WO2019003950A1 - 無線端末、情報処理装置、情報処理方法、およびプログラム - Google Patents
無線端末、情報処理装置、情報処理方法、およびプログラム Download PDFInfo
- Publication number
- WO2019003950A1 WO2019003950A1 PCT/JP2018/022834 JP2018022834W WO2019003950A1 WO 2019003950 A1 WO2019003950 A1 WO 2019003950A1 JP 2018022834 W JP2018022834 W JP 2018022834W WO 2019003950 A1 WO2019003950 A1 WO 2019003950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless terminal
- time
- satellites
- information
- wireless communication
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/003—Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/0015—Synchronization between nodes one node acting as a reference for the others
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/05—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/14—Receivers specially adapted for specific applications
- G01S19/16—Anti-theft; Abduction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/24—Acquisition or tracking or demodulation of signals transmitted by the system
- G01S19/25—Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
- G01S19/256—Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G21/00—Input or output devices integrated in time-pieces
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G3/00—Producing timing pulses
- G04G3/02—Circuits for deriving low frequency timing pulses from pulses of higher frequency
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G7/00—Synchronisation
-
- G—PHYSICS
- G04—HOROLOGY
- G04R—RADIO-CONTROLLED TIME-PIECES
- G04R40/00—Correcting the clock frequency
- G04R40/06—Correcting the clock frequency by computing the time value implied by the radio signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18519—Operations control, administration or maintenance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/004—Synchronisation arrangements compensating for timing error of reception due to propagation delay
- H04W56/0045—Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/0055—Synchronisation arrangements determining timing error of reception due to propagation delay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- the present technology relates to a wireless terminal, an information processing apparatus, an information processing method, and a program, and in particular, a wireless terminal that enables time synchronization with high accuracy even when the number of satellites that can be captured is small. , Information processing apparatus, information processing method, and program.
- a person to be monitored carries a wireless terminal equipped with a GNSS (Global Navigation Satellite System) receiver.
- GNSS Global Navigation Satellite System
- the GNSS receiver can synchronize not only the positioning but also the internal time of the receiver with the GNSS time managed with high accuracy by the atomic clock. Also, the GNSS receiver can know the oscillation frequency error of the internal oscillator.
- a general GNSS receiver outputs a 1 PPS (1 Pulse Per Second) signal which is a 1 Hz pulse signal synchronized with GNSS time with an accuracy of several tens of ns using such internal time and oscillation frequency error. Has a function.
- the 1 PPS signal is used, for example, for time synchronization of wireless communication for realizing watching service.
- the wireless communication for realizing the watching service is not limited to two-way communication. In this case, it is not possible to perform position interpolation and the like using information from an external device as described above. Even in an environment where the reception condition of the satellite is not good, it is preferable that the output of the 1PPS signal can be continued to maintain time synchronization of wireless communication.
- the present technology has been made in view of such a situation, and enables time synchronization with high accuracy even if the number of satellites that can be acquired is small.
- the wireless terminal is synchronized with the time of the satellite based on information from the satellite that can be acquired without performing positioning if the number of satellites that can be acquired is less than a predetermined number
- a positioning unit that generates and outputs a pulse signal of a predetermined interval
- a wireless communication unit that performs wireless communication while maintaining time synchronization of wireless communication with an external device based on the pulse signal.
- the positioning unit can generate the pulse signal by performing calculation with the position determined lastly as the position of the wireless terminal and the moving speed being zero.
- the positioning unit is caused to calculate the internal time of the wireless terminal based on the position of the satellite that can be acquired and the time of the satellite, and based on the velocity of the satellite that can be acquired and the Doppler frequency of the satellite.
- the frequency error of the oscillator inside the wireless terminal can be calculated, and the pulse signal can be generated based on the internal time and the frequency error.
- the predetermined number may be four.
- the pulse signal may be a 1 PPS signal.
- the wireless communication unit can transmit data according to a timing set based on the pulse signal.
- a reception window is set based on the pulse signal at a timing according to the timing at which the external device transmits data, and data transmitted by the external device during the reception window period Can be received.
- the maximum propagation delay time assumed in the communication area of the external device the time according to the packet length of the packet used for transmitting the data, and the assumption of the internal time of the wireless terminal It is possible to set the reception window having a time width equal to or more than the time obtained by adding the time corresponding to the error to be made.
- the wireless communication unit may further set the reception window having a time width equal to or greater than a time obtained by adding a time according to the reception synchronization error.
- the positioning unit may calculate a pseudorange and a Doppler frequency based on information from the satellite that can be captured, and the wireless communication unit may transmit information of the pseudorange and the Doppler frequency.
- the wireless communication unit can transmit sensor data detected by the sensor.
- a control unit may be further provided to correct an error with respect to a specified frequency of the transmission frequency in the wireless communication based on the frequency error.
- the information processing apparatus when the number of satellites that can be acquired is less than a predetermined number, does not perform positioning, and based on the information from the satellites that can be acquired,
- the positioning unit generates and outputs synchronized pulse signals at predetermined intervals, and receives information transmitted from a wireless terminal that maintains time synchronization of wireless communication with an external device in the wireless communication unit based on the pulse signals.
- an estimation unit configured to estimate the state of the wireless terminal based on the information received by the communication unit.
- the estimation unit determines whether the wireless terminal is moving or not, based on the pseudorange and the Doppler frequency obtained by the wireless terminal based on information from the satellite that can be captured, or by the wireless terminal It can be estimated based on the detected sensor data.
- the estimation unit may estimate the position of the wireless terminal based on a transmission delay when information transmitted by the wireless terminal is received by a plurality of external devices.
- a predetermined synchronization with the time of the satellites is performed based on information from the satellites that can be acquired without performing positioning.
- a pulse signal of an interval is generated in the positioning unit.
- time synchronization of wireless communication with an external device in the wireless communication unit is maintained based on the pulse signal, and the wireless communication is performed.
- the predetermined synchronization with the time of the satellites is performed based on information from the satellites that can be acquired without performing positioning.
- Receiving and receiving information transmitted from a wireless terminal that generates and outputs a pulse signal of an interval of n in the positioning unit and maintains time synchronization of wireless communication with an external device in the wireless communication unit based on the pulse signal Based on the received information, the state of the wireless terminal is estimated.
- GNSS It is a figure which shows the example of GNSS. It is a figure which shows the example of propagation time. It is a figure which shows the example of the propagation time containing an error. It is a figure which shows the relationship between relative velocity and Doppler frequency. It is a figure which shows 1 PPS signal. It is a figure which shows the structural example of a radio
- Positioning principle in GNSS >> The positioning principle in GNSS will be described.
- a GNSS receiver corresponding to GNSS receives multiple radio waves from satellites such as GPS (USA), GLONASS (Russia), BeiDou (China), Galileo (EU), Quasi-Zenith Satellite Michibi (Japan), etc. Positioning can be performed.
- FIG. 1 is a diagram illustrating an example of the GNSS.
- satellites S1 to S4 are shown. Radio waves from the satellites S1 to S4 are received by the GNSS receiver at the position P1 on the earth.
- the satellites S1 to S4 synchronously transmit messages (navigation messages).
- the messages transmitted by the satellites S1 to S4 include information such as a calculation formula of the orbit and transmission time of the radio wave.
- the GNSS receiver at position P1 receives the messages from satellites S1 to S4 and performs calculations based on the information contained in the message to determine the respective positions of satellites S1 to S4.
- the position of the satellite S1 is represented by the position (X1, Y1, Z1).
- the positions of the satellites S2 to S4 are also expressed as position (X2, Y2, Z2), position (X3, Y3, Z3), and position (X4, Y4, Z4), respectively.
- the times of satellites S1 to S4 are times T1 to T4, respectively.
- the GNSS receiver determines the distance between the satellite and the GNSS receiver based on the time T managed by itself and the propagation time of the radio wave represented as the difference between the time of each satellite.
- FIG. 2 is a diagram showing an example of the propagation time.
- the horizontal axis of FIG. 2 represents time.
- the propagation time of the radio wave from the satellite S1 is represented as ⁇ T1.
- propagation times of radio waves from the satellites S2 to S4 are represented as ⁇ T2 to ⁇ T4, respectively.
- the position of the GNSS receiver is determined as the position of the intersection point of the spheres. Assuming that the position of the GNSS receiver is the position (X, Y, Z), the following equation (1) holds.
- Xi, Yi, Zi are the positions of the satellites, and Ti is the propagation time.
- i takes a value of 1 to 4.
- C is the speed of light.
- the position of the intersection of the spheres C1 to C4 set around the satellites S1 to S4 is determined as the position P1 of the GNSS receiver.
- ⁇ Receiver position calculation> The calculation of the position of the GNSS receiver is further described.
- the position of the GNSS receiver is obtained by solving a simultaneous equation consisting of the following equations (2) to (5) based on the synchronization information of the spread code (C / A code).
- the GNSS receiver In order for the GNSS receiver to calculate its position, it must be acquiring (receiving radio waves) four or more satellites. In addition, by calculating the position, the error of the internal clock of the GNSS receiver can also be known as a subsidiary.
- the calculation of simultaneous equations as described above is generally performed by sequential calculation using the Newton Raphson method. If the number of satellites that can be acquired is five or more, a least squares calculation is performed.
- FIG. 4 is a diagram showing the relationship between relative velocity and Doppler frequency.
- the relative velocity is expressed as the magnitude of the vector Vd, and assuming c / fc as the wavelength ⁇ , the following equation (8) holds.
- fd is the Doppler frequency.
- the speed of the GNSS receiver can be obtained by solving simultaneous equations consisting of the following equations (9) to (12) based on the carrier synchronization information.
- VXi, VYi, and VZi are satellite velocities.
- fdi and fc are a Doppler frequency and a carrier frequency, respectively.
- eXi, eYi, eZi are unit vectors from the satellite to the GNSS receiver.
- VXu, VYu, VZu are the speed of the GNSS receiver
- dfu is the frequency error of the oscillator of the GNSS receiver.
- VXi, VYi, and VZi are known by the orbit information and the carrier synchronization of the GNSS receiver, four unknowns are VXu, VYu, VZu, and dfu. Since the oscillator frequency of the GNSS receiver contains an error, dfu is also unknown.
- the GNSS receiver In order for the GNSS receiver to calculate velocity, it will need to have captured four or more satellites. Also, by calculating the speed, the exact frequency of the GNSS receiver's oscillator will also be known secondarily.
- a 1 PPS signal can be generated based on a terminal time Tu which is an internal time of the GNSS receiver and an oscillator frequency error dfu which is a frequency error of an oscillator of the GNSS receiver.
- FIG. 5 is a diagram showing a 1 PPS signal.
- the 1 PPS signal generated by the GNSS receiver is a pulse signal with an accurate one second interval synchronized with the time of the satellite (GNSS time).
- a wireless terminal equipped with a GNSS receiver is a terminal compatible with a wireless communication system such as Low Power Wide Area (LPWA), and when transmitting position information etc. by wireless communication, set the timing based on the 1PPS signal Thus, time synchronization can be established with the receiver.
- LPWA Low Power Wide Area
- the wireless terminal can not perform positioning. Also, the wireless terminal can not generate the 1 PPS signal in the above-described normal method based only on the information from the satellite, and therefore can not maintain time synchronization for wireless communication.
- FIG. 6 is a diagram showing an example of a configuration of a wireless communication system.
- the wireless communication system of FIG. 6 includes wireless terminals 1-1 to 1-6 and base stations 2-1 to 2-5.
- the wireless terminals 1-1 to 1-6 will be referred to as the wireless terminal 1
- the base stations 2-1 to 2-5 will be referred to as the base station 2 if it is not necessary to distinguish between the two as appropriate.
- the wireless communication system of FIG. 6 is an LPWA wireless communication system using a predetermined frequency band such as 920 MHz.
- the radio wave from the wireless terminal 1 reaches a place of several kilometers to several tens of kilometers, and is received by the base station 2 including the current position of the wireless terminal 1 in the communication area.
- the base station 2 including the current position of the wireless terminal 1 in the communication area.
- the wireless terminal 1 receives a radio wave from a satellite to perform positioning, and transmits position information together with its own identification information and the like.
- the information transmitted from the wireless terminal 1 is received by the base station 2 and transmitted to a server apparatus (not shown) via a network such as the Internet.
- the server apparatus that has received the information transmitted from the wireless terminal 1 manages the position information of the wireless terminal 1 and provides it in response to an inquiry by a user who has accessed from a client apparatus such as a smartphone.
- Such a wireless communication system is used, for example, as a watching application.
- the wireless terminal 1 is carried or worn by a person to be monitored such as an elderly person, a child, a pet or the like. If the number of satellites that can be captured becomes less than 4, the wireless terminal 1 can not perform positioning, which affects the monitoring of the monitoring target.
- FIG. 7 is a diagram illustrating an example of communication in a wireless communication system.
- transmission of data by the transmitting side and reception of data by the receiving side are performed by setting a carrier having the same frequency as the center frequency.
- the upper part on the right side of FIG. 7 shows the transmission timing and the reception timing of data by the wireless terminal 1.
- the lower part shows the reception timing and transmission timing of data by the base station 2.
- Times t1 to t5 indicated by dotted lines on the upper and lower time axes respectively are times defined by the 1 PPS signal generated by the GNSS receiver that each of the wireless terminal 1 and the base station 2 has.
- the intervals between times t1 to t5 are one second intervals.
- This synchronized timing can be set based on the 1 PPS signal.
- a state in which data transmission / reception timing is set based on the 1 PPS signal in both the wireless terminal 1 and the base station 2 is a state in which time synchronization between the wireless terminal 1 and the base station 2 is established.
- the transmission timing of data is set with reference to the 1 PPS signal.
- a reception window having a predetermined time width is set in accordance with the transmission timing, and data reception is performed only during the reception window.
- a time t11 which is a time after the time corresponding to the specified value with reference to the time t2 is set as the transmission timing of data by the wireless terminal 1.
- the reception window is set so that the time t11 is set as the start time, and the data transmitted from the wireless terminal 1 is received.
- the data transmitted from the wireless terminal 1 at the timing of time t11 is received by the base station 2 at a timing that is a predetermined time later than the time t11, as indicated by the alternate long and short dash line.
- the difference between the transmission timing and the reception timing corresponds to the transmission delay.
- a time t12 which is a time after the time corresponding to the specified value with reference to the time t3 is set as the data transmission timing by the base station 2.
- the reception window is set so that the time t12 is set as the start time, and the data transmitted from the base station 2 is received.
- the data transmitted from the base station 2 at the timing of time t12 is received by the wireless terminal 1 at a timing that is a predetermined time later than the time t12, as indicated by the one-dot chain line.
- the communication of the wireless communication system of FIG. 6 is performed by setting the transmission timing and the reception timing in synchronization with each other with reference to the 1 PPS signal.
- Communication between the wireless terminal 1 and the base station 2 may be bidirectional communication as shown in FIG. 7 or may be one-way communication from the wireless terminal 1 to the base station 2.
- the moving speed is low and the moving distance is considered to be small, and the terminal time is It has a function of approximately determining Tu and an oscillator frequency error dfu to generate a 1 PPS signal.
- the number of satellites that can be acquired is less than 4, positioning can not be performed, but time synchronization of wireless communication with the base station 2 will be maintained.
- the wireless terminal 1 performs positioning and performs the above-described calculation of the position and velocity to generate a 1 PPS signal. Assuming that the internal clock of the GNSS receiver is 20 MHz, since the time resolution is 50 ns, it is possible to increase the accuracy of the 1 PPS signal to ⁇ 25 ns.
- N is the number of satellites that can be acquired (N ⁇ 3).
- n represents each satellite that can be captured, and has a value of 0 to N-1.
- the equation (13) corresponds to approximately determining, as the terminal time Tu, the average of the terminal times obtained based on the information of each satellite, with the current position of the wireless terminal 1 as the last measured position. Since the wireless terminal 1 is carried by a child or the like who is assumed to have a small moving amount, such an approximate calculation can be performed.
- equation (14) corresponds to setting the velocity of the wireless terminal 1 to 0 and approximating, as the oscillator frequency error dfu, the average of the oscillator frequency error obtained based on the information of each satellite. Since the wireless terminal 1 is carried by a child or the like who is assumed to have a slow moving speed, such an approximate calculation becomes possible.
- the output of the 1PPS signal is continued based on the terminal time Tu and the oscillator frequency error dfu approximately obtained in this manner.
- time synchronization of wireless communication can be performed even if the number of satellites that can be acquired is reduced from 4 or more to less than 4. It becomes possible to maintain.
- FIG. 8 is a block diagram showing a configuration example of the wireless terminal 1.
- the wireless terminal 1 includes a control CPU 11, a GNSS receiving unit 12, a wireless transmitting / receiving unit 13, a sensor 14, and a sharing unit 15.
- the control CPU 11 executes a program stored in the memory 25 of the sharing unit 15 to control the overall operation of the wireless terminal 1.
- control CPU 11 controls the GNSS receiver 12 to perform positioning.
- the GNSS receiver 12 supplies the CPU 11 for control with various information such as the position, velocity, and time of the wireless terminal 1 and information on satellites that can be captured.
- the control CPU 11 outputs information such as the position, speed, time, and the like of the wireless terminal 1 to the wireless transmission / reception unit 13 to transmit the information.
- the timing setting unit 11A is realized by executing a predetermined program.
- the timing setting unit 11 A sets transmission / reception timing of data based on the 1 PPS signal supplied from the GNSS reception unit 12, and outputs information on transmission / reception timing to the wireless transmission / reception unit 13. Further, the timing setting unit 11A outputs information on the frequency of the carrier used for data transmission and reception to the wireless transmission and reception unit 13, and controls communication by the wireless transmission and reception unit 13.
- the GNSS receiver 12 which is a GNSS receiver processes the signal from the satellite antenna 12A to calculate the position, velocity, time, etc. of the wireless terminal 1, and outputs it to the control CPU 11. Further, the control CPU 11 generates a 1PPS signal and outputs the 1PPS signal to the control CPU 11.
- the wireless transmission / reception unit 13 which is a wireless communication device of the LPWA transmits the position information and the like supplied from the control CPU 11 in accordance with the transmission timing set by the control CPU 11. Further, the wireless transmission / reception unit 13 sets the reception window according to the reception timing set by the control CPU 11, and transmits the signal from the external device such as the base station 2 by processing the signal supplied from the antenna 13A. Receive data
- the sensor 14 is configured by an acceleration sensor, a gyro sensor, or the like.
- the sensor 14 outputs sensor data representing the measurement result to the control CPU 11.
- Sensor data representing the measurement result of the sensor 14 is also transmitted to the base station 2 as appropriate.
- the common unit 15 includes a TCXO (crystal oscillator with temperature compensation) 21, an XO (crystal oscillator) 22, an RTC (Real Time Clock) 23, a timer 24, and a memory 25.
- TCXO crystal oscillator with temperature compensation
- XO crystal oscillator
- RTC Real Time Clock
- the TCXO 21 generates and outputs, for example, a 26 MHz clock signal.
- the clock signal output from the TCXO 21 is supplied to the GNSS receiver 12 and the radio transceiver 13.
- the XO 22 generates and outputs a 32.768 kHz clock signal, for example.
- the clock signal output from the XO 22 is supplied to the GNSS receiver 12.
- the RTC 23 measures the terminal time. For example, the terminal time obtained by the GNSS receiving unit 12 is set in the RTC 23.
- the timer 24 manages the timing at which the control CPU 11 controls each unit.
- the memory 25 is configured by a random access memory (RAM) and a read only memory (ROM).
- the program stored in the ROM is read by the control CPU 11 and executed using the RAM.
- FIG. 9 is a view showing a configuration example of the wireless transmission / reception unit 13.
- the wireless transmission / reception unit 13 includes a wireless communication CPU 31 and a signal processing unit 32.
- the wireless communication CPU 31 controls the operation of the signal processing unit 32 in accordance with a control signal supplied from the control CPU 11. For example, the wireless communication CPU 31 switches the switch 45 of the signal processing unit 32 to switch between the transmission operation and the reception operation.
- Information such as the position, speed, and time of the wireless terminal 1 is supplied as transmission data from the control CPU 11 to the wireless communication CPU 31.
- the wireless communication CPU 31 outputs the transmission data supplied from the control CPU 11 to the signal processing unit 32 for transmission.
- the wireless communication CPU 31 outputs the data received by the signal processing unit 32 to the control CPU 11.
- Signal processing unit 32 includes modulation unit 41, Fractional-N PLL 42, frequency divider 43, amplifier 44, switch 45, amplifier 46, mixer 47, mixer 48, BPF 49, amplifier 50, amplifier 51, and demodulation / CS unit 52. Configured
- the modulation unit 41 acquires the transmission data supplied from the wireless communication CPU 31, and outputs the transmission data to the fractional-N PLL 42.
- the Fractional-N PLL 42 At the time of data transmission, the Fractional-N PLL 42 generates a transmission signal of a predetermined frequency based on a clock signal supplied from the TCXO 21 and performs modulation processing on the data supplied from the modulation unit 41.
- modulation processing such as frequency shift keying (FSK) and minimum shift keying (MSK) is performed. Processing by other modulation schemes than FSK and MSK may be performed in the Fractional-N PLL 42.
- the Fractional-N PLL 42 outputs the transmission signal obtained by performing the modulation processing to the divider 43.
- the Fractional-N PLL 42 generates a signal of a predetermined frequency based on the clock signal supplied from the TCXO 21 at the time of data reception, and outputs the signal to the frequency divider 43.
- the transmission / reception frequency is switched in steps of, for example, 0.1 Hz according to the control by the CPU 31 for wireless communication.
- the divider 43 divides the transmission signal supplied from the Fractional-N PLL 42 at the time of data transmission, and outputs the divided signal to the amplifier 44. Further, when data is received, the frequency divider 43 divides the clock signal supplied from the Fractional-N PLL 42 and outputs it to the mixer 47 and the mixer 48.
- the amplifier 44 amplifies the transmission signal supplied from the frequency divider 43 at the time of data transmission.
- the transmission signal amplified by the amplifier 44 is supplied to the antenna 13A via the switch 45 and transmitted as a radio signal.
- the amplifier 46 amplifies the received signal supplied from the antenna 13A at the time of data reception, and outputs the amplified signal to the mixer 47.
- the mixer 47 performs frequency conversion of the received signal supplied from the amplifier 46 based on the clock signal supplied from the frequency divider 43, and outputs a signal obtained by performing frequency conversion.
- the signal output from the mixer 47 is supplied to the mixer 48 and the BPF 49.
- the mixer 48 performs frequency conversion of the signal supplied from the mixer 47 based on the clock signal supplied from the frequency divider 43, and outputs a signal obtained by performing frequency conversion.
- the signal output from the mixer 48 is supplied to the BPF 49.
- the BPF 49 filters the signal supplied from the mixer 47 and outputs a signal of a predetermined frequency band to the amplifier 50.
- the BPF 49 also filters the signal supplied from the mixer 48, and outputs a signal of a predetermined frequency band to the amplifier 51.
- the amplifier 50 amplifies the signal from the mixer 47 supplied via the BPF 49 and outputs the amplified signal to the demodulation / CS unit 52 as an I signal.
- the amplifier 51 amplifies the signal from the mixer 48 supplied via the BPF 49 and outputs the amplified signal to the demodulation / CS unit 52 as a Q signal.
- the demodulation / CS unit 52 demodulates the I signal and the Q signal supplied from the amplifier 50 and the amplifier 51 by performing processing such as ADC to generate reception data.
- the reception data generated by the demodulation / CS unit 52 is supplied to the wireless communication CPU 31 and output to the control CPU 11.
- the demodulation / CS unit 52 appropriately performs processing such as carrier sense.
- FIG. 10 is a diagram showing an example of the configuration of the GNSS receiver 12.
- the GNSS receiver 12 includes a frequency converter 81 and a digital signal processor 82.
- the frequency converter 81 as an RF / analog signal processor comprises an LNA (Low Noise Amplifier) 91, a BPF 92, an amplifier 93, a mixer 94, a local oscillator 95, an amplifier 96, an LPF 97, and an ADC 98.
- LNA Low Noise Amplifier
- the LNA 91 amplifies the reception signal (RF signal) supplied from the antenna 12A in response to the reception of the radio wave from the satellite, and outputs it to the BPF 92.
- the BPF 92 filters the reception signal supplied from the LNA 91, and outputs a signal of a predetermined frequency band to the amplifier 93.
- the amplifier 93 amplifies the received signal supplied from the BPF 92 and outputs the amplified signal to the mixer 94.
- the mixer 94 performs frequency conversion by multiplying the signal supplied from the amplifier 93 by the local oscillation signal supplied from the local oscillation unit 95, and outputs an intermediate frequency signal (IF signal).
- the local oscillation unit 95 has a PLL composed of a VCO 95A, a frequency divider 95B, a phase comparison unit 95C, and a loop filter 95D.
- the local oscillation unit 95 generates a local oscillation signal having a predetermined frequency based on the clock signal supplied from the TCXO 21, and outputs the local oscillation signal to the mixer 94.
- the VCO 95A of the local oscillator 95 oscillates according to the output from the loop filter 95D, and outputs a signal of a predetermined frequency.
- the signal output from the VCO 95A is supplied to the frequency divider 95B and to the mixer 94 as a local oscillation signal.
- the frequency divider 95B sets a predetermined frequency division ratio according to the control by the GNSS CPU 101, divides the frequency of the signal supplied from the VCO 95A, and outputs the frequency divided signal to the phase comparison unit 95C.
- the phase comparison unit 95C compares the phase of the signal supplied from the frequency divider 95B and the phase of the clock signal supplied from the TCXO 21 and outputs a signal representing the phase difference to the loop filter 95D.
- the loop filter 95D outputs a voltage representing the phase difference detected by the phase comparison unit 95C to the VCO 95A.
- the amplifier 96 amplifies the IF signal supplied from the mixer 94 and outputs the amplified signal to the LPF 97.
- the LPF 97 filters the IF signal supplied from the amplifier 96 and outputs a low frequency component signal to the ADC 98.
- a BPF may be provided instead of the LPF.
- the ADC 98 performs AD conversion of the IF signal supplied from the LPF 97, and outputs the IF signal as digital data to the digital signal processing unit 82.
- the digital signal processing unit 82 includes a GNSS CPU 101, a synchronization acquisition unit 102, a synchronization holding unit 103, an RTC 104, a timer 105, a memory 106, a 1 PPS signal generation unit 107, and a frequency multiplier / divider 108.
- the IF signal output from the ADC 98 is input to the synchronization acquisition unit 102 and the synchronization holding unit 103.
- the GNSS CPU 101 controls the operation of the digital signal processing unit 82 in accordance with the control signal supplied from the control CPU 11.
- a calculation unit 101A is realized by executing a predetermined program.
- the calculation unit 101A calculates the position of the wireless terminal 1 based on the information from each satellite contained in the message supplied from the synchronization holding unit 103.
- the message transmitted from the satellite includes information such as a formula for calculating the orbit, and the transmission time of the radio wave.
- the calculation unit 101A calculates the above equations (2) to (5) to obtain the position of the wireless terminal 1. In addition, the calculation unit 101A obtains the speed of the wireless terminal 1 by performing the calculations of the above equations (9) to (12). The calculation unit 101A outputs the terminal time Tu obtained in these calculations and the oscillator frequency error dfu (error of the oscillation frequency of the TCXO 21 used by the local oscillation unit 95 to generate the local oscillation signal) to the 1PPS signal generation unit 107.
- the oscillator frequency error dfu error of the oscillation frequency of the TCXO 21 used by the local oscillation unit 95 to generate the local oscillation signal
- the calculation unit 101A approximates the terminal time Tu by performing the calculation of the above equation (13) based on the positions and times of the satellites that can be captured. Ask. In addition, the calculation unit 101A approximately obtains the oscillator frequency error dfu by performing the calculation of the above equation (14) based on the velocity of the satellite that can be acquired and the Doppler frequency. The calculation unit 101A outputs the terminal time Tu and the oscillator frequency error dfu which are approximately obtained to the 1PPS signal generation unit 107.
- a control terminal, an I / O terminal, an additional function terminal, and the like are connected to the GNSS CPU 101. Input and output of control signals and the like necessary for control of each part are performed via each terminal.
- the synchronization acquisition unit 102 operates according to the clock signal supplied from the multiplier / divider 108, and performs synchronization acquisition of the C / A code based on the IF signal output from the frequency conversion unit 81. For example, the synchronization acquisition unit 102 detects the C / A code used for the transmission of the message by converting the IF signal into a baseband signal and correlating the internally generated C / A code.
- the synchronization acquisition unit 102 acquires information such as the type of the C / A code, the phase of the C / A code, the carrier frequency, and the satellite identification information specified based on the C / A code obtained by performing synchronization acquisition. It is output to the synchronization holding unit 103. The information acquired by the synchronization acquisition unit 102 is also supplied to the GNSS CPU 101.
- the synchronization holding unit 103 operates according to the clock signal supplied from the multiplier / divider 108, and the IF signal output from the frequency conversion unit 81 based on the C / A code specified by the synchronization acquisition unit 102 and the carrier frequency. Demodulate the message represented by The synchronization holding unit 103 outputs the message obtained by demodulation to the GNSS CPU 101.
- the RTC 104 measures the terminal time based on the clock signal supplied from the XO 22.
- the time information measured by the RTC 104 is corrected, for example, each time a radio wave from a satellite is received and an accurate time is obtained.
- the timer 105 manages the timing of each process of the GNSS CPU 101.
- the memory 106 is configured of a RAM and a ROM.
- the program stored in the ROM constituting the memory 106 is read by the GNSS CPU 101 and executed using the RAM.
- the 1PPS signal generation unit 107 generates and outputs a 1PPS signal based on the terminal time Tu and the oscillator frequency error dfu supplied from the calculation unit 101A.
- the 1PPS signal output from the 1PPS signal generation unit 107 is supplied to the control CPU 11.
- the multiplier / divider 108 multiplies or divides the clock signal supplied from the TCXO 21.
- the multiplier / divider 108 outputs a clock signal obtained by performing multiplication or division to each unit in the GNSS receiver 12.
- the control CPU 11 includes the CPU of the GNSS receiving unit 12 and the wireless transmitting and receiving unit 13. It is also possible to double as a CPU.
- step S1 the GNSS CPU 101 performs initial setting of each unit of the frequency conversion unit 81.
- step S2 the frequency conversion unit 81 starts an initial operation, and performs each process on the reception signal supplied from the antenna 12A.
- the IF signal output from the ADC 98 is supplied to the synchronization acquisition unit 102 and the synchronization holding unit 103 of the digital signal processing unit 82.
- step S3 the synchronization acquisition unit 102 converts the IF signal supplied from the ADC 98 into a baseband signal, and performs synchronization acquisition of the C / A code in the baseband signal.
- step S4 the synchronization holding unit 103 makes settings for continuing to capture satellites, and starts an operation of holding synchronization.
- information such as satellite identification information is supplied from the synchronization acquisition unit 102 to the GNSS CPU 101, and information such as a message transmitted by the satellite is supplied from the synchronization holding unit 103 to the GNSS CPU 101.
- step S5 the GNSS CPU 101 acquires satellite information including satellite identification information based on the information supplied from the synchronization acquisition unit 102 and the synchronization holding unit 103. Further, the calculation unit 101A of the GNSS CPU 101 performs calculation based on the information supplied from the synchronization acquisition unit 102 and the synchronization holding unit 103, and calculates the pseudo distance (C (Tu-Ti)), the Doppler frequency (fd), and the carrier wave. Information such as signal phase and signal strength is acquired as satellite information.
- step S6 the GNSS CPU 101 determines whether the number of satellites that can be acquired is four or more.
- step S6 If it is determined in step S6 that the number of satellites that can be captured is four or more, the calculation unit 101A performs normal positioning calculation in step S7. That is, the calculation unit 101A obtains the position of the wireless terminal 1 by performing the calculations of the equations (2) to (5). In addition, the calculation unit 101A obtains the speed of the wireless terminal 1 by performing the calculations of the above equations (9) to (12). The calculation unit 101A obtains the terminal time Tu and the oscillator frequency error dfu by performing these calculations.
- step S8 the GNSS CPU 101 outputs various information such as the position, speed, and time of the wireless terminal 1.
- the information output from the GNSS CPU 101 is supplied to the control CPU 11.
- step S9 the 1PPS signal generation unit 107 generates and outputs a 1PPS signal based on the terminal time Tu and the oscillator frequency error dfu obtained by the calculation unit 101A.
- step S10 the GNSS CPU 101 determines whether or not to continue receiving satellites, and if it is determined to continue, the process returns to step S5 and continues the above processing.
- step S6 when it is determined in step S6 that the number of satellites that can be acquired is not four or more, the CPU 101 for GNSS determines whether the number of satellites that can be acquired is one or more in step S11.
- step S11 If it is determined in step S11 that the number of satellites that can be acquired is not 1 or more, that is, 0, the process returns to step S5, and the above process is repeated.
- step S11 If it is determined in step S11 that the number of satellites that can be acquired is one or more, that is, one or more and less than four, the process proceeds to step S12.
- step S12 the calculating unit 101A calculates the following equations (13) and (14) on the assumption that the current position is the last measured position and the moving speed is 0, and the terminal time is calculated.
- the Tu and the oscillator frequency error dfu are approximately determined.
- a 1PPS signal is generated and output based on the terminal time Tu and the oscillator frequency error dfu obtained approximately.
- step S10 If it is determined in step S10 that reception of satellites is not continued, the process is terminated.
- step S21 the timing setting unit 11A of the control CPU 11 updates the data transmission timing by the wireless transmission / reception unit 13 based on the 1 PPS signal generated by the GNSS reception unit 12.
- the data transmission timing is set based on the approximately 1 PPS signal generated based on the terminal time Tu and the oscillator frequency error dfu. This maintains the time synchronization of wireless communication even when the number of satellites that can be acquired is less than four.
- step S22 the wireless transmission / reception unit 13 transmits data in accordance with the transmission timing set by the timing setting unit 11A.
- data transmitted from the wireless transmission / reception unit 13 includes position information.
- step S23 the control CPU 11 determines whether or not to continue data transmission. If it is determined that the data transmission is to be continued, the process returns to step S21, and the above process is repeated. On the other hand, when it is determined in step S23 that transmission of data is not continued, the process is ended.
- a reception window is set on the basis of the 1 PPS signal generated by the GNSS reception unit 12, and reception of data transmitted from the base station 2 is performed according to the reception window.
- the wireless transmission / reception unit 13 is a wireless communication device that supports only one-way wireless communication, the information necessary for time correction can not be acquired from an external device such as the base station 2 or the like. Time synchronization of wireless communication can be maintained.
- the wireless terminal 1 can generate a 1PPS signal with an accuracy of several tens of ns as described above, but in the wireless communication system of FIG. 6, time synchronization with such high accuracy is possible. Need not be established.
- the reception window is set in consideration of the propagation delay.
- the propagation delay corresponds to the time in us, so that the maximum propagation delay is 100 us, so that the accuracy in us can be ensured. It would be sufficient for wireless communication.
- the ability to maintain time synchronization makes it possible to avoid collision of transmission data.
- the accommodation capacity of the wireless terminal can be increased, and the server apparatus (not shown) can manage the positions and the like of many monitored objects. Being able to monitor many objects makes it possible to reduce the probability of occurrence of an abnormal condition such as an accident.
- the terminal time Tu is calculated considering the last measured position as the current position
- the terminal time Tu is calculated using a position other than the last measured position as Xu, Yu, and Zu. Calculation may be performed.
- the position measured only a predetermined time ago may be used for calculation of the terminal time Tu.
- a position obtained by correcting the last measured position using sensor data or the like may be used for calculation of the terminal time Tu.
- Weighting may be performed according to the situation of
- weighting there is a method of setting weights in accordance with C / N 0 (carrier-power-to-noise-density ratio) and an elevation angle of a satellite.
- a is a constant determined by experience or the like.
- a for example, a value such that the weight Wn is 1 when C / N0 is 40 dBHz is used.
- C / N0 is the ratio of the carrier power of the GNSS signal to the noise power, and the unit is dB Hz. In the case of a -130 dBm GNSS signal, C / N0 is about -41 dBHz in a typical receiver. Although it is possible to receive C / N0 at around 50 dBHz in places where the sky is open, it will be less than 20 dBHz in places where the reception environment is not good.
- each equation constituting the simultaneous equations is multiplied by the weight Wn, and the calculation accuracy is improved by solving by the method of least squares.
- the same weight is used for the calculation of the terminal time Tu according to the equation (16) and the calculation of the oscillator frequency error dfu according to the equation (17), they do not necessarily have to be the same.
- the value of the constant a used to calculate the weight Wn may be changed between the calculation of the terminal time Tu and the calculation of the oscillator frequency error dfu.
- the signal of each satellite received by the GNSS receiver 12 differs depending on C / N0, the influence of multipath due to reflection and diffraction, and the like. By weighting according to the reception status of the signal of each satellite, it is possible to increase the accuracy of the terminal time Tu and the oscillator frequency error dfu which are approximately obtained.
- Second embodiment An example of the setting of the reception window on the receiving side when data is transmitted according to the transmission timing set based on the 1 PPS signal generated as described above will be described.
- the reception window represents a reception interval set on the data reception side in accordance with the transmission timing.
- the reception window is assumed when the maximum propagation delay time between the wireless terminal 1 and the base station 2 in the communication area, the time according to the maximum packet length, and the number of reception satellites is less than 4 It is set to have a time width equal to or greater than the time according to the error of the 1 PPS signal.
- the propagation conditions are good, communication can be performed between several kilometers to several tens of kilometers. As shown in FIG. 13, for example, assuming that the communication area of one base station 2 is 3 km, the propagation delay is up to 10 us as shown by the arrow.
- the moving distance from the final position of the wireless terminal 1 (the position at which positioning was last performed) is within 300 m and the moving speed is within 10 m / s.
- the deviation of the terminal time Tu is 1 us or less, and the oscillator frequency error dfu is within 0.033 ppm.
- the maximum deviation of the terminal time Tu after one second is 0.033 us, and the maximum deviation of the terminal time Tu after one minute is 2 us.
- reception synchronization error due to noise or the like is within ⁇ 0.5 us.
- FIG. 14 is a diagram illustrating an example of communication in a wireless communication system.
- the upper part of FIG. 14 shows the transmission timing and the reception timing of data by the wireless terminal 1, and the lower part shows the reception timing and the transmission timing of data by the base station 2. Description overlapping with the explanation of FIG. 7 is appropriately omitted.
- the data transmitted from the radio terminal 1 at the timing of time t11 which is the time after the time equivalent to the specified value with reference to the time t2 is set in the base station 2 so that the time t11 is set as the start time Received according to the window.
- the fact that transmission data is indicated by a thick solid line and reception data is indicated by a thick alternate long and short dash line in FIG. 14 indicates that it takes time corresponding to the packet length for transmission and reception of the transmission data.
- the data transmitted from base station 2 at the timing of time t12 which is the time after the time corresponding to the specified value with reference to time t3 is set so that the time t12 is set as the start time in the wireless terminal 1. Received according to the received window.
- FIG. 15 is a diagram showing an example of setting of a reception window shown surrounded by a broken line circle in FIG.
- the communication area of the base station 2, the moving distance of the wireless terminal 1, and the moving speed of the wireless terminal 1 are respectively set to the above values, the elapsed time is 1 minute, and the reception synchronization error is within ⁇ 0.5 us.
- the reception window has a transmission timing as a start time, and a time corresponding to 13.5 us plus the maximum packet length after a time after 0.5 us from the start time. Is set as the end time.
- 0.5 us corresponds to the reception synchronization error
- 1 us corresponds to the deviation of the maximum terminal time Tu when the moving distance is within 300 m and the moving speed is within 10 m / s.
- 2 us corresponds to the deviation of the terminal time Tu according to the elapsed time
- 10 us corresponds to the maximum value of the propagation delay when the communication area of the base station 2 is 3 km.
- base station 2 can transmit a signal from wireless terminal 1 even if the 1 PPS signal is a signal generated based on an approximately calculated value. It becomes possible to reliably receive the transmitted data.
- a header length may be used as a component of the reception window time width.
- the reception window has a transmission timing as a start time, and a time corresponding to 13.5 us plus a header length after a time after 0.5 us from the start time. The time is set as the end time.
- Third Embodiment In the wireless terminal 1, although the positioning can not be performed when the number of received satellites is less than 4, the 1PPS signal is generated, whereby time synchronization of wireless communication with the base station 2 can be maintained. Information other than position information is transmitted to the base station 2 by wireless communication in which time synchronization is maintained.
- FIG. 16 is a diagram illustrating an example of transmission and reception of data in the wireless communication system.
- the wireless terminal 1 can receive only radio waves from two satellites, satellite S1 and satellite S2. Although the wireless terminal 1 can not perform positioning, it generates a 1 PPS signal and maintains time synchronization of wireless communication with the base station 2.
- the wireless terminal 1 transmits the pseudo distance between the satellite S1 and the satellite S2 and the Doppler frequencies of the satellite S1 and the satellite S2 to the base station 2 as measured value data, as indicated by an arrow # 1.
- the pseudo range is obtained using the time of the satellite that can be acquired and the terminal time Tu (equations (2) to (5)).
- the time measured by the RTC 104 of the GNSS receiver 12 is used as the terminal time Tu.
- the Doppler frequency is information obtained from a securable satellite (equations (9) to (12)).
- the base station 2 receives the measured value data transmitted from the wireless terminal 1 and determines whether the wireless terminal 1 (a user carrying the wireless terminal 1) is moving.
- Whether the wireless terminal 1 is moving or not can be determined, for example, from the measured values of the pseudo distance and the Doppler frequency represented by the data transmitted from the wireless terminal 1 and the pseudo distance obtained from the approximate position of the wireless terminal 1 And the approximation of the Doppler frequency.
- the base station 2 can specify the approximate position of the wireless terminal 1 based on the information continuously transmitted from the wireless terminal 1.
- Whether or not the wireless terminal 1 is moving may be determined based on the variation of the difference between the actual measurement value and the approximate value.
- the base station 2 transmits information indicating whether the wireless terminal 1 is moving to the server device 3 as indicated by the arrow # 2.
- the communication between the base station 2 and the server device 3 may be wireless communication or wired communication.
- the server device 3 is a server that manages the position of each wireless terminal 1 and the like.
- the server device 3 receives the information transmitted from the base station 2 and manages the information in association with the identification information of the wireless terminal 1. Although the server device 3 can not provide an accurate position, it can provide whether the wireless terminal 1 is moving.
- the information on the pseudo distance and the Doppler frequency transmitted from the wireless terminal 1 may be transmitted from the base station 2 to the server device 3 as it is, and the server device 3 may determine whether the wireless terminal 1 is moving. . It may be determined by the wireless terminal 1 itself whether or not it is moving, and the determination result may be transmitted from the wireless terminal 1.
- FIG. 17 is a block diagram showing a configuration example of the base station 2.
- the CPU 201, the ROM 202, and the RAM 203 are mutually connected by a bus 204.
- the CPU 201 loads a program stored in the ROM 202 or the storage unit 208 into the RAM 203 and executes the program to control the overall operation of the base station 2.
- the estimation unit 201A is realized by executing a predetermined program.
- the estimation unit 201A determines whether the wireless terminal 1 is moving or not based on the information transmitted from the wireless terminal 1.
- the estimation unit 201A functions as an estimation unit that estimates the state of the wireless terminal 1.
- the determination result by the estimation unit 201A is transmitted to the server device 3 by the communication unit 209.
- An input / output interface 205 is connected to the bus 204.
- a GNSS reception unit 206, a wireless transmission / reception unit 207, a storage unit 208, and a communication unit 209 are connected to the input / output interface 205.
- the GNSS receiver 206 has the same function as the GNSS receiver 12 of the wireless terminal 1.
- the GNSS receiver 206 receives radio waves from satellites, determines the position of the base station 2, and generates and outputs a 1PPS signal.
- the 1 PPS signal output from the GNSS reception unit 206 is supplied to the wireless transmission and reception unit 207 and used for time synchronization of wireless communication with each wireless terminal 1.
- the wireless transmission and reception unit 207 has the same function as the wireless transmission and reception unit 13 of the wireless terminal 1.
- the wireless transmission / reception unit 207 sets transmission / reception timing for performing communication with each of the wireless terminals 1 present in the communication area managed by the base station 2 based on the 1 PPS signal.
- the wireless transmission and reception unit 207 receives and outputs the data transmitted from the wireless terminal 1.
- the data output from the wireless transmission and reception unit 207 is supplied to the communication unit 209 and transmitted to the server device 3. Also, the wireless transmission and reception unit 207 transmits data to the wireless terminal 1 as appropriate.
- the storage unit 208 includes a hard disk, a non-volatile memory, and the like, and receives various data.
- the communication unit 209 is configured by a network interface and the like, and communicates with the server device 3 via a network such as the Internet. For example, the communication unit 209 transmits the data transmitted from the wireless terminal 1 and received by the wireless transmission and reception unit 207 to the server device 3.
- steps S31 to S42 of FIG. 18 are similar to the processes of steps S1 to S12 of FIG. Duplicate descriptions will be omitted as appropriate.
- step S42 when it is determined in step S41 that the number of satellites that can be captured is 1 or more and less than 4, in step S42, the calculation unit 101A approximately obtains the terminal time Tu and the oscillator frequency error dfu. A 1 PPS signal is generated using the terminal time Tu and the oscillator frequency error dfu which are approximately obtained (step S39).
- step S43 the calculation unit 101A obtains the pseudorange and the Doppler frequency based on the information from the acquired satellite.
- the terminal time Tu obtained in step S42 may be used to calculate the pseudo distance.
- step S44 the calculation unit 101A outputs information on the pseudo distance and the Doppler frequency.
- the number of satellites that can be acquired is one or more and less than four, the pseudo range and the Doppler frequency are repeatedly output from the calculation unit 101A in this manner.
- the information output from the calculation unit 101A is supplied to the control CPU 11, and is transmitted to the base station 2 as actual measurement value data by performing the processing of FIG.
- step S51 the wireless transmission and reception unit 207 receives the measured value data of the pseudo distance and the Doppler frequency transmitted from the wireless terminal 1.
- step S52 the estimation unit 201A compares the actual measurement value data of the pseudo distance and the Doppler frequency transmitted from the wireless terminal 1 with the approximate value to confirm the fluctuation of the pseudo distance and the Doppler frequency. For example, it is determined that the wireless terminal 1 is moving if the pseudo distance and the fluctuation amount of the Doppler frequency are larger than the threshold, and it is determined that the wireless terminal 1 is not moving if it is smaller than the threshold.
- the determination as to whether or not the wireless terminal 1 is moving may be performed based on either one of the pseudo distance and the Doppler frequency instead of both.
- step S53 the communication unit 209 transmits, to the server device 3, information indicating whether the wireless terminal 1 is moving or not, which represents the determination result of the estimation unit 201A.
- the above process is performed each time the measured value data of the pseudo distance and the Doppler frequency is transmitted from the wireless terminal 1.
- the estimated position may be managed by the server device 3 together with the pseudo distance and the Doppler frequency.
- FIG. 20 is a diagram showing a configuration example of a wireless communication system for estimating the position of the wireless terminal 1 in the server device 3.
- the base stations 2-1 to 2-3 are shown, and are connected to the server 3 via the network.
- the wireless terminal 1 exists at a position where the communication areas of the base stations 2-1 to 2-3 overlap, and can communicate with each of the base stations 2-1 to 2-3.
- Time synchronization of wireless communication with each of the base stations 2-1 to 2-3 is maintained by the wireless terminal 1 receiving radio waves from the satellites S1 and S2.
- reception windows are set at the same timing, and data transmitted from the wireless terminal 1 is received at certain timing.
- the base stations 2-1 to 2-3 receive the information on the pseudorange and the Doppler frequency transmitted from the wireless terminal 1, and detect the propagation delay, respectively.
- the base stations 2-1 to 2-3 transmit information on the detected propagation delay to the server device 3.
- the data transmitted from the wireless terminal 1 is received by the base stations 2-1 to 2-3 at a timing after the transmission timing by the time corresponding to the transmission delay.
- the sizes of circles C11-1 to C11-3 in FIG. 20 indicate the sizes of propagation delays, respectively.
- the information transmitted from the base stations 2-1 to 2-3 to the server device 3 is determined by the base stations 2-1 to 2-3 as appropriate together with the information on the pseudo distance and the Doppler frequency transmitted from the wireless terminal 1 Also included is information indicating the determination result as to whether or not the wireless terminal 1 is moving.
- the server device 3 estimates the position of the wireless terminal 1 based on the propagation delays detected at the base stations 2-1 to 2-3.
- the position of the wireless terminal 1 can be estimated as the position of the point of intersection of circles C11-1 to C11-3 corresponding to the propagation delay centering on each base station.
- the position of the wireless terminal 1 can be estimated.
- the server device 3 manages, for example, the positions of the satellites S1 and S2 measured at the base stations 2-1 to 2-3 and supplied from the base stations 2-1 to 2-3 at each time.
- the position of the point of intersection of the sphere whose radius is the pseudo distance can be estimated as the position of the wireless terminal 1.
- An arc C 21-1 in FIG. 20 represents a sphere centered on the position of the satellite S 1
- an arc C 21-2 represents a sphere centered on the position of the satellite S 2.
- the position of the wireless terminal 1 can be estimated including height. become.
- the position of the wireless terminal 1 estimated in this manner is managed by the server device 3.
- the position of the wireless terminal 1 is an estimated value, including an error, but it is possible to provide more information.
- FIG. 21 is a block diagram showing a configuration example of the server device 3.
- the CPU 301, the ROM 302, and the RAM 303 are mutually connected by a bus 304.
- the CPU 301 loads the programs stored in the ROM 302 and the storage unit 306 into the RAM 303 and executes the programs to control the overall operation of the server device 3.
- the estimation unit 301A is realized by executing a predetermined program.
- the estimation unit 301A estimates the position of the wireless terminal 1 based on the information on the propagation delay transmitted from the base station 2.
- the estimation unit 301A estimates the position of the wireless terminal 1 based on not only the propagation delay but also the position of the satellite captured by the wireless terminal 1 as appropriate.
- the estimation unit 301A functions as an estimation unit that estimates the state of the wireless terminal 1.
- An input / output interface 305 is connected to the bus 304.
- a storage unit 306, a communication unit 307, and a drive 308 are connected to the input / output interface 305.
- the storage unit 306 includes a hard disk, a non-volatile memory, and the like, and manages various information related to the state of the wireless terminal 1 such as the position of the wireless terminal 1 and whether it is moving or the like in association with identification information.
- the information managed by the storage unit 306 is appropriately provided to a client device operated by a user who monitors the state of the monitoring target.
- the communication unit 307 is configured by a network interface or the like, and communicates with the base station 2.
- the communication unit 307 receives the information transmitted from the base station 2 and outputs the information to the storage unit 306.
- the drive 308 reads data stored in the removable media 309 and writes data on the removable media 309.
- step S 61 the communication unit 307 receives the information on the propagation delay between the base station 2 and the wireless terminal 1 transmitted from each of the base stations 2.
- the base station 2 also transmits the information on the pseudo distance and the Doppler frequency transmitted from the wireless terminal 1 and the information indicating the determination result as to whether the wireless terminal 1 is moving or not. It will be.
- the communication unit 307 also receives these pieces of information.
- step S62 the estimation unit 301A estimates the position of the wireless terminal 1 based on the propagation delay information transmitted from the three or more base stations 2.
- the estimation of the wireless terminal 1 is appropriately performed also based on the position of the satellite captured by the wireless terminal 1.
- step S63 the estimation unit 301A stores the estimated position as the current position of the wireless terminal 1 and stores the position in the storage unit 306 for management.
- the wireless terminal 1 can transmit various types of information to the base station 2.
- Base station 2 and server device 3 having received information from the wireless terminal 1 determine whether the wireless terminal 1 is moving or estimate the position of the wireless terminal 1 It will be possible to provide more information.
- FIG. 23 is a diagram illustrating another example of transmission and reception of data in the wireless communication system.
- the components described with reference to FIG. 16 are assigned the same reference numerals. Duplicate descriptions will be omitted as appropriate.
- the wireless terminal 1 can receive only radio waves from two satellites, the satellite S1 and the satellite S2. Although the wireless terminal 1 can not perform positioning, it generates a 1 PPS signal and maintains time synchronization of wireless communication with the base station 2.
- the wireless terminal 1 transmits to the base station 2 sensor data representing the acceleration and the velocity detected by the built-in sensor 14 as indicated by an arrow # 11. As described with reference to FIG. 8, the wireless terminal 1 is provided with the sensor 14 such as an acceleration sensor or a gyro sensor.
- the base station 2 receives the sensor data transmitted from the wireless terminal 1 and determines whether the wireless terminal 1 is moving. The determination as to whether the wireless terminal 1 is moving may be performed by comparing the sensor data transmitted from the wireless terminal 1 at a certain timing with the sensor data transmitted at an earlier timing. .
- the base station 2 transmits information indicating whether the wireless terminal 1 is moving to the server device 3 as indicated by an arrow # 12.
- the server device 3 receives the information transmitted from the base station 2 and manages the information in association with the identification information of the wireless terminal 1. Although the server device 3 can not provide an accurate position, it can provide whether the wireless terminal 1 is moving.
- the sensor data transmitted from the wireless terminal 1 may be transmitted from the base station 2 to the server device 3 as it is, and the server device 3 may determine whether the wireless terminal 1 is moving. It may be determined by the wireless terminal 1 itself whether or not it is moving, and the determination result may be transmitted from the wireless terminal 1.
- the position of the wireless terminal 1 may be estimated based on sensor data. In this case, estimation of the position of the wireless terminal 1 is performed in the wireless terminal 1, the base station 2, or the server device 3.
- An oscillator frequency error dfu is determined when generating a 1 PPS signal when the number of satellites that can be acquired is less than four.
- the error from the specified frequency of the transmission frequency of the wireless transmission and reception unit 13 may be corrected based on the oscillator frequency error dfu while maintaining the time synchronization of the wireless communication.
- the division ratio of the Fractional-N PLL 42 of the wireless transmission / reception unit 13 is adjusted based on the oscillator frequency error dfu, and control for adjusting the transmission frequency to a prescribed frequency is performed by the wireless communication CPU 31, for example.
- the division ratio of Fractional-N PLL 42 is set such that the ratio of the oscillation frequency of LO possessed by Fractional-N PLL 42 to the oscillation frequency of TCXO 21 is 35.38460959 expressed by the following equation (18). .
- the ratio of the oscillation frequency of LO of Fractional-N PLL 42 to the oscillation frequency of TCXO 21 is 35.3841538 expressed by the following equation (19), and the frequency difference with the above is approximately 151 Hz. Obviously, the ratio of the oscillation frequency of LO of Fractional-N PLL 42 to the oscillation frequency of TCXO 21 is 35.3841538 expressed by the following equation (19), and the frequency difference with the above is approximately 151 Hz. Become.
- step S71 the GNSS receiver 12 generates a 1 PPS signal by performing the process described with reference to FIG.
- the oscillator frequency error dfu is obtained by the calculation unit 101A.
- Information on the oscillator frequency error dfu is supplied to the wireless transmission / reception unit 13.
- step S72 the radio communication CPU 31 of the radio transmission / reception unit 13 adjusts the division ratio of the fractional-N PLL 42 based on the oscillator frequency error dfu.
- each unit of the signal processing unit 32 transmits data using the corrected transmission frequency generated by adjusting the division ratio.
- the base station 2 can narrow the range of reception frequencies used to receive data, and can reduce the load of reception processing.
- the wireless terminal 1 is used for the watching application of the monitoring target, the wireless terminal 1 can be used for various applications for measuring the position.
- the series of processes described above can be performed by hardware or software.
- a program constituting the software is installed in a computer incorporated in dedicated hardware, a general-purpose personal computer, or the like.
- the program to be installed is provided by being recorded on a removable medium 309 shown in FIG. 21 made of an optical disc (CD-ROM (Compact Disc-Read Only Memory), DVD (Digital Versatile Disc), etc.) or semiconductor memory. Also, it may be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital broadcasting.
- the program can be installed in advance in the ROM 302 or the storage unit 306.
- the program executed by the computer may be a program that performs processing in chronological order according to the order described in this specification, in parallel, or when processing is performed such as when a call is made. It may be a program to be performed.
- a system means a set of a plurality of components (apparatus, modules (parts), etc.), and it does not matter whether all the components are in the same case. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device housing a plurality of modules in one housing are all systems. .
- the present technology can have a cloud computing configuration in which one function is shared and processed by a plurality of devices via a network.
- each step described in the above-described flowchart can be executed by one device or in a shared manner by a plurality of devices.
- the plurality of processes included in one step can be executed by being shared by a plurality of devices in addition to being executed by one device.
- the present technology can also have the following configuration.
- pulse signals of predetermined intervals synchronized with the time of the satellites are generated based on the information from the satellites that can be acquired without performing positioning.
- a positioning unit that outputs A wireless communication unit that maintains time synchronization of wireless communication with an external device based on the pulse signal and performs the wireless communication.
- the positioning unit calculates the internal time of the wireless terminal based on the position of the satellite that can be captured and the time of the satellite, and the wireless based on the velocity of the satellite that can be captured and the Doppler frequency of the satellite
- the radio terminal according to (2) which calculates a frequency error of an internal oscillator of the terminal, and generates the pulse signal based on the internal time and the frequency error.
- the predetermined number is four.
- the pulse signal is a 1PPS signal.
- (6) The wireless terminal according to any one of (1) to (5), wherein the wireless communication unit transmits data according to a timing set based on the pulse signal.
- the wireless communication unit sets a reception window at a timing according to a timing at which the external device transmits data based on the pulse signal, and receives data transmitted by the external device during the reception window.
- the wireless terminal according to any one of (1) to (6).
- the wireless communication unit is configured to estimate the maximum propagation delay time assumed in the communication area of the external device, the time according to the packet length of the packet used for transmitting the data, and the internal time of the wireless terminal. Setting the reception window having a time width equal to or longer than a time obtained by adding a time according to the error.
- the wireless terminal according to (8), wherein the wireless communication unit further sets the reception window having a time width equal to or longer than a time obtained by adding a time according to a reception synchronization error.
- the positioning unit calculates a pseudorange and a Doppler frequency based on information from the satellite that can be acquired, The wireless terminal according to any one of (1) to (9), wherein the wireless communication unit transmits information on the pseudo distance and the Doppler frequency.
- (11) Further comprising a sensor including an acceleration sensor, The wireless terminal according to any one of (1) to (10), wherein the wireless communication unit transmits sensor data detected by the sensor.
- (12) The wireless terminal according to (3), further comprising: a control unit that corrects an error with respect to a specified frequency of a transmission frequency in the wireless communication based on the frequency error.
- the positioning unit does not perform positioning, and based on the information from the satellites that can be captured, a pulse signal of a predetermined interval synchronized with the time of the satellites Generate and output,
- An information processing method comprising: maintaining time synchronization of wireless communication with an external device in a wireless communication unit based on the pulse signal and performing the wireless communication.
- the positioning unit does not perform positioning, and based on the information from the satellites that can be captured, a pulse signal of a predetermined interval synchronized with the time of the satellites Generate and output,
- a program for executing processing including the step of maintaining time synchronization of wireless communication with an external device in a wireless communication unit based on the pulse signal and performing the wireless communication.
- the positioning unit does not perform positioning, and based on the information from the satellites that can be captured, a pulse signal of a predetermined interval synchronized with the time of the satellites
- a communication unit configured to generate and output the information, and to receive information transmitted from a wireless terminal that maintains time synchronization of wireless communication with an external device in the wireless communication unit based on the pulse signal;
- An estimation unit configured to estimate the state of the wireless terminal based on the information received by the communication unit.
- the estimation unit detects whether or not the wireless terminal is moving, based on pseudo range and Doppler frequency obtained by the wireless terminal based on information from the satellite that can be captured, or by the wireless terminal.
- the information processing apparatus according to (15), wherein the information processing apparatus is estimated based on the acquired sensor data.
- the estimation unit estimates the position of the wireless terminal based on a transmission delay when information transmitted by the wireless terminal is received by a plurality of external devices. Information processing device.
- the positioning unit does not perform positioning, and based on the information from the satellites that can be captured, a pulse signal of a predetermined interval synchronized with the time of the satellites
- An information processing method comprising: estimating a state of the wireless terminal based on received information.
- the positioning unit does not perform positioning, and based on the information from the satellites that can be captured, a pulse signal of a predetermined interval synchronized with the time of the satellites Receiving information transmitted from a wireless terminal that generates and outputs, and maintains time synchronization of wireless communication with an external device in a wireless communication unit based on the pulse signal; A program that executes processing including the step of estimating the state of the wireless terminal based on received information.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本技術は、捕捉可能な衛星の数が少ない場合であっても、時刻を高い精度で同期させることができるようにする無線端末、情報処理装置、情報処理方法、およびプログラムに関する。 本技術の一側面の無線端末は、捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な衛星からの情報に基づいて、衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期をパルス信号を基準として維持し、無線通信を行う。本技術は、GNSSによる測位機能と、LPWAなどの無線通信の機能を搭載した端末に適用することができる。
Description
本技術は、無線端末、情報処理装置、情報処理方法、およびプログラムに関し、特に、捕捉可能な衛星の数が少ない場合であっても、時刻を高い精度で同期させることができるようにした無線端末、情報処理装置、情報処理方法、およびプログラムに関する。
子どもや老人などの見守りサービスが注目されている。見守りサービスにおいては監視対象の位置情報が必須となることから、監視対象となる人はGNSS(Global Navigation Satellite System)受信機を搭載した無線端末を携帯することになる。
GNSS受信機は、測位だけでなく、原子時計により高精度に管理されたGNSS時刻に受信機内部の時刻を同期させることができる。また、GNSS受信機は、内部の発振器の発振周波数誤差を知ることができる。
一般的なGNSS受信機は、そのような内部の時刻と発振周波数誤差を用いて、GNSS時刻に数十nsの精度で同期した1Hzのパルス信号である1PPS(1 Pulse Per Second)信号を出力する機能を持つ。1PPS信号は、例えば、見守りサービスを実現するための無線通信の時刻同期に利用される。
ところで、捕捉可能な衛星の数が4未満に減った場合には、位置だけでなく、通常、正確な1PPS信号を得ることができなくなる。この場合、基地局や他の端末から補正情報やタイミング情報を得て、位置の補間や1PPS信号の出力を続けるようにすることが考えられる(例えば特許文献1)。
見守りサービスを実現するための無線通信が双方向通信であるとは限らず、この場合、上述したような、外部の機器からの情報を用いて位置の補間などを行うといったことができない。衛星の受信状況が良くない環境でも、1PPS信号の出力を続け、無線通信の時刻同期を維持できることが好ましい。
本技術はこのような状況に鑑みてなされたものであり、捕捉可能な衛星の数が少ない場合であっても、時刻を高い精度で同期させることができるようにするものである。
本技術の一側面の無線端末は、捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を生成して出力する測位部と、外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持し、前記無線通信を行う無線通信部とを備える。
前記測位部には、最後に測位された位置を前記無線端末の位置、移動速度を0として計算を行うことによって、前記パルス信号を生成させることができる。
前記測位部には、捕捉可能な前記衛星の位置と前記衛星の時刻に基づいて、前記無線端末の内部時刻を計算させ、捕捉可能な前記衛星の速度と前記衛星のドップラ周波数に基づいて、前記無線端末の内部の発振器の周波数誤差を計算させ、前記内部時刻と前記周波数誤差に基づいて前記パルス信号を生成させることができる。
前記所定の数を4とすることができる。
前記パルス信号を1PPS信号とすることができる。
前記無線通信部には、前記パルス信号を基準として設定されたタイミングに従ってデータを送信させることができる。
前記無線通信部には、前記パルス信号を基準として、前記外部の装置がデータを送信するタイミングに応じたタイミングで受信ウィンドウを設定して、前記受信ウィンドウの期間、前記外部の装置が送信するデータを受信させることができる。
前記無線通信部には、前記外部の装置の通信エリアにおいて想定される最大の伝搬遅延時間、前記データの送信に用いられるパケットのパケット長に応じた時間、および、前記無線端末の内部時刻の想定される誤差に応じた時間を加算した時間以上の時間幅の前記受信ウィンドウを設定させることができる。
前記無線通信部には、さらに、受信同期誤差に応じた時間を加算した時間以上の時間幅の前記受信ウィンドウを設定させることができる。
前記測位部には、捕捉可能な前記衛星からの情報に基づいて疑似距離とドップラ周波数を計算させ、前記無線通信部には、前記疑似距離と前記ドップラ周波数の情報を送信させることができる。
加速度センサを含むセンサをさらに設けることができる。この場合、前記無線通信部には、前記センサにより検出されたセンサデータを送信させることができる。
前記周波数誤差に基づいて、前記無線通信における送信周波数の規定周波数に対する誤差を補正する制御部をさらに設けることができる。
本技術の他の側面の情報処理装置は、捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報を受信する通信部と、前記通信部により受信された情報に基づいて、前記無線端末の状態を推定する推定部とを備える。
前記推定部には、前記無線端末が動いているか否かを、捕捉可能な前記衛星からの情報に基づいて前記無線端末により求められた疑似距離とドップラ周波数に基づいて、または、前記無線端末により検出されたセンサデータに基づいて推定させることができる。
前記推定部には、前記無線端末の位置を、前記無線端末が送信する情報が複数の前記外部の装置において受信された場合の伝送遅延に基づいて推定させることができる。
本技術の一側面においては、捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成される。また、無線通信部における外部の装置との無線通信の時刻同期が前記パルス信号を基準として維持され、前記無線通信が行われる。
本技術の他の側面においては、捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報が受信され、受信された情報に基づいて、前記無線端末の状態が推定される。
本技術によれば、捕捉可能な衛星の数が少ない場合であっても、時刻を高い精度で同期させることができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
1.GNSSにおける測位原理
2.第1の実施の形態(無線通信の時刻同期を維持する例)
3.第2の実施の形態(受信ウィンドウの設定例)
4.第3の実施の形態(送信データの例)
5.第4の実施の形態(送信データの他の例)
6.第5の実施の形態(無線通信における送信周波数の誤差を補正する例)
1.GNSSにおける測位原理
2.第1の実施の形態(無線通信の時刻同期を維持する例)
3.第2の実施の形態(受信ウィンドウの設定例)
4.第3の実施の形態(送信データの例)
5.第4の実施の形態(送信データの他の例)
6.第5の実施の形態(無線通信における送信周波数の誤差を補正する例)
<<1.GNSSにおける測位原理>>
GNSSにおける測位原理について説明する。GNSSに対応した受信機であるGNSS受信機は、GPS(USA)、GLONASS(ロシア)、BeiDou(中国)、Galileo(EU)、準天頂衛星みちびき(日本)等の衛星からの電波を複数受信することにより、測位を行うことができる。
GNSSにおける測位原理について説明する。GNSSに対応した受信機であるGNSS受信機は、GPS(USA)、GLONASS(ロシア)、BeiDou(中国)、Galileo(EU)、準天頂衛星みちびき(日本)等の衛星からの電波を複数受信することにより、測位を行うことができる。
図1は、GNSSの例を示す図である。
図1の例においては、衛星S1乃至S4が示されている。衛星S1乃至S4からの電波が、地球上の位置P1にあるGNSS受信機により受信されている。
衛星S1乃至S4は、メッセージ(航法メッセージ)を同期して送信する。衛星S1乃至S4が送信するメッセージには、軌道の計算式、電波の送信時刻などの情報が含まれる。
位置P1にあるGNSS受信機は、衛星S1乃至S4からのメッセージを受信し、メッセージに含まれる情報に基づいて計算を行い、衛星S1乃至S4のそれぞれの位置を求める。
図1の例においては、衛星S1の位置は、位置(X1,Y1,Z1)で表される。衛星S2乃至S4の位置も同様に、それぞれ、位置(X2,Y2,Z2)、位置(X3,Y3,Z3)、位置(X4,Y4,Z4)として表される。衛星S1乃至S4の時刻は、それぞれ時刻T1乃至T4である。
GNSS受信機は、自身が管理する時刻Tと、各衛星の時刻の差として表される電波の伝搬時間に基づいて、衛星とGNSS受信機間の距離を求める。
図2は、伝搬時間の例を示す図である。
図2の横軸は時刻を表す。図2の例においては、衛星S1からの電波の伝搬時間はΔT1として表される。衛星S2乃至S4からの電波の伝搬時間も同様に、それぞれ、ΔT2乃至ΔT4として表される。
それぞれの衛星の位置を中心として、衛星とGNSS受信機間の距離を半径とする球を設定した場合、GNSS受信機の位置は、球の交点の位置として求められる。GNSS受信機の位置を位置(X,Y,Z)とすると、下式(1)が成り立つ。
式(1)のXi,Yi,Ziは衛星の位置であり、Tiは伝搬時間である。図1の例の場合、iは1~4の値をとる。Cは光速である。
図1の例においては、衛星S1乃至S4を中心としてそれぞれ設定された球C1乃至C4の交点の位置が、GNSS受信機の位置P1として求められる。
<受信機位置計算>
GNSS受信機の位置の計算についてさらに説明する。GNSS受信機の位置は、拡散コード(C/Aコード)の同期情報に基づいて、以下の式(2)乃至(5)からなる連立方程式を解くことにより求められる。
GNSS受信機の位置の計算についてさらに説明する。GNSS受信機の位置は、拡散コード(C/Aコード)の同期情報に基づいて、以下の式(2)乃至(5)からなる連立方程式を解くことにより求められる。
式(2)乃至(5)において、Xu,Yu,ZuはGNSS受信機の位置であり、TuはGNSS受信機の時刻である。
軌道情報とGNSS受信機のC/Aコード同期によりXi,Yi,Zi,Tiは既知であるから、未知数は、Xu,Yu,Zu,Tuの4個となる。GNSS受信機の内部の時計(発振器)が誤差を含むため、Tuも未知数となる。各衛星からの電波の伝搬時間は、実際には、図3に示すように誤差を含む形で表される。時計誤差を含む距離であるため、式(2)乃至(5)の右辺は疑似距離と呼ばれる。
GNSS受信機が位置を計算するためには、4以上の衛星を捕捉(電波を受信)している必要があることになる。また、位置を計算することにより、GNSS受信機の内部の時計の誤差も副次的にわかることになる。
上記のような連立方程式の計算は、Newton Raphson法による逐次計算により行われることが一般的である。捕捉可能な衛星の数が5以上である場合、最小2乗法による計算が行われる。
<受信機速度計算>
GNSS受信機の速度の計算について説明する。
GNSS受信機の速度の計算について説明する。
図4は、相対速度とドップラ周波数の関係を示す図である。
衛星の動きがベクトルVsで表され、移動体Oの動きがベクトルVuで表される場合、差分を表すベクトルVdは下式(6)により表される。式(6)のeは下式(7)により表される。Dは衛星から移動体Oに向かうベクトルである。
式(9)乃至(12)において、VXi,VYi,VZiは衛星の速度である。fdi,fcは、それぞれドップラ周波数、キャリア周波数である。eXi,eYi,eZiは、衛星からGNSS受信機に向かう単位ベクトルである。
また、VXu,VYu,VZuはGNSS受信機の速度であり、dfuはGNSS受信機の発振器の周波数誤差である。
軌道情報とGNSS受信機のキャリア同期によりVXi,VYi,VZiは既知であるから、未知数は、VXu,VYu,VZu,dfuの4個となる。GNSS受信機の発振器周波数が誤差を含むため、dfuも未知数となる。
GNSS受信機が速度を計算するためには、4以上の衛星を捕捉している必要があることになる。また、速度を計算することにより、GNSS受信機の発振器の正確な周波数も副次的にわかることになる。
<1PPS信号について>
GNSS受信機においては、GNSS受信機の内部の時刻である端末時刻Tuと、GNSS受信機の発振器の周波数誤差である発振器周波数誤差dfuに基づいて、1PPS信号を生成することができる。
GNSS受信機においては、GNSS受信機の内部の時刻である端末時刻Tuと、GNSS受信機の発振器の周波数誤差である発振器周波数誤差dfuに基づいて、1PPS信号を生成することができる。
図5は、1PPS信号を示す図である。
図5に示すように、GNSS受信機が生成する1PPS信号は、衛星の時刻(GNSS時刻)に同期した、正確な1秒間隔のパルス信号である。
GNSS受信機を搭載した無線端末が、LPWA(Low Power Wide Area)などの無線通信システムに対応した端末であり、位置情報などを無線通信によって送信する場合、1PPS信号を基準としてタイミングを設定することにより、受信側との間で時刻同期を確立することができる。
以下、GNSSを利用した測位機能と、LPWAなどの無線通信システムを利用した無線通信機能を有する無線端末において、捕捉可能な衛星の数が4未満になった場合の処理について主に説明する。
衛星からの電波が建物、樹木、身体等により遮られて、捕捉可能な衛星の数が4未満になった場合、無線端末は測位を行うことができなくなる。また、無線端末は、衛星からの情報のみに基づく上述した通常の方法では、1PPS信号を生成することができず、よって、無線通信のための時刻同期を維持できなくなる。
<<2.第1の実施の形態>>
図6は、無線通信システムの構成例を示す図である。
図6は、無線通信システムの構成例を示す図である。
図6の無線通信システムは、無線端末1-1乃至1-6と基地局2-1乃至2-5から構成される。以下、適宜、それぞれを区別する必要がない場合、無線端末1-1乃至1-6を無線端末1といい、基地局2-1乃至2-5を基地局2という。
図6の無線通信システムは、920MHzなどの所定の周波数帯域を用いたLPWAの無線通信システムである。無線端末1からの電波は数kmから数十kmの場所にまで届き、無線端末1の現在位置を通信エリアに含む基地局2により受信される。図6の例においては、基地局2-1の通信エリアに、無線端末1-1乃至1-6を携帯しているユーザがいるものとされている。
無線端末1は、衛星からの電波を受信して測位を行い、位置情報を自身の識別情報などとともに送信する。無線端末1から送信された情報は、基地局2により受信され、インターネットなどのネットワークを介して、図示せぬサーバ装置に送信される。
無線端末1から送信された情報を受信したサーバ装置は、無線端末1の位置情報を管理し、スマートフォンなどのクライアント装置からアクセスしてきたユーザによる問い合わせに応じて提供する。
このような無線通信システムは、例えば見守り用途に用いられる。無線端末1は、高齢者、児童、ペットなどの監視対象が携帯または装着することになる。捕捉可能な衛星の数が4未満になった場合、無線端末1は測位を行うことができず、監視対象の見守りに影響が生じることになる。
図7は、無線通信システムにおける通信の例を示す図である。
図7の左側に示すように、送信側によるデータの送信と、受信側によるデータの受信は、同じ周波数を中心周波数とするキャリアを設定することによって行われる。
図7の右側の上段は、無線端末1によるデータの送信タイミングと受信タイミングを示す。下段は、基地局2によるデータの受信タイミングと送信タイミングを示す。
上段と下段のそれぞれの時間軸上に点線で示す時刻t1乃至t5は、無線端末1と基地局2において、それぞれが有するGNSS受信機により生成された1PPS信号により規定される時刻である。時刻t1乃至t5のそれぞれの間隔は1秒間隔である。1PPS信号に基づいて、このように同期したタイミングを設定することが可能になる。無線端末1と基地局2の双方において、データの送受信タイミングが1PPS信号に基づいて設定されている状態が、無線端末1と基地局2の間の時刻同期が確立されている状態となる。
送信側において、データの送信タイミングは、1PPS信号を基準にして設定される。一方、受信側においては、薄い色付きの帯状で示すように、送信タイミングに合わせて所定の時間幅の受信ウィンドウが設定され、受信ウィンドウの期間だけ、データの受信が行われる。
図7の例においては、時刻t2を基準として規定値に相当する時間だけ後の時刻である時刻t11が、無線端末1によるデータの送信タイミングとして設定されている。受信側である基地局2においては、時刻t11を開始時刻とするように受信ウィンドウが設定され、無線端末1から送信されたデータの受信が行われる。
時刻t11のタイミングで無線端末1から送信されたデータは、一点鎖線で示すように、時刻t11より所定の時間だけ後のタイミングで基地局2により受信される。送信タイミングと受信タイミングの差が、伝送遅延に相当する。
また、図7の例においては、時刻t3を基準として規定値に相当する時間だけ後の時刻である時刻t12が、基地局2によるデータの送信タイミングとして設定されている。受信側である無線端末1においては、時刻t12を開始時刻とするように受信ウィンドウが設定され、基地局2から送信されたデータの受信が行われる。
時刻t12のタイミングで基地局2から送信されたデータは、一点鎖線で示すように、時刻t12より所定の時間だけ後のタイミングで無線端末1により受信される。
このように、図6の無線通信システムの通信は、送信側と受信側のそれぞれが、送信タイミングと受信タイミングを1PPS信号を基準として同期して設定することによって行われる。無線端末1-基地局2間の通信が、図7に示すように双方向の通信であってもよいし、無線端末1から基地局2に対する片方向の通信であってもよい。
位置情報を送信する端末の数が多くなり、各端末が無制御にデータを送信するとした場合、データのコリジョンが増え、端末の収容数の問題が出てくる。GNSSを利用して各端末と基地局との間で時刻同期を確立させ、データの送受信を行うことにより、コリジョンを減らすことが可能になる。一方、1PPS信号が得られない場合、通信を行うことができないことになる。
ここで、無線端末1は、捕捉可能な衛星の数が4未満(1以上、4未満)である場合、移動速度が低速であり、かつ、移動距離が小さいものと見做して、端末時刻Tuと発振器周波数誤差dfuを近似的に求め、1PPS信号を生成する機能を有する。
捕捉可能な衛星の数が4未満である場合、測位を行うことはできないが、基地局2との間の無線通信の時刻同期は維持されることになる。
すなわち、無線端末1は、捕捉可能な衛星の数が4以上である場合、測位を行うとともに、上述したような位置と速度の計算を行い、1PPS信号を生成する。GNSS受信機の内部クロックが20MHzであるとすると、時間分解能が50nsとなるため、1PPS信号の精度を±25nsまで高めることが可能になる。
一方、無線端末1は、捕捉可能な衛星の数が4未満である場合、移動速度が0であり、かつ、現在位置が最後に測定された位置と見做して下式(13)、(14)の計算を行い、端末時刻Tuと発振器周波数誤差dfuを近似的に求める。
式(13)、(14)において、Nは、捕捉可能な衛星数(N≦3)である。nは、捕捉可能なそれぞれの衛星を表し、0~N-1の値をとる。
式(13)による端末時刻Tuの計算において、Xu,Yu,Zuとして、最後に測定された位置が用いられる。
式(13)は、無線端末1の現在位置を最後に測定された位置として、それぞれの衛星の情報に基づいて求められる端末時刻の平均を、端末時刻Tuとして近似的に求めることに相当する。無線端末1は、移動量が小さいと想定される子どもなどが携帯するものであるため、このような近似的な計算が可能になる。
近似的に求められる値であるため、実際の端末時刻Tuの値とはus(マイクロ秒)単位の誤差があることになるが、上述したような無線通信システムの時刻同期に利用する程度には精度が確保される。
また、式(14)は、無線端末1の速度を0として、それぞれの衛星の情報に基づいて求められる発振器周波数誤差の平均を、発振器周波数誤差dfuとして近似的に求めることに相当する。無線端末1は、移動速度が遅いと想定される子どもなどが携帯するものであるため、このような近似的な計算が可能になる。
無線端末1のGNSS受信機においては、このようにして近似的に求められた端末時刻Tuと発振器周波数誤差dfuに基づいて、1PPS信号の出力が続けられる。
このように、捕捉可能な衛星の数が4未満である場合においても1PPS信号を生成することにより、捕捉可能な衛星の数が4以上から4未満に減った場合でも、無線通信の時刻同期を維持することが可能になる。
以上のような無線端末1の処理についてはフローチャートを参照して後述する。
<無線端末の構成例>
図8は、無線端末1の構成例を示すブロック図である。
図8は、無線端末1の構成例を示すブロック図である。
図8に示すように、無線端末1は、制御用CPU11、GNSS受信部12、無線送受信部13、センサ14、および共用部15から構成される。
制御用CPU11は、共用部15のメモリ25に記憶されているプログラムを実行し、無線端末1の全体の動作を制御する。
例えば、制御用CPU11は、GNSS受信部12を制御し、測位を行わせる。GNSS受信部12から制御用CPU11に対しては、無線端末1の位置、速度、時刻、捕捉可能な衛星の情報などの各種の情報が供給される。制御用CPU11は、無線端末1の位置、速度、時刻などの情報を無線送受信部13に出力し、送信させる。
制御用CPU11においては、所定のプログラムが実行されることにより、タイミング設定部11Aが実現される。タイミング設定部11Aは、GNSS受信部12から供給される1PPS信号を基準として、データの送受信タイミングを設定し、送受信タイミングの情報を無線送受信部13に出力する。また、タイミング設定部11Aは、データの送受信に用いるキャリアの周波数の情報を無線送受信部13に出力し、無線送受信部13による通信を制御する。
GNSS受信機であるGNSS受信部12は、衛星用のアンテナ12Aからの信号を処理することによって無線端末1の位置、速度、時刻などを算出し、制御用CPU11に出力する。また、制御用CPU11は、1PPS信号を生成し、制御用CPU11に出力する。
LPWAの無線通信機である無線送受信部13は、制御用CPU11により設定された送信タイミングに従って、制御用CPU11から供給された位置情報などを送信する。また、無線送受信部13は、制御用CPU11により設定された受信タイミングに従って受信ウィンドウを設定し、アンテナ13Aから供給された信号を処理することによって、基地局2などの、外部の装置から送信されたデータを受信する。
センサ14は、加速度センサやジャイロセンサなどより構成される。センサ14は、測定結果を表すセンサデータを制御用CPU11に出力する。センサ14の測定結果を表すセンサデータも、適宜、基地局2に対して送信される。
共用部15は、TCXO(温度補償付水晶発振器)21、XO(水晶発振器)22、RTC(Real Time Clock)23、タイマ24、およびメモリ25から構成される。共用部15の各構成は、制御用CPU11、GNSS受信部12、および無線送受信部13により適宜用いられる。
TCXO21は、例えば26MHzのクロック信号を生成し、出力する。TCXO21から出力されたクロック信号はGNSS受信部12と無線送受信部13に供給される。
XO22は、例えば32.768kHzのクロック信号を生成し、出力する。XO22から出力されたクロック信号はGNSS受信部12に供給される。
RTC23は、端末時刻を計測する。例えば、GNSS受信部12により求められた端末時刻がRTC23に設定される。
タイマ24は、制御用CPU11が各部を制御するタイミングを管理する。
メモリ25は、RAM(Random Access Memory)とROM(Read Only Memory)により構成される。ROMに記憶されているプログラムが制御用CPU11により読み出され、RAMを用いて実行される。
図9は、無線送受信部13の構成例を示す図である。
図9に示すように、無線送受信部13は、無線通信用CPU31と信号処理部32から構成される。
無線通信用CPU31は、制御用CPU11から供給される制御信号に従って、信号処理部32の動作を制御する。例えば、無線通信用CPU31は、信号処理部32のスイッチ45を切り替え、送信動作と受信動作を切り替える。
制御用CPU11から無線通信用CPU31に対しては、無線端末1の位置、速度、時刻などの情報が送信データとして供給される。無線通信用CPU31は、データの送信時、制御用CPU11から供給された送信データを信号処理部32に出力し、送信させる。また、無線通信用CPU31は、データの受信時、信号処理部32により受信されたデータを制御用CPU11に出力する。
信号処理部32は、変調部41、Fractional-N PLL42、分周器43、増幅器44、スイッチ45、増幅器46、ミキサ47、ミキサ48、BPF49、増幅器50、増幅器51、および復調/CS部52から構成される。
変調部41は、データの送信時、無線通信用CPU31から供給された送信データを取得し、Fractional-N PLL42に出力する。
Fractional-N PLL42は、データの送信時、TCXO21から供給されるクロック信号に基づいて所定の周波数の送信信号を生成し、変調部41から供給されたデータに対して変調処理を施す。Fractional-N PLL42においては、FSK(Frequency Shift Keying)、MSK(Minimum Shift Keying)などの変調処理が施される。FSK、MSK以外の他の変調方式による処理がFractional-N PLL42において行われるようにしてもよい。Fractional-N PLL42は、変調処理を施して得られた送信信号を分周器43に出力する。
また、Fractional-N PLL42は、データの受信時、TCXO21から供給されたクロック信号に基づいて所定の周波数の信号を生成し、分周器43に出力する。Fractional-N PLL42においては、無線通信用CPU31による制御に従って、送受信周波数が例えば0.1Hzステップで切り替えられる。
分周器43は、データの送信時、Fractional-N PLL42から供給された送信信号を分周し、増幅器44に出力する。また、分周器43は、データの受信時、Fractional-N PLL42から供給されたクロック信号を分周し、ミキサ47とミキサ48に出力する。
増幅器44は、データの送信時に分周器43から供給された送信信号を増幅する。増幅器44により増幅された送信信号はスイッチ45を介してアンテナ13Aに供給され、無線信号として送信される。
増幅器46は、データの受信時にアンテナ13Aから供給された受信信号を増幅し、ミキサ47に出力する。
ミキサ47は、分周器43から供給されたクロック信号に基づいて、増幅器46から供給された受信信号の周波数変換を行い、周波数変換を行うことによって得られた信号を出力する。ミキサ47から出力された信号は、ミキサ48とBPF49に供給される。
ミキサ48は、分周器43から供給されたクロック信号に基づいて、ミキサ47から供給された信号の周波数変換を行い、周波数変換を行うことによって得られた信号を出力する。ミキサ48から出力された信号はBPF49に供給される。
BPF49は、ミキサ47から供給された信号に対してフィルタ処理を施し、所定の周波数帯域の信号を増幅器50に出力する。また、BPF49は、ミキサ48から供給された信号に対してフィルタ処理を施し、所定の周波数帯域の信号を増幅器51に出力する。
増幅器50は、BPF49を介して供給されたミキサ47からの信号を増幅し、I信号として復調/CS部52に出力する。
増幅器51は、BPF49を介して供給されたミキサ48からの信号を増幅し、Q信号として復調/CS部52に出力する。
復調/CS部52は、増幅器50と増幅器51から供給されたI信号とQ信号に対してADC等の処理を施すことによって復調し、受信データを生成する。復調/CS部52により生成された受信データは無線通信用CPU31に供給され、制御用CPU11に出力される。復調/CS部52は、適宜、キャリアセンスなどの処理も行う。
図10は、GNSS受信部12の構成例を示す図である。
図10に示すように、GNSS受信部12は、周波数変換部81とデジタル信号処理部82から構成される。
RF/アナログ信号処理部としての周波数変換部81は、LNA(Low Noise Amplifier)91、BPF92、増幅器93、ミキサ94、局部発振部95、増幅器96、LPF97、およびADC98から構成される。
LNA91は、衛星からの電波が受信されることに応じてアンテナ12Aから供給される受信信号(RF信号)を増幅し、BPF92に出力する。
BPF92は、LNA91から供給された受信信号に対してフィルタ処理を施し、所定の周波数帯域の信号を増幅器93に出力する。
増幅器93は、BPF92から供給された受信信号を増幅し、ミキサ94に出力する。
ミキサ94は、局部発振部95から供給された局部発振信号を増幅器93から供給された信号に乗算することによって周波数変換を行い、中間周波数の信号(IF信号)を出力する。
局部発振部95は、VCO95A、分周器95B、位相比較部95C、およびループフィルタ95DからなるPLLを有する。局部発振部95は、TCXO21から供給されたクロック信号に基づいて、所定の周波数を有する局部発振信号を生成し、ミキサ94に出力する。
局部発振部95のVCO95Aは、ループフィルタ95Dからの出力に応じて発振し、所定の周波数の信号を出力する。VCO95Aから出力された信号は分周器95Bに供給されるとともに、局部発振信号としてミキサ94に供給される。
分周器95Bは、GNSS用CPU101による制御に従って所定の分周比を設定し、VCO95Aから供給された信号を分周して位相比較部95Cに出力する。位相比較部95Cは、分周器95Bから供給された信号と、TCXO21から供給されたクロック信号との位相を比較し、位相差を表す信号をループフィルタ95Dに出力する。ループフィルタ95Dは、位相比較部95Cにより検出された位相差を表す電圧をVCO95Aに出力する。
増幅器96は、ミキサ94から供給されたIF信号を増幅し、LPF97に出力する。
LPF97は、増幅器96から供給されたIF信号に対してフィルタ処理を施し、低周波成分の信号をADC98に出力する。LPFに代えてBPFが設けられるようにしてもよい。
ADC98は、LPF97から供給されたIF信号のAD変換を行い、デジタルデータとしてのIF信号をデジタル信号処理部82に出力する。
デジタル信号処理部82は、GNSS用CPU101、同期捕捉部102、同期保持部103、RTC104、タイマ105、メモリ106、1PPS信号生成部107、および逓倍/分周器108から構成される。同期捕捉部102と同期保持部103に対しては、ADC98から出力されたIF信号が入力される。
GNSS用CPU101は、制御用CPU11から供給された制御信号に従って、デジタル信号処理部82の動作を制御する。GNSS用CPU101においては、所定のプログラムが実行されることにより、計算部101Aが実現される。
計算部101Aは、同期保持部103から供給されたメッセージに含まれる各衛星からの情報に基づいて、無線端末1の位置の計算などを行う。上述したように、衛星から送信されてきたメッセージには、軌道の計算式、電波の送信時刻などの情報が含まれる。
計算部101Aは、捕捉可能な衛星の数が4以上である場合、上式(2)乃至(5)の計算を行うことによって無線端末1の位置を求める。また、計算部101Aは、上式(9)乃至(12)の計算を行うことによって無線端末1の速度を求める。計算部101Aは、これらの計算において得られた端末時刻Tuと発振器周波数誤差dfu(局部発振部95が局部発振信号の生成に用いるTCXO21の発振周波数の誤差)を1PPS信号生成部107に出力する。
一方、計算部101Aは、捕捉可能な衛星の数が4未満である場合、捕捉可能な衛星の位置と時刻に基づいて上式(13)の計算を行うことによって、端末時刻Tuを近似的に求める。また、計算部101Aは、捕捉可能な衛星の速度とドップラ周波数に基づいて上式(14)の計算を行うことによって、発振器周波数誤差dfuを近似的に求める。計算部101Aは、近似的に求めた端末時刻Tuと発振器周波数誤差dfuを1PPS信号生成部107に出力する。
なお、GNSS用CPU101には、制御端子、I/O端子、付加機能端子などが接続されている。各部の制御に必要な制御信号などの入出力が各端子を介して行われる。
同期捕捉部102は、逓倍/分周器108から供給されたクロック信号に従って動作し、周波数変換部81が出力するIF信号に基づいてC/Aコードの同期捕捉を行う。例えば、同期捕捉部102は、IF信号をベースバンド信号に変換し、内部で生成したC/Aコードとの相関を求めることによって、メッセージの伝送に用いられているC/Aコードを検出する。
同期捕捉部102は、同期捕捉を行うことによって得られたC/Aコードの種類、C/Aコードの位相、搬送波周波数、C/Aコードに基づいて特定される衛星の識別情報などの情報を同期保持部103に出力する。同期捕捉部102により取得された情報は、GNSS用CPU101にも供給される。
同期保持部103は、逓倍/分周器108から供給されたクロック信号に従って動作し、同期捕捉部102により特定されたC/Aコードと搬送波周波数に基づいて、周波数変換部81が出力するIF信号により表されるメッセージを復調する。同期保持部103は、復調して得られたメッセージをGNSS用CPU101に出力する。
RTC104は、XO22から供給されたクロック信号に基づいて端末時刻を計測する。RTC104が計測する時刻情報は、例えば衛星からの電波が受信され、正確な時刻が得られる毎に補正される。
タイマ105は、GNSS用CPU101の各処理のタイミングを管理する。
メモリ106は、RAMとROMにより構成される。メモリ106を構成するROMに記憶されているプログラムがGNSS用CPU101により読み出され、RAMを用いて実行される。
1PPS信号生成部107は、計算部101Aから供給された端末時刻Tuと発振器周波数誤差dfuに基づいて1PPS信号を生成し、出力する。1PPS信号生成部107から出力された1PPS信号は制御用CPU11に供給される。
逓倍/分周器108は、TCXO21から供給されたクロック信号を逓倍(multiply)し、または分周(divide)する。逓倍/分周器108は、逓倍または分周を行うことによって得られたクロック信号をGNSS受信部12内の各部に出力する。
以上においては、GNSS受信部12にGNSS用CPU101が設けられ、無線送受信部13に無線通信用CPU31が設けられるものとしたが、制御用CPU11が、GNSS受信部12のCPUと無線送受信部13のCPUを兼ねるようにすることも可能である。
<無線端末の動作>
ここで、以上のような構成を有する無線端末1の動作について説明する。
ここで、以上のような構成を有する無線端末1の動作について説明する。
はじめに、図11のフローチャートを参照して、GNSS受信部12の受信処理について説明する。
ステップS1において、GNSS用CPU101は、周波数変換部81の各部の初期設定を行う。
ステップS2において、周波数変換部81は、初期動作を開始し、アンテナ12Aから供給される受信信号に対して各処理を行う。ADC98から出力されたIF信号は、デジタル信号処理部82の同期捕捉部102と同期保持部103に供給される。
ステップS3において、同期捕捉部102は、ADC98から供給されたIF信号をベースバンド信号に変換し、ベースバンド信号におけるC/Aコードの同期捕捉を行う。
ステップS4において、同期保持部103は、衛星を捕捉し続けるための設定を行い、同期保持の動作を開始する。
これ以降、衛星の識別情報などの情報が同期捕捉部102からGNSS用CPU101に供給されるとともに、衛星が送信するメッセージなどの情報が同期保持部103からGNSS用CPU101に供給される。
ステップS5において、GNSS用CPU101は、同期捕捉部102と同期保持部103から供給された情報に基づいて、衛星の識別情報を含む衛星情報を取得する。また、GNSS用CPU101の計算部101Aは、同期捕捉部102と同期保持部103から供給された情報に基づいて計算を行い、疑似距離(C(Tu-Ti))、ドップラ周波数(fd)、搬送波の位相、信号強度等の情報を衛星情報として取得する。
ステップS6において、GNSS用CPU101は、捕捉可能な衛星の数が4以上であるか否かを判定する。
捕捉可能な衛星の数が4以上であるとステップS6において判定された場合、ステップS7において、計算部101Aは、通常の測位演算を行う。すなわち、計算部101Aは、上式(2)乃至(5)の計算を行うことによって無線端末1の位置を求める。また、計算部101Aは、上式(9)乃至(12)の計算を行うことによって無線端末1の速度を求める。計算部101Aは、これらの計算を行うことによって、端末時刻Tuと発振器周波数誤差dfuを取得する。
ステップS8において、GNSS用CPU101は、無線端末1の位置、速度、時刻などの各種の情報を出力する。GNSS用CPU101から出力された情報は、制御用CPU11に供給される。
ステップS9において、1PPS信号生成部107は、計算部101Aにより求められた端末時刻Tuと発振器周波数誤差dfuに基づいて1PPS信号を生成し、出力する。
ステップS10において、GNSS用CPU101は、衛星の受信を継続するか否かを判定し、継続すると判定した場合、ステップS5に戻り、以上の処理を継続する。
一方、ステップS6において、捕捉可能な衛星の数が4以上ではないと判定した場合、ステップS11において、GNSS用CPU101は、捕捉可能な衛星の数が1以上であるか否かを判定する。
捕捉可能な衛星の数が1以上ではない、すなわち、0であるとステップS11において判定された場合、ステップS5に戻り、以上の処理が繰り返される。
捕捉可能な衛星の数が1以上である、すなわち、1以上、4未満であるとステップS11において判定された場合、処理はステップS12に進む。
ステップS12において、計算部101Aは、現在位置が最後に測定された位置であり、かつ、移動速度が0であると見做して下式(13)、(14)の計算を行い、端末時刻Tuと発振器周波数誤差dfuを近似的に求める。ステップS12の処理が行われた後のステップS9の処理においては、近似的に求められた端末時刻Tuと発振器周波数誤差dfuに基づいて1PPS信号が生成され、出力される。
衛星の受信を継続しないとステップS10において判定された場合、処理は終了される。
次に、図12のフローチャートを参照して、各種の情報を基地局2に送信する無線端末1の処理について説明する。図12の処理は、図11の処理と並行して、無線端末1の各部により行われる。
ステップS21において、制御用CPU11のタイミング設定部11Aは、GNSS受信部12により生成された1PPS信号を基準として、無線送受信部13によるデータの送信タイミングを更新する。
捕捉可能な衛星の数が4未満である場合には、近似的に求められた端末時刻Tuと発振器周波数誤差dfuに基づいて生成された1PPS信号を基準として、データの送信タイミングが設定される。これにより、捕捉可能な衛星の数が4未満である場合であっても無線通信の時刻同期が維持される。
ステップS22において、無線送受信部13は、タイミング設定部11Aにより設定された送信タイミングに従ってデータを送信する。捕捉可能な衛星の数が4以上であり、測位が行われている場合、無線送受信部13から送信されるデータには位置情報が含まれる。
一方、捕捉可能な衛星の数が4未満である場合、測位が行われていないから、位置情報は送信されない。捕捉可能な衛星の数が4未満である場合に送信されるデータの内容については後述する。
ステップS23において、制御用CPU11は、データの送信を継続するか否かを判定し、継続すると判定した場合、ステップS21に戻り、以上の処理を繰り返し行う。一方、データの送信を継続しないとステップS23において判定された場合、処理は終了される。
図12においては、基地局2に対してデータを送信する場合について説明したが、基地局2から送信されたデータを受信する場合も同様である。GNSS受信部12により生成された1PPS信号を基準として受信ウィンドウが設定され、受信ウィンドウに従って、基地局2から送信されてきたデータの受信が行われる。
以上の処理により、衛星からの電波が建物、樹木、身体等により遮られて、捕捉可能な衛星の数が4未満になった場合であっても、1PPS信号の出力を続けることができ、無線通信の時刻同期を維持することが可能になる。
特に、無線送受信部13が片方向の無線通信にしか対応しない無線通信機であり、時刻の補正に必要な情報を基地局2などの外部の装置から取得することができない場合であっても、無線通信の時刻同期を維持することができることになる。
衛星の受信状況が良ければ、無線端末1は、上述したように数十nsの精度の1PPS信号を生成することができるが、図6の無線通信システムにおいては、そのような高い精度で時刻同期が確立されている必要はない。
例えば、基地局2においては、無線端末1が通信エリア内のどこにいる場合であっても無線端末1からの信号を受信できるようにするために、伝搬遅延を考慮して受信ウィンドウが設定される。基地局2の通信エリアの半径を30kmとした場合、最大の伝搬遅延は100usになるといったように、伝搬遅延はus単位の時間に相当するものであるため、us単位の精度が確保できていれば無線通信には十分ということになる。
時刻同期を維持できることにより、送信データのコリジョンの発生を避けることが可能になる。送信データのコリジョンの発生を避けることができることにより、無線端末の収容キャパシティを増やすことができ、図示せぬサーバ装置においては、多くの監視対象の位置等を管理することができる。多くの対象を監視できるようにすることにより、事故等の異常状態の発生確率を下げることが可能になる。
<変形例>
最後に測定された位置を現在位置と見做して端末時刻Tuの計算が行われるものとしたが、Xu,Yu,Zuとして、最後に測定された位置以外の位置を用いて端末時刻Tuの計算が行われるようにしてもよい。
最後に測定された位置を現在位置と見做して端末時刻Tuの計算が行われるものとしたが、Xu,Yu,Zuとして、最後に測定された位置以外の位置を用いて端末時刻Tuの計算が行われるようにしてもよい。
例えば、センサ14が加速度センサやジャイロセンサであり、無線端末1の動きがほとんどないことが検出された場合、所定時間だけ前に測定された位置が端末時刻Tuの計算に用いられるようにしてもよい。また、最後に測定された位置をセンサデータ等を用いて補正した位置が、端末時刻Tuの計算に用いられるようにしてもよい。
上式(13)、(14)においては、捕捉可能なそれぞれの衛星の情報に基づいて求められる時刻と速度の平均を求めるものとしたが、計算に用いる衛星の情報に対して、それぞれの衛星の状況に応じて重み付けがされるようにしてもよい。
重み付けの方法として、C/N0(carrier-power-to-noise-density ratio)や衛星の仰角に応じて重みを設定する行う方法がある。
式(15)のaは、経験等によって決められる定数である。定数aとして、例えば、C/N0が40dBHzである場合に重みWnが1になる値が用いられる。
なお、C/N0はGNSS信号のキャリア電力とノイズ電力との比であり、単位はdBHzである。-130dBmのGNSS信号の場合、一般的な受信機ではC/N0は-41dBHz程度となる。空が開けている場所では50dBHz程度のC/N0で受信することができるが、受信環境が良くない場所では20dBHz以下になる。
位置と速度の計算においては、連立方程式を構成する各式に重みWnを乗じ、最小2乗法により解くことで計算精度を上げることが行われる。重みWnを用いて式(16)、(17)を計算することにより、端末時刻Tuと発振器周波数誤差dfuの精度を上げることができ、精度の高い1PPS信号を生成することが可能になる。
式(16)による端末時刻Tuの計算と、式(17)による発振器周波数誤差dfuの計算に同じ重みを用いるものとしたが、必ずしも同じである必要はない。例えば、重みWnの計算に用いる定数aの値を、端末時刻Tuの計算と発振器周波数誤差dfuの計算とでそれぞれ変えるようにしてもよい。
GNSS受信部12において受信される各衛星の信号は、C/N0や、反射・回折によるマルチパスの影響等により異なる。各衛星の信号の受信状況に応じて重み付けをすることにより、近似的に求められる端末時刻Tuと発振器周波数誤差dfuの精度を上げることが可能になる。
<<3.第2の実施の形態>>
以上のようにして生成された1PPS信号を基準として設定された送信タイミングに従ってデータが送信された場合の、受信側における受信ウィンドウの設定の例について説明する。上述したように、受信ウィンドウは、送信タイミングに合わせてデータの受信側において設定される受信区間を表す。
以上のようにして生成された1PPS信号を基準として設定された送信タイミングに従ってデータが送信された場合の、受信側における受信ウィンドウの設定の例について説明する。上述したように、受信ウィンドウは、送信タイミングに合わせてデータの受信側において設定される受信区間を表す。
例えば、受信ウィンドウは、通信エリアにおける無線端末1-基地局2間の最大の伝搬遅延の時間と、最大パケット長に応じた時間と、受信衛星数が4未満になった場合の、想定される1PPS信号の誤差に応じた時間との和以上の時間幅を有するように設定される。
ここで、LPWAの無線通信システムでは、伝搬条件が良ければ、数km~数十kmの距離間での通信が可能となる。図13に示すように、例えば、1つの基地局2の通信エリアを3kmとすると、伝搬遅延は矢印で示すように最大10usとなる。
無線端末1の最終位置(最後に測位できた位置)からの移動距離が300m以内であり、移動速度が10m/s以内であると想定する。この場合、端末時刻Tuのずれは1us以下、発振器周波数誤差dfuは0.033ppm以内となる。端末時刻Tu、発振器周波数誤差dfuが求められたタイミングを基準として、1秒経過後の端末時刻Tuのずれは最大0.033usとなり、1分経過後の端末時刻Tuのずれは最大2usとなる。
また、ノイズ等による受信同期誤差が±0.5us以内であると想定する。
図14は、無線通信システムにおける通信の例を示す図である。図14の上段は、無線端末1によるデータの送信タイミングと受信タイミングを示し、下段は、基地局2によるデータの受信タイミングと送信タイミングを示す。図7の説明と重複する説明については適宜省略する。
時刻t2を基準として規定値に相当する時間だけ後の時刻である時刻t11のタイミングにおいて無線端末1から送信されたデータは、基地局2において、時刻t11を開始時刻とするように設定された受信ウィンドウに従って受信される。図14において送信データを太い実線で示し、受信データを太い一点鎖線で示していることは、送信データの送信と受信にパケット長に相当する時間がかかることを示している。
また、時刻t3を基準として規定値に相当する時間だけ後の時刻である時刻t12のタイミングにおいて基地局2から送信されたデータは、無線端末1において、時刻t12を開始時刻とするように設定された受信ウィンドウに従って受信される。
図15は、図14において破線の円で囲んで示す受信ウィンドウの設定の例を示す図である。
基地局2の通信エリア、無線端末1の移動距離、無線端末1の移動速度を、それぞれ上述した値とし、経過時間を1分、受信同期誤差を±0.5us以内とする。
この場合、図15のAに示すように、受信ウィンドウの時間幅は、送信タイミングを開始時刻とし、開始時刻から0.5usだけ後の時刻から、さらに、13.5us+最大パケット長に相当する時間だけ後の時刻を終了時刻とするようにして設定される。
0.5usは、受信同期誤差に相当し、1usは、移動距離を300m以内、移動速度を10m/s以内とした場合の最大の端末時刻Tuのずれに相当する。2usは、経過時間に応じた端末時刻Tuのずれに相当し、10usは、基地局2の通信エリアを3kmとした場合の伝搬遅延の最大値に相当する。
少なくともこのような時間幅を有する受信ウィンドウを設定することにより、基地局2は、1PPS信号が近似的に計算された値に基づいて生成された信号である場合であっても、無線端末1から送信されたデータを確実に受信することが可能になる。
受信ウィンドウの時間幅を構成する要素として、パケット長に代えて、ヘッダ長を用いるようにしてもよい。この場合、図15のBに示すように、受信ウィンドウの時間幅は、送信タイミングを開始時刻とし、開始時刻から0.5usだけ後の時刻から、さらに、13.5us+ヘッダ長に相当する時間だけ後の時刻を終了時刻とするようにして設定される。
受信側においては、受信ウィンドウの間にヘッダが検出されない場合、受信ウィンドウの終了時刻のタイミングでデータの受信処理が終了される。また、受信ウィンドウの間にヘッダが検出された場合、受信ウィンドウの終了時刻のタイミング以降もデータの受信処理が続けられる。これにより、受信側の処理負担を軽減することが可能になる。
<<4.第3の実施の形態>>
無線端末1においては、受信衛星数が4未満である場合、測位はできないものの、1PPS信号を生成し、それにより、基地局2との無線通信の時刻同期を維持することができる。時刻同期が維持された無線通信により、位置情報以外の情報が基地局2に対して送信される。
無線端末1においては、受信衛星数が4未満である場合、測位はできないものの、1PPS信号を生成し、それにより、基地局2との無線通信の時刻同期を維持することができる。時刻同期が維持された無線通信により、位置情報以外の情報が基地局2に対して送信される。
図16は、無線通信システムにおけるデータの送受信の例を示す図である。
図16に示すように、無線端末1が、衛星S1と衛星S2の2つの衛星からの電波しか受信できない状況にあるものとする。無線端末1は、測位はできないものの、1PPS信号を生成し、基地局2との無線通信の時刻同期を維持する。
無線端末1は、矢印#1に示すように、衛星S1と衛星S2の疑似距離と、衛星S1と衛星S2のドップラ周波数とを実測値データとして基地局2に送信する。
疑似距離は、捕捉可能な衛星の時刻と端末時刻Tuを用いて求められる(式(2)乃至(5))。疑似距離の計算においては、例えば、GNSS受信部12のRTC104が計測する時刻が端末時刻Tuとして用いられる。ドップラ周波数は、捕捉可能な衛星から取得される情報である(式(9)乃至(12))。
基地局2は、無線端末1から送信されてきた実測値データを受信し、無線端末1(無線端末1を携帯しているユーザ)が動いているか否かを判定する。
無線端末1が動いているか否かの判定は、例えば、無線端末1から送信されてきたデータにより表される疑似距離とドップラ周波数の実測値と、無線端末1の大体の位置から求められる疑似距離とドップラ周波数の近似値との差分に基づいて行われる。基地局2においては、継続的に無線端末1から送信されてくる情報に基づいて、無線端末1の大体の位置を特定可能である。
実測値と近似値との差分の変動に基づいて、無線端末1が動いているか否かの判定が行われるようにしてもよい。
基地局2は、矢印#2に示すように、無線端末1が動いているか否かを表す情報をサーバ装置3に送信する。基地局2とサーバ装置3の間の通信は、無線の通信であってもよいし、有線の通信であってもよい。
サーバ装置3は、各無線端末1の位置などを管理するサーバである。サーバ装置3は、基地局2から送信されてきた情報を受信し、無線端末1の識別情報と対応付けて管理する。サーバ装置3は、正確な位置については提供することができないものの、無線端末1が動いているか否かについては提供することが可能になる。
無線端末1から送信された疑似距離とドップラ周波数の情報が基地局2からサーバ装置3にそのまま送信され、無線端末1が動いているか否かの判定がサーバ装置3において行われるようにしてもよい。動いているか否かの判定が無線端末1自身により行われ、判定結果が無線端末1から送信されるようにしてもよい。
<基地局2の構成例>
図17は、基地局2の構成例を示すブロック図である。
図17は、基地局2の構成例を示すブロック図である。
CPU201、ROM202、RAM203は、バス204により相互に接続される。CPU201は、ROM202や記憶部208に記憶されているプログラムをRAM203にロードして実行し、基地局2の全体の動作を制御する。
CPU201においては、所定のプログラムが実行されることにより、推定部201Aが実現される。推定部201Aは、無線端末1から送信されてきた情報に基づいて、無線端末1が動いているか否かを判定する。推定部201Aは、無線端末1の状態を推定する推定部として機能する。推定部201Aによる判定結果は、通信部209によりサーバ装置3に対して送信される。
バス204には、入出力インタフェース205が接続される。入出力インタフェース205には、GNSS受信部206、無線送受信部207、記憶部208、および通信部209が接続される。
GNSS受信部206は、無線端末1のGNSS受信部12と同様の機能を有する。GNSS受信部206は、衛星からの電波を受信し、基地局2の位置を求めるとともに、1PPS信号を生成し、出力する。GNSS受信部206から出力された1PPS信号は、無線送受信部207に供給され、それぞれの無線端末1との間の無線通信の時刻同期に用いられる。
無線送受信部207は、無線端末1の無線送受信部13と同様の機能を有する。無線送受信部207は、基地局2が管理する通信エリア内に存在するそれぞれの無線端末1と通信を行うための送受信タイミングを1PPS信号に基づいて設定する。無線送受信部207は、無線端末1から送信されてきたデータを受信し、出力する。無線送受信部207から出力されたデータは、通信部209に供給され、サーバ装置3に対して送信される。また、無線送受信部207は、適宜、無線端末1に対してデータを送信する。
記憶部208は、ハードディスクや不揮発性のメモリなどにより構成され、各種のデータを受信する。
通信部209は、ネットワークのインタフェースなどにより構成され、インターネットなどのネットワークを介してサーバ装置3との間で通信を行う。例えば、通信部209は、無線端末1から送信され、無線送受信部207により受信されたデータをサーバ装置3に送信する。
<各装置の動作>
ここで、図18のフローチャートを参照して、無線端末1のGNSS受信部12の受信処理について説明する。
ここで、図18のフローチャートを参照して、無線端末1のGNSS受信部12の受信処理について説明する。
図18のステップS31乃至S42の処理は、図11のステップS1乃至S12の処理と同様の処理である。重複する説明については適宜省略する。
すなわち、捕捉可能な衛星の数が1以上、4未満であるとステップS41において判定された場合、ステップS42において、計算部101Aは、端末時刻Tuと発振器周波数誤差dfuを近似的に求める。近似的に求められた端末時刻Tuと発振器周波数誤差dfuを用いて1PPS信号が生成される(ステップS39)。
ステップS43において、計算部101Aは、捕捉された衛星からの情報に基づいて、疑似距離とドップラ周波数を求める。疑似距離の計算に、ステップS42において求められた端末時刻Tuが用いられるようにしてもよい。
ステップS44において、計算部101Aは、疑似距離とドップラ周波数の情報を出力する。捕捉可能な衛星の数が1以上、4未満である場合、このようにして、疑似距離とドップラ周波数が計算部101Aから繰り返し出力される。
計算部101Aから出力された情報は、制御用CPU11に供給され、図12の処理が行われることによって、実測値データとして基地局2に送信される。
次に、図19のフローチャートを参照して、図18の処理に対応して行われる基地局2の処理について説明する。
ステップS51において、無線送受信部207は、無線端末1から送信されてきた疑似距離とドップラ周波数の実測値データを受信する。
ステップS52において、推定部201Aは、無線端末1から送信されてきた疑似距離とドップラ周波数の実測値データを近似値と比較し、疑似距離とドップラ周波数の変動を確認する。例えば、疑似距離とドップラ周波数の変動量が閾値より多い場合、無線端末1が動いているとして判定され、閾値より少ない場合、無線端末1が動いていないとして判定される。
無線端末1が動いているか否かの判定が疑似距離とドップラ周波数の両方に基づいて行われるのではなく、いずれか一方に基づいて行われるようにしてもよい。
ステップS53において、通信部209は、推定部201Aによる判定結果を表す、無線端末1が動いている否かを表す情報をサーバ装置3に送信する。
以上の処理が、疑似距離とドップラ周波数の実測値データが無線端末1から送信されてくる毎に行われる。
<無線端末1の位置の推定について>
無線端末1の位置を推定することができる場合、疑似距離やドップラ周波数とともに、推定された位置がサーバ装置3において管理されるようにしてもよい。
無線端末1の位置を推定することができる場合、疑似距離やドップラ周波数とともに、推定された位置がサーバ装置3において管理されるようにしてもよい。
図20は、無線端末1の位置をサーバ装置3において推定する無線通信システムの構成例を示す図である。
図20の例においては、基地局2-1乃至2-3が示され、それぞれ、ネットワークを介してサーバ装置3に接続されている。無線端末1は、基地局2-1乃至2-3のそれぞれの通信エリアが重なる位置に存在し、基地局2-1乃至2-3のそれぞれと通信を行うことができる。
基地局2-1乃至2-3のそれぞれとの無線通信の時刻同期は、無線端末1が、衛星S1と衛星S2からの電波を受信することによって維持される。基地局2-1乃至2-3においては、同じタイミングで受信ウィンドウが設定され、あるタイミングで無線端末1から送信されたデータが受信される。
基地局2-1乃至2-3は、無線端末1から送信されてきた疑似距離とドップラ周波数の情報を受信し、それぞれ伝搬遅延を検出する。基地局2-1乃至2-3は、検出した伝搬遅延の情報をサーバ装置3に送信する。図7を参照して説明したように、無線端末1から送信されたデータは、送信タイミングから、伝送遅延に相当する時間だけ後のタイミングで基地局2-1乃至2-3により受信される。図20の円C11-1乃至C11-3の大きさは、それぞれ、伝搬遅延の大きさを示す。
基地局2-1乃至2-3からサーバ装置3に送信される情報には、無線端末1から送信された疑似距離とドップラ周波数の情報とともに、適宜、基地局2-1乃至2-3において判定された、無線端末1が動いているか否かの判定結果を表す情報も含まれる。
サーバ装置3は、基地局2-1乃至2-3において検出された伝搬遅延に基づいて、無線端末1の位置を推定する。無線端末1の位置は、各基地局を中心とした、伝搬遅延に相当する円C11-1乃至C11-3の交点の位置として推定可能である。
無線端末1の高さを考慮しないものとすると、3以上の基地局2において無線端末1からのデータを受信できれば、無線端末1の位置を推定できることになる。
サーバ装置3は、例えば基地局2-1乃至2-3において計測され、基地局2-1乃至2-3から供給された、各時刻の衛星S1と衛星S2の位置を管理している。
この場合、衛星S1の位置を中心とした、無線端末1において検出された衛星S1の疑似距離を半径とする球と、衛星S2の位置を中心とした、無線端末1において検出された衛星S2の疑似距離を半径とする球の交点の位置を、無線端末1の位置として推定することができる。図20の弧C21-1は、衛星S1の位置を中心とした球を表し、弧C21-2は、衛星S2の位置を中心とした球を表す。
伝搬遅延だけでなく、このように衛星の位置と疑似距離に基づいて計算を行うことにより、位置の推定精度を高めることが可能になる。無線端末1からのデータを受信可能な基地局2の数と、無線端末1が捕捉可能な衛星の数の和が4以上である場合、無線端末1の位置を、高さを含めて推定できることになる。
このようにして推定された無線端末1の位置は、サーバ装置3において管理される。無線端末1の位置は推定値であり、誤差を含むものであるが、より多い情報を提供することが可能になる。
<サーバ装置3の構成例>
図21は、サーバ装置3の構成例を示すブロック図である。
図21は、サーバ装置3の構成例を示すブロック図である。
CPU301、ROM302、RAM303は、バス304により相互に接続される。CPU301は、ROM302や記憶部306に記憶されているプログラムをRAM303にロードして実行することにより、サーバ装置3の全体の動作を制御する。
CPU301においては、所定のプログラムが実行されることにより、推定部301Aが実現される。推定部301Aは、基地局2から送信されてきた伝搬遅延の情報に基づいて、無線端末1の位置を推定する。推定部301Aは、伝搬遅延だけでなく、適宜、無線端末1が捕捉している衛星の位置に基づいて、無線端末1の位置を推定する。推定部301Aは、無線端末1の状態を推定する推定部として機能する。
バス304には、入出力インタフェース305が接続される。入出力インタフェース305には、記憶部306、通信部307、およびドライブ308が接続される。
記憶部306は、ハードディスクや不揮発性のメモリなどにより構成され、無線端末1の位置、動いているか否かなどの、無線端末1の状態に関する各種の情報を識別情報と対応付けて管理する。記憶部306により管理される情報は、適宜、監視対象の状態を監視するユーザが操作するクライアント装置に提供される。
通信部307は、ネットワークのインタフェースなどにより構成され、基地局2との間で通信を行う。通信部307は、基地局2から送信されてきた情報を受信し、記憶部306に出力する。
ドライブ308は、リムーバブルメディア309に記憶されているデータの読み出し、また、リムーバブルメディア309に対するデータの書き込みを行う。
<サーバ装置3の動作>
ここで、図22のフローチャートを参照して、サーバ装置3の処理について説明する。
ここで、図22のフローチャートを参照して、サーバ装置3の処理について説明する。
ステップS61において、通信部307は、それぞれの基地局2から送信されてきた、基地局2-無線端末1間の伝搬遅延の情報を受信する。図19の処理が行われている場合、基地局2からは、無線端末1から送信された疑似距離とドップラ周波数の情報と、無線端末1が動いているか否かの判定結果を表す情報も送信されてくる。通信部307においては、これらの情報も受信される。
ステップS62において、推定部301Aは、3以上の基地局2から送信されてきた伝搬遅延の情報に基づいて、無線端末1の位置を推定する。無線端末1の推定は、適宜、無線端末1が捕捉している衛星の位置にも基づいて行われる。
ステップS63において、推定部301Aは、推定した位置を無線端末1の現在位置とし、記憶部306に記憶させて管理する。
以上のように、捕捉可能な衛星の数が4未満であっても無線通信の時刻同期を維持することができるため、無線端末1は、各種の情報を基地局2に送信することができる。
無線端末1からの情報を受信した受信側の装置(基地局2およびサーバ装置3)は、無線端末1が動いているか否かの判定を行ったり、無線端末1の位置を推定したりすることができ、より多くの情報を提供することが可能になる。
<<5.第4の実施の形態>>
無線端末1が動いているか否かの判定が疑似距離とドップラ周波数に基づいて行われるものとしたが、無線端末1により検出された他の情報に基づいて行われるようにしてもよい。
無線端末1が動いているか否かの判定が疑似距離とドップラ周波数に基づいて行われるものとしたが、無線端末1により検出された他の情報に基づいて行われるようにしてもよい。
図23は、無線通信システムにおけるデータの送受信の他の例を示す図である。図23に示す構成のうち、図16を参照して説明した構成には同じ符号を付してある。重複する説明については適宜省略する。
無線端末1が、衛星S1と衛星S2の2つの衛星からの電波しか受信できない状況にあるものとする。無線端末1は、測位はできないものの、1PPS信号を生成し、基地局2との無線通信の時刻同期を維持する。
無線端末1は、矢印#11に示すように、内蔵するセンサ14により検出された加速度と速度を表すセンサデータを基地局2に送信する。図8を参照して説明したように、無線端末1には、加速度センサやジャイロセンサなどのセンサ14が設けられている。
基地局2は、無線端末1から送信されてきたセンサデータを受信し、無線端末1が動いているか否かを判定する。無線端末1が動いているかの判定が、あるタイミングで無線端末1から送信されてきたセンサデータと、その前のタイミングで送信されてきたセンサデータとを比較することによって行われるようにしてもよい。基地局2は、矢印#12に示すように、無線端末1が動いているか否かを表す情報をサーバ装置3に送信する。
サーバ装置3は、基地局2から送信されてきた情報を受信し、無線端末1の識別情報と対応付けて管理する。サーバ装置3は、正確な位置については提供することができないものの、無線端末1が動いているか否かについては提供することが可能になる。
無線端末1から送信されてきたセンサデータが基地局2からサーバ装置3にそのまま送信され、無線端末1が動いているか否かの判定がサーバ装置3において行われるようにしてもよい。動いているか否かの判定が無線端末1自身により行われ、判定結果が無線端末1から送信されるようにしてもよい。
無線端末1が動いているか否かの判定をセンサデータに基づいて行うことにより、疑似距離やドップラ周波数に基づいて行う場合に比べて判定の精度を高めることが可能になる。
センサデータに基づいて、無線端末1の位置が推定されるようにしてもよい。この場合、無線端末1の位置の推定は、無線端末1、基地局2、またはサーバ装置3において行われる。
<<6.第5の実施の形態>>
捕捉可能な衛星の数が4未満である場合の1PPS信号の生成時、発振器周波数誤差dfuが求められる。無線通信の時刻同期の維持とともに、無線送受信部13の送信周波数の規定周波数からの誤差が、発振器周波数誤差dfuに基づいて補正されるようにしてもよい。
捕捉可能な衛星の数が4未満である場合の1PPS信号の生成時、発振器周波数誤差dfuが求められる。無線通信の時刻同期の維持とともに、無線送受信部13の送信周波数の規定周波数からの誤差が、発振器周波数誤差dfuに基づいて補正されるようにしてもよい。
この場合、無線送受信部13のFractional-N PLL42の分周比を発振器周波数誤差dfuに基づいて調整し、送信周波数を規定の周波数に合わせ込むための制御が例えば無線通信用CPU31により行われる。
例えば、TCXO21の発振周波数が4.26Hzだけずれており、送信周波数を920MHzとしてデータの送信が行われるものとする。この場合、Fractional-N PLL42が有するLOの発振周波数とTCXO21の発振周波数との比を下式(18)により表される35.38460959とするようにして、Fractional-N PLL42の分周比が設定される。
このような補正が行われない場合、Fractional-N PLL42が有するLOの発振周波数とTCXO21の発振周波数との比は下式(19)により表される35.38461538となり、上記との周波数差は約151Hzとなる。
Fractional-N PLL42の分周比を発振器周波数誤差dfuに基づいて補正することにより、送信周波数の誤差を小さくすることが可能になる。
ここで、図24のフローチャートを参照して、以上のようにして送信周波数の誤差を補正する無線端末1の処理について説明する。
捕捉可能な衛星の数が4未満である場合、ステップS71において、GNSS受信部12は、図11等を参照して説明した処理を行うことにより、1PPS信号を生成する。1PPS信号の生成の過程において、発振器周波数誤差dfuが計算部101Aにより求められる。発振器周波数誤差dfuの情報は無線送受信部13に供給される。
ステップS72において、無線送受信部13の無線通信用CPU31は、Fractional-N PLL42の分周比を発振器周波数誤差dfuに基づいて調整する。
ステップS73において、信号処理部32の各部は、分周比を調整することによって生成された、補正後の送信周波数を用いてデータの送信を行う。
以上の処理により、送信周波数を規定の周波数近傍に保つことが可能になる。基地局2は、データの受信に用いる受信周波数の範囲を狭めることができ、受信処理の負荷を減らすことが可能になる。
<変形例>
無線端末1が監視対象の見守り用途に用いられるものとしたが、位置を測定する各種の用途で用いられるようにすることが可能である。
無線端末1が監視対象の見守り用途に用いられるものとしたが、位置を測定する各種の用途で用いられるようにすることが可能である。
上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、汎用のパーソナルコンピュータなどにインストールされる。
インストールされるプログラムは、光ディスク(CD-ROM(Compact Disc-Read Only Memory),DVD(Digital Versatile Disc)等)や半導体メモリなどよりなる図21に示されるリムーバブルメディア309に記録して提供される。また、ローカルエリアネットワーク、インターネット、デジタル放送といった、有線または無線の伝送媒体を介して提供されるようにしてもよい。プログラムは、ROM302や記憶部306に、あらかじめインストールしておくことができる。
コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
・構成の組み合わせ例
本技術は、以下のような構成をとることもできる。
本技術は、以下のような構成をとることもできる。
(1)
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を生成して出力する測位部と、
外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持し、前記無線通信を行う無線通信部と
を備える無線端末。
(2)
前記測位部は、最後に測位された位置を前記無線端末の位置、移動速度を0として計算を行うことによって、前記パルス信号を生成する
前記(1)に記載の無線端末。
(3)
前記測位部は、捕捉可能な前記衛星の位置と前記衛星の時刻に基づいて、前記無線端末の内部時刻を計算し、捕捉可能な前記衛星の速度と前記衛星のドップラ周波数に基づいて、前記無線端末の内部の発振器の周波数誤差を計算し、前記内部時刻と前記周波数誤差に基づいて前記パルス信号を生成する
前記(2)に記載の無線端末。
(4)
前記所定の数は4である
前記(1)乃至(3)のいずれかに記載の無線端末。
(5)
前記パルス信号は1PPS信号である
前記(1)乃至(4)のいずれかに記載の無線端末。
(6)
前記無線通信部は、前記パルス信号を基準として設定されたタイミングに従ってデータを送信する
前記(1)乃至(5)のいずれかに記載の無線端末。
(7)
前記無線通信部は、前記パルス信号を基準として、前記外部の装置がデータを送信するタイミングに応じたタイミングで受信ウィンドウを設定し、前記受信ウィンドウの期間、前記外部の装置が送信するデータを受信する
前記(1)乃至(6)のいずれかに記載の無線端末。
(8)
前記無線通信部は、前記外部の装置の通信エリアにおいて想定される最大の伝搬遅延時間、前記データの送信に用いられるパケットのパケット長に応じた時間、および、前記無線端末の内部時刻の想定される誤差に応じた時間を加算した時間以上の時間幅の前記受信ウィンドウを設定する
前記(7)に記載の無線端末。
(9)
前記無線通信部は、さらに、受信同期誤差に応じた時間を加算した時間以上の時間幅の前記受信ウィンドウを設定する
前記(8)に記載の無線端末。
(10)
前記測位部は、捕捉可能な前記衛星からの情報に基づいて疑似距離とドップラ周波数を計算し、
前記無線通信部は、前記疑似距離と前記ドップラ周波数の情報を送信する
前記(1)乃至(9)のいずれかに記載の無線端末。
(11)
加速度センサを含むセンサをさらに備え、
前記無線通信部は、前記センサにより検出されたセンサデータを送信する
前記(1)乃至(10)のいずれかに記載の無線端末。
(12)
前記周波数誤差に基づいて、前記無線通信における送信周波数の規定周波数に対する誤差を補正する制御部をさらに備える
前記(3)に記載の無線端末。
(13)
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、
無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持し、前記無線通信を行う
ステップを含む情報処理方法。
(14)
コンピュータに、
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、
無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持し、前記無線通信を行う
ステップを含む処理を実行させるプログラム。
(15)
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報を受信する通信部と、
前記通信部により受信された情報に基づいて、前記無線端末の状態を推定する推定部と
を備える情報処理装置。
(16)
前記推定部は、前記無線端末が動いているか否かを、捕捉可能な前記衛星からの情報に基づいて前記無線端末により求められた疑似距離とドップラ周波数に基づいて、または、前記無線端末により検出されたセンサデータに基づいて推定する
前記(15)に記載の情報処理装置。
(17)
前記推定部は、前記無線端末の位置を、前記無線端末が送信する情報が複数の前記外部の装置において受信された場合の伝送遅延に基づいて推定する
前記(15)または(16)に記載の情報処理装置。
(18)
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報を受信し、
受信した情報に基づいて、前記無線端末の状態を推定する
ステップを含む情報処理方法。
(19)
コンピュータに、
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報を受信し、
受信した情報に基づいて、前記無線端末の状態を推定する
ステップを含む処理を実行させるプログラム。
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を生成して出力する測位部と、
外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持し、前記無線通信を行う無線通信部と
を備える無線端末。
(2)
前記測位部は、最後に測位された位置を前記無線端末の位置、移動速度を0として計算を行うことによって、前記パルス信号を生成する
前記(1)に記載の無線端末。
(3)
前記測位部は、捕捉可能な前記衛星の位置と前記衛星の時刻に基づいて、前記無線端末の内部時刻を計算し、捕捉可能な前記衛星の速度と前記衛星のドップラ周波数に基づいて、前記無線端末の内部の発振器の周波数誤差を計算し、前記内部時刻と前記周波数誤差に基づいて前記パルス信号を生成する
前記(2)に記載の無線端末。
(4)
前記所定の数は4である
前記(1)乃至(3)のいずれかに記載の無線端末。
(5)
前記パルス信号は1PPS信号である
前記(1)乃至(4)のいずれかに記載の無線端末。
(6)
前記無線通信部は、前記パルス信号を基準として設定されたタイミングに従ってデータを送信する
前記(1)乃至(5)のいずれかに記載の無線端末。
(7)
前記無線通信部は、前記パルス信号を基準として、前記外部の装置がデータを送信するタイミングに応じたタイミングで受信ウィンドウを設定し、前記受信ウィンドウの期間、前記外部の装置が送信するデータを受信する
前記(1)乃至(6)のいずれかに記載の無線端末。
(8)
前記無線通信部は、前記外部の装置の通信エリアにおいて想定される最大の伝搬遅延時間、前記データの送信に用いられるパケットのパケット長に応じた時間、および、前記無線端末の内部時刻の想定される誤差に応じた時間を加算した時間以上の時間幅の前記受信ウィンドウを設定する
前記(7)に記載の無線端末。
(9)
前記無線通信部は、さらに、受信同期誤差に応じた時間を加算した時間以上の時間幅の前記受信ウィンドウを設定する
前記(8)に記載の無線端末。
(10)
前記測位部は、捕捉可能な前記衛星からの情報に基づいて疑似距離とドップラ周波数を計算し、
前記無線通信部は、前記疑似距離と前記ドップラ周波数の情報を送信する
前記(1)乃至(9)のいずれかに記載の無線端末。
(11)
加速度センサを含むセンサをさらに備え、
前記無線通信部は、前記センサにより検出されたセンサデータを送信する
前記(1)乃至(10)のいずれかに記載の無線端末。
(12)
前記周波数誤差に基づいて、前記無線通信における送信周波数の規定周波数に対する誤差を補正する制御部をさらに備える
前記(3)に記載の無線端末。
(13)
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、
無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持し、前記無線通信を行う
ステップを含む情報処理方法。
(14)
コンピュータに、
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、
無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持し、前記無線通信を行う
ステップを含む処理を実行させるプログラム。
(15)
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報を受信する通信部と、
前記通信部により受信された情報に基づいて、前記無線端末の状態を推定する推定部と
を備える情報処理装置。
(16)
前記推定部は、前記無線端末が動いているか否かを、捕捉可能な前記衛星からの情報に基づいて前記無線端末により求められた疑似距離とドップラ周波数に基づいて、または、前記無線端末により検出されたセンサデータに基づいて推定する
前記(15)に記載の情報処理装置。
(17)
前記推定部は、前記無線端末の位置を、前記無線端末が送信する情報が複数の前記外部の装置において受信された場合の伝送遅延に基づいて推定する
前記(15)または(16)に記載の情報処理装置。
(18)
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報を受信し、
受信した情報に基づいて、前記無線端末の状態を推定する
ステップを含む情報処理方法。
(19)
コンピュータに、
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報を受信し、
受信した情報に基づいて、前記無線端末の状態を推定する
ステップを含む処理を実行させるプログラム。
1-1乃至1-6 無線端末, 2-1乃至2-5 基地局, 3 サーバ装置, 11 制御用CPU, 12 GNSS受信部, 13 無線送受信部, 14 センサ, 31 無線通信用CPU, 32 信号処理部, 81 周波数変換部, 82 デジタル信号処理部, 101 GNSS用CPU, 102 同期捕捉部, 103 同期保持部, 107 1PPS信号生成部
Claims (19)
- 捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を生成して出力する測位部と、
外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持し、前記無線通信を行う無線通信部と
を備える無線端末。 - 前記測位部は、最後に測位された位置を前記無線端末の位置、移動速度を0として計算を行うことによって、前記パルス信号を生成する
請求項1に記載の無線端末。 - 前記測位部は、捕捉可能な前記衛星の位置と前記衛星の時刻に基づいて、前記無線端末の内部時刻を計算し、捕捉可能な前記衛星の速度と前記衛星のドップラ周波数に基づいて、前記無線端末の内部の発振器の周波数誤差を計算し、前記内部時刻と前記周波数誤差に基づいて前記パルス信号を生成する
請求項2に記載の無線端末。 - 前記所定の数は4である
請求項1に記載の無線端末。 - 前記パルス信号は1PPS信号である
請求項1に記載の無線端末。 - 前記無線通信部は、前記パルス信号を基準として設定されたタイミングに従ってデータを送信する
請求項1に記載の無線端末。 - 前記無線通信部は、前記パルス信号を基準として、前記外部の装置がデータを送信するタイミングに応じたタイミングで受信ウィンドウを設定し、前記受信ウィンドウの期間、前記外部の装置が送信するデータを受信する
請求項1に記載の無線端末。 - 前記無線通信部は、前記外部の装置の通信エリアにおいて想定される最大の伝搬遅延時間、前記データの送信に用いられるパケットのパケット長に応じた時間、および、前記無線端末の内部時刻の想定される誤差に応じた時間を加算した時間以上の時間幅の前記受信ウィンドウを設定する
請求項7に記載の無線端末。 - 前記無線通信部は、さらに、受信同期誤差に応じた時間を加算した時間以上の時間幅の前記受信ウィンドウを設定する
請求項8に記載の無線端末。 - 前記測位部は、捕捉可能な前記衛星からの情報に基づいて疑似距離とドップラ周波数を計算し、
前記無線通信部は、前記疑似距離と前記ドップラ周波数の情報を送信する
請求項1に記載の無線端末。 - 加速度センサを含むセンサをさらに備え、
前記無線通信部は、前記センサにより検出されたセンサデータを送信する
請求項1に記載の無線端末。 - 前記周波数誤差に基づいて、前記無線通信における送信周波数の規定周波数に対する誤差を補正する制御部をさらに備える
請求項3に記載の無線端末。 - 捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、
無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持し、前記無線通信を行う
ステップを含む情報処理方法。 - コンピュータに、
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、
無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持し、前記無線通信を行う
ステップを含む処理を実行させるプログラム。 - 捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報を受信する通信部と、
前記通信部により受信された情報に基づいて、前記無線端末の状態を推定する推定部と
を備える情報処理装置。 - 前記推定部は、前記無線端末が動いているか否かを、捕捉可能な前記衛星からの情報に基づいて前記無線端末により求められた疑似距離とドップラ周波数に基づいて、または、前記無線端末により検出されたセンサデータに基づいて推定する
請求項15に記載の情報処理装置。 - 前記推定部は、前記無線端末の位置を、前記無線端末が送信する情報が複数の前記外部の装置において受信された場合の伝送遅延に基づいて推定する
請求項15に記載の情報処理装置。 - 捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報を受信し、
受信した情報に基づいて、前記無線端末の状態を推定する
ステップを含む情報処理方法。 - コンピュータに、
捕捉可能な衛星の数が所定の数未満である場合、測位を行わずに、捕捉可能な前記衛星からの情報に基づいて、前記衛星の時刻に同期した所定の間隔のパルス信号を測位部において生成して出力し、無線通信部における外部の装置との無線通信の時刻同期を前記パルス信号を基準として維持する無線端末から送信された情報を受信し、
受信した情報に基づいて、前記無線端末の状態を推定する
ステップを含む処理を実行させるプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18824787.8A EP3648517A4 (en) | 2017-06-30 | 2018-06-15 | WIRELESS TERMINAL, INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, AND PROGRAM |
US16/626,037 US20200120632A1 (en) | 2017-06-30 | 2018-06-15 | Mobile terminal, information processor, information processing method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017128825 | 2017-06-30 | ||
JP2017-128825 | 2017-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019003950A1 true WO2019003950A1 (ja) | 2019-01-03 |
Family
ID=64740621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022834 WO2019003950A1 (ja) | 2017-06-30 | 2018-06-15 | 無線端末、情報処理装置、情報処理方法、およびプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200120632A1 (ja) |
EP (1) | EP3648517A4 (ja) |
WO (1) | WO2019003950A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7491665B2 (ja) * | 2018-12-04 | 2024-05-28 | 日本電信電話株式会社 | 時刻伝送補正装置、時刻伝送システム、および、遅延測定方法 |
CN111669218B (zh) * | 2020-06-29 | 2021-10-29 | 中国科学院国家授时中心 | 一种星间链路信号地面验证平台及方法 |
CN112729293B (zh) * | 2021-03-30 | 2021-06-22 | 中国人民解放军国防科技大学 | 卫星授时三轴飞行模拟转台与被测惯导系统时间同步方法 |
CN113568300B (zh) * | 2021-09-22 | 2022-01-04 | 深圳心派科技有限公司 | Gps授时方法、装置、电子设备以及存储介质 |
IT202200011330A1 (it) * | 2022-05-30 | 2023-11-30 | St Microelectronics Srl | Sistema e ricevitore per segnali gnss |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09236652A (ja) * | 1996-02-29 | 1997-09-09 | Nec Eng Ltd | Gps位置検出装置 |
JP2006337260A (ja) * | 2005-06-03 | 2006-12-14 | Mazeran Systems Japan Kk | 衛星測位方法及び衛星測位システム |
JP2013050396A (ja) * | 2011-08-31 | 2013-03-14 | Seiko Epson Corp | 電子機器及び電子時計 |
JP2015023337A (ja) | 2013-07-17 | 2015-02-02 | 京セラ株式会社 | 基地局およびその同期方法 |
JP2017060042A (ja) * | 2015-09-17 | 2017-03-23 | 株式会社デンソー | 通信装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8116170B2 (en) * | 2007-12-19 | 2012-02-14 | Seiko Epson Corporation | Timekeeping device and satellite signal reception method for a timekeeping device |
US9182493B2 (en) * | 2011-03-11 | 2015-11-10 | Texas Instruments Incorporaed | Fine time assistance for global navigation satellite systems |
US8724760B2 (en) * | 2012-04-27 | 2014-05-13 | Raytheon Company | GPS aided open loop coherent timing |
JP6081394B2 (ja) * | 2014-02-28 | 2017-02-15 | 株式会社東芝 | 測位システム及び測位方法 |
-
2018
- 2018-06-15 EP EP18824787.8A patent/EP3648517A4/en active Pending
- 2018-06-15 WO PCT/JP2018/022834 patent/WO2019003950A1/ja active Application Filing
- 2018-06-15 US US16/626,037 patent/US20200120632A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09236652A (ja) * | 1996-02-29 | 1997-09-09 | Nec Eng Ltd | Gps位置検出装置 |
JP2006337260A (ja) * | 2005-06-03 | 2006-12-14 | Mazeran Systems Japan Kk | 衛星測位方法及び衛星測位システム |
JP2013050396A (ja) * | 2011-08-31 | 2013-03-14 | Seiko Epson Corp | 電子機器及び電子時計 |
JP2015023337A (ja) | 2013-07-17 | 2015-02-02 | 京セラ株式会社 | 基地局およびその同期方法 |
JP2017060042A (ja) * | 2015-09-17 | 2017-03-23 | 株式会社デンソー | 通信装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3648517A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3648517A4 (en) | 2020-07-08 |
US20200120632A1 (en) | 2020-04-16 |
EP3648517A1 (en) | 2020-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019003950A1 (ja) | 無線端末、情報処理装置、情報処理方法、およびプログラム | |
JP5687632B2 (ja) | 低地球軌道(leo)衛星を使用したローカルクロック周波数の較正 | |
JP5780701B2 (ja) | 全視野のコヒーレントなgps信号擬似ランダム雑音(prn)コード捕捉及びナビゲーション解決定のための全地球測位システム(gps)ユーザ受信機および幾何学的表面処理 | |
US8456353B2 (en) | Method and system for determining clock corrections | |
EP1581820B1 (en) | Method and system for performing timing synchronization | |
JP5646465B2 (ja) | 衛星システムを用いたインターネットホットスポットの位置決め | |
US7286624B2 (en) | Two-way RF ranging system and method for local positioning | |
US6486831B1 (en) | Methods and apparatus for estimating accuracy of measurement signals | |
CN112327335B (zh) | Gnss接收机和卫星捕获跟踪方法 | |
US10057798B2 (en) | Methods and systems for measuring range between devices | |
WO2008034728A1 (en) | Integrated mobile-terminal navigation | |
AU2010304862A1 (en) | Improvements in or relating to radio positioning | |
JP2007228237A (ja) | キャリア位相追尾装置および擬似雑音コード信号追尾装置 | |
EP1821114A2 (en) | Apparatus and method for sharing a TCXO of a mobile terminal using a global positioning system in a mobile communication system | |
US7239273B2 (en) | Apparatus and method for calculating satellite acquisition information to recognize position of mobile station | |
US8779973B2 (en) | Satellite signal tracking method, position calculating method, and position calculating device | |
US10809352B2 (en) | Signal processing device and method,and information processing device and method | |
JP5302902B2 (ja) | Gps信号を捕捉してユーザ受信機の場所を素早く求めるための方法およびシステム | |
KR20190029929A (ko) | 의사 위성항법 신호 중계 장치 및 의사 위성항법 신호 중계 장치의 동작 방법 | |
JP4848146B2 (ja) | 測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステム | |
US10921342B2 (en) | Arm swing compensation techniques | |
JP2011117830A (ja) | Gnss受信装置及び測位方法 | |
JP2014006187A (ja) | 受信装置及び相関積算処理方法 | |
US20150260850A1 (en) | Method and apparatus for geo-fence detection | |
JP6768532B2 (ja) | 位置測位システム及び位置測位方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18824787 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018824787 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018824787 Country of ref document: EP Effective date: 20200130 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |