, the thing with low electric resistivity as the above-mentioned other substance is selected, and the above-mentioned electric resistor is made by increasing the content. It is easy to lower the electrical resistivity of Therefore, the electric resistor has an advantage that the temperature dependency of the electric resistivity can be reduced, as compared with a resistor or SiC or the like in which the whole bulk is made of the matrix.
 上記ハニカム構造体は、上記電気抵抗体を含んで構成されている。そのため、上記ハニカム構造体は、通電加熱時に、構造体内部に温度分布が生じ難く、熱膨張差による割れが生じ難い。また、上記ハニカム構造体は、上記電気抵抗体を用いているので、通電加熱時に、より低温で早期に発熱させることができる。 The honeycomb structure includes the electric resistor. Therefore, in the above-mentioned honeycomb structure, temperature distribution does not easily occur inside the structure at the time of electric current heating, and cracking due to the difference in thermal expansion hardly occurs. In addition, since the above-mentioned electric resistor is used in the above-mentioned honeycomb structure, heat can be generated earlier at a lower temperature at the time of electric heating.
 上記電気加熱式触媒装置は、上記ハニカム構造体を有している。そのため、上記電気加熱式触媒装置は、通電加熱時にハニカム構造体が割れ難く、信頼性を向上させることができる。また、上記電気加熱式触媒装置は、上記ハニカム構造体を用いているので、通電加熱時に、より低温で早期に上記ハニカム構造体を発熱させることができ、触媒の早期活性化に有利である。 The electrically heated catalyst device has the honeycomb structure. Therefore, in the electrically heated catalyst device, the honeycomb structure is less likely to be broken during electric heating, and the reliability can be improved. Further, since the electrically heated catalyst device uses the honeycomb structure, the honeycomb structure can generate heat earlier at a lower temperature during electric heating, which is advantageous for early activation of the catalyst.
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。 In addition, the code in the parentheses described in the claims indicates the correspondence with the specific means described in the embodiments to be described later, and does not limit the technical scope of the present disclosure.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1の電気抵抗体の微構造を模式的に示した説明図であり、 図2は、実施形態2の電気抵抗体の微構造を模式的に示した説明図であり、 図3は、実施形態3のハニカム構造体を模式的に示した説明図であり、 図4は、実施形態4の電気加熱式触媒装置を模式的に示した説明図であり、 図5は、実験例1における、試料1および試料2の温度と電気抵抗率との関係を示したグラフであり、 図6は、実験例1における、試料2と試料1Cの温度と電気抵抗率との関係を示したグラフであり、 図7は、実験例2における、炭酸ナトリウムの添加割合と試料の電気抵抗率との関係を示したグラフであり、 図8は、実験例3における、(a)試料2のアルミニウムの原子マッピング像と、(b)エミッション部周辺の光学顕微鏡像であり、 図9は、実験例4における、試料2のエミッション部周辺のアルミニウムの原子マッピング像であり、 図10は、実験例5における、試料2のSEM-EDXによる組成分析結果であり、 図11は、実験例6における、試料6および試料7の温度と電気抵抗率との関係を示したグラフであり、 図12は、実験例6における、試料6の材料断面の原子マッピング像であり、 図13は、実験例6における、試料7の材料断面の原子マッピング像であり、 図14は、実験例6における、試料6の材料表面から深さ方向へのCaのラインプロファイルであり、 図15は、実験例6における、試料7の材料表面から深さ方向へのCaのラインプロファイルであり、 図16は、実験例7における、試料8および試料9(1250℃焼成品)の温度と電気抵抗率との関係を示したグラフであり、 図17は、実験例7における、試料10~試料12(1300℃焼成品)の温度と電気抵抗率との関係を示したグラフである。
The above object and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings. The drawing is
FIG. 1 is an explanatory view schematically showing a fine structure of the electric resistor according to the first embodiment, FIG. 2 is an explanatory view schematically showing a fine structure of the electric resistor according to the second embodiment, FIG. 3 is an explanatory view schematically showing a honeycomb structure of Embodiment 3. FIG. 4 is an explanatory view schematically showing an electrically heated catalyst device of Embodiment 4. FIG. 5 is a graph showing the relationship between the temperature and the electrical resistivity of Sample 1 and Sample 2 in Experimental Example 1, FIG. 6 is a graph showing the relationship between the temperature and the electrical resistivity of Sample 2 and Sample 1C in Experimental Example 1, FIG. 7 is a graph showing the relationship between the addition ratio of sodium carbonate and the electrical resistivity of the sample in Experimental Example 2, FIG. 8 shows (a) an atomic mapping image of aluminum of sample 2 and (b) an optical microscope image of the periphery of the emission portion in Experimental Example 3, FIG. 9 is an atomic mapping image of aluminum in the vicinity of the emission part of Sample 2 in Experimental Example 4; FIG. 10 shows the result of analysis of the composition of Sample 2 by SEM-EDX in Experimental Example 5, 11 is a graph showing the relationship between the temperature and the electrical resistivity of Sample 6 and Sample 7 in Experimental Example 6, FIG. 12 is an atomic mapping image of a cross section of a material of Sample 6 in Experimental Example 6, FIG. 13 is an atomic mapping image of a cross section of a material of sample 7 in Experimental Example 6, FIG. 14 is a line profile of Ca in the depth direction from the material surface of sample 6 in Experimental Example 6, FIG. 15 is a line profile of Ca in the depth direction from the material surface of sample 7 in Experimental Example 6, FIG. 16 is a graph showing the relationship between the temperature and the electrical resistivity of Samples 8 and 9 (baked product at 1250 ° C.) in Experimental Example 7; FIG. 17 is a graph showing the relationship between the temperature and the electrical resistivity of Samples 10 to 12 (baked article at 1300 ° C.) in Experimental Example 7.
(実施形態1)
 実施形態1の電気抵抗体について、図1を用いて説明する。図1に例示されるように、本実施形態の電気抵抗体1は、マトリックス10を有している。マトリックス10は、電気抵抗体1の母材となる部位である。なお、マトリックス10は、非晶質であってもよいし、結晶質であってもよい。
(Embodiment 1)
The electrical resistor according to the first embodiment will be described with reference to FIG. As illustrated in FIG. 1, the electric resistor 1 of the present embodiment has a matrix 10. The matrix 10 is a portion to be a base material of the electric resistor 1. The matrix 10 may be amorphous or crystalline.
 マトリックス10は、Na(ナトリウム)、Mg(マグネシウム)、K(カリウム)、Ca(カルシウム)、Li(リチウム)、Be(ベリリウム)、Rb(ルビジウム)、Sr(ストロンチウム)、Cs(セシウム)、Ba(バリウム)、Fr(フランシウム)、および、Ra(ラジウム)からなる群より選択される少なくとも1種のアルカリ系原子を含むホウケイ酸塩より構成されている。各アルカリ系原子は、単独またはいずれの組み合わせでホウケイ酸塩に含まれていてもよい。つまり、ホウケイ酸塩は、アルカリ金属原子を1種または2種以上含んでいてもよいし、アルカリ土類金属原子を1種または2種以上含んでいてもよいし、これらの組み合わせを含んでいてもよい。ホウケイ酸塩は、マトリックス10の低電気抵抗化を図りやすいなどの観点から、好ましくは、アルカリ系原子として、Na、Mg、K、および、Caからなる群より選択される少なくとも1種を含むことができる。より好ましくは、ホウケイ酸塩は、Na、K、または、NaおよびKの双方を少なくとも含むことができる。 The matrix 10 is made of Na (sodium), Mg (magnesium), K (potassium), Ca (calcium), Li (lithium), Be (beryllium), Rb (rubidium), Sr (strontium), Cs (cesium), Ba. It is comprised from the borosilicate containing at least 1 sort (s) of alkali-type atom selected from the group which consists of (barium), Fr (francium), and Ra (radium). Each alkali-based atom may be contained in the borosilicate singly or in any combination. That is, the borosilicate may contain one or more alkali metal atoms, one or more alkaline earth metal atoms, or a combination of these. It is also good. The borosilicate preferably contains at least one selected from the group consisting of Na, Mg, K, and Ca as an alkali atom, from the viewpoint of facilitating reduction of the electrical resistance of the matrix 10 and the like. Can. More preferably, the borosilicate can include at least Na, K, or both Na and K.
 ホウケイ酸塩において、アルカリ系原子の合計含有量は、10質量%以下とすることができる。この構成によれば、マトリックス10の低電気抵抗化を促進させやすくなる。また、この構成によれば、SiCに比べ、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示すマトリックス10を確実なものとすることができる。なお、「アルカリ系原子の合計含有量」とは、ホウケイ酸塩がアルカリ系原子を1種含む場合には、その1種のアルカリ系原子の質量%を意味する。また、ホウケイ酸塩がアルカリ系原子を複数種含む場合には、その複数の各アルカリ系原子の各含有量(質量%)を足し合わせた合計の含有量(質量%)を意味する。 In the borosilicate, the total content of alkali-based atoms can be 10% by mass or less. According to this configuration, the reduction of the electrical resistance of the matrix 10 can be facilitated. Moreover, according to this configuration, the temperature dependence of the electrical resistivity is smaller than that of SiC, and the matrix 10 in which the electrical resistivity exhibits the PTC characteristic can be made reliable. In addition, "total content of an alkali type atom" means the mass% of one type of alkali type atom, when borosilicate contains 1 type of alkali type atoms. Moreover, when borosilicate contains multiple types of alkali-type atoms, the total content (mass%) which added each content (mass%) of each of these several alkali-type atoms is meant.
 アルカリ系原子の合計含有量は、マトリックス10の軟化点低下による形状変化の抑制などの観点から、好ましくは、8質量%以下、より好ましくは、5質量%以下、さらに好ましくは、3質量%以下とすることができる。また、アルカリ系原子の合計含有量は、酸化雰囲気での焼成時における電気抵抗体1表面側へのアルカリ系原子の偏析による絶縁性ガラス被膜の形成抑制などの観点から、さらにより好ましくは、2質量%以下、さらに一層好ましくは、1.5質量%以下、さらにより一層好ましくは、1.2質量%以下、最も好ましくは、1質量%以下とすることができる。 The total content of alkali-based atoms is preferably 8% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, from the viewpoint of suppression of shape change due to softening point reduction of matrix 10 It can be done. In addition, the total content of alkali atoms is more preferably 2 in view of suppression of formation of insulating glass film by segregation of alkali atoms to the surface side of electric resistor 1 at the time of firing in an oxidizing atmosphere. The content may be less than or equal to mass%, more preferably less than or equal to 1.5 mass%, still more preferably less than or equal to 1.2 mass%, and most preferably less than or equal to 1 mass%.
 ホウケイ酸塩は、具体的には、アルカリ系原子として、Na、Mg、K、および、Caからなる群より選択される少なくとも1種を含んでおり、当該アルカリ系原子の合計含有量が、2質量%以下である構成とすることができる。この構成によれば、酸素ガスを含む雰囲気での焼成時に、酸素ガスを遮断するガスバリア膜を形成しなくても、電気抵抗体1表面側へ溶出して偏析したアルカリ系原子が雰囲気中の酸素と反応して絶縁性のガラス被膜が形成されるのを抑制しやすくなる。また、電気抵抗体1を導電性のハニカム構造体の材料に用いる場合に、ハニカム構造体の表面に電極を形成するに当たって予め絶縁性のガラス被膜を除去しなくて済み、ハニカム構造体の製造性が向上する利点もある。なお、この場合におけるアルカリ系原子の合計含有量は、絶縁性のガラス被膜の形成抑制などの観点から、好ましくは、1.5質量%以下、より好ましくは、1.2質量%以下、さらに好ましくは、1質量%以下とすることができる。 The borosilicate specifically includes at least one selected from the group consisting of Na, Mg, K, and Ca as alkali atoms, and the total content of the alkali atoms is 2 It can be set as the mass% or less. According to this configuration, even if the gas barrier film for blocking the oxygen gas is not formed at the time of firing in the atmosphere containing the oxygen gas, the oxygen in the atmosphere is an alkali-based atom eluted and segregated to the surface side of the electric resistor 1 It is easy to suppress the formation of an insulating glass film by reacting with In addition, when using the electric resistor 1 as a material of the conductive honeycomb structure, it is not necessary to remove the insulating glass film in advance when forming the electrode on the surface of the honeycomb structure, and the productivity of the honeycomb structure There is also an advantage that The total content of alkali atoms in this case is preferably 1.5% by mass or less, more preferably 1.2% by mass or less, from the viewpoint of suppression of formation of insulating glass film, etc. May be 1% by mass or less.
 但し、アルカリ系原子が存在すると材料表面に膜を形成する現象や、後述するSi粒子等の導電性フィラー11の周囲をアルカリ系原子が取り囲む現象などによって導電性フィラー11の酸化を抑制するため、Si粒子等の導電性フィラー11の酸化が問題となる場合にアルカリ系原子が意図的に添加されることがある。そのため、製造条件や使用方法等によって上述したアルカリ系原子の合計含有量は適宜選択することが重要である。もっとも、アルカリ系原子は、電気抵抗体1の原料から比較的混入しやすい元素である。そのため、ホウケイ酸塩がアルカリ系原子を含まないように、原料からアルカリ系原子を完全に除去するにはコストと時間がかかる。したがって、アルカリ系原子の合計含有量は、好ましくは、0.01質量%以上、より好ましくは、0.05質量%以上、さらに好ましくは、0.1質量%以上、さらにより好ましくは、0.2質量%以上とすることができる。なお、電気抵抗体1において、原料として、アルカリ系原子を含むホウケイ酸ガラスを使用せずに、ホウ酸を用いることで、アルカリ系原子の低減を図ることが可能となる。詳しくは、実験例にて後述する。 However, in order to suppress oxidation of the conductive filler 11 due to the phenomenon of forming a film on the surface of the material when alkali atoms are present, or the phenomenon that alkali atoms surround the periphery of the conductive filler 11 such as Si particles described later. When oxidation of the conductive filler 11 such as Si particles is a problem, alkali atoms may be intentionally added. Therefore, it is important to appropriately select the total content of the alkali-based atoms described above depending on the manufacturing conditions, the method of use, and the like. However, an alkali-based atom is an element which is relatively easy to be mixed from the raw material of the electric resistor 1. Therefore, it takes cost and time to completely remove alkali atoms from the raw material so that the borosilicate does not contain alkali atoms. Therefore, the total content of alkali-based atoms is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, still more preferably 0. It can be 2% by mass or more. In addition, in the electric resistance body 1, it becomes possible to aim at reduction of an alkali type atom by using a boric acid as a raw material, without using the borosilicate glass containing an alkali type atom. The details will be described later in experimental examples.
 ホウケイ酸塩は、B(ホウ素)原子を0.1質量%以上5質量%以下含むことができる。この構成によれば、PTC特性を発現させやすくなるなどの利点がある。 The borosilicate can contain B (boron) atoms of 0.1% by mass or more and 5% by mass or less. According to this configuration, there is an advantage that the PTC characteristics can be easily expressed.
 B原子の含有量は、マトリックス10の低電気抵抗化を図りやすくなるなどの観点から、好ましくは、0.2質量%以上、より好ましくは、0.5質量%以上、さらに好ましくは、1質量%以上、さらにより好ましくは、1.2質量%以上、さらに一層好ましくは、1.5質量%以上、さらにより一層好ましくは、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示しやすい等の観点から、2質量%超とすることができる。また、B原子の含有量は、ケイ酸塩へのドープ量に限界があり、ドープされない場合は絶縁体であるBとして材料中に偏在して導電性低下の原因となるなどの観点から、好ましくは、4質量%以下、より好ましくは、3.5質量%以下、さらに好ましくは、3質量%以下とすることができる。 The content of B atoms is preferably 0.2% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass from the viewpoint of facilitating reduction of the electrical resistance of the matrix 10 and the like. % Or more, still more preferably 1.2% by mass or more, still more preferably 1.5% by mass or more, still more preferably the temperature dependence of the electrical resistivity is small, and the electrical resistivity is PTC From the viewpoint of easily showing characteristics, etc., it can be more than 2% by mass. In addition, the content of B atoms is limited in the amount of doping to the silicate, and when not doped, it is unevenly distributed in the material as B 2 O 3 which is an insulator, which causes a decrease in conductivity, etc. From this, preferably, it can be 4% by mass or less, more preferably, 3.5% by mass or less, and still more preferably, 3% by mass or less.
 ホウケイ酸塩は、Si(シリコン)原子を5質量%以上40質量%以下含むことができる。この構成によれば、ホウケイ酸塩の電気抵抗率がPTC特性を示しやすくなる。 The borosilicate can contain 5 mass% or more and 40 mass% or less of Si (silicon) atoms. According to this configuration, the electrical resistivity of the borosilicate tends to exhibit PTC characteristics.
 Si原子の含有量は、上記効果を確実なものとする、マトリックスの軟化点を上昇させるなどの観点から、好ましくは、7質量%以上、より好ましくは、10質量%以上、さらに好ましくは、15質量%以上とすることができる。また、Si原子の含有量は、上記効果を確実なものとするなどの観点から、好ましくは、30質量%以下、より好ましくは、26質量%以下、さらに好ましくは、24質量%以下とすることができる。 The content of the Si atom is preferably 7% by mass or more, more preferably 10% by mass or more, and still more preferably 15 from the viewpoint of ensuring the above effects and raising the softening point of the matrix. It can be made to be% by mass or more. In addition, the content of Si atoms is preferably 30% by mass or less, more preferably 26% by mass or less, and still more preferably 24% by mass or less from the viewpoint of ensuring the above effects and the like. Can.
 ホウケイ酸塩は、O(酸素)原子を40質量%以上85質量%以下含むことができる。この構成によれば、PTC特性を発現させやすくなるなどの利点がある。 The borosilicate can contain 40% by mass or more and 85% by mass or less of O (oxygen) atoms. According to this configuration, there is an advantage that the PTC characteristics can be easily expressed.
 O原子の含有量は、上記効果を確実なものとするなどの観点から、好ましくは、45質量%以上、より好ましくは、50質量%以上、さらに好ましくは、55質量%以上、さらにより好ましくは、60質量%以上とすることができる。また、O原子の含有量は、上記効果を確実なものとするなどの観点から、好ましくは、82質量%以下、より好ましくは、80質量%以下、さらに好ましくは、78質量%以下とすることができる。 The content of O atom is preferably 45% by mass or more, more preferably 50% by mass or more, still more preferably 55% by mass or more, and still more preferably, from the viewpoint of ensuring the above effects and the like. , 60 mass% or more. In addition, the content of O atom is preferably 82% by mass or less, more preferably 80% by mass or less, and still more preferably 78% by mass or less from the viewpoint of ensuring the above effects and the like. Can.
 ホウケイ酸塩は、具体的には、アルミノホウケイ酸塩などとすることができる。この構成によれば、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示す、または、電気抵抗率の温度依存性がほとんどない電気抵抗体1を確実なものとすることができる。 The borosilicate can be specifically an aluminoborosilicate or the like. According to this configuration, the temperature dependency of the electrical resistivity is small, and the electrical resistivity exhibits PTC characteristics, or the temperature resistance of the electrical resistivity has almost no temperature dependency. Can.
 ホウケイ酸塩がアルミノホウケイ酸塩である場合、アルミノホウケイ酸塩は、Al原子の含有量を0.5質量%以上10質量%以下含むことができる。Al(アルミニウム)原子の含有量は、上記効果を確実なものとするなどの観点から、好ましくは、1質量%以上、より好ましくは、2質量%以上、さらに好ましくは、3質量%以上とすることができる。また、Al原子の含有量は、上記効果を確実なものとするなどの観点から、好ましくは、8質量%以下、より好ましくは、6質量%以下、さらに好ましくは、5質量%以下とすることができる。 When the borosilicate is an aluminoborosilicate, the aluminoborosilicate can contain an Al atom content of 0.5% by mass or more and 10% by mass or less. The content of Al (aluminum) atom is preferably 1% by mass or more, more preferably 2% by mass or more, and still more preferably 3% by mass or more from the viewpoint of ensuring the above effects and the like. be able to. In addition, the content of Al atoms is preferably 8% by mass or less, more preferably 6% by mass or less, and still more preferably 5% by mass or less from the viewpoint of ensuring the above effects and the like. Can.
 なお、上述したホウケイ酸塩における各原子の含有量は、合計で100質量%となるように上述した範囲から選択することができる。また、ホウケイ酸塩が上述したアルカリ系原子の合計含有量、B原子の含有量、Si原子の含有量、O原子の含有量、および、Al原子の含有量の範囲を全て同時に満たす場合には、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示す、または、電気抵抗率の温度依存性がほとんどない電気抵抗体1を確実なものとすることができる。また、マトリックス10を構成するホウケイ酸塩に含まれうる原子としては、上記以外にも、例えば、Fe、Cなどを例示することができる。なお、上述した各原子のうち、アルカリ系原子、Si、O、Alの含有量については、電子線マイクロアナライザ(EPMA)分析装置を用いて測定される。上述した各原子のうち、Bの含有量については、誘導結合プラズマ(ICP)分析装置を用いて測定される。もっとも、ICP分析によると、電気抵抗体1全体におけるB含有量が測定されるため、得られた測定結果は、ホウケイ酸塩におけるB含有量に換算される。 In addition, content of each atom in the borosilicate mentioned above can be selected from the range mentioned above so that it may be 100 mass% in total. In addition, when the total content of the alkali-based atoms, the content of the B atoms, the content of the Si atoms, the content of the O atoms, and the content of the Al atoms described above in the borosilicate are all simultaneously satisfied. Thus, the electric resistor 1 can be made sure that the temperature dependence of the electric resistivity is small and the electric resistivity exhibits a PTC characteristic or the temperature dependence of the electric resistivity is hardly present. Moreover, as an atom which may be contained in the borosilicate which comprises the matrix 10, Fe, C, etc. can be illustrated in addition to the above. In addition, about each content of an alkali type atom, Si, O, and Al among each atom mentioned above, it measures using an electron beam micro analyzer (EPMA) analyzer. Among the atoms described above, the content of B is measured using an inductively coupled plasma (ICP) analyzer. However, according to ICP analysis, since the B content in the entire electric resistor 1 is measured, the obtained measurement result is converted to the B content in the borosilicate.
 電気抵抗体1は、マトリックス10だけを有していてもよいし、マトリックス10以外にも、他の物質を1種または2種以上有していてもよい。他の物質としては、例えば、フィラー、熱膨張率を低下させる材料、熱伝導率を上昇させる材料、強度を向上させる材料などを例示することができる。 The electric resistor 1 may have only the matrix 10 or may have one or more other substances besides the matrix 10. Examples of other substances include fillers, materials that lower the coefficient of thermal expansion, materials that increase the thermal conductivity, and materials that improve the strength.
 本実施形態では、電気抵抗体1は、図1に例示されるように、さらに、導電性フィラー11を有している。この構成によれば、マトリックス10と導電性フィラー11との複合化により、マトリックス10の電気抵抗率と導電性フィラー11の電気抵抗率との足し合わせによって電気抵抗体1全体の電気抵抗率が決定される。そのため、この構成によれば、導電性フィラー11の導電性、導電性フィラー11の含有量を調整することで、電気抵抗体1の電気抵抗率の制御が可能になる。なお、導電性フィラー11の電気抵抗率は、PTC特性、NTC特性のいずれを示してもよいし、電気抵抗率の温度依存性がなくてもよい。また、電気抵抗体1は、図1に例示されるように、マトリックス10を海状部、導電性フィラー11を島状部とする海島構造の微構造を有することができる。 In the present embodiment, the electric resistor 1 further includes a conductive filler 11 as illustrated in FIG. 1. According to this configuration, by combining the matrix 10 and the conductive filler 11, the electric resistivity of the entire electric resistor 1 is determined by the addition of the electric resistivity of the matrix 10 and the electric resistivity of the conductive filler 11. Be done. Therefore, according to this configuration, by adjusting the conductivity of the conductive filler 11 and the content of the conductive filler 11, control of the electric resistivity of the electric resistor 1 becomes possible. In addition, the electrical resistivity of the conductive filler 11 may show any of a PTC characteristic and an NTC characteristic, and there may be no temperature dependency of the electrical resistivity. Moreover, the electric resistor 1 can have the microstructure of the sea-island structure which makes the matrix 10 the sea-like part, and makes the conductive filler 11 an island-like part, as illustrated in FIG.
 導電性フィラー11は、具体的には、Si原子を含んでいるとよい。この構成によれば、ホウケイ酸塩と導電性フィラー11とを含む原料を焼結して電気抵抗体1を製造する際に、導電性フィラー11のSi原子がホウケイ酸塩に拡散し、ホウケイ酸塩のシリコンリッチ化が促され、マトリックス10の軟化点を向上させることができる。そのため、この構成によれば、電気抵抗体1の形状保持性を向上させることが可能となり、構造体の材料として有用な電気抵抗体1が得られる。とりわけ、ハニカム構造体は、薄いセル壁を有する構造体である。そのため、上記構成による電気抵抗体1は、構造信頼性の高い導電性のハニカム構造体の材料として有用である。 Specifically, the conductive filler 11 preferably contains Si atoms. According to this configuration, when manufacturing the electric resistor 1 by sintering the raw material containing the borosilicate and the conductive filler 11, the Si atoms of the conductive filler 11 diffuse into the borosilicate, and the borosilicate The silicon enrichment of the salt is promoted, and the softening point of the matrix 10 can be improved. Therefore, according to this configuration, it is possible to improve the shape retentivity of the electric resistor 1, and the electric resistor 1 useful as a material of the structure can be obtained. In particular, the honeycomb structure is a structure having thin cell walls. Therefore, the electric resistor 1 according to the above configuration is useful as a material of a conductive honeycomb structure having high structural reliability.
 Si原子を含む導電性フィラー11としては、Si原子をホウケイ酸塩に拡散させやすいものが好ましく、例えば、Si粒子、Fe-Si系粒子、Si-W系粒子、Si-C系粒子、Si-Mo系粒子、Si-Ti系粒子など例示することができる。これらは1種または2種以上併用することができる。 As the conductive filler 11 containing Si atoms, those which can easily diffuse Si atoms into borosilicate are preferable. For example, Si particles, Fe-Si based particles, Si-W based particles, Si-C based particles, Si- Examples include Mo-based particles and Si-Ti-based particles. These can be used alone or in combination of two or more.
 電気抵抗体1がマトリックス10と導電性フィラー11とを有する場合、電気抵抗体1は、具体的には、マトリックス10と導電性フィラー11とを合計で50vol%以上含有する構成とすることができる。電気抵抗体1では、上述したホウケイ酸塩より構成されるマトリックス10を採用しているので、マトリックス10の低電気抵抗化が図られ、マトリックス10も電子を通すことができる。上記構成によれば、電気抵抗体1の形状にもよるが、公知のパーコレーション理論により、電気抵抗体1の導電性確保を確実なものとすることができる。マトリックス10と導電性フィラー11との合計含有量は、パーコレーションの形成による導電性などの観点から、好ましくは、52vol%以上、より好ましくは、55vol%以上、さらに好ましくは、57vol%以上、さらにより好ましくは、60vol%以上とすることができる。なお、電気抵抗体1がマトリックス10と導電性フィラー11とを有する場合、電子は、導電性フィラー11とマトリックス10とを伝いながら流れる。なお、電気抵抗体1がPTC特性を示す理由は、電気抵抗体1中を移動する電子が格子振動の影響を受けるためであると推測される。具体的には、NaWOの物質等で報告されているラージポーラロンが、電気抵抗体1においても発生していると推測される。4価のシリコン原子の位置を3価のホウ素が置き換えることにより、原子の骨格が負に帯電し、アルカリ系原子の電子が閉じ込め効果を受け、ラージポーラロンが発生するものと推測される。 When the electric resistor 1 has the matrix 10 and the conductive filler 11, specifically, the electric resistor 1 can be configured to contain the matrix 10 and the conductive filler 11 in a total of 50 vol% or more. . In the electric resistor 1, since the matrix 10 composed of the borosilicate described above is adopted, the electric resistance of the matrix 10 can be reduced, and the matrix 10 can also transmit electrons. According to the above configuration, although it depends on the shape of the electric resistor 1, the conductivity of the electric resistor 1 can be reliably ensured by the known percolation theory. The total content of the matrix 10 and the conductive filler 11 is preferably 52 vol% or more, more preferably 55 vol% or more, still more preferably 57 vol% or more, further preferably from the viewpoint of conductivity by formation of percolation, etc. Preferably, it can be 60 vol% or more. When the electric resistor 1 has the matrix 10 and the conductive filler 11, electrons flow while traveling through the conductive filler 11 and the matrix 10. The reason why the electric resistor 1 exhibits the PTC characteristic is presumed to be that the electrons moving in the electric resistor 1 are affected by lattice vibration. Specifically, it is presumed that the large polaron reported for Na x WO 3 substances and the like is also generated in the electric resistor 1. By replacing the position of the tetravalent silicon atom with trivalent boron, the skeleton of the atom is negatively charged, and it is presumed that electrons of the alkali-based atom receive a confinement effect to generate a large polaron.
 電気抵抗体1は、アルカリ系原子を含むガラス被膜が表面にほぼ形成されていない構成とすることができる。この構成によれば、電気抵抗体1を導電性のハニカム構造体の材料に用いる場合に、ハニカム構造体の表面に電極を形成するに当たって予め絶縁性のガラス被膜を除去しなくて済み、ハニカム構造体の製造性向上を確実なものとすることができる。なお、「アルカリ系原子を含むガラス被膜が表面にほぼ成されていない」とは、次の意味である。電気抵抗体1の表面にわずかにガラス被膜が形成されているとしても、電気抵抗体1の表面に電極を形成するにあたって当該ガラス被膜を除去しなくても、通電加熱によって電気抵抗体1を発熱させるのに支障がない場合には、ガラス被膜が表面にほぼ形成されていないとすることができる。 The electric resistor 1 can be configured such that a glass film containing an alkali-based atom is not substantially formed on the surface. According to this configuration, when the electric resistor 1 is used as a material of the conductive honeycomb structure, it is not necessary to remove the insulating glass film in advance when forming the electrode on the surface of the honeycomb structure, and the honeycomb structure The improvement of the manufacturability of the body can be ensured. In addition, "the glass film containing an alkali type atom is not substantially formed on the surface" has the following meaning. Even if the glass coating is slightly formed on the surface of the electric resistor 1, the electric heating generates heat in the electric resistor 1 even if the glass coating is not removed when forming the electrode on the surface of the electric resistor 1. In the case where there is no problem in causing the glass coating, it can be assumed that the glass coating is not substantially formed on the surface.
 電気抵抗体1は、25℃~500℃までの温度範囲において、電気抵抗率が0.0001Ω・m以上1Ω・m以下、かつ、電気抵抗上昇率が0.01×10-6/K以上5.0×10-4/K以下の範囲にある構成とすることができる。また、電気抵抗体1は、25℃~500℃までの温度範囲において、電気抵抗率が0.0001Ω・m以上1Ω・m以下、かつ、電気抵抗上昇率が0以上0.01×10-6/K未満の範囲にある構成とすることができる。これらの構成によれば、通電加熱時に内部に温度分布が生じ難く、熱膨張差による割れが生じ難い電気抵抗体1を確実なものとすることができる。また、上記構成によれば、通電加熱時に、電気抵抗体1を、より低温で早期に発熱させることができるので、触媒の早期活性化のために早期に温めることが求められるハニカム構造体の材料として有用である。なお、電気抵抗上昇率が0以上0.01×10-6/K未満の範囲にある場合には、電気抵抗率の温度依存性がほとんどないとみなすことができる。 In the temperature range from 25 ° C. to 500 ° C., the electric resistor 1 has an electrical resistivity of 0.0001 Ω · m or more and 1 Ω · m or less, and an electric resistance increase rate of 0.01 × 10 −6 / K or more 5 The configuration can be in the range of not more than 0 × 10 −4 / K. In the temperature range of 25 ° C. to 500 ° C., the electric resistor 1 has an electric resistivity of 0.0001 Ω · m or more and 1 Ω · m or less, and an electric resistance increase rate of 0 or more and 0.01 × 10 −6. It can be configured to be in the range of less than / K. According to these configurations, it is possible to reliably make the electric resistor 1 in which the temperature distribution is not easily generated at the time of electric current heating and the crack due to the thermal expansion difference is not easily generated. Moreover, according to the above configuration, since the electric resistor 1 can generate heat earlier at a lower temperature during electric heating, the material of the honeycomb structure is required to be heated early for early activation of the catalyst. Useful as. When the rate of increase in electrical resistance is in the range of 0 or more and less than 0.01 × 10 −6 / K, it can be considered that the temperature dependence of the electrical resistivity is almost nonexistent.
 電気抵抗体1の電気抵抗率は、電気抵抗体1を用いるシステムの要求仕様等によって異なるが、電気抵抗体1の低電気抵抗化などの観点から、例えば、好ましくは、0.5Ω・m以下、より好ましくは、0.3Ω・m以下、さらに好ましくは、0.1Ω・m以下、さらにより好ましくは、0.05Ω・m以下、さらに一層好ましくは、0.01Ω・m以下、さらにより一層好ましくは、0.01Ω・m未満、もっとも好ましくは、0.005Ω・m以下とすることができる。電気抵抗体1の電気抵抗率は、通電加熱時の発熱量増大などの観点から、好ましくは、0.0002Ω・m以上、より好ましくは、0.0005Ω・m以上、さらに好ましくは、0.001Ω・m以上とすることができる。この構成によれば、電気加熱式触媒装置に用いられるハニカム構造体の材料に好適な電気抵抗体1が得られる。 The electrical resistivity of the electrical resistor 1 varies depending on the required specification of the system using the electrical resistor 1 and the like, but from the viewpoint of reducing the electrical resistance of the electrical resistor 1, for example, preferably 0.5 Ω · m or less , More preferably 0.3 Ω · m or less, still more preferably 0.1 Ω · m or less, still more preferably 0.05 Ω · m or less, still more preferably 0.01 Ω · m or less, still more still Preferably, it may be less than 0.01 Ω · m, most preferably 0.005 Ω · m or less. The electrical resistivity of the electrical resistor 1 is preferably 0.0002 Ω · m or more, more preferably 0.0005 Ω · m or more, still more preferably 0.001 Ω, from the viewpoint of increase in calorific value at the time of electric current heating. It can be m or more. According to this configuration, the electric resistor 1 suitable for the material of the honeycomb structure used for the electrically heated catalyst device can be obtained.
 電気抵抗体1の電気抵抗上昇率は、通電加熱による温度分布の抑制を図りやすくなるなどの観点から、好ましくは、0.001×10-6/K以上、より好ましくは、0.01×10-6/K以上、さらに好ましくは、0.1×10-6/K以上とすることができる。電気回路において通電加熱に最適な電気抵抗値が存在するという観点からは、電気抵抗体1の電気抵抗上昇率は変化しないことが理想的である。当該観点から、電気抵抗体1の電気抵抗上昇率は、好ましくは、100×10-6/K以下、より好ましくは、10×10-6/K以下、さらに好ましくは、1×10-6/K以下とすることができる。 The electrical resistance increase rate of the electric resistor 1 is preferably 0.001 × 10 −6 / K or more, more preferably 0.01 × 10 6 from the viewpoint of facilitating suppression of the temperature distribution by electric heating. It can be made −6 / K or more, more preferably 0.1 × 10 −6 / K or more. It is ideal that the rate of increase in electrical resistance of the electrical resistor 1 does not change from the viewpoint of the presence of an electrical resistance value that is optimal for current heating in an electrical circuit. From this point of view, the rate of increase in electrical resistance of the electrical resistor 1 is preferably 100 × 10 −6 / K or less, more preferably 10 × 10 −6 / K or less, still more preferably 1 × 10 −6 / K. It can be less than or equal to K.
 なお、電気抵抗体1の電気抵抗率は、四端子法により測定される測定値(n=3)の平均値である。また、電気抵抗体1の電気抵抗上昇率は、上記方法により電気抵抗体1の電気抵抗率を測定した後、次の計算方法によって算出することができる。先ず、50℃、200℃、400℃の3点で電気抵抗率を測定する。400℃の電気抵抗率から50℃の電気抵抗率を引き算して導出した値を、400℃と50℃の温度差350℃で割り算して電気抵抗上昇率を算出する。 The electrical resistivity of the electrical resistor 1 is the average value of the measured values (n = 3) measured by the four probe method. Further, the rate of increase in electrical resistance of the electrical resistor 1 can be calculated by the following calculation method after measuring the electrical resistivity of the electrical resistor 1 by the above method. First, the electrical resistivity is measured at three points of 50 ° C., 200 ° C., and 400 ° C. The value derived by subtracting the electrical resistivity at 50 ° C. from the electrical resistivity at 400 ° C. is divided by the temperature difference between 400 ° C. and 50 ° C. at 350 ° C. to calculate the rate of increase in electrical resistance.
 電気抵抗体1は、例えば、以下のようにして製造することができるが、これに限定されるものではない。 The electrical resistor 1 can be manufactured, for example, as follows, but is not limited thereto.
 ホウ酸と、Si原子含有物質と、カオリンとを混合する。あるいは、アルカリ系原子を含むホウケイ酸塩と、Si原子含有物質と、カオリンとを混合してもよい。なお、ホウケイ酸塩の形状は、繊維状、粒子状などが挙げられる。ホウケイ酸塩の形状は、好ましくは、混合物の押し出し性向上等の観点から、繊維状であるとよい。また、Si原子含有物質としては、上述したSi原子を含む導電性フィラーなどを例示することができる。上記において、ホウ酸を用いる場合、ホウ酸の質量比は、例えば、4以上8以下とすることができる。ホウ酸の質量比が上記範囲内にあれば、電気抵抗率の温度依存性が小さい電気抵抗体1を得やすくなる。なお、ホウケイ酸塩に含まれるホウ素の含有量は、後述する焼成温度を高くすることで、高めやすくなる。また、また、ケイ酸塩にドープされるホウ素量が多くなるほど、電気抵抗体1の低電気抵抗化に有利である。 A boric acid, a Si atom containing substance, and kaolin are mixed. Or you may mix the borosilicate containing an alkali type atom, Si atom containing substance, and kaolin. The shape of the borosilicate may be fibrous, particulate or the like. The shape of the borosilicate is preferably fibrous from the viewpoint of improving the extrudability of the mixture and the like. Moreover, as a Si atom containing substance, the electroconductive filler etc. which contain the Si atom mentioned above can be illustrated. In the above, when using boric acid, the mass ratio of boric acid can be, for example, 4 or more and 8 or less. If the mass ratio of boric acid is within the above range, it becomes easy to obtain the electric resistor 1 having a small temperature dependency of the electric resistivity. In addition, content of the boron contained in borosilicate becomes easy to raise by raising the calcination temperature mentioned later. In addition, as the amount of boron doped in the silicate increases, it is advantageous for reducing the electrical resistance of the electrical resistor 1.
 次いで、この混合物にバインダー、水を加える。バインダーとしては、例えば、メチルセルロール等の有機バインダーを用いることができる。また、バインダーの含有量は、例えば、2質量%程度とすることができる。 The binder, water, is then added to the mixture. As a binder, organic binders, such as a methyl cellulose, can be used, for example. Moreover, content of a binder can be about 2 mass%, for example.
 次いで、得られた混合物を所定の形状に成形する。 The resulting mixture is then shaped into a predetermined shape.
 次いで、得られた成形体を焼成する。焼成条件は、具体的には、例えば、不活性ガス雰囲気下または大気雰囲気下、大気圧以下、焼成温度1150℃~1350℃、焼成時間0.1~50時間とすることができる。なお、焼成雰囲気は、例えば、不活性ガス雰囲気、焼成時圧力は、常圧などとすることができる。電気抵抗体1の低電気抵抗化を図る場合には、酸化防止の観点から残存酸素の低減を図ることが好ましく、焼成時の雰囲気内を1.0×10-4Pa以上の高真空にした後に不活性ガスをパージして焼成するとよい。不活性ガス雰囲気としては、Nガス雰囲気、ヘリウムガス雰囲気、アルゴンガス雰囲気などを例示することができる。また、上記焼成の前に、必要に応じて、上記成形体を仮焼することもできる。仮焼条件は、具体的には、大気雰囲気下または不活性ガス雰囲気下、仮焼温度500℃~700℃、仮焼時間1~50時間とすることができる。以上により、電気抵抗体1を得ることができる。 Then, the obtained molded body is fired. Specifically, the firing conditions can be, for example, under an inert gas atmosphere or in the air, under atmospheric pressure, a firing temperature of 1150 ° C. to 1350 ° C., and a firing time of 0.1 to 50 hours. The firing atmosphere may be, for example, an inert gas atmosphere, and the pressure during firing may be normal pressure or the like. In order to reduce the electrical resistance of the electrical resistor 1, it is preferable to reduce the residual oxygen from the viewpoint of preventing oxidation, and the atmosphere at the time of firing is set to a high vacuum of 1.0 × 10 −4 Pa or more. It is good to purge and bake an inert gas later. As the inert gas atmosphere, an N 2 gas atmosphere, a helium gas atmosphere, an argon gas atmosphere, and the like can be exemplified. Moreover, before the said baking, the said molded object can also be calcined as needed. Specifically, the calcination conditions can be a calcination temperature of 500 ° C. to 700 ° C. and an calcination time of 1 to 50 hours in an air atmosphere or an inert gas atmosphere. Thus, the electric resistor 1 can be obtained.
 本実施形態の電気抵抗体1によれば、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示す、または、電気抵抗率の温度依存性がほとんどない電気抵抗体1を実現することができる。また、本実施形態の電気抵抗体1は、電気抵抗率がNTC特性とならないように構成することができることから、通電加熱時の電流集中を回避することが可能となる。そのため、本実施形態の電気抵抗体1は、内部に温度分布が生じ難く、熱膨張差による割れが生じ難い。さらに、本実施形態の電気抵抗体1は、バルク全体が上記マトリックス10からなる抵抗体やSiC等に比べ、低電気抵抗で、かつ、電気抵抗率の温度依存性を小さくすることができる利点がある。 According to the electric resistor 1 of the present embodiment, the temperature dependence of the electric resistivity is small, and the electric resistivity exhibits PTC characteristics, or the electric resistivity 1 has almost no temperature dependence of the electric resistivity. It can be realized. Moreover, since the electrical resistor 1 of the present embodiment can be configured such that the electrical resistivity does not have NTC characteristics, it becomes possible to avoid current concentration at the time of current heating. Therefore, in the electric resistor 1 of the present embodiment, temperature distribution is hard to occur inside, and cracking due to thermal expansion difference is hard to occur. Furthermore, the electrical resistor 1 of the present embodiment has an advantage that the temperature dependency of the electrical resistivity can be reduced with a lower electrical resistance than the resistor or SiC or the like in which the entire bulk is made of the matrix 10 described above. is there.
(実施形態2)
 実施形態2の電気抵抗体について、図2を用いて説明する。なお、実施形態2以降において用いられる符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
Second Embodiment
The electric resistor according to the second embodiment will be described with reference to FIG. In addition, the code | symbol same as the code | symbol used in already-appeared embodiment among the code | symbols used after Embodiment 2 represents the component similar to the thing in already-appeared embodiment etc., unless shown otherwise.
 図2に例示されるように、本実施形態の電気抵抗体1は、マトリックス10以外に、他の物質を含有しており、当該他の物質が、非導電性フィラー12である点で、実施形態1と相違している。この構成によれば、マトリックス10と非導電性フィラー12との複合化により、マトリックス10の電気抵抗率と非導電性フィラー12の電気抵抗率との足し合わせによって電気抵抗体1全体の電気抵抗率が決定される。そのため、この構成によれば、非導電性フィラー12の含有量などを調整することで、電気抵抗体1の電気抵抗率の制御が可能になる。 As exemplified in FIG. 2, the electrical resistor 1 of the present embodiment contains another substance in addition to the matrix 10, and the other substance is the nonconductive filler 12 in that the embodiment is implemented. It is different from Form 1. According to this configuration, by combining the matrix 10 and the nonconductive filler 12, the electric resistivity of the entire electric resistor 1 is obtained by the addition of the electric resistivity of the matrix 10 and the electric resistivity of the nonconductive filler 12. Is determined. Therefore, according to this configuration, it is possible to control the electrical resistivity of the electrical resistor 1 by adjusting the content of the nonconductive filler 12 or the like.
 非導電性フィラー12は、具体的には、Si原子を含んでいるとよい。この構成によれば、ホウケイ酸塩と非導電性フィラー12とを含む原料を焼結して電気抵抗体1を製造する際に、非導電性フィラー12のSi原子がホウケイ酸塩に拡散し、ホウケイ酸塩のシリコンリッチ化が促され、マトリックス10の軟化点を向上させることができる。そのため、この構成によれば、電気抵抗体1の形状保持性を向上させることが可能となり、構造体の材料として有用な電気抵抗体1が得られる。 Specifically, the nonconductive filler 12 preferably contains Si atoms. According to this configuration, when manufacturing the electric resistor 1 by sintering the raw material containing the borosilicate and the nonconductive filler 12, Si atoms of the nonconductive filler 12 diffuse into the borosilicate, The silicon enrichment of the borosilicate is promoted and the softening point of the matrix 10 can be improved. Therefore, according to this configuration, it is possible to improve the shape retentivity of the electric resistor 1, and the electric resistor 1 useful as a material of the structure can be obtained.
 Si原子を含む非導電性フィラー12としては、Si原子をホウケイ酸塩に拡散させることができれば、特に限定されるものではなく、例えば、SiO粒子、Si粒子などを例示することができる。これらは1種または2種以上併用することができる。また、電気抵抗体1は、具体的には、マトリックス10と非導電性フィラー12とを合計で50vol%以上含有する構成とすることができる。 The nonconductive filler 12 containing Si atoms is not particularly limited as long as Si atoms can be diffused into the borosilicate, and for example, SiO 2 particles, Si 3 N 4 particles, etc. may be exemplified. it can. These can be used alone or in combination of two or more. Moreover, specifically, the electric resistor 1 can be configured to contain 50 vol% or more of the matrix 10 and the nonconductive filler 12 in total.
 その他の構成および作用効果は、基本的には、実施形態1と同様である。 The other configurations and effects are basically the same as in the first embodiment.
(実施形態3)
 実施形態3のハニカム構造体について、図3を用いて説明する。図3に例示されるように、本実施形態のハニカム構造体2は、実施形態1の電気抵抗体1を含んで構成されている。本実施形態では、具体的には、ハニカム構造体2は、実施形態1の電気抵抗体1より構成されている。図3では、具体的には、ハニカム構造体2の中心軸に垂直なハニカム断面視で、互いに隣接する複数のセル20と、セル20を形成するセル壁21と、セル壁21の外周部に設けられてセル壁21を一体に保持する外周壁22と、を有する構造が例示されている。なお、ハニカム構造体1には、公知の構造を適用することができ、図3の構造に限定されるものではない。図3は、セル20を断面四角形状とした例であるが、他にもセル20を断面六角形状とすることもできる。
(Embodiment 3)
The honeycomb structure of the third embodiment will be described with reference to FIG. As illustrated in FIG. 3, the honeycomb structure 2 of the present embodiment is configured to include the electric resistor 1 of the first embodiment. Specifically, in the present embodiment, the honeycomb structure 2 is configured of the electric resistor 1 of the first embodiment. In FIG. 3, specifically, the plurality of cells 20 adjacent to each other, the cell wall 21 forming the cells 20, and the outer peripheral portion of the cell wall 21 in a honeycomb cross-sectional view perpendicular to the central axis of the honeycomb structure 2 And a peripheral wall 22 provided to hold the cell wall 21 integrally. In addition, a well-known structure can be applied to the honeycomb structure 1, and it is not limited to the structure of FIG. Although FIG. 3 shows an example in which the cell 20 has a rectangular shape in cross section, the cell 20 may also have a hexagonal shape in cross section.
 本実施形態のハニカム構造体2は、本実施形態の電気抵抗体1を含んで構成されている。そのため、本実施形態のハニカム構造体2は、通電加熱時に、構造体内部に温度分布が生じ難く、熱膨張差による割れが生じ難い。また、本実施形態のハニカム構造体2は、本実施形態の電気抵抗体1を用いているので、通電加熱時に、より低温で早期に発熱させることができる。 The honeycomb structure 2 of the present embodiment is configured to include the electric resistor 1 of the present embodiment. Therefore, in the honeycomb structure 2 of the present embodiment, temperature distribution is less likely to occur inside the structure at the time of electric heating, and cracking due to the thermal expansion difference is less likely to occur. In addition, since the honeycomb structure 2 of the present embodiment uses the electric resistor 1 of the present embodiment, it can generate heat earlier at a lower temperature at the time of electric heating.
(実施形態4)
 実施形態4の電気加熱式触媒装置について、図4を用いて説明する。図4に例示されるように、本実施形態の電気加熱式触媒装置3は、実施形態3のハニカム構造体2を有している。本実施形態では、具体的には、電気加熱式触媒装置3は、ハニカム構造体2と、ハニカム構造体2のセル壁21に担持された三元触媒(不図示)と、ハニカム構造体2の外周壁22に対向配置された一対の電極31、32と、電極31、32に電圧を印加する電圧印加部33とを有している。なお、電気加熱式触媒装置3には、公知の構造を適用することができ、図4の構造に限定されるものではない。
(Embodiment 4)
The electrically heated catalyst device of Embodiment 4 will be described with reference to FIG. As illustrated in FIG. 4, the electrically heated catalyst device 3 of the present embodiment includes the honeycomb structure 2 of the third embodiment. Specifically, in the present embodiment, the electrically heated catalyst device 3 includes the honeycomb structure 2, a three-way catalyst (not shown) supported on the cell walls 21 of the honeycomb structure 2, and the honeycomb structure 2. A pair of electrodes 31 and 32 disposed opposite to the outer peripheral wall 22 and a voltage application unit 33 for applying a voltage to the electrodes 31 and 32 are provided. In addition, a well-known structure can be applied to the electrically heated catalyst device 3, and it is not limited to the structure of FIG.
 本実施形態の電気加熱式触媒装置3は、本実施形態のハニカム構造体2を有している。そのため、本実施形態の電気加熱式触媒装置3は、通電加熱時にハニカム構造体2が割れ難く、信頼性を向上させることができる。また、本実施形態の電気加熱式触媒装置3は、本実施形態のハニカム構造体2を用いているので、通電加熱時に、より低温で早期に上記ハニカム構造体2を発熱させることができ、触媒の早期活性化に有利である。 The electrically heated catalyst device 3 of the present embodiment has the honeycomb structure 2 of the present embodiment. Therefore, in the electrically heated catalyst device 3 of the present embodiment, the honeycomb structure 2 is not easily broken at the time of electric current heating, and the reliability can be improved. Further, since the electrically heated catalyst device 3 of the present embodiment uses the honeycomb structure 2 of the present embodiment, the honeycomb structure 2 can generate heat earlier at a lower temperature during electric heating, which is a catalyst It is advantageous for the early activation of
(実験例)
<実験例1>
-試料1-
 Na、Mg、K、Caを含むホウケイ酸ガラス粒子とSi粒子とを48:52の質量比で混合した。次いで、この混合物にバインダーとしてメチルセルロースを2質量%添加し、水を加え、混練した。次いで、得られた混合物を押し出し成形機にてペレット状に成形し、一次焼成した。一次焼成の条件は、焼成温度700度、昇温時間100℃/時間、保持時間1時間、大気雰囲気・常圧とした。次いで、一次焼成した焼成体を二次焼成した。二次焼成の条件は、Nガス雰囲気下・常圧、焼成温度1300℃、焼成時間30分、昇温速度200℃/時間とした。これにより、5mm×5mm×18mmの形状を有する試料1を得た。EPMA測定によれば、試料1におけるマトリックスは、アルカリ系原子(Na、Mg、K、および、Ca)を合計で2.9質量%、Si:24.7質量%、O:69.5質量%、Al:1.1質量%を含んでいた。また、ICP測定によれば、試料1におけるマトリックスは、B:0.8質量%を含んでいた。なお、EPMA分析装置には、日本電子社製、「JXA-8500F」を用いた。また、ICP分析装置には、日立ハイテクサイエンス社製、「SPS-3520UV」を用いた。以下、同様である。
(Experimental example)
Experimental Example 1
-Sample 1-
Borosilicate glass particles containing Na, Mg, K, Ca and Si particles were mixed at a mass ratio of 48:52. Subsequently, 2 mass% of methylcellulose was added to this mixture as a binder, water was added, and it knead | mixed. Next, the obtained mixture was formed into pellets by an extruder and subjected to primary firing. The conditions for the primary firing were a firing temperature of 700 ° C., a temperature raising time of 100 ° C./hour, a holding time of 1 hour, and an atmospheric pressure / atmospheric pressure. Next, the primarily fired fired body was secondarily fired. Conditions of the secondary firing, N 2 gas atmosphere and pressure, the firing temperature 1300 ° C., firing time 30 min, and the heating rate 200 ° C. / hour. Thus, a sample 1 having a shape of 5 mm × 5 mm × 18 mm was obtained. According to EPMA measurement, the matrix in sample 1 is 2.9 mass% in total of alkali type atoms (Na, Mg, K and Ca), Si: 24.7 mass%, O: 69.5 mass% , Al: contained 1.1% by mass. Further, according to ICP measurement, the matrix in Sample 1 contained B: 0.8% by mass. As the EPMA analyzer, "JXA-8500F" manufactured by Nippon Denshi Co., Ltd. was used. As an ICP analyzer, "SPS-3520 UV" manufactured by Hitachi High-Tech Science Co., Ltd. was used. The same applies below.
-試料2-
 試料1の作製において、ホウケイ酸ガラス粒子とSi粒子とカオリンとを29:31:40の質量比で混合した点以外は同様にして、試料2を得た。なお、EPMA測定によれば、試料2におけるマトリックスは、アルカリ系原子(Na、Mg、K、および、Ca)を合計で2.4質量%、Si:22.7質量%、O:68.1質量%、Al:5.4質量%を含んでいた。また、ICP測定によれば、試料2におけるマトリックスは、B:0.6質量%を含んでいた。
-Sample 2-
Sample 2 was obtained in the same manner as in sample 1 except that borosilicate glass particles, Si particles and kaolin were mixed at a mass ratio of 29:31:40. Note that according to EPMA measurement, the matrix in sample 2 has a total of 2.4 mass% of alkali type atoms (Na, Mg, K and Ca), Si: 22.7 mass%, O: 68.1 % By mass and Al: 5.4% by mass. Further, according to ICP measurement, the matrix in Sample 2 contained B: 0.6% by mass.
-試料1C-
 SiCを試料1Cとした。
-Sample 1C-
SiC was used as sample 1C.
 得られた各試料について、電気抵抗率を測定した。なお、電気抵抗率は、5mm×5mm×18mmの角柱サンプルについて、熱電特性評価装置(アルバック理工社製、「ZEM-2」)を用い、四端子法で測定した。図5、図6に示されるように、試料1および試料2は、いずれも、試料1CのSiCに比べ、電気抵抗率の温度依存性が大幅に小さく、電気抵抗率がPTC特性を示すことがわかる。また、試料1および試料2は、試料1CのSiCに比べ、測定温度域で電気抵抗率が小さいこともわかる。また、試料1によれば、カオリンを用いなくても電気抵抗率がPTC特性を示すこともわかる。なお、試料1、試料2は、25℃~500℃までの温度範囲において、電気抵抗率が0.0001Ω・m以上1Ω・m以下、電気抵抗上昇率が0.01×10-6/K以上5.0×10-4/K以下の範囲にあることがわかる。 The electrical resistivity was measured for each of the obtained samples. The electrical resistivity was measured by a four-terminal method using a thermoelectric characteristic evaluation apparatus (“ZEM-2” manufactured by ULVAC-RIKO, Inc.) on a 5 mm × 5 mm × 18 mm prism sample. As shown in FIGS. 5 and 6, both sample 1 and sample 2 have significantly smaller temperature dependence of electrical resistivity than SiC of sample 1C, and the electrical resistivity exhibits PTC characteristics. Recognize. Further, it can also be seen that the sample 1 and the sample 2 have smaller electric resistivity in the measurement temperature range as compared to the SiC of the sample 1C. Moreover, according to sample 1, it is also understood that the electrical resistivity exhibits PTC characteristics without using kaolin. Samples 1 and 2 have an electrical resistivity of 0.0001 Ω · m or more and 1 Ω · m or less and an electric resistance increase rate of 0.01 × 10 −6 / K or more in a temperature range of 25 ° C. to 500 ° C. It turns out that it exists in the range below 5.0 * 10 < -4 > / K.
<実験例2>
-試料3-
 Na、Mg、K、Caを含むホウケイ酸ガラス粒子とSi粒子とカオリンとを29:31:40の質量比で混合した。次いで、この混合物に炭酸ナトリウム(NaCO)を0.4質量%、バインダーとしてメチルセルロースを2質量%添加し、水を加え、混練した。次いで、得られた混合物を押し出し成形機にてペレット状に成形し、焼成した。焼成条件は、アルゴンガス雰囲気下、雰囲気圧力:大気圧、焼成温度1300℃、焼成時間30分、昇温速度200℃/時間とした。これにより、5mm×5mm×18mmの形状を有する試料3を得た。なお、EPMA測定によれば、試料3におけるマトリックスは、アルカリ系原子(Na、Mg、K、および、Ca)を合計で3.1質量%、Si:22.3質量%、O:67.7質量%、Al:5.3質量%を含んでいた。また、ICP測定によれば、試料3におけるマトリックスは、B:0.6質量%を含んでいた。
<Experimental Example 2>
-Sample 3-
Borosilicate glass particles containing Na, Mg, K, Ca, Si particles and kaolin were mixed in a mass ratio of 29:31:40. Next, 0.4 mass% of sodium carbonate (Na 2 CO 3 ) and 2 mass% of methyl cellulose as a binder were added to this mixture, water was added, and the mixture was kneaded. Next, the obtained mixture was formed into pellets by an extruder and fired. The firing conditions were as follows: atmosphere pressure: atmospheric pressure, firing temperature 1300 ° C., firing time 30 minutes, heating rate 200 ° C./hour under argon gas atmosphere. This obtained sample 3 which has a shape of 5 mm x 5 mm x 18 mm. According to the EPMA measurement, the matrix in the sample 3 is 3.1 mass% in total of alkali-based atoms (Na, Mg, K and Ca), Si: 22.3 mass%, O: 67.7 % By mass, and Al: 5.3% by mass. Further, according to ICP measurement, the matrix in Sample 3 contained B: 0.6% by mass.
-試料4-
 試料3の作製において、炭酸ナトリウムの添加量を0.8質量%とした以外は同様にして、試料4を得た。なお、EPMA測定によれば、試料4におけるマトリックスは、アルカリ系原子(Na、Mg、K、および、Ca)を合計で3.5質量%、Si:22.4質量%、O:66.7質量%、Al:5.5質量%を含んでいた。また、ICP測定によれば、試料4におけるマトリックスは、B:0.6質量%を含んでいた。
-Sample 4-
A sample 4 was obtained in the same manner as in the preparation of the sample 3, except that the addition amount of sodium carbonate was 0.8 mass%. According to the EPMA measurement, the matrix in the sample 4 contains 3.5 mass% in total of alkali atoms (Na, Mg, K and Ca), Si: 22.4 mass%, O: 66.7 % By mass, and Al: 5.5% by mass. Further, according to ICP measurement, the matrix in sample 4 contained B: 0.6% by mass.
-試料5-
 試料3の作製において、炭酸ナトリウムを添加しなかった以外は同様にして、試料5を得た。なお、EPMA測定によれば、試料5におけるマトリックスは、アルカリ系原子(Na、Mg、K、および、Ca)を合計で2.4質量%、Si:22.7質量%、O:68.1質量%、Al:5.7質量%を含んでいた。また、ICP測定によれば、試料5におけるマトリックスは、B:0.6質量%を含んでいた。
-Sample 5-
A sample 5 was obtained in the same manner as in the preparation of the sample 3, except that sodium carbonate was not added. Incidentally, according to EPMA measurement, the matrix in the sample 5 has a total of 2.4 mass% of alkali type atoms (Na, Mg, K and Ca), Si: 22.7 mass%, O: 68.1 % By mass, and Al: 5.7% by mass. Further, according to ICP measurement, the matrix in Sample 5 contained B: 0.6% by mass.
 得られた各試料について、室温における電気抵抗率を測定した。図7に示されるように、炭酸ナトリウムのようなアルカリ系原子含有化合物を添加することによって、試料の電気抵抗率が低下した。アルカリ系原子含有化合物を添加することにより試料の電気抵抗率が低下したのは、Si粒子の酸化が抑制されたためであると考えられる。なお、炭酸ナトリウムが添加された試料3、試料4は、炭酸ナトリウムが添加されなかった試料5に比べ、アルカリ系原子の合計含有量が増加していることが確認された。これは、炭酸ナトリウムの添加により、原料に用いたホウケイ酸塩ガラスにNaがドープされ、アルカリ系原子の合計含有量が増加したためである。 The electrical resistivity at room temperature was measured for each of the obtained samples. As shown in FIG. 7, the electrical resistivity of the sample decreased by adding an alkali-based atom-containing compound such as sodium carbonate. It is considered that the electrical resistivity of the sample is lowered by the addition of the alkali-based atom-containing compound because the oxidation of the Si particles is suppressed. In addition, it was confirmed that the total content of alkali-based atoms is increased in the samples 3 and 4 to which sodium carbonate is added as compared with the sample 5 to which sodium carbonate is not added. This is because the borosilicate glass used as the raw material is doped with Na by the addition of sodium carbonate, and the total content of alkali atoms is increased.
<実験例3>
 上述した試料2を用い、試料2における導電部を特定するための実験を行った。具体的には、試料2の表面に一対のAu電極パッド9を貼り付け、通電加熱し、エミッション顕微鏡(浜松ホトニクス社製、「PHEMOS-1000」)によりAu電極パッド9周辺におけるアルミニウムの原子マッピング像(図8(a))を得た。上記原子マッピング像では、通電加熱により加熱された領域(エミッション部E)の色が変化して示される。また、図8(b)に、試料2におけるエミッション部E周辺の光学顕微鏡像を示す。なお、図8中、符号101は、マトリックスであり、符号111は、Si粒子である。また、矢印Yは、推測される導電パスを示したものである。
<Experimental Example 3>
Using the sample 2 described above, an experiment for identifying a conductive portion in the sample 2 was performed. Specifically, a pair of Au electrode pads 9 are attached to the surface of the sample 2 and electrically heated, and an atomic mapping image of aluminum around the Au electrode pads 9 with an emission microscope ("PHEMOS-1000" manufactured by Hamamatsu Photonics Co., Ltd.) (FIG. 8 (a)) was obtained. In the above atomic mapping image, the color of the area (emission part E) heated by electric heating is changed and shown. Further, FIG. 8 (b) shows an optical microscope image of the periphery of the emission part E in the sample 2. In FIG. 8, reference numeral 101 denotes a matrix, and reference numeral 111 denotes Si particles. Also, the arrow Y indicates the estimated conductive path.
 図8によれば、電子は、Siとマトリックスとを伝いながら流れていることが分かる。また、Si部位では、発熱しておらず、ホウケイ酸ガラスより構成されるマトリックスの部分で発熱していることが分かる。この結果から、通電加熱時に電気抵抗を支配する領域は、母材であるマトリックスであることが確認された。 According to FIG. 8, it can be seen that electrons flow while traveling through Si and the matrix. Further, it can be seen that the Si site does not generate heat, but generates heat in the portion of the matrix made of borosilicate glass. From this result, it was confirmed that the region that governs the electric resistance at the time of electric current heating is a matrix which is a base material.
<実験例4>
 上記<実験例3>の試料2におけるエミッション部の組成を詳細調査するため、EPMA測定により、エミッション部周辺の原子マッピング像を取得した。図9に試料2のエミッション部周辺のアルミニウムの原子マッピング像を示す。なお、図9中、丸印の部分がエミッション部である。また、図9中の符号a~lの各部位における化学組成を測定した。その結果を、表1に示す。なお、符号aの部位は、電極である。
<Experimental Example 4>
In order to investigate in detail the composition of the emission part in the sample 2 of the above <Experimental Example 3>, an atomic mapping image around the emission part was acquired by EPMA measurement. FIG. 9 shows an atomic mapping image of aluminum in the vicinity of the emission part of sample 2. As shown in FIG. In FIG. 9, the circled part is an emission part. Further, the chemical composition at each site of the symbols a to l in FIG. 9 was measured. The results are shown in Table 1. In addition, the part of the code | symbol a is an electrode.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、本実験によれば、エミッション部に該当する部位iおよび部位jは、アルミノケイ酸塩であった。また、部位b、部位e、部位f、部位k、部位lも、アルミノケイ酸塩であった。部位c、部位dは、ホウケイ酸ガラスであった。部位g、部位hは、シリコンであった。但し、別の実験例5によれば、エミッション部に該当する部位iおよび部位jには、Bが含まれていることが明らかとなっている。したがって、エミッション部に該当する部位iおよび部位jは、アルミノホウケイ酸塩であると推定される。但し、EPMAにおいてホウ素は検出感度が低いため、検出されていない場合がある。また、部位aで、Feが多く検出されたのは、Feが偏析している点を測定したためであると推測される。 As shown in Table 1, according to this experiment, the part i and the part j corresponding to the emission part were aluminosilicates. The site b, the site e, the site f, the site k, and the site 1 were also aluminosilicates. The part c and the part d were borosilicate glass. The site g and the site h were silicon. However, according to another experimental example 5, it is clear that B is contained in the part i and the part j corresponding to the emission part. Therefore, the part i and the part j corresponding to the emission part are presumed to be aluminoborosilicate. However, in EPMA, boron may not be detected due to low detection sensitivity. Moreover, it is speculated that the reason why a large amount of Fe was detected at the part a was because the point at which Fe was segregated was measured.
<実験例5>
 上記<実験例3>の試料2について、SEM-EDXによる組成分析を実施した。その結果を、図10に示す。図10(a)は、組成分析の対象となるベース部位を示したものである。図10(b)は、表2に示すPhase1の組成比またはほぼ当該組成比になっている領域を示したものである。図10(c)は、表2に示すPhase2の組成比またはほぼ当該組成比になっている領域を示したものである。図10(d)は、表2に示すPhase5の組成比またはほぼ当該組成比になっている領域を示したものである。図10(e)は、表2に示すPhase6の組成比またはほぼ当該組成比になっている領域を示したものである。Phase2は、Si部分であり、Phase1、5、6は、マトリックス部分であることがわかる。本実験の結果から、マトリックス部分は、Na、Mg、K、および、Caからなる群より選択される少なくとも1種を含むアルミノホウケイ酸塩より構成されており、このアルミノホウケイ酸塩は、アルカリ系原子を合計で0.01質量%以上10質量%以下、B原子を0.1質量%以上5質量%以下、Si原子を5質量%以上40質量%以下、O原子を40質量%以上85質量%以下、Al原子を0.5質量%以上10質量%以下の範囲内で含んでいることがわかる。なお、マトリックス部分がアルカリ系原子を含むアルミノホウケイ酸塩となったのは、原料にカオリンを用いたためである。そのため、原料にカオリンを用いない場合には、マトリックス部分は、アルカリ系原子を含むホウケイ酸塩になるといえる。
Experimental Example 5
The composition analysis by SEM-EDX was performed on the sample 2 of the above <Experimental Example 3>. The results are shown in FIG. FIG. 10 (a) shows a base site to be subjected to composition analysis. FIG. 10 (b) shows the composition ratio of Phase 1 shown in Table 2 or a region having the composition ratio. FIG. 10C shows a composition ratio of Phase 2 shown in Table 2 or a region having the composition ratio. FIG. 10D shows the composition ratio of Phase 5 shown in Table 2 or a region having the composition ratio. FIG. 10E shows a composition ratio of Phase 6 shown in Table 2 or a region having the composition ratio. It can be seen that Phase 2 is a Si portion, and Phases 1, 5 and 6 are matrix portions. From the results of this experiment, the matrix part is composed of an aluminoborosilicate containing at least one selected from the group consisting of Na, Mg, K, and Ca, and this aluminoborosilicate is alkaline-based. Total 0.01 to 10 mass% of atoms, 0.1 to 5 mass% of B atoms, 5 to 40 mass% of Si atoms, 40 to 85 mass of O atoms It can be seen that the Al atom is contained in an amount of 0.5% by mass or more and 10% by mass or less. In addition, it is because kaolin was used for the raw material that the matrix part became an alumino borosilicate containing an alkali-type atom. Therefore, when kaolin is not used as the raw material, it can be said that the matrix part is a borosilicate containing an alkali atom.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実験例6>
-試料6-
 Na、Mg、K、Caを含むホウケイ酸ガラス繊維とSi粒子とカオリンとを29:31:40の質量比で混合した。なお、本実験例で使用したホウケイ酸ガラス繊維(平均径10μm、平均長さ25μm)は、上述した各実験例で使用したホウケイ酸ガラス粒子に比べ、Caを多く含んでいる。次いで、この混合物にバインダーとしてメチルセルロースを2質量%添加し、水を加え、混練した。次いで、得られた混合物を押し出し成形機にてペレット状に成形し、一次焼成した。一次焼成の条件は、焼成温度700度、昇温時間100℃/時間、保持時間1時間、大気雰囲気・常圧とした。次いで、一次焼成した焼成体を二次焼成した。二次焼成の条件は、Nガス雰囲気下・常圧、焼成温度1300℃、焼成時間30分、昇温速度200℃/時間とした。これにより、5mm×5mm×18mmの形状を有する試料6を得た。EPMA測定によれば、試料6におけるマトリックスは、アルカリ系原子(Na、Mg、K、および、Ca)を合計で6.4質量%、Si:21.4質量%、O:65.4質量%、Al:5.1質量%を含んでいた。また、ICP測定によれば、試料6におけるマトリックスは、B:0.8質量%を含んでいた。
Experimental Example 6
-Sample 6-
Borosilicate glass fibers containing Na, Mg, K, Ca, Si particles, and kaolin were mixed at a mass ratio of 29:31:40. The borosilicate glass fiber (average diameter 10 μm, average length 25 μm) used in this experimental example contains more Ca than the borosilicate glass particles used in each of the above-described experimental examples. Subsequently, 2 mass% of methylcellulose was added to this mixture as a binder, water was added, and it knead | mixed. Next, the obtained mixture was formed into pellets by an extruder and subjected to primary firing. The conditions for the primary firing were a firing temperature of 700 ° C., a temperature raising time of 100 ° C./hour, a holding time of 1 hour, and an atmospheric pressure / atmospheric pressure. Next, the primarily fired fired body was secondarily fired. Conditions of the secondary firing, N 2 gas atmosphere and pressure, the firing temperature 1300 ° C., firing time 30 min, and the heating rate 200 ° C. / hour. This obtained sample 6 which has a shape of 5 mm x 5 mm x 18 mm. According to EPMA measurement, the matrix in the sample 6 has a total of 6.4 mass% of alkali atoms (Na, Mg, K and Ca), Si: 21.4 mass%, O: 65.4 mass% , Al: contained 5.1% by mass. Further, according to ICP measurement, the matrix in Sample 6 contained B: 0.8 mass%.
-試料7-
 ホウ酸とSi粒子とカオリンとを4:42:54の質量比で混合した。次いで、この混合物にバインダーとしてメチルセルロースを2質量%添加し、水を加え、混練した。次いで、得られた混合物を押し出し成形機にてペレット状に成形し、一次焼成した。一次焼成の条件は、焼成温度700度、昇温時間100℃/時間、保持時間1時間、大気雰囲気・常圧とした。次いで、一次焼成した焼成体を二次焼成した。二次焼成の条件は、Nガス雰囲気下・常圧、焼成温度1250℃、焼成時間30分、昇温速度200℃/時間とした。これにより、5mm×5mm×18mmの形状を有する試料7を得た。EPMA測定によれば、試料7におけるマトリックスは、アルカリ系原子(Na、Mg、K、および、Ca)を合計で0.5質量%、Si:22.7質量%、O:68.1質量%、Al:5.7質量%を含んでいた。また、ICP測定によれば、試料7におけるマトリックスは、B:0.9質量%を含んでいた。
-Sample 7-
The boric acid, the Si particles and the kaolin were mixed in a mass ratio of 4:42:54. Subsequently, 2 mass% of methylcellulose was added to this mixture as a binder, water was added, and it knead | mixed. Next, the obtained mixture was formed into pellets by an extruder and subjected to primary firing. The conditions for the primary firing were a firing temperature of 700 ° C., a temperature raising time of 100 ° C./hour, a holding time of 1 hour, and an atmospheric pressure / atmospheric pressure. Next, the primarily fired fired body was secondarily fired. Conditions of the secondary firing, N 2 gas atmosphere and pressure, the firing temperature 1250 ° C., firing time 30 min, and the heating rate 200 ° C. / hour. Thereby, the sample 7 which has a shape of 5 mm x 5 mm x 18 mm was obtained. According to EPMA measurement, the matrix in sample 7 is 0.5 mass% in total of alkali type atoms (Na, Mg, K and Ca), Si: 22.7 mass%, O: 68.1 mass% , Al: contained 5.7% by mass. Further, according to ICP measurement, the matrix in Sample 7 contained B: 0.9% by mass.
 得られた各試料について、実験例1と同様にして、電気抵抗率を測定した。図11に示されるように、試料6および試料7は、いずれも、実験例1にて上述した試料1CのSiCに比べ、電気抵抗率の温度依存性が大幅に小さく、電気抵抗率がPTC特性を示すことがわかる。また、試料6、試料7は、25℃~500℃までの温度範囲において、電気抵抗率が0.0001Ω・m以上1Ω・m以下、電気抵抗上昇率が0.01×10-6/K以上5.0×10-4/K以下の範囲にあることがわかる。なお、試料7は、試料6に比べて、低温で焼成したにもかかわらず、所定の特性が得られている。試料7の焼成温度を試料6の焼成温度と同じにした場合には、試料7におけるマトリックスであるアルミノホウケイ酸塩へのホウ素(B)のドープが促進され、さらに電気抵抗率を低下させることができるものと推測される。この点については、実験例7にて後述する。 The electrical resistivity of each of the obtained samples was measured in the same manner as in Experimental Example 1. As shown in FIG. 11, the temperature dependence of the electrical resistivity of each of the samples 6 and 7 is significantly smaller than that of the SiC of the sample 1C described in the experimental example 1, and the electrical resistivity has PTC characteristics. It can be seen that Samples 6 and 7 have an electrical resistivity of 0.0001 Ω · m or more and 1 Ω · m or less and an electric resistance increase rate of 0.01 × 10 −6 / K or more in a temperature range of 25 ° C. to 500 ° C. It turns out that it exists in the range below 5.0 * 10 < -4 > / K. Although the sample 7 is fired at a lower temperature than the sample 6, predetermined characteristics are obtained. When the firing temperature of the sample 7 is made the same as the firing temperature of the sample 6, the doping of boron (B) to the aluminoborosilicate which is the matrix in the sample 7 is promoted to further reduce the electrical resistivity. It is guessed that it can be done. This point will be described later in Experimental Example 7.
 次に、各試料の材料断面について、EPMA測定を行った。その結果を、図12、図13に示す。図12に示されるように、原料にホウケイ酸塩ガラスを用いた試料6は、材料表面にNa、Mg、K、Ca等のアルカリ系原子、O原子が多く存在していることがわかる。つまり、試料6は、アルカリ系原子を多く含むホウケイ酸ガラスを原料に用いたため、材料表面に溶出したアルカリ原子が酸素と反応し、材料表面に絶縁性のガラス被膜が形成されていることがわかる。 Next, EPMA measurement was performed on the material cross section of each sample. The results are shown in FIG. 12 and FIG. As shown in FIG. 12, it can be seen that, in the sample 6 using borosilicate glass as a raw material, many alkali-based atoms such as Na, Mg, K, Ca, etc. and O atoms exist on the surface of the material. In other words, Sample 6 uses borosilicate glass containing a large amount of alkali atoms as a raw material, so it can be seen that alkali atoms eluted on the surface of the material react with oxygen to form an insulating glass film on the surface of the material .
 これに対し、図13に示されるように、原料にホウ酸を用い、原料に含まれるアルカリ系原子の含有量を積極的に低減させた試料7は、材料表面におけるNa、Mg、K、Ca等のアルカリ系原子、O原子が、試料6に比べて、大幅に低減されていることがわかる。つまり、試料7は、アルカリ系原子を含まないホウ酸を原料に用いたため、材料表面に絶縁性のガラス被膜が形成される現象を抑制できていることがわかる。なお、試料7の材料表面には、Kがわずかに確認されたが、絶縁性のガラス被膜は、生じていなかった。 On the other hand, as shown in FIG. 13, in the sample 7 in which the content of alkaline atoms contained in the raw material was actively reduced using boric acid as the raw material, Na, Mg, K, Ca on the material surface were used. It can be seen that the alkali atoms and O atoms such as are significantly reduced as compared with the sample 6. That is, it is understood that Sample 7 uses boric acid containing no alkali atom as a raw material, so that the phenomenon that an insulating glass film is formed on the surface of the material can be suppressed. Although a slight amount of K was observed on the surface of the material of sample 7, no insulating glass film was formed.
 次に、各試料の材料表面から深さ方向へのCaのラインプロファイルを測定した。その結果を、図14、図15に示す。図14に示されるように、試料6は、材料表面側へ溶出して偏析したCaにより、材料表面におけるCa濃度が高いことがわかる。これに対し、試料7は、材料表面および材料内部ともにCa濃度に変化がほとんどみられなかった。この結果から、Na、Mg、K、および、Caからなる群より選択される少なくとも1種のアルカリ系原子を含むホウケイ酸塩において、当該アルカリ系原子の合計含有量を2質量%以下に規制することにより、酸素ガスを含む雰囲気での焼成時に、酸素ガスを遮断するガスバリア膜を形成しなくても、表面に絶縁性のガラス被膜がほとんどない電気抵抗体が得られることが確認された。なお、本実験例では、試料6と試料7との間で、ホウ素供給源の差異に起因して、Caの濃度に大きな違いがあったため、図14および図15では、アルカリ系原子の例としてCaを選択したが、上記結果から、その他のアルカリ系原子についても、上記と同様の傾向を示すことが容易に類推される。 Next, the line profile of Ca in the depth direction from the material surface of each sample was measured. The results are shown in FIG. 14 and FIG. As shown in FIG. 14, it can be seen that the sample 6 has a high Ca concentration on the material surface due to Ca eluted and segregated to the material surface side. On the other hand, in the sample 7, almost no change was observed in the Ca concentration on the material surface and in the material inside. From this result, in the borosilicate containing at least one alkali atom selected from the group consisting of Na, Mg, K, and Ca, the total content of the alkali atoms is regulated to 2% by mass or less. Thus, it was confirmed that an electric resistor having almost no insulating glass film on the surface can be obtained without forming a gas barrier film for blocking oxygen gas at the time of firing in an atmosphere containing oxygen gas. In the present experimental example, the sample 6 and the sample 7 had a large difference in the concentration of Ca due to the difference in the boron source, so in FIG. 14 and FIG. Although Ca was selected, it is easily inferred from the above results that the same tendency as above is shown for other alkali atoms.
<実験例7>
-試料8-
 ホウ酸とSi粒子とカオリンとを6:41:53の質量比で混合した点、焼成温度を1250℃とした点以外は、実験例6の試料7と同様にして、試料8を得た。EPMA測定によれば、試料8におけるマトリックスは、アルカリ系原子を合計で0.5質量%、Si:23.6質量%、O:66.8質量%、Al:5.8質量%を含んでいた。また、ICP測定によれば、試料8におけるマトリックスは、B:1.3質量%を含んでいた。
-試料9-
 ホウ酸とSi粒子とカオリンとを8:40:52の質量比で混合した点、焼成温度を1250℃とした点以外は、実験例6の試料7と同様にして、試料9を得た。EPMA測定によれば、試料9におけるマトリックスは、アルカリ系原子を合計で0.4質量%、Si:23.9質量%、O:66.1質量%、Al:5.6質量%を含んでいた。また、ICP測定によれば、試料9におけるマトリックスは、B:2.1質量%を含んでいた。
-試料10-
 ホウ酸とSi粒子とカオリンとを4:42:54の質量比で混合した点、焼成温度を1300℃とした点以外は、実験例6の試料7と同様にして、試料10を得た。EPMA測定によれば、試料10におけるマトリックスは、アルカリ系原子を合計で0.4質量%、Si:24.1質量%、O:65.9質量%、Al:5.9質量%を含んでいた。また、ICP測定によれば、試料10におけるマトリックスは、B:0.9質量%を含んでいた。
-試料11-
 ホウ酸とSi粒子とカオリンとを6:41:53の質量比で混合した点、焼成温度を1300℃とした点以外は、実験例6の試料7と同様にして、試料11を得た。EPMA測定によれば、試料11におけるマトリックスは、アルカリ系原子を合計で0.4質量%、Si:23.0質量%、O:67.1質量%、Al:5.5質量%を含んでいた。また、ICP測定によれば、試料11におけるマトリックスは、B:1.4質量%を含んでいた。
-試料12-
 ホウ酸とSi粒子とカオリンとを8:40:52の質量比で混合した点、焼成温度を1300℃とした点以外は、実験例6の試料7と同様にして、試料12を得た。EPMA測定によれば、試料12におけるマトリックスは、アルカリ系原子を合計で0.4質量%、Si:22.8質量%、O:68.2質量%、Al:5.4質量%を含んでいた。また、ICP測定によれば、試料12におけるマトリックスは、B:2.0質量%を含んでいた。
Experimental Example 7
-Sample 8-
A sample 8 was obtained in the same manner as the sample 7 of Experimental Example 6 except that the boric acid, the Si particles, and the kaolin were mixed at a mass ratio of 6:41:53, and the firing temperature was 1250 ° C. According to the EPMA measurement, the matrix in sample 8 contains 0.5 mass% of alkali-based atoms in total, 23.6 mass% of Si, 66.8 mass% of O, and 5.8 mass% of Al. It was. Further, according to ICP measurement, the matrix in Sample 8 contained B: 1.3% by mass.
-Sample 9-
A sample 9 was obtained in the same manner as the sample 7 of Experimental Example 6 except that the boric acid, the Si particles, and the kaolin were mixed at a mass ratio of 8:40:52, and the baking temperature was 1250 ° C. According to the EPMA measurement, the matrix in sample 9 contains 0.4 mass% of alkali-based atoms in total, 23.9 mass% of Si, 66.1 mass% of O, and 5.6 mass% of Al. It was. Further, according to ICP measurement, the matrix in Sample 9 contained B: 2.1% by mass.
-Sample 10-
A sample 10 was obtained in the same manner as the sample 7 of Experimental Example 6 except that the boric acid, the Si particles, and the kaolin were mixed at a mass ratio of 4:42:54, and the firing temperature was 1300.degree. According to EPMA measurement, the matrix in the sample 10 contains 0.4 mass% of alkali-based atoms in total, 24.1 mass% of Si, 65.9 mass% of O, and 5.9 mass% of Al. It was. Further, according to ICP measurement, the matrix in sample 10 contained B: 0.9% by mass.
-Sample 11-
A sample 11 was obtained in the same manner as the sample 7 of the experimental example 6, except that the boric acid, the Si particles, and the kaolin were mixed at a mass ratio of 6:41:53, and the firing temperature was 1300.degree. According to the EPMA measurement, the matrix in the sample 11 contains 0.4 mass% in total of alkali-based atoms, 23.0 mass% of Si, 67.1 mass% of O, and 5.5 mass% of Al. It was. Further, according to ICP measurement, the matrix in the sample 11 contained B: 1.4% by mass.
-Sample 12-
A sample 12 was obtained in the same manner as the sample 7 of Experimental Example 6 except that the boric acid, the Si particles, and the kaolin were mixed at a mass ratio of 8:40:52, and the baking temperature was 1300 ° C. According to EPMA measurement, the matrix in the sample 12 contains 0.4 mass% of alkali-based atoms in total, 22.8 mass% of Si, 68.2 mass% of O, and 5.4 mass% of Al. It was. Further, according to ICP measurement, the matrix in the sample 12 contained B: 2.0% by mass.
 得られた各試料について、実験例1と同様にして、電気抵抗率を測定した。図16および図17にその結果を示す。図16および図17に示されるように、焼成温度が高い程、ホウ酸の仕込み量が多いほど、アルミノケイ酸塩へのホウ素ドープが促進され、電気抵抗率が低下することが確認された。 The electrical resistivity of each of the obtained samples was measured in the same manner as in Experimental Example 1. The results are shown in FIG. 16 and FIG. As shown in FIG. 16 and FIG. 17, it was confirmed that, as the baking temperature is higher and the preparation amount of boric acid is larger, boron doping to the aluminosilicate is promoted and the electrical resistivity is lowered.
 上記各実験結果によれば、Na、Mg、K、Ca等のアルカリ系原子を少なくとも1種以上含むホウケイ酸塩を電気抵抗体のマトリックスとして用いることで、以下のことがいえる。上記電気抵抗体によれば、通電加熱時に電気抵抗を支配する領域が、母材である上記マトリックスとなる。上記マトリックスは、SiCに比べ、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示す。そのため、電気抵抗体に含まれうる上記マトリックスとは異なる他の物質の電気抵抗率がPTC特性を示す場合には、電気抵抗体の電気抵抗率を、温度依存性が小さく、かつ、PTC特性を示すように構成することができる。一方、他の物質の電気抵抗率がNTC特性を示す場合には、PTC特性を示すマトリックスの電気抵抗率とNTC特性を示す他の物質の電気抵抗率との足し合わせにより、電気抵抗体の電気抵抗率を、温度依存性が小さく、かつ、PTC特性を示す、または、温度依存性がほとんどないように設計することができる。したがって、上記マトリックスを採用することにより、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示す、または、電気抵抗率の温度依存性がほとんどない電気抵抗体を得ることが可能になる。また、電気抵抗体を、電気抵抗率がNTC特性とならないように構成することができるため、通電加熱時の電流集中を回避することが可能になる。そのため、内部に温度分布が生じ難く、熱膨張差による割れが生じ難い電気抵抗体を得ることが可能になる。さらに、上記電気抵抗体は、上記マトリックスを採用したことにより、マトリックスの低電気抵抗化を図ることが可能となり、低電気抵抗で、かつ、電気抵抗率の温度依存性を小さい電気抵抗体を得ることが可能になる。 According to the above experimental results, the following can be said by using a borosilicate containing at least one or more alkali atoms such as Na, Mg, K and Ca as a matrix of the electric resistor. According to the electrical resistor, the region that governs the electrical resistance at the time of electric current heating is the matrix that is the base material. The matrix has a smaller temperature dependency of the electrical resistivity than SiC, and the electrical resistivity exhibits a PTC characteristic. Therefore, when the electrical resistivity of another substance different from the matrix that can be included in the electrical resistor shows PTC characteristics, the temperature dependence of the electrical resistivity of the electrical resistor is small, and the PTC characteristics are It can be configured as shown. On the other hand, when the electrical resistivity of the other substance exhibits NTC characteristics, the electrical resistivity of the matrix exhibiting the PTC characteristic and the electrical resistivity of the other substance exhibiting the NTC characteristic add up to the electrical resistance of the electrical resistor. The resistivity can be designed to have a small temperature dependence and to exhibit PTC characteristics or to have little temperature dependence. Therefore, by employing the above matrix, it is possible to obtain an electric resistor having a small temperature dependency of the electrical resistivity and exhibiting a PTC characteristic of the electrical resistivity or having little temperature dependency of the electrical resistivity. It will be possible. In addition, since the electric resistor can be configured such that the electric resistivity does not have the NTC characteristic, it becomes possible to avoid current concentration at the time of current heating. Therefore, it becomes possible to obtain an electric resistor in which a temperature distribution does not easily occur inside and a crack due to a thermal expansion difference is not easily produced. Furthermore, by adopting the matrix, the electric resistor can achieve low electric resistance of the matrix, and obtains an electric resistor with low electric resistance and small temperature dependency of electric resistivity. It becomes possible.
 本開示は、上記各実施形態、各実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、各実施形態、各実験例に示される各構成は、それぞれ任意に組み合わせることができる。すなわち、本開示は、実施形態に準拠して記述されたが、本開示は、当該実施形態や構造等に限定されるものではないと理解される。本開示は、様々は変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。例えば、実施形態3では、ハニカム構造体を実施形態1の電気抵抗体より構成する例について説明したが、ハニカム構造体は、実施形態2の電気抵抗体より構成することもできる。また、実施形態4では、実施形態3のハニカム構造体を適用する例について説明したが、電気加熱式触媒装置は、実施形態2の電気抵抗体より構成されるハニカム構造体を適用することも可能である。 The present disclosure is not limited to the above embodiments and experimental examples, and various modifications can be made without departing from the scope of the invention. Moreover, each structure shown by each embodiment and each experiment example can each be combined arbitrarily. That is, although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments, structures, and the like. The present disclosure includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure. For example, in the third embodiment, an example in which the honeycomb structure is formed of the electrical resistor of the first embodiment is described. However, the honeycomb structure may be formed of the electrical resistor of the second embodiment. In the fourth embodiment, although the example of applying the honeycomb structure of the third embodiment has been described, the electrically heated catalyst device can also apply the honeycomb structure configured of the electric resistor of the second embodiment. It is.

Claims (16)

  1.  Na、Mg、K、Ca、Li、Be、Rb、Sr、Cs、Ba、Fr、および、Raからなる群より選択される少なくとも1種のアルカリ系原子を含むホウケイ酸塩より構成されるマトリックス(10)を有する、電気抵抗体(1)。 A matrix composed of a borosilicate containing at least one alkali-based atom selected from the group consisting of Na, Mg, K, Ca, Li, Be, Rb, Sr, Cs, Ba, Fr and Ra 10) An electrical resistor (1).
  2.  25℃~500℃までの温度範囲において、電気抵抗率が0.0001Ω・m以上1Ω・m以下、かつ、電気抵抗上昇率が0.01×10-6/K以上5.0×10-4/K以下の範囲にある、または、電気抵抗率が0.0001Ω・m以上1Ω・m以下、かつ、電気抵抗上昇率が0以上0.01×10-6/K未満の範囲にある、請求項1に記載の電気抵抗体。 In the temperature range of 25 ° C. to 500 ° C., the electrical resistivity is 0.0001 Ω · m or more and 1 Ω · m or less, and the electric resistance increase rate is 0.01 × 10 −6 / K or more 5.0 × 10 −4 The electric resistivity is in the range of 0.0001 Ω · m to 1 Ω · m, and the electric resistance increase rate is in the range of 0 to 0.01 × 10 −6 / K. The electrical resistor according to Item 1.
  3.  上記ホウケイ酸塩において、B原子の含有量は、0.1質量%以上5質量%以下である、請求項1または2に記載の電気抵抗体。 The electrical resistor according to claim 1, wherein in the borosilicate, the content of B atoms is 0.1% by mass or more and 5% by mass or less.
  4.  上記ホウケイ酸塩において、上記アルカリ系原子の合計含有量は、10質量%以下である、請求項1~3のいずれか1項に記載の電気抵抗体。 The electric resistor according to any one of claims 1 to 3, wherein the total content of the alkali-based atoms in the borosilicate is 10% by mass or less.
  5.  上記ホウケイ酸塩は、上記アルカリ系原子として、Na、Mg、K、および、Caからなる群より選択される少なくとも1種を含んでおり、当該アルカリ系原子の合計含有量は、2質量%以下である、請求項1~4のいずれか1項に記載の電気抵抗体。 The borosilicate contains at least one selected from the group consisting of Na, Mg, K, and Ca as the alkali atom, and the total content of the alkali atom is 2% by mass or less. The electric resistor according to any one of claims 1 to 4, which is
  6.  上記ホウケイ酸塩において、上記アルカリ系原子の合計含有量は、0.01質量%以上である、請求項1~5のいずれか1項に記載の電気抵抗体。 The electric resistor according to any one of claims 1 to 5, wherein in the borosilicate, the total content of the alkali-based atoms is 0.01 mass% or more.
  7.  上記ホウケイ酸塩において、Si原子の含有量は、5質量%以上40質量%以下である、請求項1~6のいずれか1項に記載の電気抵抗体。 The electric resistor according to any one of claims 1 to 6, wherein the content of the Si atom in the borosilicate is 5% by mass or more and 40% by mass or less.
  8.  上記ホウケイ酸塩において、O原子の含有量は、40質量%以上85質量%以下である、請求項1~7のいずれか1項に記載の電気抵抗体。 The electric resistor according to any one of claims 1 to 7, wherein in the borosilicate, the content of O atoms is 40% by mass or more and 85% by mass or less.
  9.  上記ホウケイ酸塩は、アルミノホウケイ酸塩である、請求項1~8のいずれか1項に記載の電気抵抗体。 The electric resistor according to any one of claims 1 to 8, wherein the borosilicate is an aluminoborosilicate.
  10.  上記アルミノホウケイ酸塩において、Al原子の含有量は、0.5質量%以上10質量%以下である、請求項9に記載の電気抵抗体。 The electrical resistor according to claim 9, wherein in the aluminoborosilicate, the content of Al atoms is 0.5% by mass or more and 10% by mass or less.
  11.  さらに、導電性フィラー(11)を有している、請求項1~10のいずれか1項に記載の電気抵抗体。 The electric resistor according to any one of claims 1 to 10, further comprising a conductive filler (11).
  12.  上記導電性フィラーは、Si原子を含む、請求項11に記載の電気抵抗体。 The electric resistor according to claim 11, wherein the conductive filler contains a Si atom.
  13.  上記マトリックスと上記導電性フィラーとを合計で50vol%以上含有する、請求項11または12に記載の電気抵抗体。 The electric resistor according to claim 11, wherein the matrix and the conductive filler are contained in a total amount of 50 vol% or more.
  14.  電気加熱式触媒装置におけるハニカム構造体に使用されるように構成されている、請求項1~13のいずれか1項に記載の電気抵抗体。 The electric resistor according to any one of claims 1 to 13, which is configured to be used for a honeycomb structure in an electrically heated catalyst device.
  15.  請求項1~13のいずれか1項に記載の電気抵抗体を含んで構成されている、ハニカム構造体(2)。 A honeycomb structure (2) comprising the electric resistor according to any one of claims 1 to 13.
  16.  請求項15に記載のハニカム構造体を有する、電気加熱式触媒装置(3)。 An electrically heated catalyst device (3) comprising the honeycomb structure according to claim 15.
PCT/JP2018/023137 2017-06-30 2018-06-18 Electrical resistor, honeycomb structure and electrically heated catalyst device WO2019003984A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880042219.4A CN110786075A (en) 2017-06-30 2018-06-18 Resistor, honeycomb structure, and electrically heated catalyst device
DE112018003319.8T DE112018003319T5 (en) 2017-06-30 2018-06-18 Electrical resistance, honeycomb structure and electrically heated catalyst device
US16/728,261 US20200154524A1 (en) 2017-06-30 2019-12-27 Electrical resistor, honeycomb structure and electrically heated catalyst device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-129229 2017-06-30
JP2017129229 2017-06-30
JP2017243080A JP6740995B2 (en) 2017-06-30 2017-12-19 Electric resistor, honeycomb structure, and electrically heated catalyst device
JP2017-243080 2017-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,261 Continuation US20200154524A1 (en) 2017-06-30 2019-12-27 Electrical resistor, honeycomb structure and electrically heated catalyst device

Publications (1)

Publication Number Publication Date
WO2019003984A1 true WO2019003984A1 (en) 2019-01-03

Family

ID=64741443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023137 WO2019003984A1 (en) 2017-06-30 2018-06-18 Electrical resistor, honeycomb structure and electrically heated catalyst device

Country Status (1)

Country Link
WO (1) WO2019003984A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124183A1 (en) * 2017-12-19 2019-06-27 株式会社デンソー Electrical resistor, honeycomb structure, and electrical heating-type ca- talytic device
JPWO2021049075A1 (en) * 2019-09-11 2021-03-18
JPWO2021176757A1 (en) * 2020-03-04 2021-09-10
CN113631266A (en) * 2019-03-27 2021-11-09 株式会社电装 Resistor, honeycomb structure, and electrically heated catalyst device
CN114846226A (en) * 2020-01-07 2022-08-02 日本碍子株式会社 Electric heating type carrier and exhaust gas purification device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380750A (en) * 1981-07-06 1983-04-19 Rca Corporation Indium oxide resistor inks
JP2000311805A (en) * 1999-04-27 2000-11-07 Tokai Konetsu Kogyo Co Ltd Manufacturing method of ceramic resistance material
JP2009534479A (en) * 2006-04-21 2009-09-24 オレックス オーストラリア ピーティワイ リミテッド Refractory composition
JP2012106223A (en) * 2010-04-09 2012-06-07 Ibiden Co Ltd Honeycomb structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380750A (en) * 1981-07-06 1983-04-19 Rca Corporation Indium oxide resistor inks
JP2000311805A (en) * 1999-04-27 2000-11-07 Tokai Konetsu Kogyo Co Ltd Manufacturing method of ceramic resistance material
JP2009534479A (en) * 2006-04-21 2009-09-24 オレックス オーストラリア ピーティワイ リミテッド Refractory composition
JP2012106223A (en) * 2010-04-09 2012-06-07 Ibiden Co Ltd Honeycomb structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124183A1 (en) * 2017-12-19 2019-06-27 株式会社デンソー Electrical resistor, honeycomb structure, and electrical heating-type ca- talytic device
JP2019108863A (en) * 2017-12-19 2019-07-04 株式会社デンソー Electric resistor, honeycomb structure and electric heating type catalyst device
CN113631266A (en) * 2019-03-27 2021-11-09 株式会社电装 Resistor, honeycomb structure, and electrically heated catalyst device
JPWO2021049075A1 (en) * 2019-09-11 2021-03-18
CN114846226A (en) * 2020-01-07 2022-08-02 日本碍子株式会社 Electric heating type carrier and exhaust gas purification device
CN114846226B (en) * 2020-01-07 2023-08-08 日本碍子株式会社 Electric heating type carrier and exhaust gas purifying device
JPWO2021176757A1 (en) * 2020-03-04 2021-09-10
WO2021176757A1 (en) * 2020-03-04 2021-09-10 日本碍子株式会社 Electrically heated carrier and exhaust gas purification device
JP7261934B2 (en) 2020-03-04 2023-04-20 日本碍子株式会社 Electrically heated carrier and exhaust gas purification device

Similar Documents

Publication Publication Date Title
WO2019003984A1 (en) Electrical resistor, honeycomb structure and electrically heated catalyst device
JP6740995B2 (en) Electric resistor, honeycomb structure, and electrically heated catalyst device
WO2019187711A1 (en) Electrical resistor, honeycomb structure, and electric-heating catalyst device
JP2000077167A (en) Planar heating element
CN111163864A (en) Electrically heated catalyst
WO2020195063A1 (en) Electrical resistor, honeycomb structure, and electrically-heated catalytic device
JP2019021568A (en) Electric resistor, method for manufacturing the same, honeycomb structure, and electric heating type catalyst device
US20200323040A1 (en) Electrical resistor, honeycomb structure, and electric heating catalytic device
JP5780620B2 (en) PTC thermistor member
WO2020021898A1 (en) Electric resistor, honeycomb structure, and electrically heated catalyst device
KR20130092349A (en) Composite for temperature sensor, temperature sensor manufactured using the same and manufacturing method for the temperature sensor
JP7182732B2 (en) Electrically heated carrier and exhaust gas purification device
WO2021111869A1 (en) Electrical resistor, honeycomb structure, and electrically heated catalyst device
JP6621170B2 (en) PTC thermistor member and PTC thermistor element
JP2014099431A (en) Composite ptc thermistor member
WO2021111870A1 (en) Electrical resistance body, honeycomb structure, and electrically-heated catalyst device
JP7095544B2 (en) Electric resistors, honeycomb structures, and electrically heated catalysts
JPH09245946A (en) Ceramic heater
JP2004342622A (en) Ceramic heater
JP5723429B2 (en) Conductive silicon carbide sintered body
JP2018166045A (en) Ceramic heater and manufacturing method of ceramic heater
RU2559802C2 (en) Resistive corundum-carbon composite material
JP2023078994A (en) Alumina ceramics and method for producing alumina ceramics
JP2019186100A (en) Electric resistor, honeycomb structure, and electrically heated catalyst device
JP2016039276A (en) Thermistor element, method of manufacturing thermistor element, and temperature sensor using thermistor sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823643

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18823643

Country of ref document: EP

Kind code of ref document: A1