WO2019003495A1 - 複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置 - Google Patents

複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置 Download PDF

Info

Publication number
WO2019003495A1
WO2019003495A1 PCT/JP2018/007966 JP2018007966W WO2019003495A1 WO 2019003495 A1 WO2019003495 A1 WO 2019003495A1 JP 2018007966 W JP2018007966 W JP 2018007966W WO 2019003495 A1 WO2019003495 A1 WO 2019003495A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
learning
operation unit
units
operation timing
Prior art date
Application number
PCT/JP2018/007966
Other languages
English (en)
French (fr)
Inventor
伊藤 洋
山本 健次郎
佑介 日永田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US16/609,295 priority Critical patent/US11440185B2/en
Priority to CN201880031153.9A priority patent/CN110621450B/zh
Publication of WO2019003495A1 publication Critical patent/WO2019003495A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40302Dynamically reconfigurable robot, adapt structure to tasks, cellular robot, cebot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40304Modular structure

Definitions

  • the present invention relates to an apparatus for integrating a plurality of operating units, a control method therefor, and an autonomous learning robot apparatus, and more particularly, an operating unit comprising an actuator, a sensor and a learning device, and an integrated module integrating a plurality of operating units.
  • the present invention relates to a multiple motion unit integration device, a control method thereof, and an autonomous learning robot device.
  • This autonomous learning type robot device is expected to be able to generate flexible motion for various environmental changes by storing and learning the motion experience of the robot device itself.
  • the operation experience of the robot apparatus includes, for example, a method in which an operator or a user directly teaches and stores an operation on the robot apparatus, and a method in which an operation of a person or another robot apparatus is mimicked.
  • an autonomous learning robot apparatus is provided with a learning device called a learning device, and storage of sensor information at the time of operation experience and parameter adjustment for generating an operation are performed.
  • the stored operation is called learning data
  • adjustment of parameters is called learning
  • learning of the learning device is performed using the learning data.
  • the learning device defines the input / output relationship in advance, and repeatedly performs learning so that the expected output value is output for the input value to the learning device.
  • joint angle information of the robot apparatus at the time of operation experience is stored as time-series information. It is assumed that joint angle information at time (t) is input to the learning device using the obtained learning data, and time-series learning is performed so as to predict joint angle information at time (t + 1). Then, by sequentially inputting the joint angle information of the robot apparatus to the learning device for which learning has been completed, the autonomous learning robot apparatus can automatically generate an operation according to its own state.
  • Non-Patent Document 1 can generate a plurality of motion patterns based on sensor information by integrating and learning a plurality of sensor information, and automatically according to changes in the environment. Has acquired the ability to generate motion.
  • Patent Document 1 is a robot apparatus configured of a plurality of operation units, and by storing the operation history of the operation units in the storage means, the operation can be determined even when the operation units are replaced, A robot device is realized that can be compared to improve usability. By evaluating the operation result of each operation unit based on predetermined criteria and performing operation optimization, the ability to determine an operation suitable for an externally applied instruction is obtained.
  • the autonomous learning robot device can realize flexible motion generation against various environmental changes.
  • the number of inputs / outputs to the learning device and the type of input / output information change, so learning data must be stored again to learn the learning device.
  • the problem is that it takes time and effort. Therefore, it is difficult to apply the acquired learning device to robots with different structures and degrees of freedom, and there is a problem that the usability is poor.
  • Patent Document 1 it is possible to optimize the operation of each operation unit because the operation result of each operation unit is updated based on a predetermined standard with respect to the target operation. However, optimization of the operation of the entire robot apparatus is difficult.
  • the present invention has been made in consideration of the above points, and is provided with scale extensibility, and a multi-operation unit integrated device capable of generating an optimum operation of the entire device capable of generating an optimum operation of the entire device, It is an object of the present invention to provide a control method thereof and an autonomous learning robot apparatus.
  • the present invention is “a multiple operation unit integrated device comprising a plurality of operation units having movable parts and an integration module, and the integration module includes a plurality of operation units input from the outside.
  • a plurality of operation learners including an operation timing unit for giving an operation timing signal to an operation unit, the operation unit generating a control signal to be given to the movable part according to the operation timing signal from the operation timing unit of the integrated module.
  • driving means for driving the movable part of the operation unit according to the control signal, and a sensor for detecting the state quantity of the movable part driven by the driving means,
  • An autonomous learning type robot device configured as a control part is an operation unit integration device.
  • the present invention is also directed to “a control method of a multiple operation unit integrated device comprising a plurality of operation units having movable parts and an integration module, wherein the integration module separates a series of operation instructions inputted from the outside.
  • the operation instruction is disassembled, an individual operation unit which accepts the decomposed operation instruction is designated, and an operation timing signal is given, and the designated operation unit drives the movable unit in response to the operation timing signal from the integrated module Control method of the multi-operation unit integrated device characterized by
  • the operation unit can be replaced, and the scale-scalability of the autonomous learning robot apparatus and the generation of the optimum operation of the entire autonomous learning robot apparatus can be achieved.
  • FIG. 2 is a view showing operation unit groups of operation units constituting an autonomous learning robot apparatus.
  • FIG. 1 shows a typical configuration example of an autonomous learning robot apparatus.
  • the typical autonomous learning robot 1 is constituted by a plurality of operation units, and in the example of FIG. 1, the upper limb operating unit 2 and the lower limb operating unit 3 are connected to constitute the autonomous learning robot 1 .
  • the operation unit 2A selected as the upper limb operation unit 2 is composed of the head, body and arms, etc.
  • 3A selected as the lower limb operation unit 3 is composed of knees and feet, etc.
  • a human-type autonomous learning robot 1 is configured by connecting the operation units 3A.
  • Each operation unit 2 and 3 is provided with a sensor and an operation learning device for generating an operation autonomously.
  • the unit of the part where the operation unit is arranged can be set for each unit such as the head, body and arms, but here an example in which the operation unit is arranged for two of the upper and lower limbs is shown There is.
  • FIG. 2 is a diagram showing operation unit groups of operation units constituting the autonomous learning type robot apparatus.
  • the motion units 2 and 3 of the upper and lower limbs are applicable to several functions depending on the function to be performed as the upper and lower limbs of the autonomous learning robot device 1.
  • one upper limb motion unit 2 A is selected as the upper limb motion unit 2 from the upper limb motion unit group 2 consisting of a plurality of types of motion units 2 A, 2 B, 2 C.
  • An autonomous learning robot device can be configured by selecting one lower limb motion unit 3A from the lower limb motion unit group 3 consisting of a plurality of types of motion units 3A and 3B and connecting them in a predetermined state.
  • the upper limb motion unit 2B is selected from the upper limb motion unit group 2 and replaced with the currently connected upper limb motion unit 2A.
  • the operation unit it is possible to realize the scalability of the autonomous learning robot apparatus.
  • Each operation unit in the upper-limb operation unit group 2 shown in FIG. 2 smoothly executes these operations for each of a plurality of operations such as an object gripping operation which is an operation function to be performed as an upper-limb operation unit and a door opening operation.
  • Programs and learning functions are provided to a plurality of motion learners in the upper limb motion unit.
  • each motion unit in the lower limb motion unit group 3 smoothly performs these operations for each of a plurality of motions such as movement to a destination which is a motion function to be performed as the lower limb motion unit and obstacle avoidance.
  • Programs and learning functions are provided to a plurality of motion learners in the lower limb motion unit.
  • Each operation unit given an operation instruction can select an operation learning device corresponding to the operation instruction from among the plurality of operation learning devices, and can operate autonomously based on sensor information. For example, when the movement instruction to the upper limb movement unit 2A is "door opening movement”, the upper limb movement unit 2A selects a movement learning device for "door opening movement” from among a plurality of movement learning devices, based on sensor information. Can operate autonomously. Similarly, for example, when the movement instruction to the lower limb movement unit 3A is "door passing movement”, the lower limb movement unit 3A selects a movement learning device for "door passing movement” from among a plurality of movement learning devices. , Autonomously based on sensor information.
  • the “door opening passage movement” is a combination of the upper limb movement “door opening” and the lower leg movement “door passing”. It can not be generated.
  • the cooperation between the operation units is realized by providing the integrated module that manages the operation timing of each operation unit so that the operation units can operate in cooperation.
  • FIG. 3 shows a configuration example of a multiple operation unit integration device provided with an integration module that manages the operation timing of each operation unit.
  • FIG. 3 shows a multi-operation unit integration device for realizing an autonomous learning type robot device which operates based on information from the outside.
  • the multi-operation unit integration device of FIG. 3 is configured of a plurality of operation units UN (UN1... UNN) and an integration module M.
  • UN1 corresponds to the upper limb motion unit 2
  • UNN corresponds to the lower limb motion unit 3, for example.
  • the integrated module M is disposed at an appropriate place of the autonomous learning robot apparatus.
  • the integrated module M sends the operation timing signal T (T1... TN) to each operation unit UN (UN1... UNN) according to the information OP of the operation instruction from the outside, and each operation unit UN (UN1 .. UNN) Receive and monitor sensor information S (S1 ⁇ ⁇ ⁇ SN) from.
  • the integrated module M has a plurality of operation timing devices MT (MT1... MTm) for each of the robot apparatus configuration (for example, the combination of the upper and lower limbs operating units 2 and 3) and the operation instruction (for example And select an appropriate operation timing device based on the operation instruction.
  • the operation timing unit MT generates an operation timing signal T (T1... TN) based on sensor information S (S1... SN) of each operation unit UN (UN1... UNN), and each operation unit UN (UN1. Send to UNN).
  • T (T1 ⁇ ⁇ ⁇ TN) in addition to the operation start and operation end of each operation unit UN (UN1 ⁇ ⁇ UNN), the operation speed, operation stop and restart etc. of each operation unit can be instructed. It is possible.
  • the function of the integrated module M is a series of given operation instructions “door opening passage operation” divided into individual operation instructions “door opening” and “door passage” for each operation unit, It can be said that the individual operation units for which the operation instructions are disassembled are specified.
  • the operation unit UN in addition to the sensor 10, the operation unit UN is configured by a plurality of operation learning units 12, a storage unit 13, and a plurality of movable units 11.
  • the plurality of movement learning devices 12 perform these operations every operation such as an object grasping movement which is an operation function to be performed as the upper limb movement unit
  • a program and a learning function for smooth execution are provided in the operation learning device.
  • a program for smoothly performing these operations for each movement such as movement to the destination which is an operating function to be performed as the lower extremity operating unit or obstacle avoidance
  • a learning function is provided in the action learning device.
  • the movable part 11 is appropriately provided to a portion which is a main node of the upper limb between the head, the body, the arm and the like, and further to each node for constituting a hand.
  • the door opening operation is performed from among the plurality of operation learning devices 12
  • the motion learning unit 12 specialized is selected, and the movable unit 11 is operated using sensor information obtained via the sensor 10 including a camera, a potentiometer, a force sensor, a tactile sensor and the like.
  • the operation learning device 12 specialized to the door opening operation performs individual operation instruction information broken down for each of the plurality of movable portions 11 in order to realize this operation by the coordinated operation of the plurality of movable portions 11. It is giving. Further, although not shown in FIG.
  • the operation learning device 12 generates a control signal and supplies it to the drive means, and the movable portion 11 is operated by the drive means. Further, when operating the movable portion 11, the sensor information S from the sensor 10 is appropriately used as a feedback signal for position control and the like.
  • the operation unit UN can operate alone, but can also operate based on the operation timing signal T and the operation instruction from the integrated module M.
  • the autonomous learning type robot apparatus configured of the upper limb operating unit UN1 learning the door opening operation and the lower limb operating unit UNN learning the door passing operation
  • the operation timing signal T generated by the operation timing unit MT Based on the operation of each operation unit UN (UN1... UNN), the lower limb operating unit UNN approaches the door, the upper limb operating unit UN1 generates the door opening operation, and the lower limb operating unit UNN pushes the door open
  • the autonomous learning robot apparatus 1 can appropriately operate each operation unit based on the operation instruction OP and the sensor information S given from the outside.
  • the operation timing unit MT is based on the sensor information S of each operation unit UN, the unsupervised learning method of acquiring the optimum operation timing by trial and error of the robot apparatus itself, and the operation timing of the autonomous learning type robot apparatus. Based on the sensor information S at the time of teaching a pattern, the robot apparatus learns operation timing by using a supervised learning method or the like in which the operation timing is self-organized by learning.
  • evaluation is performed on predetermined evaluation criteria, such as operation efficiency and energy efficiency, and learning is performed so that the evaluation becomes high.
  • the sensor information S of each operation unit UN is input to the operation timing unit MT learned based on a predetermined reference to generate an optimum operation timing.
  • the autonomous learning type robot device 1 learns the operation timing of the operation unit suitable for executing and achieving the operation instruction in the integrated module M, and generates the operation timing of the operation unit MT, It becomes possible to generate the optimum motion of the entire autonomous learning type robot device.
  • FIG. 4 is a view showing a modification of each operation unit group constituting the autonomous learning type robot apparatus.
  • an autonomous learning type robot is configured by selecting and connecting one hand operation unit 11A from the robot arm operation unit 10A and the plurality of types of hand operation unit groups 11.
  • one autonomous learning robot apparatus is configured using a plurality of operation units UN and the integrated module M, but one autonomous learning robot apparatus may be one operation unit.
  • the robot system may be configured by a plurality of autonomous learning robot devices and an integrated module.
  • the robot apparatus can be configured as an autonomous learning robot apparatus with a plurality of operating units and an integrated module configured to integrate and generate the operation generation timing of the operating units. It is possible to generate an action even by changing the configuration of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Feedback Control In General (AREA)

Abstract

規模拡張性を備え、装置全体の最適動作を生成することができる複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置を提供することを目的とする。可動部を有する複数の動作ユニットと、統合モジュールから構成される複数動作ユニット統合装置であって、統合モジュールは、外部から入力される動作指示に基づいて複数の動作ユニットに対して、動作タイミング信号を与える動作タイミング器を備え、動作ユニットは、統合モジュールの動作タイミング器からの動作タイミング信号に応じて、可動部に与える制御信号を発生する複数の動作学習器と、制御信号に従って動作ユニットの可動部を駆動する駆動手段と、駆動手段によって駆動される可動部の状態量を検出するセンサを備えていることを特徴とする複数動作ユニット統合装置、さらには複数動作ユニット統合装置を制御部分として構成された自律学習型ロボット装置。

Description

複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置
 本発明は、複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置に係り、特にアクチュエータとセンサと学習器からなる動作ユニット、及び複数の動作ユニットを統合する統合モジュールにより構成された複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置に関する。
 従来のロボット装置の構築に際しては、膨大なプログラミングや高い専門知識が必要であり、ロボット装置導入の阻害要因になっている。そこで、ロボット装置に取り付けられた各種センサ情報に基づいて、ロボット装置自身で動作を決定する自律学習型ロボット装置が提案されている。
 この自律学習型ロボット装置は、ロボット装置自らの動作経験を記憶・学習することで多様な環境変化に対し柔軟な動作生成が可能ではないかと期待されている。なおロボット装置の動作経験とは、例えば、オペレータ又はユーザがロボット装置に動作を直接教え記憶させる方法や、人や他のロボット装置の動作を見て真似る方法などが挙げられる。
 一般的に、自律学習型ロボット装置には、学習器と呼ばれる学習装置が備えられており、動作経験時のセンサ情報の記憶と、動作を生成するためのパラメータ調整が行われている。この記憶された動作を学習データ、パラメータの調整を学習と呼び、学習データを用いて学習器の学習を行う。学習器は、あらかじめ入出力の関係を定義し、学習器への入力値に対し期待した出力値が出力されるように学習を繰り返し行う。
 例えば、ある動作経験時のロボット装置の関節角情報を時系列情報として記憶する。得られた学習データを用いて、学習器に、時刻(t)の関節角情報を入力し、時刻(t+1)の関節角情報を予測するように時系列学習させたとする。そして、学習が完了した学習器にロボット装置の関節角情報を逐次入力することで、自律学習型ロボット装置は、自身の状態に応じて自動的に動作を生成することが可能になる。
 ロボット装置の学習に関し、非特許文献1は、複数のセンサ情報を統合して学習させることで、センサ情報に基づいて複数の動作パターンの生成が可能であり、環境の変化に応じて自動的に動作を生成する能力を獲得している。
 また特許文献1は、複数の動作ユニットから構成されるロボット装置において、動作ユニットの動作履歴を記憶手段に記憶することにより、動作ユニットを交換した場合でも、動作を決定することができ、従来と比較して使い勝手を向上し得るロボット装置を実現している。所定の基準に基づいて各動作ユニットの動作結果を評価し、動作の最適化を行うことで、外部から与えられる命令に適した動作を決定する能力を獲得している。
国際公開番号WO00/41853
タイトル:深層学習を用いた多自由度ロボットによる柔軟物の折り畳み動作生成著者:鈴木彼方,高橋城志,ゴードンチェン,尾形哲也学会名:情報処理学会 第78回全国大会発表日:2015年3月10日場所:慶應義塾大学
 非特許文献1によれば、自律学習型ロボット装置は、多様な環境変化に対し柔軟な動作生成を実現することができる。しかしながら、学習が完了した自律学習型ロボット装置の構造を変更する場合、学習器への入出力数や入出力情報の種類が変化することから、再度学習データを記憶し、学習器を学習させなければならず、手間と時間がかかるという問題がある。そのため、獲得した学習器を異構造、異自由度のロボットへ適用することは困難であり、使い勝手が悪いという問題がある。
 特許文献1は、目的動作に対し、各動作ユニットの動作結果を所定の基準に基づいて更新するため、各動作ユニットの動作を最適化することは可能である。しかし、ロボット装置全体の動作の最適化が困難である。
 本発明は、以上の点を考慮してなされたもので、規模拡張性を備え、装置全体の最適動作を生成することができる装置全体の最適動作を生成することができる複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置を提供することを目的とする。
 以上のことから本発明は、「可動部を有する複数の動作ユニットと、統合モジュールから構成される複数動作ユニット統合装置であって、統合モジュールは、外部から入力される動作指示に基づいて複数の動作ユニットに対して、動作タイミング信号を与える動作タイミング器を備え、動作ユニットは、統合モジュールの動作タイミング器からの動作タイミング信号に応じて、可動部に与える制御信号を発生する複数の動作学習器と、制御信号に従って動作ユニットの可動部を駆動する駆動手段と、駆動手段によって駆動される可動部の状態量を検出するセンサを備えていることを特徴とする複数動作ユニット統合装置、さらには複数動作ユニット統合装置を制御部分として構成された自律学習型ロボット装置」としたものである。
 また本発明は、「可動部を有する複数の動作ユニットと、統合モジュールから構成される複数動作ユニット統合装置の制御方法であって、統合モジュールは、外部から入力される一連の動作指示を個別の動作指示に分解し、分解された動作指示を請け負う個別の動作ユニットを指定して、動作タイミング信号を与え、指定された動作ユニットは、統合モジュールからの動作タイミング信号に応じて、可動部を駆動することを特徴とする複数動作ユニット統合装置の制御方法」としたものである。
 本発明により、動作ユニットの交換が可能であり、自律学習型ロボット装置の規模拡張性と、自律学習型ロボット装置全体の最適動作の生成が可能になる。
自律学習型ロボット装置の典型的な構成例を示す図。 自律学習型ロボット装置を構成する各動作ユニットの動作ユニット群を示す図。 各動作ユニットの動作タイミングを管理する統合モジュールを備えた複数動作ユニット統合装置の構成例を示す図。 自律学習型ロボット装置を構成する各動作ユニット群の変形例を示す図。
 本発明の実施例について図面を参照して説明する。
 図1に、自律学習型ロボット装置の典型的な構成例を示している。典型的な自律学習型ロボット装置1は、複数の動作ユニットにより構成されており、図1の例では上肢動作ユニット2と下肢動作ユニット3が連結されて自律学習型ロボット装置1が構成されている。またこの例では上肢動作ユニット2として選択された動作ユニット2Aは、頭部と胴体と腕などから構成され、下肢動作ユニット3として選択された3Aは膝や足などから構成され、動作ユニット2Aと動作ユニット3Aを連結することにより、人型の自律学習型ロボット装置1を構成したものである。各動作ユニット2,3には、自律的に動作を生成するためのセンサや動作学習器を備えている。なお、動作ユニットを配置する部位の単位としては、頭部と胴体と腕などの単位ごとに設定することが可能であるが、ここでは上下肢の2つについて動作ユニットを配置した例を示している。
 図2は、自律学習型ロボット装置を構成する各動作ユニットの動作ユニット群を示す図である。上下肢の動作ユニット2,3は、自律学習型ロボット装置1の上下肢として果たすべき機能に応じて、幾つかの機能のものが適用可能である。例えば図2に示すように、上肢動作ユニット2として、複数種類の動作ユニット2A、2B,2Cからなる上肢動作ユニット群2の中から1つの上肢動作ユニット2Aを選択し、下肢動作ユニット3として、複数種類の動作ユニット3A、3Bからなる下肢動作ユニット群3の中から1つの下肢動作ユニット3Aを選択して所定状態に連結することにより、自律学習型ロボット装置を構成することができる。このように、上下肢の2つの動作ユニットの組み合わせにより、多様な動作、多様な機能の自律学習型ロボット装置を実現することが可能である。
 そして自律学習型ロボット装置1においては、上肢動作ユニット2Aを交換する必要が生じた場合、上肢動作ユニット群2から例えば上肢動作ユニット2Bを選択し、現在連結されている上肢動作ユニット2Aと交換することにより、動作ユニットの変更が可能である。かくして、自律学習型ロボット装置の規模拡張性を実現することが可能である。
 次に、自律学習型ロボット装置の動作方法について説明する。図2に示す上肢動作ユニット群2内の各動作ユニットは、上肢動作ユニットとして果たすべき動作機能である物体把持動作や、ドア開け動作などの複数の動作ごとに、これらの動作を円滑に実行させるためのプログラム及び学習機能を上肢動作ユニット内の複数の動作学習器に備えている。また下肢動作ユニット群3内の各動作ユニットは、下肢動作ユニットとして果たすべき動作機能である目的地への移動や、障害物回避などの複数の動作ごとに、これらの動作を円滑に実行させるためのプログラム及び学習機能を下肢動作ユニット内の複数の動作学習器に備えている。
 動作指示を与えられた各動作ユニットは、複数の動作学習器の中から動作指示に対応した動作学習器を選択し、センサ情報に基づいて自律的に動作することが可能である。例えば上肢動作ユニット2Aに対する動作指示が「ドア開け動作」である時、上肢動作ユニット2Aは複数の動作学習器の中から、「ドア開け動作」についての動作学習器を選択し、センサ情報に基づいて自律的に動作することができる。また同様にして、例えば下肢動作ユニット3Aに対する動作指示が「ドア通過動作」である時、下肢動作ユニット3Aは複数の動作学習器の中から、「ドア通過動作」についての動作学習器を選択し、センサ情報に基づいて自律的に動作することができる。
 しかしながら自律学習型ロボット装置1は、単純に上肢動作ユニット2Aと下肢動作ユニット3Aを連結しても、上肢動作「ドア開け」と下肢動作「ドア通過」を組み合わせた、「ドア開け通過動作」を生成することができない。
 このことから本発明では、各動作ユニットが連携動作できるように、各動作ユニットの動作タイミングを管理する統合モジュールを備えることで、各動作ユニット間の連携動作を実現している。
 図3は、各動作ユニットの動作タイミングを管理する統合モジュールを備えた複数動作ユニット統合装置の構成例を示している。図3は、外部からの情報を基に動作する自律学習型ロボット装置を実現するための複数動作ユニット統合装置である。
 図3の複数動作ユニット統合装置は、複数の動作ユニットUN(UN1・・UNN)と統合モジュールMにより構成されている。複数の動作ユニットUNのうちUN1が例えば上肢動作ユニット2に対応し、UNNが例えば下肢動作ユニット3に対応している。また統合モジュールMは、自律学習型ロボット装置の適宜の場所に配置されている。統合モジュールMは、外部からの動作指示の情報OPに応じて各動作ユニットUN(UN1・・UNN)に動作タイミング信号T(T1・・TN)を送り、各動作ユニットUN(UN1・・UNN)からのセンサ情報S(S1・・SN)を受信、監視する。
 統合モジュールMは、ロボット装置の構成(例えば上下肢動作ユニット2,3の組み合わせ)と動作指示(例えば上下肢動作ユニット2,3の動作内容)ごとに複数の動作タイミング器MT(MT1・・MTm)を備え、動作指示に基づいて適切な動作タイミング器を選択する。動作タイミング器MTは、各動作ユニットUN(UN1・・UNN)のセンサ情報S(S1・・SN)に基づいて動作タイミング信号T(T1・・TN)を生成し、各動作ユニットUN(UN1・・UNN)に送出する。動作タイミング信号T(T1・・TN)とは、各動作ユニットUN(UN1・・UNN)の動作開始、動作終了のほかに、各動作ユニットの動作速度や動作停止、再開などを指示することが可能である。
 統合モジュールMの典型的な動作事例は、ロボット装置の構成が上下肢動作ユニット2A,3Aの組み合わせであり、外部からの動作指示の情報OPが「ドア開け通過動作」であるとき、この条件に適合する1つの動作タイミング器MTを選択し、動作ユニットUN1に対して上肢動作「ドア開け」の動作タイミング信号T1を送出し、動作ユニットUNNに対して下肢動作「ドア通過」の動作タイミング信号TNを送出するものである。また各動作のタイミングを定めるに当たり、動作ユニットUN1、UNNのセンサ情報S1、SNを参照し、センサ情報SNから例えば下肢動作ユニット3Aの立ち位置が、開放するドアとの関係で開放に支障のない位置であることを確認し、センサ情報S1から例えば上肢動作ユニット2Aが、ドアの開放に至るまでの一連の動作を支障なく行える位置関係にあることを確認して、各タイミングの送出とする。
 この統合モジュールMの機能は、与えられた一連の動作指示「ドア開け通過動作」を、動作ユニットごとの個別の動作指示「ドア開け」、「ドア通過」に分解して与えたものであり、分解された動作指示を請け負う個別の動作ユニットを指定したものということができる。
 他方動作ユニットUNについてみるとこれは、センサ10の他に複数の動作学習器12、記憶部13、複数の可動部11により構成されている。
 このうち複数の動作学習器12は、例えば上肢動作ユニットUN1(2)であれば、上肢動作ユニットとして果たすべき動作機能である物体把持動作や、ドア開け動作などの動作ごとに、これらの動作を円滑に実行させるためのプログラム及び学習機能を動作学習器内に備えている。また下肢動作ユニットUN2(3)であれば、下肢動作ユニットとして果たすべき動作機能である目的地への移動や、障害物回避などの動作ごとに、これらの動作を円滑に実行させるためのプログラム及び学習機能を動作学習器内に備えている。可動部11は、例えば上肢であれば、頭部と胴体と腕などの間の上肢の主要な節である部分、さらには手を構成するための節ごとに適宜設けられている。
 動作ユニットUN(例えば上肢動作ユニットUN1)においては、統合モジュールMからの動作指示内容(例えばドア開け動作)についての動作タイミング信号Tに基づいて、複数の動作学習器12の中からドア開け動作に特化された動作学習器12を選択し、カメラ、ポテンショメータ、力覚センサ、触覚センサ等からなるセンサ10を介して得られたセンサ情報を用いて可動部11を動作させる。なお、ドア開け動作に特化された動作学習器12は、この動作を複数の可動部11の連係動作により実現するために、複数の各可動部11に対するブレークダウンされた個別の動作指示情報として与えている。また図3には図示していないが、動作学習器12は制御信号を発生して駆動手段に与え、駆動手段により可動部11を操作している。また可動部11を操作する際に、適宜センサ10からのセンサ情報Sを帰還信号として用いて位置制御などに利用している。
 動作ユニットUNは単体で動作することが可能であるが、統合モジュールMからの動作タイミング信号Tと動作指示に基づいて動作することも可能である。
 これにより、例えば、ドア開け動作を学習した上肢動作ユニットUN1と、ドア通過動作を学習した下肢動作ユニットUNNから構成される自律学習型ロボット装置において、動作タイミング器MTが生成する動作タイミング信号Tに基づいて、各動作ユニットUN(UN1・・UNN)を動作させることで、下肢動作ユニットUNNがドアへ接近し、上肢動作ユニットUN1がドア開け動作を生成し、下肢動作ユニットUNNがドアを押し開けるといった、一連のドア開け通過動作を生成することが可能である。このように自律学習型ロボット装置1は、外部から与えられる動作指示OPとセンサ情報Sに基づいて、各動作ユニットを適切に動作することが可能である。
 次に、統合モジュールMの動作タイミング器MTにおける動作学習機能の獲得方法について説明する。動作タイミング器MTは、各動作ユニットUNのセンサ情報Sを基に、ロボット装置自身の試行錯誤により最適な動作タイミングを獲得する教師なし学習法や、人が自律学習型ロボット装置に動作タイミングを数パターン教示した際のセンサ情報Sを基に、ロボット装置が動作タイミングを学習により自己組織化する教師あり学習法などを用いることで、動作タイミングの学習を行う。
 いずれの手法も、所定の評価基準、例えば動作効率やエネルギー効率などに関して評価を行い、評価が高くなるように学習を行う。所定の基準に基づいて学習された動作タイミング器MTに、各動作ユニットUNのセンサ情報Sを入力することで、最適動作タイミングの生成を行う。
 以上の構成において、自律学習型ロボット装置1は、統合モジュールMにて、動作指示を実行し達成するために適した動作ユニットの動作タイミングを、動作タイミング器MTで学習し、生成することにより、自律学習型ロボット装置全体の最適動作の生成が可能になる。
 上記の実施例では、動作ユニットとして、上肢動作ユニット2と下肢動作ユニット3を用いたが、動作ユニットの単位を変更した例を図4に示す。図4は、自律学習型ロボット装置を構成する各動作ユニット群の変形例を示す図である。図4においては、ロボットアーム動作ユニット10Aと、複数種類のハンド動作ユニット群11の中から、1つのハンド動作ユニット11Aを選択し、連結することにより自律学習型ロボットを構成したものである。
 また上記の実施例では、複数の動作ユニットUNと統合モジュールMを用いて1台の自律学習型ロボット装置を構成していたが、1台の自律学習型ロボット装置を1つの動作ユニットとすることで、複数の自律学習型ロボット装置と統合モジュールによるロボットシステムを構成しても良い。
 以上説明した本発明によれば、複数の動作ユニットと、動作ユニットの動作生成タイミングを学習・生成する統合モジュールにより構成された複数動作ユニット統合装置による自律学習型ロボット装置とすることで、ロボット装置の構成を変化させても動作を生成することが可能である。
1:自律学習型ロボット装置、2:上肢動作ユニット、3:下肢動作ユニット、2A、2B,2C、3A、3B:動作ユニット、UN(UN1・・UNN):動作ユニット、M:統合モジュール、OP:動作指示の情報、T(T1・・TN):動作タイミング信号、S(S1・・SN):センサ情報、MT:動作タイミング器

Claims (9)

  1.  可動部を有する複数の動作ユニットと、統合モジュールから構成される複数動作ユニット統合装置であって、
     前記統合モジュールは、外部から入力される動作指示に基づいて複数の前記動作ユニットに対して、動作タイミング信号を与える動作タイミング器を備え、
     前記動作ユニットは、前記統合モジュールの前記動作タイミング器からの前記動作タイミング信号に応じて、前記可動部に与える制御信号を発生する複数の動作学習器と、前記制御信号に従って前記動作ユニットの可動部を駆動する駆動手段と、該駆動手段によって駆動される前記可動部の状態量を検出するセンサを備えていることを特徴とする複数動作ユニット統合装置。
  2.  請求項1に記載の複数動作ユニット統合装置であって、
     前記統合モジュール内の複数の前記動作タイミング器は、外部から入力される前記動作指示に応じて選択され、選択された前記動作タイミング器は当該動作タイミング器で定まる前記動作ユニット内の前記動作学習器に対して前記動作タイミング信号を与えることを特徴とする複数動作ユニット統合装置。
  3.  請求項1または請求項2に記載の複数動作ユニット統合装置であって、
     前記統合モジュールの前記動作タイミング信号は、前記動作ユニットの動作内容と動作開始あるいは停止のタイミングを定めたものであることを特徴とする複数動作ユニット統合装置。
  4.  請求項1から請求項3のいずれか1項に記載の複数動作ユニット統合装置であって、
     前記動作ユニット内の複数の前記動作学習器は、前記動作タイミング器からの前記動作タイミング信号に応じて選択され、選択された前記動作学習器は当該動作学習器で定まる前記駆動手段に対して前記制御信号を与えることを特徴とする複数動作ユニット統合装置。
  5.  請求項1から請求項4のいずれか1項に記載の複数動作ユニット統合装置であって、
     前記動作学習器は、前記動作タイミング信号と前記状態量のうち少なくとも1つに基づいて前記駆動手段に対する制御信号を得ることを特徴とする複数動作ユニット統合装置。
  6.  請求項1から請求項5のいずれか1項に記載の複数動作ユニット統合装置であって、
     前記動作ユニットは、前記動作ユニットを駆動したときの前記動作タイミング信号と前記状態量を学習データとして記憶する記憶部を備えており、前記記憶部に記憶された前記学習データを基に、前記動作学習器のパラメータを調整することを特徴とする複数動作ユニット統合装置。
  7.  請求項1から請求項6のいずれか1項に記載の複数動作ユニット統合装置であって、
     前記統合モジュールは、所定の動作を達成するように、前記動作タイミング器のパラメータを調整することを特徴とする複数動作ユニット統合装置。
  8.  請求項1から請求項7のいずれか1項に記載の複数動作ユニット統合装置を制御部分として構成された自律学習型ロボット装置。
  9.  可動部を有する複数の動作ユニットと、統合モジュールから構成される複数動作ユニット統合装置の制御方法であって、
     前記統合モジュールは、外部から入力される一連の動作指示を個別の動作指示に分解し、分解された動作指示を請け負う個別の動作ユニットを指定して、動作タイミング信号を与え、
     指定された前記動作ユニットは、前記統合モジュールからの前記動作タイミング信号に応じて、前記可動部を駆動することを特徴とする複数動作ユニット統合装置の制御方法。
PCT/JP2018/007966 2017-06-30 2018-03-02 複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置 WO2019003495A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/609,295 US11440185B2 (en) 2017-06-30 2018-03-02 Multi-operation unit integration device, control method therefor, and autonomous learning type robot device
CN201880031153.9A CN110621450B (zh) 2017-06-30 2018-03-02 多个动作单元集成装置及其控制方法以及自主学习机器人装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128137 2017-06-30
JP2017128137A JP6811688B2 (ja) 2017-06-30 2017-06-30 複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置

Publications (1)

Publication Number Publication Date
WO2019003495A1 true WO2019003495A1 (ja) 2019-01-03

Family

ID=64741398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007966 WO2019003495A1 (ja) 2017-06-30 2018-03-02 複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置

Country Status (4)

Country Link
US (1) US11440185B2 (ja)
JP (1) JP6811688B2 (ja)
CN (1) CN110621450B (ja)
WO (1) WO2019003495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113128703A (zh) * 2021-04-19 2021-07-16 深圳市思拓智联科技有限公司 基于大数据具备自主学习能力的智能机器人
US11440185B2 (en) * 2017-06-30 2022-09-13 Hitachi, Ltd. Multi-operation unit integration device, control method therefor, and autonomous learning type robot device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11833681B2 (en) * 2018-08-24 2023-12-05 Nvidia Corporation Robotic control system
US11292133B2 (en) * 2018-09-28 2022-04-05 Intel Corporation Methods and apparatus to train interdependent autonomous machines
KR102484686B1 (ko) * 2021-05-03 2023-01-04 네이버랩스 주식회사 다수의 모듈형 로봇들로 구성된 로봇을 제어하는 방법 및 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041853A1 (fr) * 1999-01-18 2000-07-20 Sony Corporation Robot, unite principale de robot et unite de couplage de robot
JP2001038663A (ja) * 1999-07-28 2001-02-13 Yamaha Motor Co Ltd マシンの制御システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319989A (ja) * 2006-06-01 2007-12-13 Matsushita Electric Ind Co Ltd ロボットおよびロボットを用いた扉開閉方法
JP4474569B2 (ja) * 2007-11-07 2010-06-09 Necアクセステクニカ株式会社 充電制御装置、充電制御システム及びそれらに用いる充電制御方法並びにそのプログラム
KR20140092378A (ko) * 2011-11-07 2014-07-23 베크만 컬터, 인코포레이티드 샘플을 처리하기 위한 시스템 및 방법
JP5550671B2 (ja) * 2012-03-29 2014-07-16 株式会社デンソーアイティーラボラトリ 自律走行ロボット及び自律走行ロボットの走行制御方法
US10113280B2 (en) * 2012-12-21 2018-10-30 Michael Todd Letsky Autonomous robot apparatus and method for controlling the same
KR101627519B1 (ko) * 2015-05-04 2016-06-08 재단법인대구경북과학기술원 로봇 원격 제어 장치 및 그 방법
JP6401858B2 (ja) * 2015-05-28 2018-10-10 株式会社日立製作所 ロボット操作装置およびプログラム
JP5925371B1 (ja) * 2015-09-18 2016-05-25 三菱日立パワーシステムズ株式会社 水質管理装置、水処理システム、水質管理方法、および水処理システムの最適化プログラム
WO2017115385A2 (en) * 2015-12-28 2017-07-06 Govindarajan Niranjan Chandrika System and method for operating and controlling a hyper configurable humanoid robot to perform multiple applications in various work environments
JP6706173B2 (ja) * 2016-08-09 2020-06-03 株式会社日立製作所 制御装置、制御方法、および制御プログラム
US11148288B2 (en) * 2017-02-25 2021-10-19 Diligent Robotics, Inc. Systems, apparatus, and methods for robotic learning and execution of skills
JP7008687B2 (ja) * 2017-03-29 2022-01-25 株式会社日立製作所 制御装置及び制御システム
JP6811688B2 (ja) * 2017-06-30 2021-01-13 株式会社日立製作所 複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置
JP6820815B2 (ja) * 2017-09-07 2021-01-27 株式会社日立製作所 学習制御システム及び学習制御方法
CN116070977A (zh) * 2018-03-14 2023-05-05 联邦快递服务公司 执行调度的物流操作的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041853A1 (fr) * 1999-01-18 2000-07-20 Sony Corporation Robot, unite principale de robot et unite de couplage de robot
JP2001038663A (ja) * 1999-07-28 2001-02-13 Yamaha Motor Co Ltd マシンの制御システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11440185B2 (en) * 2017-06-30 2022-09-13 Hitachi, Ltd. Multi-operation unit integration device, control method therefor, and autonomous learning type robot device
CN113128703A (zh) * 2021-04-19 2021-07-16 深圳市思拓智联科技有限公司 基于大数据具备自主学习能力的智能机器人

Also Published As

Publication number Publication date
CN110621450A (zh) 2019-12-27
US11440185B2 (en) 2022-09-13
US20200055183A1 (en) 2020-02-20
JP2019010701A (ja) 2019-01-24
JP6811688B2 (ja) 2021-01-13
CN110621450B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2019003495A1 (ja) 複数動作ユニット統合装置、およびその制御方法、並びに自律学習型ロボット装置
Peternel et al. Robotic assembly solution by human-in-the-loop teaching method based on real-time stiffness modulation
Peternel et al. Human-in-the-loop approach for teaching robot assembly tasks using impedance control interface
JP7244087B2 (ja) 多関節ロボットのアクチュエータを制御するシステムおよび方法
Stoelen et al. Co-exploring actuator antagonism and bio-inspired control in a printable robot arm
CN112638596B (zh) 自主学习型机器人装置以及自主学习型机器人装置的动作生成方法
JP2012096349A (ja) 力および位置ベースの制御法則を用いたテンドン駆動ロボットフィンガのロバスト操作
US11806872B2 (en) Device and method for controlling a robotic device
JP2012096349A5 (ja)
Vulliez et al. Focus on the mechatronics design of a new dexterous robotic hand for inside hand manipulation
Guerin et al. Adjutant: A framework for flexible human-machine collaborative systems
Peternel et al. A method for derivation of robot task-frame control authority from repeated sensory observations
JP7230128B2 (ja) ロボット作業の学習方法及びロボットシステム
Akkaladevi et al. Programming-free approaches for human–robot collaboration in assembly tasks
Do et al. Enhanced performances for cable-driven flexible robotic systems with asymmetric backlash profile
Eilering et al. Robopuppet: Low-cost, 3d printed miniatures for teleoperating full-size robots
Lee et al. Data-Driven Actuator Model-Based Teleoperation Assistance System
Zieliński Formal approach to the design of robot programming frameworks: the behavioural control case
Shende et al. Motion imitation robotic arm,(mira)
Colombo et al. Pc based control systems for compliance control and intuitive programming of industrial robots
González-Quijano et al. A human-based genetic algorithm applied to the problem of learning in-hand manipulation tasks
Boblan et al. A human-like robot torso ZAR5 with fluidic muscles: Toward a common platform for embodied AI
Luz et al. Model Predictive Control for Assistive Robotics Manipulation
Aydın Real-time Fuzzy Position Control and Design of Star Parallel Robot
Bhutani Micro Servo Motor Based Robotic Arm to Pick and Place the Objects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825509

Country of ref document: EP

Kind code of ref document: A1