WO2019003812A1 - Optically anisotropic layer and method for producing same, optically anisotropic laminate, multi-layered article for transfer use, polarizing plate, and image display device - Google Patents

Optically anisotropic layer and method for producing same, optically anisotropic laminate, multi-layered article for transfer use, polarizing plate, and image display device Download PDF

Info

Publication number
WO2019003812A1
WO2019003812A1 PCT/JP2018/021402 JP2018021402W WO2019003812A1 WO 2019003812 A1 WO2019003812 A1 WO 2019003812A1 JP 2018021402 W JP2018021402 W JP 2018021402W WO 2019003812 A1 WO2019003812 A1 WO 2019003812A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
group
carbon atoms
layer
substituent
Prior art date
Application number
PCT/JP2018/021402
Other languages
French (fr)
Japanese (ja)
Inventor
航 中野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020197037285A priority Critical patent/KR102589809B1/en
Priority to JP2019526741A priority patent/JP7276128B2/en
Priority to CN201880033980.1A priority patent/CN110651208B/en
Publication of WO2019003812A1 publication Critical patent/WO2019003812A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an optically anisotropic layer and a method for producing the same; an optically anisotropic laminate comprising the above-mentioned optically anisotropic layer; a transfer multilayer comprising the above-mentioned optically anisotropic layer;
  • the present invention relates to a board and an image display device.
  • optical films are provided in image display devices, such as a liquid crystal display device and an organic electroluminescent display device.
  • organic electroluminescence may be referred to as “organic EL” as appropriate.
  • the technology related to such an optical film has been studied conventionally (for example, Patent Documents 1 and 2).
  • a circularly polarizing plate may be provided on the display surface of the image display device.
  • the optical film provided with a linear polarizer and an optically anisotropic layer is used normally.
  • the effect of the circularly polarizing plate described above may be lost when the display surface is viewed from the tilt direction.
  • a positive C film in combination with a circularly polarizing plate.
  • the positive C film used for such an application is a film in which the retardation Rth in the thickness direction exhibits reverse wavelength dispersion.
  • Such a positive C film can be considered to be produced by a production method using a liquid crystal compound, as described in Patent Documents 1 and 2, for example.
  • the positive C film having reverse wavelength dispersive Rth in the prior art is required to be used for a long time in a high temperature environment.
  • it is easy to cause problems such as increase in haze and clouding.
  • an optical film is required to be close to colorless with no deviation of transmittance and reflectance depending on the wavelength of light, and a positive C film having reverse wavelength dispersion Rth in the prior art also has its color tone It is not colorless and may have a color tone such as yellow.
  • an object of the present invention is to provide an optically anisotropic layer having high durability and good color tone in a positive C plate which can be manufactured without using an alignment film and the retardation Rth in the thickness direction exhibits reverse wavelength dispersion.
  • a transfer double layer provided with the optically anisotropic layer, a method for producing the same, an optically anisotropic laminate having such an optically anisotropic layer, a transfer double layer, a polarizing plate, and an image display device Intended to provide.
  • the present invention is as follows.
  • An optically anisotropic layer comprising a positive C polymer, a mesogen compound, and a polymer of the mesogen compound,
  • the positive C polymer is a polymer in which the film satisfies the formula (1)
  • the mesogen compound is a compound having a mesogen skeleton and an acrylate structure
  • nx (P), ny (P) and nz (P) are the main refractive indices of the film
  • Rth (A450) is a retardation in the thickness direction of the optically anisotropic layer at a wavelength of 450 nm
  • Rth (A550) is a retardation in the thickness direction of the optically anisotropic layer at a wavelength of 550 nm
  • Rth (A650) is a retardation in the thickness direction at a wavelength of 650 nm of the optically anisotropic layer.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • G 1 and G 2 each independently represent an optionally substituted divalent aliphatic group having 1 to 20 carbon atoms.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Z 1 and Z 2 each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted by a halogen atom.
  • a x represents an organic group having 2 to 30 carbon atoms which has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • R 3 has an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group or a 4-methylphenyl group.
  • R 9 is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, carbon which may have a substituent And a cycloalkyl group of 3 to 12 or an aromatic group of 5 to 20 carbon atoms which may have a substituent.
  • the aromatic ring which said A x and A y has may have a substituent.
  • the A x and A y may be taken together to form a ring.
  • a 1 represents a trivalent aromatic group which may have a substituent.
  • Each of A 2 and A 3 independently represents a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
  • Each of A 4 and A 5 independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • m and n each independently represent 0 or 1; However, one or both of Z 1 -Y 7 -and -Y 8 -Z 2 are acryloyloxy groups.
  • composition according to any one of [1] to [6], wherein the proportion of the mesogen compound and the polymer thereof in the total solid content of the optically anisotropic layer is 20% by weight or more and 60% by weight or less.
  • Optically anisotropic layer is 20% by weight or more and 60% by weight or less.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • G 1 and G 2 each independently represent an optionally substituted divalent aliphatic group having 1 to 20 carbon atoms.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Z 1 and Z 2 each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted by a halogen atom.
  • a x represents an organic group having 2 to 30 carbon atoms which has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • R 3 has an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group or a 4-methylphenyl group.
  • R 9 is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, carbon which may have a substituent And a cycloalkyl group of 3 to 12 or an aromatic group of 5 to 20 carbon atoms which may have a substituent.
  • the aromatic ring which said A x and A y has may have a substituent.
  • the A x and A y may be taken together to form a ring.
  • a 1 represents a trivalent aromatic group which may have a substituent.
  • Each of A 2 and A 3 independently represents a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
  • Each of A 4 and A 5 independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • m and n each independently represent 0 or 1;
  • Linear polarizer The optically anisotropic layer according to any one of [1] to [8], the multilayer for transfer according to [9], or the optical according to any one of [10] to [12] An anisotropic laminate, and a polarizing plate.
  • An image display device comprising the polarizing plate according to [13].
  • the ratio of the photopolymerization initiator to 100 parts by weight of the mesogen compound in the coating liquid is 1 part by weight to 10 parts by weight
  • integrated light amount of the light to be irradiated is 600mJ / cm 2 ⁇ 5000mJ / cm 2, the production method according to [16] or [17].
  • an optically anisotropic layer having high durability and good color tone which can be manufactured without using an alignment film and having a positive C-plate exhibiting a reverse wavelength dispersion with retardation Rth in the thickness direction
  • a transfer multilayer having the optically anisotropic layer, a method for producing the same, an optically anisotropic laminate having such an optical anisotropic layer, a transfer multilayer, a polarizing plate, and an image display device Provided.
  • the front direction of a surface means, unless otherwise specified, the normal direction of the surface, specifically, the direction of the polar angle of 0 ° and the azimuth angle of 0 ° of the surface.
  • the inclination direction of a surface means a direction neither parallel nor perpendicular to the surface unless specifically stated otherwise, specifically, the polar angle of the surface is larger than 0 ° and smaller than 90 ° Point in the direction of
  • nx represents the in-plane direction of the layer and represents the refractive index in the direction giving the maximum refractive index
  • ny represents the refractive index in the in-plane direction of the layer and orthogonal to the nx direction.
  • nz represents the refractive index in the thickness direction of the layer
  • d represents the thickness of the layer.
  • the in-plane direction indicates a direction perpendicular to the thickness direction.
  • the measurement wavelength of the refractive index is 590 nm.
  • the term "long" member refers to a member having a length of 5 times or more the width, preferably 10 times or more, and more specifically, A member having a length that can be rolled up and stored or transported.
  • the upper limit of the length of the long member is not particularly limited, and may be, for example, 100,000 times or less of the width.
  • the “polarizing plate” and the “wave plate” include not only a rigid member but also a flexible member such as a resin film.
  • (meth) acrylic is a term including “acrylic”, “methacrylic” and combinations thereof.
  • a resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is larger than the refractive index in the direction orthogonal thereto.
  • a resin having a negative intrinsic birefringence value means a resin in which the refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal thereto.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution.
  • the main refractive index of a layer or film means the refractive index nx of the layer in the in-plane direction of the layer giving the maximum refractive index, and the in-plane direction of the layer provides the nx
  • the refractive indices corresponding to these nx, ny and nz are represented by symbols including the character strings “nx”, “ny” and “nz”, respectively.
  • nx (A) is the in-plane direction of the optically anisotropic layer and the maximum refractive index Ny (A) is the in-plane direction of the optically anisotropic layer and is perpendicular to the direction giving nx (A), nz (A) is It is a refractive index of the thickness direction of an optically anisotropic layer.
  • in-plane retardation Re of a layer exhibits reverse wavelength dispersion means that in-plane retardations Re (450) and Re (550) at wavelengths 450 nm and 550 nm of the layer are Re (450). ) / Re (550) ⁇ 1.00 is satisfied.
  • in-plane retardations Re (550) and Re (650) at wavelengths 550 nm and 650 nm of the layer are Re (550) / Re (650) ⁇ 1.
  • the retardation Rth in the thickness direction of a certain layer shows reverse wavelength dispersion, as the retardation Rth (450) and Rth (550) in the thickness direction at wavelengths 450 nm and 550 nm of the layer is Rth (450) / Rth. (550) means to satisfy ⁇ 1.00.
  • retardations Rth (550) and Rth (650) in the thickness direction at wavelengths 550 nm and 650 nm of the layer are Rth (550) / Rth (650) ⁇ 1.
  • optical anisotropic layer contains a positive C polymer, a mesogen compound, and a polymer of the mesogen compound, and has specific optical properties.
  • the positive C polymer is a polymer, and when the film of the polymer is formed by a coating method using a solution of the polymer, the film satisfies the formula (1).
  • nx (P), ny (P) and nz (P) are the main refractive indices of such films.
  • An optical anisotropy which can be manufactured without using an alignment film by using such a positive C polymer in combination with a mesogen compound, and which is used as a positive C film in which the retardation Rth in the thickness direction exhibits reverse wavelength dispersion. Sex layer can be realized.
  • a certain polymer corresponds to a positive C polymer can be confirmed by the following method.
  • a polymer as a sample is added to a solvent such as methyl ethyl ketone (MEK), 1,3-dioxolane, N-methyl pyrrolidone (NMP) or the like so that the concentration of the polymer is 10 wt% to 20 wt%, Dissolve at room temperature to obtain a polymer solution.
  • MEK methyl ethyl ketone
  • NMP N-methyl pyrrolidone
  • This polymer solution is coated on an unstretched film made of resin using an applicator to form a layer of the polymer solution. Thereafter, the film is dried in an oven at 85 ° C.
  • the polymer can be determined to correspond to a positive C polymer.
  • the refractive index nx (P) and the refractive index ny (P) have the same value or be close to each other.
  • the difference nx (P) -ny (P) between the refractive index nx (P) and the refractive index ny (P) is preferably 0.00000 to 0.00100, more preferably 0.00000 to 0. It is 00050, particularly preferably 0.00000 to 0.00020.
  • any film having a refractive index satisfying the above formula (1) can be obtained.
  • Coalescing can be used.
  • the positive C polymer at least one polymer selected from the group consisting of polyvinyl carbazole, polyfumaric acid ester and cellulose derivative is preferable.
  • polyvinylcarbazole examples include polymers containing polymerized units formed by polymerization of 9-vinylcarbazole.
  • polyfumarates examples include copolymers of diisopropyl fumarate and 3-ethyl-3-oxetanylmethyl acrylate; and copolymers of diisopropyl fumarate and cinnamate.
  • the positive C polymer may be used alone or in combination of two or more at an arbitrary ratio.
  • the proportion of the positive C polymer in the total solid content of the optically anisotropic layer is preferably 30% by weight or more, more preferably 35% by weight or more, and most preferably 40% by weight or more, preferably 60% by weight or less. More preferably, it is at most 55 wt%, most preferably at most 50 wt%.
  • the ratio of the positive C polymer is at least the lower limit value of the above range, the mesogenic compound can be dispersed uniformly in the optically anisotropic layer, or the mechanical strength of the optically anisotropic layer can be increased.
  • wavelength dispersion of the retardation Rth of the thickness direction of an optically anisotropic layer can be made easy to approach reverse dispersion.
  • the solid content of a certain layer refers to a component remaining when the layer is dried.
  • the mesogen compound is a compound having a mesogen skeleton and an acrylate structure.
  • the mesogenic skeleton possessed by the mesogenic compound means a molecular skeleton which essentially contributes to the generation of a liquid crystal phase in a substance of low molecular weight or high molecular weight by the anisotropy of its attractive force and repulsive interaction.
  • the mesogen compound containing a mesogen skeleton may not necessarily have liquid crystallinity that can cause phase transition to a liquid crystal phase by itself.
  • the mesogen compound may be a liquid crystal compound capable of causing a phase transition to a liquid crystal phase alone, or may be a non-liquid crystal compound not causing a phase transition to a liquid crystal phase alone.
  • mesogenic frameworks include rigid rod-like or disk-like shaped units.
  • the orientation state of the mesogen compound may be fixed.
  • the orientation state of the mesogen compound may be fixed by polymerization.
  • the mesogen compound can be a polymer while maintaining the orientation state of the mesogen compound by polymerization, the orientation state of the mesogen compound is fixed by the above-mentioned polymerization.
  • the term "mesogenic compound with fixed orientation" includes polymers of mesogenic compounds. Therefore, when the mesogen compound is a liquid crystal compound having liquid crystallinity, this liquid crystal compound may exhibit a liquid crystal phase in the optically anisotropic layer, and exhibits a liquid crystal phase by fixing the alignment state. It does not have to be.
  • a reverse wavelength dispersion liquid crystal compound As the mesogen compound, a reverse wavelength dispersion liquid crystal compound, a reverse wavelength mesogen compound, or a combination thereof can be used.
  • the reverse wavelength dispersion liquid crystal compound means a compound which satisfies all the following requirements (i) and (ii).
  • the reverse wavelength dispersion liquid crystal compound exhibits liquid crystallinity.
  • the reverse wavelength dispersion liquid crystal compound exhibits an in-plane retardation of reverse wavelength dispersion when it is homogeneously aligned.
  • the reverse wavelength mesogen compound means a compound that satisfies all of the following requirements (iii), (iv) and (v).
  • the reverse wavelength mesogen compound does not exhibit liquid crystallinity by itself.
  • the specific evaluation mixture containing the reverse wavelength mesogen compound exhibits liquid crystallinity.
  • the reverse wavelength mesogen compound exhibits in-plane retardation of reverse wavelength dispersion.
  • the above evaluation mixture is a liquid crystal compound for evaluation which exhibits an in-plane retardation of normal wavelength dispersion when homogeneously aligned, the above-mentioned reverse wavelength mesogen compound, a total of 100 for the liquid crystal compound for evaluation and the reverse wavelength mesogen compound.
  • the mixture is a mixture of at least 30 parts by weight and 70 parts by weight with respect to the parts by weight.
  • Optical anisotropy which can be manufactured without using an alignment film by using such a mesogen compound in combination with a positive C polymer, and which is used as a positive C film in which the retardation Rth in the thickness direction exhibits reverse wavelength dispersion Sex layer can be realized.
  • the reverse wavelength dispersive liquid crystal compound exhibits an in-plane retardation of reverse wavelength dispersion when it is homogeneously aligned.
  • homogeneously align means to form a layer containing the liquid crystal compound, and the major axis direction of the mesogen skeleton of the molecules of the liquid crystal compound in that layer is one direction parallel to the plane of the layer It is meant to be oriented to In the case where the liquid crystal compound contains plural types of mesogen skeletons having different alignment directions, the direction in which the longest type of mesogen is aligned is the alignment direction.
  • the measurement of the slow axis direction using a retardation meter represented by AxoScan (manufactured by Axometrics), and the incident angle in the slow axis direction It can confirm by measurement of each retardation distribution.
  • the in-plane retardations Re (L450), Re (L550) and Re (L650) of the liquid crystal layer at wavelengths of 450 nm, 550 nm and 650 nm are more preferable from the viewpoint of better exhibiting the desired effect of the present invention. It is more preferable to satisfy (L450) ⁇ Re (L550) ⁇ Re (L650).
  • the reverse wavelength dispersive liquid crystal compound for example, a compound containing a main chain mesogen skeleton and a side chain mesogen skeleton bonded to the main chain mesogen skeleton in the molecule of the reverse wavelength dispersive liquid crystal compound can be used.
  • the side chain mesogen skeleton may be oriented in a direction different from that of the main chain mesogen skeleton in a state where the reverse wavelength dispersive liquid crystal compound is aligned.
  • birefringence is expressed as the difference between the refractive index corresponding to the main chain mesogen skeleton and the refractive index corresponding to the side chain mesogen skeleton, and as a result, the reverse wavelength dispersive liquid crystal compound is homogeneously aligned. And in-plane retardation of reverse wavelength dispersion.
  • the reverse wavelength dispersive liquid crystal compound usually has a specific steric shape different from the steric shape of a general forward wavelength dispersive liquid crystal compound.
  • the “forward wavelength dispersive liquid crystal compound” refers to a liquid crystal compound capable of exhibiting in-plane retardation of forward wavelength dispersion when it is homogeneously aligned.
  • the in-plane retardation of the forward wavelength dispersion refers to the in-plane retardation in which the in-plane retardation decreases as the measurement wavelength increases. It is surmised that the fact that the reverse wavelength dispersion liquid crystal compound has such a specific three-dimensional shape is one factor for obtaining the effects of the present invention.
  • the CN point of the reverse wavelength dispersion liquid crystal compound is preferably 25 ° C. or more, more preferably 45 ° C. or more, particularly preferably 60 ° C. or more, preferably 120 ° C. or less, more preferably 110 ° C. or less, particularly preferably 100 ° C. It is below.
  • the “CN point” refers to the crystal-nematic phase transition temperature.
  • An optically anisotropic layer can be easily produced by using a reverse wavelength dispersive liquid crystal compound having a CN point in the above range.
  • the molecular weight of the reverse wavelength dispersive liquid crystal compound is preferably 300 or more, more preferably 700 or more, particularly preferably 1000 or more, and preferably 2000 or less, more preferably 1700 or less, particularly preferably a monomer when it is a monomer. It is 1500 or less.
  • the coatability of the coating liquid for forming the optically anisotropic layer can be made particularly favorable.
  • the above-mentioned reverse wavelength dispersive liquid crystal compounds may be used alone or in combination of two or more at an arbitrary ratio.
  • Examples of the reverse wavelength dispersive liquid crystal compound include those described in JP-A-2014-123134. Moreover, as a reverse wavelength dispersion liquid crystal compound, the compound which shows liquid crystallinity is mentioned among the compounds represented by following formula (Ia), for example. In the following description, the compound represented by the formula (Ia) may be referred to as “compound (Ia)” as appropriate.
  • a 1a is an aromatic carbon having, as a substituent, an organic group having 1 to 67 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring A hydrogen ring group; or an aromatic heterocyclic group having, as a substituent, an organic group having 1 to 67 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring; .
  • Substituted phenylene group benzothiazol-4,7-diyl group substituted by 1-benzofuran-2-yl group; substituted by 5- (2-butyl) -1-benzofuran-2-yl group Benzothiazole-4,7-diyl; benzothiazole-4,7-diyl substituted by 4,6-dimethyl-1-benzofuran-2-yl; 6-methyl-1-benzofuran-2- Substituted benzothiazole-4,7-diyl; 4,6,7-trimethyl-1-benzofuran-2-yl substituted benzothiazole-4,7-diyl; 4,5, 6-trimethyl-1-benzofuran-2-y
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • G 1a and G 2a each independently represent a divalent aliphatic group having 1 to 20 carbon atoms which may have a substituent.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Z 1a and Z 2a each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted by a halogen atom.
  • each of A 2a and A 3a independently represents a divalent C 3-30 alicyclic hydrocarbon group which may have a substituent.
  • each of A 4a and A 5a independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • k and l each independently represent 0 or 1.
  • Z 1a -Y 7a -and -Y 8a -Z 2a are an acryloyloxy group.
  • the reverse wavelength dispersion liquid crystal compound include a compound exhibiting liquid crystallinity.
  • the compound represented by the formula (I) may be referred to as “compound (I)” as appropriate.
  • the main chain mesogen skeleton 1a and the side chain mesogen skeleton 1b cross each other.
  • the main chain mesogen skeleton 1a and the side chain mesogen skeleton 1b may be combined to form one mesogen skeleton, but in the present invention, they are divided into two mesogen skeletons.
  • the refractive index in the long axis direction of the main chain mesogen skeleton 1a is n1
  • the refractive index in the long axis direction of the side chain mesogen skeleton 1b is n2.
  • the absolute value of the refractive index n1 and the wavelength dispersion generally depend on the molecular structure of the main chain mesogen skeleton 1a.
  • the absolute value of the refractive index n2 and the wavelength dispersion generally depend on the molecular structure of the side chain mesogen skeleton 1b.
  • the compound (I) usually performs rotational movement with the long axis direction of the main chain mesogen skeleton 1a as the axis of rotation, so the refractive indices n1 and n2 referred to here are the refractive index as a rotator Represents
  • the absolute value of the refractive index n1 is larger than the absolute value of the refractive index n2 derived from the molecular structures of the main chain mesogen skeleton 1a and the side chain mesogen skeleton 1b. Furthermore, the refractive indices n1 and n2 usually show forward wavelength dispersion.
  • the forward wavelength dispersive refractive index represents a refractive index in which the absolute value of the refractive index decreases as the measurement wavelength increases.
  • the refractive index n1 of the main chain mesogen skeleton 1a exhibits a small degree of forward wavelength dispersion. Therefore, although the refractive index n1 measured by long wavelength becomes smaller than the refractive index measured by short wavelength, those differences are small.
  • the refractive index n2 of the side chain mesogen skeleton 1b exhibits a large degree of forward wavelength dispersion. Therefore, the refractive index n2 measured at the long wavelength is smaller than the refractive index n2 measured at the short wavelength, and the difference between them is large. Therefore, when the measurement wavelength is short, the difference ⁇ n between the refractive index n1 and the refractive index n2 is small, and when the measurement wavelength is long, the difference ⁇ n between the refractive index n1 and the refractive index n2 becomes large.
  • the compound (I) can exhibit reverse wavelength dispersion in-plane retardation when homogeneously oriented, which is derived from the main chain mesogen skeleton 1a and the side chain mesogen skeleton 1b.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms which may have a substituent.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Z 1 and Z 2 each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted by a halogen atom.
  • a x represents an organic group having 2 to 30 carbon atoms, which has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle.
  • the “aromatic ring” is a cyclic structure having a broad aromaticity according to Huckel's rule, that is, a cyclic conjugated structure having (4n + 2) ⁇ electrons, and sulfur, oxygen, typified by thiophene, furan, benzothiazole, etc. It refers to a cyclic structure in which a lone electron pair of a heteroatom such as nitrogen participates in the ⁇ electron system to exhibit aromaticity.
  • aromatic hydrocarbon ring a benzene ring, a naphthalene ring, an anthracene ring etc.
  • aromatic heterocyclic ring examples include monocyclic aromatic heterocyclic rings such as pyrrole ring, furan ring, thiophene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring; Benzothiazole ring, benzoxazole ring, quinoline ring, phthalazine ring, benzoimidazole ring, benzopyrazole ring, benzofuran ring, benzothiophene ring, thiazolopyridine ring, oxazolopyridine ring, thiazolopyrazine ring, oxazolopyrazine ring, thia And aromatic
  • R 3 has an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group or a 4-methylphenyl group.
  • R 9 is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, carbon which may have a substituent And a cycloalkyl group of 3 to 12 or an aromatic group of 5 to 20 carbon atoms which may have a substituent.
  • the aromatic ring which said A x and A y has may have a substituent.
  • the A x and A y may be taken together to form a ring.
  • a 1 represents a trivalent aromatic group which may have a substituent.
  • each of A 2 and A 3 independently represents a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
  • each of A 4 and A 5 independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • m and n each independently represent 0 or 1. However, in the formula (I), one or both of Z 1 -Y 7 -and -Y 8 -Z 2 are an acryloyloxy group.
  • compound (I) examples include the compounds described in WO 2016/171169, WO 2017/057005, and WO 2016/190435. Also, the production of compound (I) can be carried out by the methods described in these documents.
  • the reverse wavelength mesogen compound is a compound which does not exhibit liquid crystallinity alone, and in which the mixture for evaluation mixed with the liquid crystal compound for evaluation at a specific mixing ratio exhibits liquid crystallinity.
  • a liquid crystal compound for evaluation a normal wavelength dispersive liquid crystal compound which is a liquid crystal compound which exhibits in-plane retardation of normal wavelength dispersion when homogeneously aligned is used.
  • a liquid crystal compound for evaluation a liquid crystal compound having a rod-like structure which can be a liquid crystal phase at 100 ° C. is preferable.
  • a forward wavelength dispersive liquid crystal compound (Paliocolor (registered trademark) LC242 (manufactured by BASF)) having a structure represented by the following formula (E1), a structure represented by the following formula (E2) And the forward wavelength dispersion liquid crystal compound etc. which it has.
  • E1 a structure represented by the following formula (E2)
  • E2 the forward wavelength dispersive liquid crystal compound etc. which it has.
  • Me represents a methyl group.
  • the mixing ratio of the reverse wavelength mesogen compound mixed with the liquid crystal compound for evaluation to obtain the above mixture for evaluation is usually 30 parts by weight with respect to a total of 100 parts by weight of the liquid crystal compound for evaluation and the reverse wavelength mesogen compound It is at least one of ⁇ 70 parts by weight. Therefore, the liquid crystal compound exhibits the liquid crystallinity by mixing the reverse wavelength mesogen compound in the mixing ratio of 30 parts by weight to 70 parts by weight with respect to 100 parts by weight in total of the liquid crystal compound for evaluation and the reverse wavelength mesogen compound.
  • the reverse wavelength mesogen compound is mixed at another mixing ratio within the range of 30 parts by weight to 70 parts by weight with respect to a total of 100 parts by weight of the liquid crystal compound for evaluation and the reverse wavelength mesogen compound.
  • the obtained mixture may not exhibit liquid crystallinity.
  • the liquid crystallinity of the mixture for evaluation can be confirmed by the following method.
  • the evaluation mixture is applied onto the substrate and dried to obtain a sample film comprising the substrate and a layer of the evaluation mixture.
  • the sample film is placed on a hot stage.
  • the sample film is heated while observing the sample film by a polarization microscope.
  • the phase transition to the liquid crystal phase of the layer of the mixture for evaluation is observed, it can be determined that the mixture for evaluation exhibits liquid crystallinity.
  • homogeneously aligning the mixture for evaluation means forming a layer of the mixture for evaluation and homogeneously aligning the liquid crystal compound for evaluation in the layer. Therefore, in the homogeneously oriented mixture for evaluation, the long axis direction of the mesogen skeleton of the molecules of the liquid crystal compound for evaluation is usually oriented in one direction parallel to the plane of the layer.
  • the in-plane retardation at a wavelength of 450 nm and 550 nm of the reverse wavelength mesogen compound contained in the mixture for evaluation is that the reverse wavelength mesogen compound in the homogeneously oriented evaluation mixture exhibits reverse wavelength dispersive in-plane retardation. It means that Re (450) and Re (550) satisfy Re (450) / Re (550) ⁇ 1.00.
  • the liquid crystal compound for evaluation is a forward wavelength dispersion liquid crystal compound
  • the reverse wavelength mesogen compound in the mixture for evaluation exhibits in-plane retardation of reverse wavelength dispersion by the following confirmation method. It can.
  • a liquid crystal layer containing a liquid crystal compound for evaluation as a forward wavelength dispersive liquid crystal compound is formed, and in the liquid crystal layer, the liquid crystal compound for evaluation is homogeneously aligned.
  • the ratio Re (X450) / Re (X550) of in-plane retardation Re (X450) and Re (X550) at the wavelengths 450 nm and 550 nm of the liquid crystal layer is measured. Further, a layer of a mixture for evaluation containing the liquid crystal compound for evaluation and the reverse wavelength mesogen compound is formed, and the mixture for evaluation is homogeneously aligned in the layer of the mixture for evaluation. Then, the ratio Re (Y450) / Re (Y550) of in-plane retardations Re (Y450) and Re (Y550) at the wavelengths 450 nm and 550 nm of the layer of the mixture for evaluation is measured.
  • the retardation ratio Re (Y450) / Re of the layer of the evaluation mixture containing the reverse wavelength mesogen compound is higher than the retardation ratio Re (X450) / Re (X550) of the liquid crystal layer not containing the reverse wavelength mesogen compound
  • (Y550) is small, it can be determined that the reverse wavelength mesogen compound exhibits an in-plane retardation of reverse wavelength dispersion.
  • the ratio Re (X650) of the in-plane retardation Re (X550) and Re (X650) at the wavelengths 550 nm and 650 nm of the liquid crystal layer The ratio Re (Y650) / Re (Y550) of the in-plane retardation Re (Y550) and Re (Y650) of the layer of the mixture for evaluation at wavelengths 550 nm and 650 nm is larger than that of Re / X (550) preferable.
  • the reverse wavelength mesogen compound for example, a compound containing a main chain mesogen skeleton and a side chain mesogen skeleton bonded to the main chain mesogen skeleton in the molecule of the reverse wavelength mesogen compound can be used.
  • the reverse wavelength mesogen compound has polymerizability. Therefore, it is preferable that the reverse wavelength mesogen compound has a polymerizable group. As described above, when the reverse wavelength mesogen compound having a polymerizability is used, it is possible to easily fix the alignment state of the reverse wavelength mesogen compound by polymerization. Therefore, an optically anisotropic layer having stable optical properties can be easily obtained.
  • the molecular weight of the reverse wavelength mesogen compound in the case of a monomer, is preferably 300 or more, more preferably 700 or more, particularly preferably 1000 or more, preferably 2000 or less, more preferably 1700 or less, particularly preferably 1500. It is below.
  • the coatability of the coating liquid for forming an optically anisotropic layer can be made especially favorable because a reverse wavelength mesogen compound has the above molecular weight.
  • the above-mentioned reverse wavelength mesogen compounds may be used alone or in combination of two or more at an arbitrary ratio.
  • a reverse wavelength mesogen compound the compound which does not show liquid crystallinity among the compounds represented by said Formula (Ia) is mentioned, for example.
  • a reverse wavelength mesogen compound the compound which does not show liquid crystallinity is mentioned among the compounds represented by said Formula (I).
  • the following compounds may be mentioned as particularly preferable reverse wavelength mesogenic compounds.
  • a benzothiazole ring (a ring of the following formula (10A)); and a cyclohexyl ring (the following formula)
  • a polymer of the mesogen compound By polymerizing the mesogen compound, a polymer of the mesogen compound can be obtained.
  • the specific method of polymerization is not particularly limited, and may be any method. Specifically, it can be carried out by irradiating a coating solution containing a mesogen compound with light. The details of this method will be described later.
  • the optically anisotropic layer contains a mesogenic compound in combination with the positive C polymer and the polymer of the mesogenic compound. Specifically, in addition to the polymer of the mesogen compound, the optically anisotropic layer may contain an unreacted mesogen compound remaining without polymerization.
  • the proportion of the mesogenic compound is a proportion at which the degree of curing A falls within the specific range defined in the present application.
  • the proportion of the mesogen compound and the polymer thereof in the total solid content of the optically anisotropic layer is preferably 20% by weight or more, more preferably 30% by weight or more, still more preferably 35% by weight or more, particularly preferably 40% by weight or more
  • it is 60 weight% or less, More preferably, it is 55 weight% or less, More preferably, it is 50 weight% or less, Especially preferably, it is 45 weight% or less.
  • the ratio of the mesogen compound and the polymer thereof is at least the lower limit value of the above range, the wavelength dispersion of the retardation Rth in the thickness direction of the optically anisotropic layer can be easily brought close to the reverse dispersion, and the above range In the optically anisotropic layer, the polymer of the mesogen compound can be dispersed uniformly, or the mechanical strength of the optically anisotropic layer can be increased.
  • the optically anisotropic layer may further contain optional components in combination with the positive C polymer, the mesogen compound and the polymer of the mesogen compound.
  • the optically anisotropic layer may contain a plasticizer.
  • the optically anisotropic layer contains a cellulose derivative as a positive C polymer, it is particularly preferable that the optically anisotropic layer contains a plasticizer in combination with the cellulose derivative.
  • plasticizers include xylitol pentaacetate, xylitol pentapropionate, arabitol pentapropionate, triphenyl phosphate, polyesters containing succinic acid and diethylene glycol residues, and adipic acid residues and diethylene glycol residues And polyesters containing
  • the proportion of the plasticizer is preferably 2.5% by weight or more, more preferably 10% by weight or more, preferably 25% by weight or less, more preferably 20% by weight, based on 100% by weight of the total of the positive C polymer and the plasticizer. It is at most weight percent.
  • Formula (2) nx (A), ny (A) and nz (A) are main refractive indices of the optically anisotropic layer.
  • An optically anisotropic layer having such refractive indices nx (A), ny (A) and nz (A) can be used as a positive C film.
  • the optically anisotropic layer when the optically anisotropic layer is incorporated in a circularly polarizing plate and applied to an image display device, light that suppresses the reflection of external light or displays an image in the tilt direction of the display surface of the image display device It can be made transparent to polarized sunglasses. Furthermore, when the image display device is a liquid crystal display device, the viewing angle can usually be widened. Therefore, when the display surface of the image display device is viewed from the tilt direction, the visibility of the image can be enhanced.
  • the refractive index nx (A) and the refractive index ny (A) of the optically anisotropic layer have the same value or be close to each other.
  • the difference nx (A) -ny (A) between the refractive index nx (A) and the refractive index ny (A) is preferably 0.00000 to 0.00100, more preferably 0.00000 to 0. It is 00050, particularly preferably 0.00000 to 0.00020.
  • the optical design in the case of providing the optically anisotropic layer in the image display device can be simplified, and other retardation films Adjustment of the bonding direction can be made unnecessary at the time of bonding with.
  • a C-H is infrared absorption related to out-of-plane bending vibration of the CH bond of the acrylate structure of the mesogen compound in the infrared absorption spectrum of the optically anisotropic layer
  • CCO of the acrylate structure of the mesogen compound It is the sum of infrared absorption of stretching vibration of C O bond derived from bond.
  • the degree of cure A is a value determined depending on the amount of unreacted acrylate structure contained in the optically anisotropic layer, and the degree of cure A becomes a large value when the progress of the polymerization reaction is insufficient.
  • the degree of curing A is a small value when the reaction of (1) is highly advanced.
  • the degree of cure A is preferably greater than 0.073, more preferably greater than 0.076, and most preferably greater than 0.079. It is also preferably less than 0.125, more preferably less than 0.122, and most preferably less than 0.119.
  • the curing degree A in the optically anisotropic layer is equal to or more than the above lower limit value, a favorable color tone of the optically anisotropic layer can be realized.
  • the curing degree A in the optically anisotropic layer is equal to or less than the upper limit value, high durability of the optically anisotropic layer can be realized.
  • the infrared absorption spectrum of the optically anisotropic layer can be measured, for example, by total reflection measurement (ATR method).
  • ATR method total reflection measurement
  • Thermo Fisher SCIENTIFIC "Nicolet iS 5N” can be used as a measurement apparatus.
  • An infrared absorption spectrum is obtained as a graph showing the relationship between wave number and absorbance.
  • C-H M the "C-H bonds with acrylate structure mesogenic compound”
  • W (polymer) is a weight ratio of the positive C polymer to the sum of the weight of the positive C polymer and the weight of the mesogen compound and the polymer thereof in the optically anisotropic layer.
  • the value of the curing degree A can be controlled by adjusting the irradiation intensity and time of the active energy ray to be irradiated in the production process of the optically anisotropic layer.
  • the optically anisotropic layer usually satisfies the formula (4) and the formula (5). 0.50 ⁇ Rth (A450) / Rth (A550) ⁇ 1.00 Formula (4) 1.00 ⁇ Rth (A650) / Rth (A550) ⁇ 1.25 Formula (5)
  • Rth (A450) is the retardation in the thickness direction of the optically anisotropic layer at a wavelength of 450 nm
  • Rth (A550) is the retardation in the thickness direction of the optically anisotropic layer at a wavelength of 550 nm
  • A650) is the retardation in the thickness direction of the optically anisotropic layer at a wavelength of 650 nm.
  • Rth (A450) / Rth (A550) is usually larger than 0.50, preferably larger than 0.60, more preferably larger than 0.65, and usually 1 It is less than .00, preferably less than 0.90, more preferably less than 0.85.
  • Rth (A650) / Rth (A550) is usually 1.00 or more, preferably 1.01 or more, more preferably 1.02 or more, and usually 1. It is less than 25, preferably less than 1.15, more preferably less than 1.10.
  • the optically anisotropic layer having the retardations Rth (A450), Rth (A550) and Rth (A650) in the thickness direction satisfying the formulas (4) and (5) has an opposite retardation Rth in the thickness direction.
  • the wavelength dispersion is shown.
  • the optically anisotropic layer in which the retardation Rth in the thickness direction exhibits reverse wavelength dispersion is incorporated in a circularly polarizing plate and applied to an image display device, the outer side in the inclination direction of the display surface of the image display device.
  • the function of suppressing reflection of light or transmitting polarized sunglasses to light for displaying an image can be exhibited in a wide wavelength range.
  • the viewing angle can usually be effectively expanded. Therefore, the visibility of the image displayed on the display surface can be particularly effectively improved.
  • the optically anisotropic layer preferably satisfies the formula (6).
  • Re (A 590) ⁇ 10 nm Formula (6)
  • Re (A 590) is the in-plane retardation of the optically anisotropic layer at a wavelength of 590 nm.
  • Re (A 590) is preferably 0 nm to 10 nm, more preferably 0 nm to 5 nm, and particularly preferably 0 nm to 2 nm.
  • the optically anisotropic layer preferably satisfies the formula (7). ⁇ 200 nm ⁇ Rth (A 590) ⁇ -10 nm Formula (7)
  • Rth (A 590) is the retardation in the thickness direction of the optically anisotropic layer at a wavelength of 590 nm.
  • Rth (A 590) is preferably -200 nm or more, more preferably -130 nm or more, particularly preferably -100 nm or more, preferably -10 nm or less, more preferably -30 nm Or less, particularly preferably ⁇ 50 nm or less.
  • the optically anisotropic layer having such Rth (A 590) is incorporated in a circularly polarizing plate and applied to an image display device, the reflection of external light is suppressed in the inclination direction of the display surface of the image display device, The color change of the reflected light can be reduced, and the light for displaying the image can be transmitted through the polarized sunglasses.
  • the image display device is a liquid crystal display device, the viewing angle can usually be increased. Therefore, when the display surface of the image display device is viewed from the tilt direction, the visibility of the image can be enhanced.
  • the total light transmittance of the optically anisotropic layer is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
  • the total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet and visible spectrometer.
  • the haze of the optically anisotropic layer is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
  • the haze can be measured with a haze meter (for example, "Haze Guard II” manufactured by Toyo Seiki Seisaku-sho, Ltd.) according to JIS K 7136: 2000.
  • the change in haze due to heating can be small.
  • the change ratio of the haze (after-heating haze value / initial haze value) before and after heating such as 85 ° C. for 500 hours may be small.
  • the haze change ratio may be preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less.
  • the change in haze due to heating is usually a change in which the haze increases, but in some cases the haze may decrease.
  • the lower limit of the haze change ratio may be 0.3 or more, 0.4 or more, or 0.5 or more.
  • the optically anisotropic layer can be made colorless or near in color by satisfying the requirements such as the degree of curing.
  • a positive C film having reverse wavelength dispersive Rth in the prior art often has a yellow color tone, while the optically anisotropic layer of the present invention may have such a low yellow color tone.
  • the optically anisotropic layer of the present invention preferably has a b * value in the L * a * b * color system of 2.5 or less, more preferably 2.2 or less, still more preferably 2 .0 or less.
  • the lower limit of the b * value is ideally zero.
  • the b * value can be observed by measuring the optically anisotropic layer with a spectrophotometer (for example, "V-550" manufactured by JASCO Corporation).
  • the thickness of the optically anisotropic layer can be appropriately adjusted so as to obtain a desired retardation.
  • the specific thickness of the optically anisotropic layer is preferably 1.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, particularly preferably 30 ⁇ m or less.
  • the optically anisotropic layer is Step (a): providing a coating liquid containing a positive C polymer, a mesogen compound, and a solvent; Step (b): coating the coating liquid on the support surface to obtain a coating liquid layer; Step (c): Irradiating the coating liquid layer with light, and curing the coating liquid layer.
  • this manufacturing method will be described as a method of manufacturing the optically anisotropic layer of the present invention.
  • the process of preparing a coating liquid can be performed by mixing a positive C polymer, a mesogen compound, and a solvent.
  • the ratio of the positive C polymer in the total solid content of the coating liquid and the ratio of the mesogen compound in the total solid content of the coating liquid are respectively the ratio of the positive C polymer in the optically anisotropic layer and the optically anisotropic layer It can adjust to the same range as the ratio of the mesogen compound in.
  • a part of the mesogen compound in the coating liquid may be left unreacted in the optically anisotropic layer without being polymerized.
  • the curing degree A is within the range specified in the present application, the proportion of such unreacted mesogen compound is small.
  • organic solvent As a solvent, an organic solvent is usually used.
  • organic solvents include hydrocarbon solvents such as cyclopentane and cyclohexane; ketone solvents such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone, methyl isobutyl ketone and N-methyl pyrrolidone; acetic acid esters such as butyl acetate and amyl acetate Solvents: Halogenated hydrocarbon solvents such as chloroform, dichloromethane, dichloroethane, etc .; Ether solvents such as 1,4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,2-dimethoxyethane, etc., toluene, xylene And aromatic hydrocarbon solvents such as mesitylene; and mixtures thereof.
  • the boiling point of the solvent is preferably 60 ° C. to 250 ° C., and more preferably 60 ° C. to 150 ° C., from the viewpoint of excellent handleability.
  • a solvent may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the amount of the solvent is preferably adjusted so that the solid content concentration of the coating liquid can be in the desired range.
  • the solid content concentration of the coating liquid is preferably 6% by weight or more, more preferably 8% by weight or more, particularly preferably 10% by weight or more, preferably 20% by weight or less, more preferably 18% by weight or less, particularly Preferably it is 15 weight% or less.
  • the coating liquid for forming the optically anisotropic layer may contain any component in combination with the positive C polymer, the mesogen compound and the solvent.
  • the optional components one type may be used alone, or two or more types may be used in combination at an optional ratio.
  • the coating liquid may contain a polymerization initiator as an optional component.
  • the type of the polymerization initiator can be appropriately selected according to the type of the polymerizable group contained in the polymerizable compound in the coating liquid.
  • the polymerizable compound is a generic term for compounds having polymerizability.
  • a photopolymerization initiator is preferred.
  • a photoinitiator a radical polymerization initiator, an anionic polymerization initiator, a cationic polymerization initiator etc. are mentioned.
  • a polymerization initiator As a specific example of a commercially available photopolymerization initiator, trade name: Irgacure 907, trade name: Irgacure 184, trade name: Irgacure 369, trade name: Irgacure 651, trade name: Irgacure 819, trade name: Irgacure 907, made by BASF AG Name: Irgacure 379, trade name: Irgacure 379 EG, trade name: Irgacure OXE 02, and trade name: Irgacure OXE 04; trade name: Adeka Optomer N 1919 manufactured by ADEKA Corporation.
  • a polymerization initiator may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the amount of a polymerization initiator such as a photopolymerization initiator in the coating liquid may be adjusted to obtain a desired degree of cure A.
  • the ratio of the polymerization initiator to 100 parts by weight of the mesogen compound in the coating liquid is preferably 1 part by weight or more, more preferably 2 parts by weight or more, preferably 10 parts by weight or less, more preferably 8 parts by weight or less is there.
  • the coating liquid may contain a crosslinking agent as an optional component.
  • the type of polymerization initiator can be appropriately selected according to the type of polymerizable compound in the coating liquid.
  • examples of the crosslinking agent include trade name: A-TMPT (trimethylolpropane triacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • A-TMPT trimethylolpropane triacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • One type of crosslinking agent may be used alone, or two or more types may be used in combination in an arbitrary ratio.
  • the amount of the crosslinking agent in the coating liquid can be adjusted to obtain an optically anisotropic layer having desired physical properties.
  • the ratio of the crosslinking agent to 100 parts by weight of the mesogen compound in the coating liquid is preferably 1 part by weight or more, more preferably 2 parts by weight or more, preferably 10 parts by weight or less, more preferably 8 parts by weight or less .
  • the coating liquid contains, as optional components, metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixo agents, gelling agents, polysaccharides, surfactants, ultraviolet absorbers, infrared absorbers, Optional additives such as antioxidants, ion exchange resins, metal oxides such as titanium oxide may be included.
  • the ratio of such optional additives is preferably 0.1 parts by weight to 20 parts by weight for each 100 parts by weight of the positive C polymer.
  • the coating liquid preferably does not exhibit liquid crystallinity.
  • a coating liquid that does not exhibit liquid crystallinity the dispersion of the positive C polymer and the mesogen compound can be made favorable in the optically anisotropic layer.
  • production of the orientation nonuniformity of the mesogen compound under the influence of fluctuation of air, such as a drying wind, can be suppressed by using the coating liquid which does not have liquid crystallinity.
  • any surface capable of supporting the coating liquid layer can be used as the support surface.
  • the supporting surface in order to improve the surface state of the optically anisotropic layer, a flat surface having no concave portion and no convex portion is generally used.
  • a substrate film can be used.
  • a base film the film which can be used as a base of an optical laminated body can be selected suitably, and can be used.
  • a multilayer film comprising a substrate film and an optically anisotropic layer can be used as an optical film, and from the viewpoint of eliminating the need for peeling of the optically anisotropic layer from the substrate film, the substrate film is transparent. Films are preferred.
  • the total light transmittance of the base film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
  • the material of the base film is not particularly limited, and various resins can be used.
  • the resin include resins containing various polymers.
  • the polymer include alicyclic structure-containing polymers, cellulose esters, polyvinyl alcohols, polyimides, UV transmitting acrylics, polycarbonates, polysulfones, polyether sulfones, epoxy polymers, polystyrenes, and combinations thereof.
  • an alicyclic structure-containing polymer and a cellulose ester are preferable, and an alicyclic structure-containing polymer is more preferable.
  • the alicyclic structure-containing polymer is a polymer having an alicyclic structure in the repeating unit, and is usually an amorphous polymer.
  • the alicyclic structure-containing polymer any of a polymer containing an alicyclic structure in its main chain and a polymer containing an alicyclic structure in its side chain can be used.
  • a cycloalkane structure although a cycloalkane structure, a cycloalkene structure, etc. are mentioned, a cycloalkane structure is preferable from a viewpoint of heat stability etc., for example.
  • the number of carbon atoms constituting the repeating unit of one alicyclic structure is not particularly limited, but is preferably 4 or more, more preferably 5 or more, particularly preferably 6 or more, preferably 30 or less, Preferably it is 20 or less, Especially preferably, it is 15 or less.
  • the proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer may be appropriately selected depending on the purpose of use, but is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably It is 90% by weight or more.
  • the alicyclic structure-containing polymer includes, for example, (1) norbornene polymer, (2) monocyclic cyclic olefin polymer, (3) cyclic conjugated diene polymer, (4) vinyl alicyclic hydrocarbon polymer, And these hydrogen additives and the like. Among these, from the viewpoint of transparency and moldability, norbornene polymers are more preferable.
  • norbornene polymer for example, a ring-opening polymer of norbornene monomer, a ring-opening copolymer of norbornene monomer and another monomer capable of ring-opening copolymerization, and hydrogenated products thereof; addition polymer of norbornene monomer, And addition copolymers of norbornene monomers with other monomers copolymerizable, and the like.
  • a ring-opened polymer hydrogenated substance of norbornene monomer is particularly preferable.
  • the above-mentioned alicyclic structure-containing polymer can be selected from known polymers such as those disclosed in JP-A-2002-321302.
  • the thickness of the substrate film is preferably 1 ⁇ m to 1 in view of facilitating improvement of productivity, thinning and weight reduction. It is 1000 ⁇ m, more preferably 5 ⁇ m to 300 ⁇ m, and particularly preferably 30 ⁇ m to 100 ⁇ m.
  • the resin containing an alicyclic structure-containing polymer may consist only of an alicyclic structure-containing polymer, but may contain any compounding agent as long as the effects of the present invention are not significantly impaired.
  • the proportion of the alicyclic structure-containing polymer in the resin containing the alicyclic structure-containing polymer is preferably 70% by weight or more, and more preferably 80% by weight or more.
  • "Zeonor 1420" and “Zeonor 1420R" by Nippon Zeon Co., Ltd. can be mentioned.
  • coating methods for the coating liquid include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating Methods include die coating, gap coating, and dipping.
  • the thickness of the coating liquid to be coated can be appropriately set in accordance with the desired thickness required for the optically anisotropic layer.
  • step (c) Before the step (c) after the step (b), a step of drying the coating liquid layer is carried out, if necessary. By drying, the solvent is removed from the coating liquid layer, and the orientation of the solid content of the coating liquid can be stabilized. As a result, the step (c) can be performed in a state where the solid content of the coating liquid is stable.
  • any method such as heat drying, reduced pressure drying, heated reduced pressure drying, natural drying, etc. may be adopted.
  • the method for producing an optically anisotropic layer of the present invention can produce an optically anisotropic layer by a simple operation of coating a coating solution containing a combination of a positive C polymer and a mesogen compound and curing. Therefore, the alignment film as described in Patent Document 1 is unnecessary. Therefore, operations such as adjustment of the compatibility between the reverse wavelength dispersion liquid crystal and the alignment film and formation of the alignment film are not necessary, so that the optically anisotropic layer can be easily manufactured.
  • the coating liquid containing the positive C polymer and the mesogen compound in combination can suppress the occurrence of the alignment unevenness of the mesogen compound due to the influence of the fluctuation of air during drying. Therefore, it is possible to easily obtain an optically anisotropic layer in which the alignment state is uniform in a wide range in the in-plane direction, so it is easy to obtain an optically anisotropic layer excellent in the surface state. Therefore, it is possible to suppress the white turbidity due to the alignment unevenness of the optically anisotropic layer.
  • Process (c): light irradiation By performing the step of light irradiation, a part of the acrylate structure of the mesogen compound is polymerized to be a polymer of the mesogen compound. By such polymerization, an optically anisotropic layer containing a positive C polymer and a polymer of a mesogenic compound can be formed.
  • the irradiation of light to the coating liquid layer may be appropriately selected from methods suitable for the properties of the components contained in the coating liquid, such as the polymerizable compound and the polymerization initiator.
  • the light to be irradiated may include light such as visible light, ultraviolet light, and infrared light. Among them, a method of irradiating ultraviolet light is preferable because the operation is simple.
  • Ultraviolet irradiation intensity is preferably in the range of 0.1mW / cm 2 ⁇ 1000mW / cm 2, more preferably from 0.5mW / cm 2 ⁇ 600mW / cm 2.
  • the ultraviolet irradiation time is preferably in the range of 1 second to 300 seconds, more preferably in the range of 3 seconds to 100 seconds.
  • the integrated ultraviolet light quantity (mJ / cm 2 ) is determined by the ultraviolet irradiation intensity (mW / cm 2 ) ⁇ irradiation time (seconds).
  • Preferred integrated light quantity is 600mJ / cm 2 ⁇ 5000mJ / cm 2.
  • an ultraviolet irradiation light source a high pressure mercury lamp, a metal halide lamp, and a low pressure mercury lamp can be used. It is preferable to carry out the step (c) under an inert gas atmosphere such as a nitrogen atmosphere because the residual monomer ratio tends to be reduced.
  • the method of producing the optically anisotropic layer may include any step other than the steps described above.
  • the step of peeling the optically anisotropic layer from the substrate may be included.
  • the transfer multilayer of the present invention comprises a substrate and the above-mentioned optically anisotropic layer.
  • the transfer multilayer is a member including a plurality of layers, and a part of the plurality of layers is transferred to provide a product including the part of the layers. is there.
  • the optically anisotropic layer is subjected to the production of the above-mentioned product.
  • the same one as the substrate described in the method for producing an optically anisotropic layer can be used.
  • the substrate those which can be peeled off are preferable.
  • a transfer multilayer provided with such a substrate can be produced by carrying out the above-mentioned method for producing an optically anisotropic layer using a substrate.
  • the transfer multilayer may be used to produce an optical film.
  • an optical film provided with an optically anisotropic layer and a resin film can be manufactured by peeling the base after laminating the optically anisotropic layer of the multilayer for transfer and the resin film.
  • optically anisotropic laminate of the present invention comprises the above-described optically anisotropic layer and a retardation layer.
  • optically anisotropic layer in optically anisotropic laminate As the optically anisotropic layer of the optically anisotropic laminate, those described above are used. However, it is preferable that the optically anisotropic layer in the optically anisotropic laminate satisfy the following formulas (12) and (13).
  • the definitions of Re (A 590) and Rth (A 590) are as described above.
  • Re (A 590) is preferably 0 nm to 10 nm, more preferably 0 nm to 5 nm, and particularly preferably 0 nm to 2 nm.
  • Re (A 590) falls within the above range, the optical design in the case of providing the optically anisotropic laminate in an image display device can be simplified.
  • Rth (A 590) is preferably -110 nm or more, more preferably -100 nm or more, preferably -20 nm or less, more preferably -40 nm or less, particularly preferably -50 nm or less.
  • An optically anisotropic laminate having an optically anisotropic layer having such Rth (A 590) is incorporated in a circularly polarizing plate and applied to an image display device, in the inclination direction of the display surface of the image display device. The function of suppressing the reflection of external light and transmitting light that displays an image can be effectively exhibited. Therefore, when the display surface of the image display device is viewed from the inclined direction, the visibility of the image can be effectively enhanced.
  • the retardation layer is a layer satisfying the formula (8).
  • nx (B), ny (B) and nz (B) are the main refractive indexes of the said phase difference layer.
  • An optically anisotropic laminate having such a retardation layer can be used to produce a circularly polarizing plate by combining it with a linear polarizer. This circularly polarizing plate is provided on the display surface of the image display device, so that reflection of external light can be suppressed or light for displaying an image can be transmitted through polarized sunglasses when the display surface is viewed from the front direction. Image visibility can be enhanced.
  • the refractive index ny (B) of the retardation layer and the refractive index nz (B) have the same value or be close to each other.
  • of the difference between the refractive index ny (B) and the refractive index nz (B) is preferably 0.00000 to 0.00100, more preferably 0. And particularly preferably 0.00000 to 0.00020.
  • the retardation layer preferably satisfies the formula (11). 110 nm ⁇ Re (B 590) ⁇ 170 nm Formula (11) However, Re (B 590) is the in-plane retardation of the retardation layer at a wavelength of 590 nm.
  • Re (B 590) is preferably 110 nm or more, more preferably 120 nm or more, particularly preferably 130 nm or more, preferably 170 nm or less, more preferably 160 nm or less, particularly preferably 150 nm or less.
  • An optically anisotropic laminate having such a retardation layer having Re (B 590) can be combined with a linear polarizer to obtain a circularly polarizing plate.
  • the retardation layer preferably satisfies Formulas (9) and (10). 0.75 ⁇ Re (B450) / Re (B550) ⁇ 1.00 Formula (9) 1.01 ⁇ Re (B650) / Re (B550) ⁇ 1.25 Formula (10)
  • Re (B450) is an in-plane retardation of the retardation layer at a wavelength of 450 nm
  • Re (B550) is an in-plane retardation of the retardation layer at a wavelength of 550 nm
  • Re (B650) is In-plane retardation of the retardation layer at a wavelength of 650 nm.
  • Re (B450) / Re (B550) is preferably more than 0.75, more preferably more than 0.78, particularly preferably more than 0.80, and Preferably it is less than 1.00, more preferably less than 0.95, particularly preferably less than 0.90.
  • Re (B650) / Re (B550) is preferably more than 1.01, preferably more than 1.02, particularly preferably more than 1.04, and preferably Is less than 1.25, more preferably less than 1.22, particularly preferably less than 1.19.
  • the in-plane retardation Re has inverse wavelength dispersion.
  • the optically anisotropic laminate having the retardation layer in which the in-plane retardation Re exhibits reverse wavelength dispersion is incorporated in the circularly polarizing plate and applied to the image display device.
  • the function of suppressing the reflection of external light or transmitting the polarized sunglasses to the light for displaying an image can be exhibited in a wide wavelength range. Therefore, the visibility of the image displayed on the display surface can be particularly effectively improved.
  • the slow axis direction in the plane of the retardation layer is arbitrary, and can be arbitrarily set according to the application of the optically anisotropic laminate.
  • the angle between the slow axis of the retardation layer and the film width direction is preferably more than 0 ° and less than 90 °.
  • an angle between the in-plane slow axis of the retardation layer and the film width direction is preferably 15 ° ⁇ 5 °, 22.5 ° ⁇ 5 °, 45 ° ⁇ 5 °, or 75 °.
  • the optically anisotropic laminate is attached to a long linear polarizer by roll-to-roll, and efficient production of a circularly polarizing plate becomes possible.
  • the total light transmittance of the retardation layer is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
  • the haze of the retardation layer is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
  • a stretched film layer can be used as the retardation layer as described above.
  • the stretched film layer may contain a resin which is a material of the base film described in the method for producing an optically anisotropic layer.
  • a film layer containing such a resin can exhibit optical properties such as retardation by being subjected to a stretching treatment.
  • the stretched film layer preferably contains an alicyclic structure-containing polymer.
  • the stretching direction of the stretched film layer is arbitrary. Therefore, the stretching direction may be a longitudinal direction, a width direction, or an oblique direction. Furthermore, among these stretching directions, stretching may be performed in two or more directions.
  • the oblique direction refers to the in-plane direction of the film, which is not parallel to any of the longitudinal direction and the width direction.
  • the stretched film layer is preferably a diagonally stretched film layer. That is, the stretched film layer is preferably a long film and a film stretched in a direction nonparallel to any of the longitudinal direction and the width direction of the film. Specifically, the angle between the film width direction and the stretching direction in the case of the obliquely stretched film layer may be more than 0 ° and less than 90 °.
  • an optically anisotropic laminate can be bonded to a long linear polarizer by roll-to-roll, and efficient production of a circularly polarizing plate becomes possible. .
  • the angle between the stretching direction and the film width direction is preferably 15 ° ⁇ 5 °, 22.5 ⁇ 5 °, 45 ° ⁇ 5 °, or 75 ° ⁇ 5 °, more preferably 15 ° ⁇ 4 °, 22 .5 ° ⁇ 4 °, 45 ° ⁇ 4 °, or 75 ° ⁇ 4 °, and even more preferably 15 ° ⁇ 3 °, 22.5 ° ⁇ 3 °, 45 ° ⁇ 3 °, or 75 ° ⁇ 3 ° It can be a specific range such as By having such an angular relationship, the optically anisotropic laminate can be made a material that enables efficient production of a circularly polarizing plate.
  • the stretched film layer preferably has a multilayer structure including a plurality of layers.
  • the stretched film layer having a multilayer structure can exhibit various properties by the combination of the functions of the layers included in the stretched film layer.
  • the stretched film layer includes a first outer layer made of a resin containing a polymer, an intermediate layer made of a resin containing a polymer and a UV absorber, and a second outer layer made of a resin containing a polymer in this order It is preferable to have. Under the present circumstances, although the polymer contained in each layer may differ, it is preferable that it is the same.
  • the stretched film layer comprising such first outer layer, intermediate layer and second outer layer can suppress the transmission of ultraviolet light.
  • the first outer layer and the second outer layer are provided on both sides of the intermediate layer, the bleeding out of the ultraviolet absorber can be suppressed.
  • the amount of the UV absorber in the resin contained in the intermediate layer is preferably 3% by weight or more, more preferably 4% by weight or more, particularly preferably 5% by weight or more, preferably 20% by weight or less, more preferably 18%. % By weight or less, particularly preferably 16% by weight or less.
  • the amount of the ultraviolet absorber is at least the lower limit value of the above range, the ability of the stretched film layer to block the transmission of ultraviolet rays can be particularly enhanced, and by being at the upper limit value of the above range, the stretched film layer Transparency to visible light can be enhanced.
  • the thickness of the intermediate layer is preferably set such that the ratio represented by “the thickness of the intermediate layer” / “the thickness of the entire stretched film layer” falls within a specific range.
  • the specific range is preferably 1/5 or more, more preferably 1/4 or more, particularly preferably 1/3 or more, preferably 80/82 or less, more preferably 79/82 or less, particularly preferably It is 78/82 or less.
  • the ratio is at least the lower limit of the above range, the ability of the stretched film layer to block the transmission of ultraviolet light can be particularly enhanced, and by being at the upper limit or less of the above range, the thickness of the stretched film layer It can be thin.
  • the thickness of the stretched film layer as the retardation layer is preferably 10 ⁇ m or more, more preferably 13 ⁇ m or more, particularly preferably 15 ⁇ m or more, preferably 60 ⁇ m or less, more preferably 58 ⁇ m or less, particularly preferably 55 ⁇ m or less.
  • desired retardation can be expressed, and when it is not more than the upper limit of the above range, a thin film can be formed.
  • the stretched film layer can be produced, for example, by a method including the steps of preparing a film layer before stretching and stretching the prepared film layer before stretching.
  • the film layer before stretching can be produced, for example, by molding a resin to be a material of the stretched film layer by a suitable molding method.
  • a molding method a cast molding method, an extrusion molding method, an inflation molding method etc. are mentioned, for example.
  • the melt extrusion method which does not use a solvent can reduce the amount of residual volatile component efficiently, and is preferable from the viewpoints of the global environment and the working environment, and from the viewpoint of excellent manufacturing efficiency.
  • the melt extrusion method may, for example, be an inflation method using a die, and a method using a T-die is preferable among them in terms of excellent productivity and thickness accuracy.
  • the pre-stretched film layer having a multilayer structure can be produced, for example, by molding a resin corresponding to each layer included in the multilayer structure by a molding method such as a coextrusion method and a co-casting method.
  • a molding method such as a coextrusion method and a co-casting method.
  • co-extrusion method is preferable because it is excellent in production efficiency and hardly retains volatile components in the film.
  • the co-extrusion method include co-extrusion T-die method, co-extrusion inflation method, co-extrusion lamination method and the like.
  • the co-extrusion T-die method is preferable.
  • the co-extrusion T-die method includes a feed block method and a multi-manifold method, and the multi-manifold method is particularly preferable in that variations in thickness can be reduced.
  • a stretched film layer is obtained by stretching the film before stretching. Stretching is usually performed continuously while conveying the film before stretching in the longitudinal direction. Under the present circumstances, although the extending
  • the stretching ratio is preferably 1.1 times or more, more preferably 1.15 times or more, particularly preferably 1.2 times or more, preferably 3.0 times or less, more preferably 2.8 times or less, in particular Preferably it is 2.6 times or less.
  • the refractive index in the stretching direction can be increased by setting the stretching ratio to the lower limit value or more of the above range. In addition, by setting the upper limit value or less, the slow axis direction of the stretched film layer can be easily controlled.
  • the stretching temperature is preferably Tg-5 ° C. or more, more preferably Tg-2 ° C. or more, particularly preferably Tg ° C. or more, preferably Tg + 40 ° C. or less, more preferably Tg + 35 ° C. or less, particularly preferably Tg + 30 ° C. or less is there.
  • Tg represents the highest temperature among the glass transition temperatures of the polymer contained in the film layer before stretching.
  • liquid crystal compound for retardation layer As the retardation layer as described above, a liquid crystal layer containing a liquid crystal compound (hereinafter, sometimes referred to as “liquid crystal compound for retardation layer” as appropriate) in which the alignment state may be fixed can be used. Under the present circumstances, it is preferable to use the said reverse wavelength dispersion liquid crystal compound which carried out homogeneous orientation as a liquid crystal compound for retardation layers. Thereby, the same advantages as described in the section of the optically anisotropic layer can be obtained in the retardation layer. Among them, it is particularly preferable that the liquid crystal layer as the retardation layer contains a liquid crystal compound represented by the following formula (II) which may be fixed in the alignment state.
  • II liquid crystal compound represented by the following formula (II) which may be fixed in the alignment state.
  • Y 1 to Y 8 , G 1 , G 2 , Z 1 , Z 2 , A x , A y , A 1 to A 5 , Q 1 , m and n are as in formula (I) Represents the same meaning as the meaning.
  • the liquid crystal compound represented by the formula (II) represents the same compound as the liquid crystal compound represented by the formula (I).
  • one or both of Z 1 -Y 7 -and -Y 8 -Z 2 are an acryloyloxy group, while in Formula (II), both of them are other than an acryloyloxy group It may be a group of
  • the thickness of the liquid crystal layer as the retardation layer is not particularly limited, and can be appropriately adjusted so that the characteristics such as retardation can be in the desired range.
  • the specific thickness of the liquid crystal layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the liquid crystal layer as a retardation layer is, for example, a step of preparing a liquid crystal composition containing a liquid crystal compound for retardation layer; a step of applying a liquid crystal composition on a support to obtain a layer of liquid crystal composition; And a step of aligning the liquid crystal compound for retardation layer contained in the layer of the liquid crystal composition.
  • a liquid crystal composition is usually obtained by mixing a liquid crystal compound for retardation layer and an optional component used as needed.
  • the liquid crystal composition may contain a polymerizable monomer as an optional component.
  • polymerizable monomer refers to a compound other than the above-mentioned liquid crystal compound for retardation layer, among compounds having polymerization ability and capable of acting as a monomer.
  • the polymerizable monomer for example, one having one or more polymerizable groups per molecule can be used.
  • crosslinkable polymerization can be achieved.
  • Examples of such a polymerizable group can include the same groups as the groups Z 1 -Y 7 -and Z 2 -Y 8 -or a part thereof in compound (I), and more specifically, for example, acryloyl group And methacryloyl groups and epoxy groups.
  • one type of polymerizable monomer may be used alone, or two or more types may be used in combination in an arbitrary ratio.
  • the proportion of the polymerizable monomer in the liquid crystal composition is preferably 1 part by weight to 100 parts by weight, more preferably 5 parts by weight to 50 parts by weight with respect to 100 parts by weight of the liquid crystal compound for retardation layer.
  • the liquid crystal composition may contain a photopolymerization initiator as an optional component.
  • a polymerization initiator the same thing as the polymerization initiator which the coating liquid for manufacture of an optically anisotropic layer may contain is mentioned, for example.
  • a polymerization initiator may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the proportion of the polymerization initiator is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • the liquid crystal composition may contain a surfactant as an optional component.
  • a surfactant nonionic surfactant is preferable.
  • a commercial item can be used as nonionic surfactant.
  • a nonionic surfactant which is an oligomer having a molecular weight of several thousand may be used.
  • Specific examples of these surfactants include “PF-151N”, “PF-636”, “PF-6320”, “PF-656”, “PF-6520”, “PF-3320” of PolyFox from OMNOVA.
  • surfactant may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the surfactant is preferably 0.01 parts by weight to 10 parts by weight, more preferably 0.1 parts by weight to 2 parts by weight, with respect to 100 parts by weight of the polymerizable compound.
  • the liquid crystal composition may contain a solvent as an optional component.
  • a solvent the same thing as the solvent which the coating liquid for manufacture of an optically anisotropic layer may contain is mentioned, for example.
  • a solvent may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the proportion of the solvent in the liquid crystal composition is preferably 100 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • the liquid crystal composition may further contain, as optional components, metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixo agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants
  • Additives, such as an agent, ion exchange resin, and metal oxides such as titanium oxide may be included.
  • the proportion of such additives is preferably 0.1 parts by weight to 20 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • the liquid crystal composition as described above is prepared, the liquid crystal composition is coated on a support to obtain a layer of the liquid crystal composition.
  • a support it is preferable to use a long support. In the case of using a long support, it is possible to continuously coat the liquid crystal composition on the support which is continuously transported. Therefore, since the liquid crystal layer as a phase difference layer can be manufactured continuously by using a long support, productivity can be improved.
  • an appropriate tension (usually 100 N / m to 500 N / m) is applied to the support to reduce the fluttering of the support and to apply the coating while maintaining the flatness. It is preferable to do.
  • Flatness is the amount of runout in the vertical direction perpendicular to the width direction and the transport direction of the support, and is ideally 0 mm but is usually 1 mm or less.
  • a support film is usually used.
  • a support film a film which can be used as a support of an optical laminate can be appropriately selected and used.
  • an optically anisotropic laminate comprising a support film, a retardation layer, and an optically anisotropic layer can be used as an optical film, and from the viewpoint of eliminating the need for peeling of the support film, the support film is transparent. Films are preferred.
  • the total light transmittance of the support film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
  • the material of the support film is not particularly limited, and various resins may be used.
  • resin resin containing the polymer demonstrated as a material of the base material which can be used for formation of an optical anisotropic layer is mentioned.
  • resin resin containing the polymer demonstrated as a material of the base material which can be used for formation of an optical anisotropic layer is mentioned.
  • an alicyclic structure-containing polymer and a cellulose ester are preferable, and an alicyclic structure-containing polymer is preferable. More preferable.
  • the alignment control force of the support refers to the property of the support capable of aligning the liquid crystal compound for retardation layer in the liquid crystal composition coated on the support.
  • the orientation control force can be applied by subjecting a member such as a film to be a material of the support to a process for applying the orientation control force.
  • a member such as a film
  • Examples of such treatment include stretching treatment and rubbing treatment.
  • the support is a stretched film.
  • this stretched film it can be set as the support body which has the orientation control force according to the extending
  • the stretching direction of the stretched film is arbitrary. Therefore, the stretching direction may be a longitudinal direction, a width direction, or an oblique direction. Furthermore, among these stretching directions, stretching may be performed in two or more directions.
  • the stretching ratio can be appropriately set in the range in which the alignment regulating force is generated on the surface of the support.
  • the material of the support is a resin having a positive intrinsic birefringence value
  • molecules are oriented in the stretching direction and a slow axis is developed in the stretching direction.
  • Drawing can be performed using known drawing machines, such as a tenter drawing machine.
  • the support is a diagonally stretched film.
  • an angle between the stretching direction and the width direction of the stretched film may specifically be more than 0 ° and less than 90 °.
  • the angle between the stretching direction and the width direction of the stretched film is preferably 15 ° ⁇ 5 °, 22.5 ⁇ 5 °, 45 ° ⁇ 5 °, or 75 ° ⁇ 5 °, more preferably Is 15 ° ⁇ 4 °, 22.5 ° ⁇ 4 °, 45 ° ⁇ 4 °, or 75 ° ⁇ 4 °, and even more preferably 15 ° ⁇ 3 °, 22.5 ° ⁇ 3 °, 45 ° ⁇ 3 It may be a specific range such as ° or 75 ° ⁇ 3 °.
  • the optically anisotropic laminate can be made a material that enables efficient production of a circularly polarizing plate.
  • Examples of coating methods for liquid crystal compositions include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating Methods include die coating, gap coating, and dipping.
  • the thickness of the layer of the liquid crystal composition to be coated can be appropriately set according to the desired thickness required for the liquid crystal layer as the retardation layer.
  • a step of aligning the liquid crystal compound for retardation layer contained in the layer of the liquid crystal composition is performed.
  • the liquid crystal compound for retardation layer contained in the layer of the liquid crystal composition is aligned in the alignment direction according to the alignment regulating force of the support. For example, when a stretched film is used as a support, the liquid crystal compound for retardation layer contained in the layer of the liquid crystal composition is aligned in parallel with the stretching direction of the stretched film.
  • the alignment of the liquid crystal compound for retardation layer may be achieved immediately by coating, but may be achieved by applying an alignment treatment such as heating after coating, if necessary.
  • the conditions for the alignment treatment can be set as appropriate depending on the properties of the liquid crystal composition to be used, and for example, the conditions may be such that the treatment is performed for 30 seconds to 5 minutes under a temperature condition of 50 ° C to 160 ° C.
  • liquid crystal compound for retardation layer in the layer of the liquid crystal composition, desired optical properties are exhibited in the layer of the liquid crystal composition, so that a liquid crystal layer which can function as a retardation layer can be obtained.
  • the method for producing a liquid crystal layer as a retardation layer described above may further include an optional step.
  • the method for producing a liquid crystal layer may include, for example, a step of drying a layer of the liquid crystal composition or the liquid crystal layer. Such drying can be achieved by a drying method such as natural drying, heat drying, reduced pressure drying, reduced pressure heat drying and the like.
  • the step of fixing the alignment state of the liquid crystal compound for retardation layer is performed. May be In this step, usually, the alignment state of the liquid crystal compound for retardation layer is fixed by polymerizing the liquid crystal compound for retardation layer. Further, by polymerizing the liquid crystal compound for retardation layer, the rigidity of the liquid crystal layer can be enhanced, and the mechanical strength can be improved.
  • the polymerization of the liquid crystal compound for retardation layer may be appropriately selected in accordance with the properties of the components of the liquid crystal composition.
  • a method of irradiating light is preferable.
  • a method of irradiating ultraviolet light is preferable because the operation is simple.
  • the irradiation conditions such as the ultraviolet irradiation intensity, the ultraviolet irradiation time, the ultraviolet integrated light quantity, and the ultraviolet irradiation light source can be adjusted in the same range as the irradiation conditions in the method for producing the optically anisotropic layer.
  • the liquid crystal compound for retardation layer is usually polymerized while maintaining the alignment of its molecules. Therefore, a liquid crystal layer containing a polymer of a liquid crystal compound for retardation layer aligned in a direction parallel to the alignment direction of the liquid crystal compound for retardation layer contained in the liquid crystal composition before polymerization can be obtained by the above polymerization. . Therefore, for example, when a stretched film is used as a support, a liquid crystal layer having an alignment direction parallel to the stretching direction of the stretched film can be obtained.
  • “parallel” means that the difference between the stretching direction of the stretched film and the alignment direction of the polymer of the liquid crystal compound for retardation layer is usually ⁇ 3 °, preferably ⁇ 1 °, and ideally 0 °.
  • the molecules of the polymer obtained from the liquid crystal compound for retardation layer preferably have an orientation regularity that is horizontally oriented with respect to the support film.
  • the molecules of the polymer of the liquid crystal compound for retardation layer in the liquid crystal layer.
  • “horizontal alignment” of the molecules of the polymer of the liquid crystal compound for retardation layer with respect to the support film means the direction of the major axis of the mesogen skeleton of the structural unit derived from the liquid crystal compound for retardation layer contained in the polymer.
  • the average direction is parallel to or nearly parallel to the film surface (for example, the angle between the film surface and the film is within 5 °), which means that the film is oriented in one direction.
  • the compound represented by the formula (II) as the liquid crystal compound for retardation layer
  • the most preferable among them in the case where plural kinds of mesogen skeletons having different alignment directions are present in the liquid crystal layer, usually, the most preferable among them.
  • the direction in which the long axis direction of the long type mesogen skeleton is oriented is the orientation direction.
  • the method for producing a liquid crystal layer as a retardation layer may include the step of peeling the support after obtaining the liquid crystal layer.
  • the optically anisotropic laminate may further include an optional layer in combination with the optically anisotropic layer and the retardation layer.
  • the optional layer include an adhesive layer, a hard coat layer and the like.
  • optically anisotropic laminate [3.4. Method for producing optically anisotropic laminate]
  • the optically anisotropic laminate can be produced, for example, by the following production method 1 or 2.
  • Manufacturing method 1 Producing a retardation layer; A step of forming an optically anisotropic layer on a retardation layer by performing the method for producing an optically anisotropic layer described above using the retardation layer as a substrate, to obtain an optically anisotropic laminate And manufacturing methods.
  • Manufacturing method 2 Producing a retardation layer; A process of producing a multilayer for transfer; Bonding the optically anisotropic layer of the multilayer for transfer and the retardation layer to obtain an optically anisotropic laminate, And exfoliating the base material of the transfer multilayer.
  • an appropriate adhesive agent can be used for bonding.
  • this adhesive for example, the same adhesive as used in a polarizing plate described later can be used.
  • the manufacturing method of said optical anisotropic laminated body may include the arbitrary processes.
  • the manufacturing method may include the step of providing an arbitrary layer such as a hard coat layer.
  • the polarizing plate of the present invention is provided with a linear polarizer, and the above-described optically anisotropic layer, a multilayer for transfer, or an optically anisotropic laminate.
  • linear polarizer known linear polarizers used in devices such as liquid crystal displays and other optical devices can be used.
  • An example of a linear polarizer is a film obtained by adsorbing iodine or a dichroic dye to a polyvinyl alcohol film and then uniaxially stretching in a boric acid bath; iodine or a dichroic dye is adsorbed to a polyvinyl alcohol film And a film obtained by further stretching and further modifying a part of polyvinyl alcohol units in the molecular chain into polyvinylene units.
  • a polarizer having a function of separating polarized light into reflected light and transmitted light such as a grid polarizer, a multilayer polarizer, a cholesteric liquid crystal polarizer and the like can be mentioned.
  • a polarizer containing polyvinyl alcohol is preferable.
  • the degree of polarization of this linear polarizer is not particularly limited, it is preferably 98% or more, more preferably 99% or more.
  • the thickness of the linear polarizer is preferably 5 ⁇ m to 80 ⁇ m.
  • the polarizing plate may further include an adhesive layer for bonding the linear polarizer and the optically anisotropic layer, the transfer multilayer, or the optically anisotropic laminate.
  • an adhesive layer a layer obtained by curing a curable adhesive can be used.
  • a thermosetting adhesive may be used as a curable adhesive, it is preferable to use a photocurable adhesive.
  • the photocurable adhesive one containing a polymer or a reactive monomer can be used.
  • the adhesive may contain a solvent, a photopolymerization initiator, other additives, and the like as needed.
  • the photocurable adhesive is an adhesive that can be cured by irradiation with light such as visible light, ultraviolet light, and infrared light.
  • light such as visible light, ultraviolet light, and infrared light.
  • an adhesive that can be cured by ultraviolet light is preferable because the operation is simple.
  • the thickness of the adhesive layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and still more preferably 10 ⁇ m or less.
  • the polarizing plate when a polarizing plate is equipped with an optical anisotropic laminated body, the polarizing plate can function as a circularly-polarizing plate.
  • the term "circularly polarizing plate” includes not only a circularly polarizing plate in a narrow sense but also an elliptically polarizing plate.
  • Such a circularly polarizing plate may be provided with a linear polarizer, an optically anisotropic layer, and a retardation layer in this order.
  • such a circularly polarizing plate may be provided with a linear polarizer, a retardation layer and an optically anisotropic layer in this order.
  • the angle formed by the slow axis of the retardation layer with respect to the polarization absorption axis of the linear polarizer is preferably 45 ° or near. Specifically, the above angle is preferably 45 ° ⁇ 5 °, more preferably 45 ° ⁇ 4 °, and particularly preferably 45 ° ⁇ 3 °.
  • the above-mentioned polarizing plate may further contain any layer.
  • a polarizer protective film layer is mentioned, for example. Any transparent film layer may be used as the polarizer protective film layer. Among them, a film layer of a resin excellent in transparency, mechanical strength, thermal stability, moisture shielding property and the like is preferable.
  • acetate resin such as triacetyl cellulose, polyester resin, polyether sulfone resin, polycarbonate resin, polycarbonate resin, polyamide resin, polyimide resin, linear olefin resin, cyclic olefin resin, (meth) acrylic resin, etc. are mentioned.
  • a polarizing plate may contain, for example, a hard coat layer such as an impact resistant polymethacrylate resin layer, a mat layer which improves the slipperiness of the film, a reflection suppressing layer, an antifouling layer and the like can be mentioned.
  • a hard coat layer such as an impact resistant polymethacrylate resin layer
  • a mat layer which improves the slipperiness of the film
  • a reflection suppressing layer an antifouling layer and the like
  • These optional layers may be provided only in one layer or in two or more layers.
  • the polarizing plate can be produced by bonding a linear polarizer and an optically anisotropic layer, a multilayer for transfer, or an optically anisotropic laminate, as necessary, using an adhesive.
  • the image display apparatus of the present invention comprises the above-described polarizing plate of the present invention.
  • the image display device of the present invention also usually comprises an image display element.
  • the polarizing plate is usually provided on the viewing side of the image display element. At this time, the direction of the polarizing plate can be arbitrarily set according to the application of the polarizing plate. Therefore, the image display apparatus may be provided with an optically anisotropic layer, a transfer multilayer, or an optically anisotropic laminate, a polarizer, and an image display element in this order.
  • the image display device may include a polarizer; an optically anisotropic layer, a multilayer for transfer, or an optically anisotropic laminate; and an image display element in this order.
  • the image display apparatus of the present invention includes the optical anisotropic layer of the present invention as a component, thereby suppressing the reflection of external light and enabling light for displaying an image to be transmitted through polarized sunglasses. be able to. Furthermore, while having such an effect, the display device can have high durability and a good color tone.
  • the sample layer to be evaluated was attached to a slide glass with an adhesive (an adhesive is “CS9621T” manufactured by Nitto Denko Corporation). Thereafter, the film was peeled off to obtain a sample provided with a slide glass and a sample layer.
  • This sample was placed on the stage of a retardation meter (manufactured by Axometrics) to measure the wavelength dispersion of the in-plane retardation Re of the sample layer.
  • the wavelength dispersion of the in-plane retardation Re is a graph showing the in-plane retardation Re for each wavelength, for example, it is shown as a graph in the coordinates with the horizontal axis as the wavelength and the vertical axis as the in-plane retardation Re.
  • the in-plane retardation Re (450), Re (550), Re (590) and Re (wavelength) at wavelengths 450 nm, 550 nm, 590 nm and 650 nm. Asked for 650).
  • the wavelength dispersion of the retardation Re40 of the sample layer in the direction of inclination at an angle of 40 ° to the thickness direction of the sample layer was measured by inclining the stage by 40 ° with the slow axis of the sample layer as the rotation axis.
  • the wavelength dispersion of the retardation Re40 is a graph representing the retardation Re40 for each wavelength, and is shown as a graph, for example, in coordinates where the horizontal axis is the wavelength and the vertical axis is the in-plane retardation Re40.
  • nx of the sample layer in the in-plane direction giving the maximum refractive index using a prism coupler manufactured by Metricon
  • the refractive index ny of and the refractive index nz in the thickness direction were measured at wavelengths of 407 nm, 532 nm and 633 nm, and Cauchy fitting was performed to obtain wavelength dispersions of refractive indices nx, ny and nz.
  • the wavelength dispersion of the refractive index is a graph representing the refractive index for each wavelength, and for example, it is shown as a graph at the coordinates with the horizontal axis as the wavelength and the vertical axis as the refractive index.
  • the wavelength dispersion of the retardation Rth in the thickness direction of the sample layer was calculated based on the data of the retardation Re40 and the wavelength dispersion of the refractive index.
  • the wavelength dispersion of the retardation Rth in the thickness direction is a graph showing the retardation Rth in the thickness direction for each wavelength, and for example, in the coordinate where the horizontal axis is the wavelength and the vertical axis is the retardation Rth in the thickness direction. It is shown as a graph.
  • a flat glass with an optical adhesive (CS9621 manufactured by Nitto Denko Corporation) was prepared.
  • the optically anisotropic layer of the transfer multilayer was transferred to this flat glass to prepare a laminate for haze measurement.
  • the haze of the optically anisotropic layer is measured according to JIS K 7136: 2000 using a haze meter ("Haze Guard II" manufactured by Toyo Seiki Seisakusho; the same in the following). , Got an initial haze value.
  • the haze measurement laminate was placed in an oven and heated. The heating temperature was 85 ° C., and the heating time was 100 hours.
  • the haze was again measured with a haze meter to obtain a haze value after heating. From the initial haze value and the post-heating haze value, the haze change ratio (after-heating haze value / initial haze value) was calculated.
  • the optically anisotropic layer for curing degree measurement was prepared by peeling the optically anisotropic layer from the substrate.
  • the infrared absorption spectrum of the optically anisotropic layer in the optically anisotropic layer for curing degree measurement was measured by the ATR method.
  • the optical anisotropy exposed on the surface of the laminate for curing degree measurement under the condition of one reflection using ZeSe as a prism by an ATR measurement apparatus model name “Nicolet iS 5N” manufactured by Thermo Fisher SCIENTIFIC
  • Example 1 The solvent was prepared by mixing 1,3-dioxolane (DOL) and methyl isobutyl ketone (MIBK). The mixing ratio (DOL / MIBK, weight ratio) of DOL and MIBK was 80/20. 55 parts by weight of a photopolymerizable reverse wavelength dispersion liquid crystal compound (CN point is 96 ° C.) represented by the following formula (B1), 45 parts by weight of a copolymer of diisopropyl fumarate and cinnamic acid ester as a positive C polymer 1.65 parts by weight of a polymerization initiator (trade name "Irgacure Oxe 04", manufactured by BASF AG), and a crosslinking agent (trade name "A-TMPT", trimethylolpropane triacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.) A coating liquid was prepared by dissolving 65 parts by weight in a solvent so that the solid concentration would be 12%.
  • DOL 1,3-dio
  • the copolymer of diisopropyl fumarate and cinnamic acid ester used for preparation of the coating liquid is a polyfumaric acid having a repeating unit represented by the following formula (P1) and a repeating unit represented by the following formula (P2) It was ester (weight average molecular weight 72,000). Further, in the following formulas (P1) and (P2), R represents an isopropyl group, and the ratio of the number m of repeating units and n is 85:15.
  • the unstretched film (The Zeon Corporation make, glass transition temperature (Tg) 163 degreeC of resin, 100 micrometers in thickness) which consists of resin containing an alicyclic structure containing polymer was prepared.
  • the coating liquid was coated on the surface of the base film using a coating blade to form a coating liquid layer.
  • the thickness of the coating liquid layer was adjusted so that the thickness of the obtained optically anisotropic layer was about 10 ⁇ m.
  • the coating liquid layer is dried in an oven at 85 ° C. for 5 minutes to evaporate the solvent in the coating liquid layer, and a multilayer having a layer structure of (dried coating liquid layer) / (base film) I got
  • UV irradiation was performed on the dried coating liquid layer.
  • Ultraviolet irradiation is performed from the light source to the surface on the dried coating liquid layer side of the multiple layer under the conditions of an illuminance of 300 mW / cm 2 and an integrated light amount of 600 mJ / cm 2 using an irradiation apparatus equipped with a high pressure mercury light source. It performed by irradiating an ultraviolet-ray.
  • the dried coating liquid layer was cured by the ultraviolet irradiation to form an optically anisotropic layer, and a transfer multilayer having a layer configuration of (optically anisotropic layer) / (base film) was obtained. .
  • optical properties of the obtained optical anisotropic layer of the transfer double layer were measured, and nx (A), ny (A), nz (A), Rth (A450) / Rth (A550), Rth (Rth (A)). A650) / Rth (A550), Re (A590), and Rth (A590) were determined. Furthermore, the curing degree A, b * and the haze change ratio of the optically anisotropic layer were measured.
  • Examples 2 to 4 and Comparative Examples 1 to 4 A transfer multilayer was obtained and evaluated in the same manner as in Example 1 except that the integrated light amount was changed to the values shown in Table 1.
  • the optically anisotropic layer of the examples having the specific degree of cure A specified in the present application has a small increase in haze upon heating, and thus has high durability. I understand.
  • the optically anisotropic layer of the example is also found to have a good color tone with ab * value of 2.2 or less.
  • a photopolymerization initiator
  • An unstretched film (“Zeonor film” manufactured by Nippon Zeon Co., Ltd.) made of a resin containing an alicyclic structure-containing polymer was prepared. By subjecting this unstretched film to rubbing treatment, an alignment substrate was prepared.
  • the liquid crystal composition was coated on the alignment substrate with a bar coater to form a layer of the liquid crystal composition.
  • the thickness of the layer of the liquid crystal composition was adjusted so that the thickness of the optically anisotropic layer obtained after curing was about 2.3 ⁇ m.
  • the layer of the liquid crystal composition was dried in an oven at 110 ° C. for about 4 minutes to evaporate the solvent in the liquid crystal composition and simultaneously homogeneously align the reverse wavelength dispersion liquid crystal compound contained in the liquid crystal composition.
  • the layer of the liquid crystal composition was irradiated with ultraviolet light using an ultraviolet irradiation device.
  • This ultraviolet irradiation was performed in a nitrogen atmosphere in a state where the alignment substrate was fixed to the SUS plate with a tape.
  • the layer of the liquid crystal composition was cured by irradiation with ultraviolet light to obtain a sample film provided with an optically anisotropic layer and an alignment substrate.
  • the wavelength dispersion of the in-plane retardation of this sample film was measured by a retardation meter (manufactured by Axometrics). Since the alignment substrate has no in-plane retardation, the in-plane retardation obtained by the above measurement indicates the in-plane retardation of the optically anisotropic layer.
  • the in-plane retardations Re (450), Re (550) and Re (650) at wavelengths 450 nm, 550 nm and 650 nm satisfied Re (450) ⁇ Re (550) ⁇ Re (650). Therefore, it was confirmed that the photopolymerizable reverse wavelength dispersive liquid crystal compound represented by the formula (B1) exhibits in-plane retardation of reverse wavelength dispersibility when it is homogeneously aligned.
  • An unstretched film (“Zeonor film” manufactured by Nippon Zeon Co., Ltd.) made of a resin containing an alicyclic structure-containing polymer was prepared.
  • the polymer solution was applied onto the unstretched film using an applicator to form a layer of the polymer solution. Then, the sample film was dried in an oven at 85 ° C. for about 10 minutes, and the solvent was evaporated to obtain a sample film provided with a polymer film having a thickness of about 10 ⁇ m and an unstretched film.
  • This sample film was placed on the stage of a retardation meter (manufactured by Axometrics), and the in-plane retardation Re0 of the sample film was measured at a measurement wavelength of 590 nm. Since the unstretched film is an optically isotropic film, the in-plane retardation Re0 measured represents the in-plane retardation Re0 of the polymer film. As a result of the measurement, since the in-plane retardation Re0 was Re0 ⁇ 1 nm, it was confirmed that nx (P) ⁇ ny (P), and that these were the same or close values.
  • the stage was inclined 40 ° with the slow axis of the polymer film as the axis of rotation of the stage, and the retardation Re40 in the inclined direction forming an angle of 40 ° with the thickness direction of the sample film was measured.
  • the slow axis direction of the polymer film was measured by this measurement. If the “slow axis direction” is perpendicular to the “stage rotation axis”, it can be determined that nz (P)> nx (P). Conversely, the “slow axis direction” is the “stage rotation axis” It can be determined that ny (P)> nz (P) if parallel to.
  • the refractive index of the polymer film is nz (P)> It was confirmed that nx (P) ⁇ ny (P) was satisfied. Therefore, it was confirmed that the copolymer of diisopropyl fumarate and cinnamate corresponds to a positive C polymer.
  • Example 3 The same operation as in Example 3 was performed except that the amounts of the mesogen compound and the positive C polymer in the coating liquid were changed, to obtain a plurality of transfer multilayers.
  • the infrared absorption spectrum of each of the optically anisotropic layers of the obtained transfer multilayer was measured by the ATR method.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

An optically anisotropic layer containing a positive C-type polymer and a polymerization product of a mesogenic compound, wherein the mesogenic compound is a compound having a mesogenic backbone and an acrylate structure, and the optically anisotropic layer satisfies the requirement represented by the formula: 0.073 < AC-H/AC=O (mesogenic compound) < 0.125. AC-H represents an infrared absorption associated with the out-of-plane bending vibration of a C-H bond in the acrylate structure in infrared absorption spectra of the optically anisotropic layer; and AC=O (mesogenic compound) represents the sum total of an infrared absorption associated with the stretching vibration of a C=O bond in the acrylate structure and an infrared absorption associated with the stretching vibration of a C=O bond derived from the C=O bond in the acrylate structure in infrared absorption spectra of the optically anisotropic layer. The production of an optically anisotropic layer, and a use of the optically anisotropic layer.

Description

光学異方性層及びその製造方法、光学異方性積層体、転写用複層物、偏光板、並びに画像表示装置Optically anisotropic layer and method for producing the same, optically anisotropic laminate, multilayer for transfer, polarizing plate, and image display device
 本発明は、光学異方性層及びその製造方法;前記の光学異方性層を備えた光学異方性積層体;並びに、前記の光学異方性層を備えた転写用複層物、偏光板及び画像表示装置;に関する。 The present invention relates to an optically anisotropic layer and a method for producing the same; an optically anisotropic laminate comprising the above-mentioned optically anisotropic layer; a transfer multilayer comprising the above-mentioned optically anisotropic layer; The present invention relates to a board and an image display device.
 液晶表示装置、有機エレクトロルミネッセンス表示装置等の画像表示装置には、様々な光学フィルムが設けられる。以下、「有機エレクトロルミネッセンス」のことを、適宜「有機EL」ということがある。このような光学フィルムに係る技術については、従来から検討がなされている(例えば、特許文献1及び2)。 Various optical films are provided in image display devices, such as a liquid crystal display device and an organic electroluminescent display device. Hereinafter, "organic electroluminescence" may be referred to as "organic EL" as appropriate. The technology related to such an optical film has been studied conventionally (for example, Patent Documents 1 and 2).
特開2015-14712号公報JP, 2015-14712, A 特開2015-57646号公報(対応公報:米国特許出願公開第2015/041051号明細書)JP, 2015-57646, A (correspondence gazette: U.S. patent application publication 2015/041051 specification)
 画像表示装置の表示面には、円偏光板が設けられることがある。前記の円偏光板としては、通常、直線偏光子と、光学異方性層とを備える光学フィルムが用いられる。画像表示装置の表示面に円偏光板を設けることにより、表示面を正面方向から見た場合に、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過できるようにしたりできるので、画像の視認性を高めることが可能である。 A circularly polarizing plate may be provided on the display surface of the image display device. As said circularly-polarizing plate, the optical film provided with a linear polarizer and an optically anisotropic layer is used normally. By providing a circularly polarizing plate on the display surface of the image display device, reflection of external light can be suppressed or light for displaying an image can be transmitted through polarized sunglasses when the display surface is viewed from the front direction. Therefore, it is possible to enhance the visibility of the image.
 上に述べた円偏光板の効果は、表示面を傾斜方向から見た場合には損なわれる場合がある。表示面を傾斜方向から見た場合の効果を高めるため、円偏光板と組み合わせてポジティブCフィルムを設けることが考えられる。このような用途に用いるポジティブCフィルムは、その厚み方向のレターデーションRthが逆波長分散性を示すフィルムであることが好ましい。そのようなポジティブCフィルムは、例えば特許文献1及び2に記載されるもののように、液晶化合物を用いた製造方法により製造することが考えられる。 The effect of the circularly polarizing plate described above may be lost when the display surface is viewed from the tilt direction. In order to enhance the effect when the display surface is viewed from the inclined direction, it is conceivable to provide a positive C film in combination with a circularly polarizing plate. It is preferable that the positive C film used for such an application is a film in which the retardation Rth in the thickness direction exhibits reverse wavelength dispersion. Such a positive C film can be considered to be produced by a production method using a liquid crystal compound, as described in Patent Documents 1 and 2, for example.
 ところが、従来の技術では、厚み方向のレターデーションRthが逆波長分散性を示すポジティブCフィルムを製造することは、容易ではなかった。例えば、特許文献1及び2に記載の液晶化合物を用いた製造方法のように、配向膜を用いる方法では、配向膜と液晶化合物との相性を調整することが求められるので、その調整が煩雑である。さらに、配向膜を基材上に塗工する工程が増えるため、配向膜の使用は、コストの上昇を招く可能性がある。加えて、画像表示装置に用いられる光学フィルムには、波長分散性以外にも様々な特性が求められる。例えば、光学フィルムには、高い耐久性及び良好な色調が求められる。従来技術における逆波長分散性Rthを有するポジティブCフィルムは、そのような耐久性及び色調において劣ることがある。例えば、一般に光学フィルムは高温の環境中での長期間の使用による劣化が少ないことが求められるところ、従来技術における逆波長分散性Rthを有するポジティブCフィルムは、高温の環境中での長期間の使用の結果ヘイズが上昇し白濁する等の不具合が生じやすい。また、一般に光学フィルムは、光の波長による透過率及び反射率の偏りが無く色調が無色に近いことが求められるところ、従来技術における逆波長分散性Rthを有するポジティブCフィルムはまた、その色調が、無色ではなく、黄色等の色調を帯びていることがある。 However, in the prior art, it was not easy to manufacture a positive C film in which the retardation Rth in the thickness direction exhibits reverse wavelength dispersion. For example, in the method using the alignment film as in the manufacturing method using the liquid crystal compound described in Patent Documents 1 and 2, it is required to adjust the compatibility between the alignment film and the liquid crystal compound, so the adjustment is complicated. is there. Furthermore, the use of the alignment film may increase the cost because the number of steps for coating the alignment film on the substrate is increased. In addition, various characteristics other than wavelength dispersion are required for the optical film used in the image display device. For example, optical films are required to have high durability and good color tone. Positive C films with reverse wavelength dispersive Rth in the prior art may be inferior in such durability and color tone. For example, while optical films are generally required to have less degradation due to long-term use in a high temperature environment, the positive C film having reverse wavelength dispersive Rth in the prior art is required to be used for a long time in a high temperature environment. As a result of use, it is easy to cause problems such as increase in haze and clouding. In general, an optical film is required to be close to colorless with no deviation of transmittance and reflectance depending on the wavelength of light, and a positive C film having reverse wavelength dispersion Rth in the prior art also has its color tone It is not colorless and may have a color tone such as yellow.
 従って、本発明の目的は、配向膜を用いることなく製造可能な、厚み方向のレターデーションRthが逆波長分散性を示すポジティブCプレートにおいて耐久性が高く、良好な色調を有する光学異方性層および、前記光学異方性層を備えた転写用複層物、その製造方法、並びにかかる光学異方性層を備える光学異方性積層体、転写用複層物、偏光板、及び画像表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an optically anisotropic layer having high durability and good color tone in a positive C plate which can be manufactured without using an alignment film and the retardation Rth in the thickness direction exhibits reverse wavelength dispersion. And a transfer double layer provided with the optically anisotropic layer, a method for producing the same, an optically anisotropic laminate having such an optically anisotropic layer, a transfer double layer, a polarizing plate, and an image display device Intended to provide.
 本発明は、下記のとおりである。
 〔1〕 ポジC重合体と、メソゲン化合物と、メソゲン化合物の重合物とを含む光学異方性層であって、
 前記ポジC重合体は、前記ポジC重合体の溶液を用いた塗工法により前記ポジC重合体の膜を形成した場合に、前記膜が、式(1)を満たす重合体であり、
 前記メソゲン化合物は、メソゲン骨格およびアクリレート構造を有する化合物であり、
 前記光学異方性層は、式(2)及び式(3)を満たす、光学異方性層:
 nz(P)>nx(P)≧ny(P)  式(1)
 nz(A)>nx(A)≧ny(A)  式(2)
 0.073<AC-H/AC=O(メソゲン化合物)<0.125  式(3)
 但し、
 nx(P)、ny(P)及びnz(P)は、前記膜の主屈折率であり、
 nx(A)、ny(A)及びnz(A)は、前記光学異方性層の主屈折率であり、
 AC-Hは、前記光学異方性層の赤外吸収スペクトルにおける、前記メソゲン化合物の前記アクリレート構造が有するC-H結合の面外変角振動にかかる赤外吸収であり、
 AC=O(メソゲン化合物)は、前記光学異方性層の赤外吸収スペクトルにおける、前記メソゲン化合物の前記アクリレート構造が有するC=O結合の伸縮振動にかかる赤外吸収と、前記メソゲン化合物の前記アクリレート構造のC=O結合に由来するC=O結合の伸縮振動にかかる赤外吸収との和である。
 〔2〕 前記メソゲン化合物が、ホモジニアス配向した場合に逆波長分散性の面内レターデーションを示す化合物である、〔1〕に記載の光学異方性層。
 〔3〕 式(4)及び式(5)を満たす、〔1〕又は〔2〕に記載の光学異方性層:
 0.50<Rth(A450)/Rth(A550)<1.00  式(4)
 1.00≦Rth(A650)/Rth(A550)<1.25  式(5)
 但し、
 Rth(A450)は、前記光学異方性層の波長450nmにおける厚み方向のレターデーションであり、
 Rth(A550)は、前記光学異方性層の波長550nmにおける厚み方向のレターデーションであり、
 Rth(A650)は、前記光学異方性層の波長650nmにおける厚み方向のレターデーションである。
 〔4〕 前記メソゲン化合物が、下記式(I)で表される、〔1〕~〔3〕のいずれか1項に記載の光学異方性層:
Figure JPOXMLDOC01-appb-C000003
 (前記式(I)において、
 Y~Yは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 G及びGは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 Z及びZは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
 Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
 Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記A及びAが有する芳香環は、置換基を有していてもよい。また、前記AとAは、一緒になって、環を形成していてもよい。
 Aは、置換基を有していてもよい三価の芳香族基を表す。
 A及びAは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
 A及びAは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
 Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 mおよびnは、それぞれ独立に、0又は1を表す。
 但し、Z-Y-及び-Y-Zの一方又は両方は、アクリロイルオキシ基である。)
 〔5〕 前記メソゲン化合物が、その分子構造中に、ベンゾチアゾール環、並びに、シクロヘキシル環及びフェニル環の組み合わせ、からなる群より選ばれる少なくとも1種を含有する、〔1〕~〔4〕のいずれか1項に記載の光学異方性層。
 〔6〕 前記ポジC重合体が、ポリビニルカルバゾール、ポリフマル酸エステル及びセルロース誘導体からなる群より選ばれる少なくとも1種類の重合体である、〔1〕~〔5〕のいずれか1項に記載の光学異方性層。
 〔7〕 前記光学異方性層の全固形分における前記メソゲン化合物及びその重合物の比率が、20重量%以上60重量%以下である、〔1〕~〔6〕のいずれか1項に記載の光学異方性層。
 〔8〕 式(6)及び式(7)を満たす、〔1〕~〔7〕のいずれか1項に記載の光学異方性層:
 Re(A590)≦10nm  式(6)
 -200nm≦Rth(A590)≦-10nm  式(7)
 但し、
 Re(A590)は、前記光学異方性層の波長590nmにおける面内レターデーションであり、
 Rth(A590)は、前記光学異方性層の波長590nmにおける厚み方向のレターデーションである。
 〔9〕 基材と、〔1〕~〔8〕のいずれか1項に記載の光学異方性層とを備えた、転写用複層物。
 〔10〕 〔1〕~〔8〕のいずれか1項に記載の光学異方性層と、位相差層とを備え、
 前記位相差層は、式(8)を満たす、光学異方性積層体:
 nx(B)>ny(B)≧nz(B)  式(8)
 但し、nx(B)、ny(B)及びnz(B)は、前記位相差層の主屈折率である。
 〔11〕 前記位相差層が、式(9)及び式(10)を満たす、〔10〕記載の光学異方性積層体:
 0.75<Re(B450)/Re(B550)<1.00  式(9)
 1.01<Re(B650)/Re(B550)<1.25  式(10)
 但し、
 Re(B450)は、前記位相差層の波長450nmにおける面内レターデーションであり、
 Re(B550)は、前記位相差層の波長550nmにおける面内レターデーションであり、
 Re(B650)は、前記位相差層の波長650nmにおける面内レターデーションである。
 〔12〕 前記位相差層が、下記式(II)で表される位相差層用液晶化合物を含む、〔11〕に記載の光学異方性積層体:
Figure JPOXMLDOC01-appb-C000004
 (前記式(II)において、
 Y~Yは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 G及びGは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 Z及びZは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
 Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
 Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記A及びAが有する芳香環は、置換基を有していてもよい。また、前記AとAは、一緒になって、環を形成していてもよい。
 Aは、置換基を有していてもよい三価の芳香族基を表す。
 A及びAは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
 A及びAは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
 Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 mおよびnは、それぞれ独立に、0又は1を表す。)
 〔13〕 直線偏光子と、
 〔1〕~〔8〕のいずれか1項に記載の光学異方性層、〔9〕記載の転写用複層物、又は、〔10〕~〔12〕のいずれか1項に記載の光学異方性積層体と、を備える、偏光板。
 〔14〕 〔13〕記載の偏光板を備える、画像表示装置。
 〔15〕 〔10〕~〔12〕のいずれか1項に記載の光学異方性積層体と、
 直線偏光子と、
 画像表示素子と、を、この順に備え、
 前記画像表示素子が、液晶セル又は有機エレクトロルミネッセンス素子である、画像表示装置。
 〔16〕 〔1〕~〔8〕のいずれか1項に記載の光学異方性層の製造方法であって、
 ポジC重合体、メソゲン化合物、溶媒、光重合開始剤、および架橋剤を含む塗工液を用意する工程と、
 前記塗工液を支持面上に塗工して、塗工液層を得る工程と、
 前記塗工液層への光の照射を行い、前記塗工液層を硬化させる工程と、を含む製造方法。
 〔17〕 前記塗工液における、前記メソゲン化合物100重量部に対する前記光重合開始剤の比率が1重量部~10重量部であり、
 前記メソゲン化合物100重量部に対する前記架橋剤の比率が1重量部~10重量部である、〔16〕に記載の光学異方性層の製造方法。
 〔18〕 照射する前記光の積算光量が600mJ/cm~5000mJ/cmである、〔16〕又は〔17〕に記載の製造方法。
The present invention is as follows.
[1] An optically anisotropic layer comprising a positive C polymer, a mesogen compound, and a polymer of the mesogen compound,
When the film of the positive C polymer is formed by a coating method using a solution of the positive C polymer, the positive C polymer is a polymer in which the film satisfies the formula (1),
The mesogen compound is a compound having a mesogen skeleton and an acrylate structure,
The optically anisotropic layer is an optically anisotropic layer that satisfies Formula (2) and Formula (3):
nz (P)> nx (P) ≧ ny (P) Formula (1)
nz (A)> nx (A) ≧ ny (A) Formula (2)
0.073 <A C−H / A C = O (mesogenic compound) <0.125 Formula (3)
However,
nx (P), ny (P) and nz (P) are the main refractive indices of the film,
nx (A), ny (A) and nz (A) are main refractive indices of the optically anisotropic layer,
AC-H is infrared absorption concerning out-of-plane bending vibration of C—H bond of the acrylate structure of the mesogen compound in infrared absorption spectrum of the optically anisotropic layer,
A C = O (mesogen compound) is an infrared absorption of the stretching vibration of the C = O bond of the acrylate structure of the mesogen compound in the infrared absorption spectrum of the optically anisotropic layer, and the absorption of the mesogen compound It is the sum of infrared absorption applied to the stretching vibration of the C = O bond derived from the C = O bond of the acrylate structure.
[2] The optically anisotropic layer according to [1], which is a compound which exhibits reverse wavelength dispersive in-plane retardation when the mesogen compound is homogeneously aligned.
[3] The optically anisotropic layer according to [1] or [2], which satisfies the formulas (4) and (5):
0.50 <Rth (A450) / Rth (A550) <1.00 Formula (4)
1.00 ≦ Rth (A650) / Rth (A550) <1.25 Formula (5)
However,
Rth (A450) is a retardation in the thickness direction of the optically anisotropic layer at a wavelength of 450 nm,
Rth (A550) is a retardation in the thickness direction of the optically anisotropic layer at a wavelength of 550 nm,
Rth (A650) is a retardation in the thickness direction at a wavelength of 650 nm of the optically anisotropic layer.
[4] The optically anisotropic layer according to any one of [1] to [3], wherein the mesogen compound is represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000003
(In the above formula (I),
Y 1 to Y 8 each independently represent a single chemical bond, —O—, —S—, —O—C (= O) —, —C (= O) —O—, —O—C (= O) -O-, -NR 1 -C (= O)-, -C (= O) -NR 1- , -O-C (= O) -NR 1- , -NR 1 -C (= O) -O-, -NR 1 -C (= O) -NR 1- , -O-NR 1- , or -NR 1 -O-. Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
G 1 and G 2 each independently represent an optionally substituted divalent aliphatic group having 1 to 20 carbon atoms. In addition, in the aliphatic group, one or more -O-, -S-, -O-C (= O)-, -C (= O) -O-, -O-C per aliphatic group. (= O) -O -, - NR 2 -C (= O) -, - C (= O) -NR 2 -, - NR 2 -, or, -C (= O) - is be interposed Good. However, it excludes the case where two or more -O- or -S- are adjacent to each other. Here, R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Z 1 and Z 2 each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted by a halogen atom.
A x represents an organic group having 2 to 30 carbon atoms which has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
A y has a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent Also a cycloalkyl group having 3 to 12 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, -C (= O) -R 3 , -SO 2 -R 4 , -C ( = S) NH-R 9 , or an organic group having 2 to 30 carbon atoms, having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle. Here, R 3 has an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms. R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group or a 4-methylphenyl group. R 9 is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, carbon which may have a substituent And a cycloalkyl group of 3 to 12 or an aromatic group of 5 to 20 carbon atoms which may have a substituent. The aromatic ring which said A x and A y has may have a substituent. The A x and A y may be taken together to form a ring.
A 1 represents a trivalent aromatic group which may have a substituent.
Each of A 2 and A 3 independently represents a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
Each of A 4 and A 5 independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
m and n each independently represent 0 or 1;
However, one or both of Z 1 -Y 7 -and -Y 8 -Z 2 are acryloyloxy groups. )
[5] Any one of [1] to [4], wherein the mesogen compound contains, in its molecular structure, at least one selected from the group consisting of a benzothiazole ring and a combination of a cyclohexyl ring and a phenyl ring The optically anisotropic layer as described in 1 or 2.
[6] The optical according to any one of [1] to [5], wherein the positive C polymer is at least one polymer selected from the group consisting of polyvinyl carbazole, polyfumarate and a cellulose derivative. Anisotropic layer.
[7] The composition according to any one of [1] to [6], wherein the proportion of the mesogen compound and the polymer thereof in the total solid content of the optically anisotropic layer is 20% by weight or more and 60% by weight or less. Optically anisotropic layer.
[8] The optically anisotropic layer according to any one of [1] to [7], which satisfies the formulas (6) and (7):
Re (A 590) ≦ 10 nm Formula (6)
−200 nm ≦ Rth (A 590) ≦ -10 nm Formula (7)
However,
Re (A 590) is an in-plane retardation of the optically anisotropic layer at a wavelength of 590 nm,
Rth (A 590) is a retardation in the thickness direction at a wavelength of 590 nm of the optically anisotropic layer.
[9] A transfer multi-layer material comprising a substrate and the optically anisotropic layer according to any one of [1] to [8].
[10] An optical anisotropic layer according to any one of [1] to [8] and a retardation layer,
The optically anisotropic laminate, wherein the retardation layer satisfies formula (8):
nx (B)> ny (B) ≧ nz (B) Formula (8)
However, nx (B), ny (B) and nz (B) are the main refractive indexes of the said phase difference layer.
[11] The optically anisotropic laminate according to [10], wherein the retardation layer satisfies Formulas (9) and (10):
0.75 <Re (B450) / Re (B550) <1.00 Formula (9)
1.01 <Re (B650) / Re (B550) <1.25 Formula (10)
However,
Re (B450) is an in-plane retardation of the retardation layer at a wavelength of 450 nm,
Re (B550) is an in-plane retardation of the retardation layer at a wavelength of 550 nm,
Re (B650) is an in-plane retardation of the retardation layer at a wavelength of 650 nm.
[12] The optically anisotropic laminate according to [11], wherein the retardation layer contains a liquid crystal compound for retardation layer represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000004
(In the above formula (II),
Y 1 to Y 8 each independently represent a single chemical bond, —O—, —S—, —O—C (= O) —, —C (= O) —O—, —O—C (= O) -O-, -NR 1 -C (= O)-, -C (= O) -NR 1- , -O-C (= O) -NR 1- , -NR 1 -C (= O) -O-, -NR 1 -C (= O) -NR 1- , -O-NR 1- , or -NR 1 -O-. Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
G 1 and G 2 each independently represent an optionally substituted divalent aliphatic group having 1 to 20 carbon atoms. In addition, in the aliphatic group, one or more -O-, -S-, -O-C (= O)-, -C (= O) -O-, -O-C per aliphatic group. (= O) -O -, - NR 2 -C (= O) -, - C (= O) -NR 2 -, - NR 2 -, or, -C (= O) - is be interposed Good. However, it excludes the case where two or more -O- or -S- are adjacent to each other. Here, R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Z 1 and Z 2 each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted by a halogen atom.
A x represents an organic group having 2 to 30 carbon atoms which has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
A y has a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent Also a cycloalkyl group having 3 to 12 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, -C (= O) -R 3 , -SO 2 -R 4 , -C ( = S) NH-R 9 , or an organic group having 2 to 30 carbon atoms, having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle. Here, R 3 has an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms. R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group or a 4-methylphenyl group. R 9 is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, carbon which may have a substituent And a cycloalkyl group of 3 to 12 or an aromatic group of 5 to 20 carbon atoms which may have a substituent. The aromatic ring which said A x and A y has may have a substituent. The A x and A y may be taken together to form a ring.
A 1 represents a trivalent aromatic group which may have a substituent.
Each of A 2 and A 3 independently represents a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
Each of A 4 and A 5 independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
m and n each independently represent 0 or 1; )
[13] Linear polarizer,
The optically anisotropic layer according to any one of [1] to [8], the multilayer for transfer according to [9], or the optical according to any one of [10] to [12] An anisotropic laminate, and a polarizing plate.
[14] An image display device comprising the polarizing plate according to [13].
[15] The optically anisotropic laminate according to any one of [10] to [12],
With linear polarizers,
An image display device, in this order,
The image display apparatus whose said image display element is a liquid crystal cell or an organic electroluminescent element.
[16] A method for producing an optically anisotropic layer according to any one of [1] to [8], which
Providing a coating liquid containing a positive C polymer, a mesogen compound, a solvent, a photopolymerization initiator, and a crosslinking agent;
Applying the coating solution on a support surface to obtain a coating solution layer;
And irradiating the coating liquid layer with light to cure the coating liquid layer.
[17] The ratio of the photopolymerization initiator to 100 parts by weight of the mesogen compound in the coating liquid is 1 part by weight to 10 parts by weight,
The method for producing an optically anisotropic layer according to [16], wherein the ratio of the crosslinking agent to 100 parts by weight of the mesogen compound is 1 part by weight to 10 parts by weight.
[18] integrated light amount of the light to be irradiated is 600mJ / cm 2 ~ 5000mJ / cm 2, the production method according to [16] or [17].
 本発明によれば、配向膜を用いることなく製造可能な、厚み方向のレターデーションRthが逆波長分散性を示すポジティブCプレートにおいて、耐久性が高く、良好な色調を有する光学異方性層および、前記光学異方性層を備えた転写用複層物、その製造方法、並びにかかる光学異方性層を備える光学異方性積層体、転写用複層物、偏光板、及び画像表示装置が提供される。 According to the present invention, an optically anisotropic layer having high durability and good color tone, which can be manufactured without using an alignment film and having a positive C-plate exhibiting a reverse wavelength dispersion with retardation Rth in the thickness direction A transfer multilayer having the optically anisotropic layer, a method for producing the same, an optically anisotropic laminate having such an optical anisotropic layer, a transfer multilayer, a polarizing plate, and an image display device Provided.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by way of embodiments and exemplifications. However, the present invention is not limited to the embodiments and examples shown below, and can be implemented with arbitrary modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
 以下の説明において、ある面の正面方向とは、別に断らない限り、当該面の法線方向を意味し、具体的には前記面の極角0°且つ方位角0°の方向を指す。 In the following description, the front direction of a surface means, unless otherwise specified, the normal direction of the surface, specifically, the direction of the polar angle of 0 ° and the azimuth angle of 0 ° of the surface.
 以下の説明において、ある面の傾斜方向とは、別に断らない限り、当該面に平行でも垂直でもない方向を意味し、具体的には前記面の極角が0°より大きく90°より小さい範囲の方向を指す。 In the following description, the inclination direction of a surface means a direction neither parallel nor perpendicular to the surface unless specifically stated otherwise, specifically, the polar angle of the surface is larger than 0 ° and smaller than 90 ° Point in the direction of
 以下の説明において、別に断らない限り、ある層の面内レターデーションReは、Re=(nx-ny)×dで表される値を示し、また、ある層の厚み方向のレターデーションRthとは、Rth=[{(nx+ny)/2}-nz]×dで表される値を示す。ここで、nxは、層の面内方向であって最大の屈折率を与える方向の屈折率を表し、nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表し、nzは、層の厚み方向の屈折率を表し、dは、層の厚みを表す。また、面内方向とは、厚み方向に垂直な方向を示す。 In the following description, unless otherwise specified, the in-plane retardation Re of a certain layer represents a value represented by Re = (nx−ny) × d, and the retardation Rth in the thickness direction of a certain layer , Rth = [{(nx + ny) / 2} −nz] × d. Here, nx represents the in-plane direction of the layer and represents the refractive index in the direction giving the maximum refractive index, and ny represents the refractive index in the in-plane direction of the layer and orthogonal to the nx direction. And nz represents the refractive index in the thickness direction of the layer, and d represents the thickness of the layer. Further, the in-plane direction indicates a direction perpendicular to the thickness direction.
 以下の説明において、別に断らない限り、屈折率の測定波長は、590nmである。 In the following description, unless otherwise stated, the measurement wavelength of the refractive index is 590 nm.
 以下の説明において、「長尺」の部材とは、幅に対して、通常5倍以上の長さを有する部材をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有する部材をいう。長尺の部材の長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。 In the following description, the term "long" member refers to a member having a length of 5 times or more the width, preferably 10 times or more, and more specifically, A member having a length that can be rolled up and stored or transported. The upper limit of the length of the long member is not particularly limited, and may be, for example, 100,000 times or less of the width.
 以下の説明において、「偏光板」及び「波長板」とは、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。 In the following description, the “polarizing plate” and the “wave plate” include not only a rigid member but also a flexible member such as a resin film.
 以下の説明において、別に断らない限り、「(メタ)アクリル」は、「アクリル」、「メタクリル」及びこれらの組み合わせを包含する用語である。 In the following description, unless otherwise specified, "(meth) acrylic" is a term including "acrylic", "methacrylic" and combinations thereof.
 以下の説明において、要素の方向が「平行」及び「垂直」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。 In the following description, unless the directions of the elements “parallel” and “vertical” are different, they may include an error within a range that does not impair the effect of the present invention, for example, within ± 5 °. .
 以下の説明において、正の固有複屈折値を有する樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる樹脂を意味する。また、負の固有複屈折値を有する樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなる樹脂を意味する。固有複屈折値は、誘電率分布から計算しうる。 In the following description, a resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is larger than the refractive index in the direction orthogonal thereto. Further, a resin having a negative intrinsic birefringence value means a resin in which the refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal thereto. The intrinsic birefringence value can be calculated from the dielectric constant distribution.
 以下の説明において、ある層又は膜の主屈折率とは、当該層の面内方向であって最大の屈折率を与える方向の屈折率nx、当該層の面内方向であって前記nxを与える方向に垂直な方向の屈折率ny、及び当該層の厚み方向の屈折率nzをいう。本願においては、これらnx、ny及びnzに対応する屈折率を、それぞれ、文字列「nx」、「ny」及び「nz」を含む記号にて表す。例えば、光学異方性層の主屈折率nx(A)、ny(A)及びnz(A)のうち、nx(A)は、光学異方性層の面内方向であって最大の屈折率を与える方向の屈折率であり、ny(A)は、光学異方性層の面内方向であってnx(A)を与える方向に垂直な方向の屈折率であり、nz(A)は、光学異方性層の厚み方向の屈折率である。 In the following description, the main refractive index of a layer or film means the refractive index nx of the layer in the in-plane direction of the layer giving the maximum refractive index, and the in-plane direction of the layer provides the nx The refractive index ny in the direction perpendicular to the direction, and the refractive index nz in the thickness direction of the layer. In the present application, the refractive indices corresponding to these nx, ny and nz are represented by symbols including the character strings “nx”, “ny” and “nz”, respectively. For example, among the main refractive indices nx (A), ny (A) and nz (A) of the optically anisotropic layer, nx (A) is the in-plane direction of the optically anisotropic layer and the maximum refractive index Ny (A) is the in-plane direction of the optically anisotropic layer and is perpendicular to the direction giving nx (A), nz (A) is It is a refractive index of the thickness direction of an optically anisotropic layer.
 以下の説明において、ある層の面内レターデーションReが逆波長分散性を示す、とは、当該層の波長450nm及び550nmにおける面内レターデーションRe(450)及びRe(550)が、Re(450)/Re(550)<1.00を満たすことをいう。Reが逆波長分散性を有する層は、好ましくはさらに、当該層の波長550nm及び650nmにおける面内レターデーションRe(550)及びRe(650)が、Re(550)/Re(650)<1.00を満たす。
 ある層の厚み方向のレターデーションRthが逆波長分散性を示す、とは、当該層の波長450nm及び550nmにおける厚み方向のレターデーションRth(450)及びRth(550)が、Rth(450)/Rth(550)<1.00を満たすことをいう。Rthが逆波長分散性を有する層は、好ましくはさらに、当該層の波長550nm及び650nmにおける厚み方向のレターデーションRth(550)及びRth(650)が、Rth(550)/Rth(650)<1.00を満たす。
In the following description, “in-plane retardation Re of a layer exhibits reverse wavelength dispersion” means that in-plane retardations Re (450) and Re (550) at wavelengths 450 nm and 550 nm of the layer are Re (450). ) / Re (550) <1.00 is satisfied. In the layer in which Re has reverse wavelength dispersion, preferably, in-plane retardations Re (550) and Re (650) at wavelengths 550 nm and 650 nm of the layer are Re (550) / Re (650) <1. Meet 00
The retardation Rth in the thickness direction of a certain layer shows reverse wavelength dispersion, as the retardation Rth (450) and Rth (550) in the thickness direction at wavelengths 450 nm and 550 nm of the layer is Rth (450) / Rth. (550) means to satisfy <1.00. In the layer in which Rth has reverse wavelength dispersion, preferably, retardations Rth (550) and Rth (650) in the thickness direction at wavelengths 550 nm and 650 nm of the layer are Rth (550) / Rth (650) <1. Meet .00.
 〔1.光学異方性層〕
 本発明の光学異方性層は、ポジC重合体と、メソゲン化合物と、メソゲン化合物の重合物とを含み、特定の光学特性を有する。
[1. Optical anisotropic layer]
The optically anisotropic layer of the present invention contains a positive C polymer, a mesogen compound, and a polymer of the mesogen compound, and has specific optical properties.
 〔1.1.ポジC重合体〕
 ポジC重合体は、重合体であって、当該重合体の溶液を用いた塗工法により重合体の膜を形成した場合に、かかる膜が、式(1)を満たすものである。
 nz(P)>nx(P)≧ny(P)  式(1)
 但し、nx(P)、ny(P)及びnz(P)は、かかる膜の主屈折率である。このようなポジC重合体を、メソゲン化合物と組み合わせて用いることにより、配向膜を用いることなく製造可能な、厚み方向のレターデーションRthが逆波長分散性を示すポジティブCフィルムとして用いられる光学異方性層を実現できる。
[1.1. Positive C polymer]
The positive C polymer is a polymer, and when the film of the polymer is formed by a coating method using a solution of the polymer, the film satisfies the formula (1).
nz (P)> nx (P) ≧ ny (P) Formula (1)
Where nx (P), ny (P) and nz (P) are the main refractive indices of such films. An optical anisotropy which can be manufactured without using an alignment film by using such a positive C polymer in combination with a mesogen compound, and which is used as a positive C film in which the retardation Rth in the thickness direction exhibits reverse wavelength dispersion. Sex layer can be realized.
 ある重合体が、ポジC重合体に該当するか否かは、下記の方法によって確認できる。
 まず、試料としての重合体を、メチルエチルケトン(MEK)、1,3-ジオキソラン、N-メチルピロリドン(NMP)等の溶媒に、重合体の濃度が10重量%~20重量%になるように加え、室温にて溶解させて、重合体溶液を得る。
 この重合体溶液を、樹脂からなる未延伸フィルム上に、アプリケーターを用いて塗工して、重合体溶液の層を形成する。その後、85℃オーブンで10分ほど乾燥させて、溶媒を蒸発させることにより、厚み10μm程度の重合体膜を得る。
 そして、この重合体膜の屈折率nx(P)、屈折率ny(P)及び屈折率nz(P)が、式(1)を満たすか否かを評価し、満たす場合に、その試料としての重合体は、ポジC重合体に該当すると判定できる。
Whether a certain polymer corresponds to a positive C polymer can be confirmed by the following method.
First, a polymer as a sample is added to a solvent such as methyl ethyl ketone (MEK), 1,3-dioxolane, N-methyl pyrrolidone (NMP) or the like so that the concentration of the polymer is 10 wt% to 20 wt%, Dissolve at room temperature to obtain a polymer solution.
This polymer solution is coated on an unstretched film made of resin using an applicator to form a layer of the polymer solution. Thereafter, the film is dried in an oven at 85 ° C. for about 10 minutes, and the solvent is evaporated to obtain a polymer film having a thickness of about 10 μm.
Then, it is evaluated whether or not the refractive index nx (P), the refractive index ny (P) and the refractive index nz (P) of this polymer film satisfy the formula (1), and in the case where the formula is satisfied: The polymer can be determined to correspond to a positive C polymer.
 中でも、前記の屈折率nx(P)と屈折率ny(P)とは、値が同じであるか近いことが好ましい。具体的には、屈折率nx(P)と屈折率ny(P)の差nx(P)-ny(P)は、好ましくは0.00000~0.00100、より好ましくは0.00000~0.00050、特に好ましくは0.00000~0.00020である。屈折率差nx(P)-ny(P)が前記の範囲に収まることにより、本発明の光学異方性層を容易に得ることができる。 Among them, it is preferable that the refractive index nx (P) and the refractive index ny (P) have the same value or be close to each other. Specifically, the difference nx (P) -ny (P) between the refractive index nx (P) and the refractive index ny (P) is preferably 0.00000 to 0.00100, more preferably 0.00000 to 0. It is 00050, particularly preferably 0.00000 to 0.00020. When the refractive index difference nx (P) -ny (P) falls within the above range, the optically anisotropic layer of the present invention can be easily obtained.
 ポジC重合体としては、当該ポジC重合体の溶液を用いた塗工法によりポジC重合体の膜を形成した場合に、かかる膜が前記の式(1)を満たす屈折率を有する任意の重合体を用いうる。中でも、ポジC重合体としては、ポリビニルカルバゾール、ポリフマル酸エステル及びセルロース誘導体からなる群より選ばれる少なくとも1種類の重合体が好ましい。これらの重合体をポジC重合体として用いることにより、塗工によって厚み方向のレターデーションRthが大きい光学異方性層を、容易に得ることができる。 As a positive C polymer, when a film of a positive C polymer is formed by a coating method using a solution of the positive C polymer, any film having a refractive index satisfying the above formula (1) can be obtained. Coalescing can be used. Among them, as the positive C polymer, at least one polymer selected from the group consisting of polyvinyl carbazole, polyfumaric acid ester and cellulose derivative is preferable. By using these polymers as positive C polymers, it is possible to easily obtain an optically anisotropic layer having a large retardation Rth in the thickness direction by coating.
 ポリビニルカルバゾールの例としては、9-ビニルカルバゾールが重合してなる重合単位を含む重合体が挙げられる。
 ポリフマル酸エステルの例としては、フマル酸ジイソプロピルとアクリル酸3-エチル-3-オキセタニルメチルとの共重合体;及びフマル酸ジイソプロピルとケイ皮酸エステルとの共重合体が挙げられる。
Examples of polyvinylcarbazole include polymers containing polymerized units formed by polymerization of 9-vinylcarbazole.
Examples of polyfumarates include copolymers of diisopropyl fumarate and 3-ethyl-3-oxetanylmethyl acrylate; and copolymers of diisopropyl fumarate and cinnamate.
 ポジC重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The positive C polymer may be used alone or in combination of two or more at an arbitrary ratio.
 光学異方性層の全固形分におけるポジC重合体の比率は、好ましくは30重量%以上、更に好ましくは35重量%以上、最も好ましくは40重量%以上であり、好ましくは60重量%以下、更に好ましくは55重量%以下、最も好ましくは50重量%以下である。ポジC重合体の比率が、前記範囲の下限値以上であることにより、光学異方性層において、メソゲン化合物を均一に分散させたり、光学異方性層の機械的強度を高くしたりでき、また、前記範囲の上限値以下であることにより、光学異方性層の厚み方向のレターデーションRthの波長分散性を逆分散性に近づけ易くできる。ここで、ある層の固形分とは、その層を乾燥した場合に残留する成分のことをいう。 The proportion of the positive C polymer in the total solid content of the optically anisotropic layer is preferably 30% by weight or more, more preferably 35% by weight or more, and most preferably 40% by weight or more, preferably 60% by weight or less. More preferably, it is at most 55 wt%, most preferably at most 50 wt%. When the ratio of the positive C polymer is at least the lower limit value of the above range, the mesogenic compound can be dispersed uniformly in the optically anisotropic layer, or the mechanical strength of the optically anisotropic layer can be increased. Moreover, by being below the upper limit value of the said range, wavelength dispersion of the retardation Rth of the thickness direction of an optically anisotropic layer can be made easy to approach reverse dispersion. Here, the solid content of a certain layer refers to a component remaining when the layer is dried.
 〔1.2.メソゲン化合物〕
 本願において、メソゲン化合物は、メソゲン骨格およびアクリレート構造を有する化合物である。
 メソゲン化合物が有するメソゲン骨格とは、その引力及び斥力的相互作用の異方性によって、低分子量又は高分子量の物質中で、液晶相の発生に本質的に寄与する分子骨格を意味する。メソゲン骨格を含有するメソゲン化合物は、それ自身では、必ずしも液晶相への相転移を生じうる液晶性を有していなくてもよい。よって、メソゲン化合物は、単独で液晶相への相転移を生じうる液晶化合物であってもよく、単独では液晶相への相転移を生じない非液晶化合物であってもよい。メソゲン骨格の例としては、剛直な棒状又は円盤状の形状のユニットが挙げられる。メソゲン骨格については、Pure Appl.Chem.2001、73巻(5号)、888頁およびC.Tschierske、G.Pelzl、S.Diele、Angew.Chem.2004年、116巻、6340~6368頁を参照しうる。
[1.2. Mesogenic compound]
In the present application, the mesogen compound is a compound having a mesogen skeleton and an acrylate structure.
The mesogenic skeleton possessed by the mesogenic compound means a molecular skeleton which essentially contributes to the generation of a liquid crystal phase in a substance of low molecular weight or high molecular weight by the anisotropy of its attractive force and repulsive interaction. The mesogen compound containing a mesogen skeleton may not necessarily have liquid crystallinity that can cause phase transition to a liquid crystal phase by itself. Therefore, the mesogen compound may be a liquid crystal compound capable of causing a phase transition to a liquid crystal phase alone, or may be a non-liquid crystal compound not causing a phase transition to a liquid crystal phase alone. Examples of mesogenic frameworks include rigid rod-like or disk-like shaped units. For the mesogen skeleton, see Pure Appl. Chem. 2001, 73 (5), 888 and C.I. Tschierske, G., et al. Pelzl, S. Diele, Angew. Chem. 2004, 116, 6340-6368.
 光学異方性層において、メソゲン化合物は、その配向状態が固定されていてもよい。例えば、メソゲン化合物は、重合によって、当該メソゲン化合物の配向状態が固定されていてもよい。通常、重合により、メソゲン化合物は、そのメソゲン化合物の配向状態を維持したまま重合体となりうるので、前記の重合により、メソゲン化合物の配向状態が固定される。よって、用語「配向状態が固定されたメソゲン化合物」には、メソゲン化合物の重合体が包含される。したがって、メソゲン化合物が液晶性を有する液晶化合物である場合、この液晶化合物は、光学異方性層において、液晶相を呈していてもよく、配向状態が固定化されることによって液晶相を呈していなくてもよい。 In the optically anisotropic layer, the orientation state of the mesogen compound may be fixed. For example, in the mesogen compound, the orientation state of the mesogen compound may be fixed by polymerization. In general, since the mesogen compound can be a polymer while maintaining the orientation state of the mesogen compound by polymerization, the orientation state of the mesogen compound is fixed by the above-mentioned polymerization. Thus, the term "mesogenic compound with fixed orientation" includes polymers of mesogenic compounds. Therefore, when the mesogen compound is a liquid crystal compound having liquid crystallinity, this liquid crystal compound may exhibit a liquid crystal phase in the optically anisotropic layer, and exhibits a liquid crystal phase by fixing the alignment state. It does not have to be.
 前記のメソゲン化合物としては、逆波長分散液晶化合物、逆波長メソゲン化合物、又はこれらの組み合わせを用いうる。 As the mesogen compound, a reverse wavelength dispersion liquid crystal compound, a reverse wavelength mesogen compound, or a combination thereof can be used.
 ここで、逆波長分散液晶化合物とは、下記の要件(i)及び(ii)を全て満たす化合物を意味する。
 (i)逆波長分散液晶化合物は、液晶性を示す。
 (ii)逆波長分散液晶化合物は、ホモジニアス配向した場合に逆波長分散性の面内レターデーションを示す。
Here, the reverse wavelength dispersion liquid crystal compound means a compound which satisfies all the following requirements (i) and (ii).
(I) The reverse wavelength dispersion liquid crystal compound exhibits liquid crystallinity.
(Ii) The reverse wavelength dispersion liquid crystal compound exhibits an in-plane retardation of reverse wavelength dispersion when it is homogeneously aligned.
 また、逆波長メソゲン化合物とは、下記の要件(iii)、要件(iv)及び要件(v)を全て満たす化合物を意味する。
 (iii)逆波長メソゲン化合物は、単独では液晶性を示さない。
 (iv)逆波長メソゲン化合物を含む特定の評価用混合物が、液晶性を示す。
 (v)前記評価用混合物がホモジニアス配向した場合に、逆波長メソゲン化合物が逆波長分散性の面内レターデーションを示す。
 前記の評価用混合物とは、ホモジニアス配向した場合に順波長分散性の面内レターデーションを示す評価用液晶化合物に、前記の逆波長メソゲン化合物を、評価用液晶化合物及び逆波長メソゲン化合物の合計100重量部に対して30重量部~70重量部の少なくともいずれかの割合で混合した混合物である。
In addition, the reverse wavelength mesogen compound means a compound that satisfies all of the following requirements (iii), (iv) and (v).
(Iii) The reverse wavelength mesogen compound does not exhibit liquid crystallinity by itself.
(Iv) The specific evaluation mixture containing the reverse wavelength mesogen compound exhibits liquid crystallinity.
(V) When the evaluation mixture is homogeneously oriented, the reverse wavelength mesogen compound exhibits in-plane retardation of reverse wavelength dispersion.
The above evaluation mixture is a liquid crystal compound for evaluation which exhibits an in-plane retardation of normal wavelength dispersion when homogeneously aligned, the above-mentioned reverse wavelength mesogen compound, a total of 100 for the liquid crystal compound for evaluation and the reverse wavelength mesogen compound. The mixture is a mixture of at least 30 parts by weight and 70 parts by weight with respect to the parts by weight.
 このようなメソゲン化合物を、ポジC重合体と組み合わせて用いることにより、配向膜を用いることなく製造可能な、厚み方向のレターデーションRthが逆波長分散性を示すポジティブCフィルムとして用いられる光学異方性層を実現できる。 Optical anisotropy which can be manufactured without using an alignment film by using such a mesogen compound in combination with a positive C polymer, and which is used as a positive C film in which the retardation Rth in the thickness direction exhibits reverse wavelength dispersion Sex layer can be realized.
 以下、逆波長分散液晶化合物について説明する。
 逆波長分散液晶化合物は、ホモジニアス配向した場合に、逆波長分散性の面内レターデーションを示す。ここで、液晶化合物をホモジニアス配向させる、とは、当該液晶化合物を含む層を形成し、その層における液晶化合物の分子のメソゲン骨格の長軸方向を、前記層の面に平行なある一の方向に配向させることをいう。液晶化合物が配向方向の異なる複数種類のメソゲン骨格を含む場合は、それらのうち最も長い種類のメソゲンが配向する方向が、前記の配向方向となる。液晶化合物がホモジニアス配向しているか否か、及びその配向方向は、AxoScan(Axometrics社製)に代表されるような位相差計を用いた遅相軸方向の測定と、遅相軸方向における入射角毎のレターデーション分布の測定とにより確認しうる。
The reverse wavelength dispersive liquid crystal compound will be described below.
The reverse wavelength dispersion liquid crystal compound exhibits an in-plane retardation of reverse wavelength dispersion when it is homogeneously aligned. Here, to homogeneously align the liquid crystal compound means to form a layer containing the liquid crystal compound, and the major axis direction of the mesogen skeleton of the molecules of the liquid crystal compound in that layer is one direction parallel to the plane of the layer It is meant to be oriented to In the case where the liquid crystal compound contains plural types of mesogen skeletons having different alignment directions, the direction in which the longest type of mesogen is aligned is the alignment direction. Whether or not the liquid crystal compound is homogeneously aligned, and the alignment direction, the measurement of the slow axis direction using a retardation meter represented by AxoScan (manufactured by Axometrics), and the incident angle in the slow axis direction It can confirm by measurement of each retardation distribution.
 逆波長分散液晶化合物を含む液晶層を形成し、その液晶層における液晶化合物の分子のメソゲン骨格の長軸方向を、前記液晶層の面に平行なある一の方向に配向させた場合には、その液晶層の波長450nm及び550nmにおける面内レターデーションRe(L450)及びRe(L550)は、通常、Re(L450)/Re(L550)<1.00を満たす。 When a liquid crystal layer containing a reverse wavelength dispersive liquid crystal compound is formed, and the long axis direction of the mesogen skeleton of the molecules of the liquid crystal compound in the liquid crystal layer is oriented in one direction parallel to the surface of the liquid crystal layer The in-plane retardations Re (L450) and Re (L550) at wavelengths 450 nm and 550 nm of the liquid crystal layer generally satisfy Re (L450) / Re (L550) <1.00.
 さらに、波長450nm、550nm及び650nmにおける前記の液晶層の面内レターデーションRe(L450)、Re(L550)及びRe(L650)は、本発明の所望の効果をより良好に発現させる観点から、Re(L450)<Re(L550)≦Re(L650)を満たすことがより好ましい。 Furthermore, the in-plane retardations Re (L450), Re (L550) and Re (L650) of the liquid crystal layer at wavelengths of 450 nm, 550 nm and 650 nm are more preferable from the viewpoint of better exhibiting the desired effect of the present invention. It is more preferable to satisfy (L450) <Re (L550) ≦ Re (L650).
 逆波長分散液晶化合物としては、例えば、当該逆波長分散液晶化合物の分子中に、主鎖メソゲン骨格と、前記主鎖メソゲン骨格に結合した側鎖メソゲン骨格とを含む化合物を用いうる。主鎖メソゲン骨格及び側鎖メソゲン骨格を含む前記の逆波長分散液晶化合物は、当該逆波長分散液晶化合物が配向した状態において、側鎖メソゲン骨格が主鎖メソゲン骨格と異なる方向に配向しうる。このような場合、複屈折は主鎖メソゲン骨格に対応する屈折率と側鎖メソゲン骨格に対応する屈折率との差として発現するので、結果として、逆波長分散液晶化合物は、ホモジニアス配向した場合に、逆波長分散性の面内レターデーションを示すことができる。 As the reverse wavelength dispersive liquid crystal compound, for example, a compound containing a main chain mesogen skeleton and a side chain mesogen skeleton bonded to the main chain mesogen skeleton in the molecule of the reverse wavelength dispersive liquid crystal compound can be used. In the reverse wavelength dispersive liquid crystal compound containing a main chain mesogen skeleton and a side chain mesogen skeleton, the side chain mesogen skeleton may be oriented in a direction different from that of the main chain mesogen skeleton in a state where the reverse wavelength dispersive liquid crystal compound is aligned. In such a case, birefringence is expressed as the difference between the refractive index corresponding to the main chain mesogen skeleton and the refractive index corresponding to the side chain mesogen skeleton, and as a result, the reverse wavelength dispersive liquid crystal compound is homogeneously aligned. And in-plane retardation of reverse wavelength dispersion.
 例えば主鎖メソゲン骨格及び側鎖メソゲン骨格を有する前記化合物のように、逆波長分散液晶化合物は、通常、一般的な順波長分散液晶化合物の立体形状とは異なる特異的な立体形状を有する。ここで、「順波長分散液晶化合物」とは、ホモジニアス配向した場合に、順波長分散性の面内レターデーションを示しうる液晶化合物をいう。また、順波長分散性の面内レターデーションとは、測定波長が大きいほど面内レターデーションが小さくなる面内レターデーションを表す。逆波長分散液晶化合物がこのように特異的な立体形状を有することが、本発明の効果が得られる一因になっているものと推察される。 For example, like the compounds having a main chain mesogen skeleton and a side chain mesogen skeleton, the reverse wavelength dispersive liquid crystal compound usually has a specific steric shape different from the steric shape of a general forward wavelength dispersive liquid crystal compound. Here, the “forward wavelength dispersive liquid crystal compound” refers to a liquid crystal compound capable of exhibiting in-plane retardation of forward wavelength dispersion when it is homogeneously aligned. Further, the in-plane retardation of the forward wavelength dispersion refers to the in-plane retardation in which the in-plane retardation decreases as the measurement wavelength increases. It is surmised that the fact that the reverse wavelength dispersion liquid crystal compound has such a specific three-dimensional shape is one factor for obtaining the effects of the present invention.
 逆波長分散液晶化合物のCN点は、好ましくは25℃以上、より好ましくは45℃以上、特に好ましくは60℃以上であり、好ましくは120℃以下、より好ましくは110℃以下、特に好ましくは100℃以下である。ここで、「CN点」とは、結晶-ネマチック相転移温度のことをいう。前記の範囲にCN点を有する逆波長分散液晶化合物を用いることにより、光学異方性層を容易に製造することが可能である。 The CN point of the reverse wavelength dispersion liquid crystal compound is preferably 25 ° C. or more, more preferably 45 ° C. or more, particularly preferably 60 ° C. or more, preferably 120 ° C. or less, more preferably 110 ° C. or less, particularly preferably 100 ° C. It is below. Here, the “CN point” refers to the crystal-nematic phase transition temperature. An optically anisotropic layer can be easily produced by using a reverse wavelength dispersive liquid crystal compound having a CN point in the above range.
 逆波長分散液晶化合物の分子量は、単量体である場合は、好ましくは300以上、より好ましくは700以上、特に好ましくは1000以上であり、好ましくは2000以下、より好ましくは1700以下、特に好ましくは1500以下である。逆波長分散液晶化合物が前記のような分子量を有することにより、光学異方性層を形成するための塗工液の塗工性を特に良好にできる。 The molecular weight of the reverse wavelength dispersive liquid crystal compound is preferably 300 or more, more preferably 700 or more, particularly preferably 1000 or more, and preferably 2000 or less, more preferably 1700 or less, particularly preferably a monomer when it is a monomer. It is 1500 or less. When the reverse wavelength dispersion liquid crystal compound has a molecular weight as described above, the coatability of the coating liquid for forming the optically anisotropic layer can be made particularly favorable.
 前記の逆波長分散液晶化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The above-mentioned reverse wavelength dispersive liquid crystal compounds may be used alone or in combination of two or more at an arbitrary ratio.
 逆波長分散液晶化合物としては、例えば特開2014-123134号公報に記載されたものが挙げられる。また、逆波長分散液晶化合物としては、例えば、下記式(Ia)で表される化合物のうち、液晶性を示す化合物が挙げられる。以下の説明において、式(Ia)で表される化合物を、適宜「化合物(Ia)」ということがある。 Examples of the reverse wavelength dispersive liquid crystal compound include those described in JP-A-2014-123134. Moreover, as a reverse wavelength dispersion liquid crystal compound, the compound which shows liquid crystallinity is mentioned among the compounds represented by following formula (Ia), for example. In the following description, the compound represented by the formula (Ia) may be referred to as “compound (Ia)” as appropriate.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記式(Ia)において、A1aは、芳香族炭化水素環および芳香族複素環からなる群より選ばれる少なくとも1つの芳香環を有する炭素数1~67の有機基を置換基として有する芳香族炭化水素環基;または、芳香族炭化水素環および芳香族複素環からなる群より選ばれる少なくとも1つの芳香環を有する炭素数1~67の有機基を置換基として有する芳香族複素環基;を表す。 In the above formula (Ia), A 1a is an aromatic carbon having, as a substituent, an organic group having 1 to 67 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring A hydrogen ring group; or an aromatic heterocyclic group having, as a substituent, an organic group having 1 to 67 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring; .
 A1aの具体例としては、式:-RC(=N-N(R)R)、あるいは式:-RC(=N-N=C(Rg1)R)で表される基で置換されたフェニレン基;1-ベンゾフラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;5-(2-ブチル)-1-ベンゾフラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;4,6-ジメチル-1-ベンゾフラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;6-メチル-1-ベンゾフラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;4,6,7-トリメチル-1-ベンゾフラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;4,5,6-トリメチル-1-ベンゾフラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;5-メチル-1-ベンゾフラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;5-プロピル-1-ベンゾフラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;7-プロピル-1-ベンゾフラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;5-フルオロ-1-ベンゾフラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;フェニル基で置換されたベンゾチアゾール-4,7-ジイル基;4-フルオロフェニル基で置換されたベンゾチアゾール-4,7-ジイル基;4-ニトロフェニル基で置換されたベンゾチアゾール-4,7-ジイル基;4-トリフルオロメチルフェニル基で置換されたベンゾチアゾール-4,7-ジイル基;4-シアノフェニル基で置換されたベンゾチアゾール-4,7-ジイル基;4-メタンスルホニルフェニル基で置換されたベンゾチアゾール-4,7-ジイル基;チオフェン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;チオフェン-3-イル基で置換されたベンゾチアゾール-4,7-ジイル基;5-メチルチオフェン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;5-クロロチオフェン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;チエノ[3,2-b]チオフェン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;2-ベンゾチアゾリル基で置換されたベンゾチアゾール-4,7-ジイル基;4-ビフェニル基で置換されたベンゾチアゾール-4,7-ジイル基;4-プロピルビフェニル基で置換されたベンゾチアゾール-4,7-ジイル基;4-チアゾリル基で置換されたベンゾチアゾール-4,7-ジイル基;1-フェニルエチレン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;4-ピリジル基で置換されたベンゾチアゾール-4,7-ジイル基;2-フリル基で置換されたベンゾチアゾール-4,7-ジイル基;ナフト[1,2-b]フラン-2-イル基で置換されたベンゾチアゾール-4,7-ジイル基;5-メトキシ-2-ベンゾチアゾリル基で置換された1H-イソインドール-1,3(2H)-ジオン-4,7-ジイル基;フェニル基で置換された1H-イソインドール-1,3(2H)-ジオン-4,7-ジイル基;4-ニトロフェニル基で置換された1H-イソインドール-1,3(2H)-ジオン-4,7-ジイル基;または、2-チアゾリル基で置換された1H-イソインドール-1,3(2H)-ジオン-4,7-ジイル基;等が挙げられる。ここで、Rは、後述するQと同じ意味を表す。RおよびRg1は、それぞれ独立して、後述するAと同じ意味を表し、Rは、後述するAと同じ意味を表す。 As a specific example of A 1a , a table is represented by the formula: -R f C (= N-N (R g ) R h ) or the formula:-R f C (= N-N = C (R g1 ) R h ) Substituted phenylene group; benzothiazol-4,7-diyl group substituted by 1-benzofuran-2-yl group; substituted by 5- (2-butyl) -1-benzofuran-2-yl group Benzothiazole-4,7-diyl; benzothiazole-4,7-diyl substituted by 4,6-dimethyl-1-benzofuran-2-yl; 6-methyl-1-benzofuran-2- Substituted benzothiazole-4,7-diyl; 4,6,7-trimethyl-1-benzofuran-2-yl substituted benzothiazole-4,7-diyl; 4,5, 6-trimethyl-1-benzofuran-2-yl group Substituted benzothiazole-4,7-diyl group; benzothiazole-4,7-diyl group substituted by 5-methyl-1-benzofuran-2-yl group; 5-propyl-1-benzofuran-2-yl group -Substituted benzothiazol-4,7-diyl; 7-propyl-1-benzofuran-2-yl substituted benzothiazol-4,7-diyl; 5-fluoro-1-benzofuran-2 -Yl substituted benzothiazole-4,7-diyl; phenyl substituted benzothiazole-4,7-diyl; 4-fluorophenyl substituted benzothiazole-4,7-diyl A benzothiazole-4,7-diyl group substituted by 4-nitrophenyl group; a benzothiazole-4 substituted by 4-trifluoromethylphenyl group, -Diyl group; benzothiazole-4,7-diyl group substituted by 4-cyanophenyl group; benzothiazole-4,7-diyl group substituted by 4-methanesulfonylphenyl group; thiophen-2-yl group Substituted benzothiazole-4,7-diyl group; benzothiazole-4,7-diyl group substituted by thiophen-3-yl group; benzothiazole-4 substituted by 5-methylthiophen-2-yl group 5, 7-diyl; benzothiazole-4, 7-diyl substituted by 5-chlorothiophen-2-yl; benzothiazole substituted by thieno [3, 2-b] thiophen-2-yl 4,7-diyl group; benzothiazole-4,7-diyl group substituted by 2-benzothiazolyl group; benzothiazole substituted by 4-biphenyl group 4-, 7-diyl group; benzothiazole-4, 7-diyl group substituted with 4-propylbiphenyl group; benzothiazole-4, 7-diyl group substituted with 4-thiazolyl group; 1-phenylethylene-2- -Substituted benzothiazole-4,7-diyl; 4-pyridyl-substituted benzothiazole-4,7-diyl; 2-furyl-substituted benzothiazole-4,7-diyl A benzothiazole-4,7-diyl group substituted with a naphtho [1,2-b] furan-2-yl group; 1H-isoindole-1,3 substituted with a 5-methoxy-2-benzothiazolyl group; (2H) -dione-4,7-diyl group; 1H-isoindole-1,3 (2H) -dione-4,7-diyl group substituted by phenyl group; substituted by 4-nitrophenyl group 1H-isoindole-1,3 (2H) -dione-4,7-diyl group; or 1H-isoindole-1,3 (2H) -dione-4,7 substituted with 2-thiazolyl group -Diyl group; and the like. Here, R f has the same meaning as Q 1 described later. R g and R g1 each independently represent the same meaning as A y described later, and R h represents the same meaning as A x described later.
 前記式(Ia)において、Y1a~Y8aは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。 In Formula (Ia), each of Y 1a to Y 8a independently represents a chemical single bond, —O—, —S—, —O—C (= O) —, —C (= O) — O-, -O-C (= O) -O-, -NR 1 -C (= O)-, -C (= O) -NR 1- , -O-C (= O) -NR 1- , -NR 1 -C (= O) -O-, -NR 1 -C (= O) -NR 1- , -O-NR 1- , or -NR 1 -O-. Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 前記式(Ia)において、G1a及びG2aは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。 In Formula (Ia), G 1a and G 2a each independently represent a divalent aliphatic group having 1 to 20 carbon atoms which may have a substituent. In addition, in the aliphatic group, one or more -O-, -S-, -O-C (= O)-, -C (= O) -O-, -O-C per aliphatic group. (= O) -O -, - NR 2 -C (= O) -, - C (= O) -NR 2 -, - NR 2 -, or, -C (= O) - is be interposed Good. However, it excludes the case where two or more -O- or -S- are adjacent to each other. Here, R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 前記式(Ia)において、Z1a及びZ2aは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。 In the formula (Ia), Z 1a and Z 2a each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted by a halogen atom.
 前記式(Ia)において、A2a及びA3aは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。 In the formula (Ia), each of A 2a and A 3a independently represents a divalent C 3-30 alicyclic hydrocarbon group which may have a substituent.
 前記式(Ia)において、A4a及びA5aは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。 In the formula (Ia), each of A 4a and A 5a independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
 前記式(Ia)において、k及びlは、それぞれ独立に、0又は1を表す。 In Formula (Ia), k and l each independently represent 0 or 1.
 但し、前記式(Ia)において、Z1a-Y7a-及び-Y8a-Z2aの一方又は両方は、アクリロイルオキシ基である。 However, in the formula (Ia), one or both of Z 1a -Y 7a -and -Y 8a -Z 2a are an acryloyloxy group.
 逆波長分散液晶化合物の特に好適な具体例としては、下記式(I)で表される化合物のうち、液晶性を示す化合物が挙げられる。以下の説明において、式(I)で表される化合物を、適宜「化合物(I)」ということがある。 Among the compounds represented by the following formula (I), particularly preferable examples of the reverse wavelength dispersion liquid crystal compound include a compound exhibiting liquid crystallinity. In the following description, the compound represented by the formula (I) may be referred to as “compound (I)” as appropriate.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 化合物(I)は、通常、下記式で表すように、基-Y-A-Y-(A-Y-A-(Y-A-Y-A-Y-からなる主鎖メソゲン骨格1a、及び、基>A-C(Q)=N-N(A)Aからなる側鎖メソゲン骨格1bの2つのメソゲン骨格を含む。また、これらの主鎖メソゲン骨格1a及び側鎖メソゲン骨格1bは、互いに交差している。上記の主鎖メソゲン骨格1a及び側鎖メソゲン骨格1bをあわせて1つのメソゲン骨格とすることもできるが、本発明では、2つのメソゲン骨格に分けて表記する。 Compound (I) is usually, as represented by the following formula, based -Y 5 -A 4 -Y 3 - ( A 2 -Y 1) n -A 1 - (Y 2 -A 3) m -Y 4 - It contains two mesogen skeletons of a main chain mesogen skeleton 1a consisting of A 5 -Y 6- and a side chain mesogen skeleton 1b consisting of a group> A 1 -C (Q 1 ) = N-N (A x ) A y . In addition, the main chain mesogen skeleton 1a and the side chain mesogen skeleton 1b cross each other. The main chain mesogen skeleton 1a and the side chain mesogen skeleton 1b may be combined to form one mesogen skeleton, but in the present invention, they are divided into two mesogen skeletons.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 主鎖メソゲン骨格1aの長軸方向における屈折率をn1、側鎖メソゲン骨格1bの長軸方向における屈折率をn2とする。この際、屈折率n1の絶対値及び波長分散性は、通常、主鎖メソゲン骨格1aの分子構造に依存する。また、屈折率n2の絶対値及び波長分散性は、通常、側鎖メソゲン骨格1bの分子構造に依存する。ここで、液晶相において化合物(I)は、通常、主鎖メソゲン骨格1aの長軸方向を回転軸として回転運動を行うので、ここでいう屈折率n1及びn2とは、回転体としての屈折率を表している。 The refractive index in the long axis direction of the main chain mesogen skeleton 1a is n1, and the refractive index in the long axis direction of the side chain mesogen skeleton 1b is n2. At this time, the absolute value of the refractive index n1 and the wavelength dispersion generally depend on the molecular structure of the main chain mesogen skeleton 1a. Further, the absolute value of the refractive index n2 and the wavelength dispersion generally depend on the molecular structure of the side chain mesogen skeleton 1b. Here, in the liquid crystal phase, the compound (I) usually performs rotational movement with the long axis direction of the main chain mesogen skeleton 1a as the axis of rotation, so the refractive indices n1 and n2 referred to here are the refractive index as a rotator Represents
 主鎖メソゲン骨格1a及び側鎖メソゲン骨格1bの分子構造に由来して、屈折率n1の絶対値は屈折率n2の絶対値より大きい。さらに、屈折率n1及びn2は、通常、順波長分散性を示す。ここで、順波長分散性の屈折率とは、測定波長が大きいほど当該屈折率の絶対値が小さくなる屈折率を表す。主鎖メソゲン骨格1aの屈折率n1は、小さい程度の順波長分散性を示す。よって、長波長で測定した屈折率n1は、短波長で測定した屈折率よりも小さくなるが、それらの差は小さい。これに対し、側鎖メソゲン骨格1bの屈折率n2は、大きな程度の順波長分散性を示す。よって、長波長で測定した屈折率n2は、短波長で測定した屈折率n2よりも小さくなり、且つ、それらの差は大きい。そのため、測定波長が短いと屈折率n1と屈折率n2との差Δnは小さく、測定波長が長いと屈折率n1と屈折率n2との差Δnが大きくなる。このようにして、主鎖メソゲン骨格1a及び側鎖メソゲン骨格1bに由来して、化合物(I)は、ホモジニアス配向した場合に、逆波長分散性の面内レターデーションを示しうる。 The absolute value of the refractive index n1 is larger than the absolute value of the refractive index n2 derived from the molecular structures of the main chain mesogen skeleton 1a and the side chain mesogen skeleton 1b. Furthermore, the refractive indices n1 and n2 usually show forward wavelength dispersion. Here, the forward wavelength dispersive refractive index represents a refractive index in which the absolute value of the refractive index decreases as the measurement wavelength increases. The refractive index n1 of the main chain mesogen skeleton 1a exhibits a small degree of forward wavelength dispersion. Therefore, although the refractive index n1 measured by long wavelength becomes smaller than the refractive index measured by short wavelength, those differences are small. On the other hand, the refractive index n2 of the side chain mesogen skeleton 1b exhibits a large degree of forward wavelength dispersion. Therefore, the refractive index n2 measured at the long wavelength is smaller than the refractive index n2 measured at the short wavelength, and the difference between them is large. Therefore, when the measurement wavelength is short, the difference Δn between the refractive index n1 and the refractive index n2 is small, and when the measurement wavelength is long, the difference Δn between the refractive index n1 and the refractive index n2 becomes large. Thus, the compound (I) can exhibit reverse wavelength dispersion in-plane retardation when homogeneously oriented, which is derived from the main chain mesogen skeleton 1a and the side chain mesogen skeleton 1b.
 前記式(I)において、Y~Yは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。 In Formula (I), each of Y 1 to Y 8 independently represents a chemical single bond, —O—, —S—, —O—C (= O) —, —C (= O) — O-, -O-C (= O) -O-, -NR 1 -C (= O)-, -C (= O) -NR 1- , -O-C (= O) -NR 1- , -NR 1 -C (= O) -O-, -NR 1 -C (= O) -NR 1- , -O-NR 1- , or -NR 1 -O-. Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 前記式(I)において、G及びGは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。 In the formula (I), G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms which may have a substituent. In addition, in the aliphatic group, one or more -O-, -S-, -O-C (= O)-, -C (= O) -O-, -O-C per aliphatic group. (= O) -O -, - NR 2 -C (= O) -, - C (= O) -NR 2 -, - NR 2 -, or, -C (= O) - is be interposed Good. However, it excludes the case where two or more -O- or -S- are adjacent to each other. Here, R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 前記式(I)において、Z及びZは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。 In the formula (I), Z 1 and Z 2 each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted by a halogen atom.
 前記式(I)において、Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。「芳香環」は、Huckel則に従う広義の芳香族性を有する環状構造、すなわち、π電子を(4n+2)個有する環状共役構造、及びチオフェン、フラン、ベンゾチアゾール等に代表される、硫黄、酸素、窒素等のヘテロ原子の孤立電子対がπ電子系に関与して芳香族性を示す環状構造を意味する。 In the formula (I), A x represents an organic group having 2 to 30 carbon atoms, which has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle. The “aromatic ring” is a cyclic structure having a broad aromaticity according to Huckel's rule, that is, a cyclic conjugated structure having (4n + 2) π electrons, and sulfur, oxygen, typified by thiophene, furan, benzothiazole, etc. It refers to a cyclic structure in which a lone electron pair of a heteroatom such as nitrogen participates in the π electron system to exhibit aromaticity.
 前記芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。前記芳香族複素環としては、ピロール環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピラゾール環、イミダゾール環、オキサゾール環、チアゾール環等の単環の芳香族複素環;ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、フタラジン環、ベンゾイミダゾール環、ベンゾピラゾール環、ベンゾフラン環、ベンゾチオフェン環、チアゾロピリジン環、オキサゾロピリジン環、チアゾロピラジン環、オキサゾロピラジン環、チアゾロピリダジン環、オキサゾロピリダジン環、チアゾロピリミジン環、オキサゾロピリミジン環等の縮合環の芳香族複素環;が挙げられる。 As said aromatic hydrocarbon ring, a benzene ring, a naphthalene ring, an anthracene ring etc. are mentioned, for example. Examples of the aromatic heterocyclic ring include monocyclic aromatic heterocyclic rings such as pyrrole ring, furan ring, thiophene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring; Benzothiazole ring, benzoxazole ring, quinoline ring, phthalazine ring, benzoimidazole ring, benzopyrazole ring, benzofuran ring, benzothiophene ring, thiazolopyridine ring, oxazolopyridine ring, thiazolopyrazine ring, oxazolopyrazine ring, thia And aromatic heterocyclic rings of fused rings such as a zolopyridazine ring, an oxazolopyridazine ring, a thiazolopyrimidine ring, and an oxazolopyrimidine ring.
 前記式(I)において、Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記A及びAが有する芳香環は、置換基を有していてもよい。また、前記AとAは、一緒になって、環を形成していてもよい。 In the formula (I), A y is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, A cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, -C (= O) -R 3 , -SO 2 An organic group having 2 to 30 carbon atoms, which has at least one aromatic ring selected from the group consisting of -R 4 , -C (= S) NH-R 9 , or an aromatic hydrocarbon ring and an aromatic heterocycle Represent. Here, R 3 has an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms. R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group or a 4-methylphenyl group. R 9 is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, carbon which may have a substituent And a cycloalkyl group of 3 to 12 or an aromatic group of 5 to 20 carbon atoms which may have a substituent. The aromatic ring which said A x and A y has may have a substituent. The A x and A y may be taken together to form a ring.
 前記式(I)において、Aは、置換基を有していてもよい三価の芳香族基を表す。
 前記式(I)において、A及びAは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
 前記式(I)において、A及びAは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
 前記式(I)において、Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を示す。
 前記式(I)において、mおよびnは、それぞれ独立に、0又は1を表す。
 但し、前記式(I)において、Z-Y-及び-Y-Zの一方又は両方は、アクリロイルオキシ基である。
In Formula (I), A 1 represents a trivalent aromatic group which may have a substituent.
In the formula (I), each of A 2 and A 3 independently represents a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
In the formula (I), each of A 4 and A 5 independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
In the formula (I), Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
In the formula (I), m and n each independently represent 0 or 1.
However, in the formula (I), one or both of Z 1 -Y 7 -and -Y 8 -Z 2 are an acryloyloxy group.
 化合物(I)の具体例としては、国際公開第2016/171169号、国際公開第2017/057005号、及び国際公開第2016/190435号に記載される化合物が挙げられる。また、化合物(I)の製造は、これらの文献に記載される方法により行いうる。 Specific examples of the compound (I) include the compounds described in WO 2016/171169, WO 2017/057005, and WO 2016/190435. Also, the production of compound (I) can be carried out by the methods described in these documents.
 次に、逆波長メソゲン化合物について説明する。
 逆波長メソゲン化合物は、単独では液晶性を示さず、評価用液晶化合物と特定の混合割合で混合した評価用混合物が液晶性を示す化合物である。評価用液晶化合物としては、ホモジニアス配向した場合に順波長分散性の面内レターデーションを示す液晶化合物である順波長分散液晶化合物を用いる。評価用液晶化合物として順波長分散液晶化合物を用いることにより、評価用混合物をホモジニアス配向させた場合の逆波長メソゲン化合物の面内レターデーションの波長分散性の評価を容易に行うことができる。中でも、評価用液晶化合物としては、100℃において液晶相となりうる棒状構造を有する液晶化合物が好ましい。特に好ましい評価用液晶化合物の具体例としては、下記式(E1)に示す構造を有する順波長分散液晶化合物(Paliocolor(登録商標) LC242(BASF社製))、下記式(E2)に示す構造を有する順波長分散液晶化合物等が挙げられる。下記の式において、Meはメチル基を表す。
Next, the reverse wavelength mesogen compound is described.
The reverse wavelength mesogen compound is a compound which does not exhibit liquid crystallinity alone, and in which the mixture for evaluation mixed with the liquid crystal compound for evaluation at a specific mixing ratio exhibits liquid crystallinity. As a liquid crystal compound for evaluation, a normal wavelength dispersive liquid crystal compound which is a liquid crystal compound which exhibits in-plane retardation of normal wavelength dispersion when homogeneously aligned is used. By using a normal wavelength dispersive liquid crystal compound as the liquid crystal compound for evaluation, it is possible to easily evaluate the wavelength dispersion of in-plane retardation of the reverse wavelength mesogen compound in the case where the mixture for evaluation is homogeneously aligned. Among them, as a liquid crystal compound for evaluation, a liquid crystal compound having a rod-like structure which can be a liquid crystal phase at 100 ° C. is preferable. As a specific example of the particularly preferable liquid crystal compound for evaluation, a forward wavelength dispersive liquid crystal compound (Paliocolor (registered trademark) LC242 (manufactured by BASF)) having a structure represented by the following formula (E1), a structure represented by the following formula (E2) And the forward wavelength dispersion liquid crystal compound etc. which it has. In the following formulae, Me represents a methyl group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、前記の評価用混合物を得るために評価用液晶化合物と混合する逆波長メソゲン化合物の混合割合は、評価用液晶化合物及び逆波長メソゲン化合物の合計100重量部に対して、通常、30重量部~70重量部の少なくともいずれかである。よって、評価用液晶化合物及び逆波長メソゲン化合物の合計100重量部に対して逆波長メソゲン化合物を30重量部~70重量部の範囲に含まれる少なくとも一の混合割合で混合して、液晶性を示す評価用混合物が得られる限り、評価用液晶化合物及び逆波長メソゲン化合物の合計100重量部に対して逆波長メソゲン化合物を30重量部~70重量部の範囲に含まれる別の混合割合で混合して得た混合物が、液晶性を示さなくてもよい。 In addition, the mixing ratio of the reverse wavelength mesogen compound mixed with the liquid crystal compound for evaluation to obtain the above mixture for evaluation is usually 30 parts by weight with respect to a total of 100 parts by weight of the liquid crystal compound for evaluation and the reverse wavelength mesogen compound It is at least one of ̃70 parts by weight. Therefore, the liquid crystal compound exhibits the liquid crystallinity by mixing the reverse wavelength mesogen compound in the mixing ratio of 30 parts by weight to 70 parts by weight with respect to 100 parts by weight in total of the liquid crystal compound for evaluation and the reverse wavelength mesogen compound. As long as a mixture for evaluation is obtained, the reverse wavelength mesogen compound is mixed at another mixing ratio within the range of 30 parts by weight to 70 parts by weight with respect to a total of 100 parts by weight of the liquid crystal compound for evaluation and the reverse wavelength mesogen compound. The obtained mixture may not exhibit liquid crystallinity.
 評価用混合物が液晶性を示すことは、下記の方法によって確認しうる。
 基材上に評価用混合物を塗布及び乾燥させて、基材及び評価用混合物の層を備えるサンプルフィルムを得る。このサンプルフィルムをホットステージ上に設置する。偏光顕微鏡によってサンプルフィルムを観察しながら、サンプルフィルムを昇温させる。評価用混合物の層の液晶相への相転移が観察された場合、評価用混合物が液晶性を示すと判定できる。
The liquid crystallinity of the mixture for evaluation can be confirmed by the following method.
The evaluation mixture is applied onto the substrate and dried to obtain a sample film comprising the substrate and a layer of the evaluation mixture. The sample film is placed on a hot stage. The sample film is heated while observing the sample film by a polarization microscope. When the phase transition to the liquid crystal phase of the layer of the mixture for evaluation is observed, it can be determined that the mixture for evaluation exhibits liquid crystallinity.
 また、前記の評価用混合物をホモジニアス配向させた場合に、その評価用混合物中の逆波長メソゲン化合物は、逆波長分散性の面内レターデーションを示す。ここで、評価用混合物をホモジニアス配向させる、とは、当該評価用混合物の層を形成し、その層における評価用液晶化合物をホモジニアス配向させることをいう。よって、ホモジニアス配向した評価用混合物において、評価用液晶化合物の分子のメソゲン骨格の長軸方向は、通常、前記層の面に平行なある一の方向に配向している。 Further, when the evaluation mixture is homogeneously oriented, the reverse wavelength mesogen compound in the evaluation mixture exhibits in-plane retardation of reverse wavelength dispersion. Here, homogeneously aligning the mixture for evaluation means forming a layer of the mixture for evaluation and homogeneously aligning the liquid crystal compound for evaluation in the layer. Therefore, in the homogeneously oriented mixture for evaluation, the long axis direction of the mesogen skeleton of the molecules of the liquid crystal compound for evaluation is usually oriented in one direction parallel to the plane of the layer.
 また、ホモジニアス配向した評価用混合物中の逆波長メソゲン化合物が逆波長分散性の面内レターデーションを示す、とは、評価用混合物に含まれる逆波長メソゲン化合物の波長450nm及び550nmにおける面内レターデーションRe(450)及びRe(550)が、Re(450)/Re(550)<1.00を満たすことをいう。 In addition, the in-plane retardation at a wavelength of 450 nm and 550 nm of the reverse wavelength mesogen compound contained in the mixture for evaluation is that the reverse wavelength mesogen compound in the homogeneously oriented evaluation mixture exhibits reverse wavelength dispersive in-plane retardation. It means that Re (450) and Re (550) satisfy Re (450) / Re (550) <1.00.
 ただし、評価用混合物の層において、逆波長メソゲン化合物の面内レターデーションだけを選択的に測定することは、難しい。そこで、評価用液晶化合物が順波長分散液晶化合物であることを利用して、下記の確認方法により、評価用混合物中の逆波長メソゲン化合物が逆波長分散性の面内レターデーションを示すことを確認しうる。
 順波長分散液晶化合物としての評価用液晶化合物を含む液晶層を形成し、その液晶層において評価用液晶化合物をホモジニアス配向させる。そして、その液晶層の波長450nm及び550nmにおける面内レターデーションRe(X450)及びRe(X550)の比Re(X450)/Re(X550)を測定する。
 また、前記の評価用液晶化合物及び逆波長メソゲン化合物を含む評価用混合物の層を形成し、その評価用混合物の層において評価用混合物をホモジニアス配向させる。そして、その評価用混合物の層の波長450nm及び550nmにおける面内レターデーションRe(Y450)及びRe(Y550)の比Re(Y450)/Re(Y550)を測定する。
 測定の結果、逆波長メソゲン化合物を含まない液晶層のレターデーション比Re(X450)/Re(X550)よりも、逆波長メソゲン化合物を含む評価用混合物の層のレターデーション比Re(Y450)/Re(Y550)が小さい場合、その逆波長メソゲン化合物は、逆波長分散性の面内レターデーションを示すと判定できる。
 また、本発明の所望の効果をより良好に発現させる観点から、前記の確認方法において、液晶層の波長550nm及び650nmにおける面内レターデーションRe(X550)及びRe(X650)の比Re(X650)/Re(X550)よりも、評価用混合物の層の波長550nm及び650nmにおける面内レターデーションRe(Y550)及びRe(Y650)の比Re(Y650)/Re(Y550)の方が、大きいことが好ましい。
However, it is difficult to selectively measure only the in-plane retardation of the reverse wavelength mesogen compound in the layer of the mixture for evaluation. Therefore, using the fact that the liquid crystal compound for evaluation is a forward wavelength dispersion liquid crystal compound, it is confirmed that the reverse wavelength mesogen compound in the mixture for evaluation exhibits in-plane retardation of reverse wavelength dispersion by the following confirmation method. It can.
A liquid crystal layer containing a liquid crystal compound for evaluation as a forward wavelength dispersive liquid crystal compound is formed, and in the liquid crystal layer, the liquid crystal compound for evaluation is homogeneously aligned. Then, the ratio Re (X450) / Re (X550) of in-plane retardation Re (X450) and Re (X550) at the wavelengths 450 nm and 550 nm of the liquid crystal layer is measured.
Further, a layer of a mixture for evaluation containing the liquid crystal compound for evaluation and the reverse wavelength mesogen compound is formed, and the mixture for evaluation is homogeneously aligned in the layer of the mixture for evaluation. Then, the ratio Re (Y450) / Re (Y550) of in-plane retardations Re (Y450) and Re (Y550) at the wavelengths 450 nm and 550 nm of the layer of the mixture for evaluation is measured.
As a result of the measurement, the retardation ratio Re (Y450) / Re of the layer of the evaluation mixture containing the reverse wavelength mesogen compound is higher than the retardation ratio Re (X450) / Re (X550) of the liquid crystal layer not containing the reverse wavelength mesogen compound When (Y550) is small, it can be determined that the reverse wavelength mesogen compound exhibits an in-plane retardation of reverse wavelength dispersion.
Further, from the viewpoint of achieving the desired effects of the present invention better, in the above confirmation method, the ratio Re (X650) of the in-plane retardation Re (X550) and Re (X650) at the wavelengths 550 nm and 650 nm of the liquid crystal layer The ratio Re (Y650) / Re (Y550) of the in-plane retardation Re (Y550) and Re (Y650) of the layer of the mixture for evaluation at wavelengths 550 nm and 650 nm is larger than that of Re / X (550) preferable.
 逆波長メソゲン化合物としては、例えば、当該逆波長メソゲン化合物の分子中に、主鎖メソゲン骨格と、前記主鎖メソゲン骨格に結合した側鎖メソゲン骨格とを含む化合物を用いうる。 As the reverse wavelength mesogen compound, for example, a compound containing a main chain mesogen skeleton and a side chain mesogen skeleton bonded to the main chain mesogen skeleton in the molecule of the reverse wavelength mesogen compound can be used.
 さらに、逆波長メソゲン化合物は、重合性を有することが好ましい。よって、逆波長メソゲン化合物は、重合性基を有することが好ましい。このように重合性を有する逆波長メソゲン化合物を用いれば、重合によって逆波長メソゲン化合物の配向状態を容易に固定することが可能である。そのため、安定な光学特性を有する光学異方性層を容易に得ることができる。 Furthermore, it is preferable that the reverse wavelength mesogen compound has polymerizability. Therefore, it is preferable that the reverse wavelength mesogen compound has a polymerizable group. As described above, when the reverse wavelength mesogen compound having a polymerizability is used, it is possible to easily fix the alignment state of the reverse wavelength mesogen compound by polymerization. Therefore, an optically anisotropic layer having stable optical properties can be easily obtained.
 逆波長メソゲン化合物の分子量は、単量体である場合は、好ましくは300以上、より好ましくは700以上、特に好ましくは1000以上であり、好ましくは2000以下、より好ましくは1700以下、特に好ましくは1500以下である。逆波長メソゲン化合物が前記のような分子量を有することにより、光学異方性層を形成するための塗工液の塗工性を特に良好にできる。 The molecular weight of the reverse wavelength mesogen compound, in the case of a monomer, is preferably 300 or more, more preferably 700 or more, particularly preferably 1000 or more, preferably 2000 or less, more preferably 1700 or less, particularly preferably 1500. It is below. The coatability of the coating liquid for forming an optically anisotropic layer can be made especially favorable because a reverse wavelength mesogen compound has the above molecular weight.
 前記の逆波長メソゲン化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The above-mentioned reverse wavelength mesogen compounds may be used alone or in combination of two or more at an arbitrary ratio.
 逆波長メソゲン化合物としては、例えば、前記式(Ia)で表される化合物のうち、液晶性を示さない化合物が挙げられる。逆波長メソゲン化合物の好ましい例としては、前記式(I)で表される化合物のうち、液晶性を示さない化合物が挙げられる。中でも特に好ましい逆波長メソゲン化合物としては、下記の化合物が挙げられる。 As a reverse wavelength mesogen compound, the compound which does not show liquid crystallinity among the compounds represented by said Formula (Ia) is mentioned, for example. As a preferable example of a reverse wavelength mesogen compound, the compound which does not show liquid crystallinity is mentioned among the compounds represented by said Formula (I). Among them, the following compounds may be mentioned as particularly preferable reverse wavelength mesogenic compounds.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上述したメソゲン化合物の中でも、本発明の所望の効果をより良好に発現させる観点から、当該メソゲン化合物の分子中に、ベンゾチアゾール環(下記式(10A)の環);並びに、シクロヘキシル環(下記式(10B)の環)及びフェニル環(下記式(10C)の環)の組み合わせ;からなる群より選ばれる少なくとも1種を含有するものが好ましい。 Among the mesogen compounds described above, from the viewpoint of better expressing the desired effect of the present invention, a benzothiazole ring (a ring of the following formula (10A)); and a cyclohexyl ring (the following formula) What contains at least 1 sort (s) chosen from the group which consists of a ring of (10 B) and a phenyl ring (ring of following formula (10 C)); is preferable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 メソゲン化合物を重合させることにより、メソゲン化合物の重合物を得うる。重合の具体的な方法は、特に限定されず、任意の方法としうる。具体的には、メソゲン化合物を含む塗工液に光を照射することにより行いうる。かかる方法の詳細は後述する。 By polymerizing the mesogen compound, a polymer of the mesogen compound can be obtained. The specific method of polymerization is not particularly limited, and may be any method. Specifically, it can be carried out by irradiating a coating solution containing a mesogen compound with light. The details of this method will be described later.
 光学異方性層は、ポジC重合体及びメソゲン化合物の重合物に組み合わせて、メソゲン化合物を含む。具体的には、光学異方性層は、メソゲン化合物の重合物に加えて、重合せず残存した未反応のメソゲン化合物を含みうる。メソゲン化合物の割合は、硬化度Aが本願において規定する特定の範囲となる割合である。 The optically anisotropic layer contains a mesogenic compound in combination with the positive C polymer and the polymer of the mesogenic compound. Specifically, in addition to the polymer of the mesogen compound, the optically anisotropic layer may contain an unreacted mesogen compound remaining without polymerization. The proportion of the mesogenic compound is a proportion at which the degree of curing A falls within the specific range defined in the present application.
 光学異方性層の全固形分におけるメソゲン化合物及びその重合物の比率は、好ましくは20重量%以上、より好ましくは30重量%以上、更に好ましくは35重量%以上、特に好ましくは40重量%以上であり、好ましくは60重量%以下、より好ましくは55重量%以下、更に好ましくは50重量%以下、特に好ましくは45重量%以下である。メソゲン化合物及びその重合物の比率が、前記範囲の下限値以上であることにより、光学異方性層の厚み方向のレターデーションRthの波長分散性を逆分散性に近づけ易くでき、また、前記範囲の上限値以下であることにより、光学異方性層において、メソゲン化合物の重合物を均一に分散させたり、光学異方性層の機械的強度を高くしたりできる。 The proportion of the mesogen compound and the polymer thereof in the total solid content of the optically anisotropic layer is preferably 20% by weight or more, more preferably 30% by weight or more, still more preferably 35% by weight or more, particularly preferably 40% by weight or more Preferably it is 60 weight% or less, More preferably, it is 55 weight% or less, More preferably, it is 50 weight% or less, Especially preferably, it is 45 weight% or less. When the ratio of the mesogen compound and the polymer thereof is at least the lower limit value of the above range, the wavelength dispersion of the retardation Rth in the thickness direction of the optically anisotropic layer can be easily brought close to the reverse dispersion, and the above range In the optically anisotropic layer, the polymer of the mesogen compound can be dispersed uniformly, or the mechanical strength of the optically anisotropic layer can be increased.
 〔1.3.任意の成分〕
 光学異方性層は、ポジC重合体、メソゲン化合物及びメソゲン化合物の重合物に組み合わせて、更に、任意の成分を含みうる。
[1.3. Optional ingredient]
The optically anisotropic layer may further contain optional components in combination with the positive C polymer, the mesogen compound and the polymer of the mesogen compound.
 光学異方性層は、可塑剤を含みうる。光学異方性層が、ポジC重合体としてセルロース誘導体を含む場合、光学異方性層は、セルロース誘導体と組み合わせて、可塑剤を含むことが特に好ましい。可塑剤の例としては、キシリトールペンタアセテート、キシリトールペンタプロピオネート、アラビトールペンタプロピオネート、トリフェニルホスフェート、コハク酸残基とジエチレングリコール残基とを含むポリエステル、およびアジピン酸残基とジエチレングリコール残基とを含むポリエステルが挙げられる。可塑剤の割合は、ポジC重合体及び可塑剤の合計100重量%中、好ましくは2.5重量%以上、より好ましくは10重量%以上であり、好ましくは25重量%以下、より好ましくは20重量%以下である。 The optically anisotropic layer may contain a plasticizer. When the optically anisotropic layer contains a cellulose derivative as a positive C polymer, it is particularly preferable that the optically anisotropic layer contains a plasticizer in combination with the cellulose derivative. Examples of plasticizers include xylitol pentaacetate, xylitol pentapropionate, arabitol pentapropionate, triphenyl phosphate, polyesters containing succinic acid and diethylene glycol residues, and adipic acid residues and diethylene glycol residues And polyesters containing The proportion of the plasticizer is preferably 2.5% by weight or more, more preferably 10% by weight or more, preferably 25% by weight or less, more preferably 20% by weight, based on 100% by weight of the total of the positive C polymer and the plasticizer. It is at most weight percent.
 〔1.4.光学異方性層の特性:屈折率〕
 光学異方性層は、式(2)を満たす。
 nz(A)>nx(A)≧ny(A)  式(2)
 nx(A)、ny(A)及びnz(A)は、光学異方性層の主屈折率である。このような屈折率nx(A)、ny(A)及びnz(A)を有する光学異方性層は、ポジティブCフィルムとして用いうる。そのため、この光学異方性層を円偏光板に組み込んで画像表示装置に適用した場合に、画像表示装置の表示面の傾斜方向において、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過できるようにしたりできる。さらに、画像表示装置が液晶表示装置である場合には、通常、視野角を広げることができる。そのため、画像表示装置の表示面を傾斜方向から見た場合に、画像の視認性を高めることができる。
[1.4. Properties of Optically Anisotropic Layer: Refractive Index]
The optically anisotropic layer satisfies the formula (2).
nz (A)> nx (A) ≧ ny (A) Formula (2)
nx (A), ny (A) and nz (A) are main refractive indices of the optically anisotropic layer. An optically anisotropic layer having such refractive indices nx (A), ny (A) and nz (A) can be used as a positive C film. Therefore, when the optically anisotropic layer is incorporated in a circularly polarizing plate and applied to an image display device, light that suppresses the reflection of external light or displays an image in the tilt direction of the display surface of the image display device It can be made transparent to polarized sunglasses. Furthermore, when the image display device is a liquid crystal display device, the viewing angle can usually be widened. Therefore, when the display surface of the image display device is viewed from the tilt direction, the visibility of the image can be enhanced.
 中でも、光学異方性層の屈折率nx(A)と屈折率ny(A)とは、値が同じであるか近いことが好ましい。具体的には、屈折率nx(A)と屈折率ny(A)の差nx(A)-ny(A)は、好ましくは0.00000~0.00100、より好ましくは0.00000~0.00050、特に好ましくは0.00000~0.00020である。屈折率差nx(A)-ny(A)が前記の範囲に収まることにより、光学異方性層を画像表示装置に設ける場合の光学設計をシンプルにすることができ、かつ他の位相差フィルムとの貼合時に貼り合せ方向の調整を不要にできる。 Among them, it is preferable that the refractive index nx (A) and the refractive index ny (A) of the optically anisotropic layer have the same value or be close to each other. Specifically, the difference nx (A) -ny (A) between the refractive index nx (A) and the refractive index ny (A) is preferably 0.00000 to 0.00100, more preferably 0.00000 to 0. It is 00050, particularly preferably 0.00000 to 0.00020. When the refractive index difference nx (A) -ny (A) falls within the above range, the optical design in the case of providing the optically anisotropic layer in the image display device can be simplified, and other retardation films Adjustment of the bonding direction can be made unnecessary at the time of bonding with.
 〔1.5.光学異方性層の特性:硬化度〕
 本発明の光学異方性層は、式(3)を満たす。
 0.073<AC-H/AC=O(メソゲン化合物)<0.125  式(3)
 式(3)において、AC-Hは、光学異方性層の赤外吸収スペクトルにおける、メソゲン化合物のアクリレート構造が有するC-H結合の面外変角振動にかかる赤外吸収であり、AC=O(メソゲン化合物)は、光学異方性層の赤外吸収スペクトルにおける、メソゲン化合物のアクリレート構造が有するC=O結合の伸縮振動にかかる赤外吸収とメソゲン化合物のアクリレート構造のC=O結合に由来するC=O結合の伸縮振動にかかる赤外吸収との和である。本願において、A=AC-H/AC=O(メソゲン化合物)で表される値Aを、メソゲン化合物の硬化度Aという場合がある。
[1.5. Properties of Optically Anisotropic Layer: Curing Degree]
The optically anisotropic layer of the present invention satisfies the formula (3).
0.073 <A C−H / A C = O (mesogenic compound) <0.125 Formula (3)
In the formula (3), A C-H is infrared absorption related to out-of-plane bending vibration of the CH bond of the acrylate structure of the mesogen compound in the infrared absorption spectrum of the optically anisotropic layer, C = O (mesogen compound) is an infrared absorption of the stretching vibration of C = O bond of the acrylate structure of the mesogen compound in the infrared absorption spectrum of the optically anisotropic layer, and CCO of the acrylate structure of the mesogen compound It is the sum of infrared absorption of stretching vibration of C = O bond derived from bond. In the present application, the value A represented by A = A C−H / A C = O 2 (mesogen compound) may be referred to as the degree of cure A of the mesogen compound.
 硬化度Aは、光学異方性層に含まれる、未反応であるアクリレート構造の量に依存して定まる値であり、重合の反応の進行が不十分な場合硬化度Aは大きい値となり、重合の反応が高度に進行した場合硬化度Aは小さい値となる。硬化度Aは、好ましくは0.073より大きく、更に好ましくは0.076より大きく、最も好ましくは0.079より大きい。また、好ましくは0.125より小さく、更に好ましくは0.122より小さく、最も好ましくは0.119より小さい。光学異方性層における硬化度Aが前記下限値以上であることにより、光学異方性層の良好な色調を実現できる。一方、光学異方性層における硬化度Aが前記上限値以下であることにより、光学異方性層の高い耐久性を実現できる。 The degree of cure A is a value determined depending on the amount of unreacted acrylate structure contained in the optically anisotropic layer, and the degree of cure A becomes a large value when the progress of the polymerization reaction is insufficient. The degree of curing A is a small value when the reaction of (1) is highly advanced. The degree of cure A is preferably greater than 0.073, more preferably greater than 0.076, and most preferably greater than 0.079. It is also preferably less than 0.125, more preferably less than 0.122, and most preferably less than 0.119. When the curing degree A in the optically anisotropic layer is equal to or more than the above lower limit value, a favorable color tone of the optically anisotropic layer can be realized. On the other hand, when the curing degree A in the optically anisotropic layer is equal to or less than the upper limit value, high durability of the optically anisotropic layer can be realized.
 光学異方性層の赤外吸収スペクトルは、例えば、全反射測定法(ATR法)により測定することができる。
 測定装置としては、Thermo Fisher SCIENTIFIC製「Nicolet iS 5N」を使用し得る。赤外吸収スペクトルは、波数と吸光度との関係を表すグラフとして得られる。
The infrared absorption spectrum of the optically anisotropic layer can be measured, for example, by total reflection measurement (ATR method).
As a measurement apparatus, Thermo Fisher SCIENTIFIC "Nicolet iS 5N" can be used. An infrared absorption spectrum is obtained as a graph showing the relationship between wave number and absorbance.
 メソゲン化合物のアクリレートが重合すると、アクリレート構造が有するビニル基はエチレン基に変換され、ビニル基に結合するカルボニル基は、エチレン基に結合するカルボニル基となる。「メソゲン化合物のアクリレート構造のC=O結合に由来するC=O結合」とは、アクリレートが重合した結果出現する、エチレン基に結合するカルボニル基のC=O結合を意味する。説明の便宜のため、以下において、「メソゲン化合物のアクリレート構造が有するC-H結合」をC-Hと略称し、「メソゲン化合物のアクリレート構造が有するC=O結合」をC=Oと略称し、「メソゲン化合物のアクリレート構造のC=O結合に由来するC=O結合」をC=OMDと略称することがある。 When the acrylate of the mesogen compound is polymerized, the vinyl group possessed by the acrylate structure is converted to an ethylene group, and the carbonyl group bonded to the vinyl group becomes a carbonyl group bonded to the ethylene group. The “C = O bond derived from the C = O bond of the acrylate structure of the mesogen compound” means a C カ ル ボ ニ ル O bond of a carbonyl group bonded to an ethylene group that appears as a result of polymerization of the acrylate. For convenience of explanation, hereinafter, the "C-H bonds with acrylate structure mesogenic compound" is abbreviated as C-H M, the "C = O bond of the acrylate structural mesogenic compound 'and C = O M Abbreviated, "C = O bond derived from C = O bond of acrylate structure of mesogen compound" may be abbreviated as C = O MD .
 C=Oの伸縮振動にかかるピークと、C=OMDの伸縮振動にかかるピークとが分離せず単一のピークとなっている場合は、かかる単一のピークの赤外吸収を、C=Oの伸縮振動にかかる赤外吸収とC=OMDの伸縮振動にかかる赤外吸収との和としてよい。 If the peak associated with the stretching vibration of C = O M and the peak associated with the stretching vibration of C = O MD do not separate and form a single peak, the infrared absorption of the single peak is determined by C = good as the sum of such infrared absorption on the stretching vibration of O according to the stretching vibration of M infrared absorption and C = O MD.
 AC-H/AC=O(メソゲン化合物)の値としては、C-Hの面外変角振動にかかるピークの面積(areaC-H)を、C=Oの伸縮振動にかかるピークの面積及びC=OMDの伸縮振動にかかるピークの面積の和(areaC=O)で除した値(areaC-H/areaC=O)を用いうる。 The value of A C-H / A C = O ( mesogenic compounds), the peak area according to the out-of-plane deformation vibration of C-H M a (area C-H), according to the stretching vibration of C = O M It may use a value obtained by dividing (area C-H / area C = O) by the sum of the areas of the peaks according to the stretching vibration area and C = O MD peaks (area C = O).
 赤外吸収スペクトルにおいて、C-Hの面外変角振動にかかるピークは、通常810cm-1付近に現れる。また、C=Oの伸縮振動にかかるピーク及びC=OMDの伸縮振動にかかるピークは、通常どちらも1720cm-1付近に現れる。 In the infrared absorption spectrum, a peak applied to out-of-plane bending vibration of C—H M usually appears around 810 cm −1 . In addition, a peak for stretching vibration of C = O M and a peak for stretching vibration of C = O MD usually appear in the vicinity of 1720 cm −1 .
 光学異方性層の成分が、C=OMD以外に、それに類似するC=O結合を有する場合、赤外吸収スペクトルにおいて、それらが区別できない場合がある。その場合、成分の割合が異なる複数の光学異方性層を作製し、各成分の割合が赤外吸収に与える影響の程度を把握することにより、類似するC=O結合の影響を排除した定量を行いうる。 When the components of the optically anisotropic layer have C = O bonds similar to them other than C = O MD , they may not be distinguishable in the infrared absorption spectrum. In that case, a plurality of optically anisotropic layers having different proportions of components are prepared, and the effects of similar C = O bonds are eliminated by grasping the degree of influence of the proportions of the components on infrared absorption. Can do.
 かかる定量の具体的な例として、ポジC重合体が、C=OMDに類似するC=O結合を有する場合について説明する。 As a specific example of such determination, the case where a positive C polymer has a C = O bond similar to C = O MD will be described.
 この例において、光学異方性層の赤外吸収スペクトルを測定すると、かかるスペクトルにおけるC=O結合の伸縮振動にかかる赤外吸収AC=Oは、以下のものの和として得られる。
 AC=O(重合体):ポジC重合体のC=O結合の伸縮振動にかかる赤外吸収。
 AC=O(メソゲン化合物):未反応のC=Oの伸縮振動にかかる赤外吸収と、メソゲン化合物の重合物のC=O結合(即ちC=OMD)の伸縮振動にかかる赤外吸収との和。
In this example, when measuring the infrared absorption spectrum of the optically anisotropic layer, an infrared absorption A C = O according to the stretching vibration of C = O bonds in such spectrum is obtained as the sum of the following items.
A C = O (polymer): Infrared absorption of stretching vibration of C = O bond of positive C polymer.
A C = O (mesogenic compound): Infrared absorption of stretching vibration of unreacted C = O M and infrared radiation of stretching vibration of C = O bond (that is, C = O MD ) of the polymer of the mesogen compound Sum with absorption.
 即ち、下記式(A1)が成立する。
 AC=O=AC=O(重合体)+AC=O(メソゲン化合物)  式(A1)
That is, the following equation (A1) is established.
A C = O = A C = O (polymer) + A C = O (mesogenic compound) Formula (A1)
 AC=O(重合体)の値、及びAC=O(メソゲン化合物)の値は、光学異方性層中のこれらの重量比に比例すると考えられる。したがって、光学異方性層における各成分の割合及びC=O結合の伸縮振動にかかる赤外吸収については、下記式(A2)が成立する。 The values of A C = O (polymer), and A C = O (mesogenic compound) is considered to be proportional to their weight ratio in the optically anisotropic layer. Therefore, the following formula (A2) is established for the ratio of each component in the optically anisotropic layer and the infrared absorption related to the stretching vibration of the C = O bond.
 AC=O=W(重合体)×aC=O(重合体)+W(メソゲン化合物)×aC=O(メソゲン化合物)  (A2) A C = O = W (polymer) × a C = O (polymer) + W (mesogen compound) × a C = O (mesogen compound) (A2)
 式中:
 W(重合体)は、光学異方性層中におけるポジC重合体の重量とメソゲン化合物及びその重合物の重量の合計に対するポジC重合体の重量比率である。
 W(メソゲン化合物)は、光学異方性層中におけるポジC重合体の重量とメソゲン化合物及びその重合物の重量の合計に対する、メソゲン化合物及びその重合物の重量比率である。即ち、W(重合体)+W(メソゲン化合物)=1である。
 aC=O(重合体)は、係数であり、ポジC重合体の単位重量比率あたりの、C=O結合の伸縮振動にかかる赤外吸収である。
 aC=O(メソゲン化合物)は、係数であり、メソゲン化合物及びその重合物の単位重量比率あたりの、アクリレート構造が有するC=O結合の伸縮振動にかかる赤外吸収と、アクリレート構造のC=O結合に由来するC=O結合の伸縮振動にかかる赤外吸収との和である。
During the ceremony:
W (polymer) is a weight ratio of the positive C polymer to the sum of the weight of the positive C polymer and the weight of the mesogen compound and the polymer thereof in the optically anisotropic layer.
W (mesogen compound) is a weight ratio of the mesogen compound and the polymer thereof to the total of the weight of the positive C polymer and the weight of the mesogen compound and the polymer thereof in the optically anisotropic layer. That is, W (polymer) + W (mesogenic compound) = 1.
a C = O (polymer) is a coefficient, and is an infrared absorption applied to stretching vibration of C = O bond per unit weight ratio of the positive C polymer.
a C = O (mesogen compound) is a coefficient, and infrared absorption of stretching vibration of CCO bond of the acrylate structure per unit weight ratio of the mesogen compound and the polymer thereof, and C = of the acrylate structure It is the sum of infrared absorption of stretching vibration of C = O bond derived from O bond.
 aC=O(重合体)及びaC=O(メソゲン化合物)の値は、ポジC重合体の重量とメソゲン化合物及びその重合物の重量との比率の異なる、複数の光学異方性層を作製し、それぞれについて赤外吸収スペクトルを測定することにより求めうる。具体的には、W(重合体)及びW(メソゲン化合物)の異なる複数の光学異方性層のそれぞれについて、AC=Oを測定する。これにより、複数の例においてW(重合体)、W(メソゲン化合物)及びAC=Oの値が既知となる。これらの値及び式(A2)から、最小二乗法によりAC=Oの実測値と理論値の差が最も小さくなるようなaC=O(重合体)とaC=O(メソゲン化合物)を算出する。算出したaC=O(メソゲン化合物)及び既知のW(メソゲン化合物)から、AC=O(メソゲン化合物)を求めることができる。 The values of a C = O (polymer) and a C = O (mesogen compound) are different from each other in the ratio of the weight of the positive C polymer to the weight of the mesogen compound and the polymer thereof. It can be determined by preparing and measuring the infrared absorption spectrum of each. Specifically, for each of a plurality of optically anisotropic layers different in W (polymer) and W (mesogen compound), A c = O is measured. Thus, in several examples W (polymer), the value of W (mesogenic compounds) and A C = O is known. From these values and the formula (A2), a C = O (polymer) and a C = O (mesogenic compound) such that the difference between the measured value and the theoretical value of A C = O is minimized by the least squares method. calculate. From the calculated a C = O (mesogenic compound) and known W (mesogenic compound), A C = O (mesogenic compound) can be determined.
 硬化度Aの値は、光学異方性層の製造過程において、照射する活性エネルギー線の照射強度及び時間を調整することにより制御し得る。 The value of the curing degree A can be controlled by adjusting the irradiation intensity and time of the active energy ray to be irradiated in the production process of the optically anisotropic layer.
 〔1.6.光学異方性層の特性:その他〕
 光学異方性層は、通常、式(4)及び式(5)を満たす。
 0.50<Rth(A450)/Rth(A550)<1.00  式(4)
 1.00≦Rth(A650)/Rth(A550)<1.25  式(5)
 但し、Rth(A450)は、光学異方性層の波長450nmにおける厚み方向のレターデーションであり、Rth(A550)は、光学異方性層の波長550nmにおける厚み方向のレターデーションであり、Rth(A650)は、光学異方性層の波長650nmにおける厚み方向のレターデーションである。
[1.6. Properties of Optically Anisotropic Layer: Other]
The optically anisotropic layer usually satisfies the formula (4) and the formula (5).
0.50 <Rth (A450) / Rth (A550) <1.00 Formula (4)
1.00 ≦ Rth (A650) / Rth (A550) <1.25 Formula (5)
Where Rth (A450) is the retardation in the thickness direction of the optically anisotropic layer at a wavelength of 450 nm, and Rth (A550) is the retardation in the thickness direction of the optically anisotropic layer at a wavelength of 550 nm. A650) is the retardation in the thickness direction of the optically anisotropic layer at a wavelength of 650 nm.
 前記式(4)を詳細に説明すると、Rth(A450)/Rth(A550)は、通常0.50より大きく、好ましくは0.60より大きく、より好ましくは0.65より大きく、また、通常1.00未満、好ましくは0.90未満、より好ましくは0.85未満である。 Describing the formula (4) in detail, Rth (A450) / Rth (A550) is usually larger than 0.50, preferably larger than 0.60, more preferably larger than 0.65, and usually 1 It is less than .00, preferably less than 0.90, more preferably less than 0.85.
 さらに、前記式(5)を詳細に説明すると、Rth(A650)/Rth(A550)は、通常1.00以上、好ましくは1.01以上、より好ましくは1.02以上であり、通常1.25未満、好ましくは1.15未満、より好ましくは1.10未満である。 Further, the formula (5) will be described in detail. Rth (A650) / Rth (A550) is usually 1.00 or more, preferably 1.01 or more, more preferably 1.02 or more, and usually 1. It is less than 25, preferably less than 1.15, more preferably less than 1.10.
 前記の式(4)及び式(5)を満たす厚み方向のレターデーションRth(A450)、Rth(A550)及びRth(A650)を有する光学異方性層は、その厚み方向のレターデーションRthが逆波長分散性を示す。このように厚み方向のレターデーションRthが逆波長分散性を示す光学異方性層は、円偏光板に組み込んで画像表示装置に適用した場合に、画像表示装置の表示面の傾斜方向において、外光の反射を抑制したり、画像を表示する光に偏光サングラスを透過させたりする機能を、広い波長範囲において発揮できる。さらに、画像表示装置が液晶表示装置である場合には、通常、視野角を効果的に広げることができる。そのため、表示面に表示される画像の視認性を、特に効果的に向上させることができる。 The optically anisotropic layer having the retardations Rth (A450), Rth (A550) and Rth (A650) in the thickness direction satisfying the formulas (4) and (5) has an opposite retardation Rth in the thickness direction. The wavelength dispersion is shown. As described above, the optically anisotropic layer in which the retardation Rth in the thickness direction exhibits reverse wavelength dispersion is incorporated in a circularly polarizing plate and applied to an image display device, the outer side in the inclination direction of the display surface of the image display device. The function of suppressing reflection of light or transmitting polarized sunglasses to light for displaying an image can be exhibited in a wide wavelength range. Furthermore, in the case where the image display device is a liquid crystal display device, the viewing angle can usually be effectively expanded. Therefore, the visibility of the image displayed on the display surface can be particularly effectively improved.
 光学異方性層は、式(6)を満たすことが好ましい。
 Re(A590)≦10nm  式(6)
 但し、Re(A590)は、光学異方性層の波長590nmにおける面内レターデーションである。
 前記式(6)を詳細に説明すると、Re(A590)は、好ましくは0nm~10nm、より好ましくは0nm~5nm、特に好ましくは0nm~2nmである。Re(A590)が前記の範囲に収まることにより、光学異方性層を画像表示装置に設ける場合の光学設計をシンプルにすることができ、かつ、他の位相差フィルムとの貼合時に貼り合せ方向の調整を不要にできる。
The optically anisotropic layer preferably satisfies the formula (6).
Re (A 590) ≦ 10 nm Formula (6)
However, Re (A 590) is the in-plane retardation of the optically anisotropic layer at a wavelength of 590 nm.
Describing the formula (6) in detail, Re (A 590) is preferably 0 nm to 10 nm, more preferably 0 nm to 5 nm, and particularly preferably 0 nm to 2 nm. When Re (A 590) falls within the above range, the optical design in the case of providing an optically anisotropic layer in an image display device can be simplified, and bonding is carried out at the time of bonding with another retardation film. It is not necessary to adjust the direction.
 光学異方性層は、式(7)を満たすことが好ましい。
 -200nm≦Rth(A590)≦-10nm  式(7)
 但し、Rth(A590)は、光学異方性層の波長590nmにおける厚み方向のレターデーションである。
 前記式(7)を詳細に説明すると、Rth(A590)は、好ましくは-200nm以上、より好ましくは-130nm以上、特に好ましくは-100nm以上であり、好ましくは-10nm以下、より好ましくは-30nm以下、特に好ましくは-50nm以下である。このようなRth(A590)を有する光学異方性層は、円偏光板に組み込んで画像表示装置に適用した場合に、画像表示装置の表示面の傾斜方向において、外光の反射を抑制し、反射光の色味変化を小さくできたり、画像を表示する光が偏光サングラスを透過できるようにしたりできる。さらに、画像表示装置が液晶表示装置である場合には、通常は、視野角を広げることができる。そのため、画像表示装置の表示面を傾斜方向から見た場合に、画像の視認性を高めることができる。
The optically anisotropic layer preferably satisfies the formula (7).
−200 nm ≦ Rth (A 590) ≦ -10 nm Formula (7)
However, Rth (A 590) is the retardation in the thickness direction of the optically anisotropic layer at a wavelength of 590 nm.
Describing the formula (7) in detail, Rth (A 590) is preferably -200 nm or more, more preferably -130 nm or more, particularly preferably -100 nm or more, preferably -10 nm or less, more preferably -30 nm Or less, particularly preferably −50 nm or less. When the optically anisotropic layer having such Rth (A 590) is incorporated in a circularly polarizing plate and applied to an image display device, the reflection of external light is suppressed in the inclination direction of the display surface of the image display device, The color change of the reflected light can be reduced, and the light for displaying the image can be transmitted through the polarized sunglasses. Furthermore, when the image display device is a liquid crystal display device, the viewing angle can usually be increased. Therefore, when the display surface of the image display device is viewed from the tilt direction, the visibility of the image can be enhanced.
 光学異方性層の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定しうる。 The total light transmittance of the optically anisotropic layer is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more. The total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet and visible spectrometer.
 光学異方性層のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。ヘイズは、JIS K 7136:2000に従い、ヘイズメーター(例えば東洋精機製作所製「ヘイズガードII」)により測定しうる。 The haze of the optically anisotropic layer is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%. The haze can be measured with a haze meter (for example, "Haze Guard II" manufactured by Toyo Seiki Seisaku-sho, Ltd.) according to JIS K 7136: 2000.
 光学異方性は、その硬化度等の要件を満たすことにより、加熱によるヘイズの変化が小さいものとしうる。具体的には、85℃、500時間といった加熱の前後のヘイズの変化比(加熱後ヘイズ値/初期ヘイズ値)が小さいものとしうる。このヘイズ変化比は、好ましくは5.0以下、より好ましくは4.0以下、更に好ましくは3.0以下としうる。加熱によるヘイズの変化は、通常はヘイズが増加する変化であるが、ヘイズが減少する場合もある。ヘイズ変化比の下限は、0.3以上、0.4以上、又は0.5以上としうる。 By satisfying the requirements such as the degree of curing of the optical anisotropy, the change in haze due to heating can be small. Specifically, the change ratio of the haze (after-heating haze value / initial haze value) before and after heating such as 85 ° C. for 500 hours may be small. The haze change ratio may be preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less. The change in haze due to heating is usually a change in which the haze increases, but in some cases the haze may decrease. The lower limit of the haze change ratio may be 0.3 or more, 0.4 or more, or 0.5 or more.
 光学異方性層は、その硬化度等の要件を満たすことにより、無色又はそれに近い色調としうる。具体的には、従来技術における逆波長分散性Rthを有するポジティブCフィルムは黄色の色調を帯びることが多い一方、本発明の光学異方性層はそのような黄色の色調が低いものとしうる。より具体的には、本発明の光学異方性層は、L表色系におけるb値が、好ましくは2.5以下、より好ましくは2.2以下、更に好ましくは2.0以下としうる。b値の下限は、理想的にはゼロである。b値は、光学異方性層を分光光度計(例えば日本分光社製「V-550」)により測定することにより観察しうる。 The optically anisotropic layer can be made colorless or near in color by satisfying the requirements such as the degree of curing. Specifically, a positive C film having reverse wavelength dispersive Rth in the prior art often has a yellow color tone, while the optically anisotropic layer of the present invention may have such a low yellow color tone. More specifically, the optically anisotropic layer of the present invention preferably has a b * value in the L * a * b * color system of 2.5 or less, more preferably 2.2 or less, still more preferably 2 .0 or less. The lower limit of the b * value is ideally zero. The b * value can be observed by measuring the optically anisotropic layer with a spectrophotometer (for example, "V-550" manufactured by JASCO Corporation).
 光学異方性層の厚みは、所望のレターデーションが得られるように、適切に調整しうる。光学異方性層の具体的な厚みは、好ましくは1.0μm以上、より好ましくは3.0μm以上であり、好ましくは50μm以下、より好ましくは40μm以下、特に好ましくは30μm以下である。 The thickness of the optically anisotropic layer can be appropriately adjusted so as to obtain a desired retardation. The specific thickness of the optically anisotropic layer is preferably 1.0 μm or more, more preferably 3.0 μm or more, preferably 50 μm or less, more preferably 40 μm or less, particularly preferably 30 μm or less.
 〔1.7.光学異方性層の製造方法〕
 光学異方性層は、
 工程(a):ポジC重合体、メソゲン化合物、及び溶媒を含む塗工液を用意する工程と;
 工程(b):塗工液を支持面上に塗工して、塗工液層を得る工程と;
 工程(c):塗工液層への光の照射を行い、塗工液層を硬化させる工程と
 を含む製造方法によって、製造しうる。以下において、この製造方法を、本発明の光学異方性層の製造方法として説明する。
[1.7. Method of producing optically anisotropic layer]
The optically anisotropic layer is
Step (a): providing a coating liquid containing a positive C polymer, a mesogen compound, and a solvent;
Step (b): coating the coating liquid on the support surface to obtain a coating liquid layer;
Step (c): Irradiating the coating liquid layer with light, and curing the coating liquid layer. Hereinafter, this manufacturing method will be described as a method of manufacturing the optically anisotropic layer of the present invention.
 〔1.7.1.工程(a):塗工液の用意〕
 塗工液を用意する工程は、ポジC重合体、メソゲン化合物及び溶媒を混合することにより行いうる。塗工液の全固形分におけるポジC重合体の比率、及び塗工液の全固形分におけるメソゲン化合物の比率は、それぞれ、光学異方性層におけるポジC重合体の比率及び光学異方性層におけるメソゲン化合物の比率と同じ範囲に調整しうる。本発明の製造方法を行った場合、塗工液中のメソゲン化合物の一部は、重合せず未反応のまま光学異方性層中に残存しうる。しかしながら、硬化度Aが本願に規定する範囲内である場合は、かかる未反応のメソゲン化合物の割合は僅かである。
[1.7. Process (a): Preparation of Coating Liquid]
The process of preparing a coating liquid can be performed by mixing a positive C polymer, a mesogen compound, and a solvent. The ratio of the positive C polymer in the total solid content of the coating liquid and the ratio of the mesogen compound in the total solid content of the coating liquid are respectively the ratio of the positive C polymer in the optically anisotropic layer and the optically anisotropic layer It can adjust to the same range as the ratio of the mesogen compound in. When the production method of the present invention is carried out, a part of the mesogen compound in the coating liquid may be left unreacted in the optically anisotropic layer without being polymerized. However, when the curing degree A is within the range specified in the present application, the proportion of such unreacted mesogen compound is small.
 溶媒としては、通常、有機溶媒を用いる。かかる有機溶媒の例としては、シクロペンタン、シクロヘキサン等の炭化水素溶媒;シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン、メチルイソブチルケトン、N-メチルピロリドン等のケトン溶媒;酢酸ブチル、酢酸アミル等の酢酸エステル溶媒;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素溶媒;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、1,2-ジメトキシエタン等のエーテル溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素溶媒;及びこれらの混合物が挙げられる。溶媒の沸点は、取り扱い性に優れる観点から、60℃~250℃であることが好ましく、60℃~150℃であることがより好ましい。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As a solvent, an organic solvent is usually used. Examples of such organic solvents include hydrocarbon solvents such as cyclopentane and cyclohexane; ketone solvents such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone, methyl isobutyl ketone and N-methyl pyrrolidone; acetic acid esters such as butyl acetate and amyl acetate Solvents: Halogenated hydrocarbon solvents such as chloroform, dichloromethane, dichloroethane, etc .; Ether solvents such as 1,4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,2-dimethoxyethane, etc., toluene, xylene And aromatic hydrocarbon solvents such as mesitylene; and mixtures thereof. The boiling point of the solvent is preferably 60 ° C. to 250 ° C., and more preferably 60 ° C. to 150 ° C., from the viewpoint of excellent handleability. Moreover, a solvent may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
 溶媒の量は、塗工液の固形分濃度を所望の範囲にできるように調整することが好ましい。塗工液の固形分濃度は、好ましくは6重量%以上、より好ましくは8重量%以上、特に好ましくは10重量%以上であり、好ましくは20重量%以下、より好ましくは18重量%以下、特に好ましくは15重量%以下である。塗工液の固形分濃度を前記の範囲に収めることにより、所望の光学特性を有する光学異方性層を容易に形成できる。 The amount of the solvent is preferably adjusted so that the solid content concentration of the coating liquid can be in the desired range. The solid content concentration of the coating liquid is preferably 6% by weight or more, more preferably 8% by weight or more, particularly preferably 10% by weight or more, preferably 20% by weight or less, more preferably 18% by weight or less, particularly Preferably it is 15 weight% or less. By setting the solid content concentration of the coating liquid within the above range, an optically anisotropic layer having desired optical properties can be easily formed.
 光学異方性層を形成するための塗工液は、ポジC重合体、メソゲン化合物及び溶媒に組み合わせて、任意の成分を含んでいてもよい。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The coating liquid for forming the optically anisotropic layer may contain any component in combination with the positive C polymer, the mesogen compound and the solvent. In addition, as the optional components, one type may be used alone, or two or more types may be used in combination at an optional ratio.
 塗工液は、任意の成分として、重合開始剤を含みうる。重合開始剤の種類は、塗工液中の重合性化合物が有する重合性基の種類に応じて適宜選択しうる。ここで、重合性化合物とは、重合性を有する化合物の総称である。中でも、光重合開始剤が好ましい。光重合開始剤としては、ラジカル重合開始剤、アニオン重合開始剤、カチオン重合開始剤などが挙げられる。市販の光重合開始剤の具体的な例としては、BASF社製の、商品名:Irgacure907、商品名:Irgacure184、商品名:Irgacure369、商品名:Irgacure651、商品名:Irgacure819、商品名:Irgacure907、商品名:Irgacure379、商品名:Irgacure379EG、商品名:Irgacure OXE02、及び商品名:Irgacure OXE04;ADEKA社製の、商品名:アデカオプトマーN1919等が挙げられる。また、重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The coating liquid may contain a polymerization initiator as an optional component. The type of the polymerization initiator can be appropriately selected according to the type of the polymerizable group contained in the polymerizable compound in the coating liquid. Here, the polymerizable compound is a generic term for compounds having polymerizability. Among them, a photopolymerization initiator is preferred. As a photoinitiator, a radical polymerization initiator, an anionic polymerization initiator, a cationic polymerization initiator etc. are mentioned. As a specific example of a commercially available photopolymerization initiator, trade name: Irgacure 907, trade name: Irgacure 184, trade name: Irgacure 369, trade name: Irgacure 651, trade name: Irgacure 819, trade name: Irgacure 907, made by BASF AG Name: Irgacure 379, trade name: Irgacure 379 EG, trade name: Irgacure OXE 02, and trade name: Irgacure OXE 04; trade name: Adeka Optomer N 1919 manufactured by ADEKA Corporation. Moreover, a polymerization initiator may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
 塗工液における、光重合開始剤等の重合開始剤の量は、所望の硬化度Aが得られるよう調整しうる。塗工液における、メソゲン化合物100重量部に対する重合開始剤の比率は、好ましくは1重量部以上、より好ましくは2重量部以上であり、好ましくは10重量部以下、より好ましくは8重量部以下である。 The amount of a polymerization initiator such as a photopolymerization initiator in the coating liquid may be adjusted to obtain a desired degree of cure A. The ratio of the polymerization initiator to 100 parts by weight of the mesogen compound in the coating liquid is preferably 1 part by weight or more, more preferably 2 parts by weight or more, preferably 10 parts by weight or less, more preferably 8 parts by weight or less is there.
 塗工液は、任意の成分として、架橋剤を含みうる。重合開始剤の種類は、塗工液中の重合性化合物の種類に応じて適宜選択しうる。架橋剤の例としては、商品名:A-TMPT(トリメチロールプロパントリアクリレート、新中村化学工業株式会社製)が挙げられる。架橋剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The coating liquid may contain a crosslinking agent as an optional component. The type of polymerization initiator can be appropriately selected according to the type of polymerizable compound in the coating liquid. Examples of the crosslinking agent include trade name: A-TMPT (trimethylolpropane triacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.). One type of crosslinking agent may be used alone, or two or more types may be used in combination in an arbitrary ratio.
 塗工液における、架橋剤の量は、所望の物性の光学異方性層が得られるよう調整しうる。塗工液における、メソゲン化合物100重量部に対する架橋剤の比率は、好ましくは1重量部以上、より好ましくは2重量部以上であり、好ましくは10重量部以下、より好ましくは8重量部以下である。 The amount of the crosslinking agent in the coating liquid can be adjusted to obtain an optically anisotropic layer having desired physical properties. The ratio of the crosslinking agent to 100 parts by weight of the mesogen compound in the coating liquid is preferably 1 part by weight or more, more preferably 2 parts by weight or more, preferably 10 parts by weight or less, more preferably 8 parts by weight or less .
 塗工液は、任意の成分として、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、レベリング剤、チキソ剤、ゲル化剤、多糖類、界面活性剤、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物等の任意の添加剤を含みうる。かかる任意の添加剤の割合は、ポジC重合体100重量部に対し、好ましくは、各々0.1重量部~20重量部である。 The coating liquid contains, as optional components, metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixo agents, gelling agents, polysaccharides, surfactants, ultraviolet absorbers, infrared absorbers, Optional additives such as antioxidants, ion exchange resins, metal oxides such as titanium oxide may be included. The ratio of such optional additives is preferably 0.1 parts by weight to 20 parts by weight for each 100 parts by weight of the positive C polymer.
 塗工液は、液晶性を示さないことが好ましい。液晶性を示さない塗工液を用いることにより、光学異方性層においてポジC重合体及びメソゲン化合物の分散を良好にできる。また、液晶性を有さない塗工液を用いることにより、乾燥風等の空気の揺らぎの影響による、メソゲン化合物の配向ムラの発生を抑制できる。 The coating liquid preferably does not exhibit liquid crystallinity. By using a coating liquid that does not exhibit liquid crystallinity, the dispersion of the positive C polymer and the mesogen compound can be made favorable in the optically anisotropic layer. Moreover, generation | occurrence | production of the orientation nonuniformity of the mesogen compound under the influence of fluctuation of air, such as a drying wind, can be suppressed by using the coating liquid which does not have liquid crystallinity.
 〔1.7.2.工程(b):塗工〕
 塗工液を支持面上に塗工して塗工液層を得る工程において、支持面としては、塗工液層を支持できる任意の面を用いうる。この支持面としては、光学異方性層の面状態を良好にする観点から、通常、凹部及び凸部の無い平坦面を用いる。前記の支持面としては、長尺の基材の表面を用いることが好ましい。長尺の基材を用いる場合、連続的に搬送される基材上に、塗工液を連続的に塗工することが可能である。よって、長尺の基材を用いることにより、光学異方性層を連続的に製造できるので、生産性を向上させることが可能である。
[1.7.2. Process (b): Coating]
In the step of applying the coating liquid on the support surface to obtain a coating liquid layer, any surface capable of supporting the coating liquid layer can be used as the support surface. As the supporting surface, in order to improve the surface state of the optically anisotropic layer, a flat surface having no concave portion and no convex portion is generally used. As said support surface, it is preferable to use the surface of a elongate base material. When using a long base material, it is possible to apply a coating fluid continuously on the base material conveyed continuously. Therefore, by using a long base material, the optically anisotropic layer can be manufactured continuously, and therefore, the productivity can be improved.
 基材としては、通常、基材フィルムを用いうる。基材フィルムとしては、光学的な積層体の基材として用いうるフィルムを、適切に選択して用いうる。中でも、基材フィルム及び光学異方性層を備える複層フィルムを光学フィルムとして利用可能にして、基材フィルムからの光学異方性層の剥離を不要にする観点から、基材フィルムとしては透明なフィルムが好ましい。具体的には、基材フィルムの全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは88%以上である。 As a substrate, usually, a substrate film can be used. As a base film, the film which can be used as a base of an optical laminated body can be selected suitably, and can be used. Above all, a multilayer film comprising a substrate film and an optically anisotropic layer can be used as an optical film, and from the viewpoint of eliminating the need for peeling of the optically anisotropic layer from the substrate film, the substrate film is transparent. Films are preferred. Specifically, the total light transmittance of the base film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
 基材フィルムの材料は、特に限定されず、種々の樹脂を用いうる。樹脂の例としては、各種の重合体を含む樹脂が挙げられる。当該重合体としては、脂環式構造含有重合体、セルロースエステル、ポリビニルアルコール、ポリイミド、UV透過アクリル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、エポキシ重合体、ポリスチレン、及びこれらの組み合わせが挙げられる。これらの中でも、透明性、低吸湿性、寸法安定性及び軽量性の観点から、脂環式構造含有重合体及びセルロースエステルが好ましく、脂環式構造含有重合体がより好ましい。 The material of the base film is not particularly limited, and various resins can be used. Examples of the resin include resins containing various polymers. Examples of the polymer include alicyclic structure-containing polymers, cellulose esters, polyvinyl alcohols, polyimides, UV transmitting acrylics, polycarbonates, polysulfones, polyether sulfones, epoxy polymers, polystyrenes, and combinations thereof. Among these, from the viewpoints of transparency, low hygroscopicity, dimensional stability, and lightness, an alicyclic structure-containing polymer and a cellulose ester are preferable, and an alicyclic structure-containing polymer is more preferable.
 脂環式構造含有重合体は、繰り返し単位中に脂環式構造を有する重合体であり、通常は非晶質の重合体である。脂環式構造含有重合体としては、主鎖中に脂環式構造を含有する重合体及び側鎖に脂環式構造を含有する重合体のいずれも用いうる。
 脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造等が挙げられるが、熱安定性等の観点からシクロアルカン構造が好ましい。
 1つの脂環式構造の繰り返し単位を構成する炭素数に特に制限はないが、好ましくは4個以上、より好ましくは5個以上、特に好ましくは6個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。
The alicyclic structure-containing polymer is a polymer having an alicyclic structure in the repeating unit, and is usually an amorphous polymer. As the alicyclic structure-containing polymer, any of a polymer containing an alicyclic structure in its main chain and a polymer containing an alicyclic structure in its side chain can be used.
As an alicyclic structure, although a cycloalkane structure, a cycloalkene structure, etc. are mentioned, a cycloalkane structure is preferable from a viewpoint of heat stability etc., for example.
The number of carbon atoms constituting the repeating unit of one alicyclic structure is not particularly limited, but is preferably 4 or more, more preferably 5 or more, particularly preferably 6 or more, preferably 30 or less, Preferably it is 20 or less, Especially preferably, it is 15 or less.
 脂環式構造含有重合体中の脂環式構造を有する繰り返し単位の割合は、使用目的に応じて適宜選択されうるが、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造を有する繰り返し単位を前記のように多くすることにより、基材フィルムの耐熱性を高くできる。 The proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer may be appropriately selected depending on the purpose of use, but is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably It is 90% by weight or more. By increasing the number of repeating units having an alicyclic structure as described above, the heat resistance of the substrate film can be increased.
 脂環式構造含有重合体は、例えば、(1)ノルボルネン重合体、(2)単環の環状オレフィン重合体、(3)環状共役ジエン重合体、(4)ビニル脂環式炭化水素重合体、及びこれらの水素添加物などが挙げられる。これらの中でも、透明性及び成形性の観点から、ノルボルネン重合体がより好ましい。 The alicyclic structure-containing polymer includes, for example, (1) norbornene polymer, (2) monocyclic cyclic olefin polymer, (3) cyclic conjugated diene polymer, (4) vinyl alicyclic hydrocarbon polymer, And these hydrogen additives and the like. Among these, from the viewpoint of transparency and moldability, norbornene polymers are more preferable.
 ノルボルネン重合体としては、例えば、ノルボルネンモノマーの開環重合体、ノルボルネンモノマーと開環共重合可能なその他のモノマーとの開環共重合体、及びそれらの水素添加物;ノルボルネンモノマーの付加重合体、ノルボルネンモノマーと共重合可能なその他のモノマーとの付加共重合体などが挙げられる。これらの中でも、透明性の観点から、ノルボルネンモノマーの開環重合体水素添加物が特に好ましい。 As the norbornene polymer, for example, a ring-opening polymer of norbornene monomer, a ring-opening copolymer of norbornene monomer and another monomer capable of ring-opening copolymerization, and hydrogenated products thereof; addition polymer of norbornene monomer, And addition copolymers of norbornene monomers with other monomers copolymerizable, and the like. Among these, from the viewpoint of transparency, a ring-opened polymer hydrogenated substance of norbornene monomer is particularly preferable.
 上記の脂環式構造含有重合体は、特開2002-321302号公報に開示されるもの等の公知の重合体から選択しうる。 The above-mentioned alicyclic structure-containing polymer can be selected from known polymers such as those disclosed in JP-A-2002-321302.
 基材フィルムの材質として脂環式構造含有重合体を含む樹脂を用いた場合の、基材フィルムの厚みは、生産性の向上、薄型化及び軽量化を容易にする観点から、好ましくは1μm~1000μm、より好ましくは5μm~300μm、特に好ましくは30μm~100μmである。 In the case of using a resin containing an alicyclic structure-containing polymer as the material of the substrate film, the thickness of the substrate film is preferably 1 μm to 1 in view of facilitating improvement of productivity, thinning and weight reduction. It is 1000 μm, more preferably 5 μm to 300 μm, and particularly preferably 30 μm to 100 μm.
 脂環式構造含有重合体を含む樹脂は、脂環式構造含有重合体のみからなってもよいが、本発明の効果を著しく損なわない限り、任意の配合剤を含んでもよい。脂環式構造含有重合体を含む樹脂中の、脂環式構造含有重合体の割合は、好ましくは70重量%以上、より好ましくは80重量%以上である。
 脂環式構造含有重合体を含む樹脂の好適な具体例としては、日本ゼオン社製「ゼオノア1420」、「ゼオノア1420R」を挙げうる。
The resin containing an alicyclic structure-containing polymer may consist only of an alicyclic structure-containing polymer, but may contain any compounding agent as long as the effects of the present invention are not significantly impaired. The proportion of the alicyclic structure-containing polymer in the resin containing the alicyclic structure-containing polymer is preferably 70% by weight or more, and more preferably 80% by weight or more.
As a preferable specific example of resin containing an alicyclic structure containing polymer, "Zeonor 1420" and "Zeonor 1420R" by Nippon Zeon Co., Ltd. can be mentioned.
 塗工液の塗工方法の例としては、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、ギャップコーティング法、及びディッピング法が挙げられる。塗工される塗工液の厚みは、光学異方性層に求められる所望の厚さに応じて適切に設定しうる。 Examples of coating methods for the coating liquid include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating Methods include die coating, gap coating, and dipping. The thickness of the coating liquid to be coated can be appropriately set in accordance with the desired thickness required for the optically anisotropic layer.
 〔1.7.3.乾燥〕
 工程(b)の後工程(c)の前に、必要に応じて、塗工液層を乾燥させる工程を行いる。乾燥により、塗工液層から溶媒が除去されて、塗工液の固形分の配向を安定した状態とすることができる。その結果、塗工液の固形分が安定した状態で工程(c)を行うことができる。乾燥の具体的な方法としては、加熱乾燥、減圧乾燥、加熱減圧乾燥、自然乾燥など、任意の方法を採用しうる。
[1.7.3. Drying]
Before the step (c) after the step (b), a step of drying the coating liquid layer is carried out, if necessary. By drying, the solvent is removed from the coating liquid layer, and the orientation of the solid content of the coating liquid can be stabilized. As a result, the step (c) can be performed in a state where the solid content of the coating liquid is stable. As a specific method of drying, any method such as heat drying, reduced pressure drying, heated reduced pressure drying, natural drying, etc. may be adopted.
 本発明の光学異方性層の製造方法は、ポジC重合体及びメソゲン化合物を組み合わせて含む塗工液を塗工し、硬化するというシンプルな操作によって、光学異方性層を製造できる。そのため、特許文献1に記載のような配向膜が不要である。したがって、逆波長分散液晶と配向膜との相性の調整、配向膜の形成、といった操作が必要ないので、光学異方性層を容易に製造できる。 The method for producing an optically anisotropic layer of the present invention can produce an optically anisotropic layer by a simple operation of coating a coating solution containing a combination of a positive C polymer and a mesogen compound and curing. Therefore, the alignment film as described in Patent Document 1 is unnecessary. Therefore, operations such as adjustment of the compatibility between the reverse wavelength dispersion liquid crystal and the alignment film and formation of the alignment film are not necessary, so that the optically anisotropic layer can be easily manufactured.
 さらに、ポジC重合体及びメソゲン化合物を組み合わせて含む塗工液は、乾燥の際、空気の揺らぎの影響による、メソゲン化合物の配向ムラの発生を抑制できる。そのため、面内方向の広い範囲において配向状態が均一な光学異方性層を容易に得ることができるので、面状態に優れる光学異方性層を得やすい。よって、光学異方性層の配向ムラによる白濁を抑制することが可能である。 Furthermore, the coating liquid containing the positive C polymer and the mesogen compound in combination can suppress the occurrence of the alignment unevenness of the mesogen compound due to the influence of the fluctuation of air during drying. Therefore, it is possible to easily obtain an optically anisotropic layer in which the alignment state is uniform in a wide range in the in-plane direction, so it is easy to obtain an optically anisotropic layer excellent in the surface state. Therefore, it is possible to suppress the white turbidity due to the alignment unevenness of the optically anisotropic layer.
 〔1.7.4.工程(c):光照射〕
 光照射の工程を行うことにより、メソゲン化合物のアクリレート構造の一部が重合し、メソゲン化合物の重合物となる。かかる重合により、ポジC重合体とメソゲン化合物の重合物とを含む光学異方性層が形成されうる。塗工液層への光の照射は、重合性化合物及び重合開始剤等の、塗工液が含む成分の性質に適合した方法を適切に選択しうる。照射される光には、可視光線、紫外線、及び赤外線等の光が含まれうる。なかでも、操作が簡便なことから、紫外線を照射する方法が好ましい。
[1.7.4. Process (c): light irradiation]
By performing the step of light irradiation, a part of the acrylate structure of the mesogen compound is polymerized to be a polymer of the mesogen compound. By such polymerization, an optically anisotropic layer containing a positive C polymer and a polymer of a mesogenic compound can be formed. The irradiation of light to the coating liquid layer may be appropriately selected from methods suitable for the properties of the components contained in the coating liquid, such as the polymerizable compound and the polymerization initiator. The light to be irradiated may include light such as visible light, ultraviolet light, and infrared light. Among them, a method of irradiating ultraviolet light is preferable because the operation is simple.
 紫外線照射強度は、好ましくは0.1mW/cm~1000mW/cmの範囲、より好ましくは0.5mW/cm~600mW/cmの範囲である。紫外線照射時間は、好ましくは1秒~300秒の範囲、より好ましくは3秒~100秒の範囲である。紫外線積算光量(mJ/cm)は、紫外線照射強度(mW/cm)×照射時間(秒)で求められる。好ましい積算光量は、600mJ/cm~5000mJ/cmである。紫外線照射光源としては、高圧水銀灯、メタルハライドランプ、低圧水銀灯を用いることができる。工程(c)は、窒素雰囲気下等の不活性ガス雰囲気下で行うことが、残留モノマー割合が低減される傾向にあるので、好ましい。 Ultraviolet irradiation intensity is preferably in the range of 0.1mW / cm 2 ~ 1000mW / cm 2, more preferably from 0.5mW / cm 2 ~ 600mW / cm 2. The ultraviolet irradiation time is preferably in the range of 1 second to 300 seconds, more preferably in the range of 3 seconds to 100 seconds. The integrated ultraviolet light quantity (mJ / cm 2 ) is determined by the ultraviolet irradiation intensity (mW / cm 2 ) × irradiation time (seconds). Preferred integrated light quantity is 600mJ / cm 2 ~ 5000mJ / cm 2. As an ultraviolet irradiation light source, a high pressure mercury lamp, a metal halide lamp, and a low pressure mercury lamp can be used. It is preferable to carry out the step (c) under an inert gas atmosphere such as a nitrogen atmosphere because the residual monomer ratio tends to be reduced.
 光学異方性層の製造方法は、上に述べた工程以外の任意の工程を含みうる。例えば、光学異方性層を基材から剥離する工程を含みうる。 The method of producing the optically anisotropic layer may include any step other than the steps described above. For example, the step of peeling the optically anisotropic layer from the substrate may be included.
 〔2.転写用複層物〕
 本発明の転写用複層物は、基材と、上述した光学異方性層とを備える。ここで、転写用複層物とは、複数の層を含む部材であって、かかる複数の層のうち一部の層を転写して、かかる一部の層を含む製品の製造に供するものである。本発明の転写用複層物においては、光学異方性層が、前記の製品の製造に供される。
[2. Multilayer for transfer]
The transfer multilayer of the present invention comprises a substrate and the above-mentioned optically anisotropic layer. Here, the transfer multilayer is a member including a plurality of layers, and a part of the plurality of layers is transferred to provide a product including the part of the layers. is there. In the transfer multilayer of the present invention, the optically anisotropic layer is subjected to the production of the above-mentioned product.
 基材としては、光学異方性層の製造方法において説明した基材と同じものを用いうる。中でも、基材としては、剥離可能なものが好ましい。このような基材を備える転写用複層物は、基材を用いた前記の光学異方性層の製造方法を行うことにより、製造しうる。 As the substrate, the same one as the substrate described in the method for producing an optically anisotropic layer can be used. Among them, as the substrate, those which can be peeled off are preferable. A transfer multilayer provided with such a substrate can be produced by carrying out the above-mentioned method for producing an optically anisotropic layer using a substrate.
 転写用複層物は、光学フィルムの製造に用いうる。例えば、転写用複層物の光学異方性層と樹脂フィルムとを貼り合わせた後、基材を剥離することにより、光学異方性層及び樹脂フィルムを備えた光学フィルムを製造できる。 The transfer multilayer may be used to produce an optical film. For example, an optical film provided with an optically anisotropic layer and a resin film can be manufactured by peeling the base after laminating the optically anisotropic layer of the multilayer for transfer and the resin film.
 〔3.光学異方性積層体〕
 本発明の光学異方性積層体は、上述した光学異方性層と、位相差層とを備える。
[3. Optically anisotropic laminate]
The optically anisotropic laminate of the present invention comprises the above-described optically anisotropic layer and a retardation layer.
 〔3.1.光学異方性積層体における光学異方性層〕
 光学異方性積層体の光学異方性層としては、上述したものを用いる。ただし、光学異方性積層体における光学異方性層は、下記式(12)及び式(13)を満たすことが好ましい。
 Re(A590)≦10nm 式(12)
 -110nm≦Rth(A590)≦-20nm 式(13)
 Re(A590)及びRth(A590)の定義は、上に述べた通りである。
[3.1. Optically anisotropic layer in optically anisotropic laminate]
As the optically anisotropic layer of the optically anisotropic laminate, those described above are used. However, it is preferable that the optically anisotropic layer in the optically anisotropic laminate satisfy the following formulas (12) and (13).
Re (A 590) ≦ 10 nm Formula (12)
−110 nm ≦ Rth (A 590) ≦ −20 nm Formula (13)
The definitions of Re (A 590) and Rth (A 590) are as described above.
 前記式(12)を詳細に説明すると、Re(A590)は、好ましくは0nm~10nm、より好ましくは0nm~5nm、特に好ましくは0nm~2nmである。Re(A590)が前記の範囲に収まることにより、光学異方性積層体を画像表示装置に設ける場合の光学設計をシンプルにすることができる。 Describing the formula (12) in detail, Re (A 590) is preferably 0 nm to 10 nm, more preferably 0 nm to 5 nm, and particularly preferably 0 nm to 2 nm. When Re (A 590) falls within the above range, the optical design in the case of providing the optically anisotropic laminate in an image display device can be simplified.
 また、前記式(13)を詳細に説明すると、Rth(A590)は、好ましくは-110nm以上、より好ましくは-100nm以上であり、好ましくは-20nm以下、より好ましくは-40nm以下、特に好ましくは-50nm以下である。このようなRth(A590)を有する光学異方性層を備えた光学異方性積層体は、円偏光板に組み込んで画像表示装置に適用した場合に、画像表示装置の表示面の傾斜方向において、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過させたりする機能を、効果的に発揮できる。そのため、画像表示装置の表示面を傾斜方向から見た場合に、画像の視認性を効果的に高めることができる。 Further, to describe the formula (13) in detail, Rth (A 590) is preferably -110 nm or more, more preferably -100 nm or more, preferably -20 nm or less, more preferably -40 nm or less, particularly preferably -50 nm or less. An optically anisotropic laminate having an optically anisotropic layer having such Rth (A 590) is incorporated in a circularly polarizing plate and applied to an image display device, in the inclination direction of the display surface of the image display device. The function of suppressing the reflection of external light and transmitting light that displays an image can be effectively exhibited. Therefore, when the display surface of the image display device is viewed from the inclined direction, the visibility of the image can be effectively enhanced.
 〔3.2.光学異方性積層体における位相差層〕
 〔3.2.1.位相差層の光学特性〕
 位相差層は、式(8)を満たす層である。
 nx(B)>ny(B)≧nz(B)  式(8)
 但し、nx(B)、ny(B)及びnz(B)は、前記位相差層の主屈折率である。このような位相差層を備える光学異方性積層体は、直線偏光子と組み合わせることによって円偏光板を製造できる。この円偏光板は、画像表示装置の表示面に設けることにより、表示面を正面方向から見た場合に、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過できるようにしたりできるので、画像の視認性を高めることが可能である。
[3.2. Retardation layer in optically anisotropic laminate]
[3.2.1. Optical Properties of Retardation Layer]
The retardation layer is a layer satisfying the formula (8).
nx (B)> ny (B) ≧ nz (B) Formula (8)
However, nx (B), ny (B) and nz (B) are the main refractive indexes of the said phase difference layer. An optically anisotropic laminate having such a retardation layer can be used to produce a circularly polarizing plate by combining it with a linear polarizer. This circularly polarizing plate is provided on the display surface of the image display device, so that reflection of external light can be suppressed or light for displaying an image can be transmitted through polarized sunglasses when the display surface is viewed from the front direction. Image visibility can be enhanced.
 中でも、位相差層の屈折率ny(B)と屈折率nz(B)とは、値が同じであるか近いことが好ましい。具体的には、屈折率ny(B)と屈折率nz(B)の差の絶対値|ny(B)-nz(B)|は、好ましくは0.00000~0.00100、より好ましくは0.00000~0.00050、特に好ましくは0.00000~0.00020である。屈折率差の絶対値|ny(B)-nz(B)|が前記の範囲に収まることにより、光学異方性積層体を画像表示装置に設ける場合の光学設計をシンプルにすることができる。 Among them, it is preferable that the refractive index ny (B) of the retardation layer and the refractive index nz (B) have the same value or be close to each other. Specifically, the absolute value | ny (B) −nz (B) | of the difference between the refractive index ny (B) and the refractive index nz (B) is preferably 0.00000 to 0.00100, more preferably 0. And particularly preferably 0.00000 to 0.00020. When the absolute value | ny (B) −nz (B) | of the refractive index difference falls within the above range, the optical design in the case where the optically anisotropic laminate is provided in the image display device can be simplified.
 位相差層は、式(11)を満たすことが好ましい。
 110nm≦Re(B590)≦170nm 式(11)
 但し、Re(B590)は波長590nmにおける位相差層の面内レターデーションである。
The retardation layer preferably satisfies the formula (11).
110 nm ≦ Re (B 590) ≦ 170 nm Formula (11)
However, Re (B 590) is the in-plane retardation of the retardation layer at a wavelength of 590 nm.
 前記式(11)を詳細に説明すると、Re(B590)は、好ましくは110nm以上、より好ましくは120nm以上、特に好ましくは130nm以上であり、好ましくは170nm以下、より好ましくは160nm以下、特に好ましくは150nm以下である。このようなRe(B590)を有する位相差層を備えた光学異方性積層体は、直線偏光子と組み合わせて円偏光板を得ることができる。この円偏光板を画像表示装置の表示面に設けることにより、表示面を正面方向から見た場合に、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過できるようにしたりできるので、画像の視認性を高めることが可能である。 Describing the formula (11) in detail, Re (B 590) is preferably 110 nm or more, more preferably 120 nm or more, particularly preferably 130 nm or more, preferably 170 nm or less, more preferably 160 nm or less, particularly preferably 150 nm or less. An optically anisotropic laminate having such a retardation layer having Re (B 590) can be combined with a linear polarizer to obtain a circularly polarizing plate. By providing the circularly polarizing plate on the display surface of the image display device, reflection of external light can be suppressed or light for displaying an image can be transmitted through polarized sunglasses when the display surface is viewed from the front direction. As it can, it is possible to improve the visibility of the image.
 位相差層は、式(9)及び式(10)を満たすことが好ましい。
 0.75<Re(B450)/Re(B550)<1.00  式(9)
 1.01<Re(B650)/Re(B550)<1.25  式(10)
 但し、Re(B450)は、前記位相差層の波長450nmにおける面内レターデーションであり、Re(B550)は、前記位相差層の波長550nmにおける面内レターデーションであり、Re(B650)は、前記位相差層の波長650nmにおける面内レターデーションである。
The retardation layer preferably satisfies Formulas (9) and (10).
0.75 <Re (B450) / Re (B550) <1.00 Formula (9)
1.01 <Re (B650) / Re (B550) <1.25 Formula (10)
However, Re (B450) is an in-plane retardation of the retardation layer at a wavelength of 450 nm, Re (B550) is an in-plane retardation of the retardation layer at a wavelength of 550 nm, and Re (B650) is In-plane retardation of the retardation layer at a wavelength of 650 nm.
 前記式(9)を詳細に説明すると、Re(B450)/Re(B550)は、好ましくは0.75より大きく、より好ましくは0.78より大きく、特に好ましくは0.80より大きく、また、好ましくは1.00未満、より好ましくは0.95未満、特に好ましくは0.90未満である。 Describing the formula (9) in detail, Re (B450) / Re (B550) is preferably more than 0.75, more preferably more than 0.78, particularly preferably more than 0.80, and Preferably it is less than 1.00, more preferably less than 0.95, particularly preferably less than 0.90.
 前記式(10)を詳細に説明すると、Re(B650)/Re(B550)は、好ましくは1.01より大きく、好ましくは1.02より大きく、特に好ましくは1.04より大きく、また、好ましくは1.25未満、より好ましくは1.22未満、特に好ましくは1.19未満である。 Describing the formula (10) in detail, Re (B650) / Re (B550) is preferably more than 1.01, preferably more than 1.02, particularly preferably more than 1.04, and preferably Is less than 1.25, more preferably less than 1.22, particularly preferably less than 1.19.
 前記の式(9)及び式(10)を満たす面内レターデーションRe(B450)、Re(B550)及びRe(B650)を有する位相差層は、その面内レターデーションReが逆波長分散性を示す。このように面内レターデーションReが逆波長分散性を示す位相差層を備える光学異方性積層体は、円偏光板に組み込んで画像表示装置に適用した場合に、画像表示装置の表示面の正面方向において、外光の反射を抑制したり、画像を表示する光に偏光サングラスを透過させたりする機能を、広い波長範囲において発揮できる。そのため、表示面に表示される画像の視認性を、特に効果的に向上させることができる。 In the retardation layer having in-plane retardations Re (B450), Re (B550) and Re (B650) satisfying the formulas (9) and (10), the in-plane retardation Re has inverse wavelength dispersion. Show. As described above, the optically anisotropic laminate having the retardation layer in which the in-plane retardation Re exhibits reverse wavelength dispersion is incorporated in the circularly polarizing plate and applied to the image display device. In the front direction, the function of suppressing the reflection of external light or transmitting the polarized sunglasses to the light for displaying an image can be exhibited in a wide wavelength range. Therefore, the visibility of the image displayed on the display surface can be particularly effectively improved.
 位相差層の面内の遅相軸方向は、任意であり、光学異方性積層体の用途に応じて任意に設定しうる。中でも、光学異方性積層体が長尺のフィルムである場合、位相差層の遅相軸とフィルム幅方向とがなす角度は、0°超90°未満であることが好ましい。また、ある態様において、位相差層の面内の遅相軸とフィルム幅方向とがなす角度は、好ましくは15°±5°、22.5°±5°、45°±5°、又は75°±5°、より好ましくは15°±4°、22.5°±4°、45°±4°、又は75°±4°、さらにより好ましくは15°±3°、22.5°±3°、45°±3°、又は75°±3°といった特定の範囲としうる。このような角度関係を有することにより、長尺の直線偏光子に光学異方性積層体をロールツーロールで貼り合わせて、円偏光板の効率的な製造が可能となる。 The slow axis direction in the plane of the retardation layer is arbitrary, and can be arbitrarily set according to the application of the optically anisotropic laminate. Among them, when the optically anisotropic laminate is a long film, the angle between the slow axis of the retardation layer and the film width direction is preferably more than 0 ° and less than 90 °. In one embodiment, an angle between the in-plane slow axis of the retardation layer and the film width direction is preferably 15 ° ± 5 °, 22.5 ° ± 5 °, 45 ° ± 5 °, or 75 °. ° ± 5 °, more preferably 15 ° ± 4 °, 22.5 ° ± 4 °, 45 ° ± 4 °, or 75 ° ± 4 °, even more preferably 15 ° ± 3 °, 22.5 ° ± It may be a specific range such as 3 °, 45 ° ± 3 °, or 75 ° ± 3 °. By having such an angular relationship, the optically anisotropic laminate is attached to a long linear polarizer by roll-to-roll, and efficient production of a circularly polarizing plate becomes possible.
 位相差層の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。また、位相差層のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。 The total light transmittance of the retardation layer is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more. The haze of the retardation layer is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
 〔3.2.2.位相差層としての延伸フィルム層〕
 前記のような位相差層としては、延伸フィルム層を用いうる。位相差層として延伸フィルム層を用いる場合、当該延伸フィルム層は、光学異方性層の製造方法において説明した基材フィルムの材料である樹脂を含みうる。このような樹脂を含むフィルム層は、延伸処理を施すことにより、レターデーション等の光学特性を発現しうる。中でも、前記の延伸フィルム層は、脂環式構造含有重合体を含むことが好ましい。
[3.2.2. Stretched Film Layer as Retardation Layer]
A stretched film layer can be used as the retardation layer as described above. When a stretched film layer is used as the retardation layer, the stretched film layer may contain a resin which is a material of the base film described in the method for producing an optically anisotropic layer. A film layer containing such a resin can exhibit optical properties such as retardation by being subjected to a stretching treatment. Among them, the stretched film layer preferably contains an alicyclic structure-containing polymer.
 延伸フィルム層の延伸方向は、任意である。よって、延伸方向は、長手方向でもよく、幅方向でもよく、斜め方向でもよい。さらに、これらの延伸方向のうち、2以上の方向に延伸が施されていてもよい。ここで、斜め方向とは、フィルムの面内方向であって、長手方向及び幅方向のいずれとも非平行な方向をいう。 The stretching direction of the stretched film layer is arbitrary. Therefore, the stretching direction may be a longitudinal direction, a width direction, or an oblique direction. Furthermore, among these stretching directions, stretching may be performed in two or more directions. Here, the oblique direction refers to the in-plane direction of the film, which is not parallel to any of the longitudinal direction and the width direction.
 中でも、延伸フィルム層は、斜め延伸フィルム層であることが好ましい。すなわち、延伸フィルム層は、長尺のフィルムであり、且つフィルムの長手方向及び幅方向のいずれとも非平行な方向に延伸されたフィルムであることが好ましい。斜め延伸フィルム層である場合の、フィルム幅方向と延伸方向とがなす角度は、具体的には0°超90°未満としうる。このような斜め延伸フィルム層を位相差層として用いることにより、長尺の直線偏光子に光学異方性積層体をロールツーロールで貼り合わせて、円偏光板の効率的な製造が可能となる。 Among them, the stretched film layer is preferably a diagonally stretched film layer. That is, the stretched film layer is preferably a long film and a film stretched in a direction nonparallel to any of the longitudinal direction and the width direction of the film. Specifically, the angle between the film width direction and the stretching direction in the case of the obliquely stretched film layer may be more than 0 ° and less than 90 °. By using such an obliquely stretched film layer as a retardation layer, an optically anisotropic laminate can be bonded to a long linear polarizer by roll-to-roll, and efficient production of a circularly polarizing plate becomes possible. .
 延伸方向とフィルム幅方向とがなす角度は、好ましくは15°±5°、22.5±5°、45°±5°、又は75°±5°、より好ましくは15°±4°、22.5°±4°、45°±4°、又は75°±4°、さらにより好ましくは15°±3°、22.5°±3°、45°±3°、又は75°±3°といった特定の範囲としうる。このような角度関係を有することにより、光学異方性積層体を、円偏光板の効率的な製造を可能にする材料とすることができる。 The angle between the stretching direction and the film width direction is preferably 15 ° ± 5 °, 22.5 ± 5 °, 45 ° ± 5 °, or 75 ° ± 5 °, more preferably 15 ° ± 4 °, 22 .5 ° ± 4 °, 45 ° ± 4 °, or 75 ° ± 4 °, and even more preferably 15 ° ± 3 °, 22.5 ° ± 3 °, 45 ° ± 3 °, or 75 ° ± 3 ° It can be a specific range such as By having such an angular relationship, the optically anisotropic laminate can be made a material that enables efficient production of a circularly polarizing plate.
 さらに、前記の延伸フィルム層は、複数の層を含む複層構造を有することが好ましい。複層構造を有する延伸フィルム層は、延伸フィルム層に含まれる各層の機能の組み合わせによって、多様な特性を発揮できる。例えば、延伸フィルム層は、重合体を含む樹脂からなる第一外側層、重合体及び紫外線吸収剤を含む樹脂からなる中間層、及び、重合体を含む樹脂からなる第二外側層を、この順に備えることが好ましい。この際、各層に含まれる重合体は、異なっていてもよいが、同じであることが好ましい。このような第一外側層、中間層及び第二外側層を備える延伸フィルム層は、紫外線の透過を抑制できる。また、中間層の両側に第一外側層及び第二外側層が設けられているので、紫外線吸収剤のブリードアウトを抑制できる。 Furthermore, the stretched film layer preferably has a multilayer structure including a plurality of layers. The stretched film layer having a multilayer structure can exhibit various properties by the combination of the functions of the layers included in the stretched film layer. For example, the stretched film layer includes a first outer layer made of a resin containing a polymer, an intermediate layer made of a resin containing a polymer and a UV absorber, and a second outer layer made of a resin containing a polymer in this order It is preferable to have. Under the present circumstances, although the polymer contained in each layer may differ, it is preferable that it is the same. The stretched film layer comprising such first outer layer, intermediate layer and second outer layer can suppress the transmission of ultraviolet light. In addition, since the first outer layer and the second outer layer are provided on both sides of the intermediate layer, the bleeding out of the ultraviolet absorber can be suppressed.
 中間層に含まれる樹脂における紫外線吸収剤の量は、好ましくは3重量%以上、より好ましくは4重量%以上、特に好ましくは5重量%以上であり、好ましくは20重量%以下、より好ましくは18重量%以下、特に好ましくは16重量%以下である。紫外線吸収剤の量が、前記範囲の下限値以上であることにより、紫外線の透過を妨げる延伸フィルム層の能力を特に高めることができ、前記範囲の上限値以下であることにより、延伸フィルム層の可視光に対する透明性を高めることができる。 The amount of the UV absorber in the resin contained in the intermediate layer is preferably 3% by weight or more, more preferably 4% by weight or more, particularly preferably 5% by weight or more, preferably 20% by weight or less, more preferably 18%. % By weight or less, particularly preferably 16% by weight or less. When the amount of the ultraviolet absorber is at least the lower limit value of the above range, the ability of the stretched film layer to block the transmission of ultraviolet rays can be particularly enhanced, and by being at the upper limit value of the above range, the stretched film layer Transparency to visible light can be enhanced.
 中間層の厚みは、「中間層の厚み」/「延伸フィルム層全体の厚み」で表される比が、特定の範囲に収まるように設定することが好ましい。前記の特定の範囲は、好ましくは1/5以上、より好ましくは1/4以上、特に好ましくは1/3以上であり、好ましくは80/82以下、より好ましくは79/82以下、特に好ましくは78/82以下である。前記の比が、前記範囲の下限値以上であることにより、紫外線の透過を妨げる延伸フィルム層の能力を特に高めることができ、前記範囲の上限値以下であることにより、延伸フィルム層の厚みを薄くできる。 The thickness of the intermediate layer is preferably set such that the ratio represented by “the thickness of the intermediate layer” / “the thickness of the entire stretched film layer” falls within a specific range. The specific range is preferably 1/5 or more, more preferably 1/4 or more, particularly preferably 1/3 or more, preferably 80/82 or less, more preferably 79/82 or less, particularly preferably It is 78/82 or less. When the ratio is at least the lower limit of the above range, the ability of the stretched film layer to block the transmission of ultraviolet light can be particularly enhanced, and by being at the upper limit or less of the above range, the thickness of the stretched film layer It can be thin.
 位相差層としての延伸フィルム層の厚みは、好ましくは10μm以上、より好ましくは13μm以上、特に好ましくは15μm以上であり、好ましくは60μm以下、より好ましくは58μm以下、特に好ましくは55μm以下である。延伸フィルム層の厚みが、前記範囲の下限値以上であることにより所望のレターデーションの発現ができ、また、前記範囲の上限値以下であることにより薄膜化ができる。 The thickness of the stretched film layer as the retardation layer is preferably 10 μm or more, more preferably 13 μm or more, particularly preferably 15 μm or more, preferably 60 μm or less, more preferably 58 μm or less, particularly preferably 55 μm or less. When the thickness of the stretched film layer is not less than the lower limit of the above range, desired retardation can be expressed, and when it is not more than the upper limit of the above range, a thin film can be formed.
 延伸フィルム層は、例えば、延伸前フィルム層を用意する工程と、用意した延伸前フィルム層を延伸する工程と、を含む方法により、製造しうる。 The stretched film layer can be produced, for example, by a method including the steps of preparing a film layer before stretching and stretching the prepared film layer before stretching.
 延伸前フィルム層は、例えば、適切な成形方法によって延伸フィルム層の材料となる樹脂を成形することにより、製造しうる。成形方法としては、例えば、キャスト成形法、押出成形法、インフレーション成形法などが挙げられる。中でも、溶媒を使用しない溶融押出法が、残留揮発成分量を効率よく低減させることができ、地球環境及び作業環境の観点、並びに製造効率に優れる観点から好ましい。溶融押出法としては、ダイスを用いるインフレーション法などが挙げられ、中でも生産性や厚み精度に優れる点でTダイを用いる方法が好ましい。 The film layer before stretching can be produced, for example, by molding a resin to be a material of the stretched film layer by a suitable molding method. As a molding method, a cast molding method, an extrusion molding method, an inflation molding method etc. are mentioned, for example. Among them, the melt extrusion method which does not use a solvent can reduce the amount of residual volatile component efficiently, and is preferable from the viewpoints of the global environment and the working environment, and from the viewpoint of excellent manufacturing efficiency. The melt extrusion method may, for example, be an inflation method using a die, and a method using a T-die is preferable among them in terms of excellent productivity and thickness accuracy.
 複層構造を有する延伸フィルム層を製造する場合、通常は、延伸前フィルム層として、複層構造を有するものを用意する。このように複層構造を有する延伸前フィルム層は、例えば、共押出法及び共流延法などの成形方法によって、複層構造に含まれる各層に対応する樹脂を成形することで製造しうる。これらの成形方法の中でも、共押出法は、製造効率に優れ、フィルム中に揮発性成分を残留させ難いので、好ましい。共押出法としては、例えば、共押出Tダイ法、共押出インフレーション法、共押出ラミネーション法等が挙げられる。中でも、共押出Tダイ法が好ましい。共押出Tダイ法には、フィードブロック方式及びマルチマニホールド方式があり、厚みのばらつきを少なくできる点で、マルチマニホールド方式が特に好ましい。 When producing a stretched film layer having a multilayer structure, one having a multilayer structure is usually prepared as a film layer before stretching. Thus, the pre-stretched film layer having a multilayer structure can be produced, for example, by molding a resin corresponding to each layer included in the multilayer structure by a molding method such as a coextrusion method and a co-casting method. Among these molding methods, co-extrusion method is preferable because it is excellent in production efficiency and hardly retains volatile components in the film. Examples of the co-extrusion method include co-extrusion T-die method, co-extrusion inflation method, co-extrusion lamination method and the like. Among them, the co-extrusion T-die method is preferable. The co-extrusion T-die method includes a feed block method and a multi-manifold method, and the multi-manifold method is particularly preferable in that variations in thickness can be reduced.
 前記のように樹脂を成形することにより、長尺の延伸前フィルムが得られる。この延伸前フィルムを延伸することにより、延伸フィルム層が得られる。延伸は、通常、延伸前フィルムを長手方向に搬送しながら、連続的に行う。この際、延伸方向は、フィルムの長手方向でもよく、幅方向でもよいが、斜め方向であることが好ましい。また、延伸は、延伸方向以外に拘束力の加わらない自由一軸延伸であってもよく、延伸方向以外にも拘束力が加わる延伸であってもよい。これらの延伸は、ロール延伸機、テンター延伸機等の任意の延伸機を用いて行いうる。 By molding the resin as described above, a long unstretched film can be obtained. A stretched film layer is obtained by stretching the film before stretching. Stretching is usually performed continuously while conveying the film before stretching in the longitudinal direction. Under the present circumstances, although the extending | stretching direction may be a longitudinal direction of a film, and may be width direction, it is preferable that it is an oblique direction. Further, the stretching may be free uniaxial stretching in which a restraining force is not applied in the direction other than the stretching direction, or may be stretching in which a restraining force is applied in the direction other than the stretching direction. These stretching may be performed using any stretching machine such as a roll stretcher or a tenter stretcher.
 延伸倍率は、好ましくは1.1倍以上、より好ましくは1.15倍以上、特に好ましくは1.2倍以上であり、好ましくは3.0倍以下、より好ましくは2.8倍以下、特に好ましくは2.6倍以下である。延伸倍率を前記範囲の下限値以上にすることにより、延伸方向の屈折率を大きくできる。また、上限値以下にすることにより、延伸フィルム層の遅相軸方向を容易に制御することができる。 The stretching ratio is preferably 1.1 times or more, more preferably 1.15 times or more, particularly preferably 1.2 times or more, preferably 3.0 times or less, more preferably 2.8 times or less, in particular Preferably it is 2.6 times or less. The refractive index in the stretching direction can be increased by setting the stretching ratio to the lower limit value or more of the above range. In addition, by setting the upper limit value or less, the slow axis direction of the stretched film layer can be easily controlled.
 延伸温度は、好ましくはTg-5℃以上、より好ましくはTg-2℃以上、特に好ましくはTg℃以上であり、好ましくはTg+40℃以下、より好ましくはTg+35℃以下、特に好ましくはTg+30℃以下である。ここで「Tg」は、延伸前フィルム層に含まれる重合体のガラス転移温度のうち、最も高い温度を表す。延伸温度を前記の範囲にすることにより、延伸前フィルム層に含まれる分子を確実に配向させることができるので、所望の光学特性を有する位相差層として機能できる延伸フィルム層を、容易に得ることができる。 The stretching temperature is preferably Tg-5 ° C. or more, more preferably Tg-2 ° C. or more, particularly preferably Tg ° C. or more, preferably Tg + 40 ° C. or less, more preferably Tg + 35 ° C. or less, particularly preferably Tg + 30 ° C. or less is there. Here, “Tg” represents the highest temperature among the glass transition temperatures of the polymer contained in the film layer before stretching. By setting the stretching temperature within the above range, the molecules contained in the film layer before stretching can be reliably oriented, so that a stretched film layer capable of functioning as a retardation layer having desired optical properties can be easily obtained. Can.
 〔3.2.3.位相差層としての液晶層〕
 前記のような位相差層としては、配向状態が固定されていてもよい液晶化合物(以下、適宜「位相差層用液晶化合物」ということがある。)を含む液晶層を用いうる。この際、位相差層用液晶化合物としては、ホモジニアス配向した前記の逆波長分散液晶化合物を用いることが好ましい。これにより、光学異方性層の項において説明したのと同じ利点を、位相差層においても得ることができる。中でも、位相差層としての液晶層は、配向状態が固定されていてもよい下記式(II)で表される液晶化合物を含むことが、特に好ましい。
[3.2.3. Liquid Crystal Layer as Retardation Layer]
As the retardation layer as described above, a liquid crystal layer containing a liquid crystal compound (hereinafter, sometimes referred to as “liquid crystal compound for retardation layer” as appropriate) in which the alignment state may be fixed can be used. Under the present circumstances, it is preferable to use the said reverse wavelength dispersion liquid crystal compound which carried out homogeneous orientation as a liquid crystal compound for retardation layers. Thereby, the same advantages as described in the section of the optically anisotropic layer can be obtained in the retardation layer. Among them, it is particularly preferable that the liquid crystal layer as the retardation layer contains a liquid crystal compound represented by the following formula (II) which may be fixed in the alignment state.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 前記式(II)において、Y~Y、G、G、Z、Z、A、A、A~A、Q、m及びnは、式(I)における意味と同じ意味を表す。よって、式(II)で表される液晶化合物は、式(I)で表される液晶化合物と同じ化合物を表す。
 但し、式(I)においては、Z-Y-及び-Y-Zの一方又は両方はアクリロイルオキシ基である一方、式(II)においては、これらの両方が、アクリロイルオキシ基以外の基であってもよい。
In the above formula (II), Y 1 to Y 8 , G 1 , G 2 , Z 1 , Z 2 , A x , A y , A 1 to A 5 , Q 1 , m and n are as in formula (I) Represents the same meaning as the meaning. Thus, the liquid crystal compound represented by the formula (II) represents the same compound as the liquid crystal compound represented by the formula (I).
However, in Formula (I), one or both of Z 1 -Y 7 -and -Y 8 -Z 2 are an acryloyloxy group, while in Formula (II), both of them are other than an acryloyloxy group It may be a group of
 位相差層としての液晶層の厚みは、特に限定されず、レターデーションなどの特性を所望の範囲とできるように適切に調整しうる。液晶層の具体的な厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは10μm以下、より好ましくは7μm以下、特に好ましくは5μm以下である。 The thickness of the liquid crystal layer as the retardation layer is not particularly limited, and can be appropriately adjusted so that the characteristics such as retardation can be in the desired range. The specific thickness of the liquid crystal layer is preferably 0.5 μm or more, more preferably 1.0 μm or more, preferably 10 μm or less, more preferably 7 μm or less, and particularly preferably 5 μm or less.
 位相差層としての液晶層は、例えば、位相差層用液晶化合物を含む液晶組成物を用意する工程;支持体上に液晶組成物を塗工して、液晶組成物の層を得る工程;及び、液晶組成物の層に含まれる位相差層用液晶化合物を配向させる工程;を含む方法によって、製造しうる。 The liquid crystal layer as a retardation layer is, for example, a step of preparing a liquid crystal composition containing a liquid crystal compound for retardation layer; a step of applying a liquid crystal composition on a support to obtain a layer of liquid crystal composition; And a step of aligning the liquid crystal compound for retardation layer contained in the layer of the liquid crystal composition.
 液晶組成物を用意する工程では、通常、位相差層用液晶化合物と、必要に応じて用いられる任意の成分とを混合して、液晶組成物を得る。 In the step of preparing a liquid crystal composition, a liquid crystal composition is usually obtained by mixing a liquid crystal compound for retardation layer and an optional component used as needed.
 液晶組成物は、任意の成分として、重合性モノマーを含みうる。「重合性モノマー」とは、重合能を有しモノマーとして働きうる化合物のうち、特に、上述した位相差層用液晶化合物以外の化合物をいう。重合性モノマーとしては、例えば、1分子当たり1以上の重合性基を有するものを用いうる。重合性モノマーが1分子当たり2以上の重合性基を有する架橋性モノマーである場合、架橋的な重合を達成することができる。かかる重合性基の例としては、化合物(I)中の基Z-Y-及びZ-Y-またはその一部分と同じ基を挙げることができ、より具体的には例えば、アクリロイル基、メタクリロイル基、及びエポキシ基を挙げることができる。また、重合性モノマーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 液晶組成物において、重合性モノマーの割合は、位相差層用液晶化合物100重量部に対し、好ましくは1重量部~100重量部、より好ましくは5重量部~50重量部である。
The liquid crystal composition may contain a polymerizable monomer as an optional component. The term "polymerizable monomer" refers to a compound other than the above-mentioned liquid crystal compound for retardation layer, among compounds having polymerization ability and capable of acting as a monomer. As the polymerizable monomer, for example, one having one or more polymerizable groups per molecule can be used. When the polymerizable monomer is a crosslinkable monomer having two or more polymerizable groups per molecule, crosslinkable polymerization can be achieved. Examples of such a polymerizable group can include the same groups as the groups Z 1 -Y 7 -and Z 2 -Y 8 -or a part thereof in compound (I), and more specifically, for example, acryloyl group And methacryloyl groups and epoxy groups. In addition, one type of polymerizable monomer may be used alone, or two or more types may be used in combination in an arbitrary ratio.
The proportion of the polymerizable monomer in the liquid crystal composition is preferably 1 part by weight to 100 parts by weight, more preferably 5 parts by weight to 50 parts by weight with respect to 100 parts by weight of the liquid crystal compound for retardation layer.
 液晶組成物は、任意の成分として、光重合開始剤を含みうる。重合開始剤としては、例えば、光学異方性層の製造のための塗工液が含みうる重合開始剤と同じものが挙げられる。また、重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 液晶組成物において、重合開始剤の割合は、重合性化合物100重量部に対し、好ましくは0.1重量部~30重量部、より好ましくは0.5重量部~10重量部である。
The liquid crystal composition may contain a photopolymerization initiator as an optional component. As a polymerization initiator, the same thing as the polymerization initiator which the coating liquid for manufacture of an optically anisotropic layer may contain is mentioned, for example. Moreover, a polymerization initiator may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
In the liquid crystal composition, the proportion of the polymerization initiator is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymerizable compound.
 液晶組成物は、任意の成分として、界面活性剤を含みうる。界面活性剤としては、ノニオン系界面活性剤が好ましい。ノニオン系界面活性剤としては、市販品を用いうる。例えば、分子量が数千程度のオリゴマーであるノニオン系界面活性剤を用いうる。これらの界面活性剤の具体例としては、OMNOVA社PolyFoxの「PF-151N」、「PF-636」、「PF-6320」、「PF-656」、「PF-6520」、「PF-3320」、「PF-651」、「PF-652」;ネオス社フタージェントの「FTX-209F」、「FTX-208G」、「FTX-204D」、「601AD」;セイミケミカル社サーフロンの「KH-40」、「S-420」等を用いることができる。また、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 液晶組成物において、界面活性剤の割合は、重合性化合物100重量部に対し、好ましくは0.01重量部~10重量部、より好ましくは0.1重量部~2重量部である。
The liquid crystal composition may contain a surfactant as an optional component. As surfactant, nonionic surfactant is preferable. A commercial item can be used as nonionic surfactant. For example, a nonionic surfactant which is an oligomer having a molecular weight of several thousand may be used. Specific examples of these surfactants include “PF-151N”, “PF-636”, “PF-6320”, “PF-656”, “PF-6520”, “PF-3320” of PolyFox from OMNOVA. , "PF-651", "PF-652"; Neos Futagent "FTX-209F", "FTX-208G", "FTX-204D", "601 AD"; Seimi Chemical's Surfron "KH-40" , "S-420" and the like can be used. Moreover, surfactant may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
In the liquid crystal composition, the proportion of the surfactant is preferably 0.01 parts by weight to 10 parts by weight, more preferably 0.1 parts by weight to 2 parts by weight, with respect to 100 parts by weight of the polymerizable compound.
 液晶組成物は、任意の成分として、溶媒を含みうる。溶媒としては、例えば、光学異方性層の製造のための塗工液が含みうる溶媒と同じものが挙げられる。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 液晶組成物において、溶媒の割合は、重合性化合物100重量部に対し、好ましくは100重量部~1000重量部である。
The liquid crystal composition may contain a solvent as an optional component. As a solvent, the same thing as the solvent which the coating liquid for manufacture of an optically anisotropic layer may contain is mentioned, for example. Moreover, a solvent may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
The proportion of the solvent in the liquid crystal composition is preferably 100 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the polymerizable compound.
 液晶組成物は、さらに、任意の成分として、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物等の添加剤を含みうる。かかる添加剤の割合は、重合性化合物100重量部に対し、好ましくは、各々0.1重量部~20重量部である。 The liquid crystal composition may further contain, as optional components, metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixo agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants Additives, such as an agent, ion exchange resin, and metal oxides such as titanium oxide may be included. The proportion of such additives is preferably 0.1 parts by weight to 20 parts by weight with respect to 100 parts by weight of the polymerizable compound.
 前記のような液晶組成物を用意した後で、この液晶組成物を、支持体上に塗工して、液晶組成物の層を得る工程を行う。支持体としては、長尺の支持体を用いることが好ましい。長尺の支持体を用いる場合、連続的に搬送される支持体上に、液晶組成物を連続的に塗工することが可能である。よって、長尺の支持体を用いることにより、位相差層としての液晶層を連続的に製造できるので、生産性を向上させることが可能である。 After the liquid crystal composition as described above is prepared, the liquid crystal composition is coated on a support to obtain a layer of the liquid crystal composition. As a support, it is preferable to use a long support. In the case of using a long support, it is possible to continuously coat the liquid crystal composition on the support which is continuously transported. Therefore, since the liquid crystal layer as a phase difference layer can be manufactured continuously by using a long support, productivity can be improved.
 液晶組成物を支持体上に塗工する場合、支持体に適度の張力(通常、100N/m~500N/m)を掛けて、支持体の搬送ばたつきを少なくし、平面性を維持したまま塗布することが好ましい。平面性とは、支持体の幅方向および搬送方向に垂直な上下方向の振れ量であり、理想的には0mmであるが、通常、1mm以下である。 When the liquid crystal composition is coated on a support, an appropriate tension (usually 100 N / m to 500 N / m) is applied to the support to reduce the fluttering of the support and to apply the coating while maintaining the flatness. It is preferable to do. Flatness is the amount of runout in the vertical direction perpendicular to the width direction and the transport direction of the support, and is ideally 0 mm but is usually 1 mm or less.
 支持体としては、通常、支持体フィルムを用いる。支持体フィルムとしては、光学的な積層体の支持体として用いうるフィルムを、適切に選択して用いうる。中でも、支持体フィルム、位相差層及び光学異方性層を備える光学異方性積層体を光学フィルムとして利用可能にして、支持体フィルムの剥離を不要にする観点から、支持体フィルムとしては透明なフィルムが好ましい。具体的には、支持体フィルムの全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは88%以上である。 As a support, a support film is usually used. As a support film, a film which can be used as a support of an optical laminate can be appropriately selected and used. Among them, an optically anisotropic laminate comprising a support film, a retardation layer, and an optically anisotropic layer can be used as an optical film, and from the viewpoint of eliminating the need for peeling of the support film, the support film is transparent. Films are preferred. Specifically, the total light transmittance of the support film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
 支持体フィルムの材料は、特に限定されず、種々の樹脂を用いうる。樹脂の例としては、光学異方性層の形成に用いうる基材の材料として説明した重合体を含む樹脂が挙げられる。これらの中でも、透明性、低吸湿性、寸法安定性及び軽量性の観点から、樹脂が含む重合体としては、脂環式構造含有重合体及びセルロースエステルが好ましく、脂環式構造含有重合体がより好ましい。 The material of the support film is not particularly limited, and various resins may be used. As an example of resin, resin containing the polymer demonstrated as a material of the base material which can be used for formation of an optical anisotropic layer is mentioned. Among these, from the viewpoints of transparency, low hygroscopicity, dimensional stability and lightness, as the polymer contained in the resin, an alicyclic structure-containing polymer and a cellulose ester are preferable, and an alicyclic structure-containing polymer is preferable. More preferable.
 支持体としては、配向規制力を有するものを用いうる。支持体の配向規制力とは、支持体の上に塗工された液晶組成物中の位相差層用液晶化合物を配向させうる、支持体の性質をいう。 As the support, one having an orientation control force can be used. The alignment control force of the support refers to the property of the support capable of aligning the liquid crystal compound for retardation layer in the liquid crystal composition coated on the support.
 配向規制力は、支持体の材料となるフィルム等の部材に、配向規制力を付与する処理を施すことにより付与しうる。かかる処理の例としては、延伸処理及びラビング処理が挙げられる。 The orientation control force can be applied by subjecting a member such as a film to be a material of the support to a process for applying the orientation control force. Examples of such treatment include stretching treatment and rubbing treatment.
 好ましい態様において、支持体は延伸フィルムである。かかる延伸フィルムとすることにより、延伸方向に応じた配向規制力を有する支持体としうる。 In a preferred embodiment, the support is a stretched film. By setting it as this stretched film, it can be set as the support body which has the orientation control force according to the extending | stretching direction.
 延伸フィルムの延伸方向は、任意である。よって、延伸方向は、長手方向でもよく、幅方向でもよく、斜め方向でもよい。さらに、これらの延伸方向のうち、2以上の方向に延伸が施されていてもよい。延伸倍率は、支持体の表面に配向規制力が生じる範囲で適宜設定しうる。支持体の材料が正の固有複屈折値を有する樹脂である場合、延伸方向に分子が配向して延伸方向に遅相軸が発現する。延伸は、テンター延伸機などの既知の延伸機を用いて行いうる。 The stretching direction of the stretched film is arbitrary. Therefore, the stretching direction may be a longitudinal direction, a width direction, or an oblique direction. Furthermore, among these stretching directions, stretching may be performed in two or more directions. The stretching ratio can be appropriately set in the range in which the alignment regulating force is generated on the surface of the support. When the material of the support is a resin having a positive intrinsic birefringence value, molecules are oriented in the stretching direction and a slow axis is developed in the stretching direction. Drawing can be performed using known drawing machines, such as a tenter drawing machine.
 更に好ましい態様において、支持体は斜め延伸フィルムである。支持体が斜め延伸フィルムである場合の、延伸方向と延伸フィルムの幅方向とがなす角度は、具体的には0°超90°未満としうる。このような斜め延伸フィルムを支持体として用いることにより、光学異方性積層体を、円偏光板の効率的な製造を可能にする材料とすることができる。 In a further preferred embodiment, the support is a diagonally stretched film. When the support is an obliquely stretched film, an angle between the stretching direction and the width direction of the stretched film may specifically be more than 0 ° and less than 90 °. By using such an obliquely stretched film as a support, the optically anisotropic laminate can be made a material that enables efficient production of a circularly polarizing plate.
 また、ある態様において、延伸方向と延伸フィルムの幅方向とがなす角度を、好ましくは15°±5°、22.5±5°、45°±5°、又は75°±5°、より好ましくは15°±4°、22.5°±4°、45°±4°、又は75°±4°、さらにより好ましくは15°±3°、22.5°±3°、45°±3°、又は75°±3°といった特定の範囲としうる。このような角度関係を有することにより、光学異方性積層体を、円偏光板の効率的な製造を可能にする材料とすることができる。 In one embodiment, the angle between the stretching direction and the width direction of the stretched film is preferably 15 ° ± 5 °, 22.5 ± 5 °, 45 ° ± 5 °, or 75 ° ± 5 °, more preferably Is 15 ° ± 4 °, 22.5 ° ± 4 °, 45 ° ± 4 °, or 75 ° ± 4 °, and even more preferably 15 ° ± 3 °, 22.5 ° ± 3 °, 45 ° ± 3 It may be a specific range such as ° or 75 ° ± 3 °. By having such an angular relationship, the optically anisotropic laminate can be made a material that enables efficient production of a circularly polarizing plate.
 液晶組成物の塗工方法の例としては、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、ギャップコーティング法、及びディッピング法が挙げられる。塗工される液晶組成物の層の厚みは、位相差層としての液晶層に求められる所望の厚さに応じて適切に設定しうる。 Examples of coating methods for liquid crystal compositions include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating Methods include die coating, gap coating, and dipping. The thickness of the layer of the liquid crystal composition to be coated can be appropriately set according to the desired thickness required for the liquid crystal layer as the retardation layer.
 支持体上に液晶組成物を塗工して液晶組成物の層を得た後で、液晶組成物の層に含まれる位相差層用液晶化合物を配向させる工程を行う。これにより、液晶組成物の層に含まれる位相差層用液晶化合物は、支持体の配向規制力に応じた配向方向に配向する。例えば、支持体として延伸フィルムを用いた場合、延伸フィルムの延伸方向と平行に、液晶組成物の層に含まれる位相差層用液晶化合物が配向する。 After the liquid crystal composition is coated on the support to obtain a layer of the liquid crystal composition, a step of aligning the liquid crystal compound for retardation layer contained in the layer of the liquid crystal composition is performed. Thus, the liquid crystal compound for retardation layer contained in the layer of the liquid crystal composition is aligned in the alignment direction according to the alignment regulating force of the support. For example, when a stretched film is used as a support, the liquid crystal compound for retardation layer contained in the layer of the liquid crystal composition is aligned in parallel with the stretching direction of the stretched film.
 位相差層用液晶化合物の配向は、塗工により直ちに達成される場合もありえるが、必要に応じて、塗工の後に、加温などの配向処理を施すことにより達成される場合もありえる。配向処理の条件は、使用する液晶組成物の性質に応じて適宜設定しうるが、例えば、50℃~160℃の温度条件において30秒間~5分間処理する条件としうる。 The alignment of the liquid crystal compound for retardation layer may be achieved immediately by coating, but may be achieved by applying an alignment treatment such as heating after coating, if necessary. The conditions for the alignment treatment can be set as appropriate depending on the properties of the liquid crystal composition to be used, and for example, the conditions may be such that the treatment is performed for 30 seconds to 5 minutes under a temperature condition of 50 ° C to 160 ° C.
 上述したように液晶組成物の層において位相差層用液晶化合物を配向させることで、液晶組成物の層において所望の光学特性が発現するので、位相差層として機能しうる液晶層が得られる。 As described above, by orienting the liquid crystal compound for retardation layer in the layer of the liquid crystal composition, desired optical properties are exhibited in the layer of the liquid crystal composition, so that a liquid crystal layer which can function as a retardation layer can be obtained.
 上述した位相差層としての液晶層の製造方法は、更に、任意の工程を含みうる。液晶層の製造方法は、例えば、液晶組成物の層又は液晶層を乾燥させる工程を行なってもよい。かかる乾燥は、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等の乾燥方法で達成しうる。 The method for producing a liquid crystal layer as a retardation layer described above may further include an optional step. The method for producing a liquid crystal layer may include, for example, a step of drying a layer of the liquid crystal composition or the liquid crystal layer. Such drying can be achieved by a drying method such as natural drying, heat drying, reduced pressure drying, reduced pressure heat drying and the like.
 また、位相差層としての液晶層の製造方法は、例えば、液晶組成物に含まれる位相差層用液晶化合物を配向させた後で、位相差層用液晶化合物の配向状態を固定する工程を行ってもよい。この工程では、通常、位相差層用液晶化合物を重合させることにより、位相差層用液晶化合物の配向状態を固定する。また、位相差層用液晶化合物を重合させることにより、液晶層の剛性を高めて、機械的強度を向上させることができる。 Further, in the method for producing a liquid crystal layer as a retardation layer, for example, after the liquid crystal compound for retardation layer contained in the liquid crystal composition is oriented, the step of fixing the alignment state of the liquid crystal compound for retardation layer is performed. May be In this step, usually, the alignment state of the liquid crystal compound for retardation layer is fixed by polymerizing the liquid crystal compound for retardation layer. Further, by polymerizing the liquid crystal compound for retardation layer, the rigidity of the liquid crystal layer can be enhanced, and the mechanical strength can be improved.
 位相差層用液晶化合物の重合は、液晶組成物の成分の性質に適合した方法を適切に選択しうる。例えば、光を照射する方法が好ましい。なかでも、操作が簡便なことから、紫外線を照射する方法が好ましい。紫外線照射強度、紫外線照射時間、紫外線積算光量、及び、紫外線照射光源などの照射条件は、光学異方性層の製造方法における照射条件と同じ範囲に調整しうる。 The polymerization of the liquid crystal compound for retardation layer may be appropriately selected in accordance with the properties of the components of the liquid crystal composition. For example, a method of irradiating light is preferable. Among them, a method of irradiating ultraviolet light is preferable because the operation is simple. The irradiation conditions such as the ultraviolet irradiation intensity, the ultraviolet irradiation time, the ultraviolet integrated light quantity, and the ultraviolet irradiation light source can be adjusted in the same range as the irradiation conditions in the method for producing the optically anisotropic layer.
 重合の際、位相差層用液晶化合物は、通常、その分子の配向を維持したままで重合する。よって、前記の重合により、重合前の液晶組成物に含まれていた位相差層用液晶化合物の配向方向と平行な方向に配向した位相差層用液晶化合物の重合体を含む液晶層が得られる。したがって、例えば、支持体として延伸フィルムを用いた場合には、延伸フィルムの延伸方向と平行な配向方向を有する液晶層を得ることができる。ここで平行とは、延伸フィルムの延伸方向と位相差層用液晶化合物の重合体の配向方向のズレが、通常±3°、好ましくは±1°、理想的には0°をいう。 During polymerization, the liquid crystal compound for retardation layer is usually polymerized while maintaining the alignment of its molecules. Therefore, a liquid crystal layer containing a polymer of a liquid crystal compound for retardation layer aligned in a direction parallel to the alignment direction of the liquid crystal compound for retardation layer contained in the liquid crystal composition before polymerization can be obtained by the above polymerization. . Therefore, for example, when a stretched film is used as a support, a liquid crystal layer having an alignment direction parallel to the stretching direction of the stretched film can be obtained. Here, “parallel” means that the difference between the stretching direction of the stretched film and the alignment direction of the polymer of the liquid crystal compound for retardation layer is usually ± 3 °, preferably ± 1 °, and ideally 0 °.
 上述した製造方法で製造された位相差層としての液晶層において、位相差層用液晶化合物から得られた重合体の分子は、好ましくは、支持体フィルムに対して水平配向した配向規則性を有する。例えば、支持体フィルムとして配向規制力を有するものを用いた場合、液晶層において位相差層用液晶化合物の重合体の分子を水平配向させることができる。ここで、位相差層用液晶化合物の重合体の分子が支持体フィルムに対して「水平配向」するとは、重合体が含む位相差層用液晶化合物由来の構造単位のメソゲン骨格の長軸方向の平均方向が、フィルム面と平行又は平行に近い(例えばフィルム面となす角度が5°以内)、ある一の方向に配向することをいう。位相差層用液晶化合物として式(II)で表される化合物を用いた場合のように、液晶層中に、配向方向の異なる複数種類のメソゲン骨格が存在する場合は、通常、それらのうち最も長い種類のメソゲン骨格の長軸方向が配向する方向が、当該配向方向となる。 In the liquid crystal layer as a retardation layer produced by the above-mentioned production method, the molecules of the polymer obtained from the liquid crystal compound for retardation layer preferably have an orientation regularity that is horizontally oriented with respect to the support film. . For example, in the case of using a support film having an alignment control force, it is possible to horizontally align the molecules of the polymer of the liquid crystal compound for retardation layer in the liquid crystal layer. Here, “horizontal alignment” of the molecules of the polymer of the liquid crystal compound for retardation layer with respect to the support film means the direction of the major axis of the mesogen skeleton of the structural unit derived from the liquid crystal compound for retardation layer contained in the polymer. The average direction is parallel to or nearly parallel to the film surface (for example, the angle between the film surface and the film is within 5 °), which means that the film is oriented in one direction. As in the case of using the compound represented by the formula (II) as the liquid crystal compound for retardation layer, in the case where plural kinds of mesogen skeletons having different alignment directions are present in the liquid crystal layer, usually, the most preferable among them. The direction in which the long axis direction of the long type mesogen skeleton is oriented is the orientation direction.
 さらに、位相差層としての液晶層の製造方法は、液晶層を得た後で、支持体を剥離する工程を含んでいてもよい。 Furthermore, the method for producing a liquid crystal layer as a retardation layer may include the step of peeling the support after obtaining the liquid crystal layer.
 〔3.3.光学異方性積層体における任意の層〕
 光学異方性積層体は、光学異方性層及び位相差層に組み合わせて、更に任意の層を備えうる。任意の層としては、例えば、接着層、ハードコート層等が挙げられる。
[3.3. Optional Layer in Optically Anisotropic Laminate]
The optically anisotropic laminate may further include an optional layer in combination with the optically anisotropic layer and the retardation layer. Examples of the optional layer include an adhesive layer, a hard coat layer and the like.
 〔3.4.光学異方性積層体の製造方法〕
 光学異方性積層体は、例えば、下記の製造方法1又は2によって製造しうる。
[3.4. Method for producing optically anisotropic laminate]
The optically anisotropic laminate can be produced, for example, by the following production method 1 or 2.
 ・製造方法1:
 位相差層を製造する工程と、
 前記位相差層を基材として用いて、上述した光学異方性層の製造方法を行うことにより、位相差層上に光学異方性層を形成して、光学異方性積層体を得る工程と、を含む、製造方法。
Manufacturing method 1:
Producing a retardation layer;
A step of forming an optically anisotropic layer on a retardation layer by performing the method for producing an optically anisotropic layer described above using the retardation layer as a substrate, to obtain an optically anisotropic laminate And manufacturing methods.
 製造方法1のように位相差層上に塗工液を塗工した場合は、塗工液層の乾燥によって、位相差層上に光学異方性層が形成されて、光学異方性積層体が得られる。 When the coating liquid is applied on the retardation layer as in the production method 1, an optically anisotropic layer is formed on the retardation layer by drying the coating liquid layer, and an optically anisotropic laminate is obtained. Is obtained.
 ・製造方法2:
 位相差層を製造する工程と、
 転写用複層物を製造する工程と、
 転写用複層物の光学異方性層と、位相差層とを、貼り合わせて、光学異方性積層体を得る工程と、
 転写用複層物の基材を剥離する工程と、を含む、製造方法。
Manufacturing method 2:
Producing a retardation layer;
A process of producing a multilayer for transfer;
Bonding the optically anisotropic layer of the multilayer for transfer and the retardation layer to obtain an optically anisotropic laminate,
And exfoliating the base material of the transfer multilayer.
 製造方法2のように、光学異方性層と位相差層とを貼り合わせて光学異方性積層体を製造する場合、貼り合わせには、適切な接着剤を用いうる。この接着剤としては、例えば、後述する偏光板において用いるのと同じ接着剤を用いうる。 When manufacturing an optically anisotropic laminated body by bonding an optically anisotropic layer and a retardation layer like manufacturing method 2, an appropriate adhesive agent can be used for bonding. As this adhesive, for example, the same adhesive as used in a polarizing plate described later can be used.
 また、前記の光学異方性積層体の製造方法は、上述した工程に加えて、任意の工程を含んでいてもよい。例えば、前記の製造方法は、ハードコート層等の任意の層を設ける工程、を含んでいてもよい。 Moreover, in addition to the process mentioned above, the manufacturing method of said optical anisotropic laminated body may include the arbitrary processes. For example, the manufacturing method may include the step of providing an arbitrary layer such as a hard coat layer.
 〔4.偏光板〕
 本発明の偏光板は、直線偏光子と、上述した光学異方性層、転写用複層物又は光学異方性積層体と、を備える。このような偏光板は、画像表示装置に設けることにより、画像表示装置を傾斜方向から見た場合の画像の視認性を高めることができる。
[4. Polarizer〕
The polarizing plate of the present invention is provided with a linear polarizer, and the above-described optically anisotropic layer, a multilayer for transfer, or an optically anisotropic laminate. By providing such a polarizing plate in the image display device, the visibility of the image when the image display device is viewed from the tilt direction can be enhanced.
 直線偏光子としては、液晶表示装置、及びその他の光学装置等の装置に用いられている既知の直線偏光子を用いうる。直線偏光子の例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。また、直線偏光子の他の例としては、グリッド偏光子、多層偏光子、コレステリック液晶偏光子などの、偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうち、直線偏光子としては、ポリビニルアルコールを含有する偏光子が好ましい。 As the linear polarizer, known linear polarizers used in devices such as liquid crystal displays and other optical devices can be used. An example of a linear polarizer is a film obtained by adsorbing iodine or a dichroic dye to a polyvinyl alcohol film and then uniaxially stretching in a boric acid bath; iodine or a dichroic dye is adsorbed to a polyvinyl alcohol film And a film obtained by further stretching and further modifying a part of polyvinyl alcohol units in the molecular chain into polyvinylene units. In addition, as another example of the linear polarizer, a polarizer having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizer, a multilayer polarizer, a cholesteric liquid crystal polarizer and the like can be mentioned. Among these, as the linear polarizer, a polarizer containing polyvinyl alcohol is preferable.
 直線偏光子に自然光を入射させると、一方の偏光だけが透過する。この直線偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。
 また、直線偏光子の厚みは、好ましくは5μm~80μmである。
When natural light is incident on the linear polarizer, only one polarized light is transmitted. Although the degree of polarization of this linear polarizer is not particularly limited, it is preferably 98% or more, more preferably 99% or more.
The thickness of the linear polarizer is preferably 5 μm to 80 μm.
 偏光板は、更に、直線偏光子と、光学異方性層、転写用複層物又は光学異方性積層体とを貼り合わせるための、接着層を備えていてもよい。接着層としては、硬化性接着剤を硬化させてなる層を用いうる。硬化性接着剤としては、熱硬化性接着剤を用いてもよいが、光硬化性接着剤を用いることが好ましい。光硬化性接着剤としては、重合体又は反応性の単量体を含んだものを用いうる。また、接着剤は、必要に応じて溶媒、光重合開始剤、その他の添加剤等を含みうる。 The polarizing plate may further include an adhesive layer for bonding the linear polarizer and the optically anisotropic layer, the transfer multilayer, or the optically anisotropic laminate. As the adhesive layer, a layer obtained by curing a curable adhesive can be used. Although a thermosetting adhesive may be used as a curable adhesive, it is preferable to use a photocurable adhesive. As the photocurable adhesive, one containing a polymer or a reactive monomer can be used. In addition, the adhesive may contain a solvent, a photopolymerization initiator, other additives, and the like as needed.
 光硬化性接着剤は、可視光線、紫外線、及び赤外線等の光を照射すると硬化しうる接着剤である。中でも、操作が簡便なことから、紫外線で硬化しうる接着剤が好ましい。 The photocurable adhesive is an adhesive that can be cured by irradiation with light such as visible light, ultraviolet light, and infrared light. Among them, an adhesive that can be cured by ultraviolet light is preferable because the operation is simple.
 接着層の厚みは、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下である。接着層の厚みを前記範囲内とすることにより、光学異方性層の光学的性質を損ねずに、良好な接着を達成しうる。 The thickness of the adhesive layer is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 30 μm or less, more preferably 20 μm or less, and still more preferably 10 μm or less. By setting the thickness of the adhesive layer within the above range, good adhesion can be achieved without damaging the optical properties of the optically anisotropic layer.
 また、偏光板が光学異方性積層体を備える場合、その偏光板は、円偏光板として機能しうる。ここで、用語「円偏光板」には、狭義の円偏光板だけでなく、楕円偏光板も含む。このような円偏光板は、直線偏光子、光学異方性層及び位相差層を、この順で備えていてもよい。また、このような円偏光板は、直線偏光子、位相差層及び光学異方性層を、この順で備えていてもよい。 Moreover, when a polarizing plate is equipped with an optical anisotropic laminated body, the polarizing plate can function as a circularly-polarizing plate. Here, the term "circularly polarizing plate" includes not only a circularly polarizing plate in a narrow sense but also an elliptically polarizing plate. Such a circularly polarizing plate may be provided with a linear polarizer, an optically anisotropic layer, and a retardation layer in this order. In addition, such a circularly polarizing plate may be provided with a linear polarizer, a retardation layer and an optically anisotropic layer in this order.
 前記のような円偏光板において、直線偏光子の偏光吸収軸に対して位相差層の遅相軸がなす角度は、45°またはそれに近い角度であることが好ましい。前記の角度は、具体的には、好ましくは45°±5°、より好ましくは45°±4°、特に好ましくは45°±3°である。 In the circularly polarizing plate as described above, the angle formed by the slow axis of the retardation layer with respect to the polarization absorption axis of the linear polarizer is preferably 45 ° or near. Specifically, the above angle is preferably 45 ° ± 5 °, more preferably 45 ° ± 4 °, and particularly preferably 45 ° ± 3 °.
 上述した偏光板は、更に、任意の層を含みうる。任意の層としては、例えば、偏光子保護フィルム層が挙げられる。偏光子保護フィルム層としては、任意の透明フィルム層を用いうる。中でも、透明性、機械的強度、熱安定性、水分遮蔽性等に優れる樹脂のフィルム層が好ましい。そのような樹脂としては、トリアセチルセルロース等のアセテート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、鎖状オレフィン樹脂、環式オレフィン樹脂、(メタ)アクリル樹脂等が挙げられる。さらに、偏光板が含みうる任意の層としては、例えば、耐衝撃性ポリメタクリレート樹脂層などのハードコート層、フィルムの滑り性を良くするマット層、反射抑制層、防汚層等が挙げられる。これらの任意の層は、1層だけを設けてもよく、2層以上を設けてもよい。 The above-mentioned polarizing plate may further contain any layer. As an arbitrary layer, a polarizer protective film layer is mentioned, for example. Any transparent film layer may be used as the polarizer protective film layer. Among them, a film layer of a resin excellent in transparency, mechanical strength, thermal stability, moisture shielding property and the like is preferable. As such resin, acetate resin such as triacetyl cellulose, polyester resin, polyether sulfone resin, polycarbonate resin, polycarbonate resin, polyamide resin, polyimide resin, linear olefin resin, cyclic olefin resin, (meth) acrylic resin, etc. are mentioned. Be Furthermore, as an arbitrary layer which a polarizing plate may contain, for example, a hard coat layer such as an impact resistant polymethacrylate resin layer, a mat layer which improves the slipperiness of the film, a reflection suppressing layer, an antifouling layer and the like can be mentioned. These optional layers may be provided only in one layer or in two or more layers.
 偏光板は、直線偏光子と、光学異方性層、転写用複層物又は光学異方性積層体とを、必要に応じて接着剤を用いて、貼り合わせることによって、製造しうる。 The polarizing plate can be produced by bonding a linear polarizer and an optically anisotropic layer, a multilayer for transfer, or an optically anisotropic laminate, as necessary, using an adhesive.
 〔5.画像表示装置〕
 本発明の画像表示装置は、上述した本発明の偏光板を備える。本発明の画像表示装置はまた、通常、画像表示素子を備える。画像表示装置において、偏光板は、通常、画像表示素子の視認側に設けられる。この際、偏光板の向きは、その偏光板の用途に応じて任意に設定しうる。よって、画像表示装置は、光学異方性層、転写用複層物又は光学異方性積層体と;偏光子と;画像表示素子と;を、この順に備えていてもよい。また、画像表示装置は、偏光子と;光学異方性層、転写用複層物又は光学異方性積層体と;画像表示素子と;を、この順に備えていてもよい。
[5. Image display device]
The image display apparatus of the present invention comprises the above-described polarizing plate of the present invention. The image display device of the present invention also usually comprises an image display element. In the image display device, the polarizing plate is usually provided on the viewing side of the image display element. At this time, the direction of the polarizing plate can be arbitrarily set according to the application of the polarizing plate. Therefore, the image display apparatus may be provided with an optically anisotropic layer, a transfer multilayer, or an optically anisotropic laminate, a polarizer, and an image display element in this order. In addition, the image display device may include a polarizer; an optically anisotropic layer, a multilayer for transfer, or an optically anisotropic laminate; and an image display element in this order.
 画像表示装置としては、画像表示素子の種類に応じて様々なものがあるが、代表的な例としては、画像表示素子として液晶セルを備える液晶表示装置、及び、画像表示素子として有機EL素子を備える有機EL表示装置が挙げられる。
 本発明の画像表示装置は、本発明の光学異方性層を構成要素として含み、これにより、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過しうるようにしたりすることができる。さらに、そのような効果を有しながら、且つ、耐久性が高く、良好な色調を有する表示装置とすることができる。
There are various types of image display devices according to the type of image display element, but as a typical example, a liquid crystal display device provided with a liquid crystal cell as the image display element, and an organic EL element as the image display element The organic EL display apparatus provided is mentioned.
The image display apparatus of the present invention includes the optical anisotropic layer of the present invention as a component, thereby suppressing the reflection of external light and enabling light for displaying an image to be transmitted through polarized sunglasses. be able to. Furthermore, while having such an effect, the display device can have high durability and a good color tone.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the embodiments shown below, and can be implemented with arbitrary modifications without departing from the scope of the claims of the present invention and the equivalents thereof. In the following description, "%" and "parts" representing amounts are by weight unless otherwise stated. Moreover, unless otherwise indicated, the operation described below was performed in a normal temperature and pressure atmosphere.
 〔評価方法〕
 〔フィルムの光学的性質〕
 あるフィルム(基材フィルム等)上に形成された試料層(光学異方性層、位相差層等)の光学的性質(位相差、レターデーション、及び逆波長分散特性)は、下記の方法で測定した。
〔Evaluation method〕
[Optical properties of film]
The optical properties (retardation, retardation, and reverse wavelength dispersion characteristics) of sample layers (optically anisotropic layer, retardation layer, etc.) formed on a certain film (base film etc.) It was measured.
 評価対象となる試料層を、粘着剤付スライドガラス(粘着剤は、日東電工社製「CS9621T」)に貼り合せた。その後、フィルムを剥離し、スライドガラス及び試料層を備えるサンプルを得た。このサンプルを、位相差計(Axometrics社製)のステージに設置して、試料層の面内レターデーションReの波長分散を測定した。ここで、面内レターデーションReの波長分散とは、波長毎の面内レターデーションReを表すグラフであり、例えば、横軸を波長、縦軸を面内レターデーションReとした座標においてグラフとして示される。こうして得られた試料層の面内レターデーションReの波長分散から、波長450nm、550nm、590nm及び650nmにおける試料層の面内レターデーションRe(450)、Re(550)、Re(590)及びRe(650)を求めた。 The sample layer to be evaluated was attached to a slide glass with an adhesive (an adhesive is “CS9621T” manufactured by Nitto Denko Corporation). Thereafter, the film was peeled off to obtain a sample provided with a slide glass and a sample layer. This sample was placed on the stage of a retardation meter (manufactured by Axometrics) to measure the wavelength dispersion of the in-plane retardation Re of the sample layer. Here, the wavelength dispersion of the in-plane retardation Re is a graph showing the in-plane retardation Re for each wavelength, for example, it is shown as a graph in the coordinates with the horizontal axis as the wavelength and the vertical axis as the in-plane retardation Re. Be From the wavelength dispersion of the in-plane retardation Re of the sample layer thus obtained, the in-plane retardation Re (450), Re (550), Re (590) and Re (wavelength) at wavelengths 450 nm, 550 nm, 590 nm and 650 nm. Asked for 650).
 また、試料層の遅相軸を回転軸として、ステージを40°傾けて、試料層の厚み方向に対して40°の角度をなす傾斜方向での試料層のレターデーションRe40の波長分散を測定した。ここで、レターデーションRe40の波長分散とは、波長毎のレターデーションRe40を表すグラフであり、例えば、横軸を波長、縦軸を面内レターデーションRe40とした座標においてグラフとして示される。 The wavelength dispersion of the retardation Re40 of the sample layer in the direction of inclination at an angle of 40 ° to the thickness direction of the sample layer was measured by inclining the stage by 40 ° with the slow axis of the sample layer as the rotation axis. . Here, the wavelength dispersion of the retardation Re40 is a graph representing the retardation Re40 for each wavelength, and is shown as a graph, for example, in coordinates where the horizontal axis is the wavelength and the vertical axis is the in-plane retardation Re40.
 さらに、プリズムカプラ(Metricon社製)を用いて、試料層の、面内方向であって最大の屈折率を与える方向の屈折率nx、前記面内方向であって前記nxの方向に垂直な方向の屈折率ny、及び、厚み方向の屈折率nzを、波長407nm、532nm及び633nmで測定し、コーシーフィッティングすることにより、屈折率nx、ny及びnzの波長分散を得た。ここで、屈折率の波長分散とは、波長毎の屈折率を表すグラフであり、例えば、横軸を波長、縦軸を屈折率とした座標においてグラフとして示される。 Furthermore, a refractive index nx of the sample layer in the in-plane direction giving the maximum refractive index using a prism coupler (manufactured by Metricon), the in-plane direction perpendicular to the nx direction The refractive index ny of and the refractive index nz in the thickness direction were measured at wavelengths of 407 nm, 532 nm and 633 nm, and Cauchy fitting was performed to obtain wavelength dispersions of refractive indices nx, ny and nz. Here, the wavelength dispersion of the refractive index is a graph representing the refractive index for each wavelength, and for example, it is shown as a graph at the coordinates with the horizontal axis as the wavelength and the vertical axis as the refractive index.
 その後、レターデーションRe40及び屈折率の波長分散のデータを基に、試料層の厚み方向のレターデーションRthの波長分散を計算した。ここで、厚み方向のレターデーションRthの波長分散とは、波長毎の厚み方向のレターデーションRthを表すグラフであり、例えば、横軸を波長、縦軸を厚み方向のレターデーションRthとした座標においてグラフとして示される。そして、こうして求められた試料層の厚み方向のレターデーションRthの波長分散から、波長450nm、550nm、590nm及び650nmにおける試料層の厚み方向のレターデーションRth(450)、Rth(550)、Rth(590)及びRth(650)を求めた。 Thereafter, the wavelength dispersion of the retardation Rth in the thickness direction of the sample layer was calculated based on the data of the retardation Re40 and the wavelength dispersion of the refractive index. Here, the wavelength dispersion of the retardation Rth in the thickness direction is a graph showing the retardation Rth in the thickness direction for each wavelength, and for example, in the coordinate where the horizontal axis is the wavelength and the vertical axis is the retardation Rth in the thickness direction. It is shown as a graph. Then, from the wavelength dispersion of the retardation Rth in the thickness direction of the sample layer thus determined, the retardations Rth (450), Rth (550), Rth (590) in the thickness direction of the sample layer at wavelengths 450 nm, 550 nm, 590 nm and 650 nm. And Rth (650) were determined.
 〔厚み〕
 あるフィルム(基材フィルム;支持体フィルム;支持体フィルム及び位相差層からなる複層フィルム;等)上に形成された試料層(光学異方性層、位相差層等)の厚みは、膜厚測定装置(フィルメトリクス社製「フィルメトリクス」)を用いて、測定した。
[Thickness]
The thickness of a sample layer (optically anisotropic layer, retardation layer, etc.) formed on a certain film (base film; It measured using the thickness measurement apparatus ("fill metrics" by the Filmetrics company).
 〔ヘイズ変化比〕
 光学粘着剤(日東電工社製CS9621)付きの平板ガラスを用意した。この平板ガラスに、転写用複層物の光学異方性層を転写し、ヘイズ測定用積層体を調製した。このヘイズ測定用積層体を用いて、光学異方性層のヘイズを、ヘイズメーター(東洋精機製作所製「ヘイズガードII」、以下において同じ)により、JIS K 7136:2000に従ったヘイズ測定を行い、初期ヘイズ値を得た。
 続いて、ヘイズ測定用積層体を、オーブン内に載置して加熱した。加熱温度は85℃、加熱時間は100時間とした。加熱終了後、再びヘイズメーターにてヘイズを測定し、加熱後ヘイズ値を得た。初期ヘイズ値及び加熱後ヘイズ値から、ヘイズ変化比(加熱後ヘイズ値/初期ヘイズ値)を計算した。
[Haze change ratio]
A flat glass with an optical adhesive (CS9621 manufactured by Nitto Denko Corporation) was prepared. The optically anisotropic layer of the transfer multilayer was transferred to this flat glass to prepare a laminate for haze measurement. Using this haze measurement laminate, the haze of the optically anisotropic layer is measured according to JIS K 7136: 2000 using a haze meter ("Haze Guard II" manufactured by Toyo Seiki Seisakusho; the same in the following). , Got an initial haze value.
Subsequently, the haze measurement laminate was placed in an oven and heated. The heating temperature was 85 ° C., and the heating time was 100 hours. After heating, the haze was again measured with a haze meter to obtain a haze value after heating. From the initial haze value and the post-heating haze value, the haze change ratio (after-heating haze value / initial haze value) was calculated.
 〔硬化度〕
 基材から光学異方性層を剥離することで、硬化度測定用光学異方性層を調製した。
 硬化度測定用光学異方性層における光学異方性層の赤外吸収スペクトルを、ATR法により測定した。具体的には、ATR測定装置(機種名「Thermo Fisher SCIENTIFIC製「Nicolet iS 5N)により、プリズムとしてZeSeを用いて1回反射の条件で、硬化度測定用積層体の表面に露出した光学異方性層の赤外吸収スペクトルを測定した。赤外吸収スペクトルは、波数と吸光度の関係として求めた。AC-Hとして810cm-1付近に現れたピークの面積、及びAC=Oとして1720cm-1付近に現れたピークの面積を測定した。本願実施例及び比較例において、ポジC重合体は、C=OMDに類似するC=O結合を有するため、類似するC=O結合の影響を排除した定量を行った(参考例3)。これらの測定結果から、AC-H/AC=O(メソゲン化合物)の値を得た。
[Curing degree]
The optically anisotropic layer for curing degree measurement was prepared by peeling the optically anisotropic layer from the substrate.
The infrared absorption spectrum of the optically anisotropic layer in the optically anisotropic layer for curing degree measurement was measured by the ATR method. Specifically, the optical anisotropy exposed on the surface of the laminate for curing degree measurement under the condition of one reflection using ZeSe as a prism by an ATR measurement apparatus (model name “Nicolet iS 5N” manufactured by Thermo Fisher SCIENTIFIC) . measuring the infrared absorption spectrum of sexual layer infrared absorption spectrum, 1720 cm peak area of appearing in the vicinity of 810 cm -1 as .A C-H obtained as a relationship between wave number and absorbance, and the a C = O - The area of the peak appeared in the vicinity of 1 was measured In the Examples and Comparative Examples, since the positive C polymer has a C 結合 O bond similar to C = O MD , the influence of similar CCO bond is The excluded quantification was carried out (Reference Example 3) From these measurement results, the value of A C−H / A C = O (mesogen compound) was obtained.
 〔b
 ヘイズ測定用積層体の調製と同じ操作により、転写用複層物の光学異方性層を平板ガラスに転写し、色相測定用積層体を調製した。この色相測定用積層体の可視領域(380nmから780nmまで)の透過率を1.0nm間隔で分光光度計(日本分光社製「V-550」)により測定した。得られた測定結果をもとに、色相bを計算した。この時の観測条件は、視野2°、光源D65、データ間隔2nmとした。
[B * ]
The optically anisotropic layer of the transfer multilayer was transferred to a flat glass by the same operation as in the preparation of the haze measurement laminate to prepare a hue measurement laminate. The transmittance of the visible region (from 380 nm to 780 nm) of this laminate for color measurement was measured at intervals of 1.0 nm with a spectrophotometer (“V-550” manufactured by JASCO Corporation). The hue b * was calculated based on the obtained measurement results. The observation conditions at this time were a field of view of 2 °, a light source D65, and a data interval of 2 nm.
 〔実施例1〕
 1,3-ジオキソラン(DOL)及びメチルイソブチルケトン(MIBK)を混合し、溶媒を調製した。DOL及びMIBKの混合比(DOL/MIBK、重量比)は、80/20とした。
 下記式(B1)で表される光重合性の逆波長分散液晶化合物(CN点は96℃)55重量部、ポジC重合体としてのフマル酸ジイソプロピルとケイ皮酸エステルの共重合体45重量部、重合開始剤(商品名「Irgacure Oxe04」、BASF社製)1.65重量部、及び架橋剤(商品名「A-TMPT」、トリメチロールプロパントリアクリレート、新中村化学工業株式会社製)1.65重量部を、固形分濃度が12%となるように溶媒に溶解させて、塗工液を調製した。
Example 1
The solvent was prepared by mixing 1,3-dioxolane (DOL) and methyl isobutyl ketone (MIBK). The mixing ratio (DOL / MIBK, weight ratio) of DOL and MIBK was 80/20.
55 parts by weight of a photopolymerizable reverse wavelength dispersion liquid crystal compound (CN point is 96 ° C.) represented by the following formula (B1), 45 parts by weight of a copolymer of diisopropyl fumarate and cinnamic acid ester as a positive C polymer 1.65 parts by weight of a polymerization initiator (trade name "Irgacure Oxe 04", manufactured by BASF AG), and a crosslinking agent (trade name "A-TMPT", trimethylolpropane triacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.) A coating liquid was prepared by dissolving 65 parts by weight in a solvent so that the solid concentration would be 12%.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 塗工液の調製に用いた、フマル酸ジイソプロピルとケイ皮酸エステルの共重合体は、下記式(P1)で表される繰り返し単位及び下記式(P2)で表される繰り返し単位を有するポリフマル酸エステル(重量平均分子量72,000)であった。また、下記の式(P1)及び式(P2)において、Rはイソプロピル基を表し、繰り返し単位の数m及びnの比率は、m:n=85:15であった。 The copolymer of diisopropyl fumarate and cinnamic acid ester used for preparation of the coating liquid is a polyfumaric acid having a repeating unit represented by the following formula (P1) and a repeating unit represented by the following formula (P2) It was ester (weight average molecular weight 72,000). Further, in the following formulas (P1) and (P2), R represents an isopropyl group, and the ratio of the number m of repeating units and n is 85:15.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 基材フィルムとして、脂環式構造含有重合体を含む樹脂からなる未延伸フィルム(日本ゼオン社製、樹脂のガラス転移温度(Tg)163℃、厚み100μm)を用意した。前記の基材フィルムの面上に、塗工液を、塗工ブレードを用いて塗工して、塗工液層を形成した。塗工液層の厚みは、得られる光学異方性層の厚みが10μm程度になるように調整した。 As a base film, the unstretched film (The Zeon Corporation make, glass transition temperature (Tg) 163 degreeC of resin, 100 micrometers in thickness) which consists of resin containing an alicyclic structure containing polymer was prepared. The coating liquid was coated on the surface of the base film using a coating blade to form a coating liquid layer. The thickness of the coating liquid layer was adjusted so that the thickness of the obtained optically anisotropic layer was about 10 μm.
 その後、塗工液層を、85℃オーブンで5分間乾燥させて、塗工液層中の溶媒を蒸発させ、(乾燥塗工液層)/(基材フィルム)の層構成を有する複層物を得た。 Thereafter, the coating liquid layer is dried in an oven at 85 ° C. for 5 minutes to evaporate the solvent in the coating liquid layer, and a multilayer having a layer structure of (dried coating liquid layer) / (base film) I got
 さらに、乾燥塗工液層に紫外線照射を行った。紫外線照射は、高圧水銀光源を備えた照射装置を用いて、照度300mW/cm、積算光量600mJ/cmの条件にて、光源から、前記複層物の乾燥塗工液層側の面に紫外線を照射することにより行った。かかる紫外線照射により、乾燥塗工液層を硬化させて、光学異方性層を形成し、(光学異方性層)/(基材フィルム)の層構成を有する転写用複層物を得た。得られた転写用複層物の光学異方性層について、光学的性質を測定し、nx(A)、ny(A)、nz(A)、Rth(A450)/Rth(A550)、Rth(A650)/Rth(A550)、Re(A590)、及びRth(A590)を求めた。さらに、光学異方性層の硬化度A、b、及びヘイズ変化比を測定した。 Furthermore, ultraviolet irradiation was performed on the dried coating liquid layer. Ultraviolet irradiation is performed from the light source to the surface on the dried coating liquid layer side of the multiple layer under the conditions of an illuminance of 300 mW / cm 2 and an integrated light amount of 600 mJ / cm 2 using an irradiation apparatus equipped with a high pressure mercury light source. It performed by irradiating an ultraviolet-ray. The dried coating liquid layer was cured by the ultraviolet irradiation to form an optically anisotropic layer, and a transfer multilayer having a layer configuration of (optically anisotropic layer) / (base film) was obtained. . The optical properties of the obtained optical anisotropic layer of the transfer double layer were measured, and nx (A), ny (A), nz (A), Rth (A450) / Rth (A550), Rth (Rth (A)). A650) / Rth (A550), Re (A590), and Rth (A590) were determined. Furthermore, the curing degree A, b * and the haze change ratio of the optically anisotropic layer were measured.
 〔実施例2~4及び比較例1~4〕
 積算光量を、表1に示す値に変更した他は、実施例1と同じ操作により、転写用複層物を得て評価した。
[Examples 2 to 4 and Comparative Examples 1 to 4]
A transfer multilayer was obtained and evaluated in the same manner as in Example 1 except that the integrated light amount was changed to the values shown in Table 1.
 実施例及び比較例の結果を、表1及び表2にまとめて示す。 The results of Examples and Comparative Examples are summarized in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 実施例及び比較例の結果から明らかな通り、本願に規定する特定の硬化度Aを有する実施例の光学異方性層は、加熱によるヘイズの上昇が少なく、従って耐久性が高いものであることが分かる。実施例の光学異方性層はまた、b値が2.2以下と良好な色調を有することが分かる。 As is clear from the results of the examples and comparative examples, the optically anisotropic layer of the examples having the specific degree of cure A specified in the present application has a small increase in haze upon heating, and thus has high durability. I understand. The optically anisotropic layer of the example is also found to have a good color tone with ab * value of 2.2 or less.
 〔参考例1:前記式(B1)で表される逆波長分散液晶化合物の波長分散性の確認〕
 前記式(B1)で表される光重合性の逆波長分散液晶化合物100重量部、光重合開始剤(BASF社製「Irgacure379EG」)3重量部、及び、界面活性剤(DIC社製「メガファックF-562」)0.3重量部を混合し、更に、希釈溶媒としてシクロペンタノン及び1,3-ジオキソランの混合溶媒(重量比シクロペンタノン:1,3-ジオキソラン=4:6)を、固形分が22重量%になるように加え、50℃に加温し溶解させた。得られた混合物を、孔径0.45μmのメンブレンフィルターでろ過して、液晶組成物を得た。
Reference Example 1: Confirmation of Wavelength Dispersion of Inverse-Wavelength-Dispersed Liquid Crystal Compound Represented by Formula (B1)
100 parts by weight of the photopolymerizable reverse wavelength dispersion liquid crystal compound represented by the formula (B1), 3 parts by weight of a photopolymerization initiator ("Irgacure 379 EG" manufactured by BASF Corporation), and a surfactant ("Megafuck" manufactured by DIC Corporation) F-562 ") 0.3 parts by weight is mixed, and further, a mixed solvent of cyclopentanone and 1,3-dioxolane (weight ratio cyclopentanone: 1,3-dioxolane = 4: 6) as a dilution solvent, The solid content was added to be 22% by weight, and dissolved by heating to 50 ° C. The resulting mixture was filtered through a membrane filter with a pore size of 0.45 μm to obtain a liquid crystal composition.
 脂環式構造含有重合体を含む樹脂からなる未延伸フィルム(日本ゼオン社製「ゼオノアフィルム」)を用意した。この未延伸フィルムにラビング処理を施すことにより、配向基材を用意した。 An unstretched film ("Zeonor film" manufactured by Nippon Zeon Co., Ltd.) made of a resin containing an alicyclic structure-containing polymer was prepared. By subjecting this unstretched film to rubbing treatment, an alignment substrate was prepared.
 前記の配向基材上に、液晶組成物をバーコーターで塗工し、液晶組成物の層を形成した。液晶組成物の層の厚みは、硬化後に得られる光学異方性層の厚みが2.3μm程度になるように調整した。 The liquid crystal composition was coated on the alignment substrate with a bar coater to form a layer of the liquid crystal composition. The thickness of the layer of the liquid crystal composition was adjusted so that the thickness of the optically anisotropic layer obtained after curing was about 2.3 μm.
 その後、液晶組成物の層を、110℃オーブンで4分ほど乾燥させて、液晶組成物中の溶媒を蒸発させると同時に、液晶組成物に含まれる逆波長分散液晶化合物をホモジニアス配向させた。 After that, the layer of the liquid crystal composition was dried in an oven at 110 ° C. for about 4 minutes to evaporate the solvent in the liquid crystal composition and simultaneously homogeneously align the reverse wavelength dispersion liquid crystal compound contained in the liquid crystal composition.
 その後、液晶組成物の層に、紫外線照射装置を用いて、紫外線を照射した。この紫外線の照射は、窒素雰囲気下において、SUS板に配向基材をテープで固定した状態で行った。紫外線の照射により液晶組成物の層を硬化させて、光学異方性層及び配向基材を備える試料フィルムを得た。 Thereafter, the layer of the liquid crystal composition was irradiated with ultraviolet light using an ultraviolet irradiation device. This ultraviolet irradiation was performed in a nitrogen atmosphere in a state where the alignment substrate was fixed to the SUS plate with a tape. The layer of the liquid crystal composition was cured by irradiation with ultraviolet light to obtain a sample film provided with an optically anisotropic layer and an alignment substrate.
 この試料フィルムについて、位相差計(Axometrics社製)により、面内レターデーションの波長分散を測定した。配向基材は、面内レターデーションを有さないので、前記の測定によって得られる面内レターデーションは、光学異方性層の面内レターデーションを示す。測定の結果、波長450nm、550nm及び650nmにおける面内レターデーションRe(450)、Re(550)及びRe(650)は、Re(450)<Re(550)<Re(650)を満たしていた。よって、前記式(B1)で表される光重合性の逆波長分散液晶化合物が、ホモジニアス配向した場合に逆波長分散性の面内レターデーションを示すものであることが確認された。 The wavelength dispersion of the in-plane retardation of this sample film was measured by a retardation meter (manufactured by Axometrics). Since the alignment substrate has no in-plane retardation, the in-plane retardation obtained by the above measurement indicates the in-plane retardation of the optically anisotropic layer. As a result of the measurement, the in-plane retardations Re (450), Re (550) and Re (650) at wavelengths 450 nm, 550 nm and 650 nm satisfied Re (450) <Re (550) <Re (650). Therefore, it was confirmed that the photopolymerizable reverse wavelength dispersive liquid crystal compound represented by the formula (B1) exhibits in-plane retardation of reverse wavelength dispersibility when it is homogeneously aligned.
 〔参考例2:フマル酸ジイソプロピルとケイ皮酸エステルの共重合体がポジC重合体に該当することの確認〕
 フマル酸ジイソプロピルとケイ皮酸エステルの共重合体を、N-メチルピロリドンに、固形分濃度が12重量%となるように加え、室温にて溶解させて、重合体溶液を得た。
Reference Example 2: Confirmation that the copolymer of diisopropyl fumarate and cinnamic acid ester is a positive C polymer
A copolymer of diisopropyl fumarate and cinnamate was added to N-methylpyrrolidone so that the solid concentration became 12% by weight, and was dissolved at room temperature to obtain a polymer solution.
 脂環式構造含有重合体を含む樹脂からなる未延伸フィルム(日本ゼオン社製「ゼオノアフィルム」)を用意した。この未延伸フィルム上に、前記の重合体溶液を、アプリケーターを用いて塗工して、重合体溶液の層を形成した。その後、85℃オーブンで10分ほど乾燥させて、溶媒を蒸発させることにより、厚み10μm程度の重合体膜と未延伸フィルムとを備える試料フィルムを得た。 An unstretched film ("Zeonor film" manufactured by Nippon Zeon Co., Ltd.) made of a resin containing an alicyclic structure-containing polymer was prepared. The polymer solution was applied onto the unstretched film using an applicator to form a layer of the polymer solution. Then, the sample film was dried in an oven at 85 ° C. for about 10 minutes, and the solvent was evaporated to obtain a sample film provided with a polymer film having a thickness of about 10 μm and an unstretched film.
 この試料フィルムを位相差計(Axometrics社製)のステージに設置し、測定波長590nmにおいて試料フィルムの面内レターデーションRe0を測定した。未延伸フィルムは光学的に等方性のフィルムであるので、測定される面内レターデーションRe0は、重合体膜の面内レターデーションRe0を表す。測定の結果、面内レターデーションRe0はRe0≦1nmであったので、nx(P)≧ny(P)であり、且つこれらは値が同じであるか近い値であることを確認できた。 This sample film was placed on the stage of a retardation meter (manufactured by Axometrics), and the in-plane retardation Re0 of the sample film was measured at a measurement wavelength of 590 nm. Since the unstretched film is an optically isotropic film, the in-plane retardation Re0 measured represents the in-plane retardation Re0 of the polymer film. As a result of the measurement, since the in-plane retardation Re0 was Re0 ≦ 1 nm, it was confirmed that nx (P) ≧ ny (P), and that these were the same or close values.
 その後、重合体膜の遅相軸をステージの回転軸としてステージを40°傾けて、試料フィルムの厚み方向に対して40°の角度をなす傾斜方向でのレターデーションRe40を測定した。そして、この測定により、重合体膜の遅相軸方向を測定した。「遅相軸方向」が「ステージの回転軸」と垂直であれば、nz(P)>nx(P)であると判定でき、逆に、「遅相軸方向」が「ステージの回転軸」と平行であれば、ny(P)>nz(P)であると判定できる。測定の結果、遅相軸方向は、ステージの回転軸に垂直であったため、重合体膜の屈折率nx(P)及びnz(P)はnz(P)>nx(P)を満たすと判定できた。 Then, the stage was inclined 40 ° with the slow axis of the polymer film as the axis of rotation of the stage, and the retardation Re40 in the inclined direction forming an angle of 40 ° with the thickness direction of the sample film was measured. And the slow axis direction of the polymer film was measured by this measurement. If the “slow axis direction” is perpendicular to the “stage rotation axis”, it can be determined that nz (P)> nx (P). Conversely, the “slow axis direction” is the “stage rotation axis” It can be determined that ny (P)> nz (P) if parallel to. As a result of the measurement, since the slow axis direction was perpendicular to the rotation axis of the stage, it can be determined that the refractive index nx (P) and nz (P) of the polymer film satisfy nz (P)> nx (P) The
 したがって、フマル酸ジイソプロピルとケイ皮酸エステルの共重合体は、この共重合体の溶液を用いた塗工法により重合体膜を形成した場合に、その重合体膜の屈折率がnz(P)>nx(P)≧ny(P)を満たすことが確認された。したがって、フマル酸ジイソプロピルとケイ皮酸エステルの共重合体は、ポジC重合体に該当することが確認された。 Accordingly, when a copolymer of diisopropyl fumarate and cinnamate is formed into a polymer film by a coating method using a solution of this copolymer, the refractive index of the polymer film is nz (P)> It was confirmed that nx (P) ≧ ny (P) was satisfied. Therefore, it was confirmed that the copolymer of diisopropyl fumarate and cinnamate corresponds to a positive C polymer.
 〔参考例3〕
 塗工液におけるメソゲン化合物及びポジC重合体の量を変更した他は、実施例3と同じ操作を行い、複数の転写用複層物を得た。得られた転写用複層物のそれぞれの光学異方性層の赤外吸収スペクトルを、ATR法により測定した。得られた赤外吸収スペクトルの1720cm-1付近に現れたピークの面積をAC=Oとして求めた。その結果、表3に示す結果を得た。これらの値から、定数aC=O(メソゲン化合物)を、最小二乗法により算出した。その結果、aC=O(メソゲン化合物)=12.93、aC=O(重合体)=21.42の値を得た。これらの値を元に、実施例及び比較例におけるAC=O(メソゲン化合物)の値を求め、硬化度Aの計算に供した。
[Reference Example 3]
The same operation as in Example 3 was performed except that the amounts of the mesogen compound and the positive C polymer in the coating liquid were changed, to obtain a plurality of transfer multilayers. The infrared absorption spectrum of each of the optically anisotropic layers of the obtained transfer multilayer was measured by the ATR method. The area of the peak appearing in the vicinity of 1720 cm -1 of the obtained infrared absorption spectrum was determined as A c = O. As a result, the results shown in Table 3 were obtained. From these values, the constant a C = O (mesogen compound) was calculated by the least squares method. As a result, values of ac = O (mesogen compound) = 12.93 and ac = O (polymer) = 21.42 were obtained. Based on these values, the value of A c = O 2 (mesogen compound) in Examples and Comparative Examples was determined, and the degree of curing A was calculated.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018

Claims (18)

  1.  ポジC重合体と、メソゲン化合物と、メソゲン化合物の重合物とを含む光学異方性層であって、
     前記ポジC重合体は、前記ポジC重合体の溶液を用いた塗工法により前記ポジC重合体の膜を形成した場合に、前記膜が、式(1)を満たす重合体であり、
     前記メソゲン化合物は、メソゲン骨格およびアクリレート構造を有する化合物であり、
     前記光学異方性層は、式(2)及び式(3)を満たす、光学異方性層:
     nz(P)>nx(P)≧ny(P)  式(1)
     nz(A)>nx(A)≧ny(A)  式(2)
     0.073<AC-H/AC=O(メソゲン化合物)<0.125  式(3)
     但し、
     nx(P)、ny(P)及びnz(P)は、前記膜の主屈折率であり、
     nx(A)、ny(A)及びnz(A)は、前記光学異方性層の主屈折率であり、
     AC-Hは、前記光学異方性層の赤外吸収スペクトルにおける、前記メソゲン化合物の前記アクリレート構造が有するC-H結合の面外変角振動にかかる赤外吸収であり、
     AC=O(メソゲン化合物)は、前記光学異方性層の赤外吸収スペクトルにおける、前記メソゲン化合物の前記アクリレート構造が有するC=O結合の伸縮振動にかかる赤外吸収と、前記メソゲン化合物の前記アクリレート構造のC=O結合に由来するC=O結合の伸縮振動にかかる赤外吸収との和である。
    An optically anisotropic layer comprising a positive C polymer, a mesogen compound, and a polymer of the mesogen compound,
    When the film of the positive C polymer is formed by a coating method using a solution of the positive C polymer, the positive C polymer is a polymer in which the film satisfies the formula (1),
    The mesogen compound is a compound having a mesogen skeleton and an acrylate structure,
    The optically anisotropic layer is an optically anisotropic layer that satisfies Formula (2) and Formula (3):
    nz (P)> nx (P) ≧ ny (P) Formula (1)
    nz (A)> nx (A) ≧ ny (A) Formula (2)
    0.073 <A C−H / A C = O (mesogenic compound) <0.125 Formula (3)
    However,
    nx (P), ny (P) and nz (P) are the main refractive indices of the film,
    nx (A), ny (A) and nz (A) are main refractive indices of the optically anisotropic layer,
    AC-H is infrared absorption concerning out-of-plane bending vibration of C—H bond of the acrylate structure of the mesogen compound in infrared absorption spectrum of the optically anisotropic layer,
    A C = O (mesogen compound) is an infrared absorption of the stretching vibration of the C = O bond of the acrylate structure of the mesogen compound in the infrared absorption spectrum of the optically anisotropic layer, and the absorption of the mesogen compound It is the sum of infrared absorption applied to the stretching vibration of the C = O bond derived from the C = O bond of the acrylate structure.
  2.  前記メソゲン化合物が、ホモジニアス配向した場合に逆波長分散性の面内レターデーションを示す化合物である、請求項1に記載の光学異方性層。 The optically anisotropic layer according to claim 1, wherein the mesogen compound is a compound that exhibits reverse wavelength dispersive in-plane retardation when homogeneously oriented.
  3.  式(4)及び式(5)を満たす、請求項1又は2に記載の光学異方性層:
     0.50<Rth(A450)/Rth(A550)<1.00  式(4)
     1.00≦Rth(A650)/Rth(A550)<1.25  式(5)
     但し、
     Rth(A450)は、前記光学異方性層の波長450nmにおける厚み方向のレターデーションであり、
     Rth(A550)は、前記光学異方性層の波長550nmにおける厚み方向のレターデーションであり、
     Rth(A650)は、前記光学異方性層の波長650nmにおける厚み方向のレターデーションである。
    The optically anisotropic layer according to claim 1 or 2, which satisfies the formula (4) and the formula (5):
    0.50 <Rth (A450) / Rth (A550) <1.00 Formula (4)
    1.00 ≦ Rth (A650) / Rth (A550) <1.25 Formula (5)
    However,
    Rth (A450) is a retardation in the thickness direction of the optically anisotropic layer at a wavelength of 450 nm,
    Rth (A550) is a retardation in the thickness direction of the optically anisotropic layer at a wavelength of 550 nm,
    Rth (A650) is a retardation in the thickness direction at a wavelength of 650 nm of the optically anisotropic layer.
  4.  前記メソゲン化合物が、下記式(I)で表される、請求項1~3のいずれか1項に記載の光学異方性層:
    Figure JPOXMLDOC01-appb-C000001
     (前記式(I)において、
     Y~Yは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
     G及びGは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
     Z及びZは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
     Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
     Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記A及びAが有する芳香環は、置換基を有していてもよい。また、前記AとAは、一緒になって、環を形成していてもよい。
     Aは、置換基を有していてもよい三価の芳香族基を表す。
     A及びAは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
     A及びAは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
     Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
     mおよびnは、それぞれ独立に、0又は1を表す。
     但し、Z-Y-及び-Y-Zの一方又は両方は、アクリロイルオキシ基である。)
    The optically anisotropic layer according to any one of claims 1 to 3, wherein the mesogen compound is represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (I),
    Y 1 to Y 8 each independently represent a single chemical bond, —O—, —S—, —O—C (= O) —, —C (= O) —O—, —O—C (= O) -O-, -NR 1 -C (= O)-, -C (= O) -NR 1- , -O-C (= O) -NR 1- , -NR 1 -C (= O) -O-, -NR 1 -C (= O) -NR 1- , -O-NR 1- , or -NR 1 -O-. Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
    G 1 and G 2 each independently represent an optionally substituted divalent aliphatic group having 1 to 20 carbon atoms. In addition, in the aliphatic group, one or more -O-, -S-, -O-C (= O)-, -C (= O) -O-, -O-C per aliphatic group. (= O) -O -, - NR 2 -C (= O) -, - C (= O) -NR 2 -, - NR 2 -, or, -C (= O) - is be interposed Good. However, it excludes the case where two or more -O- or -S- are adjacent to each other. Here, R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
    Z 1 and Z 2 each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted by a halogen atom.
    A x represents an organic group having 2 to 30 carbon atoms which has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
    A y has a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent Also a cycloalkyl group having 3 to 12 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, -C (= O) -R 3 , -SO 2 -R 4 , -C ( = S) NH-R 9 , or an organic group having 2 to 30 carbon atoms, having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle. Here, R 3 has an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms. R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group or a 4-methylphenyl group. R 9 is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, carbon which may have a substituent And a cycloalkyl group of 3 to 12 or an aromatic group of 5 to 20 carbon atoms which may have a substituent. The aromatic ring which said A x and A y has may have a substituent. The A x and A y may be taken together to form a ring.
    A 1 represents a trivalent aromatic group which may have a substituent.
    Each of A 2 and A 3 independently represents a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
    Each of A 4 and A 5 independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
    Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
    m and n each independently represent 0 or 1;
    However, one or both of Z 1 -Y 7 -and -Y 8 -Z 2 are acryloyloxy groups. )
  5.  前記メソゲン化合物が、その分子構造中に、ベンゾチアゾール環、並びに、シクロヘキシル環及びフェニル環の組み合わせ、からなる群より選ばれる少なくとも1種を含有する、請求項1~4のいずれか1項に記載の光学異方性層。 The mesogen compound according to any one of claims 1 to 4, wherein the molecular structure contains at least one selected from the group consisting of a benzothiazole ring and a combination of a cyclohexyl ring and a phenyl ring. Optically anisotropic layer.
  6.  前記ポジC重合体が、ポリビニルカルバゾール、ポリフマル酸エステル及びセルロース誘導体からなる群より選ばれる少なくとも1種類の重合体である、請求項1~5のいずれか1項に記載の光学異方性層。 The optically anisotropic layer according to any one of claims 1 to 5, wherein the positive C polymer is at least one polymer selected from the group consisting of polyvinyl carbazole, polyfumaric acid ester and a cellulose derivative.
  7.  前記光学異方性層の全固形分における前記メソゲン化合物及びその重合物の比率が、20重量%以上60重量%以下である、請求項1~6のいずれか1項に記載の光学異方性層。 The optical anisotropy according to any one of claims 1 to 6, wherein a ratio of the mesogen compound and a polymer thereof in a total solid content of the optically anisotropic layer is 20% by weight or more and 60% by weight or less. layer.
  8.  式(6)及び式(7)を満たす、請求項1~7のいずれか1項に記載の光学異方性層:
     Re(A590)≦10nm  式(6)
     -200nm≦Rth(A590)≦-10nm  式(7)
     但し、
     Re(A590)は、前記光学異方性層の波長590nmにおける面内レターデーションであり、
     Rth(A590)は、前記光学異方性層の波長590nmにおける厚み方向のレターデーションである。
    The optically anisotropic layer according to any one of claims 1 to 7, which satisfies the formulas (6) and (7):
    Re (A 590) ≦ 10 nm Formula (6)
    −200 nm ≦ Rth (A 590) ≦ -10 nm Formula (7)
    However,
    Re (A 590) is an in-plane retardation of the optically anisotropic layer at a wavelength of 590 nm,
    Rth (A 590) is a retardation in the thickness direction at a wavelength of 590 nm of the optically anisotropic layer.
  9.  基材と、請求項1~8のいずれか1項に記載の光学異方性層とを備えた、転写用複層物。 A transfer multilayer comprising a substrate and the optically anisotropic layer according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の光学異方性層と、位相差層とを備え、
     前記位相差層は、式(8)を満たす、光学異方性積層体:
     nx(B)>ny(B)≧nz(B)  式(8)
     但し、nx(B)、ny(B)及びnz(B)は、前記位相差層の主屈折率である。
    A optically anisotropic layer according to any one of claims 1 to 8 and a retardation layer,
    The optically anisotropic laminate, wherein the retardation layer satisfies formula (8):
    nx (B)> ny (B) ≧ nz (B) Formula (8)
    However, nx (B), ny (B) and nz (B) are the main refractive indexes of the said phase difference layer.
  11.  前記位相差層が、式(9)及び式(10)を満たす、請求項10記載の光学異方性積層体:
     0.75<Re(B450)/Re(B550)<1.00  式(9)
     1.01<Re(B650)/Re(B550)<1.25  式(10)
     但し、
     Re(B450)は、前記位相差層の波長450nmにおける面内レターデーションであり、
     Re(B550)は、前記位相差層の波長550nmにおける面内レターデーションであり、
     Re(B650)は、前記位相差層の波長650nmにおける面内レターデーションである。
    The optically anisotropic laminate according to claim 10, wherein the retardation layer satisfies the formulas (9) and (10):
    0.75 <Re (B450) / Re (B550) <1.00 Formula (9)
    1.01 <Re (B650) / Re (B550) <1.25 Formula (10)
    However,
    Re (B450) is an in-plane retardation of the retardation layer at a wavelength of 450 nm,
    Re (B550) is an in-plane retardation of the retardation layer at a wavelength of 550 nm,
    Re (B650) is an in-plane retardation of the retardation layer at a wavelength of 650 nm.
  12.  前記位相差層が、下記式(II)で表される位相差層用液晶化合物を含む、請求項11に記載の光学異方性積層体:
    Figure JPOXMLDOC01-appb-C000002
     (前記式(II)において、
     Y~Yは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
     G及びGは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
     Z及びZは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
     Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
     Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記A及びAが有する芳香環は、置換基を有していてもよい。また、前記AとAは、一緒になって、環を形成していてもよい。
     Aは、置換基を有していてもよい三価の芳香族基を表す。
     A及びAは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
     A及びAは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
     Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
     mおよびnは、それぞれ独立に、0又は1を表す。)
    The optically anisotropic laminate according to claim 11, wherein the retardation layer contains a liquid crystal compound for retardation layer represented by the following formula (II):
    Figure JPOXMLDOC01-appb-C000002
    (In the above formula (II),
    Y 1 to Y 8 each independently represent a single chemical bond, —O—, —S—, —O—C (= O) —, —C (= O) —O—, —O—C (= O) -O-, -NR 1 -C (= O)-, -C (= O) -NR 1- , -O-C (= O) -NR 1- , -NR 1 -C (= O) -O-, -NR 1 -C (= O) -NR 1- , -O-NR 1- , or -NR 1 -O-. Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
    G 1 and G 2 each independently represent an optionally substituted divalent aliphatic group having 1 to 20 carbon atoms. In addition, in the aliphatic group, one or more -O-, -S-, -O-C (= O)-, -C (= O) -O-, -O-C per aliphatic group. (= O) -O -, - NR 2 -C (= O) -, - C (= O) -NR 2 -, - NR 2 -, or, -C (= O) - is be interposed Good. However, it excludes the case where two or more -O- or -S- are adjacent to each other. Here, R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
    Z 1 and Z 2 each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted by a halogen atom.
    A x represents an organic group having 2 to 30 carbon atoms which has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
    A y has a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent Also a cycloalkyl group having 3 to 12 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, -C (= O) -R 3 , -SO 2 -R 4 , -C ( = S) NH-R 9 , or an organic group having 2 to 30 carbon atoms, having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle. Here, R 3 has an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms. R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group or a 4-methylphenyl group. R 9 is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, carbon which may have a substituent And a cycloalkyl group of 3 to 12 or an aromatic group of 5 to 20 carbon atoms which may have a substituent. The aromatic ring which said A x and A y has may have a substituent. The A x and A y may be taken together to form a ring.
    A 1 represents a trivalent aromatic group which may have a substituent.
    Each of A 2 and A 3 independently represents a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
    Each of A 4 and A 5 independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
    Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
    m and n each independently represent 0 or 1; )
  13.  直線偏光子と、
     請求項1~8のいずれか1項に記載の光学異方性層、請求項9記載の転写用複層物、又は、請求項10~12のいずれか1項に記載の光学異方性積層体と、を備える、偏光板。
    With linear polarizers,
    An optically anisotropic layer according to any one of claims 1 to 8, a multilayer for transfer according to claim 9, or an optically anisotropic laminate according to any one of claims 10 to 12. A polarizing plate comprising a body.
  14.  請求項13記載の偏光板を備える、画像表示装置。 The image display apparatus provided with the polarizing plate of Claim 13.
  15.  請求項10~12のいずれか1項に記載の光学異方性積層体と、
     直線偏光子と、
     画像表示素子と、を、この順に備え、
     前記画像表示素子が、液晶セル又は有機エレクトロルミネッセンス素子である、画像表示装置。
    The optically anisotropic laminate according to any one of claims 10 to 12,
    With linear polarizers,
    An image display device, in this order,
    The image display apparatus whose said image display element is a liquid crystal cell or an organic electroluminescent element.
  16.  請求項1~8のいずれか1項に記載の光学異方性層の製造方法であって、
     ポジC重合体、メソゲン化合物、溶媒、光重合開始剤、および架橋剤を含む塗工液を用意する工程と、
     前記塗工液を支持面上に塗工して、塗工液層を得る工程と、
     前記塗工液層への光の照射を行い、前記塗工液層を硬化させる工程と、を含む製造方法。
    A method of producing an optically anisotropic layer according to any one of claims 1 to 8, wherein
    Providing a coating liquid containing a positive C polymer, a mesogen compound, a solvent, a photopolymerization initiator, and a crosslinking agent;
    Applying the coating solution on a support surface to obtain a coating solution layer;
    And irradiating the coating liquid layer with light to cure the coating liquid layer.
  17.  前記塗工液における、前記メソゲン化合物100重量部に対する前記光重合開始剤の比率が1重量部~10重量部であり、
     前記メソゲン化合物100重量部に対する前記架橋剤の比率が1重量部~10重量部である、請求項16に記載の光学異方性層の製造方法。
    The ratio of the photopolymerization initiator to 100 parts by weight of the mesogen compound in the coating liquid is 1 part by weight to 10 parts by weight,
    The method for producing an optically anisotropic layer according to claim 16, wherein the ratio of the crosslinking agent to 100 parts by weight of the mesogen compound is 1 part by weight to 10 parts by weight.
  18.  照射する前記光の積算光量が600mJ/cm~5000mJ/cmである、請求項16又は17に記載の製造方法。 Integrated light amount of the light to be irradiated is 600mJ / cm 2 ~ 5000mJ / cm 2, The method according to claim 16 or 17.
PCT/JP2018/021402 2017-06-30 2018-06-04 Optically anisotropic layer and method for producing same, optically anisotropic laminate, multi-layered article for transfer use, polarizing plate, and image display device WO2019003812A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197037285A KR102589809B1 (en) 2017-06-30 2018-06-04 Optically anisotropic layer and method for manufacturing the same, optically anisotropic laminate, transfer multilayer, polarizer, and image display device
JP2019526741A JP7276128B2 (en) 2017-06-30 2018-06-04 OPTICALLY ANISOTROPIC LAYER AND MANUFACTURING METHOD THEREOF, OPTICALLY ANISOTROPIC LAMINATE, MULTIPLE LAYER FOR TRANSFER, POLARIZING PLATE, AND IMAGE DISPLAY DEVICE
CN201880033980.1A CN110651208B (en) 2017-06-30 2018-06-04 Optically anisotropic layer and method for producing same, optically anisotropic laminate, transfer multilayer, polarizing plate, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017129753 2017-06-30
JP2017-129753 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019003812A1 true WO2019003812A1 (en) 2019-01-03

Family

ID=64741447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021402 WO2019003812A1 (en) 2017-06-30 2018-06-04 Optically anisotropic layer and method for producing same, optically anisotropic laminate, multi-layered article for transfer use, polarizing plate, and image display device

Country Status (5)

Country Link
JP (1) JP7276128B2 (en)
KR (1) KR102589809B1 (en)
CN (1) CN110651208B (en)
TW (1) TWI767015B (en)
WO (1) WO2019003812A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111752034A (en) * 2019-03-28 2020-10-09 夏普株式会社 Liquid crystal panel manufacturing method and liquid crystal panel
JPWO2019069855A1 (en) * 2017-10-03 2020-11-26 日本ゼオン株式会社 Optically anisotropic layer and its manufacturing method, optically anisotropic laminated body and its manufacturing method, optically anisotropic transfer body, polarizing plate, and image display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065377A1 (en) * 2019-09-30 2021-04-08 日本ゼオン株式会社 Optically anisotropic multilayer product and method for producing same
CN113004729A (en) * 2021-02-25 2021-06-22 张家港莱拓新材料科技有限公司 Novel polymerizable mesogenic mixture coating and application thereof in near-infrared band

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163452A (en) * 2002-11-08 2004-06-10 Nippon Kayaku Co Ltd Liquid crystalline blended composition and optical retardation film obtained by using it
JP2008158310A (en) * 2006-12-25 2008-07-10 Nitto Denko Corp Layered product, liquid crystal panel, and liquid crystal display device
JP2008545856A (en) * 2005-06-10 2008-12-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Material with homeotropic orientation
JP2010020269A (en) * 2007-09-28 2010-01-28 Fujifilm Corp Liquid crystal display device
WO2017170455A1 (en) * 2016-03-30 2017-10-05 日本ゼオン株式会社 Optically anisotropic layer and production method therefor, optically anisotropic laminate and production method therefor, optically anisotropic transfer body, polarization plate, and image display device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1118885B1 (en) * 1999-07-29 2004-03-03 Teijin Limited Phase difference film, phase difference film composite and liquid crystal display device using the same
JP3832301B2 (en) * 2001-10-03 2006-10-11 チッソ株式会社 Liquid crystalline fumaric acid diester and its polymer
JP2007241071A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Transflective liquid crystal display device
JPWO2008105538A1 (en) * 2007-03-01 2010-06-03 日本ゼオン株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
KR101115075B1 (en) * 2007-12-26 2012-02-28 주식회사 엘지화학 Retardation film and polarizing plate and liquid crystal display comprising the same
JP2012224734A (en) * 2011-04-19 2012-11-15 Asahi Glass Co Ltd Polymer compound, composition for alignment film, alignment film, optical element, and optical head device
CN102304365B (en) * 2011-05-23 2014-06-11 西安彩晶光电科技股份有限公司 Ultralow optical anisotropy mixed liquid crystal material
KR102079276B1 (en) * 2012-10-22 2020-02-19 니폰 제온 가부시키가이샤 Retarder, circularly polarising plate, and image display device
CN107955628B (en) * 2012-10-30 2021-01-29 日本瑞翁株式会社 Liquid crystal composition, phase difference plate, method for producing phase difference plate, and image display device
JP2015014712A (en) 2013-07-05 2015-01-22 大日本印刷株式会社 Optical film and production method of optical film
CN104339796B (en) 2013-08-09 2018-03-02 住友化学株式会社 Layered product
US10670787B2 (en) * 2015-07-24 2020-06-02 Sumitomo Chemical Company, Limited Liquid crystal cured film, optical film including the liquid crystal cured film, and display device
CN107924017A (en) * 2015-09-03 2018-04-17 Dic株式会社 Composition comprising the compound with mesomorphic group, by polymerizable composition, polymerizable composition polymerize obtained by polymer, optically anisotropic body and phase difference film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163452A (en) * 2002-11-08 2004-06-10 Nippon Kayaku Co Ltd Liquid crystalline blended composition and optical retardation film obtained by using it
JP2008545856A (en) * 2005-06-10 2008-12-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Material with homeotropic orientation
JP2008158310A (en) * 2006-12-25 2008-07-10 Nitto Denko Corp Layered product, liquid crystal panel, and liquid crystal display device
JP2010020269A (en) * 2007-09-28 2010-01-28 Fujifilm Corp Liquid crystal display device
WO2017170455A1 (en) * 2016-03-30 2017-10-05 日本ゼオン株式会社 Optically anisotropic layer and production method therefor, optically anisotropic laminate and production method therefor, optically anisotropic transfer body, polarization plate, and image display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019069855A1 (en) * 2017-10-03 2020-11-26 日本ゼオン株式会社 Optically anisotropic layer and its manufacturing method, optically anisotropic laminated body and its manufacturing method, optically anisotropic transfer body, polarizing plate, and image display device
JP7156294B2 (en) 2017-10-03 2022-10-19 日本ゼオン株式会社 Optically anisotropic layer and its manufacturing method, optically anisotropic laminate and its manufacturing method, optically anisotropic transfer member, polarizing plate, and image display device
CN111752034A (en) * 2019-03-28 2020-10-09 夏普株式会社 Liquid crystal panel manufacturing method and liquid crystal panel

Also Published As

Publication number Publication date
TWI767015B (en) 2022-06-11
JP7276128B2 (en) 2023-05-18
KR102589809B1 (en) 2023-10-13
TW201905119A (en) 2019-02-01
CN110651208A (en) 2020-01-03
CN110651208B (en) 2021-10-01
JPWO2019003812A1 (en) 2020-04-30
KR20200019143A (en) 2020-02-21

Similar Documents

Publication Publication Date Title
US10705274B2 (en) Optically anisotropic layer and production method therefor, optically anisotropic laminate and production method therefor, optically anisotropic transfer body, polarization plate, and image display device
WO2018164126A1 (en) Organic electroluminescence display device, phase difference film, and circularly polarizing plate
JP6860012B2 (en) Optically anisotropic laminated body, polarizing plate, and image display device
KR20200003879A (en) Liquid crystal film, optical laminated body, circularly polarizing plate, organic electro luminescence display device
JP7276128B2 (en) OPTICALLY ANISOTROPIC LAYER AND MANUFACTURING METHOD THEREOF, OPTICALLY ANISOTROPIC LAMINATE, MULTIPLE LAYER FOR TRANSFER, POLARIZING PLATE, AND IMAGE DISPLAY DEVICE
JP2024051161A (en) Cured liquid crystal film, optical film including the cured liquid crystal film, and display device
TWI732772B (en) Laminated body, circularly polarizing plate including laminated body, display device including laminated body
KR20150018428A (en) Laminate
WO2016136901A1 (en) Transfer body for optical film, optical film, organic electroluminescence display device, and method for manufacturing optical film
WO2018123725A1 (en) Circularly polarizing plate, and organic electroluminescent display device
WO2017110631A1 (en) Optical anisotropic layer and manufacturing method therefor, optical anisotropic laminate, and circularly polarizing plate
JP2017072786A (en) Laminated optical film, lighting system and display unit
JP6724297B2 (en) Method for producing optical laminate, method for producing circularly polarizing plate, and method for producing organic electroluminescence display device
JP2018146637A (en) Production method of optical anisotropic layer
JP6287371B2 (en) Optical film, optical film transfer body, and image display device
JP7156294B2 (en) Optically anisotropic layer and its manufacturing method, optically anisotropic laminate and its manufacturing method, optically anisotropic transfer member, polarizing plate, and image display device
JP2019066777A (en) Optically anisotropic layer and method for manufacturing the same, optically anisotropic laminate and method for manufacturing the same, optically anisotropic transfer body, polarizing plate and image display device
JP7355955B1 (en) optical laminate
JP2024080581A (en) Laminate and organic EL display device
CN118131384A (en) Laminate and organic EL display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526741

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197037285

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824695

Country of ref document: EP

Kind code of ref document: A1