WO2019003423A1 - Power conversion device, lighting apparatus and electric device - Google Patents

Power conversion device, lighting apparatus and electric device Download PDF

Info

Publication number
WO2019003423A1
WO2019003423A1 PCT/JP2017/024173 JP2017024173W WO2019003423A1 WO 2019003423 A1 WO2019003423 A1 WO 2019003423A1 JP 2017024173 W JP2017024173 W JP 2017024173W WO 2019003423 A1 WO2019003423 A1 WO 2019003423A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
circuit
current
switching
switching element
Prior art date
Application number
PCT/JP2017/024173
Other languages
French (fr)
Japanese (ja)
Inventor
岳秋 飯田
雄一郎 伊藤
Original Assignee
三菱電機株式会社
三菱電機照明株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機照明株式会社 filed Critical 三菱電機株式会社
Priority to CN201780092531.XA priority Critical patent/CN110785919B/en
Priority to JP2019526100A priority patent/JP6825704B2/en
Priority to PCT/JP2017/024173 priority patent/WO2019003423A1/en
Publication of WO2019003423A1 publication Critical patent/WO2019003423A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a power conversion device, a lighting fixture, and an electrical device.
  • the luminaire In a luminaire using an LED (Light Emitting Diode) as a light source, regulations regarding harmonics of input current are defined. For example, in Japan, a limit value is set for harmonics of input current according to Japanese Industrial Standards. Therefore, the luminaire includes a PFC (Power Factor Correction) circuit for suppressing harmonics of the input current and improving the power factor.
  • a current critical mode is used as a control method of a PFC circuit in a luminaire.
  • Patent Documents 1 and 2 describe the contents of power factor improvement control in the current critical mode.
  • Dedicated control ICs for realizing control in the current critical mode are on the market.
  • a zero current detection means for detecting that the inductor current has become zero for example, a secondary winding provided in the inductor is used. However, immediately after the start of operation of the power factor correction circuit, the output voltage of the secondary winding is small, and zero current can not be accurately detected.
  • Patent Documents 1 and 2 describe means for switching control of the switching element at a predetermined fixed frequency immediately after the power factor correction circuit starts to operate, and thereafter changing to a current critical mode.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a power conversion device, a lighting apparatus and an electric apparatus capable of reducing the amount of change in switching frequency of switching elements of a power factor correction circuit. To aim.
  • a power converter includes a rectifier circuit that rectifies AC power, a switching element and an inductor, a power factor improvement circuit that receives an output of the rectifier circuit and outputs a DC voltage, and the inductor And a control unit for receiving the voltage detected by the detection winding and driving the switching element, the control unit performing the operation of the power factor improvement circuit
  • the first control is performed to change the switching frequency of the switching element when it is started, and then the second control is performed to switch the switching element in synchronization with the voltage obtained by the detection winding.
  • the amount of change in the switching frequency when shifting from the first control to the second control, the switching frequency at the start of the first control, and the switching frequency at the start of the second control Characterized by less than the difference value between.
  • a lighting apparatus includes a rectifier circuit that rectifies AC power, a switching element and an inductor, a power factor improvement circuit that receives an output of the rectifier circuit and outputs a DC voltage, and the inductor
  • the control unit includes a detection winding that detects a voltage to be generated, and a control unit that receives the voltage detected by the detection winding and drives the switching element. The control unit starts operation of the power factor correction circuit. When the first control to change the switching frequency of the switching element is performed, and then the second control to switch the switching element in synchronization with the voltage obtained by the detection winding is performed.
  • the light source is an LED (Light Emitting Diode) or an organic EL (Electro Luminescence) connected to the output of the power conversion device.
  • An electric device includes a rectifier circuit that rectifies AC power, a switching element and an inductor, an output of the rectifier circuit is input, and a power factor improvement circuit that outputs a DC voltage;
  • the control unit includes a detection winding that detects a voltage to be generated, and a control unit that receives the voltage detected by the detection winding and drives the switching element. The control unit starts operation of the power factor correction circuit. When the first control to change the switching frequency of the switching element is performed, and then the second control to switch the switching element in synchronization with the voltage obtained by the detection winding is performed.
  • the switching frequency at the time of shifting from 1 control to the second control, the switching frequency at the start of the first control, and the switching frequency at the start of the second control; Comprising a power conversion apparatus characterized by smaller than the difference value, the load and connected to the output of the power conversion device.
  • the switching element immediately after the power factor correction circuit starts to operate, the switching element can be used without using the zero current detection unit for detecting that the inductor current of the power factor correction circuit has become zero. Since the switching frequency is changed and then the switching element is controlled in synchronization with the signal obtained by the zero current detection unit, it is possible to prevent the switching frequency of the switching element from changing suddenly.
  • FIG. 1 is a circuit diagram of a luminaire according to a first embodiment. It is a circuit diagram of a zero current detection unit. It is a circuit diagram of a current control circuit. It is a wave form diagram which shows the example of control of a current control circuit. It is a wave form diagram which shows operation of a power factor improvement circuit. It is a wave form diagram of current discontinuous mode. It is various waveform diagrams after the pressure
  • FIG. 7 is a waveform chart showing control according to Embodiment 2. It is a wave form diagram showing another control pattern of switching frequency. 7 is a flowchart showing an operation of the lighting apparatus according to Embodiment 2.
  • FIG. 7 is a circuit diagram of a lighting apparatus according to Embodiment 3. It is a wave form diagram showing the vibration of Vpfc.
  • a power conversion device, a lighting fixture, and an electric device according to an embodiment of the present invention will be described with reference to the drawings.
  • the same or corresponding components may be assigned the same reference numerals and repetition of the description may be omitted. Note that the present invention is not limited by the description of the embodiment.
  • FIG. 1 is a circuit diagram of the lighting fixture 100 according to the first embodiment.
  • the lighting apparatus 100 includes a rectifying circuit 3, a power factor improvement circuit 5 that suppresses harmonics of the current input from the AC power supply 1 to improve the power factor, and a smoothing capacitor 6 that smoothes the output voltage of the power factor improvement circuit 5. And have.
  • An input filter 2 is provided between the AC power supply 1 and the rectifier circuit 3.
  • the input filter 2 has a function of reducing high frequency noise superimposed on the current input from the AC power supply 1.
  • the input filter 2 has a coil 21 and a capacitor 22.
  • a series circuit having a coil 21 and a capacitor 22 is connected in parallel to the AC power supply 1.
  • One end of the coil 21 is connected to one end of the AC power supply 1, and the other end of the coil 21 is connected to one end of the capacitor 22 and the rectifier circuit 3.
  • the other end of the capacitor 22 is connected to the AC power supply 1 and the rectifier circuit 3.
  • the rectifier circuit 3 has a function of converting AC power supplied from the AC power supply 1 into DC power. That is, the rectifier circuit 3 is a circuit that rectifies AC power.
  • the rectifier circuit 3 is disposed between the input filter 2 and the power factor correction circuit 5.
  • the rectifier circuit 3 is composed of a diode bridge in which four diodes are combined.
  • the configuration of the rectifier circuit 3 is not limited to this, and may be configured by combining MOSFETs (Metal Oxide Semiconductor-Field Effect Transistors) which are unidirectional conduction elements.
  • MOSFETs Metal Oxide Semiconductor-Field Effect Transistors
  • the capacitor 4 is connected in parallel to the output of the rectifier circuit 3. One end of the capacitor 4 is connected to the positive electrode side of the DC bus, and the other end of the capacitor 4 is connected to the negative electrode side of the DC bus.
  • the capacitor 4 has a function of smoothing the output voltage of the rectifier circuit 3.
  • the power factor correction circuit 5 is disposed between the rectifier circuit 3 and the current control circuit 7.
  • the power factor correction circuit 5 is a circuit that receives the output of the rectifier circuit 3 and outputs a DC voltage.
  • the power factor correction circuit 5 includes a switching element 51, an inductor 52, and a diode 53.
  • the switching element 51 is, for example, a MOSFET. The switching element 51 switches the path of the current output from the rectifier circuit 3.
  • the inductor 52 has a primary winding 52a and a secondary winding 52b wound around the same core. A voltage having a different polarity is applied to the primary winding 52a as the switching element 51 is turned on and off. A voltage corresponding to the voltage applied to the primary winding 52a and the turns ratio n is output to the secondary winding 52b.
  • the secondary winding 52 b functions as a detection winding for detecting the voltage generated by the inductor 52.
  • the power factor correction circuit 5 boosts the output voltage of the rectifier circuit 3 and outputs it to the smoothing capacitor 6 when the switching element 51 is turned on and off. It also has a function to suppress harmonics of the input current and improve the power factor.
  • FIG. 1 shows an example in which the power factor correction circuit 5 is configured by a step-up chopper circuit.
  • the drain of the switching element 51 is connected to the inductor 52 and the diode 53 on the positive electrode side of the DC bus.
  • the source of the switching element 51 is connected to the capacitor 4 and the smoothing capacitor 6 on the negative electrode side of the DC bus.
  • the gate of the switching element 51 is connected to the control unit 9.
  • the control signal output from the control unit 9 is input to the gate of the switching element 51, and the on / off of the switching element 51 is controlled. Therefore, the power factor correction circuit 5 is controlled by the controller 9.
  • the inductor 52 is disposed between the capacitor 4 and the switching element 51 on the positive electrode side of the DC bus. One end of the inductor 52 is connected to one end of the capacitor 4, and the other end of the inductor 52 is connected to the switching element 51 and the diode 53.
  • the diode 53 is disposed between the switching element 51 and the smoothing capacitor 6 on the positive electrode side of the DC bus. The anode of the diode 53 is connected to the inductor 52 and the switching element 51, and the cathode of the diode 53 is connected to the smoothing capacitor 6.
  • the power factor correction circuit 5 can be configured by circuits such as a buck-boost chopper circuit, a fly-back circuit, a fly-forward circuit, a SEPIC, a Zeta converter, a Cuk converter, as well as a boost chopper circuit.
  • the smoothing capacitor 6 is disposed between the power factor correction circuit 5 and the current control circuit 7 in the DC bus. One end of the smoothing capacitor 6 is connected to the positive electrode side of the DC bus, and the other end of the smoothing capacitor 6 is connected to the negative electrode side of the DC bus.
  • a current control circuit 7 is connected to the smoothing capacitor 6.
  • the current control circuit 7 is a circuit that controls the magnitude of the current output to the LED 8.
  • the control unit 9 is connected to the switching element 51.
  • the control unit 9 receives the voltage detected by the secondary winding 52b which is a detection winding, and drives the switching element 51.
  • the control unit 9 includes a switching control unit 91, an input voltage detection unit 92, a zero current detection unit 93, an output voltage detection unit 94, and a drive unit 95.
  • the switching control unit 91 is provided with detection results of the input voltage detection unit 92, the zero current detection unit 93, and the output voltage detection unit 94.
  • Switching control unit 91 is an output in which output voltage Vpfc of power factor correction circuit 5 is stored in advance in switching control unit 91 based on the detection results of input voltage detection unit 92, zero current detection unit 93 and output voltage detection unit 94.
  • a control signal for on / off controlling the switching element 51 is output so as to match the voltage target value. It is shown in FIG. 1 that the value of Vpfc is equal to the voltage on the high side of the smoothing capacitor 6.
  • the input voltage detection unit 92 is a means for detecting the voltage of the capacitor 4.
  • the voltage of the capacitor 4 is equal to the input voltage of the power factor correction circuit 5.
  • the input voltage detection unit 92 detects the input voltage of the power factor correction circuit 5.
  • the input voltage detection unit 92 transmits a signal related to the detection result to the switching control unit 91.
  • the output voltage detection unit 94 is a means for detecting the voltage of the smoothing capacitor 6.
  • the voltage of the smoothing capacitor 6 is equal to the output voltage of the power factor correction circuit 5.
  • the output voltage detection unit 94 detects the output voltage of the power factor correction circuit 5.
  • the output voltage detection unit 94 transmits a signal related to the detection result to the switching control unit 91.
  • the input voltage detection unit 92 and the output voltage detection unit 94 can be, for example, a voltage dividing circuit that divides a voltage to be detected into a voltage of a size that can be input to the switching control unit 91 by two resistors connected in series. .
  • the zero current detection unit 93 is means for detecting that the current of the primary winding 52a of the inductor 52 has become zero.
  • the zero current detection unit 93 transmits a signal related to the detection result to the switching control unit 91.
  • FIG. 2 is a circuit diagram showing a configuration example of the zero current detection unit 93.
  • the zero current detection unit 93 includes a Zener diode 932 for voltage limitation and a resistor 931 for current limitation in order to limit the voltage of the secondary winding 52 b to a size that can be input to the switching control unit 91. .
  • the switching control unit 91 includes a storage unit that stores the output voltage target value of the power factor correction circuit 5.
  • the switching control unit 91 generates a signal for on / off control of the switching element 51 so that both match based on the voltage detection result of the smoothing capacitor 6 received from the output voltage detection unit 94 and the output voltage target value described above. Output.
  • the signal output from the switching control unit 91 is converted into a voltage with a magnitude that can turn on and off the switching element 51 in the driving unit 95, and is output to the gate of the switching element 51.
  • the current control circuit 7 has a function of converting the DC voltage output from the power factor correction circuit 5 into a DC current that can be input to the LED 8.
  • FIG. 3 is a circuit diagram showing a configuration example of the current control circuit 7.
  • FIG. 3 shows a current control circuit 7 configured by a step-down chopper circuit.
  • the current control circuit 7 includes a MOSFET 71, an inductor 72, a diode 73 and a capacitor 74.
  • the MOSFET 71 is disposed on the positive electrode side of the DC bus.
  • the drain of the MOSFET 71 is connected to the diode 53 and the smoothing capacitor 6.
  • the source of the MOSFET 71 is connected to the diode 73 and the inductor 72.
  • the cathode of the diode 73 is connected to the MOSFET 71 and the inductor 72.
  • the anode of the diode 73 is connected to the smoothing capacitor 6 and the capacitor 74.
  • the current control circuit 7 can be configured by a buck-boost chopper circuit, a buck-boost chopper circuit, a flyback circuit, a flyforward circuit, a SEPIC, a Zeta converter, a Cuk converter or the like.
  • FIG. 4 is a waveform diagram showing a control example of the current control circuit 7.
  • FIG. 4 shows the waveforms of the current I8 flowing to the LED 8, the current I72 flowing to the inductor 72, and the control signal Cs to the MOSFET 71.
  • an ON signal is input to the gate of the MOSFET 71, a current path is formed through the smoothing capacitor 6, the MOSFET 71, the inductor 72, and the capacitor 74, and the current of the inductor 72 is increased.
  • the current I72 flowing through the inductor 72 has a triangular waveform. Then, the current output to the LED 8 is smoothed by the capacitor 74. Therefore, the current control circuit 7 outputs the average value of the current of the inductor 72.
  • the switching period Tsw for turning on the MOSFET 71 is fixed, and the on time Ton is changed. That is, the on-time Ton is adjusted in accordance with the target value of the output current.
  • the ratio of the on time Ton to the switching period Tsw is called a duty.
  • Such a control method of obtaining a desired output by adjusting the on-time Ton is called duty control.
  • the LED 8 is configured by an LED group in which a plurality of LEDs are connected in series and in parallel. One end of the LED group is connected to the positive electrode side of the DC bus, and the other end of the LED group is connected to the negative electrode side of the DC bus.
  • FIG. 5 is a waveform diagram for explaining an operation example of the power factor correction circuit 5 shown in FIG.
  • the waveforms of the current I52 of the inductor 52, the zero current detection signal Sz output from the zero current detection unit 93, the drain voltage Vd of the switching element 51, and the gate voltage Vg of the switching element 51 are shown in FIG. There is. However, for the sake of explanation, the cycle in which the gate voltage of the switching element 51 is turned on and off is described longer than in actuality.
  • the switching element 51 When the on-time set by the switching control unit 91 elapses, the switching element 51 is turned off. As a result, a closed circuit is formed by the inductor 52, the diode 53, and the smoothing capacitor 6, the current of the inductor 52 decreases, and the energy stored in the inductor 52 is released and the smoothing capacitor 6 is charged.
  • the zero current detection unit 93 connected to the secondary winding 52b detects that the current of the inductor 52 has become zero when the voltage of the secondary winding 52b becomes smaller than a predetermined value, and relates to the detection result.
  • a signal is transmitted to the switching control unit 91.
  • the switching control unit 91 turns on the switching element 51 again after a predetermined delay time has elapsed since the current of the inductor 52 has become zero. As a method of providing this delay time, the switching element 51 can be turned on near the bottom of the voltage oscillation in a period in which the drain voltage of the switching element 51 is freely oscillating.
  • the waveform of the current flowing through the inductor 52 becomes triangular.
  • the apex of the triangular wave shape is an envelope of a sine wave as shown by a dotted line.
  • the current input from the AC power supply 1 is smoothed by the input filter 2, the average value of the inductor current is input, and the current waveform becomes a sinusoidal current waveform and the power factor is improved.
  • the switching control unit 91 receives information of Vpfc which is the output voltage of the power factor correction circuit 5 from the output voltage detecting unit 94, and feedback controls the on time of the switching element 51 so as to realize the target Vpfc.
  • the response time of the feedback control is set so that the loop gain of the feedback control is equal to or less than one time (0 dB) in one half or more of one cycle of the AC power supply 1.
  • the frequency is set to be less than or equal to one time (0 dB) at a frequency equal to or less than twice the frequency of the AC power supply 1.
  • constant current feedback control of the power supply cycle is performed by setting the loop gain of constant current feedback control to 1 times or less (0 dB) or less.
  • the same effect can be obtained by setting the on-time update cycle to a half cycle of the AC power supply 1 or a cycle longer than half thereof.
  • the output voltage of the secondary winding 52b of the inductor 52 is used to detect that the current of the primary winding 52a of the inductor 52 has become zero.
  • the output voltage of secondary winding 52b is determined by voltage VL1 applied to primary winding 52a and the turn ratio n of secondary winding 52b to primary winding 52a.
  • the magnitude of the output voltage of the secondary winding 52b can be represented by the product of VL1 and n.
  • the voltage VL1 of the primary winding 52a can be represented by the output voltage Vdb of the rectifier circuit 3 and the output voltage Vpfc of the power factor correction circuit 5.
  • the output voltage VL2 of the secondary winding 52b when the switching element 51 is on is nVdb.
  • the output voltage VL2 of the secondary winding 52b when the switching element 51 is off is n (Vpfc-Vdb).
  • the output voltage VL2 of the secondary winding 52b is limited to a size that can be input to the switching control unit 91, and a signal is transmitted to the switching control unit 91.
  • the output voltage Vpfc of the power factor correction circuit 5 and the output voltage Vdb of the rectifier circuit 3 are equal. Therefore, immediately after the power factor correction circuit 5 starts the boosting operation, the output voltage VL2 of the secondary winding 52b is zero.
  • FIG. 6 is a waveform diagram in the case where the switching element 51 performs switching operation at a predetermined cycle.
  • the control exhibiting the waveform shown in FIG. 6 is referred to as a current discontinuous mode since the current I 52 of the inductor 52 is discontinuous.
  • the switching element 51 is switched at predetermined on time and off time.
  • the output voltage VL2 of the secondary winding 52b is not used.
  • the switching element 51 can be turned on and off at a constant frequency even in a period when the zero current can not be detected after the start of the boosting operation of the power factor correction circuit 5.
  • the switching frequency becomes abrupt when transitioning to the current critical mode.
  • FIG. 7 is a waveform diagram showing various waveforms after the start of the boosting operation by the power factor correction circuit 5 according to the first embodiment.
  • the smoothing capacitor 6 is charged via the diode 53. Since the LED 8 is turned off during the period until the time t1, the smoothing capacitor 6 is charged to the amplitude peak value of the AC power supply 1 and held. Therefore, the output voltage Vpfc of the power factor correction circuit 5 is the peak voltage of the AC power supply 1.
  • the power factor correction circuit 5 starts the boosting operation.
  • the difference value ⁇ V (Vpfc ⁇ Vp) between Vp and Vpfc is small, and the output voltage VL2 of the secondary winding 52b necessary for zero current detection can not be obtained.
  • the switching element 51 is turned on / off by frequency control predetermined by the switching control unit 91.
  • the “frequency control” is control to turn on and off the switching element 51 at a predetermined cycle without referring to the output voltage of the secondary winding 52 b.
  • a difference value threshold is shown in FIG.
  • the difference value threshold is a difference value ⁇ V when Vpfc becomes high and the output voltage VL2 of the secondary winding 52b is increased to a detectable level.
  • a period P1 is a period from time t1 when the boosting operation is started to t2 when the difference value ⁇ V reaches the difference value threshold. Frequency control is performed in period P1.
  • the switching control unit 91 stores a difference value threshold and detects that the difference value ⁇ V exceeds the difference value threshold. When detecting that the difference value ⁇ V exceeds the difference value threshold, the switching control unit 91 changes the control of the switching element 51 from the frequency control to the current critical mode. The period after the transition to the current critical mode is shown as a period P2.
  • FIG. 7 shows that the switching frequency is increased as the difference value ⁇ V increases in the period P1 in which the power factor improvement circuit 5 is frequency controlled. That is, in the period P1, the switching frequency of the switching element 51 is not constant, and the switching frequency of the switching element 51 is increased as time passes. This makes it possible to reduce the change in switching frequency when shifting from frequency control to the current critical mode. It is preferable to change the switching frequency in period P1 so that the switching frequency at the end of frequency control matches the average switching frequency in current critical mode control.
  • FIG. 8 is a waveform diagram showing another control pattern of the switching frequency.
  • the switching frequency is increased as the difference value ⁇ V increases.
  • the difference ⁇ F1 which is the difference between the switching frequency f2 at the end of frequency control and the average frequency f3 in current critical mode control, is the switching frequency f1 at time t1 at which the frequency control is started and the average frequency f3 in current critical mode control Is smaller than the difference value .DELTA.F2.
  • This is an effect obtained by increasing the switching frequency in period P1 to make f2 larger than f1.
  • FIGS. 7 and 8 since it is possible to suppress the rapid change of the switching frequency at time t2 which is the control change timing, it is possible to suppress the output voltage fluctuation of the power factor correction circuit 5.
  • the controller 9 carries out the control described above. That is, when the operation of the power factor correction circuit 5 is started, the control unit 9 executes the first control to change the switching frequency of the switching element 51, and thereafter the switching element in synchronization with the voltage obtained by the detection winding.
  • the second control to switch 51 is executed.
  • the frequency control corresponds to the first control
  • the current critical mode corresponds to the second control.
  • the controller 9 changes the switching frequency at the time of transition from the first control to the second control, ⁇ F 1, the switching frequency at the start of the first control and the switching at the start of the second control. Make it smaller than the difference value ⁇ F2 with the frequency.
  • FIG. 8 discloses control for making ⁇ F1 smaller than ⁇ F2.
  • the switching frequency of the switching element 51 is continuously changed in the first control, and the switching frequency of the switching element 51 at the end of the first control is changed to the switching frequency of the switching element 51 at the start of the second control. It is shown to match. It is preferable that the change amount of the switching frequency at the time of shifting from the first control to the second control is zero. However, if ⁇ F 1 is smaller than ⁇ F 2, the fluctuation of Vpfc can be suppressed, so there is an effect of suppressing the flickering of the light source.
  • FIG. 9 is a flowchart showing an operation of the lighting fixture 100 according to the first embodiment.
  • the controller 9 is activated in step S1.
  • the input voltage detection unit 92 detects the input voltage peak value Vp.
  • the input voltage peak value Vp is a voltage peak value of the place described as Vp of FIG.
  • the output voltage detection unit 94 detects Vpfc.
  • step S4 the switching control unit 91 calculates the difference value ⁇ V (Vpfc ⁇ Vp).
  • the calculation of the difference value ⁇ V is performed in a predetermined cycle.
  • the boosting operation by the power factor improvement circuit 5 is started in step S5. This starts the frequency control described above.
  • step S6 the magnitude of the difference value ⁇ V and the difference value threshold value are determined. If the difference value ⁇ V is smaller than the difference value threshold, the frequency control is continued in step S7, Vpfc is detected again in step S8, and the difference value ⁇ is calculated using the latest Vpfc in step S9.
  • step S10 when the difference value ⁇ V is equal to or larger than the difference value threshold, at step S10, the frequency control is shifted to the current critical mode.
  • the switching frequency of the switching element 51 at the start of the current critical mode is determined by the load and the circuit constant. Thereafter, the operation using the secondary winding 52b is continued, and the sequence is ended.
  • the control unit 9 when the difference value ⁇ V between Vp and the output voltage Vpfc reaches a predetermined difference value threshold by the control unit 9, the control shifts from the first control to the second control.
  • the switching control unit 91 can be configured by combining commercially available analog ICs.
  • the receiving device 9 a is a device that receives various information input to the switching control unit 91.
  • the processing circuit 9b is dedicated hardware.
  • the processing circuit 9b corresponds to, for example, a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the respective functions of the drive unit 95 and the switching control unit 91 may be realized by the processing circuit 9 b, or the functions of the respective portions may be realized collectively by the processing circuit 9 b.
  • FIG. 11 is a block diagram showing the control unit 9 implemented by software.
  • the input voltage detection unit 92, the zero current detection unit 93, and the output voltage detection unit 94 of FIG. 1 are the receiving device 30 of FIG.
  • the processing circuit is a CPU
  • each function of the switching control unit 91 and the drive unit 95 in FIG. 1 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 34.
  • the processor 32 which is a processing circuit, reads out and executes the program stored in the memory 34 to realize the functions of the respective units. That is, there is a memory 34 for storing a program that results in the operations described in the flowchart of FIG. 9 and the first embodiment.
  • the memory corresponds to, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD.
  • non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD.
  • the configuration and control method described above can be variously modified without losing their features. Hereinafter, some modifications will be described.
  • the process of change is not particularly limited.
  • the switching frequency of the switching element 51 may be increased continuously throughout the period P1, or the switching frequency of the switching element 51 may be increased in part of the period P1.
  • the switching frequency may be increased stepwise in period P1.
  • the lighting apparatus 100 using the power conversion circuit having the rectifier circuit 3, the power factor correction circuit 5, the secondary winding 52b used as the detection winding, and the control unit 9 for controlling the LED 8 is described. did. That is, the output of this power conversion circuit was connected to the LED 8 via the current control circuit 7.
  • this power conversion circuit can be generally used for devices to which power is input. For example, a load such as a motor can be connected to the output of the power conversion device.
  • the power converter and the load are collectively referred to as an electrical device.
  • FIG. 12 is a waveform diagram when the switching element 51 is operated in the current continuous mode.
  • the current continuous mode is a control method of turning on the switching element 51 before the current I52 of the inductor 52 becomes zero.
  • the current continuous mode is a control method of the switching element 51 not referring to the output voltage VL2 of the secondary winding 52b as in the current discontinuous mode.
  • FIG. 13 is a waveform diagram when control in the current continuous mode is adopted during the period of the first control.
  • the power factor correction circuit 5 is operated in the current discontinuous mode in the period from time t1 to time ta, and the power factor improvement circuit 5 is operated in the current continuous mode in the period from time ta to time t2.
  • the current continuous mode is a mode operating at a higher switching frequency than the current critical mode.
  • the variation ⁇ F1 of the switching frequency when shifting from the first control to the second control is smaller than the difference value ⁇ F2 between the switching frequency f1 at the start of the first control and the switching frequency f2 at the start of the second control
  • control unit 9 operates the switching element 51 in the discontinuous current mode or the continuous current mode during the first control period, and operates the switching element 51 in the current critical mode during the second control period. Can.
  • the light source is the LED 8
  • a light source different from an LED such as an organic EL (Electro Luminescence)
  • the modification described in the first embodiment can also be applied to the power conversion device, the lighting fixture, and the electric device according to the following embodiments.
  • the power conversion device, the lighting apparatus, and the electric apparatus according to the following embodiments have many points in common with the first embodiment, and therefore, differences with the first embodiment will be mainly described.
  • FIG. 14 is a waveform diagram showing control according to the second embodiment.
  • the smoothing capacitor 6 is charged via the diode 53. Since the LED 8 is turned off during this period, the smoothing capacitor 6 is charged and held to the amplitude peak value of the AC power supply 1. Therefore, the output voltage Vpfc of the power factor correction circuit 5 is the peak voltage of the AC power supply 1.
  • the input voltage detection unit 92 detects the input voltage peak value Vp.
  • Information of the detected Vp is transmitted to the switching control unit 91.
  • the switching control unit 91 stores a program or a table for deriving a threshold value of Vpfc at which the output voltage VL2 can be detected from the information of Vp.
  • the threshold of Vpfc at which the output voltage VL2 can be detected is referred to as an output voltage threshold.
  • the switching control unit 91 calculates an output voltage threshold value corresponding to the information of Vp received from the input voltage detection unit 92 according to the aforementioned program or table.
  • the power factor correction circuit 5 starts the boosting operation.
  • the output voltage VL2 of the secondary winding 52b necessary for the zero current detection can not be obtained, so the frequency control of the power factor correction circuit 5 is performed.
  • Vpfc is boosted after the power factor correction circuit 5 starts the switching operation, the output voltage VL2 rises to a detectable level.
  • the switching control unit 91 changes the control of the switching element 51 from frequency control to current critical mode when Vpfc exceeds the output voltage threshold calculated above. In other words, the control unit 9 shifts from the first control to the second control when the output voltage Vpfc reaches a predetermined output voltage threshold. By changing the control at the timing when Vpfc reaches the output voltage threshold value in this way, the calculation of the difference value ⁇ V required in the first embodiment becomes unnecessary, so the calculation load on the switching control unit 91 can be reduced.
  • the switching frequency is increased as Vpfc becomes larger, thereby preventing the switching frequency from changing rapidly when transitioning from frequency control to the current critical mode. did.
  • FIG. 14 shows that the switching frequency is matched before and after the control change from the frequency control to the current critical mode.
  • FIG. 15 is a waveform diagram showing another control pattern of the switching frequency.
  • FIG. 16 is a flowchart showing a control method of the lighting apparatus according to the second embodiment.
  • the control unit 9 When the power is turned on, in step Sa, the control unit 9 is activated.
  • the switching control unit 91 receives information of Vp from the input voltage detection unit 92. For example, it receives information that the effective value of Vp is 100V, 200V or 242V. Then, the switching control unit 91 calculates an output voltage threshold value corresponding to Vp. By storing the correspondence between Vp and the output voltage threshold as a table in the switching control unit 91, it is possible to derive the output voltage threshold using the table.
  • the output voltage threshold is determined from Vp when the operation of the power factor correction circuit 5 is started. It is preferable to raise the output voltage threshold if Vp is high, and lower the output voltage threshold if Vp is low.
  • step Sc on / off of the switching element 51 is started based on the command from the switching control unit 91, and the operation of the power factor improvement circuit 5 is started.
  • the switching element 51 is frequency controlled.
  • step Sd the switching control unit 91 determines whether Vpfc detected by the output voltage detection unit 94 is larger or smaller than the output voltage threshold. If Vpfc is smaller than the output voltage threshold value, the process proceeds to step Se to continue frequency control. Thereafter, Vpfc is again detected in step Sf, and the determination in step Sd is performed again. If it is determined in step Sd that Vpfc is equal to or higher than the output voltage threshold value, the process proceeds to step Sg to shift to the current critical mode. Thereafter, control in the current critical mode is continued.
  • the control unit 9 determines the output voltage threshold based on Vp which is a value reflecting the input voltage to the power factor correction circuit 5. That is, the output voltage threshold was made variable. However, if Vp of the power converter is predetermined, the process of determining the output voltage threshold is unnecessary. For example, if the power conversion device is a dedicated product of AC 100 V, the process of determining the output voltage threshold is unnecessary, and one predetermined output voltage threshold can be used.
  • FIG. 17 is a circuit diagram of the lighting fixture 200 according to the third embodiment.
  • the lighting fixture 200 operates basically the same as the lighting fixture 100 described in the first embodiment.
  • the control unit 9 mainly controls the power factor correction circuit 5 in the first embodiment
  • the control unit 9 of the third embodiment controls not only the power factor correction circuit 5 but also the current control circuit 7.
  • the current control circuit 7 is a circuit that is connected to the output of the power factor correction circuit 5 and converts the direct current voltage output from the power factor correction circuit 5 into a direct current.
  • the control unit 9 of the third embodiment includes a current detection unit 10 that detects the current flowing through the LED 8 and a current detection unit 96 that receives the output of the current detection unit 10.
  • a current detection unit 10 that detects the current flowing through the LED 8
  • a current detection unit 96 that receives the output of the current detection unit 10.
  • the current detection unit 96 sends information on the LED current to the switching control unit 91.
  • the switching control unit 91 controls the current output from the current control circuit 7 by performing on / off control of the MOSFET 71 using the driving unit 95.
  • FIG. 18 is a waveform diagram showing that Vpfc oscillates with control change.
  • FIG. 18 shows that vibration occurs from time t2 which is the timing of control change to Vpfc, and the vibration attenuates with the passage of time. This vibration is attenuated, for example, in about 100 msec.
  • the control unit 9 of the third embodiment has a predetermined period before shifting from the first control to the second control, and a predetermined period after shifting from the first control to the second control.
  • the response speed of the current control circuit 7 is increased compared to the state in which the output voltage Vpfc of the rate improvement circuit 5 is stable at a constant value.
  • the response speed of the current control circuit 7 is a speed at which the detection result of the current detection unit 96 is reflected in the control of the MOSFET 71. As the response speed of the current control circuit 7 is higher, the detection result of the current detection unit 96 is more quickly reflected in the control of the MOSFET 71.
  • the response speed of the current control circuit 7 in a period from 100 msec before time t2 to 100 msec after time t2 is set higher than the response speed of the current control circuit 7 after t3 when Vpfc reaches the target value.
  • the response speed of the current control circuit 7 is made higher for a short period of time before and after the control change of the switching element 51 than in the period after t3.
  • the output of the current control circuit 7 can be kept substantially constant.
  • a period in which the response speed of the current control circuit 7 is increased is referred to as a high speed response period.
  • the switching control unit 91 has to specify a fast response period. Since the switching control unit 91 is a control entity of the power factor improvement circuit 5, the high speed response period can be easily specified. That is, since the switching control unit 91 periodically compares the difference value ⁇ V with the difference value threshold value, the timing of the control change is approaching, the timing of the control change has come, and the fixed period after the control change Can be detected. From these detection results, the above-mentioned fast response period can be easily identified.
  • the response speed of the current control circuit 7 can be increased when the control of the power factor correction circuit 5 is changed. . Thereby, it is possible to prevent the flickering of the LED 8 due to the fluctuation of the current flowing to the LED 8 due to the slight vibration of Vpfc generated when changing the control in the power factor improvement circuit 5.
  • the method described in the third embodiment is effective for any control in which the switching frequency may fluctuate to some extent at the timing of control change of the switching element 51. Therefore, the method of the third embodiment can be combined with the control method of the switching element 51 described in the first and second embodiments or their modifications.

Abstract

The present invention is provided with: a rectifier circuit for rectifying AC power; a power factor improvement circuit having a switching element and an inverter, and into which the output of the rectifier circuit is input, and from which a DC voltage is output; a detection winding for detecting a voltage generated by the inverter; and a control unit into which the voltage detected by the detection winding is input, and which drives the switching element. The control unit executes a first control to change a switching frequency of the switching element when operation of the power factor improvement circuit is started, after which, if a second control for switching the switching element in a manner that is synchronized with the voltage obtained by the detection winding is to be executed, an amount of change in the switching frequency when transitioning from the first control to the second control is made smaller than a difference value between the switching frequency when the first control is initiated and the switching frequency when the second control is initiated.

Description

電力変換装置、照明器具、電気機器Power converter, lighting equipment, electric equipment
 この発明は、電力変換装置、照明器具および電気機器に関する。 The present invention relates to a power conversion device, a lighting fixture, and an electrical device.
 LED(Light Emitting Diode)を光源とした照明器具には、入力電流の高調波に関する規制が定められている。例えば日本国内においては、日本工業規格によって入力電流の高調波に限度値が定められている。そのため、照明器具は入力電流の高調波を抑制し力率を改善するためのPFC(Power Factor Correction)回路を備える。照明器具におけるPFC回路の制御方法としては、一般的に、電流臨界モードが用いられている。特許文献1、2には、電流臨界モードによる力率改善制御の内容が記載されている。電流臨界モードによる制御を実現するための専用の制御ICが販売されている。 In a luminaire using an LED (Light Emitting Diode) as a light source, regulations regarding harmonics of input current are defined. For example, in Japan, a limit value is set for harmonics of input current according to Japanese Industrial Standards. Therefore, the luminaire includes a PFC (Power Factor Correction) circuit for suppressing harmonics of the input current and improving the power factor. In general, a current critical mode is used as a control method of a PFC circuit in a luminaire. Patent Documents 1 and 2 describe the contents of power factor improvement control in the current critical mode. Dedicated control ICs for realizing control in the current critical mode are on the market.
日本特開平10-294191号公報Japanese Patent Laid-Open No. 10-294191 日本特開2015-213044号公報Japanese Patent Laid-Open Publication No. 2015-213044
 電流臨界モードにおける制御では力率改善回路で用いているインダクタの電流がゼロとなったことを検出する必要がある。インダクタ電流がゼロになったことを検出するためのゼロ電流検出手段として、例えばインダクタに設けられた2次巻線を用いる。しかし、力率改善回路の動作開始直後においては2次巻線の出力電圧が小さく、ゼロ電流を正確に検出することができない。 In control in the current critical mode, it is necessary to detect that the current of the inductor used in the power factor correction circuit has become zero. As a zero current detection means for detecting that the inductor current has become zero, for example, a secondary winding provided in the inductor is used. However, immediately after the start of operation of the power factor correction circuit, the output voltage of the secondary winding is small, and zero current can not be accurately detected.
 そこで、2次巻線の出力電圧が検出できない場合に一定の周期でスイッチング動作を繰り返す保護機能を備えた専用の制御ICを用いることが考えられる。例えば、特許文献1、2には、力率改善回路が動作を開始した直後は予め定められた固定の周波数でスイッチング素子をスイッチング制御し、その後電流臨界モードに変更する手段が記載されている。 Therefore, it is conceivable to use a dedicated control IC having a protective function that repeats the switching operation at a constant cycle when the output voltage of the secondary winding can not be detected. For example, Patent Documents 1 and 2 describe means for switching control of the switching element at a predetermined fixed frequency immediately after the power factor correction circuit starts to operate, and thereafter changing to a current critical mode.
 しかしながら、上述の制御では、固定の周波数から電流臨界モードに制御を変更する際に、スイッチング素子のスイッチング周波数が急変してしまい力率改善回路の出力電圧が大きく変動してしまう。例えば、LEDなどの光源を制御する場合、力率改善回路の出力電圧が大きく変動すると、光源に供給する電流が変動し光源のちらつきが発生する。 However, in the control described above, when changing the control from the fixed frequency to the current critical mode, the switching frequency of the switching element suddenly changes, and the output voltage of the power factor correction circuit largely fluctuates. For example, in the case of controlling a light source such as an LED, when the output voltage of the power factor correction circuit largely fluctuates, the current supplied to the light source fluctuates and flickering of the light source occurs.
 このような弊害を回避するために、2次巻線の巻き数を増加させてより大きな出力を得ようとすると、2次巻線で発生する損失が増加し、インダクタが大型化し、ゼロ電流を検出する回路における損失が増加してしまう。 In order to avoid such an adverse effect, if it is attempted to obtain a larger output by increasing the number of turns of the secondary winding, the loss generated in the secondary winding increases, the inductor becomes larger, and the zero current Losses in the circuit to be detected will increase.
 本発明は上述の問題を解決するためになされたものであり、力率改善回路のスイッチング素子のスイッチング周波数の変化量を少なくすることができる電力変換装置、照明器具および電気機器を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a power conversion device, a lighting apparatus and an electric apparatus capable of reducing the amount of change in switching frequency of switching elements of a power factor correction circuit. To aim.
 本願の発明にかかる電力変換装置は、交流電力を整流する整流回路と、スイッチング素子とインダクタとを有し、該整流回路の出力が入力され、直流電圧を出力する力率改善回路と、該インダクタで発生する電圧を検出する検出巻線と、該検出巻線で検出した電圧が入力され、該スイッチング素子を駆動させる制御部と、を備え、該制御部は、該力率改善回路の動作が開始されると該スイッチング素子のスイッチング周波数を変化させる第1制御を実行し、その後、該検出巻線で得られる電圧に同期して該スイッチング素子をスイッチングする第2制御を実行する場合に、該第1制御から該第2制御に移行する際の該スイッチング周波数の変化量を、該第1制御の開始時の該スイッチング周波数と該第2制御の開始時の該スイッチング周波数との差分値より小さくすることを特徴とする。 A power converter according to the invention of the present application includes a rectifier circuit that rectifies AC power, a switching element and an inductor, a power factor improvement circuit that receives an output of the rectifier circuit and outputs a DC voltage, and the inductor And a control unit for receiving the voltage detected by the detection winding and driving the switching element, the control unit performing the operation of the power factor improvement circuit The first control is performed to change the switching frequency of the switching element when it is started, and then the second control is performed to switch the switching element in synchronization with the voltage obtained by the detection winding. The amount of change in the switching frequency when shifting from the first control to the second control, the switching frequency at the start of the first control, and the switching frequency at the start of the second control Characterized by less than the difference value between.
 本願の発明にかかる照明器具は、交流電力を整流する整流回路と、スイッチング素子とインダクタとを有し、該整流回路の出力が入力され、直流電圧を出力する力率改善回路と、該インダクタで発生する電圧を検出する検出巻線と、該検出巻線で検出した電圧が入力され、該スイッチング素子を駆動させる制御部と、を備え、該制御部は、該力率改善回路の動作が開始されると該スイッチング素子のスイッチング周波数を変化させる第1制御を実行し、その後、該検出巻線で得られる電圧に同期して該スイッチング素子をスイッチングする第2制御を実行する場合に、該第1制御から該第2制御に移行する際の該スイッチング周波数の変化量を、該第1制御の開始時の該スイッチング周波数と該第2制御の開始時の該スイッチング周波数との差分値より小さくすることを特徴とする電力変換装置と、該電力変換装置の出力に接続されたLED(Light Emitting Diode)又は有機EL(Electro Luminescence)である光源と、を備える。 A lighting apparatus according to the present invention includes a rectifier circuit that rectifies AC power, a switching element and an inductor, a power factor improvement circuit that receives an output of the rectifier circuit and outputs a DC voltage, and the inductor The control unit includes a detection winding that detects a voltage to be generated, and a control unit that receives the voltage detected by the detection winding and drives the switching element. The control unit starts operation of the power factor correction circuit. When the first control to change the switching frequency of the switching element is performed, and then the second control to switch the switching element in synchronization with the voltage obtained by the detection winding is performed. The switching frequency at the time of shifting from 1 control to the second control, the switching frequency at the start of the first control, and the switching frequency at the start of the second control; Comprising a power conversion apparatus characterized by smaller than the difference value, and the light source is an LED (Light Emitting Diode) or an organic EL (Electro Luminescence) connected to the output of the power conversion device.
 本願の発明にかかる電気機器は、交流電力を整流する整流回路と、スイッチング素子とインダクタとを有し、該整流回路の出力が入力され、直流電圧を出力する力率改善回路と、該インダクタで発生する電圧を検出する検出巻線と、該検出巻線で検出した電圧が入力され、該スイッチング素子を駆動させる制御部と、を備え、該制御部は、該力率改善回路の動作が開始されると該スイッチング素子のスイッチング周波数を変化させる第1制御を実行し、その後、該検出巻線で得られる電圧に同期して該スイッチング素子をスイッチングする第2制御を実行する場合に、該第1制御から該第2制御に移行する際の該スイッチング周波数の変化量を、該第1制御の開始時の該スイッチング周波数と該第2制御の開始時の該スイッチング周波数との差分値より小さくすることを特徴とする電力変換装置と、該電力変換装置の出力に接続された負荷と、を備える。 An electric device according to the invention of the present application includes a rectifier circuit that rectifies AC power, a switching element and an inductor, an output of the rectifier circuit is input, and a power factor improvement circuit that outputs a DC voltage; The control unit includes a detection winding that detects a voltage to be generated, and a control unit that receives the voltage detected by the detection winding and drives the switching element. The control unit starts operation of the power factor correction circuit. When the first control to change the switching frequency of the switching element is performed, and then the second control to switch the switching element in synchronization with the voltage obtained by the detection winding is performed. The switching frequency at the time of shifting from 1 control to the second control, the switching frequency at the start of the first control, and the switching frequency at the start of the second control; Comprising a power conversion apparatus characterized by smaller than the difference value, the load and connected to the output of the power conversion device.
 本発明のその他の特徴は以下に明らかにする。 Other features of the present invention will be clarified below.
 この発明によれば、力率改善回路が動作を開始した直後には、力率改善回路のインダクタ電流がゼロになったことを検出するためのゼロ電流検出部を利用せずに、スイッチング素子のスイッチング周波数を変動させ、その後ゼロ電流検出部で得られる信号に同期してスイッチング素子を制御するので、スイッチング素子のスイッチング周波数が急激に変化することを防止できる。 According to the present invention, immediately after the power factor correction circuit starts to operate, the switching element can be used without using the zero current detection unit for detecting that the inductor current of the power factor correction circuit has become zero. Since the switching frequency is changed and then the switching element is controlled in synchronization with the signal obtained by the zero current detection unit, it is possible to prevent the switching frequency of the switching element from changing suddenly.
実施の形態1に係る照明器具の回路図である。FIG. 1 is a circuit diagram of a luminaire according to a first embodiment. ゼロ電流検出部の回路図である。It is a circuit diagram of a zero current detection unit. 電流制御回路の回路図である。It is a circuit diagram of a current control circuit. 電流制御回路の制御例を示す波形図である。It is a wave form diagram which shows the example of control of a current control circuit. 力率改善回路の動作を示す波形図である。It is a wave form diagram which shows operation of a power factor improvement circuit. 電流不連続モードの波形図である。It is a wave form diagram of current discontinuous mode. 力率改善回路による昇圧動作開始後の各種の波形図である。It is various waveform diagrams after the pressure | voltage rise operation start by a power factor improvement circuit. スイッチング周波数の別の制御パターンを示す波形図である。It is a wave form diagram showing another control pattern of switching frequency. 実施の形態1に係る照明器具の動作を示すフローチャートである。5 is a flowchart showing an operation of the lighting apparatus according to Embodiment 1. 制御部のハードウェア構成図である。It is a hardware block diagram of a control part. 制御部のソフトウェア構成図である。It is a software block diagram of a control part. 電流連続モードの波形図である。It is a wave form diagram of current continuation mode. 第1制御の期間中に電流連続モードを含む場合の波形図である。It is a wave form diagram in the case where current continuous mode is included in the period of the 1st control. 実施の形態2に係る制御を示す波形図である。FIG. 7 is a waveform chart showing control according to Embodiment 2. スイッチング周波数の別の制御パターンを示す波形図である。It is a wave form diagram showing another control pattern of switching frequency. 実施の形態2に係る照明器具の動作を示すフローチャートである。7 is a flowchart showing an operation of the lighting apparatus according to Embodiment 2. 実施の形態3に係る照明器具の回路図である。FIG. 7 is a circuit diagram of a lighting apparatus according to Embodiment 3. Vpfcの振動を示す波形図である。It is a wave form diagram showing the vibration of Vpfc.
 本発明の実施の形態に係る電力変換装置、照明器具および電気機器について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。なお、実施の形態の記載によりこの発明が限定されるものではない。 A power conversion device, a lighting fixture, and an electric device according to an embodiment of the present invention will be described with reference to the drawings. The same or corresponding components may be assigned the same reference numerals and repetition of the description may be omitted. Note that the present invention is not limited by the description of the embodiment.
実施の形態1.
 図1は実施の形態1に係る照明器具100の回路図である。照明器具100は、整流回路3と、交流電源1から入力される電流の高調波を抑制し力率を改善する力率改善回路5と、力率改善回路5の出力電圧を平滑する平滑コンデンサ6とを備えている。
Embodiment 1
FIG. 1 is a circuit diagram of the lighting fixture 100 according to the first embodiment. The lighting apparatus 100 includes a rectifying circuit 3, a power factor improvement circuit 5 that suppresses harmonics of the current input from the AC power supply 1 to improve the power factor, and a smoothing capacitor 6 that smoothes the output voltage of the power factor improvement circuit 5. And have.
 照明器具100の構成について詳しく説明する。交流電源1と整流回路3との間に入力フィルタ2が設けられている。入力フィルタ2は、交流電源1から入力される電流に重畳する高周波ノイズを低減する機能を有する。入力フィルタ2は、コイル21とコンデンサ22を有する。コイル21とコンデンサ22を有する直列回路が交流電源1に並列接続される。コイル21の一端は交流電源1の一端に接続され、コイル21の他端はコンデンサ22の一端および整流回路3に接続される。コンデンサ22の他端は交流電源1と整流回路3に接続される。 The configuration of the lighting fixture 100 will be described in detail. An input filter 2 is provided between the AC power supply 1 and the rectifier circuit 3. The input filter 2 has a function of reducing high frequency noise superimposed on the current input from the AC power supply 1. The input filter 2 has a coil 21 and a capacitor 22. A series circuit having a coil 21 and a capacitor 22 is connected in parallel to the AC power supply 1. One end of the coil 21 is connected to one end of the AC power supply 1, and the other end of the coil 21 is connected to one end of the capacitor 22 and the rectifier circuit 3. The other end of the capacitor 22 is connected to the AC power supply 1 and the rectifier circuit 3.
 整流回路3は、交流電源1から供給される交流電力を直流電力に変換する機能を有する。つまり整流回路3は交流電力を整流する回路である。整流回路3は入力フィルタ2と力率改善回路5の間に配置される。整流回路3は4つのダイオードを組み合わせたダイオードブリッジで構成されている。整流回路3の構成はこれに限定されるものではなく、単方向導通素子であるMOSFET(Metal Oxide Semiconductor-Field Effect Transistor)を組み合わせて構成してもよい。 The rectifier circuit 3 has a function of converting AC power supplied from the AC power supply 1 into DC power. That is, the rectifier circuit 3 is a circuit that rectifies AC power. The rectifier circuit 3 is disposed between the input filter 2 and the power factor correction circuit 5. The rectifier circuit 3 is composed of a diode bridge in which four diodes are combined. The configuration of the rectifier circuit 3 is not limited to this, and may be configured by combining MOSFETs (Metal Oxide Semiconductor-Field Effect Transistors) which are unidirectional conduction elements.
 整流回路3の出力に対してコンデンサ4が並列接続されている。コンデンサ4の一端は直流母線の正極側に接続され、コンデンサ4の他端は直流母線の負極側に接続されている。コンデンサ4は整流回路3の出力電圧を平滑する機能を有する。 The capacitor 4 is connected in parallel to the output of the rectifier circuit 3. One end of the capacitor 4 is connected to the positive electrode side of the DC bus, and the other end of the capacitor 4 is connected to the negative electrode side of the DC bus. The capacitor 4 has a function of smoothing the output voltage of the rectifier circuit 3.
 力率改善回路5は整流回路3と電流制御回路7との間に配置される。力率改善回路5は、整流回路3の出力が入力され、直流電圧を出力する回路である。力率改善回路5は、スイッチング素子51と、インダクタ52と、ダイオード53とを有する。スイッチング素子51は例えばMOSFETである。スイッチング素子51は整流回路3から出力される電流の経路を切り替える。 The power factor correction circuit 5 is disposed between the rectifier circuit 3 and the current control circuit 7. The power factor correction circuit 5 is a circuit that receives the output of the rectifier circuit 3 and outputs a DC voltage. The power factor correction circuit 5 includes a switching element 51, an inductor 52, and a diode 53. The switching element 51 is, for example, a MOSFET. The switching element 51 switches the path of the current output from the rectifier circuit 3.
 インダクタ52は同一のコアに1次巻線52aと2次巻線52bを巻線したものである。1次巻線52aにはスイッチング素子51のオンオフに伴い極性が異なる電圧が印加される。2次巻線52bには1次巻線52aの印加電圧と巻数比nに応じた電圧が出力される。2次巻線52bはインダクタ52で発生する電圧を検出する検出巻線として機能する。 The inductor 52 has a primary winding 52a and a secondary winding 52b wound around the same core. A voltage having a different polarity is applied to the primary winding 52a as the switching element 51 is turned on and off. A voltage corresponding to the voltage applied to the primary winding 52a and the turns ratio n is output to the secondary winding 52b. The secondary winding 52 b functions as a detection winding for detecting the voltage generated by the inductor 52.
 力率改善回路5は、スイッチング素子51がオンオフすることにより、整流回路3の出力電圧を昇圧し平滑コンデンサ6に出力する。また、入力電流の高調波を抑制し力率改善する機能を有する。 The power factor correction circuit 5 boosts the output voltage of the rectifier circuit 3 and outputs it to the smoothing capacitor 6 when the switching element 51 is turned on and off. It also has a function to suppress harmonics of the input current and improve the power factor.
 図1には、力率改善回路5を昇圧チョッパ回路で構成した例が示されている。スイッチング素子51のドレインは直流母線の正極側においてインダクタ52とダイオード53とに接続されている。スイッチング素子51のソースは直流母線の負極側においてコンデンサ4と平滑コンデンサ6とに接続されている。スイッチング素子51のゲートは制御部9に接続されている。スイッチング素子51のゲートには、制御部9から出力される制御信号が入力され、スイッチング素子51のオンオフが制御される。したがって、力率改善回路5は制御部9によって制御されるものである。 FIG. 1 shows an example in which the power factor correction circuit 5 is configured by a step-up chopper circuit. The drain of the switching element 51 is connected to the inductor 52 and the diode 53 on the positive electrode side of the DC bus. The source of the switching element 51 is connected to the capacitor 4 and the smoothing capacitor 6 on the negative electrode side of the DC bus. The gate of the switching element 51 is connected to the control unit 9. The control signal output from the control unit 9 is input to the gate of the switching element 51, and the on / off of the switching element 51 is controlled. Therefore, the power factor correction circuit 5 is controlled by the controller 9.
 インダクタ52は直流母線の正極側においてコンデンサ4とスイッチング素子51との間に配置される。インダクタ52の一端はコンデンサ4の一端に接続され、インダクタ52の他端はスイッチング素子51とダイオード53とに接続される。ダイオード53は直流母線の正極側においてスイッチング素子51と平滑コンデンサ6の間に配置される。ダイオード53のアノードはインダクタ52とスイッチング素子51に接続され、ダイオード53のカソードは平滑コンデンサ6に接続される。 The inductor 52 is disposed between the capacitor 4 and the switching element 51 on the positive electrode side of the DC bus. One end of the inductor 52 is connected to one end of the capacitor 4, and the other end of the inductor 52 is connected to the switching element 51 and the diode 53. The diode 53 is disposed between the switching element 51 and the smoothing capacitor 6 on the positive electrode side of the DC bus. The anode of the diode 53 is connected to the inductor 52 and the switching element 51, and the cathode of the diode 53 is connected to the smoothing capacitor 6.
 なお、力率改善回路5は、昇圧チョッパ回路の他、昇降圧チョッパ回路、フライバック回路、フライフォワード回路、SEPIC、Zetaコンバータ、Cukコンバータなどの回路により構成することができる。 The power factor correction circuit 5 can be configured by circuits such as a buck-boost chopper circuit, a fly-back circuit, a fly-forward circuit, a SEPIC, a Zeta converter, a Cuk converter, as well as a boost chopper circuit.
 平滑コンデンサ6は、直流母線において力率改善回路5と電流制御回路7との間に配置される。平滑コンデンサ6の一端は直流母線の正極側に接続され、平滑コンデンサ6の他端は直流母線の負極側に接続される。平滑コンデンサ6には電流制御回路7が接続されている。電流制御回路7は、LED8に出力する電流の大きさを制御する回路である。 The smoothing capacitor 6 is disposed between the power factor correction circuit 5 and the current control circuit 7 in the DC bus. One end of the smoothing capacitor 6 is connected to the positive electrode side of the DC bus, and the other end of the smoothing capacitor 6 is connected to the negative electrode side of the DC bus. A current control circuit 7 is connected to the smoothing capacitor 6. The current control circuit 7 is a circuit that controls the magnitude of the current output to the LED 8.
 スイッチング素子51には制御部9が接続されている。制御部9は、検出巻線である2次巻線52bで検出した電圧が入力され、スイッチング素子51を駆動させるものである。制御部9は、スイッチング制御部91、入力電圧検出部92、ゼロ電流検出部93、出力電圧検出部94および駆動部95を備える。 The control unit 9 is connected to the switching element 51. The control unit 9 receives the voltage detected by the secondary winding 52b which is a detection winding, and drives the switching element 51. The control unit 9 includes a switching control unit 91, an input voltage detection unit 92, a zero current detection unit 93, an output voltage detection unit 94, and a drive unit 95.
 スイッチング制御部91には、入力電圧検出部92、ゼロ電流検出部93および出力電圧検出部94の検出結果が提供される。スイッチング制御部91は、入力電圧検出部92、ゼロ電流検出部93および出力電圧検出部94の検出結果に基づき、力率改善回路5の出力電圧Vpfcが予めスイッチング制御部91に記憶されている出力電圧目標値と一致するように、スイッチング素子51をオンオフ制御するための制御信号を出力する。図1には、Vpfcの値が平滑コンデンサ6の高圧側の電圧と等しいことが示されている。 The switching control unit 91 is provided with detection results of the input voltage detection unit 92, the zero current detection unit 93, and the output voltage detection unit 94. Switching control unit 91 is an output in which output voltage Vpfc of power factor correction circuit 5 is stored in advance in switching control unit 91 based on the detection results of input voltage detection unit 92, zero current detection unit 93 and output voltage detection unit 94. A control signal for on / off controlling the switching element 51 is output so as to match the voltage target value. It is shown in FIG. 1 that the value of Vpfc is equal to the voltage on the high side of the smoothing capacitor 6.
 入力電圧検出部92はコンデンサ4の電圧を検出する手段である。コンデンサ4の電圧は力率改善回路5の入力電圧と等しい。よって、入力電圧検出部92は力率改善回路5の入力電圧を検出する。入力電圧検出部92は、検出結果に関する信号をスイッチング制御部91に送信する。 The input voltage detection unit 92 is a means for detecting the voltage of the capacitor 4. The voltage of the capacitor 4 is equal to the input voltage of the power factor correction circuit 5. Thus, the input voltage detection unit 92 detects the input voltage of the power factor correction circuit 5. The input voltage detection unit 92 transmits a signal related to the detection result to the switching control unit 91.
 出力電圧検出部94は平滑コンデンサ6の電圧を検出する手段である。平滑コンデンサ6の電圧は力率改善回路5の出力電圧と等しい。よって、出力電圧検出部94は力率改善回路5の出力電圧を検出するものである。出力電圧検出部94は、検出結果に関する信号をスイッチング制御部91に送信する。 The output voltage detection unit 94 is a means for detecting the voltage of the smoothing capacitor 6. The voltage of the smoothing capacitor 6 is equal to the output voltage of the power factor correction circuit 5. Thus, the output voltage detection unit 94 detects the output voltage of the power factor correction circuit 5. The output voltage detection unit 94 transmits a signal related to the detection result to the switching control unit 91.
 入力電圧検出部92と出力電圧検出部94は、例えば直列接続された2つの抵抗により、検出する電圧をスイッチング制御部91に入力可能な大きさの電圧に分圧する分圧回路とすることができる。 The input voltage detection unit 92 and the output voltage detection unit 94 can be, for example, a voltage dividing circuit that divides a voltage to be detected into a voltage of a size that can be input to the switching control unit 91 by two resistors connected in series. .
 ゼロ電流検出部93は、インダクタ52の1次巻線52aの電流がゼロになったことを検出する手段である。ゼロ電流検出部93は、検出結果に関する信号をスイッチング制御部91に送信する。 The zero current detection unit 93 is means for detecting that the current of the primary winding 52a of the inductor 52 has become zero. The zero current detection unit 93 transmits a signal related to the detection result to the switching control unit 91.
 図2は、ゼロ電流検出部93の構成例を示す回路図である。ゼロ電流検出部93は、2次巻線52bの電圧をスイッチング制御部91に入力可能な大きさに制限するため、電圧制限用のツェナーダイオード932と、電流制限用の抵抗931を有している。 FIG. 2 is a circuit diagram showing a configuration example of the zero current detection unit 93. As shown in FIG. The zero current detection unit 93 includes a Zener diode 932 for voltage limitation and a resistor 931 for current limitation in order to limit the voltage of the secondary winding 52 b to a size that can be input to the switching control unit 91. .
 図1の説明に戻る。スイッチング制御部91は、力率改善回路5の出力電圧目標値を記憶する記憶部を備えている。スイッチング制御部91は、出力電圧検出部94から受信した平滑コンデンサ6の電圧検出結果と、前述の出力電圧目標値に基づき、両者が一致するように、スイッチング素子51のオンオフ制御のための信号を出力する。 It returns to the explanation of FIG. The switching control unit 91 includes a storage unit that stores the output voltage target value of the power factor correction circuit 5. The switching control unit 91 generates a signal for on / off control of the switching element 51 so that both match based on the voltage detection result of the smoothing capacitor 6 received from the output voltage detection unit 94 and the output voltage target value described above. Output.
 スイッチング制御部91から出力された信号は、駆動部95においてスイッチング素子51をオンオフ可能な大きさの電圧に変換され、スイッチング素子51のゲートに出力される。 The signal output from the switching control unit 91 is converted into a voltage with a magnitude that can turn on and off the switching element 51 in the driving unit 95, and is output to the gate of the switching element 51.
 電流制御回路7は、力率改善回路5から出力された直流電圧を、LED8に入力可能な直流電流に変換する機能を有する。図3は、電流制御回路7の構成例を示す回路図である。図3には降圧チョッパ回路で構成した電流制御回路7が示されている。 The current control circuit 7 has a function of converting the DC voltage output from the power factor correction circuit 5 into a DC current that can be input to the LED 8. FIG. 3 is a circuit diagram showing a configuration example of the current control circuit 7. FIG. 3 shows a current control circuit 7 configured by a step-down chopper circuit.
 電流制御回路7はMOSFET71、インダクタ72、ダイオード73およびコンデンサ74を有している。MOSFET71は直流母線の正極側に配置される。MOSFET71のドレインは、ダイオード53と平滑コンデンサ6とに接続される。MOSFET71のソースは、ダイオード73とインダクタ72とに接続される。MOSFET71のゲートが制御部9に接続されることで、制御部9からMOSFET71のゲートにオンオフの制御信号を入力することが好ましい。ダイオード73のカソードは、MOSFET71とインダクタ72とに接続される。ダイオード73のアノードは、平滑コンデンサ6とコンデンサ74とに接続される。 The current control circuit 7 includes a MOSFET 71, an inductor 72, a diode 73 and a capacitor 74. The MOSFET 71 is disposed on the positive electrode side of the DC bus. The drain of the MOSFET 71 is connected to the diode 53 and the smoothing capacitor 6. The source of the MOSFET 71 is connected to the diode 73 and the inductor 72. By connecting the gate of the MOSFET 71 to the control unit 9, it is preferable to input an on / off control signal from the control unit 9 to the gate of the MOSFET 71. The cathode of the diode 73 is connected to the MOSFET 71 and the inductor 72. The anode of the diode 73 is connected to the smoothing capacitor 6 and the capacitor 74.
 なお、電流制御回路7は、降圧チョッパ回路の他、昇降圧チョッパ回路、フライバック回路、フライフォワード回路、SEPIC、Zetaコンバータ、Cukコンバータなどの回路により構成することができる。 The current control circuit 7 can be configured by a buck-boost chopper circuit, a buck-boost chopper circuit, a flyback circuit, a flyforward circuit, a SEPIC, a Zeta converter, a Cuk converter or the like.
 図4は、電流制御回路7の制御例を示す波形図である。図4には、LED8に流れる電流I8、インダクタ72に流れる電流I72およびMOSFET71への制御信号Csの波形が示されている。MOSFET71のゲートにオン信号が入力されると、平滑コンデンサ6、MOSFET71、インダクタ72、コンデンサ74を通る電流経路が形成され、インダクタ72の電流が増加する。 FIG. 4 is a waveform diagram showing a control example of the current control circuit 7. FIG. 4 shows the waveforms of the current I8 flowing to the LED 8, the current I72 flowing to the inductor 72, and the control signal Cs to the MOSFET 71. When an ON signal is input to the gate of the MOSFET 71, a current path is formed through the smoothing capacitor 6, the MOSFET 71, the inductor 72, and the capacitor 74, and the current of the inductor 72 is increased.
 MOSFET71のゲートにオフ信号が入力されると、インダクタ72、コンデンサ74、ダイオード73を通る電流経路が形成され、インダクタ72の電流がゼロまで減少する。予め定めるスイッチング周期Tswが経過した時点で、再びオン信号がMOSFET71に入力され、スイッチング動作を再開する。 When an off signal is input to the gate of the MOSFET 71, a current path is formed through the inductor 72, the capacitor 74, and the diode 73, and the current of the inductor 72 decreases to zero. When the predetermined switching period Tsw has elapsed, the on signal is input to the MOSFET 71 again to restart the switching operation.
 図4に示されるように、インダクタ72に流れる電流I72は三角波状の波形となる。そして、LED8に出力される電流はコンデンサ74により平滑化される。したがって、電流制御回路7からはインダクタ72の電流の平均値が出力される。 As shown in FIG. 4, the current I72 flowing through the inductor 72 has a triangular waveform. Then, the current output to the LED 8 is smoothed by the capacitor 74. Therefore, the current control circuit 7 outputs the average value of the current of the inductor 72.
 LED8を調光するためにLED8の電流を制御する際は、MOSFET71をターンオンするスイッチング周期Tswを一定とし、オン時間Tonを変化させる。つまり、出力電流の目標値に応じてオン時間Tonを調節する。スイッチング周期Tswに対するオン時間Tonの割合をデューティと呼ぶ。このような、オン時間Tonを調整することにより所望の出力を得る制御方法はデューティ制御と呼ばれる。 When controlling the current of the LED 8 to dim the LED 8, the switching period Tsw for turning on the MOSFET 71 is fixed, and the on time Ton is changed. That is, the on-time Ton is adjusted in accordance with the target value of the output current. The ratio of the on time Ton to the switching period Tsw is called a duty. Such a control method of obtaining a desired output by adjusting the on-time Ton is called duty control.
 LED8は、複数のLEDを直並列に接続したLED群で構成される。LED群の一端は直流母線の正極側に接続され、LED群の他端は直流母線の負極側に接続される。 The LED 8 is configured by an LED group in which a plurality of LEDs are connected in series and in parallel. One end of the LED group is connected to the positive electrode side of the DC bus, and the other end of the LED group is connected to the negative electrode side of the DC bus.
 図5は、図1に示す力率改善回路5の動作例を説明する波形図である。図5には、上から、インダクタ52の電流I52、ゼロ電流検出部93から出力されるゼロ電流検出信号Sz、スイッチング素子51のドレイン電圧Vd、スイッチング素子51のゲート電圧Vgの波形が示されている。ただし、ここでは説明のため、スイッチング素子51のゲート電圧をオン、オフする周期を実際よりも長く記載している。 FIG. 5 is a waveform diagram for explaining an operation example of the power factor correction circuit 5 shown in FIG. The waveforms of the current I52 of the inductor 52, the zero current detection signal Sz output from the zero current detection unit 93, the drain voltage Vd of the switching element 51, and the gate voltage Vg of the switching element 51 are shown in FIG. There is. However, for the sake of explanation, the cycle in which the gate voltage of the switching element 51 is turned on and off is described longer than in actuality.
 制御部9からの信号によりスイッチング素子51がオンされると、交流電源1、整流回路3、インダクタ52、およびスイッチング素子51により閉回路が形成され、交流電源1がインダクタ52を介して短絡される。そのため、この閉回路に電源電流が流れ、インダクタ52の電流が増加し、インダクタ52にエネルギーが蓄積される。 When the switching element 51 is turned on by a signal from the control unit 9, a closed circuit is formed by the AC power supply 1, the rectifier circuit 3, the inductor 52, and the switching element 51, and the AC power supply 1 is shorted through the inductor 52. . Therefore, the power supply current flows through the closed circuit, the current of the inductor 52 increases, and energy is stored in the inductor 52.
 スイッチング制御部91により設定されたオン時間が経過すると、スイッチング素子51がオフされる。これにより、インダクタ52、ダイオード53、および平滑コンデンサ6により閉回路が形成され、インダクタ52の電流が減少し、インダクタ52に蓄積されたエネルギーが放出され平滑コンデンサ6に充電される。 When the on-time set by the switching control unit 91 elapses, the switching element 51 is turned off. As a result, a closed circuit is formed by the inductor 52, the diode 53, and the smoothing capacitor 6, the current of the inductor 52 decreases, and the energy stored in the inductor 52 is released and the smoothing capacitor 6 is charged.
 インダクタ52の電流が減少すると2次巻線52bの電圧も減少する。2次巻線52bに接続されたゼロ電流検出部93は、2次巻線52bの電圧が予め定められた値より小さくなると、インダクタ52の電流がゼロになったことを検出し、検出結果に関する信号をスイッチング制御部91に送信する。スイッチング制御部91は、インダクタ52の電流がゼロになってから予め定められた遅延時間が経過した後、スイッチング素子51を再びオンする。この遅延時間の設け方としては、スイッチング素子51のドレイン電圧が自由振動している期間において、電圧振動のボトム付近でスイッチング素子51をオンさせることができる。これにより、ドレイン電圧の急峻な変動を抑制し、スイッチングに起因するノイズを抑制できる。つまり、2次巻線52bの電圧が0になってから、ドレイン電圧の1回目の振動の立下りを見てその後スイッチング素子51をオンする。この動作は電流臨界モードと呼ばれる。 When the current of the inductor 52 decreases, the voltage of the secondary winding 52b also decreases. The zero current detection unit 93 connected to the secondary winding 52b detects that the current of the inductor 52 has become zero when the voltage of the secondary winding 52b becomes smaller than a predetermined value, and relates to the detection result. A signal is transmitted to the switching control unit 91. The switching control unit 91 turns on the switching element 51 again after a predetermined delay time has elapsed since the current of the inductor 52 has become zero. As a method of providing this delay time, the switching element 51 can be turned on near the bottom of the voltage oscillation in a period in which the drain voltage of the switching element 51 is freely oscillating. As a result, it is possible to suppress a sharp change in drain voltage and to suppress noise caused by switching. That is, after the voltage of the secondary winding 52b becomes 0, the switching element 51 is turned on after the fall of the first oscillation of the drain voltage is observed. This operation is called current critical mode.
 一連のスイッチング素子51のオン、オフ動作により、インダクタ52に流れる電流の波形は三角波状となる。その三角波状の波形の頂点は、点線で示すような正弦波の包絡線になる。このとき、交流電源1から入力される電流は、入力フィルタ2により平滑化され、インダクタ電流の平均値が入力され、正弦波状の電流波形となり力率改善される。 Due to the on / off operation of the series of switching elements 51, the waveform of the current flowing through the inductor 52 becomes triangular. The apex of the triangular wave shape is an envelope of a sine wave as shown by a dotted line. At this time, the current input from the AC power supply 1 is smoothed by the input filter 2, the average value of the inductor current is input, and the current waveform becomes a sinusoidal current waveform and the power factor is improved.
 スイッチング制御部91は、出力電圧検出部94から力率改善回路5の出力電圧であるVpfcの情報を受け、目標とするVpfcを実現できるようにスイッチング素子51のオン時間をフィードバック制御する。 The switching control unit 91 receives information of Vpfc which is the output voltage of the power factor correction circuit 5 from the output voltage detecting unit 94, and feedback controls the on time of the switching element 51 so as to realize the target Vpfc.
 フィードバック制御する際、オン時間が大きく変化してしまうと、インダクタ52に流れる電流I52の頂点の包絡線が正弦波にならず、入力電流を正弦波状にすることができない。そこで、フィードバック制御の応答時間を、フィードバック制御のループゲインを交流電源1の1周期の1/2周期以上で1倍(0dB)以下となるように設定する。言い換えると、交流電源1の周波数の2倍以下の周波数で1倍(0dB)以下となるように設定する。例えば電源周波数が50Hzの場合、その半周期(半波)にあたる100Hz以下、すなわち周期10msec以上で定電流フィードバック制御のループゲインを1倍(0dB)以下とすることにより定電流フィードバック制御を電源周期の1/2より短い周期で応答しないように設定する。これにより電源周期の1/2周期以内においては、スイッチング素子51のオン時間の変動が抑制され、インダクタ52の電流I52の頂点の包絡線が正弦波状の波形となる。 When feedback control is performed, if the on-time changes significantly, the envelope of the peak of the current I52 flowing through the inductor 52 does not become sinusoidal, and the input current can not be sinusoidal. Therefore, the response time of the feedback control is set so that the loop gain of the feedback control is equal to or less than one time (0 dB) in one half or more of one cycle of the AC power supply 1. In other words, the frequency is set to be less than or equal to one time (0 dB) at a frequency equal to or less than twice the frequency of the AC power supply 1. For example, when the power supply frequency is 50 Hz, constant current feedback control of the power supply cycle is performed by setting the loop gain of constant current feedback control to 1 times or less (0 dB) or less. Set to not respond in a cycle shorter than 1/2. As a result, within 1⁄2 cycle of the power supply cycle, the variation of the on time of the switching element 51 is suppressed, and the envelope of the peak of the current I 52 of the inductor 52 has a sinusoidal waveform.
 また、フィードバック制御において、オン時間の更新周期を交流電源1の周期の半分、あるいは半分より長い周期とすることによっても、同様の効果を得ることができる。 Also, in feedback control, the same effect can be obtained by setting the on-time update cycle to a half cycle of the AC power supply 1 or a cycle longer than half thereof.
 インダクタ52の1次巻線52aの電流がゼロになったことの検出には、インダクタ52の2次巻線52bの出力電圧を用いる。2次巻線52bの出力電圧は、1次巻線52aに印加される電圧VL1、および、2次巻線52bの1次巻線52aに対する巻数比nによって決定される。2次巻線52bの出力電圧の大きさはVL1とnの積で表すことができる。 The output voltage of the secondary winding 52b of the inductor 52 is used to detect that the current of the primary winding 52a of the inductor 52 has become zero. The output voltage of secondary winding 52b is determined by voltage VL1 applied to primary winding 52a and the turn ratio n of secondary winding 52b to primary winding 52a. The magnitude of the output voltage of the secondary winding 52b can be represented by the product of VL1 and n.
 1次巻線52aの電圧VL1は、整流回路3の出力電圧Vdbと力率改善回路5の出力電圧Vpfcで表すことができる。スイッチング素子51がオンしているとき、1次巻線52aには整流回路3の出力電圧Vdbが印加されるため、VL1=Vdbである。一方、スイッチング素子51がオフしているとき、1次巻線52aにはVpfcと整流回路3の出力電圧Vdbの差が印加されるため、VL1=Vpfc-Vdbである。 The voltage VL1 of the primary winding 52a can be represented by the output voltage Vdb of the rectifier circuit 3 and the output voltage Vpfc of the power factor correction circuit 5. When the switching element 51 is on, the output voltage Vdb of the rectifier circuit 3 is applied to the primary winding 52a, so that VL1 = Vdb. On the other hand, when the switching element 51 is off, the difference between Vpfc and the output voltage Vdb of the rectifier circuit 3 is applied to the primary winding 52a, so that VL1 = Vpfc−Vdb.
 したがって、スイッチング素子51がオンしているときの2次巻線52bの出力電圧VL2はnVdbである。スイッチング素子51がオフしているときの2次巻線52bの出力電圧VL2はn(Vpfc-Vdb)である。ゼロ電流検出部93において、2次巻線52bの出力電圧VL2をスイッチング制御部91に入力可能な大きさに制限し、スイッチング制御部91に信号を送信する。 Therefore, the output voltage VL2 of the secondary winding 52b when the switching element 51 is on is nVdb. The output voltage VL2 of the secondary winding 52b when the switching element 51 is off is n (Vpfc-Vdb). In the zero current detection unit 93, the output voltage VL2 of the secondary winding 52b is limited to a size that can be input to the switching control unit 91, and a signal is transmitted to the switching control unit 91.
 力率改善回路5が昇圧動作を開始する以前は、力率改善回路5の出力電圧であるVpfcと、整流回路3の出力電圧Vdbが等しい。そのため、力率改善回路5が昇圧動作を開始した直後は、2次巻線52bの出力電圧VL2はゼロである。 Before the power factor correction circuit 5 starts the boosting operation, the output voltage Vpfc of the power factor correction circuit 5 and the output voltage Vdb of the rectifier circuit 3 are equal. Therefore, immediately after the power factor correction circuit 5 starts the boosting operation, the output voltage VL2 of the secondary winding 52b is zero.
 また、力率改善回路5が昇圧動作を開始し力率改善回路5の出力電圧Vpfcが上昇している途中において、VpfcとVdbの差が小さい期間は、2次巻線52bの出力電圧VL2として十分大きな電圧が得られない。2次巻線52bの出力電圧VL2が十分大きくないとゼロ電流を検出できない。 In addition, while power factor improvement circuit 5 starts the boosting operation and output voltage Vpfc of power factor improvement circuit 5 is rising, a period in which the difference between Vpfc and Vdb is small is used as output voltage VL2 of secondary winding 52b. A large enough voltage can not be obtained. If the output voltage VL2 of the secondary winding 52b is not sufficiently large, zero current can not be detected.
 力率改善回路5が昇圧動作を開始した直後から、2次巻線52bの出力電圧VL2として十分な大きさの電圧を得るためには、巻数比nを大きくする方法がある。しかし巻数比nが大きい場合、Vpfcが十分に昇圧されVL2が大きい状態においては、ゼロ電流検出部93の抵抗931、ツェナーダイオード932で発生する損失が増大してしまう。よって、巻数比nを大きくすると回路効率が低下する。また、抵抗931、ツェナーダイオード932の発熱が増加するため、放熱のため部品サイズを大きくする等の対策が必要になる。 There is a method of increasing the turns ratio n in order to obtain a voltage of a sufficient magnitude as the output voltage VL2 of the secondary winding 52b immediately after the power factor correction circuit 5 starts the boosting operation. However, when the turn ratio n is large, in the state where Vpfc is sufficiently boosted and VL2 is large, losses generated by the resistor 931 and the zener diode 932 of the zero current detection unit 93 increase. Therefore, if the turns ratio n is increased, the circuit efficiency is reduced. In addition, since heat generation of the resistor 931 and the zener diode 932 increases, it is necessary to take measures such as increasing the size of parts for heat dissipation.
 また、2次巻線52bの巻き数を増やし巻数比nを大きくするためには、2次巻線52bを長くする必要があるのでコストが増加する。さらに、2次巻線52bの巻き数の増加によりインダクタ52が大きくなってしまう。よって、2次巻線52bの出力電圧VL2として十分な大きさの電圧を得るために2次巻線52bの巻き数を増やすのは好ましくない。 Further, in order to increase the number of turns of the secondary winding 52b and to increase the turns ratio n, it is necessary to make the secondary winding 52b longer, which increases the cost. Furthermore, the increase in the number of turns of the secondary winding 52b causes the inductor 52 to be large. Therefore, it is not preferable to increase the number of turns of the secondary winding 52b in order to obtain a voltage of a sufficient magnitude as the output voltage VL2 of the secondary winding 52b.
 力率改善回路5が昇圧動作を開始した直後から、2次巻線52bの出力電圧VL2として十分な大きさの電圧を得るために、ゼロ電流検出部93に増幅回路を設けることも可能である。しかしながら、増幅回路を設けることで部品点数が増加してしまうので、コストが増加し回路が複雑化し装置が大型化する。よって、増幅回路によって2次巻線52bの出力電圧VL2を増幅するのは好ましくない。 It is possible to provide an amplification circuit in the zero current detection unit 93 in order to obtain a voltage of a sufficient magnitude as the output voltage VL2 of the secondary winding 52b immediately after the power factor correction circuit 5 starts the boosting operation. . However, the provision of the amplification circuit increases the number of parts, which increases the cost, complicates the circuit, and increases the size of the apparatus. Therefore, it is not preferable to amplify the output voltage VL2 of the secondary winding 52b by the amplification circuit.
 そこで、力率改善回路5が昇圧動作を開始した直後において、ゼロ電流検出ができない場合、スイッチング素子51をオンした後、所定周期で、強制的に再度スイッチング素子51をオンすることが考えられる。図6は、所定周期でスイッチング素子51をスイッチング動作させる場合の波形図である。図6に示す波形を呈する制御は、インダクタ52の電流I52が不連続となっているので、電流不連続モードと呼ばれる。この制御では、予め定められたオン時間とオフ時間でスイッチング素子51をスイッチングする。2次巻線52bの出力電圧VL2は利用しない。これによって、力率改善回路5の昇圧動作開始後のゼロ電流が検出できない期間においても、一定の周波数でスイッチング素子51をオンオフすることができる。 Therefore, when zero current detection can not be performed immediately after the power factor correction circuit 5 starts the boosting operation, it is conceivable that the switching element 51 is forcibly turned on again in a predetermined cycle after the switching element 51 is turned on. FIG. 6 is a waveform diagram in the case where the switching element 51 performs switching operation at a predetermined cycle. The control exhibiting the waveform shown in FIG. 6 is referred to as a current discontinuous mode since the current I 52 of the inductor 52 is discontinuous. In this control, the switching element 51 is switched at predetermined on time and off time. The output voltage VL2 of the secondary winding 52b is not used. As a result, the switching element 51 can be turned on and off at a constant frequency even in a period when the zero current can not be detected after the start of the boosting operation of the power factor correction circuit 5.
 図6に示す動作を一定期間継続すると、2次巻線52bの出力電圧VL2として十分な大きさの電圧が得られるようになる。力率改善回路5の昇圧動作開始後、2次巻線の出力電圧VL2の大きさがゼロ電流を検出可能な大きさに達すると2次巻線52bの出力電圧VL2を利用した制御へ移行する。つまり、電流臨界モードへ移行する。この移行の前後において、スイッチング素子51のスイッチング周波数が急激に変化するという問題があった。スイッチング素子51のスイッチング周波数が急激に変化すると、Vpfcに変動を生じ、後段に接続された電流制御回路7の出力電流が変動し、LED8の光出力にちらつきが発生する恐れがある。 When the operation shown in FIG. 6 is continued for a predetermined period, a voltage of a sufficient magnitude can be obtained as the output voltage VL2 of the secondary winding 52b. After the boosting operation of power factor correction circuit 5 starts, when the magnitude of output voltage VL2 of the secondary winding reaches a magnitude that can detect zero current, the control shifts to control using output voltage VL2 of secondary winding 52b. . That is, transition to the current critical mode is made. Before and after this transition, there is a problem that the switching frequency of the switching element 51 changes rapidly. When the switching frequency of the switching element 51 changes rapidly, Vpfc may be varied, the output current of the current control circuit 7 connected in the subsequent stage may be varied, and the light output of the LED 8 may flicker.
 そこで、本発明の実施の形態1では、2次巻線52bでゼロ電流検出ができず強制的に再度スイッチング素子51をオンする制御から、電流臨界モードへ移行する際に、スイッチング周波数の急激な変化を防止する方法を提案する。 Therefore, in the first embodiment of the present invention, when the secondary winding 52b can not detect the zero current and is forced to turn on the switching element 51 forcibly again, the switching frequency becomes abrupt when transitioning to the current critical mode. We propose a method to prevent change.
 図7は、実施の形態1に係る力率改善回路5による昇圧動作開始後の各種波形を示す波形図である。時刻t1までの期間においては、ダイオード53を経由して平滑コンデンサ6が充電される。時刻t1までの期間はLED8が消灯している状態であるため、平滑コンデンサ6は交流電源1の振幅ピーク値まで充電され、保持される。そのため、力率改善回路5の出力電圧Vpfcは、交流電源1のピーク電圧となる。 FIG. 7 is a waveform diagram showing various waveforms after the start of the boosting operation by the power factor correction circuit 5 according to the first embodiment. In the period until time t1, the smoothing capacitor 6 is charged via the diode 53. Since the LED 8 is turned off during the period until the time t1, the smoothing capacitor 6 is charged to the amplitude peak value of the AC power supply 1 and held. Therefore, the output voltage Vpfc of the power factor correction circuit 5 is the peak voltage of the AC power supply 1.
 時刻t1において、交流電源1が入力フィルタ2に接続された状態で、力率改善回路5が昇圧動作を開始する。力率改善回路5がスイッチング動作を開始した直後は、VpとVpfcの差分値ΔV(Vpfc-Vp)が小さく、ゼロ電流検出に必要な2次巻線52bの出力電圧VL2が得られない。十分な出力電圧VL2が得られない期間である期間P1においては、スイッチング制御部91で予め定められた周波数制御により、スイッチング素子51をオンオフする。「周波数制御」というのは、2次巻線52bの出力電圧を参照せずに、予め定められた周期でスイッチング素子51をオンオフする制御である。 At time t1, with the AC power supply 1 connected to the input filter 2, the power factor correction circuit 5 starts the boosting operation. Immediately after the power factor correction circuit 5 starts the switching operation, the difference value ΔV (Vpfc−Vp) between Vp and Vpfc is small, and the output voltage VL2 of the secondary winding 52b necessary for zero current detection can not be obtained. In a period P1 in which a sufficient output voltage VL2 can not be obtained, the switching element 51 is turned on / off by frequency control predetermined by the switching control unit 91. The “frequency control” is control to turn on and off the switching element 51 at a predetermined cycle without referring to the output voltage of the secondary winding 52 b.
 図7には差分値閾値が示されている。差分値閾値は、Vpfcが高くなり、2次巻線52bの出力電圧VL2が検出可能な程度まで高まったときの差分値ΔVである。差分値ΔVが差分値閾値に達すると、電流臨界モードによる制御が可能となる。期間P1は、昇圧動作を開始した時刻t1から、差分値ΔVが差分値閾値に達したt2までの期間である。期間P1においては周波数制御が実施される。 A difference value threshold is shown in FIG. The difference value threshold is a difference value ΔV when Vpfc becomes high and the output voltage VL2 of the secondary winding 52b is increased to a detectable level. When the difference value ΔV reaches the difference value threshold, control in the current critical mode becomes possible. A period P1 is a period from time t1 when the boosting operation is started to t2 when the difference value ΔV reaches the difference value threshold. Frequency control is performed in period P1.
 時刻t2になると、Vpfcが昇圧され、差分値ΔVが上昇し、2次巻線52bの出力電圧VL2が検出可能なレベルまで上昇する。スイッチング制御部91は、差分値閾値を記憶しており、差分値ΔVが差分値閾値を超えたことを検知する。スイッチング制御部91は、差分値ΔVが差分値閾値を超えたことを検知すると、スイッチング素子51の制御を周波数制御から電流臨界モードに変更する。電流臨界モードへ移行した後の期間は期間P2として示されている。 At time t2, Vpfc is boosted, the difference value ΔV rises, and the output voltage VL2 of the secondary winding 52b rises to a detectable level. The switching control unit 91 stores a difference value threshold and detects that the difference value ΔV exceeds the difference value threshold. When detecting that the difference value ΔV exceeds the difference value threshold, the switching control unit 91 changes the control of the switching element 51 from the frequency control to the current critical mode. The period after the transition to the current critical mode is shown as a period P2.
 図7には、力率改善回路5を周波数制御している期間P1において、差分値ΔVが大きくなるほどスイッチング周波数を高くしたことが示されている。つまり、期間P1において、スイッチング素子51のスイッチング周波数は一定ではなく、時間が経過するほどスイッチング素子51のスイッチング周波数を高める。これにより、周波数制御から電流臨界モードへ移行する際のスイッチング周波数の変化を小さくすることができる。周波数制御の終期におけるスイッチング周波数が電流臨界モード制御における平均スイッチング周波数と一致するように、期間P1におけるスイッチング周波数を変化させることが好ましい。 FIG. 7 shows that the switching frequency is increased as the difference value ΔV increases in the period P1 in which the power factor improvement circuit 5 is frequency controlled. That is, in the period P1, the switching frequency of the switching element 51 is not constant, and the switching frequency of the switching element 51 is increased as time passes. This makes it possible to reduce the change in switching frequency when shifting from frequency control to the current critical mode. It is preferable to change the switching frequency in period P1 so that the switching frequency at the end of frequency control matches the average switching frequency in current critical mode control.
 図8は、スイッチング周波数の別の制御パターンを示す波形図である。スイッチング素子51を周波数制御する期間P1において、差分値ΔVが大きくなるほどスイッチング周波数を高める。この例では、周波数制御の終期におけるスイッチング周波数f2と電流臨界モード制御における平均周波数f3との差であるΔF1が、周波数制御を開始した時刻t1のスイッチング周波数f1と電流臨界モード制御における平均周波数f3との差分値ΔF2よりも小さくなっている。これは、期間P1においてスイッチング周波数を高めて、f2をf1より大きくしたことで得られる効果である。図7、8のどちらの場合においても、制御変更のタイミングである時刻t2におけるスイッチング周波数の急激な変化を抑制できるので、力率改善回路5の出力電圧変動を抑制できる。 FIG. 8 is a waveform diagram showing another control pattern of the switching frequency. In a period P1 in which the switching element 51 is frequency controlled, the switching frequency is increased as the difference value ΔV increases. In this example, the difference ΔF1, which is the difference between the switching frequency f2 at the end of frequency control and the average frequency f3 in current critical mode control, is the switching frequency f1 at time t1 at which the frequency control is started and the average frequency f3 in current critical mode control Is smaller than the difference value .DELTA.F2. This is an effect obtained by increasing the switching frequency in period P1 to make f2 larger than f1. In either case of FIGS. 7 and 8, since it is possible to suppress the rapid change of the switching frequency at time t2 which is the control change timing, it is possible to suppress the output voltage fluctuation of the power factor correction circuit 5.
 制御部9は上述の制御を実施する。つまり、制御部9は、力率改善回路5の動作が開始されるとスイッチング素子51のスイッチング周波数を変化させる第1制御を実行し、その後、検出巻線で得られる電圧に同期してスイッチング素子51をスイッチングする第2制御を実行する。本実施形態では、周波数制御が第1制御に対応し、電流臨界モードが第2制御に対応する。そして、制御部9は、この場合において、第1制御から第2制御に移行する際のスイッチング周波数の差であるΔF1を、第1制御の開始時のスイッチング周波数と第2制御の開始時のスイッチング周波数との差分値ΔF2より小さくする。図8にはΔF1をΔF2より小さくする制御が開示されている。図7には第1制御ではスイッチング素子51のスイッチング周波数を連続的に変化させ、第1制御の終了時におけるスイッチング素子51のスイッチング周波数を、第2制御の開始時のスイッチング素子51のスイッチング周波数に一致させることが示されている。第1制御から第2制御に移行する際のスイッチング周波数の変化量はゼロであることが好ましい。しかしながら、ΔF1をΔF2より小さくすれば、Vpfcの変動を抑制できるため、光源のちらつきの抑制効果がある。 The controller 9 carries out the control described above. That is, when the operation of the power factor correction circuit 5 is started, the control unit 9 executes the first control to change the switching frequency of the switching element 51, and thereafter the switching element in synchronization with the voltage obtained by the detection winding. The second control to switch 51 is executed. In the present embodiment, the frequency control corresponds to the first control, and the current critical mode corresponds to the second control. Then, in this case, the controller 9 changes the switching frequency at the time of transition from the first control to the second control, ΔF 1, the switching frequency at the start of the first control and the switching at the start of the second control. Make it smaller than the difference value ΔF2 with the frequency. FIG. 8 discloses control for making ΔF1 smaller than ΔF2. In FIG. 7, the switching frequency of the switching element 51 is continuously changed in the first control, and the switching frequency of the switching element 51 at the end of the first control is changed to the switching frequency of the switching element 51 at the start of the second control. It is shown to match. It is preferable that the change amount of the switching frequency at the time of shifting from the first control to the second control is zero. However, if ΔF 1 is smaller than ΔF 2, the fluctuation of Vpfc can be suppressed, so there is an effect of suppressing the flickering of the light source.
 図9は、実施の形態1に係る照明器具100の動作を示すフローチャートである。力率改善回路5に電源が投入されると、ステップS1にて制御部9が起動する。次いで、ステップS2にて、入力電圧検出部92が入力電圧ピーク値Vpを検出する。入力電圧ピーク値Vpは、図1のVpと記載された場所の電圧ピーク値である。次いで、ステップS3にて、出力電圧検出部94がVpfcを検出する。 FIG. 9 is a flowchart showing an operation of the lighting fixture 100 according to the first embodiment. When the power factor improvement circuit 5 is powered on, the controller 9 is activated in step S1. Next, in step S2, the input voltage detection unit 92 detects the input voltage peak value Vp. The input voltage peak value Vp is a voltage peak value of the place described as Vp of FIG. Next, in step S3, the output voltage detection unit 94 detects Vpfc.
 その後、ステップS4にて、スイッチング制御部91が差分値ΔV(Vpfc-Vp)を演算する。差分値ΔVの演算は予め定められた周期で実行される。差分値ΔVの周期的な演算が開始されると、ステップS5にて力率改善回路5による昇圧動作を開始する。これにより、上述の周波数制御が始まる。 Thereafter, in step S4, the switching control unit 91 calculates the difference value ΔV (Vpfc−Vp). The calculation of the difference value ΔV is performed in a predetermined cycle. When the periodic calculation of the difference value ΔV is started, the boosting operation by the power factor improvement circuit 5 is started in step S5. This starts the frequency control described above.
 力率改善回路5の昇圧動作開始後、ステップS6にて、差分値ΔVと差分値閾値の大小を判定する。差分値ΔVが差分値閾値より小さい場合には、ステップS7で周波数制御を継続し、ステップS8でVpfcを再度検出し、ステップS9で最新のVpfcを用いて差分値Δを演算する。 After the boosting operation of the power factor correction circuit 5 is started, in step S6, the magnitude of the difference value ΔV and the difference value threshold value are determined. If the difference value ΔV is smaller than the difference value threshold, the frequency control is continued in step S7, Vpfc is detected again in step S8, and the difference value Δ is calculated using the latest Vpfc in step S9.
 他方、差分値ΔVが差分値閾値以上の場合には、ステップS10にて、周波数制御から電流臨界モードへ移行する。電流臨界モード開始時のスイッチング素子51のスイッチング周波数は負荷と回路定数で決める。その後、2次巻線52bを用いた動作を継続し、シーケンスを終了する。こうして、制御部9によって、Vpと出力電圧Vpfcの差分値ΔVが予め定められた差分値閾値に達したときに、第1制御から第2制御へ移行する。 On the other hand, when the difference value ΔV is equal to or larger than the difference value threshold, at step S10, the frequency control is shifted to the current critical mode. The switching frequency of the switching element 51 at the start of the current critical mode is determined by the load and the circuit constant. Thereafter, the operation using the secondary winding 52b is continued, and the sequence is ended. Thus, when the difference value ΔV between Vp and the output voltage Vpfc reaches a predetermined difference value threshold by the control unit 9, the control shifts from the first control to the second control.
 スイッチング制御部91は、市販のアナログICを組み合わせて構成することができる。アナログICを組み合わせてスイッチング制御部91を構成した場合は、差分値ΔVの演算、差分値ΔVと差分値閾値との大小判定、第1制御から第2制御への制御変更を実現するための回路が複雑になり、部品点数が増加する。そのため、スイッチング制御部91は、マイコン又はCPUなどの演算装置を用いたソフトウェアとして実現することで、回路構成を簡略化し、部品点数増加を抑制することができる。 The switching control unit 91 can be configured by combining commercially available analog ICs. When the switching control unit 91 is configured by combining analog ICs, a circuit for realizing the calculation of the difference value ΔV, the determination of the difference between the difference value ΔV and the difference value threshold, and the control change from the first control to the second control. Becomes complicated and the number of parts increases. Therefore, by realizing the switching control unit 91 as software using an arithmetic device such as a microcomputer or a CPU, the circuit configuration can be simplified and an increase in the number of parts can be suppressed.
 図1の駆動部95とスイッチング制御部91の各機能は、図10の受信装置9aと処理回路9bにより実現される。受信装置9aは、スイッチング制御部91に入力される様々な情報を受信する装置である。処理回路9bは専用のハードウェアである。処理回路9bは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。駆動部95とスイッチング制御部91の各機能それぞれを処理回路9bで実現してもよいし、各部の機能をまとめて処理回路9bで実現してもよい。 Each function of the drive unit 95 and the switching control unit 91 in FIG. 1 is realized by the receiving device 9 a and the processing circuit 9 b in FIG. 10. The receiving device 9 a is a device that receives various information input to the switching control unit 91. The processing circuit 9b is dedicated hardware. The processing circuit 9b corresponds to, for example, a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. The respective functions of the drive unit 95 and the switching control unit 91 may be realized by the processing circuit 9 b, or the functions of the respective portions may be realized collectively by the processing circuit 9 b.
 図11は、ソフトウェアで実現された制御部9を示すブロック図である。この場合、図1の入力電圧検出部92、ゼロ電流検出部93および出力電圧検出部94は、図11の受信装置30である。処理回路がCPUの場合、図1のスイッチング制御部91と駆動部95の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ34に格納される。処理回路であるプロセッサ32はメモリ34に記憶されたプログラムを読み出して実行することにより各部の機能を実現する。すなわち、図9のフローチャート及び実施の形態1で説明した動作が結果的に実行されることになるプログラムを格納するためのメモリ34がある。このプログラムは上記の手順又は方法をコンピュータに実行させるものであるとも言える。ここで、メモリとは例えばRAM、ROM、フラッシュメモリー、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDが該当する。なお、制御部9の各機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。 FIG. 11 is a block diagram showing the control unit 9 implemented by software. In this case, the input voltage detection unit 92, the zero current detection unit 93, and the output voltage detection unit 94 of FIG. 1 are the receiving device 30 of FIG. When the processing circuit is a CPU, each function of the switching control unit 91 and the drive unit 95 in FIG. 1 is realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in the memory 34. The processor 32, which is a processing circuit, reads out and executes the program stored in the memory 34 to realize the functions of the respective units. That is, there is a memory 34 for storing a program that results in the operations described in the flowchart of FIG. 9 and the first embodiment. It can be said that this program causes a computer to execute the above procedure or method. Here, the memory corresponds to, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD. Note that a part of each function of the control unit 9 may be realized by dedicated hardware, and a part may be realized by software or firmware.
 上述の構成および制御方法はその特徴を失わない範囲で様々な変形が可能である。以後、いくつかの変形例を説明する。実施の形態1では、例えば図7に示す昇圧動作開始直後の期間P1において、スイッチング素子51のスイッチング周波数を変化させることが重要である。変化の過程は特に限定されない。期間P1全体にわたって連続的にスイッチング素子51のスイッチング周波数を増加させてもよいし、期間P1の一部においてスイッチング素子51のスイッチング周波数を増加させてもよい。期間P1において階段状にスイッチング周波数を上昇させてもよい。 The configuration and control method described above can be variously modified without losing their features. Hereinafter, some modifications will be described. In the first embodiment, for example, it is important to change the switching frequency of switching element 51 in period P1 immediately after the start of the boosting operation shown in FIG. The process of change is not particularly limited. The switching frequency of the switching element 51 may be increased continuously throughout the period P1, or the switching frequency of the switching element 51 may be increased in part of the period P1. The switching frequency may be increased stepwise in period P1.
 実施の形態1では、整流回路3、力率改善回路5、検出巻線として用いた2次巻線52b、および制御部9を有する電力変換回路を、LED8の制御に用いた照明器具100について説明した。つまり、この電力変換回路の出力を電流制御回路7を介してLED8に接続した。しかしながら、この電力変換回路は、電源が入力される機器一般に使用できるものである。例えば、この電力変換装置の出力にモータなどの負荷を接続することができる。この電力変換装置と負荷をまとめて電気機器という。 In the first embodiment, the lighting apparatus 100 using the power conversion circuit having the rectifier circuit 3, the power factor correction circuit 5, the secondary winding 52b used as the detection winding, and the control unit 9 for controlling the LED 8 is described. did. That is, the output of this power conversion circuit was connected to the LED 8 via the current control circuit 7. However, this power conversion circuit can be generally used for devices to which power is input. For example, a load such as a motor can be connected to the output of the power conversion device. The power converter and the load are collectively referred to as an electrical device.
 実施の形態1では、図6に示す電流不連続モードで周波数制御を行った後に、電流臨界モードへ移行した。言い換えれば、第1制御の期間中は電流不連続モードでスイッチング素子51をオンオフした。しかしながら、第1制御の期間中に電流連続モードでスイッチング素子51をオンオフしてもよい。図12は、電流連続モードでスイッチング素子51を動作させたときの波形図である。電流連続モードとは、インダクタ52の電流I52が0になる前にスイッチング素子51をオンする制御方法である。電流連続モードは、電流不連続モードと同様、2次巻線52bの出力電圧VL2を参照しないスイッチング素子51の制御方法である。 In the first embodiment, after performing frequency control in the current discontinuous mode shown in FIG. 6, the transition to the current critical mode is made. In other words, the switching element 51 is turned on and off in the current discontinuous mode during the period of the first control. However, the switching element 51 may be turned on and off in the current continuous mode during the period of the first control. FIG. 12 is a waveform diagram when the switching element 51 is operated in the current continuous mode. The current continuous mode is a control method of turning on the switching element 51 before the current I52 of the inductor 52 becomes zero. The current continuous mode is a control method of the switching element 51 not referring to the output voltage VL2 of the secondary winding 52b as in the current discontinuous mode.
 図13は、第1制御の期間中に電流連続モードによる制御を採用した場合の波形図である。時刻t1から時刻taまでの期間は電流不連続モードで力率改善回路5を動作させ、時刻taから時刻t2までの期間は電流連続モードで力率改善回路5を動作させる。電流連続モードは電流臨界モードよりも高いスイッチング周波数で動作するモードである。第1制御から第2制御に移行する際のスイッチング周波数の変化量ΔF1を、第1制御の開始時のスイッチング周波数f1と第2制御の開始時のスイッチング周波数f2との差分値ΔF2より小さくすることで、制御変更時のスイッチング周波数の急激な変化を回避できる。 FIG. 13 is a waveform diagram when control in the current continuous mode is adopted during the period of the first control. The power factor correction circuit 5 is operated in the current discontinuous mode in the period from time t1 to time ta, and the power factor improvement circuit 5 is operated in the current continuous mode in the period from time ta to time t2. The current continuous mode is a mode operating at a higher switching frequency than the current critical mode. The variation ΔF1 of the switching frequency when shifting from the first control to the second control is smaller than the difference value ΔF2 between the switching frequency f1 at the start of the first control and the switching frequency f2 at the start of the second control Thus, it is possible to avoid a sudden change in switching frequency at the time of control change.
 このように、制御部9は、第1制御の期間中はスイッチング素子51を電流不連続モード又は電流連続モードで動作させ、第2制御の期間中はスイッチング素子51を電流臨界モードで動作させることができる。 As described above, the control unit 9 operates the switching element 51 in the discontinuous current mode or the continuous current mode during the first control period, and operates the switching element 51 in the current critical mode during the second control period. Can.
 実施の形態1では、光源がLED8の場合について説明したが、例えば有機EL(Electro Luminescence)などのLEDとは異なる光源を用いてもよい。実施の形態1で説明した変形例は以下の実施の形態に係る電力変換装置、照明器具および電気機器にも応用することができる。なお、以下の実施の形態に係る電力変換装置、照明器具、電気機器は実施の形態1との共通点が多いので実施の形態1との相違点を中心に説明する。 Although the case where the light source is the LED 8 has been described in the first embodiment, for example, a light source different from an LED such as an organic EL (Electro Luminescence) may be used. The modification described in the first embodiment can also be applied to the power conversion device, the lighting fixture, and the electric device according to the following embodiments. The power conversion device, the lighting apparatus, and the electric apparatus according to the following embodiments have many points in common with the first embodiment, and therefore, differences with the first embodiment will be mainly described.
実施の形態2.
 実施の形態1では、差分値ΔVが差分値閾値に達した時点で周波数制御から電流臨界モードへ移行させたが、実施の形態2では出力電圧Vpfcに着目して制御を移行する。
Second Embodiment
In the first embodiment, when the difference value ΔV reaches the difference value threshold, the control is shifted from the frequency control to the current critical mode, but in the second embodiment, the control is shifted focusing on the output voltage Vpfc.
 図14は、実施の形態2に係る制御を示す波形図である。交流電源1が接続され、力率改善回路5が昇圧動作を開始するまでの期間においては、ダイオード53を経由して平滑コンデンサ6が充電される。この期間は、LED8を消灯しているため、平滑コンデンサ6は交流電源1の振幅ピーク値まで充電され保持される。そのため、力率改善回路5の出力電圧Vpfcは交流電源1のピーク電圧となる。 FIG. 14 is a waveform diagram showing control according to the second embodiment. In a period until the AC power supply 1 is connected and the power factor correction circuit 5 starts the boosting operation, the smoothing capacitor 6 is charged via the diode 53. Since the LED 8 is turned off during this period, the smoothing capacitor 6 is charged and held to the amplitude peak value of the AC power supply 1. Therefore, the output voltage Vpfc of the power factor correction circuit 5 is the peak voltage of the AC power supply 1.
 力率改善回路5の動作が始まる時刻t1になる前に、入力電圧検出部92で入力電圧ピーク値Vpを検出する。検出されたVpの情報はスイッチング制御部91に送信される。スイッチング制御部91は、Vpの情報から、出力電圧VL2が検出可能となるVpfcの閾値を導出するプログラム又はテーブルを記憶している。出力電圧VL2が検出可能となるVpfcの閾値を出力電圧閾値という。スイッチング制御部91は、前述のプログラム又はテーブルにより、入力電圧検出部92から受けたVpの情報に対応した、出力電圧閾値を算出する。 Before the time t1 when the operation of the power factor correction circuit 5 starts, the input voltage detection unit 92 detects the input voltage peak value Vp. Information of the detected Vp is transmitted to the switching control unit 91. The switching control unit 91 stores a program or a table for deriving a threshold value of Vpfc at which the output voltage VL2 can be detected from the information of Vp. The threshold of Vpfc at which the output voltage VL2 can be detected is referred to as an output voltage threshold. The switching control unit 91 calculates an output voltage threshold value corresponding to the information of Vp received from the input voltage detection unit 92 according to the aforementioned program or table.
 時刻t1になると、力率改善回路5が昇圧動作を開始する。昇圧動作の初期は、ゼロ電流検出に必要な2次巻線52bの出力電圧VL2が得られないため、力率改善回路5を周波数制御する。力率改善回路5がスイッチング動作を開始した後、Vpfcが昇圧されると、出力電圧VL2が検出可能なレベルまで上昇する。 At time t1, the power factor correction circuit 5 starts the boosting operation. At the beginning of the boosting operation, the output voltage VL2 of the secondary winding 52b necessary for the zero current detection can not be obtained, so the frequency control of the power factor correction circuit 5 is performed. When Vpfc is boosted after the power factor correction circuit 5 starts the switching operation, the output voltage VL2 rises to a detectable level.
 スイッチング制御部91は、Vpfcが、先ほど算出した出力電圧閾値を超えたときにスイッチング素子51の制御を周波数制御から電流臨界モードへ変更する。言い換えると、制御部9は、出力電圧Vpfcが予め定められた出力電圧閾値に達したときに、第1制御から第2制御へ移行する。このようにVpfcが出力電圧閾値に達したタイミングで制御を変更することで、実施形態1で必要であった差分値ΔVの演算が不要となるため、スイッチング制御部91の演算負担を低減できる。 The switching control unit 91 changes the control of the switching element 51 from frequency control to current critical mode when Vpfc exceeds the output voltage threshold calculated above. In other words, the control unit 9 shifts from the first control to the second control when the output voltage Vpfc reaches a predetermined output voltage threshold. By changing the control at the timing when Vpfc reaches the output voltage threshold value in this way, the calculation of the difference value ΔV required in the first embodiment becomes unnecessary, so the calculation load on the switching control unit 91 can be reduced.
 さらに、力率改善回路5を周波数制御している期間P1において、Vpfcが大きくなるほどスイッチング周波数を高くすることで、周波数制御から電流臨界モードへ移行する際にスイッチング周波数が急激に変化することを防止した。図14には、周波数制御から電流臨界モードへ制御変更する前後でスイッチング周波数を一致させたことが示されている。このように、周波数制御の終期のスイッチング周波数と、電流臨界モード制御の始期のスイッチングの平均周波数を一致させることが好ましい。 Furthermore, in period P1 in which frequency control of power factor improvement circuit 5 is performed, the switching frequency is increased as Vpfc becomes larger, thereby preventing the switching frequency from changing rapidly when transitioning from frequency control to the current critical mode. did. FIG. 14 shows that the switching frequency is matched before and after the control change from the frequency control to the current critical mode. Thus, it is preferable to match the switching frequency at the end of the frequency control with the average frequency of the switching at the start of the current critical mode control.
 図15は、スイッチング周波数の別の制御パターンを示す波形図である。力率改善回路5を周波数制御する期間においてVpfcが大きくなるほどスイッチング周波数を高くすることで、第1制御から第2制御に移行する際のスイッチング周波数の変化量ΔF3を、第1制御の開始時のスイッチング周波数と第2制御の開始時のスイッチング周波数との差分値ΔF4より小さくすることができる。 FIG. 15 is a waveform diagram showing another control pattern of the switching frequency. By increasing the switching frequency as Vpfc increases during the frequency control of the power factor correction circuit 5, the change amount ΔF3 of the switching frequency at the time of transition from the first control to the second control can be obtained at the start of the first control. The difference value ΔF4 between the switching frequency and the switching frequency at the start of the second control can be made smaller.
 図16は、実施の形態2に係る照明器具の制御方法を示すフローチャートである。電源が投入されると、ステップSaにて制御部9が起動する。次いで、ステップSbにて、スイッチング制御部91は、入力電圧検出部92からVpの情報を受ける。例えばVpの実効値が100V、200Vまたは242Vであるとの情報を受ける。そして、スイッチング制御部91はVpに対応した出力電圧閾値を算出する。Vpと出力電圧閾値の対応をテーブルとしてスイッチング制御部91に保存しておくことで、そのテーブルを利用して出力電圧閾値を導出することができる。このように、力率改善回路5の動作開始時にVpから出力電圧閾値を決める。Vpが高ければ出力電圧閾値を高くし、Vpが低ければ出力電圧閾値を低くすることが好ましい。 FIG. 16 is a flowchart showing a control method of the lighting apparatus according to the second embodiment. When the power is turned on, in step Sa, the control unit 9 is activated. Next, in step Sb, the switching control unit 91 receives information of Vp from the input voltage detection unit 92. For example, it receives information that the effective value of Vp is 100V, 200V or 242V. Then, the switching control unit 91 calculates an output voltage threshold value corresponding to Vp. By storing the correspondence between Vp and the output voltage threshold as a table in the switching control unit 91, it is possible to derive the output voltage threshold using the table. Thus, the output voltage threshold is determined from Vp when the operation of the power factor correction circuit 5 is started. It is preferable to raise the output voltage threshold if Vp is high, and lower the output voltage threshold if Vp is low.
 次いで、ステップScに処理を進める。ステップScではスイッチング制御部91からの指令に基づきスイッチング素子51のオンオフを開始することで、力率改善回路5の動作を開始する。力率改善回路5の動作の初期においては、スイッチング素子51を周波数制御する。次いで、ステップSdでは、スイッチング制御部91にて、出力電圧検出部94で検知されたVpfcと出力電圧閾値の大小を判定する。Vpfcが出力電圧閾値よりも小さい場合は、ステップSeに進み周波数制御を継続する。その後、ステップSfにて再びVpfcを検出し、再度ステップSdの判定を行う。ステップSdにて、Vpfcが出力電圧閾値以上であると判定されると、ステップSgへ進み電流臨界モードへ移行する。その後、電流臨界モードによる制御を継続する。 Next, the process proceeds to step Sc. In step Sc, on / off of the switching element 51 is started based on the command from the switching control unit 91, and the operation of the power factor improvement circuit 5 is started. At the beginning of the operation of the power factor correction circuit 5, the switching element 51 is frequency controlled. Next, in step Sd, the switching control unit 91 determines whether Vpfc detected by the output voltage detection unit 94 is larger or smaller than the output voltage threshold. If Vpfc is smaller than the output voltage threshold value, the process proceeds to step Se to continue frequency control. Thereafter, Vpfc is again detected in step Sf, and the determination in step Sd is performed again. If it is determined in step Sd that Vpfc is equal to or higher than the output voltage threshold value, the process proceeds to step Sg to shift to the current critical mode. Thereafter, control in the current critical mode is continued.
 実施の形態2では、制御部9は、力率改善回路5への入力電圧が反映された値であるVpにより出力電圧閾値を定めることとした。つまり出力電圧閾値を可変とした。しかしながら、電力変換装置のVpが予め定められている場合には、出力電圧閾値を決めるプロセスは不要である。例えば電力変換装置がAC100V専用品であれば、出力電圧閾値を決めるプロセスは不要であり、予め定められた1つの出力電圧閾値を利用することができる。 In the second embodiment, the control unit 9 determines the output voltage threshold based on Vp which is a value reflecting the input voltage to the power factor correction circuit 5. That is, the output voltage threshold was made variable. However, if Vp of the power converter is predetermined, the process of determining the output voltage threshold is unnecessary. For example, if the power conversion device is a dedicated product of AC 100 V, the process of determining the output voltage threshold is unnecessary, and one predetermined output voltage threshold can be used.
実施の形態3.
 図17は、実施の形態3に係る照明器具200の回路図である。照明器具200は実施の形態1で説明した照明器具100と基本的には同じ動作をする。実施の形態1では制御部9で主として力率改善回路5を制御したが、実施の形態3の制御部9は力率改善回路5のみでなく電流制御回路7を制御する。電流制御回路7は、力率改善回路5の出力に接続され、力率改善回路5から出力された直流電圧を直流電流に変換する回路である。
Third Embodiment
FIG. 17 is a circuit diagram of the lighting fixture 200 according to the third embodiment. The lighting fixture 200 operates basically the same as the lighting fixture 100 described in the first embodiment. Although the control unit 9 mainly controls the power factor correction circuit 5 in the first embodiment, the control unit 9 of the third embodiment controls not only the power factor correction circuit 5 but also the current control circuit 7. The current control circuit 7 is a circuit that is connected to the output of the power factor correction circuit 5 and converts the direct current voltage output from the power factor correction circuit 5 into a direct current.
 実施の形態3の制御部9は、LED8を流れる電流を検出する電流検出手段10と、電流検出手段10の出力を受ける電流検出部96を備えている。電流検出手段10として例えばシャント抵抗またはホールセンサを利用することができる。電流検出部96はスイッチング制御部91に対しLED電流の情報を送る。スイッチング制御部91は、駆動部95を利用してMOSFET71をオンオフ制御することで、電流制御回路7が出力する電流を制御する。 The control unit 9 of the third embodiment includes a current detection unit 10 that detects the current flowing through the LED 8 and a current detection unit 96 that receives the output of the current detection unit 10. For example, a shunt resistor or a Hall sensor can be used as the current detection means 10. The current detection unit 96 sends information on the LED current to the switching control unit 91. The switching control unit 91 controls the current output from the current control circuit 7 by performing on / off control of the MOSFET 71 using the driving unit 95.
 力率改善回路5のスイッチング素子51の制御を周波数制御から電流臨界モードへ変更するタイミングで少しでも周波数に変化があると、Vpfcが振動する。図18は、制御変更に伴ってVpfcが振動することを示す波形図である。図18には、制御変更のタイミングである時刻t2からVpfcに振動が発生し、時間の経過とともにその振動が減衰することが示されている。この振動は例えば100msec程度で減衰する。 If the frequency is slightly changed at the timing of changing the control of the switching element 51 of the power factor correction circuit 5 from the frequency control to the current critical mode, Vpfc oscillates. FIG. 18 is a waveform diagram showing that Vpfc oscillates with control change. FIG. 18 shows that vibration occurs from time t2 which is the timing of control change to Vpfc, and the vibration attenuates with the passage of time. This vibration is attenuated, for example, in about 100 msec.
 電流制御回路7の出力を一定に保つためには、Vpfcの振動に対して高速に応答することが必要である。そこで、実施の形態3の制御部9は、第1制御から第2制御に移行する前の予め定められた期間と、第1制御から第2制御へ移行した後のあらかじめ定められた期間、力率改善回路5の出力電圧Vpfcが一定値に安定している状態と比べて電流制御回路7の応答速度を高める。電流制御回路7の応答速度とは、電流検出部96の検出結果を、MOSFET71の制御に反映させる速度である。電流制御回路7の応答速度が高いほど、電流検出部96の検出結果が迅速にMOSFET71の制御に反映される。 In order to keep the output of the current control circuit 7 constant, it is necessary to respond quickly to the oscillation of Vpfc. Therefore, the control unit 9 of the third embodiment has a predetermined period before shifting from the first control to the second control, and a predetermined period after shifting from the first control to the second control. The response speed of the current control circuit 7 is increased compared to the state in which the output voltage Vpfc of the rate improvement circuit 5 is stable at a constant value. The response speed of the current control circuit 7 is a speed at which the detection result of the current detection unit 96 is reflected in the control of the MOSFET 71. As the response speed of the current control circuit 7 is higher, the detection result of the current detection unit 96 is more quickly reflected in the control of the MOSFET 71.
 例えば、時刻t2の前100msecから、時刻t2の後100msecまでの期間における電流制御回路7の応答速度を、Vpfcが目標値に達したt3以降における電流制御回路7の応答速度より高くする。言い換えればスイッチング素子51の制御変更の前後の短い期間だけ、t3以降の期間よりも電流制御回路7の応答速度を高くする。これにより、電流制御回路7の出力を略一定に保つことができる。 For example, the response speed of the current control circuit 7 in a period from 100 msec before time t2 to 100 msec after time t2 is set higher than the response speed of the current control circuit 7 after t3 when Vpfc reaches the target value. In other words, the response speed of the current control circuit 7 is made higher for a short period of time before and after the control change of the switching element 51 than in the period after t3. Thus, the output of the current control circuit 7 can be kept substantially constant.
 電流制御回路7の応答速度を高くする期間を高速応答期間と称する。上述の制御を実行するためには、スイッチング制御部91が、高速応答期間を特定しなければならない。スイッチング制御部91は力率改善回路5の制御主体であるので高速応答期間を容易に特定することができる。つまり、スイッチング制御部91は、差分値ΔVと差分値閾値を定期的に比較しているので、制御変更のタイミングが近づいてきたこと、制御変更のタイミングとなったこと、制御変更後の一定期間が経過したこと、を検知できる。これらの検知結果から、上述の高速応答期間を簡単に特定することができる。 A period in which the response speed of the current control circuit 7 is increased is referred to as a high speed response period. In order to execute the control described above, the switching control unit 91 has to specify a fast response period. Since the switching control unit 91 is a control entity of the power factor improvement circuit 5, the high speed response period can be easily specified. That is, since the switching control unit 91 periodically compares the difference value ΔV with the difference value threshold value, the timing of the control change is approaching, the timing of the control change has come, and the fixed period after the control change Can be detected. From these detection results, the above-mentioned fast response period can be easily identified.
 このように、1つの制御部9を用いて力率改善回路5と電流制御回路7の制御を行うことで、力率改善回路5の制御変更時に電流制御回路7の応答速度を高めることができる。これにより、力率改善回路5において制御を変更する際に生じるわずかなVpfcの振動に起因してLED8に流れる電流が変動してLED8がちらつくことを防止できる。 As described above, by controlling the power factor correction circuit 5 and the current control circuit 7 using one control unit 9, the response speed of the current control circuit 7 can be increased when the control of the power factor correction circuit 5 is changed. . Thereby, it is possible to prevent the flickering of the LED 8 due to the fluctuation of the current flowing to the LED 8 due to the slight vibration of Vpfc generated when changing the control in the power factor improvement circuit 5.
 実施の形態3で説明した方法は、スイッチング素子51の制御変更のタイミングである程度スイッチング周波数が変動し得るあらゆる制御に対して効果的である。したがって、実施の形態1、2又はそれらの変形で説明したスイッチング素子51の制御方法に、実施の形態3の方法を組み合わせることができる。 The method described in the third embodiment is effective for any control in which the switching frequency may fluctuate to some extent at the timing of control change of the switching element 51. Therefore, the method of the third embodiment can be combined with the control method of the switching element 51 described in the first and second embodiments or their modifications.
 なお、上記の各実施の形態で説明した技術的特徴を組み合わせて本発明の効果を高めても良い。 The effects of the present invention may be enhanced by combining the technical features described in the above embodiments.
 5 力率改善回路、 51 スイッチング素子、 52 インダクタ、 52a 1次巻線、 52b 2次巻線、 9 制御部

       
5 Power factor correction circuit, 51 switching elements, 52 inductors, 52a primary winding, 52b secondary winding, 9 control unit

Claims (11)

  1.  交流電力を整流する整流回路と、
     スイッチング素子とインダクタとを有し、前記整流回路の出力が入力され、直流電圧を出力する力率改善回路と、
     前記インダクタで発生する電圧を検出する検出巻線と、
     前記検出巻線で検出した電圧が入力され、前記スイッチング素子を駆動させる制御部と、を備え、
     前記制御部は、前記力率改善回路の動作が開始されると前記スイッチング素子のスイッチング周波数を変化させる第1制御を実行し、その後、前記検出巻線で得られる電圧に同期して前記スイッチング素子をスイッチングする第2制御を実行する場合に、前記第1制御から前記第2制御に移行する際の前記スイッチング周波数の変化量を、前記第1制御の開始時の前記スイッチング周波数と前記第2制御の開始時の前記スイッチング周波数との差分値より小さくすることを特徴とする電力変換装置。
    A rectifier circuit that rectifies AC power;
    A power factor improvement circuit having a switching element and an inductor, the output of the rectifier circuit being input, and a DC voltage being output;
    A detection winding for detecting a voltage generated by the inductor;
    A control unit which receives the voltage detected by the detection winding and drives the switching element;
    The control unit executes a first control to change a switching frequency of the switching element when the operation of the power factor correction circuit is started, and thereafter, the switching element is synchronized with a voltage obtained by the detection winding. When executing the second control for switching the switching frequency, the amount of change in the switching frequency when shifting from the first control to the second control, the switching frequency at the start of the first control, and the second control Power conversion device characterized in that it is smaller than the difference value with the switching frequency at the start of the above.
  2.  前記第1制御では前記スイッチング素子のスイッチング周波数を連続的に変化させ、前記第1制御の終了時における前記スイッチング素子のスイッチング周波数を、前記第2制御の開始時の前記スイッチング素子のスイッチング周波数に一致させることを特徴とする請求項1に記載の電力変換装置。 In the first control, the switching frequency of the switching element is continuously changed, and the switching frequency of the switching element at the end of the first control matches the switching frequency of the switching element at the start of the second control. The power converter according to claim 1, characterized in that
  3.  前記力率改善回路の出力電圧を検出する出力電圧検出部を備え、
     前記制御部は、前記出力電圧検出部の出力に応じて、前記第1制御における前記スイッチング素子のスイッチング周波数を変化させることを特徴とする請求項1又は2に記載の電力変換装置。
    An output voltage detection unit that detects an output voltage of the power factor correction circuit;
    The power conversion device according to claim 1, wherein the control unit changes a switching frequency of the switching element in the first control according to an output of the output voltage detection unit.
  4.  前記力率改善回路の入力電圧を検出する入力電圧検出部と、
     前記力率改善回路の出力電圧を検出する出力電圧検出部と、を備え、
     前記制御部は、前記入力電圧と前記出力電圧の差分値が予め定められた差分値閾値に達したときに前記第1制御から前記第2制御へ移行することを特徴とする請求項1又は2に記載の電力変換装置。
    An input voltage detection unit that detects an input voltage of the power factor correction circuit;
    An output voltage detection unit that detects an output voltage of the power factor correction circuit;
    3. The apparatus according to claim 1, wherein the control unit shifts from the first control to the second control when a difference between the input voltage and the output voltage reaches a predetermined difference threshold. Power converter according to claim 1.
  5.  前記力率改善回路の出力電圧を検出する出力電圧検出部を備え、
     前記制御部は、前記出力電圧が予め定められた出力電圧閾値に達したときに前記第1制御から前記第2制御へ移行することを特徴とする請求項1又は2に記載の電力変換装置。
    An output voltage detection unit that detects an output voltage of the power factor correction circuit;
    The power conversion device according to claim 1, wherein the control unit shifts from the first control to the second control when the output voltage reaches a predetermined output voltage threshold.
  6.  前記力率改善回路の入力電圧を検出する入力電圧検出部を備え、
     前記制御部は、前記入力電圧により前記出力電圧閾値を定めることを特徴とする請求項5に記載の電力変換装置。
    An input voltage detection unit that detects an input voltage of the power factor correction circuit;
    The power conversion device according to claim 5, wherein the control unit determines the output voltage threshold according to the input voltage.
  7.  前記第1制御から前記第2制御に移行する際の前記スイッチング周波数の変化量はゼロであることを特徴とする請求項1~6のいずれか1項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 6, wherein a change amount of the switching frequency at the time of transition from the first control to the second control is zero.
  8.  前記制御部は、前記第1制御の期間中は前記スイッチング素子を電流不連続モード又は電流連続モードで動作させ、前記第2制御の期間中は前記スイッチング素子を電流臨界モードで動作させることを特徴とする請求項1~7のいずれか1項に記載の電力変換装置。 The control unit operates the switching element in the discontinuous current mode or the continuous current mode during the first control period, and operates the switching element in the current critical mode during the second control period. The power conversion device according to any one of claims 1 to 7, wherein
  9.  前記力率改善回路の出力に接続され、前記力率改善回路から出力された直流電圧を直流電流に変換する、電流制御回路を備え、
     前記制御部は、前記第1制御から前記第2制御に移行する前の予め定められた期間と、前記第1制御から前記第2制御へ移行した後のあらかじめ定められた期間、前記力率改善回路の出力電圧が一定値に安定している状態と比べて前記電流制御回路の応答速度を高めることを特徴とする請求項1~8のいずれか1項に記載の電力変換装置。
    And a current control circuit connected to an output of the power factor correction circuit and converting a direct current voltage output from the power factor correction circuit into a direct current.
    The control unit improves the power factor during a predetermined period before shifting from the first control to the second control and a predetermined period after shifting from the first control to the second control. The power conversion device according to any one of claims 1 to 8, characterized in that the response speed of the current control circuit is increased as compared with a state in which the output voltage of the circuit is stable at a constant value.
  10.  請求項1~9のいずれか1項に記載の電力変換装置と、
     前記電力変換装置の出力に接続されたLED(Light Emitting Diode)又は有機EL(Electro Luminescence)である光源と、を備えることを特徴とする照明器具。
    The power conversion device according to any one of claims 1 to 9,
    A light fixture comprising: a light emitting diode (LED) or a light source which is an organic electro luminescence (EL) connected to an output of the power conversion device.
  11.  請求項1~9のいずれか1項に記載の電力変換装置と、
     前記電力変換装置の出力に接続された負荷と、を備えることを特徴とする電気機器。
    The power conversion device according to any one of claims 1 to 9,
    And a load connected to an output of the power conversion device.
PCT/JP2017/024173 2017-06-30 2017-06-30 Power conversion device, lighting apparatus and electric device WO2019003423A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780092531.XA CN110785919B (en) 2017-06-30 2017-06-30 Power conversion device, lighting fixture, and electrical apparatus
JP2019526100A JP6825704B2 (en) 2017-06-30 2017-06-30 Power converters, lighting fixtures, electrical equipment
PCT/JP2017/024173 WO2019003423A1 (en) 2017-06-30 2017-06-30 Power conversion device, lighting apparatus and electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024173 WO2019003423A1 (en) 2017-06-30 2017-06-30 Power conversion device, lighting apparatus and electric device

Publications (1)

Publication Number Publication Date
WO2019003423A1 true WO2019003423A1 (en) 2019-01-03

Family

ID=64740480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024173 WO2019003423A1 (en) 2017-06-30 2017-06-30 Power conversion device, lighting apparatus and electric device

Country Status (3)

Country Link
JP (1) JP6825704B2 (en)
CN (1) CN110785919B (en)
WO (1) WO2019003423A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098147A (en) * 2011-11-07 2013-05-20 Seiko Epson Corp Discharge lamp lighting device, projector and method for driving discharge lamp
JP2014018012A (en) * 2012-07-11 2014-01-30 Toyota Industries Corp On-vehicle switching power supply device
JP2014191261A (en) * 2013-03-28 2014-10-06 Sharp Corp Projector and drive control method
US20150117066A1 (en) * 2011-09-07 2015-04-30 Nxp B.V. Switched mode converter and methods of controlling switched mode converters
JP2016093011A (en) * 2014-11-06 2016-05-23 新電元工業株式会社 Switching power supply

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243629A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Electric-discharge lamp lighting device, luminaire, and lighting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117066A1 (en) * 2011-09-07 2015-04-30 Nxp B.V. Switched mode converter and methods of controlling switched mode converters
JP2013098147A (en) * 2011-11-07 2013-05-20 Seiko Epson Corp Discharge lamp lighting device, projector and method for driving discharge lamp
JP2014018012A (en) * 2012-07-11 2014-01-30 Toyota Industries Corp On-vehicle switching power supply device
JP2014191261A (en) * 2013-03-28 2014-10-06 Sharp Corp Projector and drive control method
JP2016093011A (en) * 2014-11-06 2016-05-23 新電元工業株式会社 Switching power supply

Also Published As

Publication number Publication date
CN110785919A (en) 2020-02-11
JP6825704B2 (en) 2021-02-03
JPWO2019003423A1 (en) 2020-01-16
CN110785919B (en) 2021-07-20

Similar Documents

Publication Publication Date Title
US8816597B2 (en) LED driving circuit
US20120319610A1 (en) Led lighting apparatus
JPWO2011065047A1 (en) LED drive power supply device and LED illumination device
JP2016058272A (en) Lighting device and luminaire
JP2010040400A (en) Light-emitting diode lighting device
JP6292018B2 (en) Lighting device and lighting apparatus
JP6551735B2 (en) Dimmable lighting circuit and lighting fixture
JP2011034847A (en) Power supply device and lighting fixture
US10251227B2 (en) Clocked electronic energy converter
JP6023414B2 (en) Power supply device and lighting fixture
JP6668684B2 (en) Lighting device and lighting equipment
JP2020109775A (en) Lighting device and illumination tool
JP5773786B2 (en) Light source lighting device and lighting fixture
JP2016170894A (en) Lighting device and illuminating fixture
JP6825704B2 (en) Power converters, lighting fixtures, electrical equipment
JP6300610B2 (en) LED power supply device and LED lighting device
US8941321B2 (en) Discharge lamp lighting device, and illumination apparatus and vehicle including same
JP2017010686A (en) Lighting device and luminaire using the same
WO2018235199A1 (en) Light source lighting device and illumination apparatus
JP2018121519A (en) Illuminating fixture
JP7425399B2 (en) Power supplies and lighting equipment
JP6297130B2 (en) Lighting device and lighting device
JP2011114901A (en) Power supply device and dimmer using the same
JP6417706B2 (en) Discharge lamp lighting device and lighting device
CN112566298A (en) Light source driving device, method and light source equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915497

Country of ref document: EP

Kind code of ref document: A1