WO2019003584A1 - Air conditioning control device, air conditioning system, control method, and program - Google Patents

Air conditioning control device, air conditioning system, control method, and program Download PDF

Info

Publication number
WO2019003584A1
WO2019003584A1 PCT/JP2018/015772 JP2018015772W WO2019003584A1 WO 2019003584 A1 WO2019003584 A1 WO 2019003584A1 JP 2018015772 W JP2018015772 W JP 2018015772W WO 2019003584 A1 WO2019003584 A1 WO 2019003584A1
Authority
WO
WIPO (PCT)
Prior art keywords
environment setting
air conditioning
users
unit
environment
Prior art date
Application number
PCT/JP2018/015772
Other languages
French (fr)
Japanese (ja)
Inventor
平尾 豊隆
尚夫 水野
清水 健志
貴夫 桜井
真範 丸山
尚希 西川
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP18824193.9A priority Critical patent/EP3647674A1/en
Priority to CN201880055948.3A priority patent/CN111033141A/en
Publication of WO2019003584A1 publication Critical patent/WO2019003584A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants

Definitions

  • the present invention relates to an air conditioning control device, an air conditioning system, a control method, and a program.
  • Priority is claimed on Japanese Patent Application No. 2017-128992, filed on June 30, 2017, the content of which is incorporated herein by reference.
  • Patent Document 1 There is an air conditioning system that acquires the position where a person exists and changes the setting.
  • the position information set corresponding to the ID information of the transmission means for transmitting the user's request is acquired, or unique position information attached to a fixed desk or chair.
  • Patent Document 1 describes a technique for acquiring position information recognized by reading a one-dimensional bar code or a two-dimensional bar code, and performing control of an air conditioner according to the request.
  • Patent No. 4737037 gazette
  • An object of the present invention is to provide an air conditioning control device, an air conditioning system, a control method, and a program that can solve the above-mentioned problems.
  • the air conditioning control device acquires the required environment acquisition unit for acquiring the required environment setting from each of the plurality of users, and the position for acquiring the user position where each of the plurality of users exists.
  • An identifying unit that identifies, based on the acquiring unit, the requested environment setting and the user position, an actual environment setting that brings the environment at the user position of the plurality of users who set the requested environment setting to the requested environment setting
  • a control unit configured to control the air conditioning indoor unit based on the specified actual environment setting.
  • the actual environment setting may be at least one of temperature, air volume, humidity, and air direction.
  • the required environment acquisition unit acquires the required environment setting from an environment setting terminal of each of the plurality of users. You may
  • the position acquisition unit may acquire the user position from an environment setting terminal of each of the plurality of users.
  • an air conditioning system delivers air based on the air conditioning control device according to any one of the first to fourth aspects and control by the air conditioning control device. And an air conditioning indoor unit.
  • the control method comprises: acquiring a request environment setting from each of a plurality of users; acquiring a user position where each of the plurality of users exists; Specifying an actual environment setting for bringing the environment at the user position of the plurality of users who set the required environment setting closer to the required environment setting based on the environment setting and the user position; Controlling the air conditioning indoor unit based on the environment setting.
  • the program causes the computer to acquire required environment settings from each of a plurality of users, and acquire a user position where each of the plurality of users exists. Specifying an actual environment setting for bringing an environment at the user position of the plurality of users who set the required environment setting closer to the required environment setting based on the required environment setting and the user position; Controlling the air conditioning indoor unit based on the actual environment setting.
  • Air conditioning settings can be realized.
  • the configuration of the air conditioning system 1 according to an embodiment of the present invention is a system for specifying a real environment setting based on each required environment setting requested by each of a plurality of users and each user position where each of the plurality of users exists. It is. And the air conditioning system 1 is a system which controls the indoor unit for air conditioning based on the specified real environment setting.
  • the required environment setting is a setting value of an environment required by the user to realize a desired environment at the user position, and a setting including at least one of temperature, air volume, humidity and wind direction at the user position. It is a value.
  • the actual environment setting is an environment setting value that is actually set in the air conditioning system 1 so that the satisfaction of the entire user who has set the setting value becomes high.
  • the air conditioning system 1 includes an air conditioning indoor unit 10, environment setting terminals 20a1 to 20an, and an air conditioning control device 30, as shown in FIG.
  • the environment setting terminals 20a1 to 20an are hereinafter collectively referred to as the environment setting terminal 20.
  • the air conditioning indoor unit 10 delivers air to each user position.
  • Each of the environment setting terminals 20 transmits to the air conditioning control device 30 the required environment setting at the user position in the room where the air conditioning indoor unit 10 is installed.
  • the user position in the room where the air conditioning indoor unit 10 is installed is the user position of the user who uses the environment setting terminal 20.
  • the air conditioning control device 30 controls the air conditioning indoor unit 10 based on the actual environment setting.
  • the air conditioning indoor unit 10 includes a communication unit 101 and a blower mechanism 102.
  • the communication unit 101 communicates with the air conditioning control device 30.
  • the communication unit 101 receives, from the air conditioning control device 30, a control signal for realizing the set value indicated by the actual environment setting.
  • the blower mechanism 102 sends out air according to the control signal received by the communication unit 101.
  • each of the environment setting terminals 20 includes an output unit 201, a display unit 202, an input unit 203, and a storage unit 204.
  • the environment setting terminal 20 is, for example, a smartphone.
  • the output unit 201 has a communication function, and transmits the required environment setting to the air conditioning control device 30.
  • the output unit 201 has an ultrasonic transducer and outputs an ultrasonic wave.
  • the output unit 201 transmits the required environment setting to the air conditioning control device 30 by superimposing the information of the required environment setting on the ultrasonic wave.
  • the output unit 201 may transmit the required environment setting to the air conditioning control device 30 using means (for example, radio waves) other than ultrasonic waves.
  • the display unit 202 displays the setting contents of the required environment setting to be transmitted to the air conditioning control device 30. Specifically, as shown in FIG. 4, the display unit 202 displays required environment settings of temperature, air volume, humidity, and air direction.
  • the input unit 203 receives an input of required environment setting including at least one of temperature, air volume, humidity, and air direction designated by an operation by the user.
  • the input unit 203 writes the received request environment setting in the storage unit 204.
  • the storage unit 204 stores a user's request environment setting.
  • the air conditioning control device 30 includes an acquisition unit 301 (an example of a request environment acquisition unit, an example of a position acquisition unit), a specifying unit 302, and a control unit 303.
  • the acquisition unit 301 acquires each required environment setting requested by each of a plurality of users. Specifically, the acquisition unit 301 acquires the required environment setting from each of the environment setting terminals 20.
  • the acquisition unit 301 acquires each user position where each of a plurality of users exists.
  • the acquisition unit 301 includes three or more ultrasound receivers (for example, ultrasound microphones), for example, on a ceiling of a room where the air conditioning indoor unit 10 is installed.
  • the acquisition unit 301 detects ultrasonic waves from each of the environment setting terminals 20.
  • the acquisition unit 301 has a time difference between the timings at which each ultrasonic wave receiver detects ultrasonic waves for ultrasonic waves of any one frequency, the position at which each ultrasonic wave receiver is installed, and the indoor unit 10 for air conditioning installed.
  • the position of the environment setting terminal 20 which is the sound source of the ultrasonic wave, that is, the position of the user is calculated based on the space in the room (mainly air) and the velocity at which the ultrasonic wave propagates. More specifically, the acquisition unit 301 extracts an ultrasonic wave of a specific frequency from among the ultrasonic waves detected by each ultrasonic wave receiver. The acquisition unit 301 specifies the phase of each of the extracted ultrasonic waves at each ultrasonic wave receiver, and calculates the phase difference between the ultrasonic wave receivers, that is, the arrival time difference of ultrasonic waves. The acquisition unit 301 converts the phase difference between the ultrasound receivers into the difference in distance between the ultrasound receivers. The acquisition unit 301 estimates the position of the user from the difference in distance between the ultrasound receivers. The acquisition unit 301 calculates the user position for all ultrasonic waves of different frequencies.
  • the acquiring unit 301 estimates the user position for each of all combinations of three selected from N, and the average value thereof. The user position should be By doing this, the acquisition unit 301 can estimate the user position with higher accuracy.
  • the acquisition unit 301 When the acquisition unit 301 simultaneously detects a plurality of ultrasonic waves of the same frequency, the ultrasonic waves of the same frequency interfere with each other, and the position of the sound source of the ultrasonic wave can not be identified. Therefore, when detecting a plurality of ultrasonic waves of the same frequency at the same time, the acquiring unit 301 tries to detect the ultrasonic waves again after a predetermined time has elapsed. In this case, different frequencies may be allocated to the environment setting terminals 20 in advance so that the frequencies of the ultrasonic waves may be different so that the frequencies of the ultrasonic waves output from the environment setting terminals 20 do not interfere.
  • the identifying unit 302 is configured to bring the environment at the user position of a plurality of users (for example, all users) who set the required environment setting closer to the required environment setting based on each required environment setting and each user position. Identify Specifically, the identifying unit 302 identifies the actual environment setting in which the value of the objective function becomes a small value, with the target value being the difference between each required environment setting that is the target value and the actual environment at each user position. Do.
  • the identifying unit 302 identifies a real environment setting in which the target function J shown in the following equation (1) has a small value.
  • the vector x (i) consists of M elements (x (i) 1 , x (i) 2 ,..., X (i) M ), and each element (x (i) 1 , x (i) 2 ,..., X (i) M ) indicate values (scalar amounts) such as actual temperature, humidity, air volume, and wind direction at the position where the user i is present.
  • the vector x (i) is uniquely determined by the function F having the control parameters (a1, a2, a3, a4,...) Of the air conditioning indoor unit 10 as input variables.
  • the wind direction in the vertical direction for example, when the wind direction from the uppermost wind direction to the lowermost wind direction is defined by n stages of wind directions, the wind direction from the uppermost wind direction is the largest. It is sufficient to digitize n steps to the downwind direction with an integer of 1 to n.
  • the wind direction for example, when the wind direction from the leftward wind direction to the rightward wind direction is defined by m stages of wind directions for the leftward wind direction, the rightward wind direction from the leftward wind direction
  • the m stages up to the wind direction may be quantified by an integer of 1 to m. If the wind direction is quantified in this way, the difference can be expressed by the difference between the numerical value indicating the target wind direction and the numerical value indicated by the actual wind direction at the user position, and similar to numerical values such as temperature, air volume, humidity, etc. It becomes possible to calculate.
  • the vector x * (i) is a vector quantity indicating the temperature, humidity, air volume, wind direction, etc. desired by the user i.
  • the vector x * (i) consists of M elements (x * (i) 1 , x * (i) 2 ,..., X * (i) M ), and each element (x * (i) 1 , x * (i) 2 ... x * (i) M indicates the temperature, humidity, air volume, wind direction, etc. desired by the user i.
  • the objective function J is derived by further adding up the sum of the above error rates obtained for each user i by all the users.
  • M is the number of elements constituting vector x (i) and vector x * (i), and is the total number of physical quantities that the user should set, such as temperature, humidity, air volume, and wind direction.
  • N is the number of users present in the space where the air conditioning indoor unit 10 is installed, and more specifically, the number of environment setting terminals 20 detected through ultrasonic waves.
  • Wd (i, k)” is a weighting coefficient separately defined for each element, and in general operation, it is all “1” (equal value).
  • each user may set “Wd (i, k)” for each element (temperature, humidity, air volume, wind direction,%) To reflect the preference as to which physical quantity is to be emphasized.
  • Wd (i, k) even the same person, for example, "wants to particularly fulfill the demand for" wind volume "when returning from a hot outdoor area”, “prefers” humidity “during the rainy season” It is possible to respond to detailed requests such as “want them to be the value of preference”.
  • Wp (i)” is a weighting coefficient separately specified for each user, and in general operation, it is all “1” (equal value).
  • the weighting coefficient for each user i may be changed.
  • settings such as temperature, air volume, humidity, and wind direction are normalized.
  • the weighting coefficient wi for temperature is a weighting coefficient wi for other than temperature such as air volume, humidity, and wind direction. It may be made larger than that.
  • L outlets L> 1
  • actual environment settings such as temperature, air volume, humidity, and wind direction are set for each outlet.
  • the identifying unit 302 models air flow and heat radiation in the room in which the air conditioning indoor unit 10 is installed, changes model parameters of the model, and determines the position of each user in the room in which the air conditioning indoor unit 10 is installed. Actual values such as temperature, air volume, humidity, and wind direction after a predetermined time are calculated by simulation. At this time, if there are L outlets (L> 1) in the room where the air conditioning indoor unit 10 is installed, actual environment settings such as temperature, air volume, humidity, air direction, etc. for each outlet are present. Change the combination in various ways. In addition, modeling of air flow and heat radiation in the room where the indoor unit 10 for air conditioning is installed is modeled using model parameters by conducting experiments etc. by performing an experiment etc. which is theoretically confirmed to be correct. do it.
  • the identifying unit 302 identifies, for each setting item calculated by simulation for various combinations of changed real environment settings, the actual environment setting in which the identified target function J has a small value.
  • the algorithm used by the identification unit 302 when specifying the actual environment setting in which the target function J has a small value is not limited in the range where the correct actual environment setting can be specified.
  • the identifying unit 302 may use a hill climbing method, a simulated annealing (SA method), a genetic algorithm (GA), a simultaneous perturbation probability approximation (SPSA) algorithm, or the like.
  • the function F may be based on physical simulation of air flow, temperature distribution in space based on radiant heat, humidity distribution, air volume distribution, for example.
  • the control unit 303 controls the air conditioning indoor unit 10 based on the actual environment setting specified by the specifying unit 302.
  • the input unit 203 receives an input of required environment setting including at least one of temperature, air volume, humidity, and air direction designated by an operation by the user.
  • the input unit 203 writes the received request environment setting in the storage unit 204.
  • the storage unit 204 stores a user's request environment setting.
  • the output unit 201 outputs, to the air conditioning control device 30, an ultrasonic wave on which the information of the user's required environment setting is superimposed.
  • the acquisition unit 301 acquires each required environment setting requested by each of a plurality of users (step S1). Specifically, the acquisition unit 301 detects ultrasonic waves from each of the environment setting terminals 20, and acquires a required environment setting included in the detected ultrasonic waves.
  • the acquisition unit 301 acquires each user position where each of a plurality of users exists (step S2). Specifically, the acquisition unit 301 extracts an ultrasonic wave of a specific frequency from among the ultrasonic waves detected by each ultrasonic wave receiver. The acquisition unit 301 specifies the phase of each of the extracted ultrasonic waves at each ultrasonic wave receiver, and calculates the phase difference between the ultrasonic wave receivers, that is, the arrival time difference of ultrasonic waves. The acquisition unit 301 converts the phase difference between the ultrasound receivers into the difference in distance between the ultrasound receivers. The acquisition unit 301 estimates the position of the user from the difference in distance between the ultrasound receivers. The acquisition unit 301 calculates the user position for all ultrasonic waves of different frequencies.
  • the identifying unit 302 identifies, based on each required environment setting and each user position, an actual environment setting that brings the environment at the user position of a plurality of users who set the required environment setting to the required environment setting (step S3). . Specifically, the identifying unit 302 identifies the actual environment setting in which the value of the objective function becomes a small value, with the target value being the difference between each required environment setting that is the target value and the actual environment at each user position. Do. More specifically, the identifying unit 302 identifies a real environment setting in which the target function J represented by equation (1) has a small value.
  • the identifying unit 302 determines the temperature, the air volume, the humidity, the air direction, etc. for each outlet.
  • the real environment setting is set (step S4).
  • the identifying unit 302 models air flow and heat radiation in the room in which the air conditioning indoor unit 10 is installed, changes model parameters of the model to calculate a function F, and is used in the room in which the air conditioning indoor unit 10 is installed. Actual values such as temperature, air volume, humidity, and wind direction after a predetermined time at each user position are calculated by simulation (step S5). At this time, if there are L outlets (L> 1) in the room where the air conditioning indoor unit 10 is installed, actual environment settings such as temperature, air volume, humidity, air direction, etc. for each outlet are present. The combination is changed variously (step S6). The identifying unit 302 identifies, for each setting item calculated by simulation for various combinations of changed real environment settings, the actual environment setting in which the identified target function J has a small value (step S7).
  • the control unit 303 controls the air conditioning indoor unit 10 based on the actual environment setting specified by the specifying unit 302 (step S8).
  • the air conditioning control device 30 acquires each required environment setting requested by each of the plurality of users and each user position where each of the plurality of users exists.
  • the air conditioning control device 30 specifies, based on each required environment setting and each user position, an actual environment setting that brings the environment at the user position of a plurality of users who set the required environment setting to the required environment setting.
  • the air conditioning control device 30 controls the air conditioning indoor unit based on the actual environment setting. By doing this, when performing the air conditioning setting, the air conditioning control device 30 can realize the air conditioning setting with high satisfaction as the entire user in the room where the plurality of users are targets of the air conditioning setting.
  • the specification unit 302 sets a target function to a difference between each required environment setting that is a target value and a real environment setting that is a setting value that is actually set, and the value of this target function is small. It has been described as specifying a real environment setting to be a value.
  • the specifying unit 302 may be a method of quantifying the degree of satisfaction of the user, setting the degree of satisfaction as the target function, and specifying the actual environment setting where the target function is the maximum value. .
  • the degree of satisfaction of the user may be quantified, for example, by taking the reciprocal of the difference between each required environment setting that is the target value and the actual environment setting that is the setting value that is actually set as the user satisfaction level.
  • the acquisition unit 301 has been described as specifying the user position based on the difference in timing at which the three or more ultrasonic receivers detect ultrasonic waves.
  • the user position may be identified using another method described below. For example, the user performs an operation of specifying the user position by the number indicating the area in the map as shown in FIG. 7 displayed on the display unit 202 of the environment setting terminal 20.
  • the environment setting terminal 20 transmits the user position to the air conditioning control device 30 in response to the user's operation of specifying the user position.
  • the acquisition unit 301 acquires the user position from the environment setting terminal 20. In FIG. 7, the outlet F is shown.
  • the environment setting terminal 20 transmits a signal of communication by radio waves such as Bluetooth (registered trademark) Low Energy to the air conditioning control device 30.
  • the acquiring unit 301 specifies the user position based on the radio wave intensity of the signal received from the environment setting terminal 20.
  • the air conditioning control device 30 acquires and stores in advance information at each position in the room where the air conditioning indoor unit 10 is installed. Further, the air conditioning control device 30 associates and stores each user and a face image in advance.
  • the acquiring unit 301 has a face authentication function, and specifies the position at which the user is face-authenticated in the room where the air conditioning indoor unit 10 is installed as the user position of the user.
  • the environment setting terminal 20 has an imaging function, and images a predetermined mark (for example, a bar code).
  • the environment setting terminal 20 transmits the image of the captured predetermined mark to the air conditioning control device 30.
  • the acquiring unit 301 determines the environment setting terminal 20 based on the method of deformation of the predetermined mark in the image captured by the environment setting terminal 20 and the position of the predetermined mark in the room where the air conditioning indoor unit 10 is installed. Identify the position where the mark is imaged, and identify the identified position as the user position. In this way, the air conditioning system 1 does not need to use a specific method when specifying the user position, and can select a method according to the situation.
  • the order of the processes may be switched as long as an appropriate process is performed.
  • Each of the storage unit 204 and the storage device in the embodiment of the present invention may be provided anywhere as long as appropriate transmission and reception of information is performed.
  • each of the storage unit 204 and the storage device may store a plurality of data in a distributed manner in a range where appropriate transmission and reception of information is performed.
  • FIG. 8 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 5 includes a CPU 6, a main memory 7, a storage 8 and an interface 9, as shown in FIG.
  • each of the air conditioning indoor unit 10, the environment setting terminal 20, the air conditioning control device 30, and the other control devices described above is mounted on the computer 5.
  • each processing unit described above is stored in the storage 8 in the form of a program.
  • the CPU 6 reads a program from the storage 8 and develops it in the main memory 7 and executes the above processing according to the program. Further, the CPU 6 secures a storage area corresponding to each storage unit described above in the main memory 7 in accordance with a program.
  • Examples of the storage 8 include a hard disk drive (HDD), a solid state drive (SSD), a magnetic disk, an optical magnetic disk, a compact disc read only memory (CD-ROM), and a digital versatile disc read only memory (DVD-ROM). , Semiconductor memory and the like.
  • the storage 8 may be internal media directly connected to the bus of the computer 5 or may be external media connected to the computer 5 via the interface 9 or a communication line.
  • the program is distributed to the computer 5 by a communication line, the computer 5 that has received the distribution may expand the program in the main memory 7 and execute the above processing.
  • storage 8 is a non-transitory tangible storage medium.
  • the program may realize part of the functions described above.
  • the program may be a file capable of realizing the above-described functions in combination with a program already recorded in a computer system, a so-called difference file (difference program).
  • Air conditioning settings can be realized.
  • Air blowing mechanism 201 Output unit 202: Display unit 203: Input unit 204: Storage unit 301: Acquisition unit 302: Identification unit 303: Control unit

Abstract

An air conditioning control device, provided with: a demanded environment acquisition unit for acquiring a demanded environment setting from each of a plurality of users; a position acquisition unit for acquiring user locations at which each of the plurality of users is present; a specifying unit for specifying, on the basis of the demanded environment settings and the user locations, an actual environment setting for bringing the environments at the user locations of the plurality of users who have set a demanded environment setting towards the demanded environment settings; and a control unit for controlling an air conditioner indoor unit on the basis of the specified actual environment setting.

Description

空調制御装置、空調システム、制御方法及びプログラムAir conditioning control device, air conditioning system, control method and program
 本発明は、空調制御装置、空調システム、制御方法及びプログラムに関する。
 本願は、2017年6月30日に日本に出願された特願2017-128992号について優先権を主張し、その内容をここに援用する。
The present invention relates to an air conditioning control device, an air conditioning system, a control method, and a program.
Priority is claimed on Japanese Patent Application No. 2017-128992, filed on June 30, 2017, the content of which is incorporated herein by reference.
 人物の存在する位置を取得して設定を変更する空調システムがある。特許文献1には、利用者の要求を送信するための送信手段のID情報に対応して設定されていた位置情報を取得し、または、固定された机や椅子に貼られた固有の位置情報を含む1次元バーコードや2次元バーコードを読み取ることによって認識される位置情報を取得して、その要求に応じた空調機の制御を行う技術が記載されている。 There is an air conditioning system that acquires the position where a person exists and changes the setting. In Patent Document 1, the position information set corresponding to the ID information of the transmission means for transmitting the user's request is acquired, or unique position information attached to a fixed desk or chair. Patent Document 1 describes a technique for acquiring position information recognized by reading a one-dimensional bar code or a two-dimensional bar code, and performing control of an air conditioner according to the request.
特許第4737037号公報Patent No. 4737037 gazette
 ところで、空調システムでは、利用者全体として満足度の高い空調設定を実現することのできる技術が求められている。 By the way, in the air conditioning system, a technology capable of realizing an air conditioning setting with high satisfaction as a whole user is required.
 そこで、空調設定を行う際に、複数の利用者が空調設定の対象となる室内において、利用者全体として満足度の高い空調設定を実現することのできる技術が求められている。 Therefore, there is a need for a technology that can realize an air conditioning setting with high satisfaction for the entire user in the room where a plurality of users are targets of the air conditioning setting when performing the air conditioning setting.
 本発明は、上記の課題を解決することのできる空調制御装置、空調システム、制御方法及びプログラムを提供することを目的としている。 An object of the present invention is to provide an air conditioning control device, an air conditioning system, a control method, and a program that can solve the above-mentioned problems.
 本発明の第1の態様によれば、空調制御装置は、複数の利用者それぞれから要求環境設定を取得する要求環境取得部と、前記複数の利用者それぞれが存在する利用者位置を取得する位置取得部と、前記要求環境設定及び前記利用者位置に基づいて、前記要求環境設定を設定した前記複数の利用者の利用者位置における環境を前記要求環境設定に近づける実環境設定を特定する特定部と、前記特定された実環境設定に基づいて、空調用室内機を制御する制御部と、を備える。 According to the first aspect of the present invention, the air conditioning control device acquires the required environment acquisition unit for acquiring the required environment setting from each of the plurality of users, and the position for acquiring the user position where each of the plurality of users exists. An identifying unit that identifies, based on the acquiring unit, the requested environment setting and the user position, an actual environment setting that brings the environment at the user position of the plurality of users who set the requested environment setting to the requested environment setting And a control unit configured to control the air conditioning indoor unit based on the specified actual environment setting.
 本発明の第2の態様によれば、第1の態様における空調制御装置において、前記実環境設定は、温度、風量、湿度及び風向のうち少なくとも1つの設定であってもよい。 According to a second aspect of the present invention, in the air conditioning control device according to the first aspect, the actual environment setting may be at least one of temperature, air volume, humidity, and air direction.
 本発明の第3の態様によれば、第1の態様または第2の態様における空調制御装置において、前記要求環境取得部は、前記要求環境設定を前記複数の利用者それぞれの環境設定端末から取得してもよい。 According to a third aspect of the present invention, in the air conditioning control device according to the first aspect or the second aspect, the required environment acquisition unit acquires the required environment setting from an environment setting terminal of each of the plurality of users. You may
 本発明の第4の態様によれば、第3の態様における空調制御装置において、前記位置取得部は、前記利用者位置を前記複数の利用者それぞれの環境設定端末から取得してもよい。 According to a fourth aspect of the present invention, in the air conditioning control device according to the third aspect, the position acquisition unit may acquire the user position from an environment setting terminal of each of the plurality of users.
 本発明の第5の態様によれば、空調システムは、第1の態様から第4の態様の何れか一態様に記載の空調制御装置と、前記空調制御装置による制御に基づいて、空気を送り出す空調用室内機と、を備える。 According to a fifth aspect of the present invention, an air conditioning system delivers air based on the air conditioning control device according to any one of the first to fourth aspects and control by the air conditioning control device. And an air conditioning indoor unit.
 本発明の第6の態様によれば、制御方法は、複数の利用者それぞれから要求環境設定を取得することと、前記複数の利用者それぞれが存在する利用者位置を取得することと、前記要求環境設定及び前記利用者位置に基づいて、前記要求環境設定を設定した前記複数の利用者の利用者位置における環境を前記要求環境設定に近づける実環境設定を特定することと、前記特定された実環境設定に基づいて、空調用室内機を制御することと、を含む。 According to a sixth aspect of the present invention, the control method comprises: acquiring a request environment setting from each of a plurality of users; acquiring a user position where each of the plurality of users exists; Specifying an actual environment setting for bringing the environment at the user position of the plurality of users who set the required environment setting closer to the required environment setting based on the environment setting and the user position; Controlling the air conditioning indoor unit based on the environment setting.
 本発明の第7の態様によれば、プログラムは、コンピュータに、複数の利用者それぞれから要求環境設定を取得することと、前記複数の利用者それぞれが存在する利用者位置を取得することと、前記要求環境設定及び前記利用者位置に基づいて、前記要求環境設定を設定した前記複数の利用者の利用者位置における環境を前記要求環境設定に近づける実環境設定を特定することと、前記特定された実環境設定に基づいて、空調用室内機を制御することと、を実行させる。 According to the seventh aspect of the present invention, the program causes the computer to acquire required environment settings from each of a plurality of users, and acquire a user position where each of the plurality of users exists. Specifying an actual environment setting for bringing an environment at the user position of the plurality of users who set the required environment setting closer to the required environment setting based on the required environment setting and the user position; Controlling the air conditioning indoor unit based on the actual environment setting.
 本発明の実施形態による空調制御装置、空調システム、制御方法及びプログラムによれば、空調設定を行う際に、複数の利用者が空調設定の対象となる室内において、利用者全体として満足度の高い空調設定を実現することができる。 According to the air-conditioning control apparatus, the air-conditioning system, the control method, and the program according to the embodiment of the present invention, when performing air-conditioning setting, a plurality of users have high satisfaction as a whole user in the room targeted for air-conditioning setting. Air conditioning settings can be realized.
本発明の一実施形態による空調システムの構成を示す図である。It is a figure showing composition of an air-conditioning system by one embodiment of the present invention. 本発明の一実施形態による空調用室内機の構成を示す図である。It is a figure which shows the structure of the indoor unit for air conditioning by one Embodiment of this invention. 本発明の一実施形態による環境設定端末の構成を示す図である。It is a figure which shows the structure of the environment setting terminal by one Embodiment of this invention. 本発明の一実施形態による表示部の表示例を示す図である。It is a figure which shows the example of a display of the display part by one Embodiment of this invention. 本発明の一実施形態による空調制御装置の構成を示す図である。It is a figure which shows the structure of the air-conditioning control apparatus by one Embodiment of this invention. 本発明の一実施形態による空調制御装置の処理フローを示す図である。It is a figure which shows the processing flow of the air-conditioning control apparatus by one Embodiment of this invention. 本発明の一実施形態による表示部が表示するマップの例を示す図である。It is a figure which shows the example of the map which the display part by one Embodiment of this invention displays. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram showing composition of a computer concerning at least one embodiment.
<実施形態>
 以下、図面を参照しながら実施形態について詳しく説明する。
 本発明の一実施形態による空調システム1の構成について説明する。
 本発明の一実施形態による空調システム1は、複数の利用者それぞれが要求する各要求環境設定及びそれらの複数の利用者それぞれが存在する各利用者位置に基づいて、実環境設定を特定するシステムである。そして、空調システム1は、特定した実環境設定に基づいて、空調用室内機を制御するシステムである。要求環境設定とは、利用者位置において所望の環境を実現するために利用者が要求する環境の設定値であって、利用者位置における温度、風量、湿度及び風向のうち少なくとも1つを含む設定値である。実環境設定とは、設定値を設定した利用者全体の満足度が高くなるように空調システム1において実際に設定される環境の設定値である。
 空調システム1は、図1に示すように、空調用室内機10と、環境設定端末20a1~20anと、空調制御装置30と、を備える。以下、環境設定端末20a1~20anを総称して環境設定端末20と呼ぶ。
Embodiment
Hereinafter, embodiments will be described in detail with reference to the drawings.
The configuration of the air conditioning system 1 according to an embodiment of the present invention will be described.
The air conditioning system 1 according to an embodiment of the present invention is a system for specifying a real environment setting based on each required environment setting requested by each of a plurality of users and each user position where each of the plurality of users exists. It is. And the air conditioning system 1 is a system which controls the indoor unit for air conditioning based on the specified real environment setting. The required environment setting is a setting value of an environment required by the user to realize a desired environment at the user position, and a setting including at least one of temperature, air volume, humidity and wind direction at the user position. It is a value. The actual environment setting is an environment setting value that is actually set in the air conditioning system 1 so that the satisfaction of the entire user who has set the setting value becomes high.
The air conditioning system 1 includes an air conditioning indoor unit 10, environment setting terminals 20a1 to 20an, and an air conditioning control device 30, as shown in FIG. The environment setting terminals 20a1 to 20an are hereinafter collectively referred to as the environment setting terminal 20.
 空調用室内機10は、各利用者位置に空気を送り出す。
 環境設定端末20のそれぞれは、空調用室内機10が設置される室内の利用者位置における要求環境設定を空調制御装置30に送信する。なお、空調用室内機10が設置される室内における利用者位置は、その環境設定端末20を利用する利用者の利用者位置である。
 空調制御装置30は、実環境設定に基づいて、空調用室内機10を制御する。
The air conditioning indoor unit 10 delivers air to each user position.
Each of the environment setting terminals 20 transmits to the air conditioning control device 30 the required environment setting at the user position in the room where the air conditioning indoor unit 10 is installed. The user position in the room where the air conditioning indoor unit 10 is installed is the user position of the user who uses the environment setting terminal 20.
The air conditioning control device 30 controls the air conditioning indoor unit 10 based on the actual environment setting.
 空調用室内機10は、図2に示すように、通信部101と、送風機構102と、を備える。
 通信部101は、空調制御装置30と通信を行う。通信部101は、実環境設定が示す設定値を実現する制御信号を空調制御装置30から受信する。
 送風機構102は、通信部101が受信した制御信号に応じた空気を送り出す。
As shown in FIG. 2, the air conditioning indoor unit 10 includes a communication unit 101 and a blower mechanism 102.
The communication unit 101 communicates with the air conditioning control device 30. The communication unit 101 receives, from the air conditioning control device 30, a control signal for realizing the set value indicated by the actual environment setting.
The blower mechanism 102 sends out air according to the control signal received by the communication unit 101.
 環境設定端末20のそれぞれは、図3に示すように、出力部201と、表示部202と、入力部203と、記憶部204と、を備える。環境設定端末20は、例えば、スマートフォンである。 As shown in FIG. 3, each of the environment setting terminals 20 includes an output unit 201, a display unit 202, an input unit 203, and a storage unit 204. The environment setting terminal 20 is, for example, a smartphone.
 出力部201は、通信機能を有し、要求環境設定を空調制御装置30に送信する。出力部201は、超音波振動子を有し、超音波を出力する。出力部201は、その超音波に要求環境設定の情報を重畳させることによって、要求環境設定を空調制御装置30に送信する。なお、本発明の別の実施形態による出力部201は、超音波以外の手段(例えば、電波)を用いて要求環境設定を空調制御装置30に送信してもよい。 The output unit 201 has a communication function, and transmits the required environment setting to the air conditioning control device 30. The output unit 201 has an ultrasonic transducer and outputs an ultrasonic wave. The output unit 201 transmits the required environment setting to the air conditioning control device 30 by superimposing the information of the required environment setting on the ultrasonic wave. Note that the output unit 201 according to another embodiment of the present invention may transmit the required environment setting to the air conditioning control device 30 using means (for example, radio waves) other than ultrasonic waves.
 表示部202は、空調制御装置30に送信する要求環境設定の設定内容を表示する。具体的には、表示部202は、図4に示すように、温度、風量、湿度及び風向の要求環境設定を表示する。 The display unit 202 displays the setting contents of the required environment setting to be transmitted to the air conditioning control device 30. Specifically, as shown in FIG. 4, the display unit 202 displays required environment settings of temperature, air volume, humidity, and air direction.
 入力部203は、利用者による操作によって指定された温度、風量、湿度及び風向のうち少なくとも1つを含む要求環境設定の入力を受け付ける。入力部203は、受け付けた要求環境設定を記憶部204に書き込む。
 記憶部204は、利用者の要求環境設定を記憶する。
The input unit 203 receives an input of required environment setting including at least one of temperature, air volume, humidity, and air direction designated by an operation by the user. The input unit 203 writes the received request environment setting in the storage unit 204.
The storage unit 204 stores a user's request environment setting.
 空調制御装置30は、図5に示すように、取得部301(要求環境取得部の一例、位置取得部の一例)と、特定部302と、制御部303と、を備える。 As shown in FIG. 5, the air conditioning control device 30 includes an acquisition unit 301 (an example of a request environment acquisition unit, an example of a position acquisition unit), a specifying unit 302, and a control unit 303.
 取得部301は、複数の利用者それぞれが要求する各要求環境設定を取得する。具体的には、取得部301は、環境設定端末20のそれぞれから要求環境設定を取得する。 The acquisition unit 301 acquires each required environment setting requested by each of a plurality of users. Specifically, the acquisition unit 301 acquires the required environment setting from each of the environment setting terminals 20.
 また、取得部301は、複数の利用者それぞれが存在する各利用者位置を取得する。
 具体的には、取得部301は、3つ以上の超音波受信器(例えば、超音波マイクロフォン)を、例えば空調用室内機10が設置される室内の天井に備える。取得部301は、環境設定端末20のそれぞれからの超音波を検知する。取得部301は、任意の1つの周波数の超音波について各超音波受信器が超音波を検知したタイミングの時間差と、各超音波受信器が設置されている位置と、空調用室内機10が設置される室内の空間(おもに、空気)を超音波が伝播する速度とに基づいて、超音波の音源である環境設定端末20の位置、すなわち利用者位置を算出する。
 より具体的には、取得部301は、各超音波受信器が検知した超音波のうち特定周波数の超音波を抽出する。取得部301は、抽出した超音波の各超音波受信器における位相を特定し、各超音波受信器間の位相差、すなわち超音波の到達時間差を算出する。取得部301は、各超音波受信器間の位相差を各超音波受信器間の距離の差に換算する。取得部301は、各超音波受信器間の距離の差から利用者位置を推定する。
 取得部301は、異なる周波数の超音波のすべてについて、利用者位置を算出する。
Further, the acquisition unit 301 acquires each user position where each of a plurality of users exists.
Specifically, the acquisition unit 301 includes three or more ultrasound receivers (for example, ultrasound microphones), for example, on a ceiling of a room where the air conditioning indoor unit 10 is installed. The acquisition unit 301 detects ultrasonic waves from each of the environment setting terminals 20. The acquisition unit 301 has a time difference between the timings at which each ultrasonic wave receiver detects ultrasonic waves for ultrasonic waves of any one frequency, the position at which each ultrasonic wave receiver is installed, and the indoor unit 10 for air conditioning installed. The position of the environment setting terminal 20 which is the sound source of the ultrasonic wave, that is, the position of the user is calculated based on the space in the room (mainly air) and the velocity at which the ultrasonic wave propagates.
More specifically, the acquisition unit 301 extracts an ultrasonic wave of a specific frequency from among the ultrasonic waves detected by each ultrasonic wave receiver. The acquisition unit 301 specifies the phase of each of the extracted ultrasonic waves at each ultrasonic wave receiver, and calculates the phase difference between the ultrasonic wave receivers, that is, the arrival time difference of ultrasonic waves. The acquisition unit 301 converts the phase difference between the ultrasound receivers into the difference in distance between the ultrasound receivers. The acquisition unit 301 estimates the position of the user from the difference in distance between the ultrasound receivers.
The acquisition unit 301 calculates the user position for all ultrasonic waves of different frequencies.
 なお、取得部301は、超音波受信器をN個(N>3)備えている場合、N個のうち3つを選択するすべての組み合わせのそれぞれについて利用者位置を推定し、それらの平均値を利用者位置とすればよい。このようにすることで、取得部301は、利用者位置の推定をより高精度に行うことができる。 Note that, when N (N> 3) ultrasound receivers are provided, the acquiring unit 301 estimates the user position for each of all combinations of three selected from N, and the average value thereof. The user position should be By doing this, the acquisition unit 301 can estimate the user position with higher accuracy.
 なお、取得部301は、複数の同一周波数の超音波を同時に検知した場合には、同一周波数の超音波どうしが干渉し超音波の音源の位置を特定することができない。そのため、取得部301は、複数の同一周波数の超音波を同時に検知した場合には、所定時間が経過した後に再度超音波の検知を試みる。この場合、各環境設定端末20が出力する超音波の周波数が干渉しないように、各超音波の周波数が異なる周波数となるよう、予め各環境設定端末20に異なる周波数を割り当てればよい。 When the acquisition unit 301 simultaneously detects a plurality of ultrasonic waves of the same frequency, the ultrasonic waves of the same frequency interfere with each other, and the position of the sound source of the ultrasonic wave can not be identified. Therefore, when detecting a plurality of ultrasonic waves of the same frequency at the same time, the acquiring unit 301 tries to detect the ultrasonic waves again after a predetermined time has elapsed. In this case, different frequencies may be allocated to the environment setting terminals 20 in advance so that the frequencies of the ultrasonic waves may be different so that the frequencies of the ultrasonic waves output from the environment setting terminals 20 do not interfere.
 特定部302は、各要求環境設定及び各利用者位置に基づいて、要求環境設定を設定した複数の利用者(例えば、全利用者)の利用者位置における環境を要求環境設定に近づける実環境設定を特定する。
 具体的には、特定部302は、目標値である各要求環境設定と各利用者位置における実際の環境とのずれを目標関数とし、この目標関数の値が小さい値となる実環境設定を特定する。
The identifying unit 302 is configured to bring the environment at the user position of a plurality of users (for example, all users) who set the required environment setting closer to the required environment setting based on each required environment setting and each user position. Identify
Specifically, the identifying unit 302 identifies the actual environment setting in which the value of the objective function becomes a small value, with the target value being the difference between each required environment setting that is the target value and the actual environment at each user position. Do.
 より具体的には、特定部302は、以下の式(1)に示す目標関数Jが小さい値となる実環境設定を特定する。 More specifically, the identifying unit 302 identifies a real environment setting in which the target function J shown in the following equation (1) has a small value.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)に示すベクトルx(i)は、利用者i(i=1,2,・・,N)が存在する位置における実際の温度、湿度、風量、風向などの各要求環境設定を示すベクトル量である。ベクトルx(i)は、M個の要素(x(i),x(i),・・,x(i))からなり、各要素(x(i),x(i),・・,x(i))は、利用者iが存在する位置における実際の温度、湿度、風量、風向などの値(スカラー量)を示している。また、式(1)に示すように、ベクトルx(i)は、空調用室内機10の制御パラメータ(a1、a2、a3、a4、・・)を入力変数とする関数Fによって一意に定まる。なお、風向の数値化は、例えば、上下方向の風向について、最も上側へ向く風向から最も下側へ向く風向までがn段階の風向で規定されている場合には、最も上側へ向く風向から最も下側へ向く風向までのn段階を1からnの整数で数値化すればよい。また、風向の数値化は、例えば、左右方向の風向について、最も左側へ向く風向から最も右側へ向く風向までがm段階の風向で規定されている場合には、最も左側へ向く風向から最も右側へ向く風向までのm段階を1からmの整数で数値化すればよい。このように風向を数値化すれば、目標とする風向を示す数値と利用者位置における実際の風向が示す数値との差によってずれを表すことができ、温度、風量、湿度などの数値と同様に演算することが可能となる。
 また、ベクトルx*(i)は、利用者iが希望する温度、湿度、風量、風向などを示すベクトル量である。ベクトルx*(i)は、M個の要素(x(i),x(i),・・,x(i))からなり、各要素(x(i),x(i),・・,x(i))は、利用者iが希望する温度、湿度、風量、風向などを示している。
 式(1)に示すように、目的関数Jは、まず、ベクトルx(i)の第k要素(k=1,・・,M)ごとに誤差率((x(i)-x(i))/x(i))を求め、全要素で足し合わせる。そして、目的関数Jは、利用者iごとに求められた上記誤差率の総和を、更に全利用者で足し合わせることによって導出される。
 “M”は、ベクトルx(i)、ベクトルx(i)を構成する要素の数であって、温度、湿度、風量、風向など、利用者が設定の対象とすべき物理量の総数である。
 “N”は、空調用室内機10が設置された空間内に存在する利用者の人数であって、より具体的には、超音波を通じて検知された環境設定端末20の台数である。
 “Wd(i,k)”は、要素別に別途規定された重み付け係数であり、一般的な運用では、全て“1”(等しい値)とされる。しかし、例えば、各利用者が要素(温度、湿度、風量、風向・・)ごとに“Wd(i,k)”を設定して、どの物理量を重視するかという好みを反映させてもよい。この重み付け係数Wd(i,k)によって、例えば、同じ人でも、「暑い屋外から戻ってきたばかりのときには『風量』の要望を特に叶えてほしい」とか、「梅雨の時期には『湿度』を優先的に好みの値にしてほしい」といった細かな要望にも応えることが可能となる。
 “Wp(i)”は、利用者別に別途規定された重み付け係数であり、一般的な運用では、全て“1”(等しい値)とされる。しかし、例えば、熱中症になり易い利用者、高齢の利用者、重役の利用者などの要求を重視する運用を行う場合などにおいては、利用者iごとの重み付け係数を変化させてもよい。
 また、温度、風量、湿度、風向などの設定が正規化され、例えば、設定項目のうち温度を重視する場合には、温度の重み付け係数wiを風量、湿度、風向などの温度以外の重み付け係数wiよりも大きくするものであってもよい。
 また、空調用室内機10が設置される室内において、吹き出し口がL個(L>1)存在する場合には、それぞれの吹き出し口ごとに温度、風量、湿度、風向などの実環境設定を設定するものであってもよい。
 特定部302は、空調用室内機10が設置される室内における気流及び熱放射をモデル化し、そのモデルのモデルパラメータを変化させて、空調用室内機10が設置される室内の各利用者位置における所定時間後の温度、風量、湿度、風向などの実際の値をシミュレーションにより算出する。このとき、空調用室内機10が設置される室内において、吹き出し口がL個(L>1)存在する場合には、それぞれの吹き出し口ごとの温度、風量、湿度、風向などの実環境設定の組み合わせをさまざまに変更する。なお、空調用室内機10が設置される室内における気流及び熱放射のモデル化は、理論的に正しいことが確認されている式や予め実験などを行うなどして、モデルパラメータを用いてモデル化すればよい。
 特定部302は、変更したさまざまな実環境設定の組み合わせについてシミュレーションにより算出したそれぞれの設定項目について、特定した目標関数Jが小さい値となる実環境設定を特定する。なお、目標関数Jが小さい値となる実環境設定を特定する際に特定部302が用いるアルゴリズムは、正しい実環境設定を特定することができる範囲において限定しない。特定部302は、山登り法、シミュレーテッド・アニーリング(SA法)、遺伝的アルゴリズム(GA)、同時摂動確率近似(SPSA)アルゴリズムなどを用いるものであってよい。関数Fは、例えば、気流、放射熱に基づく空間内の温度分布、湿度分布、風量分布の物理シミュレーションに基づくものであってもよい。
The vector x (i) shown in the equation (1) represents each of the required environment settings such as the actual temperature, humidity, air volume, and wind direction at the position where the user i (i = 1, 2,..., N) exists. It is a vector quantity. The vector x (i) consists of M elements (x (i) 1 , x (i) 2 ,..., X (i) M ), and each element (x (i) 1 , x (i) 2 ,..., X (i) M ) indicate values (scalar amounts) such as actual temperature, humidity, air volume, and wind direction at the position where the user i is present. Further, as shown in the equation (1), the vector x (i) is uniquely determined by the function F having the control parameters (a1, a2, a3, a4,...) Of the air conditioning indoor unit 10 as input variables. Note that, for the wind direction in the vertical direction, for example, when the wind direction from the uppermost wind direction to the lowermost wind direction is defined by n stages of wind directions, the wind direction from the uppermost wind direction is the largest. It is sufficient to digitize n steps to the downwind direction with an integer of 1 to n. In addition, for the wind direction, for example, when the wind direction from the leftward wind direction to the rightward wind direction is defined by m stages of wind directions for the leftward wind direction, the rightward wind direction from the leftward wind direction The m stages up to the wind direction may be quantified by an integer of 1 to m. If the wind direction is quantified in this way, the difference can be expressed by the difference between the numerical value indicating the target wind direction and the numerical value indicated by the actual wind direction at the user position, and similar to numerical values such as temperature, air volume, humidity, etc. It becomes possible to calculate.
The vector x * (i) is a vector quantity indicating the temperature, humidity, air volume, wind direction, etc. desired by the user i. The vector x * (i) consists of M elements (x * (i) 1 , x * (i) 2 ,..., X * (i) M ), and each element (x * (i) 1 , x * (i) 2 ... x * (i) M indicates the temperature, humidity, air volume, wind direction, etc. desired by the user i.
As shown in the equation (1), the objective function J first generates an error rate ((x (i) k −x * ( K ) for each kth element (k = 1,..., M) of the vector x (i) i) Find k ) / x * (i) k ) and add up all the elements. Then, the objective function J is derived by further adding up the sum of the above error rates obtained for each user i by all the users.
“M” is the number of elements constituting vector x (i) and vector x * (i), and is the total number of physical quantities that the user should set, such as temperature, humidity, air volume, and wind direction. .
“N” is the number of users present in the space where the air conditioning indoor unit 10 is installed, and more specifically, the number of environment setting terminals 20 detected through ultrasonic waves.
“Wd (i, k)” is a weighting coefficient separately defined for each element, and in general operation, it is all “1” (equal value). However, for example, each user may set “Wd (i, k)” for each element (temperature, humidity, air volume, wind direction,...) To reflect the preference as to which physical quantity is to be emphasized. With this weighting factor Wd (i, k), even the same person, for example, "wants to particularly fulfill the demand for" wind volume "when returning from a hot outdoor area", "prefers" humidity "during the rainy season" It is possible to respond to detailed requests such as "want them to be the value of preference".
“Wp (i)” is a weighting coefficient separately specified for each user, and in general operation, it is all “1” (equal value). However, for example, in the case of performing an operation which places importance on requirements such as users susceptible to heat stroke, elderly users, users of executive officers, etc., the weighting coefficient for each user i may be changed.
Also, settings such as temperature, air volume, humidity, and wind direction are normalized. For example, when importance is placed on temperature among the setting items, the weighting coefficient wi for temperature is a weighting coefficient wi for other than temperature such as air volume, humidity, and wind direction. It may be made larger than that.
In addition, when there are L outlets (L> 1) in the room where the air conditioning indoor unit 10 is installed, actual environment settings such as temperature, air volume, humidity, and wind direction are set for each outlet. It may be
The identifying unit 302 models air flow and heat radiation in the room in which the air conditioning indoor unit 10 is installed, changes model parameters of the model, and determines the position of each user in the room in which the air conditioning indoor unit 10 is installed. Actual values such as temperature, air volume, humidity, and wind direction after a predetermined time are calculated by simulation. At this time, if there are L outlets (L> 1) in the room where the air conditioning indoor unit 10 is installed, actual environment settings such as temperature, air volume, humidity, air direction, etc. for each outlet are present. Change the combination in various ways. In addition, modeling of air flow and heat radiation in the room where the indoor unit 10 for air conditioning is installed is modeled using model parameters by conducting experiments etc. by performing an experiment etc. which is theoretically confirmed to be correct. do it.
The identifying unit 302 identifies, for each setting item calculated by simulation for various combinations of changed real environment settings, the actual environment setting in which the identified target function J has a small value. Note that the algorithm used by the identification unit 302 when specifying the actual environment setting in which the target function J has a small value is not limited in the range where the correct actual environment setting can be specified. The identifying unit 302 may use a hill climbing method, a simulated annealing (SA method), a genetic algorithm (GA), a simultaneous perturbation probability approximation (SPSA) algorithm, or the like. The function F may be based on physical simulation of air flow, temperature distribution in space based on radiant heat, humidity distribution, air volume distribution, for example.
 制御部303は、特定部302によって特定された実環境設定に基づいて、空調用室内機10を制御する。 The control unit 303 controls the air conditioning indoor unit 10 based on the actual environment setting specified by the specifying unit 302.
 次に、本発明の一実施形態による空調システム1の処理について説明する。
 ここでは、図6に示す空調制御装置30の処理フローについて説明する。
Next, processing of the air conditioning system 1 according to the embodiment of the present invention will be described.
Here, the process flow of the air conditioning control device 30 shown in FIG. 6 will be described.
 入力部203は、利用者による操作によって指定された温度、風量、湿度及び風向のうち少なくとも1つを含む要求環境設定の入力を受け付ける。入力部203は、受け付けた要求環境設定を記憶部204に書き込む。
 記憶部204は、利用者の要求環境設定を記憶する。
 出力部201は、利用者の要求環境設定の情報を重畳させた超音波を空調制御装置30に出力する。
The input unit 203 receives an input of required environment setting including at least one of temperature, air volume, humidity, and air direction designated by an operation by the user. The input unit 203 writes the received request environment setting in the storage unit 204.
The storage unit 204 stores a user's request environment setting.
The output unit 201 outputs, to the air conditioning control device 30, an ultrasonic wave on which the information of the user's required environment setting is superimposed.
 取得部301は、複数の利用者それぞれが要求する各要求環境設定を取得する(ステップS1)。具体的には、取得部301は、環境設定端末20のそれぞれからの超音波を検知し、検知した超音波に含まれる要求環境設定を取得する。 The acquisition unit 301 acquires each required environment setting requested by each of a plurality of users (step S1). Specifically, the acquisition unit 301 detects ultrasonic waves from each of the environment setting terminals 20, and acquires a required environment setting included in the detected ultrasonic waves.
 また、取得部301は、複数の利用者それぞれが存在する各利用者位置を取得する(ステップS2)。
 具体的には、取得部301は、各超音波受信器が検知した超音波のうち特定周波数の超音波を抽出する。取得部301は、抽出した超音波の各超音波受信器における位相を特定し、各超音波受信器間の位相差、すなわち超音波の到達時間差を算出する。取得部301は、各超音波受信器間の位相差を各超音波受信器間の距離の差に換算する。取得部301は、各超音波受信器間の距離の差から利用者位置を推定する。
 取得部301は、異なる周波数の超音波のすべてについて、利用者位置を算出する。
Further, the acquisition unit 301 acquires each user position where each of a plurality of users exists (step S2).
Specifically, the acquisition unit 301 extracts an ultrasonic wave of a specific frequency from among the ultrasonic waves detected by each ultrasonic wave receiver. The acquisition unit 301 specifies the phase of each of the extracted ultrasonic waves at each ultrasonic wave receiver, and calculates the phase difference between the ultrasonic wave receivers, that is, the arrival time difference of ultrasonic waves. The acquisition unit 301 converts the phase difference between the ultrasound receivers into the difference in distance between the ultrasound receivers. The acquisition unit 301 estimates the position of the user from the difference in distance between the ultrasound receivers.
The acquisition unit 301 calculates the user position for all ultrasonic waves of different frequencies.
 特定部302は、各要求環境設定及び各利用者位置に基づいて、要求環境設定を設定した複数の利用者の利用者位置における環境を要求環境設定に近づける実環境設定を特定する(ステップS3)。
 具体的には、特定部302は、目標値である各要求環境設定と各利用者位置における実際の環境とのずれを目標関数とし、この目標関数の値が小さい値となる実環境設定を特定する。
 より具体的には、特定部302は、式(1)で示した目標関数Jが小さい値となる実環境設定を特定する。
The identifying unit 302 identifies, based on each required environment setting and each user position, an actual environment setting that brings the environment at the user position of a plurality of users who set the required environment setting to the required environment setting (step S3). .
Specifically, the identifying unit 302 identifies the actual environment setting in which the value of the objective function becomes a small value, with the target value being the difference between each required environment setting that is the target value and the actual environment at each user position. Do.
More specifically, the identifying unit 302 identifies a real environment setting in which the target function J represented by equation (1) has a small value.
 また、空調用室内機10が設置される室内において、吹き出し口がL個(L>1)存在する場合には、特定部302は、それぞれの吹き出し口ごとに温度、風量、湿度、風向などの実環境設定を設定する(ステップS4)。 Further, when L outlets (L> 1) exist in the room where the air conditioning indoor unit 10 is installed, the identifying unit 302 determines the temperature, the air volume, the humidity, the air direction, etc. for each outlet. The real environment setting is set (step S4).
 特定部302は、空調用室内機10が設置される室内における気流及び熱放射をモデル化し、そのモデルのモデルパラメータを変化させて関数Fを算出し、空調用室内機10が設置される室内の各利用者位置における所定時間後の温度、風量、湿度、風向などの実際の値をシミュレーションにより算出する(ステップS5)。このとき、空調用室内機10が設置される室内において、吹き出し口がL個(L>1)存在する場合には、それぞれの吹き出し口ごとの温度、風量、湿度、風向などの実環境設定の組み合わせをさまざまに変更する(ステップS6)。
 特定部302は、変更したさまざまな実環境設定の組み合わせについてシミュレーションにより算出したそれぞれの設定項目について、特定した目標関数Jが小さい値となる実環境設定を特定する(ステップS7)。
The identifying unit 302 models air flow and heat radiation in the room in which the air conditioning indoor unit 10 is installed, changes model parameters of the model to calculate a function F, and is used in the room in which the air conditioning indoor unit 10 is installed. Actual values such as temperature, air volume, humidity, and wind direction after a predetermined time at each user position are calculated by simulation (step S5). At this time, if there are L outlets (L> 1) in the room where the air conditioning indoor unit 10 is installed, actual environment settings such as temperature, air volume, humidity, air direction, etc. for each outlet are present. The combination is changed variously (step S6).
The identifying unit 302 identifies, for each setting item calculated by simulation for various combinations of changed real environment settings, the actual environment setting in which the identified target function J has a small value (step S7).
 制御部303は、特定部302によって特定された実環境設定に基づいて、空調用室内機10を制御する(ステップS8)。 The control unit 303 controls the air conditioning indoor unit 10 based on the actual environment setting specified by the specifying unit 302 (step S8).
 以上、本発明の一実施形態による空調システム1について説明した。
 本発明の一実施形態による空調システム1において、空調制御装置30は、複数の利用者それぞれが要求する各要求環境設定と、複数の利用者それぞれが存在する各利用者位置を取得する。空調制御装置30は、各要求環境設定及び各利用者位置に基づいて、要求環境設定を設定した複数の利用者の利用者位置における環境を要求環境設定に近づける実環境設定を特定する。空調制御装置30は、実環境設定に基づいて、空調用室内機を制御する。
 こうすることにより、空調制御装置30は、空調設定を行う際に、複数の利用者が空調設定の対象となる室内において、利用者全体として満足度の高い空調設定を実現することができる。
The air conditioning system 1 according to the embodiment of the present invention has been described above.
In the air conditioning system 1 according to the embodiment of the present invention, the air conditioning control device 30 acquires each required environment setting requested by each of the plurality of users and each user position where each of the plurality of users exists. The air conditioning control device 30 specifies, based on each required environment setting and each user position, an actual environment setting that brings the environment at the user position of a plurality of users who set the required environment setting to the required environment setting. The air conditioning control device 30 controls the air conditioning indoor unit based on the actual environment setting.
By doing this, when performing the air conditioning setting, the air conditioning control device 30 can realize the air conditioning setting with high satisfaction as the entire user in the room where the plurality of users are targets of the air conditioning setting.
 なお、本発明の一実施形態では、特定部302は、目標値である各要求環境設定と実際に設定する設定値である実環境設定とのずれを目標関数とし、この目標関数の値が小さい値となる実環境設定を特定するものとして説明した。しかしながら、本発明の別の実施形態による特定部302は、利用者の満足度を数値化して満足度を目標関数とし、目標関数が最大値となる実環境設定を特定するものであってもよい。利用者の満足度の数値化は、例えば、目標値である各要求環境設定と実際に設定する設定値である実環境設定とのずれの逆数を利用者の満足度とすればよい。 In one embodiment of the present invention, the specification unit 302 sets a target function to a difference between each required environment setting that is a target value and a real environment setting that is a setting value that is actually set, and the value of this target function is small. It has been described as specifying a real environment setting to be a value. However, the specifying unit 302 according to another embodiment of the present invention may be a method of quantifying the degree of satisfaction of the user, setting the degree of satisfaction as the target function, and specifying the actual environment setting where the target function is the maximum value. . The degree of satisfaction of the user may be quantified, for example, by taking the reciprocal of the difference between each required environment setting that is the target value and the actual environment setting that is the setting value that is actually set as the user satisfaction level.
 なお、本発明の一実施形態では、取得部301は、3つ以上の超音波受信器が超音波を検知するタイミングの差に基づいて、利用者位置を特定するものとして説明した。しかしながら、本発明の別の実施形態では、利用者位置は、以下に示す別の方法を用いて特定されるものであってもよい。
 例えば、環境設定端末20の表示部202に表示された図7に示すようなマップにおいて領域を示す番号で利用者位置を指定する操作を利用者が行う。環境設定端末20は、利用者が利用者位置を指定する操作に応じて、利用者位置を空調制御装置30に送信する。そして、取得部301は、環境設定端末20から利用者位置を取得する。なお、図7において、吹き出し口Fが示されている。
 また、例えば、環境設定端末20は、Bluetooth(登録商標) Low Energyなどの電波による通信の信号を空調制御装置30に送信する。そして、取得部301は、環境設定端末20から受信した信号の電波強度に基づいて、利用者位置を特定する。
 また、例えば、空調制御装置30は、空調用室内機10が設置される室内の各位置における情報を予め取得し記憶する。また、空調制御装置30は、各利用者と顔画像とを関連付けて予め記憶する。取得部301は、顔認証機能を有し、空調用室内機10が設置される室内において利用者を顔認証した位置を、その利用者の利用者位置と特定する。
 また、例えば、環境設定端末20が撮像機能を有し、所定のマーク(例えば、バーコード)を撮像する。環境設定端末20は、撮像した所定のマークの画像を空調制御装置30に送信する。取得部301は、環境設定端末20が撮像した画像における所定のマークの変形の仕方と、空調用室内機10が設置される室内における所定のマークの位置とに基づいて、環境設定端末20が所定のマークを撮像した位置を特定し、特定した位置を利用者位置と特定する。
 このようにすれば、空調システム1は、利用者位置を特定する際に、特定の方法を用いる必要がなく、状況に応じて方法を選択することができる。
In the embodiment of the present invention, the acquisition unit 301 has been described as specifying the user position based on the difference in timing at which the three or more ultrasonic receivers detect ultrasonic waves. However, in another embodiment of the present invention, the user position may be identified using another method described below.
For example, the user performs an operation of specifying the user position by the number indicating the area in the map as shown in FIG. 7 displayed on the display unit 202 of the environment setting terminal 20. The environment setting terminal 20 transmits the user position to the air conditioning control device 30 in response to the user's operation of specifying the user position. Then, the acquisition unit 301 acquires the user position from the environment setting terminal 20. In FIG. 7, the outlet F is shown.
Further, for example, the environment setting terminal 20 transmits a signal of communication by radio waves such as Bluetooth (registered trademark) Low Energy to the air conditioning control device 30. Then, the acquiring unit 301 specifies the user position based on the radio wave intensity of the signal received from the environment setting terminal 20.
In addition, for example, the air conditioning control device 30 acquires and stores in advance information at each position in the room where the air conditioning indoor unit 10 is installed. Further, the air conditioning control device 30 associates and stores each user and a face image in advance. The acquiring unit 301 has a face authentication function, and specifies the position at which the user is face-authenticated in the room where the air conditioning indoor unit 10 is installed as the user position of the user.
Also, for example, the environment setting terminal 20 has an imaging function, and images a predetermined mark (for example, a bar code). The environment setting terminal 20 transmits the image of the captured predetermined mark to the air conditioning control device 30. The acquiring unit 301 determines the environment setting terminal 20 based on the method of deformation of the predetermined mark in the image captured by the environment setting terminal 20 and the position of the predetermined mark in the room where the air conditioning indoor unit 10 is installed. Identify the position where the mark is imaged, and identify the identified position as the user position.
In this way, the air conditioning system 1 does not need to use a specific method when specifying the user position, and can select a method according to the situation.
 なお、本発明の実施形態における空調システム1の処理は、適切な処理が行われる範囲において、処理の順番が入れ替わってもよい。 In the process of the air conditioning system 1 according to the embodiment of the present invention, the order of the processes may be switched as long as an appropriate process is performed.
 本発明の実施形態における記憶部204や記憶装置(レジスタ、ラッチを含む)のそれぞれは、適切な情報の送受信が行われる範囲においてどこに備えられていてもよい。また、記憶部204や記憶装置のそれぞれは、適切な情報の送受信が行われる範囲において複数存在しデータを分散して記憶していてもよい。 Each of the storage unit 204 and the storage device (including a register and a latch) in the embodiment of the present invention may be provided anywhere as long as appropriate transmission and reception of information is performed. In addition, each of the storage unit 204 and the storage device may store a plurality of data in a distributed manner in a range where appropriate transmission and reception of information is performed.
 本発明の実施形態について説明したが、上述の空調用室内機10、環境設定端末20、空調制御装置30、その他の制御装置は内部に、コンピュータシステムを有していてもよい。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。コンピュータの具体例を以下に示す。
 図8は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ5は、図8に示すように、CPU6、メインメモリ7、ストレージ8、インターフェース9を備える。
 例えば、上述の空調用室内機10、環境設定端末20、空調制御装置30、その他の制御装置のそれぞれは、コンピュータ5に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ8に記憶されている。CPU6は、プログラムをストレージ8から読み出してメインメモリ7に展開し、当該プログラムに従って上記処理を実行する。また、CPU6は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ7に確保する。
Although the embodiment of the present invention has been described, the above-described air conditioning indoor unit 10, environment setting terminal 20, air conditioning control device 30, and other control devices may have a computer system inside. The process of the process described above is stored in the form of a program in a computer readable recording medium, and the process is performed by the computer reading and executing the program. An example of a computer is shown below.
FIG. 8 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
The computer 5 includes a CPU 6, a main memory 7, a storage 8 and an interface 9, as shown in FIG.
For example, each of the air conditioning indoor unit 10, the environment setting terminal 20, the air conditioning control device 30, and the other control devices described above is mounted on the computer 5. The operation of each processing unit described above is stored in the storage 8 in the form of a program. The CPU 6 reads a program from the storage 8 and develops it in the main memory 7 and executes the above processing according to the program. Further, the CPU 6 secures a storage area corresponding to each storage unit described above in the main memory 7 in accordance with a program.
 ストレージ8の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ8は、コンピュータ5のバスに直接接続された内部メディアであってもよいし、インターフェース9または通信回線を介してコンピュータ5に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ5に配信される場合、配信を受けたコンピュータ5が当該プログラムをメインメモリ7に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ8は、一時的でない有形の記憶媒体である。 Examples of the storage 8 include a hard disk drive (HDD), a solid state drive (SSD), a magnetic disk, an optical magnetic disk, a compact disc read only memory (CD-ROM), and a digital versatile disc read only memory (DVD-ROM). , Semiconductor memory and the like. The storage 8 may be internal media directly connected to the bus of the computer 5 or may be external media connected to the computer 5 via the interface 9 or a communication line. When the program is distributed to the computer 5 by a communication line, the computer 5 that has received the distribution may expand the program in the main memory 7 and execute the above processing. In at least one embodiment, storage 8 is a non-transitory tangible storage medium.
 また、上記プログラムは、前述した機能の一部を実現してもよい。さらに、上記プログラムは、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるファイル、いわゆる差分ファイル(差分プログラム)であってもよい。 Also, the program may realize part of the functions described above. Furthermore, the program may be a file capable of realizing the above-described functions in combination with a program already recorded in a computer system, a so-called difference file (difference program).
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例であり、発明の範囲を限定しない。これらの実施形態は、発明の要旨を逸脱しない範囲で、種々の追加、種々の省略、種々の置き換え、種々の変更を行ってよい。 While several embodiments of the present invention have been described, these embodiments are examples and do not limit the scope of the invention. These embodiments may be subjected to various additions, various omissions, various substitutions, and various modifications without departing from the scope of the invention.
 本発明の実施形態による空調制御装置、空調システム、制御方法及びプログラムによれば、空調設定を行う際に、複数の利用者が空調設定の対象となる室内において、利用者全体として満足度の高い空調設定を実現することができる。 According to the air-conditioning control apparatus, the air-conditioning system, the control method, and the program according to the embodiment of the present invention, when performing air-conditioning setting, a plurality of users have high satisfaction as a whole user in the room targeted for air-conditioning setting. Air conditioning settings can be realized.
1・・・空調システム
5・・・コンピュータ
6・・・CPU
7・・・メインメモリ
8・・・ストレージ
9・・・インターフェース
10・・・空調用室内機
20、20a1、20a2、20an・・・環境設定端末
30・・・空調制御装置
101・・・通信部
102・・・送風機構
201・・・出力部
202・・・表示部
203・・・入力部
204・・・記憶部
301・・・取得部
302・・・特定部
303・・・制御部
1 · · · air conditioning system 5 · · · computer 6 · · · CPU
7 ... main memory 8 ... storage 9 ... interface 10 ... air conditioning indoor unit 20, 20a1, 20a2, 20an ... environment setting terminal 30 ... air conditioning control device 101 ... communication unit 102: Air blowing mechanism 201: Output unit 202: Display unit 203: Input unit 204: Storage unit 301: Acquisition unit 302: Identification unit 303: Control unit

Claims (7)

  1.  複数の利用者それぞれから要求環境設定を取得する要求環境取得部と、
     前記複数の利用者それぞれが存在する利用者位置を取得する位置取得部と、
     前記要求環境設定及び前記利用者位置に基づいて、前記要求環境設定を設定した前記複数の利用者の利用者位置における環境を前記要求環境設定に近づける実環境設定を特定する特定部と、
     前記特定された実環境設定に基づいて、空調用室内機を制御する制御部と、
     を備える空調制御装置。
    A request environment acquisition unit that acquires request environment settings from each of a plurality of users;
    A position acquisition unit for acquiring a user position where each of the plurality of users is present;
    An identifying unit that identifies, based on the request environment setting and the user position, an actual environment setting that brings the environment at the user position of the plurality of users who set the request environment setting closer to the request environment setting;
    A control unit configured to control the indoor unit for air conditioning based on the specified actual environment setting;
    An air conditioning control device comprising:
  2.  前記実環境設定は、
     温度、風量、湿度及び風向のうち少なくとも1つの設定である、
     請求項1に記載の空調制御装置。
    The real environment setting is
    At least one setting of temperature, air volume, humidity and air direction,
    The air conditioning control device according to claim 1.
  3.  前記要求環境取得部は、
     前記要求環境設定を前記複数の利用者それぞれの環境設定端末から取得する、
     請求項1または請求項2に記載の空調制御装置。
    The required environment acquisition unit
    Acquiring the required environment setting from an environment setting terminal of each of the plurality of users;
    The air conditioning control device according to claim 1 or 2.
  4.  前記位置取得部は、
     前記利用者位置を前記複数の利用者それぞれの環境設定端末から取得する、
     請求項1から請求項3の何れか一項に記載の空調制御装置。
    The position acquisition unit
    Acquiring the user position from an environment setting terminal of each of the plurality of users;
    The air conditioning control device according to any one of claims 1 to 3.
  5.  請求項1から請求項4の何れか一項に記載の空調制御装置と、
     前記空調制御装置による制御に基づいて、空気を送り出す空調用室内機と、
     を備える空調システム。
    The air conditioning control device according to any one of claims 1 to 4;
    An air conditioning indoor unit that delivers air based on control by the air conditioning control device;
    An air conditioning system comprising
  6.  複数の利用者それぞれから要求環境設定を取得することと、
     前記複数の利用者それぞれが存在する利用者位置を取得することと、
     前記要求環境設定及び前記利用者位置に基づいて、前記要求環境設定を設定した前記複数の利用者の利用者位置における環境を前記要求環境設定に近づける実環境設定を特定することと、
     前記特定された実環境設定に基づいて、空調用室内機を制御することと、
     を含む制御方法。
    Obtaining required environment settings from each of a plurality of users,
    Obtaining a user position where each of the plurality of users exists;
    Specifying an actual environment setting for bringing an environment at the user position of the plurality of users who set the required environment setting closer to the required environment setting based on the required environment setting and the user position;
    Controlling the air conditioning indoor unit based on the specified real environment setting;
    Control method including:
  7.  コンピュータに、
     複数の利用者それぞれから要求環境設定を取得することと、
     前記複数の利用者それぞれが存在する利用者位置を取得することと、
     前記要求環境設定及び前記利用者位置に基づいて、前記要求環境設定を設定した前記複数の利用者の利用者位置における環境を前記要求環境設定に近づける実環境設定を特定することと、
     前記特定された実環境設定に基づいて、空調用室内機を制御することと、
     を実行させるプログラム。
    On the computer
    Obtaining required environment settings from each of a plurality of users,
    Obtaining a user position where each of the plurality of users exists;
    Specifying an actual environment setting for bringing an environment at the user position of the plurality of users who set the required environment setting closer to the required environment setting based on the required environment setting and the user position;
    Controlling the air conditioning indoor unit based on the specified real environment setting;
    A program that runs
PCT/JP2018/015772 2017-06-30 2018-04-16 Air conditioning control device, air conditioning system, control method, and program WO2019003584A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18824193.9A EP3647674A1 (en) 2017-06-30 2018-04-16 Air conditioning control device, air conditioning system, control method, and program
CN201880055948.3A CN111033141A (en) 2017-06-30 2018-04-16 Air conditioning control device, air conditioning system, control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128992 2017-06-30
JP2017128992A JP2019011916A (en) 2017-06-30 2017-06-30 Air conditioner, air conditioning system, control method, and program

Publications (1)

Publication Number Publication Date
WO2019003584A1 true WO2019003584A1 (en) 2019-01-03

Family

ID=64741288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015772 WO2019003584A1 (en) 2017-06-30 2018-04-16 Air conditioning control device, air conditioning system, control method, and program

Country Status (4)

Country Link
EP (1) EP3647674A1 (en)
JP (1) JP2019011916A (en)
CN (1) CN111033141A (en)
WO (1) WO2019003584A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022540964A (en) * 2019-10-04 2022-09-20 三菱電機株式会社 Systems and methods for individualized thermal comfort control
CN115235065A (en) * 2022-07-14 2022-10-25 小米科技(武汉)有限公司 Control method and device of desktop air conditioner and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015414A (en) * 2017-07-03 2019-01-31 三菱重工サーマルシステムズ株式会社 Air conditioning control device, environment setting terminal, air conditioning control method, and program
JP7084209B2 (en) * 2018-06-04 2022-06-14 リズム株式会社 Thermo-hygrometer and thermo-humidity control system
CN110173864B (en) * 2019-05-29 2021-03-19 广东美的制冷设备有限公司 Control method of air conditioner, air conditioner and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107782A (en) * 2005-10-12 2007-04-26 Daikin Ind Ltd Air conditioning control system and air conditioning control device
JP2011075138A (en) * 2009-09-29 2011-04-14 Mitsubishi Electric Corp Environment control system, portable terminal, environment control method and program
JP4737037B2 (en) 2006-10-31 2011-07-27 ダイキン工業株式会社 Air conditioning control device, air conditioning control method, and air conditioning control program
JP2013124809A (en) * 2011-12-14 2013-06-24 Mitsubishi Electric Building Techno Service Co Ltd Device, system and program for controlling air conditioning
JP2015087102A (en) * 2013-09-26 2015-05-07 株式会社リコー Apparatus management system, apparatus management device, control method and program
JP2017128992A (en) 2016-01-21 2017-07-27 哲夫 須田 Sawtooth type laying bulkhead method of different diameter hole fish bed block

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650223B2 (en) * 2005-11-11 2011-03-16 ダイキン工業株式会社 Air conditioning management device, air conditioning control system, air conditioning management method, and air conditioning management program
JP2007173126A (en) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd Space control system
JP4826351B2 (en) * 2006-06-12 2011-11-30 ダイキン工業株式会社 Environmental control device
CN102494391A (en) * 2011-11-23 2012-06-13 海信科龙电器股份有限公司 Method and system for acquiring ambient temperature
CN104729001B (en) * 2013-12-23 2019-12-13 珠海格力电器股份有限公司 air conditioner control method, device and system
JP6181552B2 (en) * 2013-12-27 2017-08-16 アズビル株式会社 Entrance / exit management system
CN103868207A (en) * 2014-03-06 2014-06-18 美的集团股份有限公司 Method for controlling indoor environment with air conditioner
CN104676843B (en) * 2015-03-17 2017-12-08 广东美的暖通设备有限公司 Air conditioning control method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107782A (en) * 2005-10-12 2007-04-26 Daikin Ind Ltd Air conditioning control system and air conditioning control device
JP4737037B2 (en) 2006-10-31 2011-07-27 ダイキン工業株式会社 Air conditioning control device, air conditioning control method, and air conditioning control program
JP2011075138A (en) * 2009-09-29 2011-04-14 Mitsubishi Electric Corp Environment control system, portable terminal, environment control method and program
JP2013124809A (en) * 2011-12-14 2013-06-24 Mitsubishi Electric Building Techno Service Co Ltd Device, system and program for controlling air conditioning
JP2015087102A (en) * 2013-09-26 2015-05-07 株式会社リコー Apparatus management system, apparatus management device, control method and program
JP2017128992A (en) 2016-01-21 2017-07-27 哲夫 須田 Sawtooth type laying bulkhead method of different diameter hole fish bed block

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022540964A (en) * 2019-10-04 2022-09-20 三菱電機株式会社 Systems and methods for individualized thermal comfort control
JP7337271B2 (en) 2019-10-04 2023-09-01 三菱電機株式会社 Systems and methods for individualized thermal comfort control
CN115235065A (en) * 2022-07-14 2022-10-25 小米科技(武汉)有限公司 Control method and device of desktop air conditioner and storage medium
CN115235065B (en) * 2022-07-14 2023-12-12 小米科技(武汉)有限公司 Control method and device of desktop air conditioner and storage medium

Also Published As

Publication number Publication date
JP2019011916A (en) 2019-01-24
CN111033141A (en) 2020-04-17
EP3647674A1 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
WO2019003584A1 (en) Air conditioning control device, air conditioning system, control method, and program
CN110910503B (en) Simulation method and device for air conditioning environment
US20140100700A1 (en) Air conditioning control system, air conditioning control method and recording medium
KR102121785B1 (en) Air-conditioner controlling direction of the wind using artificial intelligence by instructed position and method of controlling thereof
JP2019532543A5 (en)
JPWO2018179750A1 (en) ENVIRONMENT CONTROL SYSTEM AND ENVIRONMENT CONTROL METHOD
WO2019009045A1 (en) Air conditioning control device, environment setting terminal, air conditioning control method, and program
WO2019009291A1 (en) Air conditioning control device, air conditioning system, air conditioning control method, and program
CN108370488B (en) Audio providing method and apparatus thereof
WO2019021675A1 (en) Air conditioning control device, air conditioning system, air conditioning control method, and program
JP2016080343A (en) Method and device for controlling air conditioning system
JP7231403B2 (en) Air conditioning control system and method
WO2019008960A1 (en) Air conditioning control device, environmental setting terminal, air conditioning control method, and program
JP2016056973A (en) Air conditioning control device, air conditioning control method and air conditioning control program
WO2019077856A1 (en) Position estimation device, air conditioning system, position estimation method, and program
JP2005164836A5 (en)
JP2022151708A (en) Determination device, determination system, determination method, and determination program
JP6698959B2 (en) Controller, radiation air conditioning equipment, control method and control program
KR20170138723A (en) Electronic device, external server and controlling method thereof
CN111033139A (en) Air conditioning control device, air conditioning system, air conditioning control method, and program
CN112923532B (en) Method and device for regulating indoor temperature, electronic equipment and storage medium
JP2020012568A (en) Control device, control system, control method, and program
JP2014235669A (en) Monitoring device
JPWO2019186993A1 (en) Terminal devices, device control systems, device control methods and programs
US20210302049A1 (en) System, method, and computer program product for human thermal comfort-oriented control of multi system hvac devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018824193

Country of ref document: EP

Effective date: 20200130