WO2019003699A1 - 回転部材を有する装置の異常原因特定システム - Google Patents
回転部材を有する装置の異常原因特定システム Download PDFInfo
- Publication number
- WO2019003699A1 WO2019003699A1 PCT/JP2018/019183 JP2018019183W WO2019003699A1 WO 2019003699 A1 WO2019003699 A1 WO 2019003699A1 JP 2018019183 W JP2018019183 W JP 2018019183W WO 2019003699 A1 WO2019003699 A1 WO 2019003699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- abnormality
- measurement data
- frequency
- abnormality cause
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H1/00—Measuring characteristics of vibrations in solids by using direct conduction to the detector
- G01H1/003—Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
- G01M99/005—Testing of complete machines, e.g. washing-machines or mobile phones
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H3/00—Measuring characteristics of vibrations by using a detector in a fluid
- G01H3/04—Frequency
- G01H3/08—Analysing frequencies present in complex vibrations, e.g. comparing harmonics present
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
- G01M13/045—Acoustic or vibration analysis
Definitions
- the present invention relates to an abnormality cause identification system for an apparatus having a rotating member.
- a sensor is attached to a device (for example, a gas turbine, a robot including a compressor and an articulated arm, etc.) having a rotating member, and a system for identifying an abnormal part of the device based on measurement data obtained from the sensor It has been known.
- a device for example, a gas turbine, a robot including a compressor and an articulated arm, etc.
- a system for identifying an abnormal part of the device based on measurement data obtained from the sensor It has been known.
- An abnormality diagnosis system for a rotating machine disclosed in Patent Document 1 is an example of an abnormality cause identification system for an apparatus having a rotating member that can meet such a requirement.
- the abnormality diagnosis system of Patent Document 1 includes a vibration detection sensor installed on a rotating machine to be diagnosed, an arithmetic processing unit for converting a detection signal from the vibration detection sensor into vibration data, and vibration data from the arithmetic processing unit And an information processing device for performing diagnosis.
- Patent No. 3834228 gazette
- the abnormality diagnosis system for a rotating machine of Patent Document 1 converts data on one type of frequency generated during operation of the rotating machine to create one converted data. And to identify the cause of abnormality based on it.
- the cause of abnormality could not be identified with high accuracy.
- an object of this invention is to provide the abnormality cause identification system of the apparatus which has a rotation member which can specify many types of abnormality causes with high precision.
- the abnormality cause identification system for an apparatus having a rotary member identifies the cause of abnormality of the apparatus based on measurement data measured during operation of the apparatus having a rotary member.
- An abnormality cause identification system of an apparatus having a member wherein a sensor for observing a state of the rotating member and acquiring the measurement data, and converting the measurement data into conversion data of two or more mutually different new formats
- a measurement data conversion unit, and an abnormality cause identification unit that specifies an abnormality cause of the device by analyzing the conversion data created by the measurement data conversion unit.
- the measurement data conversion unit converts the measurement data into conversion data of two or more different new formats, and analyzes the conversion data by the abnormality cause identification unit, whereby the cause of abnormality of the device is obtained. Identify.
- data on one type of frequency generated at the time of operation of the rotary machine is converted to create one converted data, and based on it, it is possible to detect with high accuracy with high accuracy.
- the cause of abnormality can be identified.
- the types of abnormal causes that can be identified can be increased. That is, the abnormality cause identification system for an apparatus having a rotating member according to the present invention can identify many types of abnormality causes with high accuracy.
- the abnormality cause identification unit is a cause of abnormality of the device by combining and analyzing at least two conversion data of the two or more different types of conversion data different from each other generated by the measurement data conversion unit. May be identified.
- the transformed data is a frequency analysis data created so as to have frequency data by expressing the amplitude for each frequency at a specific time in a Cartesian coordinate system, and expresses the amplitude for each frequency in a specific time range.
- the waterfall data is created to have time data in addition to frequency data, and it is created to have amplitude data and phase data by representing the amplitude and phase for each rotation speed in a Cartesian coordinate system.
- By representing the board data and the amplitude and phase for each time in a polar coordinate system it is possible to specify an axial center position determined from polar data created to have phase data and vibration data from two directions measured at the same time.
- Axial trajectory data created to have data cascade data created to have rotation data in addition to frequency data by arranging and expressing the amplitude for each frequency in a specific rotation number range
- the abnormality cause identification unit analyzes, for example, not only frequency data within a specific time range but also other data by using frequency analysis data or waterfall data and other data. To identify the cause of abnormality of the device. Thereby, the effects exerted by the present invention described above can be made remarkable.
- the measurement data conversion unit converts the measurement data into the frequency analysis data, the waterfall data, the board data, the cascade data, or the camber data
- the dimension frequency of each data is used to generate dimensionless data. May be carried out.
- the measurement data conversion unit uses two or more different feature frequencies of each data. Two or more dimensionless data may be created as each data.
- two or more non-dimensional data are created from one conversion data, so that analysis can be performed by combining the two or more non-dimensional data.
- the analysis can be performed after highlighting the feature caused by the abnormality, so that the cause of the abnormality can be identified with higher accuracy.
- the measurement data conversion unit may label the non-dimensionalized data with respect to the type of feature frequency used when performing the non-dimensionalization.
- the abnormality cause identification unit may perform analysis by comparing the conversion data created by the measurement data conversion unit with a determination model created in advance.
- the measurement data includes first measurement data converted to the two or more converted data by the measurement data conversion unit, and second measurement data not converted by the measurement data conversion unit, and the abnormality cause
- the identifying unit may identify the cause of the abnormality of the device by analyzing by adding at least one of the second measurement data and the control command data to the device to at least one converted data. .
- the measurement data includes first measurement data converted to the two or more converted data by the measurement data conversion unit, and second measurement data not converted by the measurement data conversion unit, and the abnormality cause
- the identifying unit further identifies the cause of abnormality of the device by analyzing at least one of the second measurement data and control command data for the device.
- the present invention can provide an abnormality cause identification system of a device having a rotating member that can identify many types of abnormality causes with high accuracy.
- FIG. 1 It is a figure which shows an example of the board data produced by the measurement data conversion part with which the abnormality cause identification system shown in FIG. 1 is provided. It is a figure which shows an example of the polar data produced by the said measurement data conversion part with which the said abnormality cause identification system is provided. It is a figure which shows an example of the orbit data produced by the said measurement data conversion part with which the said abnormality cause identification system is provided. It is a figure which shows an example of the frequency analysis data produced by the said measurement data conversion part with which the said abnormality cause identification system is provided.
- FIG. 1 is a block diagram showing an entire configuration of an abnormality cause identifying system of an apparatus having a rotating member according to an embodiment of the present invention.
- the abnormality cause identification system 10 for an apparatus having a rotating member is an apparatus having a rotating member R (eg, gas turbine, steam turbine, In order to identify the cause of abnormality of the device based on measurement data measured during operation of a compressor, a hydraulic pump / motor, an electric motor, and a robot including an articulated arm driven by the action of a rotary machine). is there.
- a rotating member R eg, gas turbine, steam turbine
- the abnormality cause identification system 10 includes two acceleration sensors 22 a and 22 b and a pickup sensor 24 provided in a device having a rotating member R, and a temperature sensor 26 provided in the vicinity of the device having a rotating member R. ,
- the measurement data conversion unit 30 electrically connected to each of the two acceleration sensors 22a and 22b and the pickup sensor 24, and the abnormality cause identification unit 40 electrically connected to each of the measurement data conversion unit 30 and the temperature sensor 26.
- the two acceleration sensors 22a and 22b are for measuring vibration data (first measurement data) of the rotating member R generated when the apparatus is operated.
- the acceleration sensor 22a measures vibration data in a first direction (X-axis direction) orthogonal to the axial direction of the rotating member R
- the acceleration sensor 22b measures the axial direction of the rotating member R and a second orthogonal to the first direction. Vibration data in the direction (Y-axis direction) is measured.
- the two acceleration sensors 22 a and 22 b respectively transmit the measured vibration data to the measurement data conversion unit 30.
- the pickup sensor 24 is for measuring the number of rotations (first measurement data) of the rotating member R.
- the pickup sensor 24 transmits the measured number of rotations to the measurement data conversion unit 30.
- a speed sensor or a displacement sensor may be used to measure vibration data.
- the temperature sensor 26 is for measuring temperature data (second measurement data). The temperature sensor 26 transmits the measured temperature data to the abnormality cause identification unit 40.
- the measurement data conversion unit 30 converts the vibration data in two directions acquired by the acceleration sensors 22a and 22b and the rotation speed acquired by the pickup sensor 24 into conversion data of two or more different formats.
- the measurement data conversion unit 30 is, for example, a computer, has a memory such as a ROM or a RAM, and a CPU, and a program stored in the ROM is executed by the CPU.
- FIGS. 2 to 8 each show an example of the conversion data of the above-described new format created by the measurement data conversion unit 30.
- the measurement data conversion unit 30 transmits the generated conversion data to the abnormality cause identification unit 40.
- the conversion data may be transmitted as numerical data, or may be transmitted as diagram data or image data.
- FIG. 2 shows an example of board data created so as to have amplitude data and phase data by representing the amplitude and phase for each rotation number in a Cartesian coordinate system.
- the board data may be, for example, a rotation synchronization component X or (nX) obtained by extracting vibration frequency components of integer multiples of two or more and minus one, and 1 / n (n is an integer of two or more) multiples
- a rotation synchronization component X or (nX) obtained by extracting vibration frequency components of integer multiples of two or more and minus one, and 1 / n (n is an integer of two or more) multiples
- ((1 / n) X) from which frequency components are extracted may be created for each.
- the rotation synchronization component X when the rotary member R is provided with wings, the number of wings z thereof, and when the gear is provided, the number of teeth z thereof is multiplied by the rotation synchronization component X to be zX, and 1 for the zX ((1 / n) zX of the vibration frequency component 1 / n (n is an integer of 2 or more) times the vibration frequency component of the integral multiple of the above) It may be prepared for each of those to which the rotation synchronization component X is added (zX + nX) (n is an integer of 1 or more) and the rotation synchronization component X subtracted (zX-nX) (the same as above).
- the unbalance vibration component said to the following is synonymous with the above-mentioned rotation synchronous component.
- the board data makes the dangerous speed clear.
- FIG. 3 shows an example of polar data created to have phase data by representing the amplitude and phase with time in a polar coordinate system.
- polar data is represented as, for example, a diagram in which concentric scale lines indicate amplitude and radial scale lines indicate phase.
- the polar data represents the locus of vibration vector and indicates the phase and amplitude of the unbalanced vibration component (1X), so that characteristics tend to appear when an abnormality occurs in relation to the unbalanced vibration. In particular, when the phase changes, the feature appears remarkably.
- FIG. 4 is an orbit created so as to have vibration data in two directions by representing the vibration locus by continuously arranging axial center positions determined from vibration data from two directions measured at the same time in a specific time range.
- An example of data is shown.
- orbit data is represented as a graph, for example, by continuously arranging instantaneous values of axial center positions in an orthogonal coordinate system in which both the horizontal axis and the vertical axis indicate amplitudes.
- Orbit data has a large change in circular shape (or elliptical shape) when a vector force different from an imbalance (centrifugal force) such as a reaction force due to contact occurs. For example, when a non-linear phenomenon such as contact occurs Features are likely to appear.
- FIG. 5 shows an example of frequency analysis data created so as to have frequency data by representing the amplitude for each frequency at a specific time in a Cartesian coordinate system.
- the frequency analysis data is, for example, a diagram relating to two frequencies obtained by performing fast Fourier transform on vibration data (a line in which the horizontal axis represents frequency and the vertical axis represents phase). And a diagram in which the horizontal axis represents frequency and the vertical axis represents amplitude).
- Frequency analysis data can capture the characteristics of frequency in a particular time range.
- the unbalance component which shows abnormality tends to appear change by frequencies, such as dangerous speed, you may create it after making it dimensionless by the feature frequency.
- FIG. 6 shows an example of waterfall data created so as to have time data in addition to frequency data by arranging and expressing the amplitude for each frequency in a specific time range.
- the waterfall data is represented, for example, as a color density map of a color in which the horizontal axis indicates frequency, the vertical axis indicates time, and the color (or gray level) indicates amplitude. Since one conversion data can represent time data in addition to frequency data, it is likely that the time change will occur when an abnormality occurs.
- an abnormality occurs in the device itself, its features appear periodically or gradually.
- the characteristic appears temporarily, and also appears when the device is stopped or at low speed operation.
- FIG. 7 shows an example of cascade data created so as to have rotation number data in addition to frequency data by arranging and expressing the amplitude for each frequency in a specific rotation number range.
- the cascade data is represented, for example, as a color density map of a color in which the horizontal axis represents frequency, the vertical axis represents rotation speed, and the color (or gray level) represents amplitude.
- the cascade data can capture state changes for each rotation speed.
- the cascade data also makes the natural frequency and the critical speed clear.
- FIG. 8 shows an example of Campbell data created so as to have data of the number of rotations in addition to data of the frequency by arranging the amplitudes for each frequency in a specific number of rotations range and expressing them in a format different from the cascade data.
- the Campbell data is represented, for example, as a diagram in which the horizontal axis indicates the number of rotations, the vertical axis indicates the frequency, and the absolute value of the amplitude is indicated by a circle.
- the Campbell data represents the same content as the cascade data in a different format. Therefore, its application and the like are the same as cascade data, and therefore the description thereof will not be repeated here.
- FIG. 9 is a sliding bearing by representing the locus for each time or number of revolutions of the axial center position which is the vibration center of each of vibration data from two directions measured in a specific time range at the same time.
- 18 shows an example of axial locus data created to have axial position data of
- a horizontal axis indicates a horizontal axial center position in the slide bearing
- a vertical axis indicates a vertical axial center position in the slide bearing. It is represented as a figure.
- the axial center locus data is easy to express the feature when an abnormality occurs in the slide bearing.
- the floating path of the shaft in the slide bearing is determined in accordance with the number of rotations, such as drawing a straight line in the tilting pad bearing. Therefore, by comparing with the route, it can be specified whether or not an abnormality has occurred.
- the measurement data conversion unit 30 measures vibration data and rotational speed measured during operation of the device, for example, board data as shown in FIG. 2, polar data as shown in FIG. 3, orbit data as shown in FIG. Among frequency analysis data as shown in FIG. 5, waterfall data as shown in FIG. 6, axial center locus data as shown in FIG. 9, cascade data as shown in FIG. 7 and Campbell data as shown in FIG. Convert to at least two.
- the measurement data conversion unit 30 may perform dimensionless processing using the characteristic frequency of each data.
- one non-dimensionalized data may be created as each data using one type of feature frequency, Two or more types of non-dimensionalized data may be created as respective data using two or more types of different feature frequencies.
- the characteristic frequency used when performing non-dimensionalization of frequency analysis data, waterfall data, cascade data, and Campbell data may include natural frequency and critical speed.
- the feature frequency at the time of dimensionlessness may include the meshing frequency of the gear.
- the rotating member R is supported by a rolling bearing, at least one of the bearing inner ring defect path, the bearing outer ring defect path, the bearing rolling element defect path, and the bearing cage defect path according to the feature frequency at the time of nondimensioning. May be included.
- the feature frequency at the time of non-dimensioning may include the frequency of passing through the wing.
- a dangerous speed can be mentioned as a feature frequency used when performing nondimensionalization of board data.
- the meshing frequency of the gear is not used to make it non-dimensional.
- it is not dimensioned using the bearing inner ring defect path, the bearing outer ring defect path, the bearing rolling element defect path, and the bearing cage defect path.
- the frequency of passing through the wing is not used to make it non-dimensional.
- the processing speed of the measurement data conversion unit 30 can be improved by not performing unnecessary non-dimensionalization.
- the abnormality cause identification unit 40 analyzes the conversion data generated by the measurement data conversion unit 30 to specify the abnormality cause of the apparatus. Similar to the measurement data conversion unit 30, the abnormality cause identification unit 40 has a memory such as a ROM or a RAM and a CPU, and the program stored in the ROM is executed by the CPU.
- the abnormality cause identification unit 40 may be configured as a computer system (so-called "artificial intelligence (AI)") having a self-learning function for artificially realizing an intellectual function such as inference and judgment.
- AI artificial intelligence
- the abnormality cause identification unit 40 may combine and analyze at least two conversion data among the two or more conversion data as shown in FIGS. 2 to 9 generated by the measurement data conversion unit 30.
- the abnormality cause identification unit 40 may perform analysis by comparing the conversion data as shown in, for example, FIGS. 2 to 9 created by the measurement data conversion unit 30 with the determination model created in advance. Therefore, the abnormality cause identification unit 40 may include a storage device provided separately from the above memory in order to store the judgment model created in advance.
- FIG. 10 is a view showing an example of a previously created judgment model provided in the abnormality cause identification system for an apparatus having a rotating member according to an embodiment of the present invention.
- the leftmost column shows and enumerates the causes of abnormality, and shows combinations of conversion data candidates used to identify whether or not the respective causes of abnormality occur.
- 12 typical causes of abnormality are listed in FIG. 10, it is needless to say that the causes of abnormality are not limited to these.
- each cause of abnormality when each cause of abnormality is generated, “ ⁇ ” is attached to the conversion data in which the characteristic is prominently displayed. In addition, when each cause of abnormality is generated, “o” is attached to the conversion data that is inferior to the conversion data to which “ ⁇ ” is attached, but the feature appears. Furthermore, when each cause of abnormality is generated, “ ⁇ ” is attached to the conversion data that may make analysis easier if the characteristics do not necessarily appear. Therefore, each abnormal cause can be identified or narrowed down by analyzing the conversion data to which “ ⁇ ” is attached. In addition, each of the causes of the abnormality is analyzed by combining two or more conversion data with " ⁇ ⁇ ", and the accuracy is high compared to the case where one conversion data with " ⁇ ” is analyzed. Can be identified or narrowed down.
- each cause of abnormality can be identified or narrowed down by analyzing only conversion data with “o”, but adding and analyzing at least one conversion data with “o”, It becomes possible to identify or narrow down with higher accuracy.
- the abnormality cause identification unit 40 combines at least two conversion data of the conversion data with “ ⁇ ⁇ ”, the conversion data with “ ⁇ ”, and the conversion data with “ ⁇ ” and analyzes them. You may.
- the analysis combination candidates for specifying that the device is in a normal state are also described in FIG. If the device is in a normal state, as shown in FIG. 10, it can be identified by analyzing at least one of board data and polar data.
- the abnormality cause identifying unit 40 analyzes these converted data, and the apparatus is in a normal state when the amplitude of the vibration data is smaller than a predetermined value and the phase is reversed at a rotational speed close to the dangerous speed. Identify In addition, it is possible to improve accuracy by analyzing waterfall data as well. Furthermore, analysis may be facilitated by analyzing cascade data or Campbell data together.
- polar data is analyzed as shown in FIG. 10 when an abnormality occurs due to the occurrence of a defect in the rotating member R and the attachment of a substance (in FIG. 10, “defect / deposition in the rotating member”).
- the phase also changes. It is because it is easy to appear in polar data ( ⁇ ).
- the said phase and amplitude will change rapidly, when a defect arises in the rotation member R, and when things adhere, it takes a long time, and changes gradually.
- the waterfall data and the cascade data or the Campbell data together, it can be confirmed that the generated vibration is the unbalance component (1 ⁇ ), and this can be identified. Furthermore, analysis may be facilitated by analyzing board data as well.
- an abnormality occurs due to the occurrence of a crack in the rotating shaft, it can be identified by analyzing cascade data or Campbell data as shown in FIG. This is because there is a difference in rigidity between the direction in which the crack opens and the direction in which it is closed, so twice (2X) vibration of the rotation synchronous component occurs, and the crack may occur at the manufacturing or assembly stage.
- the characteristic is likely to appear in cascade data including information on the number of revolutions and Campbell data ( ⁇ ⁇ ).
- accuracy can be improved by analyzing waterfall data including information of time in addition to frequency.
- analysis may also be facilitated by analyzing the frequency analysis data as well.
- an abnormality occurs due to the rubbing of the rotating member R, as shown in FIG. 10, it can be narrowed down by analyzing the orbit data. This is because when an abnormality occurs due to the above cause, an intermittent external force due to contact acts on the rotor, and the shape of the fluctuation around the unbalanced component (1X) changes so as to be greatly disturbed. This is because a change in the shape of is likely to appear in orbit data ( ⁇ ).
- analysis may also be facilitated by analyzing the frequency analysis data as well.
- Coupled angle difference in FIG. 10
- cascade data or the Campbell data can be narrowed down. This is because the above-mentioned cause originates from the initial stage of the device operation, so its characteristics do not change with time, and analysis of cascade data or Campbell data will change the rotational speed even when the rotational speed is changed. This is because it can be determined by whether or not the double component (2X) is generated.
- waterfall data can also be identified by analyzing together.
- analysis may also be facilitated by analyzing the frequency analysis data as well.
- the natural vibration (fn) is generated at a rotational speed equivalent to twice or more the frequency of the lowest natural frequency (fn) Since vibration occurs, as shown in FIG. 10, it is possible to narrow down by analyzing at least one of the cascade data and the Campbell data ( ⁇ ) including both the rotational speed and the frequency information. Moreover, since it generate
- the device having the rotating member R is a steam turbine
- an abnormality occurs due to the steam whirl
- it can be narrowed down by analyzing the waterfall data as shown in FIG. This is because the turbine impeller causes forward swing and self-excited oscillation (fn) due to the fluid force of steam.
- at least one of orbit data, cascade data, and Campbell data can be identified by analyzing together.
- analysis may be facilitated by analyzing at least one of the frequency analysis data and the axial trajectory data together.
- the device having the rotating member R is a compressor and an abnormality occurs due to the gas whirl, it can be narrowed down by analyzing the waterfall data as shown in FIG. This is because self-excited vibration (fn) is generated due to the fluid force of the working fluid, and in the axial flow compressor, a backward swing occurs. Also, at least one of orbit data, cascade data, and Campbell data can be identified by analyzing together. Furthermore, analysis may be facilitated by analyzing at least one of the frequency analysis data and the axial trajectory data together.
- envelope processing can be performed on the measurement data, and the cause of the abnormality can be narrowed down by analyzing the frequency analysis data as shown in FIG. 10 using the data. Further, the cause of abnormality can be identified by analyzing at least one of waterfall data, cascade data and Campbell data together. This is because, for a gear having an abnormality, a specific change is usually generated from the normal state as to the meshing frequency as its characteristic frequency, its higher order components, and these side band components. This is because the cause of abnormality can be identified by confirming the change due to the time or the number of rotations together with the frequency analysis data in time.
- the cause of the abnormality can be narrowed down by performing envelope processing on the measurement data and analyzing the frequency analysis data as shown in FIG. 10 using the data. Further, the cause of abnormality can be identified by analyzing at least one of waterfall data, cascade data and Campbell data together. This is because, when foreign matter is mixed in the rolling bearing, any of the characteristic frequencies such as inner ring defect path, bearing outer ring defect path, bearing rolling element defect path, bearing cage defect path and high order components of these become characteristic frequencies. As a sudden change appears, it is possible to identify the cause of abnormality by confirming the change due to the time or the number of rotations together with the frequency analysis data at a specific time.
- the abnormality cause identification unit 40 may identify the cause of the apparatus abnormality as described above, and may output the result to an output device (not shown) such as a display, for example. It may be possible to confirm with any provided device (same as above).
- the measurement data conversion unit 30 converts the measurement data into two or more different conversion data in a new format (for example, conversion data whose example is shown in FIGS. 2 to 9).
- the cause of abnormality of the apparatus is identified by analyzing the converted data by the abnormality cause identification unit 40.
- the cause of abnormality can be identified.
- the abnormality cause identification unit 40 combines and analyzes at least two conversion data of the conversion data of two or more different formats generated by the measurement data conversion unit 30, thereby performing the above-described actual implementation.
- the effects exerted by the form can be made remarkable.
- the abnormality cause identification unit 40 analyzes at least two of the conversion data whose examples are shown in FIGS. 2 to 9, for example, by using frequency analysis data or waterfall data and other data, The analysis can be performed based on not only the data of frequency within a specific time range but also other data to identify the cause of abnormality of the device. Thereby, the effects exerted by the present invention described above can be made remarkable.
- the measurement data conversion unit 30 performs dimensionless processing using the feature frequency of each data. This makes it possible to use the abnormality cause identification system according to the present embodiment in a versatile manner without depending on the frequency of each device.
- the measurement data conversion unit 30 creates two or more dimensionless data as each data, using two or more different feature frequencies of the respective data. Thereby, two or more non-dimensionalized data are created from one conversion data, so that the abnormality cause identifying unit 40 can analyze by combining the two or more non-dimensionalized data.
- the abnormality cause identification system 10 since the abnormality cause identification system 10 according to the present embodiment can perform analysis after highlighting the feature caused by the abnormality, it becomes possible to specify the cause of the abnormality with higher accuracy.
- the measurement data conversion unit 30 manages the two or more dimensionless data. It will be easy to do. Thereby, for example, the processing speed at the time of specifying the cause of abnormality can be improved.
- monitoring data (second measurement data) of the operating state such as temperature data, pressure data and output data of the apparatus not converted by the measurement data conversion unit 30 is converted into one or more conversion data (for example, waterfall having a time axis)
- conversion data for example, waterfall having a time axis
- the abnormality cause identification unit 30 converts one or more second measurement data (the monitoring data of the operating state such as temperature data, pressure data, and output data of the device) not converted by the measurement data conversion unit 30.
- the abnormality cause identification unit 30 may analyze control command data for the apparatus (for example, control command data for operating a multijoint arm for a robot, etc.) by adding it to one or more conversion data. .
- This also allows the anomaly cause system 10 to further increase the types of anomaly causes that can be identified. That is, even if the abnormality cause identification unit 30 adds at least one of the second measurement data not converted by the measurement data conversion unit 30 and the control command data to the apparatus to one or more conversion data and analyzes it. good.
- the abnormality cause identification unit 30 analyzes at least two of the conversion data converted by the measurement data conversion unit 30, and at least one of the second measurement data and the control command data for the device.
- the cause of abnormality may be identified by analysis. This makes it possible to identify an abnormal cause that could not be identified only by analyzing the two or more conversion data. That is, with this configuration, it is possible to further increase the types of abnormal causes that can be identified, and to improve the specific accuracy.
- the association is performed, for example, on the time axis or the like between at least one of the second measurement data and the control command data and the conversion data.
- the measurement data conversion unit 30 and the abnormality cause identification unit 40 may be configured as separate devices, and the abnormality cause identification unit 40 may be configured as so-called artificial intelligence (AI).
- AI artificial intelligence
- the measurement data conversion unit 30 and the abnormality cause identification unit 40 may be configured as one device.
- the one device concerned may be constituted as what is called artificial intelligence (AI).
- abnormality cause identification system 10 described the case where the abnormality cause of the device having one rotating member R is identified in the above embodiment, the present invention is not limited to this. That is, the abnormality cause identification system 10 may identify an abnormality cause of a device having two or more rotating members R.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
回転部材を有する装置の異常原因特定システム10は、回転部材Rの状態を観測し、且つ計測データを取得する加速度センサ22a,22b及びピックアップセンサ24並びに温度センサ26と、計測データを2つ以上の互いに異なる新たな形式の変換データに変換する計測データ変換部30と、計測データ変換部30で作成された変換データを解析することにより、前記装置の異常原因を特定する異常原因特定部40と、を備えることを特徴とする。
Description
本発明は、回転部材を有する装置の異常原因特定システムに関する。
従来から、回転部材を有する装置(例えば、ガスタービン、圧縮機及び多関節アームを含むロボットなど)にセンサを取り付け、当該センサから得られる計測データに基づいて装置の異常箇所を特定するためのシステムが知られている。しかしながら、回転部材を有する装置の改良を行うためには、異常箇所のみではなく、併せて異常原因も特定することが望まれる。このような要求に応じ得る回転部材を有する装置の異常原因特定システムとして、例えば、特許文献1に開示された回転機械の異常診断システムがある。
特許文献1の異常診断システムは、診断対象である回転機械に設置された振動検出センサと、振動検出センサからの検出信号を振動データに変換する演算処理器と、演算処理器からの振動データより診断を行う情報処理機器とを備える。
ところで、特許文献1には詳しくは記載されていないが、特許文献1の回転機械の異常診断システムは、回転機械の運転時に発生する1種の周波数に関するデータを変換して1つの変換データを作成し、それに基づいて異常原因を特定するものである。しかしながら、このようにした場合、高い精度で異常原因を特定することができなかった。また、特定できる異常原因の種類も少なかった。
そこで、本発明は、高い精度で多くの種類の異常原因を特定することができる、回転部材を有する装置の異常原因特定システムを提供することを目的とする。
前記課題を解決するために、本発明に係る回転部材を有する装置の異常原因特定システムは、回転部材を有する装置の運転時に計測する計測データに基づいて、前記装置の異常原因を特定する、回転部材を有する装置の異常原因特定システムであって、前記回転部材の状態を観測し、且つ前記計測データを取得するセンサと、前記計測データを2つ以上の互いに異なる新たな形式の変換データに変換する計測データ変換部と、前記計測データ変換部で作成された前記変換データを解析することにより、前記装置の異常原因を特定する異常原因特定部と、を備えることを特徴とする。
この構成によれば、計測データ変換部で計測データを2つ以上の互いに異なる新たな形式の変換データに変換し、これらの変換データを異常原因特定部で解析することにより、装置の異常原因を特定する。これにより、従来のように例えば回転機械の運転時に発生する1種の周波数に関するデータを変換して1つの変換データを作成し、それに基づいて異常原因を特定する場合と比較して、高い精度で異常原因を特定することができる。また、特定できる異常原因の種類を多くすることもできる。すなわち、本発明に係る回転部材を有する装置の異常原因特定システムは、高い精度で多くの種類の異常原因を特定することができる。
前記異常原因特定部は、前記計測データ変換部で作成された前記2つ以上の互いに異なる新たな形式の変換データのうち、少なくとも2つの変換データを組み合わせて解析することにより、前記装置の異常原因を特定してもよい。
この構成によれば、上記した本発明が奏する効果を顕著にすることができる。
前記変換データは、特定の時刻での周波数ごとの振幅を直交座標系で表すことにより、周波数のデータを有するように作成された周波数分析データ、特定の時間範囲で周波数ごとの振幅を並べて表すことにより、周波数のデータに加えて時間のデータを有するように作成されたウォータフォールデータ、回転数ごとの振幅と位相を直交座標系で表すことにより、振幅データ及び位相のデータを有するように作成されたボードデータ、時間ごとの振幅および位相を極座標系で表すことにより、位相のデータを有するように作成されたポーラデータ、同時刻で計測した2方向からの振動データから定まる軸心位置を特定の時間範囲で連続的に並べて振動軌跡を表すことにより、2方向の振動データを有するように作成されたオービットデータ、同時刻の特定の時間範囲で計測した2方向からの振動データのそれぞれの振動中心である軸心位置の時間または回転数ごとの軌跡を極座標系で表すことにより、滑り軸受け内での軸心位置のデータを有するように作成された軸心軌跡データ、特定の回転数範囲で周波数ごとの振幅を並べて表すことにより、周波数のデータに加えて回転数のデータを有するように作成されたカスケードデータ、及び、特定の回転数範囲で周波数ごとの振幅を並べて前記カスケードデータと異なる形式で表すことにより、周波数のデータに加えて回転数のデータを有するように作成されたキャンベルデータ、のうちの少なくとも2つを含んでもよい。
この構成によれば、異常原因特定部は、例えば、周波数分析データ又はウォータフォールデータとその他のデータを用いることで、特定の時間範囲内における周波数のデータだけでなくその他のデータにも基づいて解析を行い、装置の異常原因を特定することができる。これにより、上記した本発明が奏する効果を顕著にすることができる。
前記計測データ変換部は、前記計測データを前記周波数分析データ、前記ウォータフォールデータ、前記ボードデータ、前記カスケードデータ又は前記キャンベルデータに変換する際に、それぞれのデータの特徴周波数を用いて、無次元化を行ってもよい。
この構成によれば、装置ごとの周波数に依存することなく汎用的に本発明に係る回転部材を有する装置の異常原因特定システムを用いることが可能となる。
前記計測データ変換部は、前記計測データを前記周波数分析データ、前記ウォータフォールデータ、前記カスケードデータ又は前記キャンベルデータに変換する際に、それぞれのデータの互いに異なる2種以上の特徴周波数を用いて、それぞれのデータとして2つ以上の無次元化データを作成してもよい。
この構成によれば、1つの変換データから2つ以上の無次元化データが作成されるため、当該2つ以上の無次元化データを組み合わせて解析を行うことができる。これにより、異常に起因した特徴を際立たせてから解析を行うことができるため、一層高い精度で異常原因を特定することが可能になる。
前記計測データ変換部は、前記無次元化を行う際に用いた特徴周波数の種類について前記無次元化データにラベリングしてもよい。
この構成によれば、1つの変換データから2つ以上の無次元化データを作成した場合でも、当該2つ以上の無次元化データの管理を容易に行うことが可能になる。これにより、例えば、異常原因を特定する際の処理速度を向上させることができる。
例えば、前記異常原因特定部は、前記計測データ変換部で作成された前記変換データと、予め作成された判定モデルとの比較を行うことで解析を行ってもよい。
前記計測データは、前記計測データ変換部により前記2つ以上の変換データに変換される第1の計測データと、前記計測データ変換部により変換されない第2の計測データと、を含み、前記異常原因特定部は、前記第2の計測データ及び前記装置に対する制御指令データのうちの少なくともどちらか一方を少なくとも1つの変換データに付加して解析することにより、前記装置の異常原因を特定してもよい。
この構成によれば、上記2つ以上の変換データを解析するのみでは特定できなかった異常原因も特定することが可能になる。すなわち、この構成により、特定可能な異常原因の種類をさらに増やすことができ、特定の精度も向上できる。
前記計測データは、前記計測データ変換部により前記2つ以上の変換データに変換される第1の計測データと、前記計測データ変換部により変換されない第2の計測データと、を含み、前記異常原因特定部は、更に、前記第2の計測データ及び前記装置に対する制御指令データのうちの少なくともどちらか一方を解析することにより、前記装置の異常原因を特定する。
この構成によれば、上記2つ以上の変換データを解析するのみでは特定できなかった異常原因も特定することが可能になる。すなわち、この構成により、特定可能な異常原因の種類をさらに増やすことができ、特定の精度も向上できる。
本発明は、高い精度で多くの種類の異常原因を特定することができる、回転部材を有する装置の異常原因特定システムを提供することができる。
(全体構成)
以下、本発明の一実施形態に係る回転部材を有する装置の異常原因特定システムについて図面を参照して説明する。図1は、本発明の一実施形態に係る回転部材を有する装置の異常原因特定システムの全体構成を示すブロック図である。
以下、本発明の一実施形態に係る回転部材を有する装置の異常原因特定システムについて図面を参照して説明する。図1は、本発明の一実施形態に係る回転部材を有する装置の異常原因特定システムの全体構成を示すブロック図である。
本発明の一実施形態に係る回転部材を有する装置の異常原因特定システム10(以下、単に「異常原因特定システム10」という。)は、回転部材Rを有する装置(例えば、ガスタービン、蒸気タービン、圧縮機、油圧ポンプ/モータ、電動モータ及び回転機の作用で駆動する多関節アームを含むロボットなど)の運転時に計測される計測データに基づいて、前記装置の異常原因を特定するためのものである。
図1を参照して、異常原因特定システム10は、回転部材Rを有する装置に設けられる2つの加速度センサ22a,22b及びピックアップセンサ24と、回転部材Rを有する装置の近傍に設けられる温度センサ26と、2つの加速度センサ22a,22b及びピックアップセンサ24それぞれと電気的に接続される計測データ変換部30と、計測データ変換部30及び温度センサ26それぞれと電気的に接続される異常原因特定部40と、を備える。
(加速度センサ22a,22b及びピックアップセンサ24)
2つの加速度センサ22a,22bは、それぞれ、装置の運転時に発生する回転部材Rの振動データ(第1の計測データ)を計測するためのものである。加速度センサ22aは回転部材Rの軸心方向と直交する第1方向(X軸方向)の振動データを計測し、加速度センサ22bは回転部材Rの軸心方向及び前記第1方向と直交する第2方向(Y軸方向)の振動データを計測する。2つの加速度センサ22a,22bは、それぞれ、計測した振動データを計測データ変換部30へと送信する。また、ピックアップセンサ24は、回転部材Rの回転数(第1の計測データ)を計測するためのものである。ピックアップセンサ24は、計測した回転数を計測データ変換部30へと送信する。なお、振動データを計測するには、2つの加速度センサ22a,22bの他に、例えば、速度センサや変位センサを用いても良い。
2つの加速度センサ22a,22bは、それぞれ、装置の運転時に発生する回転部材Rの振動データ(第1の計測データ)を計測するためのものである。加速度センサ22aは回転部材Rの軸心方向と直交する第1方向(X軸方向)の振動データを計測し、加速度センサ22bは回転部材Rの軸心方向及び前記第1方向と直交する第2方向(Y軸方向)の振動データを計測する。2つの加速度センサ22a,22bは、それぞれ、計測した振動データを計測データ変換部30へと送信する。また、ピックアップセンサ24は、回転部材Rの回転数(第1の計測データ)を計測するためのものである。ピックアップセンサ24は、計測した回転数を計測データ変換部30へと送信する。なお、振動データを計測するには、2つの加速度センサ22a,22bの他に、例えば、速度センサや変位センサを用いても良い。
(温度センサ26)
温度センサ26は、温度データ(第2の計測データ)を計測するためのものである。温度センサ26は、計測した温度データを異常原因特定部40へと送信する。
温度センサ26は、温度データ(第2の計測データ)を計測するためのものである。温度センサ26は、計測した温度データを異常原因特定部40へと送信する。
(計測データ変換部30)
計測データ変換部30は、加速度センサ22a,22bで取得される2方向の振動データ、及びピックアップセンサ24で取得される回転数を2つ以上の互いに異なる新たな形式の変換データに変換する。計測データ変換部30は、例えばコンピュータであり、ROMやRAMなどのメモリとCPUを有し、ROMに格納されたプログラムがCPUにより実行される。
計測データ変換部30は、加速度センサ22a,22bで取得される2方向の振動データ、及びピックアップセンサ24で取得される回転数を2つ以上の互いに異なる新たな形式の変換データに変換する。計測データ変換部30は、例えばコンピュータであり、ROMやRAMなどのメモリとCPUを有し、ROMに格納されたプログラムがCPUにより実行される。
図2~8は、それぞれ、計測データ変換部30により作成される上記した新たな形式の変換データの一例を示す図である。計測データ変換部30は、作成した変換データを異常原因特定部40へと送信する。このとき、変換データは、数値データとして送信されてもよいし、線図データまたは画像データとして送信されてもよい。
図2は、回転数ごとの振幅と位相を直交座標系で表すことにより、振幅のデータ及び位相のデータを有するように作成されたボードデータの一例を示す。図2で示されるように、ボードデータは、例えば、横軸が回転数を示し且つ縦軸が位相を示す位相線図と、横軸が回転数を示し且つ縦軸が振幅を示す図との組み合わせで表されるものである。なお、ボードデータは、例えば、回転同期成分Xや、その2以上の整数倍及びマイナス1倍の振動周波数成分を抽出した(nX)、並びに1/n(nは2以上の整数)倍の振動周波数成分
を抽出した((1/n)X)など、それぞれについて作成しても良い。さらに、回転部材Rに翼が設けられている場合はその翼枚数z、歯車が設けられている場合はその歯数zを回転同期成分Xに乗じzXとしたうえで、そのzXに対して1以上の整数倍の振動周波数成分の(nzX)、1/n(nは2以上の整数)倍の振動周波数成分の((1/n)zX
)、回転同期成分Xを加えたもの(zX+nX)(nは1以上の整数)及び回転同期成分Xを減じたもの(zX-nX)(同前)など、それぞれについて作成しても良い。なお、以下でいう不釣合い振動成分は、上記した回転同期成分と同意である。また、ボードデータにより、危険速度が明確になる。
を抽出した((1/n)X)など、それぞれについて作成しても良い。さらに、回転部材Rに翼が設けられている場合はその翼枚数z、歯車が設けられている場合はその歯数zを回転同期成分Xに乗じzXとしたうえで、そのzXに対して1以上の整数倍の振動周波数成分の(nzX)、1/n(nは2以上の整数)倍の振動周波数成分の((1/n)zX
)、回転同期成分Xを加えたもの(zX+nX)(nは1以上の整数)及び回転同期成分Xを減じたもの(zX-nX)(同前)など、それぞれについて作成しても良い。なお、以下でいう不釣合い振動成分は、上記した回転同期成分と同意である。また、ボードデータにより、危険速度が明確になる。
図3は、時間ごとの振幅および位相を極座標系で表すことにより、位相のデータを有するように作成されたポーラデータの一例を示す。図3で示されるように、ポーラデータは、例えば、同心円の目盛線が振幅を示し且つ放射状の目盛線が位相を示す線図として表されるものである。ポーラデータは、振動ベクトルの軌跡を表し、不釣合い振動成分(1X)の位相と振幅を示すため、当該不釣合い振動に関連して異常が発生した場合に特徴が表れやすい。特に、位相が変化すると顕著に特徴が表れる。
図4は、同時刻で計測した2方向からの振動データから定まる軸心位置を特定の時間範囲で連続的に並べて振動軌跡を表すことにより、2方向の振動データを有するように作成されたオービットデータの一例を示す。図4で示されるように、オービットデータは、例えば、横軸及び縦軸がともに振幅を示す直交座標系で軸心位置の瞬時値を連続的に並べて線図として表されるものである。オービットデータは、接触による反力のような不釣り合い(遠心力)と異なるベクトルの力が発生したとき円形状(又は楕円形状)が大きく変化するため、例えば、接触などの非線形現象が発生した場合に特徴が表れやすい。
図5は、特定の時刻での周波数ごとの振幅を直交座標系で表すことにより、周波数のデータを有するように作成された周波数分析データの一例を示す。図5で示されるように、周波数分析データは、例えば、振動データに対して高速フーリエ変換を行うことにより得られる2つの周波数に関する線図(横軸が周波数を示し且つ縦軸が位相を示す線図、及び横軸が周波数を示し且つ縦軸が振幅を示す線図)として表されるものである。周波数分析データにより、ある特定の時間範囲における周波数の特性を捉えることができる。なお、異常を示す不釣合い成分は危険速度などの周波数で変化が表れやすいため、その特徴周波数で無次元化してから作成しても良い。
図6は、特定の時間範囲で周波数ごとの振幅を並べて表すことにより、周波数のデータに加えて時間のデータを有するように作成されたウォータフォールデータの一例を示す。図6で示されるように、ウォータフォールデータは、例えば、横軸が周波数を示し縦軸が時間を示し且つ色(又は濃淡)が振幅を示す色彩の濃淡マップとして表されるものである。1つの変換データにより、周波数のデータに加えて時間のデータも表すことができるため、異常が発生した場合にその時間的変化が表れやすい。ここで、装置自体に異常が生じた場合、その特徴は周期的に又は徐々に大きくなるように現れる。一方で、ノイズや外乱などに起因して異常が生じた場合、その特徴は一時的に現れ、装置の停止時や低速運転時にも現れる。したがって、上記作用を有するウォータフォールデータは、ノイズや外乱などに起因して異常が生じた場合に、その兆候を時間的な変化で捉えることができる。さらに、回転数で無次元化することにより、歯車の噛み合いや軸受けに起因した異常、非線形現象が発生した場合などに特徴が表れやすくなる。そして、固有振動数で無次元化することにより、不安定な振動が発生した場合に特徴が表れやすくなる。
図7は、特定の回転数範囲で周波数ごとの振幅を並べて表すことにより、周波数のデータに加えて回転数のデータを有するように作成されたカスケードデータの一例を示す。図7で示されるように、カスケードデータは、例えば、横軸が周波数を示し縦軸が回転数を示し且つ色(又は濃淡)が振幅を示す色彩の濃淡マップとして表されるものである。カスケードデータは、回転数ごとの状態変化を捉えることができる。また、カスケードデータにより、固有振動数や危険速度が明確になる。
図8は、特定の回転数範囲で周波数ごとの振幅を並べて前記カスケードデータと異なる形式で表すことにより、周波数のデータに加えて回転数のデータを有するように作成されたキャンベルデータの一例を示す。図8で示されるように、キャンベルデータは、例えば、横軸が回転数を示し縦軸が周波数を示し且つ振幅の絶対値を円で示す線図として表されるものである。なお、キャンベルデータは、カスケードデータと同じ内容を異なる形式で表したものである。したがって、その用途などはカスケードデータと同様であるため、ここではその説明を繰り返さない。
図9は、同時刻の特定の時間範囲で計測した2方向からの振動データのそれぞれの振動中心である軸心位置の時間または回転数ごとの軌跡を極座標系で表すことにより、滑り軸受け内での軸心位置のデータを有するように作成された軸心軌跡データの一例を示す。図9で示されるように、軸心軌跡データは、例えば、横軸が滑り軸受け内での水平方向の軸心位置を示し且つ縦軸が滑り軸受け内での鉛直方向の軸心位置を示す線図として表されるものである。軸心軌跡データは、滑り軸受け内での異常が発生した場合にその特徴を表しやすい。ここで、ティルティングパッド軸受け内で真っ直ぐ上がる軌跡を描くなど、滑り軸受け内での軸の浮き上がり経路は回転数に応じて決まっている。したがって、当該経路と比較することにより、異常が生じているか否かを特定することができる。
計測データ変換部30は、装置の運転時に計測される振動データ及び回転数を、例えば、図2に示すようなボードデータ、図3に示すようなポーラデータ、図4に示すようなオービットデータ、図5に示すような周波数分析データ、図6に示すようなウォータフォールデータ、図9に示すような軸心軌跡データ、図7に示すようなカスケードデータ及び図8に示すようなキャンベルデータのうちの少なくとも2つに変換する。
なお、装置内に滑り軸受けが存在しないとき、軸心軌跡データへの変換は行わなくても良い。このように不要な変換を行わないことで、計測データ変換部30の処理速度を向上させることができる。
計測データ変換部30は、周波数分析データ、ウォータフォールデータ、ボードデータ、カスケードデータ又はキャンベルデータに変換する際に、それぞれのデータの特徴周波数を用いて、無次元化を行っても良い。周波数分析データ、ウォータフォールデータ、ボードデータ、カスケードデータ又はキャンベルデータの無次元化を行う際、1種の特徴周波数を用いてそれぞれのデータとして1つの無次元化データを作成してもよいが、互いに異なる2種以上の特徴周波数を用いて、それぞれのデータとして2つ以上の無次元化データを作成しても良い。
ここで、周波数分析データ、ウォータフォールデータ、カスケードデータ及びキャンベルデータの無次元化を行う際に用いる特徴周波数としては、固有振動数及び危険速度を挙げることができる。回転部材Rに歯車が設けられる場合は、無次元化の際の特徴周波数に歯車の噛み合い周波数が含まれてもよい。また、回転部材Rが転がり軸受で支持される場合は、無次元化の際の特徴周波数に軸受け内輪欠陥パス、軸受け外輪欠陥パス、軸受け転動体欠陥パス及び軸受け保持器欠陥パスのうちの少なくとも1つが含まれてもよい。さらに、回転部材Rに翼が設けられている場合は、無次元化の際の特徴周波数に翼通過の周波数が含まれてもよい。一方、ボードデータの無次元化を行う際に用いる特徴周波数としては、危険速度を挙げることができる。
なお、装置内に歯車が存在しないときは、歯車の噛み合い周波数を用いて無次元化しない。同様に、装置内に転がり軸受け及び滑り軸受けが存在しないときは、軸受け内輪欠陥パス、軸受け外輪欠陥パス、軸受け転動体欠陥パス、及び軸受け保持器欠陥パスを用いて無次元化せず、装置内に翼が存在しないときは、翼通過の周波数を用いて無次元化しない。このように不要な無次元化を行わないことで、計測データ変換部30の処理速度を向上させることができる。
なお、上記したように無次元化を行う場合には、計測データ変換部30は、無次元化を行う際に用いた特徴周波数の種類について無次元化データにラベリングしても良い。
(異常原因特定部40)
異常原因特定部40は、計測データ変換部30で作成された変換データを解析することにより、装置の異常原因を特定する。異常原因特定部40は、計測データ変換部30と同様に、ROMやRAMなどのメモリとCPUを有し、ROMに格納されたプログラムがCPUにより実行される。なお、異常原因特定部40は、推論・判断などの知的な機能を人工的に実現するための自己学習機能を有するコンピュータシステム(いわゆる「人工知能(AI)」)として構成されても良い。
異常原因特定部40は、計測データ変換部30で作成された変換データを解析することにより、装置の異常原因を特定する。異常原因特定部40は、計測データ変換部30と同様に、ROMやRAMなどのメモリとCPUを有し、ROMに格納されたプログラムがCPUにより実行される。なお、異常原因特定部40は、推論・判断などの知的な機能を人工的に実現するための自己学習機能を有するコンピュータシステム(いわゆる「人工知能(AI)」)として構成されても良い。
異常原因特定部40は、計測データ変換部30で作成された2つ以上の図2~9に示すような変換データのうち、少なくとも2つの変換データを組み合わせて解析しても良い。
異常原因特定部40は、計測データ変換部30で作成された例えば図2~9に示すような変換データと、予め作成された判定モデルとの比較を行うことで解析を行っても良い。したがって、異常原因特定部40は、予め作成された判定モデルを格納するために上記メモリとは別個に設けられた記憶装置を含んでもよい。
図10は、本発明の一実施形態に係る回転部材を有する装置の異常原因特定システムが備える予め作成された判定モデルの一例を示す図である。図10では、最も左側の列に異常原因を列挙して示し、且つ当該異常原因それぞれが発生しているか否かを特定するために用いる変換データの組み合わせ候補を示した。図10では、代表的な12の異常原因を列記したが、異常原因がこれらに限られるものでないことは言うまでもない。
図10において、異常原因それぞれが発生しているとき、その特徴が顕著に表れる変換データに「◎」を付した。また、異常原因それぞれが発生しているとき、「◎」が付された変換データには劣るが、その特徴が表れる変換データに「○」を付した。さらに、異常原因それぞれが発生しているとき、その特徴が必ずしも表れるわけではないが、あれば解析を行い易くなる可能性のある変換データに「△」を付した。したがって、異常原因それぞれは、「◎」が付された変換データを解析することで、特定または絞り込むことができる。なお、異常原因それぞれは、「◎」が付された2つ以上の変換データを組み合わせて解析することで、「◎」が付された1つの変換データを解析する場合と比較して、高い精度で特定または絞り込むことが可能になる。また、異常原因それぞれは、「○」が付された変換データのみを解析することで特定または絞り込むことができるが、「◎」が付された少なくとも1つの変換データを加えて解析することで、一層高い精度で特定または絞り込むことが可能になる。なお、異常原因特定部40は、「◎」が付された変換データ、「〇」が付された変換データ及び「△」が付された変換データのうち、少なくとも2つの変換データを組み合わせて解析しても良い。
図10に示した異常原因それぞれについて説明する。なお、装置が正常な状態にあることを特定するための解析の組み合わせ候補についても図10に記載した。装置が正常な状態である場合、図10に示すように、ボードデータ及びポーラデータのうち少なくともどちらか一方を解析することによりそれを特定することができる。異常原因特定部40は、これらの変換データを解析して、振動データの振幅が所定値よりも小さく、且つ危険速度に近い回転数で位相が反転している場合、装置が正常な状態であると特定する。また、ウォータフォールデータも併せて解析することにより精度を向上させることが可能になる。さらに、カスケードデータ又はキャンベルデータも併せて解析することにより解析を行い易くなる可能性がある。
回転部材Rに欠損が生じたこと及び物が付着したことに起因して異常が生じた場合(図10において「回転部材における欠損/付着」)、図10に示すように、ポーラデータを解析することによりそれを絞り込むことができる。これは、上記原因により異常が生じている場合、アンバランスの大きさや位置が変化するために回転同期の不つりあい成分(1X)の振動の振幅に加えて位相も変化し、この位相の変化がポーラデータ(◎)に表れやすいためである。なお、当該位相及び振幅は、回転部材Rに欠損が生じた場合には急激に変化し、物が付着した場合には長い時間を掛けて徐々に変化する。また、ウォータフォールデータ及びカスケードデータ又はキャンベルデータも併せて解析することにより発生している振動が不つりあい成分(1X)であることを確認できるため、これを特定することができる。さらに、ボードデータも併せて解析することにより解析を行い易くなる可能性がある。
回転部材Rのサーマルアンバランスに起因して異常が生じた場合、図10に示すように、ポーラデータを解析することによりそれを絞り込むことができる。これは、サーマルアンバランスはラビングにより発生し、熱ひずみによるアンバランスが時間とともに特に位相が継続的に円を描くように変化するが、この位相の変化がポーラデータ(◎)に表れやすいためである。また、ウォータフォールデータも併せて解析することにより不つりあい成分(1X)の時間的な変化をとらえることができるため、これを特定することができる。さらに、ボードデータ及びカスケードデータ又はキャンベルデータも併せて解析することにより解析を行い易くなる可能性がある。
回転軸にクラックが生じたことに起因して異常が生じた場合、図10に示すように、カスケードデータ又はキャンベルデータを解析することによりそれを特定することができる。これは、クラックが開く方向と閉じる方向で剛性に差が出るため回転同期成分の2倍(2X)振動が発生し、クラックは製造や組み立ての段階で生じている場合があり、起動時にすでに振動が発生する場合が多いため、周波数に加えて回転数の情報を含むカスケードデータやキャンベルデータ(◎)にその特徴が表れ易いためである。また、クラックが時間経過とともに拡大する場合は、周波数に加えて時間の情報を含むウォータフォールデータも併せて解析することにより精度を向上させることが可能になる。さらに、周波数分析データも併せて解析することにより解析を行い易くなる可能性がある。
回転部材Rのラビングに起因して異常が生じた場合、図10に示すように、オービットデータを解析することによりそれを絞り込むことができる。これは、上記原因により異常が生じている場合、接触による間欠的な外力がロータに作用し、不釣合い成分(1X)での振れまわりの形状が大きく乱れるように変化するが、この振れまわり振動の形状の変化がオービットデータ(◎)に表れやすいためである。また、ポーラデータ及びウォータフォールデータのうち少なくともどちらか一方も併せて解析することにより特定することが可能になる。これは、例えば、ウォータフォールデータでフリクションホイップが確認される場合、回転同期成分Xに対してマイナス1倍の振動周波数成分(-1X)に特徴が表れるためである。さらに、周波数分析データも併せて解析することにより解析を行い易くなる可能性がある。
カップリング部材が同芯で接続されているが、滑り軸受けのミスアライメントに起因して異常が生じた場合(図10において「ミスアライメント(カップリングは同芯で接続)」)、軸受け内での軸心の位置が通常よりも浮く又は沈む位置に移動しているために軸受の特性が変化し異常な振動が生じる。図10に示すように、軸心軌跡データ(◎)を解析することにより軸心の位置の異常を絞り込むことができる。また、カスケードデータ又はキャンベルデータも併せて解析することにより特定することが可能になる。さらに、周波数分析データも併せて解析することにより解析を行い易くなる可能性がある。
カップリング部材と回転部材Rとの角度差に起因して異常が生じた場合(図10において「カップリング角度差」)、図10に示すように、カスケードデータ又はキャンベルデータを解析することによりそれを絞り込むことができる。これは、上記原因が装置運転の初期段階から生じるものであるため、その特徴は時間変化せず、カスケードデータ又はキャンベルデータを解析することにより、回転数を変化させたときでも不釣合い成分の2倍の成分(2X)が発生しているか否かにより判別することができるためである。また、ウォータフォールデータも併せて解析することにより特定することが可能になる。さらに、周波数分析データも併せて解析することにより解析を行い易くなる可能性がある。
軸受け台がアンバランスになりガタつくことに起因して異常が生じた場合(図10において「軸受け台ガタ」)、図10に示すように、ウォータフォールデータを解析することによりそれを絞り込むことができる。これは、上記原因が軸受台の支持剛性が非線形となることより調波振動が発生するため、負荷や回転数が大きくなると上記ガタの影響が顕著になり時間的に変化し、この変化がウォータフォールデータ(◎)に表れやすいためである。また、カスケードデータ又はキャンベルデータも併せて解析することにより特定することが可能になる。さらに、周波数分析データも併せて解析することにより解析を行い易くなる可能性がある。
滑り軸受けにより軸支された回転部材Rのオイルホワールに起因して異常が生じた場合、オイルホイップが発生する直前の回転数で回転同期の半分((1/2)X)となる成分
の振動が表れ、回転数の上昇と共に(1/2)Xの成分が固有振動(fn)に近づくため
、図10に示すように、回転数と周波数の情報をともに含むカスケードデータ及びキャンベルデータ(◎)のうちの少なくともどちらか一方を解析することによりそれを絞り込むことができる。また、滑り軸受の異常により発生するため軸心軌跡(◎)にも変化が表れ易く、併せて解析することにより特定することができる。また、オービットデータ及びウォータフォールデータのうちの少なくともどちらか一方も併せて解析することにより精度を向上させることが可能になる。さらに、周波数分析データも併せて解析することにより解析を行い易くなる可能性がある。
の振動が表れ、回転数の上昇と共に(1/2)Xの成分が固有振動(fn)に近づくため
、図10に示すように、回転数と周波数の情報をともに含むカスケードデータ及びキャンベルデータ(◎)のうちの少なくともどちらか一方を解析することによりそれを絞り込むことができる。また、滑り軸受の異常により発生するため軸心軌跡(◎)にも変化が表れ易く、併せて解析することにより特定することができる。また、オービットデータ及びウォータフォールデータのうちの少なくともどちらか一方も併せて解析することにより精度を向上させることが可能になる。さらに、周波数分析データも併せて解析することにより解析を行い易くなる可能性がある。
滑り軸受けにより軸支された回転部材Rのオイルホイップに起因して異常が生じた場合、最低次の固有振動数(fn)の周波数の2倍以上に相当する回転数で固有振動(fn)の振動が発生するため、図10に示すように、回転数と周波数の情報をともに含むカスケードデータ及びキャンベルデータ(◎)のうちの少なくともどちらか一方を解析することによりそれを絞り込むことができる。また、滑り軸受の異常により発生するため軸心軌跡(◎)にも変化が表れ易く、併せて解析することにより特定することができる。また、ポーラデータ、オービットデータ及びウォータフォールデータのうちの少なくとも1つも併せて解析することにより精度を向上させることが可能になる。さらに、周波数分析データも併せて解析することにより解析を行い易くなる可能性がある。
回転部材Rを有する装置が蒸気タービンの場合で、スチームホワールに起因して異常が生じた場合、図10に示すように、ウォータフォールデータを解析することによりそれを絞り込むことができる。これは、タービン翼車では前向きの振れ回りを起こし、蒸気の流体力に起因する自励振動(fn)が発生するためである。また、オービットデータ、カスケードデータ及びキャンベルデータのうちの少なくとも1つも併せて解析することにより特定することができる。さらに、周波数分析データ及び軸心軌跡データのうちの少なくともどちらか一方も併せて解析することにより解析を行い易くなる可能性がある。
回転部材Rを有する装置がコンプレッサの場合で、ガスホワールに起因して異常が生じた場合、図10に示すように、ウォータフォールデータを解析することによりそれを絞り込むことができる。これは、作動流体の流体力に起因する自励振動(fn)が発生し、軸流圧縮機では後ろ回りの振れ回りを起こすためである。また、オービットデータ、カスケードデータ及びキャンベルデータのうちの少なくとも1つも併せて解析することにより特定することができる。さらに、周波数分析データ及び軸心軌跡データのうちの少なくともどちらか一方も併せて解析することにより解析を行い易くなる可能性がある。
カップリング部材と回転部材Rとが摩擦により嵌合している場合で、当該嵌合により生じる減衰に起因して異常が生じた場合、危険速度(fc)以上の回転数で固有振動数(fn)の振動が発生するため、図10に示すように、回転数と周波数の情報をともに含むカスケードデータ又はキャンベルデータ(◎)を解析することによりそれを絞り込むことができる。これは、上記原因が軸と嵌合部材との間で発生する摩擦力による自励振動(fn)によるものであり、危険速度(fc)を超えると発生するためである。また、オービットデータ及びウォータフォールデータのうちの少なくともどちらか一方も併せて解析することにより特定することができる。さらに、周波数分析データも併せて解析することにより解析を行い易くなる可能性がある。
歯車において異常が発生している場合、計測データに対して包絡線処理を行い、そのデータを用いて図10に示すように周波数分析データを解析することにより、異常原因を絞り込むことができる。また、ウォータフォールデータ、カスケードデータ及びキャンベルデータのうち少なくとも1つを併せて解析することにより異常原因を特定することができる。これは、異常がある歯車に対して、その特徴周波数となる噛み合い周波数やその高次成分、更にはこれらのサイドバンド成分について、通常は正常時からゆっくりとした変化が発生するため、ある特定の時間における周波数分析データに併せて、時間や回転数による変化を確認することにより、異常原因を特定することができるためである。
転がり軸受において異常が発生している場合、計測データに対して包絡線処理を行い、そのデータを用いて図10に示すように周波数分析データを解析することにより、異常原因を絞り込むことができる。また、ウォータフォールデータ、カスケードデータ及びキャンベルデータのうち少なくとも1つを併せて解析することにより異常原因を特定することができる。これは、転がり軸受に異物が混入した時などでは、特徴周波数となる軸受内輪欠陥パス、軸受外輪欠陥パス、軸受転動体欠陥パス、軸受保持器欠陥パスといったものや、これらの高次成分のいずれかについて、急激な変化が表れるため、ある特定の時間における周波数分析データに併せて、時間や回転数による変化を確認することにより、異常原因を特定することができるためである。
異常原因特定部40は、上記のように装置の異常原因を特定し、例えば、その結果をディスプレイなどの出力装置(図示せず)に出力しても良いし、その結果を保存して遠隔に設けられた任意の装置(同前)で確認できるようにしても良い。
(効果)
本実施形態に係る異常原因特定システム10は、計測データ変換部30で計測データを2つ以上の互いに異なる新たな形式の変換データ(例えば、図2~9にその一例を示すような変換データ)に変換し、これらの変換データを異常原因特定部40で解析することにより、装置の異常原因を特定する。これにより、従来のように例えば回転機械の運転時に発生する1種の周波数に関するデータを変換して1つの変換データを作成し、それに基づいて異常原因を特定する場合と比較して、高い精度で異常原因を特定することができる。また、特定できる異常原因の種類を多くすることもできる。すなわち、本実施形態に係る異常原因特定システム10は、高い精度で多くの種類の異常原因を特定することができる。
本実施形態に係る異常原因特定システム10は、計測データ変換部30で計測データを2つ以上の互いに異なる新たな形式の変換データ(例えば、図2~9にその一例を示すような変換データ)に変換し、これらの変換データを異常原因特定部40で解析することにより、装置の異常原因を特定する。これにより、従来のように例えば回転機械の運転時に発生する1種の周波数に関するデータを変換して1つの変換データを作成し、それに基づいて異常原因を特定する場合と比較して、高い精度で異常原因を特定することができる。また、特定できる異常原因の種類を多くすることもできる。すなわち、本実施形態に係る異常原因特定システム10は、高い精度で多くの種類の異常原因を特定することができる。
また、異常原因特定部40が、計測データ変換部30で作成された2つ以上の互いに異なる新たな形式の変換データのうち、少なくとも2つの変換データを組み合わせて解析することにより、上記した本実施形態が奏する効果を顕著にすることができる。
さらに、異常原因特定部40は、図2~9にその一例を示す変換データのうちの少なくとも2つを解析することにより、例えば、周波数分析データ又はウォータフォールデータとその他のデータを用いることで、特定の時間範囲内における周波数のデータだけでなくその他のデータにも基づいて解析を行い、装置の異常原因を特定することができる。これにより、上記した本発明が奏する効果を顕著にすることができる。
そして、計測データ変換部30は、上記したように、それぞれのデータの特徴周波数を用いて無次元化を行う。これにより、装置ごとの周波数に依存することなく汎用的に、本実施形態に係る異常原因特定システムを用いることが可能となる。
また、計測データ変換部30は、上記したように、それぞれのデータの互いに異なる2種以上の特徴周波数を用いて、それぞれのデータとして2つ以上の無次元化データを作成する。これにより、1つの変換データから2つ以上の無次元化データが作成されるため、異常原因特定部40は、当該2つ以上の無次元化データを組み合わせて解析を行うことができる。その結果、本実施形態に係る異常原因特定システム10は、異常に起因した特徴を際立たせてから解析を行うことができるため、一層高い精度で異常原因を特定することが可能になる。
さらに、計測データ変換部30は、無次元化データにラベリングすることにより、1つの変換データから2つ以上の無次元化データを作成した場合でも、当該2つ以上の無次元化データの管理を容易に行うことが可能になる。これにより、例えば、異常原因を特定する際の処理速度を向上させることができる。
また、計測データ変換部30により変換されない温度データ、圧力データおよび装置の出力データ等の運転状態のモニタリングデータ(第2の計測データ)を1つ以上の変換データ(例えば、時間軸を有するウォータフォールデータ)に付加して解析することにより、異常原因の特定精度を向上させること、または、特定可能な異常原因の種類をさらに増やすことができる。
(変形例)
上記実施形態では、2つの加速度センサ22a,22b及びピックアップセンサ24を回転部材Rを有する装置に設けることにより、第1の計測データとして振動データ及び回転数を計測する場合について説明したが、これに限定されない。例えば、マイクロフォンを回転部材Rの近傍に設けることにより、第1の計測データとして音データを計測するようにしてもよい。また、回転部材Rを有する装置にトルク計を取り付けることにより、第1の計測データとしてトルクデータを計測するようにしてもよい。さらに、回転部材Rを有する装置がモータ駆動される場合には、第1の計測データとしてモータ電流データを計測するようにしてもよい。
上記実施形態では、2つの加速度センサ22a,22b及びピックアップセンサ24を回転部材Rを有する装置に設けることにより、第1の計測データとして振動データ及び回転数を計測する場合について説明したが、これに限定されない。例えば、マイクロフォンを回転部材Rの近傍に設けることにより、第1の計測データとして音データを計測するようにしてもよい。また、回転部材Rを有する装置にトルク計を取り付けることにより、第1の計測データとしてトルクデータを計測するようにしてもよい。さらに、回転部材Rを有する装置がモータ駆動される場合には、第1の計測データとしてモータ電流データを計測するようにしてもよい。
上記実施形態では、異常原因特定部30が、計測データ変換部30により変換されない第2の計測データ(温度データ、圧力データおよび装置の出力データ等の運転状態のモニタリングデータ)を1つ以上の変換データに付加して解析する場合について説明したが、これに限定されない。例えば、異常原因特定部30は、装置に対する制御指令データ(例えば、ロボットに対して多関節アームを動作させる制御指令データなど)を1つ以上の変換データに付加して解析するようにしてもよい。これによっても、異常原因システム10は、特定可能な異常原因の種類をさらに増やすことができる。すなわち、異常原因特定部30は、計測データ変換部30により変換されない第2の計測データ及び装置に対する制御指令データのうちの少なくともどちらか一方を1つ以上の変換データに付加して解析しても良い。
また、異常原因特定部30は、計測データ変換部30により変換される変換データのうちの少なくとも2つを解析するとともに、第2の計測データ及び装置に対する制御指令データのうちの少なくともどちらか一方を解析することで異常原因を特定しても良い。これにより、上記2つ以上の変換データを解析するのみでは特定できなかった異常原因も特定することが可能になる。すなわち、この構成により、特定可能な異常原因の種類をさらに増やすことができ、特定の精度も向上できる。このとき、第2の計測データ及び制御指令データのうちの少なくともどちらか一方と変換データとの間には、例えば時間軸等で関連付けが行われる。
上記実施形態では、計測データ変換部30と異常原因特定部40とが別個の装置として構成されており、且つ異常原因特定部40がいわゆる人工知能(AI)として構成されていても良いとして説明したが、この場合に限定されない。例えば、計測データ変換部30と異常原因特定部40とが1つの装置として構成されていてもよい。そして、当該1つの装置がいわゆる人工知能(AI)として構成されていてもよい。
上記実施形態では、異常原因特定システム10は、1台の回転部材Rを有する装置の異常原因を特定する場合について説明したが、これに限定されない。すなわち、異常原因特定システム10は、2台以上の回転部材Rを有する装置の異常原因を特定するものであってもよい。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
10 異常原因特定システム
22a,22b 加速度センサ
24 ピックアップセンサ
26 温度センサ
30 計測データ変換部
40 異常原因特定部
R 回転部材
22a,22b 加速度センサ
24 ピックアップセンサ
26 温度センサ
30 計測データ変換部
40 異常原因特定部
R 回転部材
Claims (9)
- 回転部材を有する装置の運転時に計測する計測データに基づいて、前記装置の異常原因を特定する、回転部材を有する装置の異常原因特定システムであって、
前記回転部材の状態を観測し、且つ前記計測データを取得するセンサと、
前記計測データを2つ以上の互いに異なる新たな形式の変換データに変換する計測データ変換部と、
前記計測データ変換部で作成された前記変換データを解析することにより、前記装置の異常原因を特定する異常原因特定部と、
を備えることを特徴とする、回転部材を有する装置の異常原因特定システム。 - 前記異常原因特定部は、前記計測データ変換部で作成された前記2つ以上の互いに異なる新たな形式の変換データのうち、少なくとも2つの変換データを組み合わせて解析することにより、前記装置の異常原因を特定する、請求項1に記載の回転部材を有する装置の異常原因特定システム。
- 前記変換データは、
特定の時刻での周波数ごとの振幅を直交座標系で表すことにより、周波数のデータを有するように作成された周波数分析データ、
特定の時間範囲で周波数ごとの振幅を並べて表すことにより、周波数のデータに加えて時間のデータを有するように作成されたウォータフォールデータ、
回転数ごとの振幅と位相を直交座標系で表すことにより、振幅データ及び位相のデータを有するように作成されたボードデータ、
時間ごとの振幅および位相を極座標系で表すことにより、位相のデータを有するように作成されたポーラデータ、
同時刻で計測した2方向からの振動データから定まる軸心位置を特定の時間範囲で連続的に並べて振動軌跡を表すことにより、2方向の振動データを有するように作成されたオービットデータ、
同時刻の特定の時間範囲で計測した2方向からの振動データのそれぞれの振動中心である軸心位置の時間または回転数ごとの軌跡を極座標系で表すことにより、滑り軸受け内での軸心位置のデータを有するように作成された軸心軌跡データ、
特定の回転数範囲で周波数ごとの振幅を並べて表すことにより、周波数のデータに加えて回転数のデータを有するように作成されたカスケードデータ、
及び、特定の回転数範囲で周波数ごとの振幅を並べて前記カスケードデータと異なる形式で表すことにより、周波数のデータに加えて回転数のデータを有するように作成されたキャンベルデータ、
のうちの少なくとも2つを含む、請求項1又は請求項2に記載の回転部材を有する装置の異常原因特定システム。 - 前記計測データ変換部は、前記計測データを前記周波数分析データ、前記ウォータフォールデータ、前記ボードデータ、前記カスケードデータ又は前記キャンベルデータに変換する際に、それぞれのデータの特徴周波数を用いて、無次元化を行う、請求項3に記載の回転部材を有する装置の異常原因特定システム。
- 前記計測データ変換部は、前記計測データを前記周波数分析データ、前記ウォータフォールデータ、前記カスケードデータ又は前記キャンベルデータに変換する際に、それぞれのデータの互いに異なる2種以上の特徴周波数を用いて、それぞれのデータとして2つ以上の無次元化データを作成する、請求項4に記載の回転部材を有する装置の異常原因特定システム。
- 前記計測データ変換部は、前記無次元化を行う際に用いた特徴周波数の種類について前記無次元化データにラベリングする、請求項5に記載の回転部材を有する装置の異常原因特定システム。
- 前記異常原因特定部は、前記計測データ変換部で作成された前記変換データと、予め作成された判定モデルとの比較を行うことで解析を行う、請求項1乃至6のいずれかに記載の回転部材を有する装置の異常原因特定システム。
- 前記計測データは、前記計測データ変換部により前記2つ以上の変換データに変換される第1の計測データと、前記計測データ変換部により変換されない第2の計測データと、を含み、
前記異常原因特定部は、前記第2の計測データ及び前記装置に対する制御指令データのうちの少なくともどちらか一方を少なくとも1つの変換データに付加して解析することにより、前記装置の異常原因を特定する、請求項1乃至7のいずれかに記載の回転部材を有する装置の異常原因特定システム。 - 前記計測データは、前記計測データ変換部により前記2つ以上の変換データに変換される第1の計測データと、前記計測データ変換部により変換されない第2の計測データと、を含み、
前記異常原因特定部は、更に、前記第2の計測データ及び前記装置に対する制御指令データのうちの少なくともどちらか一方を解析することにより、前記装置の異常原因を特定する、請求項1乃至7のいずれかに記載の回転部材を有する装置の異常原因特定システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880043504.8A CN110785644B (zh) | 2017-06-29 | 2018-05-17 | 具有旋转构件的装置的异常原因确定系统 |
EP18825520.2A EP3647761A4 (en) | 2017-06-29 | 2018-05-17 | SYSTEM FOR SPECIFYING THE CAUSE OF ANOMALY IN A DEVICE WITH A ROTATING ELEMENT |
US16/627,398 US11125654B2 (en) | 2017-06-29 | 2018-05-17 | Abnormality cause identifying system for device including rotating member |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017127421A JP6944285B2 (ja) | 2017-06-29 | 2017-06-29 | 回転部材を有する装置の異常原因特定システム |
JP2017-127421 | 2017-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019003699A1 true WO2019003699A1 (ja) | 2019-01-03 |
Family
ID=64741405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019183 WO2019003699A1 (ja) | 2017-06-29 | 2018-05-17 | 回転部材を有する装置の異常原因特定システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11125654B2 (ja) |
EP (1) | EP3647761A4 (ja) |
JP (1) | JP6944285B2 (ja) |
CN (1) | CN110785644B (ja) |
WO (1) | WO2019003699A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11143545B2 (en) * | 2019-02-12 | 2021-10-12 | Computational Systems, Inc. | Thinning of scalar vibration data |
US10705861B1 (en) | 2019-03-28 | 2020-07-07 | Tableau Software, LLC | Providing user interfaces based on data source semantics |
US11783266B2 (en) * | 2019-09-18 | 2023-10-10 | Tableau Software, LLC | Surfacing visualization mirages |
US11397746B2 (en) | 2020-07-30 | 2022-07-26 | Tableau Software, LLC | Interactive interface for data analysis and report generation |
US11550815B2 (en) | 2020-07-30 | 2023-01-10 | Tableau Software, LLC | Providing and surfacing metrics for visualizations |
JP7338584B2 (ja) * | 2020-08-07 | 2023-09-05 | トヨタ自動車株式会社 | 異常判定装置 |
US11579760B2 (en) | 2020-09-08 | 2023-02-14 | Tableau Software, LLC | Automatic data model generation |
CN114264366A (zh) * | 2021-12-22 | 2022-04-01 | 南水北调东线江苏水源有限责任公司 | 一种监测水泵机组泵壳多角度振动分量的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05101730A (ja) * | 1991-10-04 | 1993-04-23 | Toshiba Corp | 高電圧用ブツシング |
JP2003149043A (ja) * | 2001-11-16 | 2003-05-21 | Toshiba Corp | 回転機械の振動診断方法及び装置 |
JP2004279056A (ja) * | 2003-03-12 | 2004-10-07 | Jfe Steel Kk | 回転機械の診断方法及びそのプログラム |
JP3834228B2 (ja) | 2001-12-03 | 2006-10-18 | 卓三 岩壷 | 回転機械の異常診断システム |
US20130326383A1 (en) * | 2012-06-04 | 2013-12-05 | Roger Anthony Gatti | Vibration data collection and processing for a gas turbine engine |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2516806B2 (ja) * | 1989-02-27 | 1996-07-24 | 株式会社新川 | ワイヤボンデイング方法及びその装置 |
WO2004017033A1 (ja) * | 2002-08-12 | 2004-02-26 | Shinkawa Sensor Technology, Inc. | 振動情報送信装置および振動監視解析システム |
US7860663B2 (en) * | 2004-09-13 | 2010-12-28 | Nsk Ltd. | Abnormality diagnosing apparatus and abnormality diagnosing method |
CN101545824B (zh) * | 2008-03-25 | 2013-08-14 | 唐德尧 | 一种机械塔架故障诊断方法 |
JP5725833B2 (ja) * | 2010-01-04 | 2015-05-27 | Ntn株式会社 | 転がり軸受の異常診断装置、風力発電装置および異常診断システム |
CN103323274B (zh) * | 2013-05-24 | 2015-10-14 | 上海交通大学 | 旋转机械状态监测与故障诊断系统及方法 |
CN104535323B (zh) * | 2015-01-12 | 2017-03-08 | 石家庄铁道大学 | 一种基于角域‑时域‑频域的机车轮对轴承故障诊断方法 |
-
2017
- 2017-06-29 JP JP2017127421A patent/JP6944285B2/ja active Active
-
2018
- 2018-05-17 WO PCT/JP2018/019183 patent/WO2019003699A1/ja unknown
- 2018-05-17 EP EP18825520.2A patent/EP3647761A4/en active Pending
- 2018-05-17 US US16/627,398 patent/US11125654B2/en active Active
- 2018-05-17 CN CN201880043504.8A patent/CN110785644B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05101730A (ja) * | 1991-10-04 | 1993-04-23 | Toshiba Corp | 高電圧用ブツシング |
JP2003149043A (ja) * | 2001-11-16 | 2003-05-21 | Toshiba Corp | 回転機械の振動診断方法及び装置 |
JP3834228B2 (ja) | 2001-12-03 | 2006-10-18 | 卓三 岩壷 | 回転機械の異常診断システム |
JP2004279056A (ja) * | 2003-03-12 | 2004-10-07 | Jfe Steel Kk | 回転機械の診断方法及びそのプログラム |
US20130326383A1 (en) * | 2012-06-04 | 2013-12-05 | Roger Anthony Gatti | Vibration data collection and processing for a gas turbine engine |
Non-Patent Citations (2)
Title |
---|
ANONYMOUS: "Vibration analysis & diagnostic systems: infiSYS-RV200", VIBRATION ANALYSIS & DIAGNOSTIC SYSTEMS: INFISYS-RV200, April 2012 (2012-04-01), JAPAN, pages 1 - 10, XP009518736 * |
See also references of EP3647761A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3647761A1 (en) | 2020-05-06 |
US20210088418A1 (en) | 2021-03-25 |
EP3647761A4 (en) | 2021-03-31 |
JP6944285B2 (ja) | 2021-10-06 |
CN110785644A (zh) | 2020-02-11 |
CN110785644B (zh) | 2021-08-20 |
JP2019011976A (ja) | 2019-01-24 |
US11125654B2 (en) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019003699A1 (ja) | 回転部材を有する装置の異常原因特定システム | |
EP3401660B1 (en) | Propeller health monitoring | |
US11708175B2 (en) | Propeller health monitoring | |
EP1760311A2 (en) | Method and apparatus for condition-based monitoring of wind turbine components | |
JP2010286483A (ja) | ロータダイナミックシステムの横振動、角振動およびねじり振動監視 | |
KR102391124B1 (ko) | 잔여 공간 내의 진동 역학의 모델링 및 시각화 | |
US20200096384A1 (en) | Blade abnormality detecting device, blade abnormality detecting system, rotary machine system, and blade abnormality detecting method | |
KR20130008445A (ko) | 해양구조물의 회전체 상태진단 시스템 및 방법 | |
KR20180024334A (ko) | 로터-베어링-파운데이션 모델을 이용한 회전설비 진단방법 | |
JP6192414B2 (ja) | 転がり軸受の状態監視装置 | |
CA2962702C (en) | Rotating machine and installation for converting energy comprising such a machine | |
US20160377510A1 (en) | Synchronized measurements for a portable multi-channel wireless sensor system | |
Cahyono et al. | Vibration spectrum analysis for indicating damage on turbine and steam generator Amurang Unit 1 | |
US11835420B2 (en) | Method and device for diagnosing a robot | |
WO2017212645A1 (ja) | 軸受診断装置および軸受診断方法、並びに回転機器およびその保守方法 | |
KR101378868B1 (ko) | 풍력발전기의 이상상태 감지 장치 및 그 방법 | |
JP2008096410A (ja) | 電磁現象を用いた回転機の状態監視技術 | |
Alekseev et al. | Data measurement system of compressor units defect diagnosis by vibration value | |
US20160379387A1 (en) | Method for synchronized measurements for a portable multi-channel wireless sensor system | |
Ur Rahman et al. | Performance Optimization of 500MW Steam Turbine by Condition Monitoring Technique Using Vibration Analysis Method | |
Byou et al. | Early Detection of Mechanical Faults in Loads Coupled with Asynchronous Electric Motor | |
Almasi | Monitoring methods to identify damaged, cracked and worn rotating machine components | |
Grządziela | Diagnosis of gas turbine engines rotors systems in nonstationary states |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18825520 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018825520 Country of ref document: EP Effective date: 20200129 |