WO2019001900A1 - Absaugvorrichtung für die additive fertigung - Google Patents

Absaugvorrichtung für die additive fertigung Download PDF

Info

Publication number
WO2019001900A1
WO2019001900A1 PCT/EP2018/064566 EP2018064566W WO2019001900A1 WO 2019001900 A1 WO2019001900 A1 WO 2019001900A1 EP 2018064566 W EP2018064566 W EP 2018064566W WO 2019001900 A1 WO2019001900 A1 WO 2019001900A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective gas
powder bed
gas
outlet opening
additive production
Prior art date
Application number
PCT/EP2018/064566
Other languages
English (en)
French (fr)
Inventor
Michael Ott
David Rule
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP18730302.9A priority Critical patent/EP3618989A1/de
Priority to US16/619,640 priority patent/US20200114425A1/en
Priority to CN201880042701.8A priority patent/CN110799289A/zh
Publication of WO2019001900A1 publication Critical patent/WO2019001900A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a device for Füh ⁇ ren a protective gas via a powder bed additive for the production of a component or to the corresponding aspirating the protective gas from a space. Furthermore, a method for guiding a protective gas flow is specified.
  • the device is preferably provided for use in a Strö ⁇ mung machine, preferably in a hot gas path of a gas turbine.
  • the component preferably consists of a Ni ⁇ ckelbasis- or superalloy, in particular a nickel- or cobalt-based superalloy.
  • the alloy may be precipitation hardened or precipitation hardenable.
  • Generative or additive manufacturing processes include, for example as powder bed processes, selective laser melting (SLM) or laser sintering (SLS), or electron beam melting (EBM).
  • SLM selective laser melting
  • SLS laser sintering
  • EBM electron beam melting
  • a method for selective laser melting is known, for example, from EP 2 601 006 B1.
  • Additive manufacturing process in English: "additive Manu- facturing" have proven to be designed to be particularly advantageous for complex or complicated or delicate components, for example labyrinth-like structures, cooling structures and / or lightweight construction structures
  • the additive Ferti ⁇ supply is through a.
  • Particularly short chain of process steps advantageous because a manufacturing or manufacturing step ei ⁇ nes component can be done directly on the basis of a corresponding CAD file.
  • the additive manufacturing is particularly advantageous for the development or production of prototypes, which, for example, for cost reasons by means of conventional sub- traction or machining process or casting technology can not or can not be efficiently produced.
  • the metallurgical quality of a product produced by means of SLM crucially depends on how well, among other things, products resulting from welding in the field of welding are produced
  • Melting bath can be removed. Particularly important is, in particular spatter and smoke from the
  • Said gas flow is preferably laminar keptstal ⁇ Tet, wherein a gas inlet and / or a gas outlet, be it with a contiguous or a plurality of series-arranged gas openings, strip-like configuration.
  • the need for an improved removal of excess moisture exists in particular, since a trend towards greater layer thicknesses for increasing the process efficiency in the powder-bed-based additive manufacturing is recognizable.
  • protective gas flow can be formed. This object is achieved by the subject matter of the independent Pa ⁇ tentments.
  • Advantageous embodiments are subject of the dependent claims ⁇ Ge.
  • One aspect of the present invention relates to a device for guiding a protective gas via a powder bed or suction from a construction space during the additive manufacturing of a component.
  • the device expediently comprises egg ⁇ NEN gas inlet for introducing the protective gas to the powder bed ⁇ and a stationary gas outlet for removing the
  • the apparatus is further preferably formed to lead the protective gas is laminar over the powder bed, wherein the apparatus for extracting the inert gas from the space currency rend the additive producing the component having a powder bed plane movably fitted in parallel and / or controllable at ⁇ outlet opening.
  • the term "Schmauch” can melt or combustion products, welding spatter or other, the metallurgical quality of the components to be produced substances influencing designate present.
  • a stolen or removed from the construction space and the Smoke residue containing inert gas can be a Ae ⁇ rosol.
  • the device described offers, as indicated above, the advantage of ensuring a discharge laminar protective gas in the additi ⁇ ven production advantageously over the entire space or the whole powder bed away and / or at the same time to adapt the suction to the irradiation conditions, such as the laser power.
  • smart or customized smoke removal especially for large powder layer thicknesses in the SLM or EBM process.
  • the movable outlet opening via a control relative to the powder bed, and preferably ⁇ parallel to this, ie in the XY direction, are moved.
  • a movement of the outlet opening is perpendicular to a guide direction or flow direction of the protective gas during the additive production with a
  • a protective gas discharge during the manufacturing process can be particularly suitably adapted to the resulting from the solidification by means of the energy beam ⁇ smoke.
  • a suction power for sucking the protective gas through the (movable) outlet opening to a layer thickness of the corresponding powder layer for the or during the additive production of the component is also set or adjusted.
  • the suction power of the device ie, for example, the volume flow extracted per unit length or area unit, can be increased, but preferably laminarity of the flow is preserved.
  • the stationary gas outlet part ei ⁇ ner squeegee may comprise a strip-like outlet opening or a plurality of individual outlet openings or slots arranged in rows.
  • the movable outlet opening is integrated into the suction strip.
  • a flow rate ie when ⁇ play, a volume flow of the sucked off by the movable From ⁇ outlet opening during the additive manufacturing Protective gas, as viewed over the length of the outlet opening, for example, greater than a flow rate of the corresponding protective gas to be removed by the stationary gas outlet.
  • the device has a movable inlet nozzle, which is coupled via a control to the movement of the outlet opening and / or to the movement of the energy beam or synchronized with it.
  • the device represents an upgrade kit for manufacturing equipment for the additive production of components.
  • One aspect of the present invention relates to a method for guiding a flow of protective gas across the powder bed such that the protective gas during the additive herstel ⁇ lung moved laminar across the powder bed and the powder bed, for example comprising a molten bath from damaging a ⁇ influences such as corrosion, Oxidation or mechanical effects by welding, such as welding spatter, protects, wherein a volume or mass flow of inert gas flow is adapted locally in areas in which the powder bed is exposed to an energy beam to an irradiation power.
  • the irradiation power is preferably present depen ⁇ gig, for example, proportional depending on the Schichtdi ⁇ blocks, since thicker layers to be melted to solidification will require more energy.
  • FIG. 1 shows a schematic perspective view of a device according to the invention.
  • FIG. 1 shows a device 100 for guiding or sucking off a protective gas SG in the additive production. Parts of the representation of FIG. 1 may not be explicitly part of the FIG
  • Device 100 It is shown in Figure 1, in particular a component 3, over which a layer S is arranged for solidification of further component material. Such a coating usually takes place by means of a coater (not explicitly indicated). According to his predetermined
  • the powder layer or a powder bed PB, wel ⁇ Che consists of a powder 5, irradiated at the corresponding positions with an energy beam 2.
  • the energy beam may be called a laser or electron beam, and, examples play by means of a scanner 1 and a corresponding ⁇ optics, guided over the powder bed PB or rasterized ⁇ the.
  • a melt pool 4 is formed locally by the introduction of energy. In this melting and / or welding process, furthermore, spatter, welding spatter or other undesired effects can occur.
  • the device 3 is preferably on a building platform 6 at ⁇ ordered or during the production of a material fit with this "welded" or bonded.
  • the method may, for example, be selective laser melting or electron beam melting.
  • the (laminar) Schutzgasströ ⁇ mung is presently indicated by the wavy patterns in the upper region of FIG. 1
  • the protective gas SG is preferably guided along a guide ⁇ direction FR on the powder bed. Above the powder ⁇ bed a space R for the component is arranged.
  • the device 100 has an inlet strip 13 for introducing protective gas SG into the installation space R.
  • the inlet plate 13 includes a gas inlet, which over to ⁇ least one edge of the component and / or the powder bed it preferably extends ⁇ .
  • the gas inlet may have a plurality of round or point-like inlet openings instead of an elongate one.
  • the apparatus 100 further comprises a suction bar or stationary gas outlet 12 for sucking off the protective gas containing the smoke or impurities.
  • the stationary gas outlet has a multiplicity of individual outlet openings 11. These outlet openings 11 are parallel to the powder bed PB and slightly above this in rows arranged ⁇ .
  • the subject of the present invention is that the device has a movable outlet opening 10.
  • the movable outlet opening 10 is expediently integrated into the described stationary gas outlet and arranged to be movable along a direction of movement BR.
  • a section of the suction strip or the outlet openings 11 is locally formed, for example by a corresponding flap design, corresponding to the length of the movable Chen outlet port 10 is replaced, so that locally a ent ⁇ speaking increased throughput or suction effect can be achieved.
  • the movement direction is preferably oriented perpendicular to the Füh ⁇ approach direction FR.
  • the movement direction BR and the guide direction FR can both designate lateral directions, for example the XY direction, that is to say, for example, directions perpendicular to a construction direction AR for the component 3.
  • the movement of the outlet opening BR during the additive production of the component 3 is coupled or synchronized with a movement of the energy beam 2 for powder solidification.
  • the movable outlet opening 10 is preferably integrated into the stationary gas outlet 12 in such a way that locally increased gas suction can take place, as indicated by the longer drawn waves of the protective gas at the level of the laser beam 2 in FIG.
  • the he ⁇ finderischen advantages can be implemented.
  • the movable outlet opening 10 along the direction of movement can be guided exactly simultaneously to the movement component of the laser along the direction of movement BR.
  • a corresponding tracking or a corresponding advance of the movement of the movable outlet opening 10 relative to the laser beam 2 (or vice versa) can be implemented.
  • a flow rate of the protective gas SG to be suctioned off by the movable outlet opening 10 during the additive production can be greater than a flow rate of the protective gas SG to be removed by the stationary gas outlet viewed along a length of the movable outlet opening 10 along the direction of movement BR.
  • a movable inlet nozzle 16 can be provided inside the gas inlet 14, so that also an increased and / or locally adapted gas inflow, preferably synchronized with the laser beam - can be done.
  • the means mentioned are preferably set up and dimensioned such that the protective gas flow can be used as a whole lami ⁇ nar and thus expedient for Schmauchab Entry and oxidation protection for the component 3.
  • Protective gas flow indicated by a powder bed PB such that the protective gas SG moves during the additive manufacturing laminar on the powder bed PB and this, insbesonde ⁇ re a molten bath 4 of the powder bed PB, from harmful In ⁇ flows, such as smoke, welding spray, corrosion and / or oxidation, wherein a volumetric flow or mass flow of the protective gas flow is adapted locally to a radiation power in areas in which the powder bed PB is exposed to an energy beam 2.
  • the invention is not limited by the description based on the embodiments of these, but includes each new feature and any combination of features. This includes in particular any combination of features in the Claims, even if this feature or combination itself is not explicitly stated in the claims or exemplary embodiments.

Abstract

Es wird eine Vorrichtung (100) zum Führen eines Schutzgases (SG) über ein Pulverbett (PB) für die additive Herstellung angegeben. Die Vorrichtung umfasst einen Gaseinlass (14) zum Einbringen des Schutzgases (SG) auf das Pulverbett (PB) und einen stationären Gasauslass (12) zum Entfernen des Schutzgases (SG), wobei die Vorrichtung (100) weiterhin ausgebildet ist, das Schutzgas (SG) laminar über das Pulverbett (PB) zu führen, und wobei die Vorrichtung (100) weiterhin zum Absaugen des Schutzgases aus einem Bauraum (BR) während der additiven Herstellung eines Bauteils (3) eine parallel zu einer Pulverbettebene beweglich eingerichtete Auslassöffnung (10) aufweist. Weiterhin wird ein Verfahren zum Führen einer Schutzgasströmung angegeben.

Description

Beschreibung
Absaugvorrichtung für die additive Fertigung Die vorliegende Erfindung betrifft eine Vorrichtung zum Füh¬ ren eines Schutzgases über ein Pulverbett für die additive Herstellung eines Bauteils bzw. zum entsprechenden Absaugen des Schutzgases aus einem Bauraum. Weiterhin wird ein Verfahren zum Führen einer Schutzgasströmung angegeben.
Das Bauteil ist vorzugsweise für den Einsatz in einer Strö¬ mungsmaschine, vorzugsweise im Heißgaspfad einer Gasturbine vorgesehen. Das Bauteil besteht vorzugsweise aus einer Ni¬ ckelbasis- oder Superlegierung, insbesondere einer nickel- oder kobaltbasierten Superlegierung. Die Legierung kann ausscheidungsgehärtet oder ausscheidungshärtbar sein.
Generative oder additive Herstellungsverfahren umfassen beispielsweise als Pulverbettverfahren das selektive Laser- schmelzen (SLM) oder Lasersintern (SLS) , oder das Elektronenstrahlschmelzen (EBM) .
Ein Verfahren zum selektiven Laserschmelzen ist beispielsweise bekannt aus EP 2 601 006 Bl .
Additive Fertigungsverfahren (englisch: „additive manufactu- ring") haben sich als besonders vorteilhaft für komplexe oder kompliziert oder filigran designte Bauteile, beispielsweise labyrinthartige Strukturen, Kühlstrukturen und/oder Leicht- bau-Strukturen erwiesen. Insbesondere ist die additive Ferti¬ gung durch eine besonders kurze Kette von Prozessschritten vorteilhaft, da ein Herstellungs- oder Fertigungsschritt ei¬ nes Bauteils direkt auf Basis einer entsprechenden CAD-Datei erfolgen kann.
Weiterhin ist die additive Fertigung besonders vorteilhaft für die Entwicklung oder Herstellung von Prototypen, welche beispielsweise aus Kostengründen mittels konventioneller sub- traktiver oder spanender Verfahren oder Gusstechnologie nicht oder nicht effizient hergestellt werden können.
Die metalllurgische Qualität eines mittels SLM hergestellten Produktes hängt entscheidend davon ab, wie gut unter anderem beim Schweißen entstehende Produkte aus dem Bereich des
Schmelzbades abtransportiert werden können. Besonders wichtig ist, insbesondere Schweißspritzer und Schmauch aus dem
Schmelzbad und/oder aus dem entsprechenden Bereich des Pul- verbettes zu entfernen. Dazu haben Anlagenhersteller eine laminare Gasströmung (Schutzgasströmung) über dem Pulverbett beziehungsweise über der Herstellungsoberfläche im Bauraum der Anlage vorgesehen. Die Gasströmung erlaubt weiterhin, Sauerstoff aus einer Gas¬ umgebung vom Schmelzbad fernzuhalten und somit eine Oxidation oder Korrosion der Bauteile weitgehend zu verhindern.
Trotz Schutzgasströmung kann es, je nach Position auf der Bauplattform, zu starker Verschmutzung des Bauteils durch Schmauch kommen. Diese wird umso kritischer, je größer die gewählte Schichtdicke der aufzutragenden Pulverschichten ist, da, bei zunehmender Schichtdicke auch eine höhere Laserener¬ gie benötigt wird, und somit vermehrt Schweißspritzer und Schmauch entstehen können.
Die genannte Gasströmung wird vorzugsweise laminar ausgestal¬ tet, wobei ein Gaseinlass und/oder ein Gasauslass, sei es mit einer zusammenhängenden oder einer Vielzahl von in Reihe an- geordneten Gasöffnungen, leistenartig ausgestaltet sein kann.
Es ist eine Aufgabe der vorliegenden Erfindung, Mittel anzu¬ geben, welche eine verbesserte Schmauch- und/oder Gasabführung oder Absaugung ermöglichen. Der Bedarf einer verbesser- ten Schmauchabführung besteht insbesondere, da ein Trend hin zu größeren Schichtdicken zur Erhöhung der Prozesseffizienz in der pulverbett-basierten additiven Fertigung erkennbar ist. Durch die vorliegende Lösung kann neben einer erhöhten Absaugleistung vorteilhafterweise auch eine an individuelle Bestrahlungsbedingungen angepasste Schutzgasströmung ausgebildet werden. Diese Aufgabe wird durch den Gegenstand der unabhängigen Pa¬ tentansprüche gelöst. Vorteilhafte Ausgestaltungen sind Ge¬ genstand der abhängigen Patentansprüche.
Ein Aspekt der vorliegenden Erfindung betrifft eine Vorrich- tung zum Führen eines Schutzgases über ein Pulverbett bzw. Absaugen aus einem Bauraum während der additiven Fertigung eines Bauteils. Die Vorrichtung umfasst zweckmäßigerweise ei¬ nen Gaseinlass zum Einbringen des Schutzgases auf das Pulver¬ bett und einen stationären Gasauslass zum Entfernen des
Schutzgases, beispielsweise aus dem Bauraum.
Die Vorrichtung ist weiterhin vorzugsweise ausgebildet, das Schutzgas laminar über das Pulverbett zu führen, wobei die Vorrichtung zum Absaugen des Schutzgases aus dem Bauraum wäh- rend der additiven Herstellung des Bauteils eine parallel zu einer Pulverbettebene beweglich eingerichtete und/oder an¬ steuerbare Auslassöffnung aufweist.
Der Begriff „Schmauch" kann vorliegend Schmelz- oder Verbren- nungsprodukte, Schweißspritzer oder sonstige, die metallurgische Qualität der herzustellenden Bauteile beeinflussende Stoffe, bezeichnen. Ein abgesaugtes oder aus dem Bauraum entferntes und den Schmauch enthaltendes Schutzgas kann ein Ae¬ rosol darstellen.
Die beschriebene Vorrichtung bietet, wie oben angedeutet, den Vorteil, eine Abführung laminaren Schutzgases in der additi¬ ven Fertigung vorteilhafterweise über die gesamten Bauraum oder das ganze Pulverbett hinweg sicherzustellen und/oder gleichzeitig die Absaugung an die Bestrahlungsbedingungen, beispielsweise die Laserleistung anzupassen. Mit anderen Worten kann eine intelligente oder angepasste Schmauchabführung, insbesondere für große Pulverschichtdicken beim SLM- oder EBM-Verfahren bereitgestellt werden.
In einer Ausgestaltung kann die bewegliche Auslassöffnung über eine Steuerung relativ zu dem Pulverbett, und vorzugs¬ weise parallel zu diesem, d.h. in XY-Richtung, bewegt werden.
In einer Ausgestaltung ist eine Bewegung der Auslassöffnung senkrecht zu einer Führungsrichtung oder Strömungsrichtung des Schutzgases während der additiven Herstellung mit einer
Bewegung eines Energiestrahls zum Verfestigen von Pulver während der additiven Herstellung gekoppelt, bzw. mit dieser synchronisiert. Durch diese Ausgestaltung kann eine Schutzgasabführung während des Herstellungsprozesses besonders zweckmäßig an den durch die Verfestigung mittels des Energie¬ strahls entstehenden Schmauchs angepasst werden.
In einer Ausgestaltung ist weiterhin eine Saugleistung zum Absaugen des Schutzgases durch die (bewegliche) Auslassöff- nung an eine Schichtdicke der entsprechenden Pulverschicht für die oder während der additiven Herstellung des Bauteils eingestellt oder angepasst. Mit zunehmender Schichtdicke kann beispielsweise auch die Saugleistung der Vorrichtung, also beispielsweise den pro Längen- oder Flächeneinheit abgesaug- ten Volumenstrom, erhöht werden, wobei jedoch vorzugsweise Laminarität der Strömung bewahrt wird.
In einer Ausgestaltung ist der stationäre Gasauslass Teil ei¬ ner Absaugleiste. Die Leiste kann dabei eine streifenartige Auslassöffnung oder eine Mehrzahl von reihenweise angeordneten einzelnen Auslassöffnungen oder Schlitzen umfassen.
In einer Ausgestaltung ist die bewegliche Auslassöffnung in die Absaugleiste integriert.
In einer Ausgestaltung ist eine Durchflussrate, d.h. bei¬ spielsweise ein Volumenstrom, des durch die bewegliche Aus¬ lassöffnung während der additiven Herstellung abzusaugenden Schutzgases, beispielsweise über die Länge der Auslassöffnung betrachtet, größer als eine Durchflussrate des entsprechend durch den stationären Gasauslass zu entfernenden Schutzgases. Durch diese Ausgestaltung kann besonders einfach lokal, das heißt vorzugsweise an der lateralen Position des Pulverbet¬ tes, welche aktuell von dem Laser- oder dem Energiestrahl exponiert wird, eine intelligente und/oder angepasste Schmauch¬ abführung gewährleistet werden. In einer Ausgestaltung weist die Vorrichtung eine bewegliche Einlassdüse auf, welche über eine Steuerung an die Bewegung der Auslassöffnung und/oder an die Bewegung des Energiestrahls gekoppelt bzw. mit dieser synchronisiert ist. In einer Ausgestaltung stellt die Vorrichtung einen Aufrüstsatz für Fertigungsanlagen zur additiven Herstellung von Bauteilen dar.
Ein Aspekt der vorliegenden Erfindung betrifft ein Verfahren zum Führen einer Schutzgasströmung über das Pulverbett derart, dass sich das Schutzgas während der additiven Herstel¬ lung laminar über das Pulverbett bewegt und das Pulverbett, beispielsweise umfassend ein Schmelzbad, vor schädlichen Ein¬ flüssen, beispielsweise Korrosion, Oxidation oder mechani- sehen Einflüssen durch das Aufschweißen, wie Schweißspritzer, schützt, wobei ein Volumen- oder Massenstrom der Schutzgasströmung lokal in Bereichen, in denen das Pulverbett mit einem Energiestrahl exponiert wird, an eine Bestrahlungsleis- tung angepasst wird.
Die Bestrahlungsleistung ist vorliegend vorzugsweise abhän¬ gig, beispielweise proportional abhängig, von der Schichtdi¬ cke, da dickere aufzuschmelzende Schichten zur Verfestigung mehr Energie erfordern.
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Figuren beschrieben. Figur 1 zeigt eine schematische perspektivische Ansicht einer erfindungsgemäßen Vorrichtung.
In den Ausführungsbeispielen und in der Figur können gleiche oder gleich wirkende Elemente jeweils mit den gleichen Be¬ zugszeichen versehen sein. Die dargestellten Elemente und deren Größenverhältnisse untereinander sind grundsätzlich nicht als maßstabsgerecht anzusehen, vielmehr können einzelne Ele¬ mente, zur besseren Darstellbarkeit und/oder zum besseren Verständnis übertrieben dick oder groß dimensioniert darge¬ stellt sein.
Figur 1 zeigt eine Vorrichtung 100 zum Führen oder Absaugen eines Schutzgases SG in der additiven Herstellung. Teile der Darstellung der Figur 1 sind ggf. nicht explizit Teil der
Vorrichtung 100. Es ist in Figur 1 insbesondere ein Bauteil 3 gezeigt, über welchem eine Schicht S zur Verfestigung von weiterem Bauteilmaterial angeordnet ist. Eine solche Be- schichtung erfolgt üblicherweise mittels eines Beschichters (nicht explizit gekennzeichnet) . Gemäß seiner vorbestimmten
Geometrie wird die Pulverschicht bzw. ein Pulverbett PB, wel¬ ches aus einem Pulver 5 besteht, an den entsprechenden Positionen mit einem Energiestrahl 2 bestrahlt. Der Energiestrahl kann einen Laser- oder Elektronenstrahl bezeichnen und, bei- spielsweise mittels eines Scanners 1 bzw. einer entsprechen¬ den Optik, über das Pulverbett PB geführt oder gerastert wer¬ den. Bei der Bestrahlung entsteht lokal, d.h. dort wo der fo- kussierte Energiestrahl 2 das Pulverbett PB trifft, durch den Energieeintrag ein Schmelzbad 4. Bei diesem Schmelz- und/oder Schweißvorgang können weiterhin Schmauch, Schweißspritzer oder sonstige ungewünschte Effekte auftreten.
Das Bauteil 3 wird vorzugsweise auf einer Bauplattform 6 an¬ geordnet bzw. während der Herstellungsstoff schlüssig mit dieser „verschweißt" oder verbunden.
Bei dem Verfahren kann es sich beispielsweise um selektives Laserschmelzen oder Elektronenstrahlschmelzen handeln. Insbe- sondere entsteht aufgrund der hohen beteiligten Laser- oder Elektronenstrahlleistungen, welche nötig sind, um das Material lokal aufzuschmelzen und wie beschrieben zu verschweißen, Schmauch oder Schweißspritzer, welche beispielsweise durch eine laminare Schutzgasströmung aus dem Bereich des Pulverbettes entfernt werden müssen. Die (laminare) Schutzgasströ¬ mung ist vorliegend durch die gewellten Muster im oberen Bereich der Figur 1 angedeutet. Das Schutzgas SG wird vorzugsweise entlang einer Führungs¬ richtung FR über das Pulverbett geführt. Oberhalb des Pulver¬ bettes ist ein Bauraum R für das Bauteil angeordnet.
Die Vorrichtung 100 weist eine Einlassleiste 13 zum Einlassen von Schutzgas SG in den Bauraum R auf. Die Einlassleiste 13 umfasst einen Gaseinlass, welcher sich vorzugsweise über zu¬ mindest eine Kante des Bauteils und/oder des Pulverbettes er¬ streckt. Anders als dargestellt, kann der Gaseinlass - statt einer länglichen - eine Vielzahl von runden oder punktartigen Einlassöffnungen aufweisen.
Die Vorrichtung 100 weist weiterhin eine Absaugleiste oder stationären Gasauslass 12 zum Absaugen des den Schmauch oder die Verunreinigungen enthaltenden Schutzgases auf. Der stati- onäre Gasauslass weist eine Vielzahl einzelner Auslassöffnungen 11 auf. Diese Auslassöffnungen 11 sind parallel zu dem Pulverbett PB und etwas oberhalb von diesem reihenartig ange¬ ordnet . Gegenstand der vorliegenden Erfindung ist, dass die Vorrichtung eine bewegliche Auslassöffnung 10 aufweist. Vorliegend ist die bewegliche Auslassöffnung 10 zweckmäßigerweise in den beschriebenen stationären Gasauslass integriert und entlang einer Bewegungsrichtung BR beweglich eingerichtet. Bei der Bewegung der beweglichen Auslassöffnung 10 entlang der Bewegungsrichtung wird, beispielsweise durch eine entsprechende Klappenausführung, lokal ein Abschnitt der Absaugleiste bzw. der Auslassöffnungen 11 entsprechend der Länge der bewegli- chen Auslassöffnung 10 ersetzt, sodass lokal auch ein ent¬ sprechend erhöhter Durchsatz oder Absaugeffekt erzielt werden kann . Die Bewegungsrichtung ist vorzugsweise senkrecht zu der Füh¬ rungsrichtung FR ausgerichtet.
Die Bewegungsrichtung BR und die Führungsrichtung FR können beide laterale Richtungen, beispielsweise die XY-Richtung be- zeichnen, also beispielsweise Richtungen senkrecht zu einer Aufbaurichtung AR für das Bauteil 3.
Vorliegend ist die Bewegung der Auslassöffnung BR während der additiven Herstellung des Bauteils 3 mit einer Bewegung des Energiestrahls 2 zur Pulververfestigung gekoppelt bzw. synchronisiert .
Die bewegliche Auslassöffnung 10 ist vorzugsweise derart in den stationären Gasauslass 12 integriert, dass durch diese lokal eine erhöhte Gasabsaugung erfolgen kann, wie durch die länger gezeichneten Wellen des Schutzgases auf der Höhe des Laserstrahls 2 in Figur 1 angedeutet. Dadurch können die er¬ finderischen Vorteile umgesetzt werden. Mit anderen Worten kann die bewegliche Auslassöffnung 10 entlang der Bewegungsrichtung exakt simultan zu der Bewegungskomponente des Lasers entlang der Bewegungsrichtung BR geführt werden. Alternativ kann entsprechend der Geometrie oder Kontur des Bauteils, welche eine Ablenkung der Schutzgasströmung bewirken könnte, eine entsprechende Nachführung oder ein entsprechender Vorlauf der Bewegung der beweglichen Auslassöffnung 10 relativ zu dem Laserstrahl 2 (oder umgekehrt) implementiert werden.
Eine Durchflussrate des durch die bewegliche Auslassöffnung 10 während der additiven Herstellung abzusaugenden Schutzga- ses SG kann - über eine Länge der beweglichen Auslassöffnung 10 betrachtet entlang der Bewegungsrichtung BR betrachtet - größer sein als eine Durchflussrate des entsprechend durch den stationären Gasauslass zu entfernenden Schutzgases SG. Weiterhin kann vorliegend eine Saugleistung zum Absaugen des Schutzgases SG durch die Auslassöffnung 1 an eine Schichtdi¬ cke D einer Pulverschicht S angepasst und/oder eingestellt sein. Dies ist insbesondere vorteilhaft, als das Verschweißen oder Verfestigen von großen Schichtdicken, beispielsweise Schichtdicken von über 60 ym, in den additiven Prozessen verhältnismäßig hohe Bestrahlungsleistungen erfordert und damit auch vermehrt Schmauch und Schweißspritzer auftreten.
Analog zu dieser mit dem Laserstrahl 2 beispielsweise über eine Steuerung 15 gekoppelten Bewegung der beweglichen Auslassöffnung mit dem Laserstrahl 2 entlang der Bewegungsrichtung BR, kann eine bewegliche Einlassdüse 16 innerhalb in dem Gaseinlass 14 vorgesehen sein, sodass auch eine erhöhte und/oder lokal angepasste Gaseinströmung - vorzugsweise mit dem Laserstrahl synchronisiert - erfolgen kann.
Die genannten Mittel sind vorzugsweise derart eingerichtet und dimensioniert, dass die Schutzgasströmung insgesamt lami¬ nar und damit zweckmäßig zur Schmauchabführung und als Oxida- tionsschutz für das Bauteil 3 angewendet werden kann.
Mit anderen Worten wird ein Verfahren zum Führen einer
Schutzgasströmung über ein Pulverbett PB angegeben, derart, dass sich das Schutzgas SG während der additiven Herstellung laminar über das Pulverbett PB bewegt und dieses, insbesonde¬ re ein Schmelzbad 4 des Pulverbettes PB, vor schädlichen Ein¬ flüssen, beispielsweise Schmauch, Schweißspritzen, Korrosion und/oder Oxidation, schützt, wobei ein Volumenstrom oder Massenstrom der Schutzgasströmung lokal in Bereichen, in denen das Pulverbett PB mit einem Energiestrahl 2 exponiert wird, an eine BeStrahlungsleistung angepasst wird. Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt, sondern umfasst jedes neue Merkmal sowie jede Kombination von Merkmalen. Dies beinhaltet insbesondere jede Kombination von Merkmalen in den Patentansprüchen, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Claims

Patentansprüche
1. Vorrichtung (100) zum Führen eines Schutzgases (SG) über ein Pulverbett (PB) in der additiven Herstellung, umfassend einen Gaseinlass (14) zum Einbringen des Schutzgases (SG) auf das Pulverbett (PB) und einen stationären Gasauslass (12) zum Entfernen des Schutzgases (SG) , wobei die Vorrichtung (100) weiterhin ausgebildet ist, das Schutzgas (SG) laminar über das Pulverbett (PB) zu führen, und wobei die Vorrichtung (100) zum Absaugen des Schutzgases aus einem Bauraum (BR) während der additiven Herstellung eines Bauteils (3) eine pa¬ rallel zu einer Pulverbettebene beweglich eingerichtete Aus¬ lassöffnung (10) aufweist.
2. Vorrichtung (100) gemäß Anspruch 1, wobei die Auslassöff¬ nung (10) über eine Steuerung (15) relativ zu dem Pulverbett (PB) bewegt werden kann.
3. Vorrichtung (100) gemäß Anspruch 2, wobei eine Bewegung der Auslassöffnung (10) senkrecht zu einer Führungsrichtung
(FR) des Schutzgases (SG) während der additiven Herstellung mit einer Bewegung eines Energiestrahls (2) zum Verfestigen von Pulver (5) während der additiven Herstellung gekoppelt ist .
4. Vorrichtung (100) gemäß Anspruch 3, wobei eine Saugleis¬ tung zum Absaugen des Schutzgases durch die Auslassöffnung (10) an eine Schichtdicke (D) einer Pulverschicht (S) ange- passt ist.
5. Vorrichtung (100) gemäß einem der vorhergehenden Ansprüche, wobei der stationäre Gasauslass Teil einer Absaugleiste (12) ist, und wobei die bewegliche Auslassöffnung (10) in die Absaugleiste integriert ist.
6. Vorrichtung (100) gemäß einem der vorhergehenden Ansprüche, wobei eine Durchflussrate des durch die bewegliche Aus¬ lassöffnung (10) während der additiven Herstellung abzusau- genden Schutzgases (SG) - über die Länge der Auslassöffnung (10) betrachtet - größer ist als eine Durchflussrate des ent¬ sprechend durch den stationären Gasauslass zu entfernenden Schutzgases (SG) .
7. Vorrichtung (100) gemäß einem der vorhergehenden Ansprüche, welche eine bewegliche Einlassdüse (16) aufweist, welche über eine Steuerung (15) an die Bewegung der Auslassöffnung (10) gekoppelt ist.
8. Vorrichtung (100) gemäß einem der vorhergehenden Ansprüche, welche einen Aufrüstsatz für Fertigungsanlagen zur additiven Herstellung des Bauteils (3) darstellt.
9. Verfahren zum Führen einer Schutzgasströmung über ein Pulverbett (PB) für die additive Herstellung, derart, dass sich ein Schutzgas (SG) während der additiven Herstellung laminar über das Pulverbett (PB) bewegt und das Pulverbett (PB) vor schädlichen Einflüssen schützt, wobei ein Volumenstrom der Schutzgasströmung lokal in Bereichen, in denen das Pulverbett (PB) mit einem Energiestrahl (2) exponiert wird, an eine Be- strahlungsleistung angepasst wird.
PCT/EP2018/064566 2017-06-26 2018-06-04 Absaugvorrichtung für die additive fertigung WO2019001900A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18730302.9A EP3618989A1 (de) 2017-06-26 2018-06-04 Absaugvorrichtung für die additive fertigung
US16/619,640 US20200114425A1 (en) 2017-06-26 2018-06-04 Suction device for additive production
CN201880042701.8A CN110799289A (zh) 2017-06-26 2018-06-04 用于增材制造的抽吸设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017210718.9A DE102017210718A1 (de) 2017-06-26 2017-06-26 Absaugvorrichtung für die additive Fertigung
DE102017210718.9 2017-06-26

Publications (1)

Publication Number Publication Date
WO2019001900A1 true WO2019001900A1 (de) 2019-01-03

Family

ID=62567639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/064566 WO2019001900A1 (de) 2017-06-26 2018-06-04 Absaugvorrichtung für die additive fertigung

Country Status (5)

Country Link
US (1) US20200114425A1 (de)
EP (1) EP3618989A1 (de)
CN (1) CN110799289A (de)
DE (1) DE102017210718A1 (de)
WO (1) WO2019001900A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112828312A (zh) * 2019-11-25 2021-05-25 罗伯特·博世有限公司 激光增材制造控制系统和方法
DE102020003888A1 (de) 2020-06-29 2021-12-30 Messer Group Gmbh Vorrichtung und Verfahren zur additiven Fertigung unter Schutzgas
EP4052819A1 (de) 2021-03-01 2022-09-07 Siemens Energy Global GmbH & Co. KG Vorrichtung mit kühlelement zur dampfkondensation bei der generativen fertigung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431256B1 (de) * 2017-07-21 2021-09-29 CL Schutzrechtsverwaltungs GmbH Vorrichtung zur generativen fertigung von dreidimensionalen objekten
DE102018108833A1 (de) * 2018-04-13 2019-10-17 Eos Gmbh Electro Optical Systems Herstellvorrichtung und Verfahren für additive Herstellung mit mobiler Beströmung
CN109604598A (zh) * 2019-01-09 2019-04-12 深圳光韵达光电科技股份有限公司 一种增减材复合加工设备
JP6541206B1 (ja) * 2019-03-01 2019-07-10 株式会社松浦機械製作所 三次元造形物の製造方法
FR3105067B1 (fr) * 2019-12-19 2022-05-06 Addup Machine de fabrication additive par dépôt de lit de poudre avec une rampe centrale d’aspiration de gaz et/ou de soufflage de gaz.
DE102022108136A1 (de) 2022-04-05 2023-10-05 Trumpf Laser- Und Systemtechnik Gmbh Absaugvorrichtung zum Absaugen von Prozessgas mit stationärem Gasförderkanal und Vorrichtung zur Herstellung von dreidimensionalen Objekten mit einer solchen Absaugvorrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031881A1 (de) * 2004-06-30 2006-01-26 Concept Laser Gmbh Vorrichtung zum Absaugen von Gasen, Dämpfen und/oder Partikeln aus dem Arbeitsbereich einer Laserbearbeitungsmaschine
EP2601006B1 (de) 2010-08-05 2014-06-18 Siemens Aktiengesellschaft Verfahren zur herstellung eines bauteils durch selektives laserschmelzen
WO2014199150A1 (en) * 2013-06-11 2014-12-18 Renishaw Plc Additive manufacturing apparatus and method
DE102013011676A1 (de) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur generativen Bauteilfertigung
DE102013215377A1 (de) * 2013-08-05 2015-02-05 Bayerische Motoren Werke Aktiengesellschaft Gasführungsvorrichtung, Vorrichtung zum Herstellen eines Bauteils mittels Auftragung von Pulverschichten sowie Verfahren zur Zuführung und Absaugung von Gas bei einer derartigen Vorrichtung
DE102014209161A1 (de) * 2014-05-14 2015-11-19 Eos Gmbh Electro Optical Systems Steuereinheit, Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
WO2015181772A1 (en) * 2014-05-30 2015-12-03 Prima Industrie S.P.A. Laser operating machine for additive manufacturing by laser sintering and corresponding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201310398D0 (en) * 2013-06-11 2013-07-24 Renishaw Plc Additive manufacturing apparatus and method
GB201410484D0 (en) * 2014-06-12 2014-07-30 Renishaw Plc Additive manufacturing apparatus and a flow device for use with such apparatus
ITUA20162543A1 (it) * 2016-04-13 2017-10-13 3D New Tech S R L Apparecchiatura per additive manufacturing e procedimento di additive manufacturing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031881A1 (de) * 2004-06-30 2006-01-26 Concept Laser Gmbh Vorrichtung zum Absaugen von Gasen, Dämpfen und/oder Partikeln aus dem Arbeitsbereich einer Laserbearbeitungsmaschine
EP2601006B1 (de) 2010-08-05 2014-06-18 Siemens Aktiengesellschaft Verfahren zur herstellung eines bauteils durch selektives laserschmelzen
WO2014199150A1 (en) * 2013-06-11 2014-12-18 Renishaw Plc Additive manufacturing apparatus and method
DE102013011676A1 (de) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur generativen Bauteilfertigung
DE102013215377A1 (de) * 2013-08-05 2015-02-05 Bayerische Motoren Werke Aktiengesellschaft Gasführungsvorrichtung, Vorrichtung zum Herstellen eines Bauteils mittels Auftragung von Pulverschichten sowie Verfahren zur Zuführung und Absaugung von Gas bei einer derartigen Vorrichtung
DE102014209161A1 (de) * 2014-05-14 2015-11-19 Eos Gmbh Electro Optical Systems Steuereinheit, Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
WO2015181772A1 (en) * 2014-05-30 2015-12-03 Prima Industrie S.P.A. Laser operating machine for additive manufacturing by laser sintering and corresponding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112828312A (zh) * 2019-11-25 2021-05-25 罗伯特·博世有限公司 激光增材制造控制系统和方法
DE102020003888A1 (de) 2020-06-29 2021-12-30 Messer Group Gmbh Vorrichtung und Verfahren zur additiven Fertigung unter Schutzgas
WO2022002523A1 (de) 2020-06-29 2022-01-06 Messer Group Gmbh Vorrichtung und verfahren zur additiven fertigung unter schutzgas
EP4052819A1 (de) 2021-03-01 2022-09-07 Siemens Energy Global GmbH & Co. KG Vorrichtung mit kühlelement zur dampfkondensation bei der generativen fertigung

Also Published As

Publication number Publication date
CN110799289A (zh) 2020-02-14
EP3618989A1 (de) 2020-03-11
US20200114425A1 (en) 2020-04-16
DE102017210718A1 (de) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2019001900A1 (de) Absaugvorrichtung für die additive fertigung
EP3050648B1 (de) Vorrichtung und verfahren zur herstellung oder reparatur eines dreidimensionalen objekts
EP3015197B1 (de) Vorrichtung zur Herstellung oder Reparatur eines dreidimensionalen Objekts
WO2014202413A2 (de) Vorrichtung und verfahren zur generativen herstellung zumindest eines bauteilbereichs eines bauteils
DE102013213260B4 (de) Verfahren zum Reparieren eines beschädigten Bauteils einer Gasturbine
EP1920873B1 (de) Verfahren zum Laserstrahlschneiden eines metallischen Bauteils
DE102014212100A1 (de) Generatives Herstellungsverfahren und Vorrichtung hierzu mit entgegengesetzt gerichteten Schutzgasströmen
DE102017211657A1 (de) Vorrichtung zur additiven Herstellung eines Bauteils mit Schutzgasführung und Verfahren
EP3914418B1 (de) Prozess zur strahlbearbeitung eines platten- oder rohrförmigen werkstücks
WO2016015694A1 (de) Vorrichtung und verfahren zur generativen herstellung zumindest eines bauteilbereichs eines bauteils
DE102013215377A1 (de) Gasführungsvorrichtung, Vorrichtung zum Herstellen eines Bauteils mittels Auftragung von Pulverschichten sowie Verfahren zur Zuführung und Absaugung von Gas bei einer derartigen Vorrichtung
WO2021018431A1 (de) Prozess zur strahlbearbeitung eines platten- oder rohrförmigen werkstücks
DE102016207896A1 (de) Vorrichtung mit Schleuse für die additive Herstellung
EP3212354B1 (de) Vorrichtung und verfahren zur generativen herstellung zumindest eines bauteilbereichs eines bauteils
WO2020125837A1 (de) Schichtbauvorrichtung zur additiven herstellung zumindest eines bauteilbereichs eines bauteils, strömungsleiteinrichtung für eine schichtbauvorrichtung und verfahren zum betreiben einer schichtbauvorrichtung
DE102011106380A1 (de) Vorrichtung zur Herstellung von dreidimensionalen Objekten
EP3720633A1 (de) Schichtbauvorrichtung zur additiven herstellung zumindest eines bauteilbereichs eines bauteils, strömungsleiteinrichtung für eine schichtbauvorrichtung und verfahren zum betreiben einer schichtbauvorrichtung
DE102016222564A1 (de) Verfahren zur additiven Herstellung mit selektivem Entfernen von Basismaterial
DE102018121136A1 (de) Schichtbauvorrichtung zur additiven Herstellung zumindest eines Bauteilbereichs eines Bauteils, Verfahren zum Betreiben einer solchen Schichtbauvorrichtung und Speichermedium
EP3624985B1 (de) Verfahren zum ausbilden einer definierten oberflächenrauheit in einen bereich eines additiv herzustellenden oder hergestellten bauteils für einer strömungsmaschine
DE102020210403A1 (de) Fertigungseinrichtung und Verfahren zum additiven Fertigen von Bauteilen aus einem Pulvermaterial
WO2021165305A1 (de) Laserzentrumsabhängige belichtungsstrategie
DE102019113841A1 (de) Verfahren zur additiven Fertigung dreidimensionaler Bauteile sowie entsprechende Vorrichtung
DE102019121060A1 (de) Verfahren zum Herstellen eines Gussbauteils
WO2020089087A1 (de) Auffangeinrichtung für eine schichtbauvorrichtung sowie schichtbauverfahren und schichtbauvorrichtung zum additiven herstellen zumindest eines bauteilbereichs eines bauteils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18730302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018730302

Country of ref document: EP

Effective date: 20191202

NENP Non-entry into the national phase

Ref country code: DE