WO2019001547A1 - 供液装置、样本分析仪及供液方法 - Google Patents

供液装置、样本分析仪及供液方法 Download PDF

Info

Publication number
WO2019001547A1
WO2019001547A1 PCT/CN2018/093482 CN2018093482W WO2019001547A1 WO 2019001547 A1 WO2019001547 A1 WO 2019001547A1 CN 2018093482 W CN2018093482 W CN 2018093482W WO 2019001547 A1 WO2019001547 A1 WO 2019001547A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid storage
storage tank
component
switching member
Prior art date
Application number
PCT/CN2018/093482
Other languages
English (en)
French (fr)
Inventor
颜卫卫
吴万
石汇林
刘隐明
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201880039306.4A priority Critical patent/CN110741263B/zh
Publication of WO2019001547A1 publication Critical patent/WO2019001547A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis

Definitions

  • the invention relates to the technical field of medical instruments, in particular to a liquid supply device, a sample analyzer and a liquid supply method.
  • the usual method is to switch the pressure of the reservoir to a negative pressure, using the pressure difference between the reagent tank and the reservoir.
  • the liquid is sucked into the liquid storage tank, and after the liquid addition is completed, the liquid storage tank is switched to a positive pressure to discharge the liquid outward.
  • the external liquid discharge cannot be continued, which will cause the blood flow analyzer to be stopped, thereby reducing the working efficiency of the blood cell analyzer.
  • the technical problem to be solved by the present invention is to provide a liquid supply device, a sample analyzer and a liquid supply method capable of continuously supplying liquid.
  • a liquid supply device in a first aspect, includes a first liquid component and a first liquid storage pool and a backup liquid storage assembly connected to the first liquid component, the first liquid storage tank being used for The first liquid component is supplied with liquid, and the spare liquid storage assembly supplies the first liquid component when the liquid in the first liquid storage pool is insufficient.
  • the first liquid storage pool is connected to the spare liquid storage assembly for supplying liquid to the spare liquid storage assembly.
  • a first switching member is disposed between the first liquid storage pool and the first liquid component, and the standby liquid storage assembly is connected between the first switching component and the first liquid component.
  • first switching member and a second switching member are disposed between the first liquid storage pool and the first liquid component, and the standby liquid storage assembly is connected to the first switching member and the second Between the switching members, the first switching member is used to achieve communication or disconnection, and the second switching member is used to achieve communication or disconnection.
  • the spare liquid storage assembly comprises a syringe and a driving device for driving the injector.
  • the reserve liquid storage assembly includes a dosing pump and a third switching member
  • the liquid chamber of the dosing pump is connected to the first liquid component
  • the air chamber of the dosing pump is connected to the third switching member.
  • the liquid supply device further includes a fourth switching member, the fourth switching member is connected to the first liquid storage tank, and the liquid chamber is connected to the first liquid storage tank, when the air chamber passes the
  • the third switching member is connected to the atmosphere or the first negative pressure source
  • the first liquid storage pool communicates with the second positive pressure source through the fourth switching member, and the second positive pressure source is disposed in the first liquid storage pool Liquid is pushed into the liquid chamber.
  • the liquid supply device further comprises a reagent barrel connected to the first liquid storage tank, and when the first liquid storage tank is connected to the second negative pressure source, the liquid in the reagent tank enters under the pressure difference The first reservoir is described.
  • a fifth switching member is disposed between the first liquid storage pool and the reagent barrel, and the fifth switching member is configured to connect or cut the first liquid storage pool and the reagent barrel.
  • the liquid supply device further includes a second liquid component, a second liquid storage pool, a fluid replacement component, and a sixth switching member, wherein the second liquid storage pool is connected to the second liquid component for The second liquid component is supplied with the liquid, and the liquid replacement assembly is connected to the second liquid storage tank and the reagent drum through the sixth switching member;
  • the sixth switching member is configured to communicate the rehydration assembly and the reagent barrel to cause the rehydration assembly to extract liquid in the reagent tank, or to communicate the rehydration assembly and the second reservoir to enable the A fluid replacement assembly injects liquid from the fluid replacement assembly into the second reservoir.
  • the rehydration assembly comprises a syringe or a metering pump.
  • the liquid supply device further includes a pressure sensor and a seventh switching member, the pressure sensor is connected to the second liquid storage tank for detecting a pressure value in the second liquid storage tank, the second liquid storage The pool is connected to the seventh switching member;
  • the seventh switching member communicates the second reservoir to the atmosphere or the third source of negative pressure when the pressure value is greater than a preset value.
  • the seventh switching member is provided with a current limiting member at an interface for connecting the atmosphere or the third negative pressure source, and the current limiting member is for releasing a part of the pressure in the second liquid storage tank.
  • a liquid supply device comprising: a second liquid component, a second liquid storage tank, a syringe, a sixth switching member, and a reagent tank, wherein the second liquid storage tank is connected to the second liquid component Providing a liquid for the second liquid component, the syringe connecting the second liquid storage tank and the reagent barrel through the sixth switching member;
  • the sixth switching member is configured to communicate the syringe with the reagent tub to cause the syringe to draw liquid in the reagent tub, or to communicate the syringe with the second reservoir to cause the syringe to be The liquid in the syringe is injected into the second reservoir.
  • a sample analyzer comprising the above liquid supply device.
  • a liquid supply method comprising:
  • the first reservoir is supplied to the first liquid component
  • the reserve liquid storage assembly supplies the reserve liquid to the first liquid component when the liquid in the first reservoir is insufficient.
  • the process of "filling in the reserve liquid in the spare liquid storage component" includes:
  • the first reservoir is connected to the reserve reservoir, and the liquid in the first reservoir enters the reserve reservoir to form the reserve liquid.
  • the spare liquid storage assembly comprises a dosing pump
  • the dosing pump comprises a liquid chamber and a gas chamber
  • the process of "injecting a reserve liquid into the spare liquid storage assembly" comprises:
  • the air chamber Disconnecting the liquid chamber from the first liquid component and communicating the liquid chamber with the first liquid storage tank, the air chamber is connected to an atmosphere or a first negative pressure source, and the first liquid storage tank is connected a second positive pressure source, the second positive pressure source pushing liquid in the first reservoir into the liquid chamber.
  • the reserve liquid storage assembly includes a dosing pump
  • the dosing pump includes a liquid chamber and a gas chamber
  • the process of the “the reserve liquid storage assembly supplying the reserve liquid to the first liquid component” includes:
  • the gas chamber Connecting the liquid chamber to the first liquid component, the gas chamber is connected to a first positive pressure source, and the first positive pressure source pushes the reserve liquid in the liquid chamber into the first liquid Component.
  • liquid supply method further comprises:
  • the second negative pressure source is such that the liquid in the reagent tank enters the first liquid storage tank under the pressure difference.
  • liquid supply method further comprises:
  • the rehydration component extracts the supplemental liquid from the reagent tank
  • the second liquid storage tank supplies the liquid to the second liquid component
  • the liquid replenishing component injects the supplementary liquid into the second liquid storage tank, so that the second liquid storage tank can continue to supply the second liquid component liquid.
  • liquid supply method further comprises:
  • the spare liquid storage assembly includes a syringe and a driving device for driving the syringe, and the process of "priming a reserve liquid in the spare liquid storage assembly" includes communicating the injector with the first liquid storage tank, the first liquid storage tank A second positive pressure source is connected, the drive device causing liquid from the first reservoir to enter the syringe.
  • the driving device causes the syringe and the first liquid component to be disconnected before the liquid of the first reservoir enters the injector.
  • the drive device pushes the reserve liquid in the syringe into the first liquid component when the syringe is disconnected from the first reservoir and the syringe and the first liquid component are communicated.
  • the present invention has the following beneficial effects:
  • the liquid in the first liquid storage tank of the liquid supply device When the liquid in the first liquid storage tank of the liquid supply device is sufficient, the liquid in the first liquid storage tank supplies the first liquid component, when the liquid in the first liquid storage pool is insufficient
  • the standby liquid storage assembly can continue to supply the first liquid component, so that the liquid supply device can realize continuous liquid supply, thereby avoiding the detection speed of the sample analyzer due to the liquid supply discontinuity. Limited, the sample analyzer is faster to detect.
  • FIG. 1 is a schematic view of a liquid supply device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a liquid supply device according to another embodiment of the present invention.
  • an embodiment of the present invention provides a sample analyzer.
  • the sample analyzer can be used to perform biological sample analysis, and the biological sample can be blood, urine, or the like.
  • the sample analyzer includes a liquid supply device 100.
  • the sample analyzer includes a drive assembly, a sampling assembly, a reaction assembly, a detection assembly, a waste treatment assembly, and a controller.
  • the drive assembly is used to drive various flow paths (including gas and liquid paths) in the sample analyzer.
  • the driving assembly includes a plurality of gas storage tanks and an air pump, and the air pump establishes positive pressure and negative pressure in the plurality of gas storage tanks, respectively, and the positive pressure and the negative pressure are used for driving.
  • the sampling component is used to acquire and distribute biological samples.
  • the sampling assembly includes a sampling needle.
  • the reaction assembly is for processing the biological sample to form a test solution.
  • the reaction assembly includes a plurality of reaction cells.
  • the detecting component is configured to detect the liquid to be tested to form detection information.
  • the detection assembly includes a flow chamber.
  • the waste liquid processing assembly is for collecting and discharging waste liquid in the sample analyzer.
  • the controller is configured to control a workflow of the sample analyzer and process the detection information to form an analysis result.
  • an embodiment of the present invention provides a liquid supply device 100 including a first liquid component 1 and a first liquid storage pool 2 and a backup reservoir connected to the first liquid component 1 .
  • Liquid assembly 3 The first liquid storage tank 2 is configured to supply the first liquid component 1 , and the standby liquid storage component 3 is the first liquid component when the liquid in the first liquid storage pool 2 is insufficient. 1 liquid supply.
  • the liquid in the first liquid storage tank 2 when the liquid in the first liquid storage tank 2 is sufficient, the liquid in the first liquid storage tank 2 supplies liquid to the first liquid component 1 when the first storage When the liquid in the liquid pool 2 is insufficient, the reserve liquid storage assembly 3 can continue to supply the first liquid component 1 so that the liquid supply device 100 can realize continuous liquid supply, thereby avoiding discontinuity of the liquid supply.
  • the detection speed of the sample analyzer is limited, and the sample analyzer has a faster detection speed.
  • the first liquid storage pool 2 can be filled with liquid to make the liquid in the first liquid storage pool 2 Sufficient to facilitate subsequent supply of liquid to the first liquid component 1, thereby increasing the detection speed of the sample analyzer.
  • the first liquid component 1 may be the reaction component or the detection component.
  • the first liquid component 1 can be a reaction cell.
  • the first reservoir 2 can be used to store a diluent.
  • a first liquid level sensor is disposed in the first liquid storage tank 2 for detecting a liquid level in the first liquid storage pool 2 .
  • the first level sensor may be a float sensor.
  • the first reservoir 2 is connected to the reserve reservoir 3 for supplying the reserve reservoir 3 with liquid.
  • the liquid storage component 3 may be first supplied with liquid, so that the spare liquid storage component 3 has sufficient liquid therein.
  • the reserve liquid storage assembly 3 is thereby capable of supplying the first liquid component 1 when the liquid in the first liquid storage tank 2 is insufficient.
  • a first switching member 41 and a second switching member 42 are disposed between the first liquid storage tank 2 and the first liquid component 1 .
  • the spare liquid storage assembly 3 is connected between the first switching member 41 and the second switching member 42.
  • the reserve liquid storage assembly 3 is connected to the first liquid storage tank 2 through the first switching member 41.
  • the spare liquid storage assembly 3 is connected to the first liquid component 1 through the second switching member 42.
  • the first switching member 41 is used to achieve communication or disconnection
  • the second switching member 42 is used to achieve communication or disconnection.
  • the second switching member 42 cuts off the first liquid component 1 and the first liquid storage pool 2 and the standby liquid storage assembly 3, and the first switching member 41 communicates with the first switching member 41.
  • the first liquid storage tank 2 supplies liquid to the standby liquid storage assembly 3.
  • the first switching member 41 and the second switching member 42 communicate with the first liquid storage tank 2 and the first liquid component 1
  • the first liquid storage pool 2 is the first liquid Component 1 is supplied with liquid.
  • the first switching member 41 cuts off the first liquid storage pool 2 and the first liquid component 1 and the standby liquid storage assembly 3, and the second switching member 42 communicates with the standby liquid storage assembly 3
  • the reserve liquid storage assembly 3 supplies the first liquid component 1 with liquid.
  • a three-way member 43 is disposed between the first switching member 41 and the second switching member 42 , and the three-way member 43 connects the first switching member 41 , the second switching member 42 , and The spare liquid storage assembly 3.
  • the first switching member 41 may be a shutoff valve.
  • the second switching member 42 may be a shutoff valve.
  • the spare reservoir assembly 3 includes a metering pump 31 and a third switching member 32.
  • the liquid chamber 311 of the metering pump 31 is connected to the first liquid component 1
  • the gas chamber 312 of the metering pump 31 is connected to the third switching member 32.
  • the air chamber 312 communicates with the first positive pressure source 51 through the third switching member 32
  • the first positive pressure source 51 pushes the liquid in the liquid chamber 311 into the first liquid component 1 .
  • the third switching member 32 can be a single two-position three-way solenoid valve or two shut-off valves.
  • the liquid supply device 100 further includes a fourth switching member 44, and the fourth switching member 44 is connected to the first liquid storage pool 2.
  • the liquid chamber 311 is connected to the first liquid storage tank 2.
  • the air chamber 312 of the metering pump 31 communicates with the atmosphere or the first negative pressure source 52 through the third switching member 32
  • the first reservoir 2 is connected to the second through the fourth switching member 44.
  • a positive pressure source 53, the second positive pressure source 53 pushes the liquid in the first reservoir 2 into the liquid chamber 311.
  • the fourth switching member 44 can be a single two-position three-way solenoid valve or two shut-off valves.
  • the third switching member 32 is configured to communicate the air chamber 312 to the first positive pressure source 51, or to connect the air chamber 312 to the atmosphere or the first negative pressure source. 52. Since the air chamber 312 is connected to the atmosphere or the first negative pressure source 52 (the flow rate of the first negative pressure source 52 is smaller than the flow rate of the first positive pressure source 51), the liquid chamber 311 passes through the first storage When the liquid pool 2 is connected to the second positive pressure source 53, the second positive pressure source 53 pushes the inner diaphragm of the metering pump 31 toward the air chamber 312 to move the first reservoir 2 The liquid is pushed into the liquid chamber 311, so the metering pump 31 is mainly driven by positive pressure for perfusion.
  • the first positive pressure source 51 pushes the inner diaphragm of the metering pump 31 toward the diaphragm
  • the direction of the liquid chamber 311 is to push the liquid in the liquid chamber 311 into the first liquid component 1, so that the metering pump 31 is mainly driven by a positive pressure to supply liquid. Therefore, the metering pump 31 adopts a bidirectional positive pressure driving mode, and the driving difficulty is small, which is beneficial to save energy consumption of the sample analyzer.
  • the first negative pressure source 52 functions as an auxiliary drive, and even if the stability and the built-in precision of the first negative pressure source 52 are insufficient, the metering pump 31 is hardly affected. In the working state, the metering pump 31 can still maintain a stable working state, and the liquid supply device 100 is stable in the liquid supply state.
  • the metering pump 31 may also not use the first negative pressure source 52, that is, the gas chamber 312 communicates with the first positive pressure source 51 or the atmosphere through the third switching member 32. Since the sample analyzer can achieve accurate control of the positive pressure environment, it is advantageous to stably control the action of the metering pump 31, and avoid the instability of the metering pump 31 due to instability of the negative pressure environment. .
  • the alternate reservoir assembly 3 can also include a syringe.
  • the syringe Before the first reservoir 2 supplies the first liquid component 1, the syringe first extracts the liquid in the first reservoir 2 such that there is sufficient liquid in the syringe. When the liquid in the first reservoir 2 is insufficient, the syringe pushes the liquid inside thereof into the first liquid component 1.
  • the three-way member 43 connects the first switching member 41, the second switching member 42, and the spare liquid storage assembly 3, and the standby liquid storage assembly 3 includes a syringe and a drive.
  • a drive for a syringe such as a motor.
  • the first liquid component 1 is supplied with liquid while controlling The syringe 3 is aspirated so that there is sufficient liquid in the syringe; or the first reservoir 2 can be connected to the second positive pressure source 53 through the fourth switching member 44, and the second switching member 42 cuts off the first liquid
  • the assembly 1 is connected to the first reservoir 2 and the reserve reservoir 3, and the first switching member 41 communicates with the first reservoir 2 and the reserve reservoir 3 while controlling the injector 3 Aspirate so that there is enough liquid in the syringe.
  • the fourth switching member 44 is switched to the negative pressure for pouring.
  • the first switching member 41 is energized, the passage is closed, and the control syringe is pushed up to push the internal liquid into the first.
  • the liquid supply unit 1 is used to achieve continuous liquid supply.
  • the second switching member 42 may also be absent, because the syringe is driven by the motor, the plug in the syringe can be ensured in a stable and controllable state, the liquid in the syringe is maintained stable, and the liquid fluctuation in the pipeline is avoided.
  • the influence of the liquid level in the liquid component 1 ensures the accuracy of the reaction and measurement.
  • the second switching member 42 is preferably used.
  • the second switching member 42 is cut off, so that the diaphragm vibration in the dosing pump can be avoided. The influence of the liquid level in the liquid component 1.
  • the liquid supply device 100 further includes a reagent tank 6 connected to the first liquid storage tank 2.
  • the first liquid storage tank 2 is connected to the second negative pressure source 54, the liquid in the reagent tank 6 enters the first liquid storage tank 2 under the pressure difference.
  • the first reservoir 2 is supplied with liquid, its internal pressure is a positive pressure.
  • the first reservoir 2 is filled, its internal pressure is a negative pressure.
  • a fifth switching member 45 is disposed between the first liquid storage pool 2 and the reagent tank 6, and the fifth switching member 45 is configured to communicate or cut off the first liquid storage pool 2 and the Reagent barrel 6.
  • the fifth switching member 45 may be a shutoff valve.
  • the spare liquid storage assembly 3 can also be connected to the reagent tank 6, which is also used to supply the reserve liquid storage assembly 3.
  • the liquid supply device 100 further includes a second liquid component 7, a second reservoir 8, a fluid replacement component 9, and a sixth switching member 46.
  • the second liquid storage tank 8 is connected to the second liquid component 7 for supplying liquid to the second liquid component 7.
  • the fluid replacement assembly 9 is connected to the second reservoir 8 and the reagent tank 6 through the sixth switching member 46.
  • the sixth switching member 46 is configured to communicate the rehydration assembly 9 and the reagent barrel 6 to cause the rehydration assembly 9 to extract liquid in the reagent barrel 6, or to communicate the rehydration assembly 9 and the second storage
  • the liquid pool 8 is such that the fluid replacement assembly 9 injects liquid in the fluid replacement assembly 9 into the second liquid storage tank 8.
  • the sixth switching member 46 can be a single two-position three-way solenoid valve or two shut-off valves.
  • the second reservoir 8 when the liquid in the second reservoir 8 is sufficient, the second reservoir 8 supplies the second liquid component 7 with liquid.
  • the fluid replacement assembly 9 can communicate with the reagent tub 6 through the sixth switching member 46 to extract liquid from the reagent tub 6.
  • the liquid replenishing assembly 9 communicates with the second liquid storage tank 8 through the sixth switching member 46, and the liquid replenishing assembly 9 will liquid the liquid replenishing assembly 9 Injecting the second liquid storage tank 8 to supplement the liquid in the second liquid storage tank 8 so that the second liquid storage tank 8 can continue to supply liquid to the second liquid storage unit 7
  • the second liquid storage tank 8 can realize continuous liquid supply, thereby avoiding the limitation of the detection speed of the sample analyzer due to the discontinuity of the liquid supply, and the detection speed of the sample analyzer is faster.
  • the fluid replacement assembly 9 is capable of maintaining the pressure in the second liquid storage tank 8 when the second liquid storage tank 8 is poured, so that the second liquid storage tank 8 can normally supply liquid. Since the second liquid storage tank 8 can realize continuous liquid supply without switching internal pressure, the air consumption of the sample analyzer can be reduced, and the energy consumption of the sample analyzer can be reduced.
  • the second liquid component 7 may be the reaction component or the detection component.
  • the second liquid component 7 can be a flow chamber.
  • the second reservoir 8 can be used to store sheath fluid.
  • a second liquid level sensor is disposed in the second liquid storage tank 8 for detecting a liquid level in the second liquid storage tank 8.
  • the second level sensor can be a float sensor.
  • the fluid replacement component 9 comprises a syringe or a metering pump.
  • the rehydration assembly 9 may also include other devices that allow for dosing.
  • the liquid supply device 100 further includes a pressure sensor 81 and a seventh switching member 82.
  • the pressure sensor 81 is connected to the second reservoir 8 for detecting a pressure value in the second reservoir 8.
  • the second reservoir 8 is connected to the seventh switching member 82.
  • the seventh switching member 82 communicates with the second reservoir 8 to the atmosphere or the third source of negative pressure 55.
  • the seventh switching member 82 communicates with the second reservoir 8 to the third positive pressure source 56 when the pressure value is less than or equal to the threshold.
  • the seventh switching member 82 may be a single two-position three-way solenoid valve or two shut-off valves.
  • the pressure sensor 81 continuously detects the pressure in the second reservoir 8.
  • the pressure in the second liquid storage tank 8 may rise. If the pressure value of the pressure in the second liquid storage tank 8 is greater than a preset value, the pressure in the second liquid storage tank 8 is higher than the normal working range, and then passes through the seventh switching member 82. Connecting the second liquid storage tank 8 to the atmosphere or the third negative pressure source 55 to release a portion of the pressure in the second liquid storage tank 8 to reduce the pressure value to a normal working range, thereby ensuring the The second reservoir 8 can supply liquid normally.
  • the seventh switching member 82 communicates with the second reservoir 8 to the third positive pressure source 56 such that the third positive pressure source 56 establishes a pressure in the second reservoir 8 to cause the pressure value. It is raised to the normal working range, thereby ensuring that the second liquid storage tank 8 can supply liquid normally.
  • the liquid supply device 100 can control the pressure value of the pressure in the second liquid storage tank 8 to keep the pressure value within a normal working range, thereby ensuring the second liquid storage tank 8 The liquid supply can be performed normally.
  • liquid supply pressure of the second liquid storage tank 8 can be adjusted by setting the preset value and the threshold value, thereby satisfying different liquid supply requirements.
  • a pressure valve may also be provided on the second reservoir 8 to control the pressure value of the pressure in the second reservoir 8 within the normal operating range by the pressure valve.
  • the pressure valve can also be replaced with other mechanical structures or electronic structures to maintain the pressure of the second reservoir 8 within a specified range.
  • the seventh switching member 82 is configured to be connected to the interface of the atmosphere or the third negative pressure source 55, and the current limiting member 83 is configured to release a portion of the second liquid storage tank 8 pressure.
  • the flow restricting member 83 is for slowly and stably releasing the pressure in the second liquid storage tank 8 to avoid waste of gas volume due to excessive release of pressure in the second liquid storage tank 8 (as described If the pressure in the second reservoir 8 is excessively released, the third positive pressure source 56 is also required to raise the pressure in the second reservoir 8 to waste the gas volume of the liquid supply device 100.
  • an eighth switching member 47 is disposed between the second liquid storage tank 8 and the second liquid component 7 .
  • the eighth switching member 47 is for connecting or cutting the second liquid storage tank 8 and the second liquid-using component 7.
  • the eighth switching member 47 may be a shutoff valve.
  • the perfusion action and the liquid supply action of the first reservoir 2 and the second reservoir 8 are through the liquid consumption of the inside and the liquid inside thereof.
  • the position sensor status and precise control of the perfusion time are achieved.
  • the basic principle is: A. the consumption of liquid in the first reservoir 2 and the second reservoir 8 for each functional timing (ie, the first reservoir 2 and the second reservoir)
  • the liquid supply amount of the pool 8 should be less than the total amount of the first liquid storage tank 2 and the second liquid storage tank 8 filled, for example, the total amount is 140 mL, and the consumption is 120 mL.
  • each functional timing If the liquid in the first reservoir 2 and the second reservoir 8 is consumed, the first reservoir 2 and the second must be before the end of the sequence The reservoir 8 is filled.
  • the timing of the filling, the liquid supply and the infusion for the second liquid storage tank 8 can be performed separately or simultaneously, thereby greatly reducing the time consumption of the instrument measurement and maintenance, and improving the timing action.
  • the length of the liquid chamber 311 according to the metering pump 31 is set to be synchronized, usually after the timing and other action functions are completed, at the end of the time series
  • the first reservoir 2 and the metering pump 31 are perfused.
  • an embodiment of the present invention further provides a liquid supply device 100 including a second liquid component 7 , a second liquid storage tank 8 , a syringe (the component pointed by the serial number 9 in FIG. 1 ), and a sixth switching component. 46 and reagent tank 6.
  • the second liquid storage tank 8 is connected to the second liquid component 7 for supplying liquid to the second liquid component 7.
  • the syringe is connected to the second reservoir 8 and the reagent tank 6 through the sixth switching member 46.
  • the sixth switching member 46 is configured to communicate the syringe with the reagent tub 6 to cause the syringe to draw liquid in the reagent tub 6, or to communicate the syringe with the second reservoir 8 to The syringe injects the liquid in the syringe into the second reservoir 8.
  • the second reservoir 8 supplies the second liquid component 7 with liquid.
  • the syringe may communicate with the reagent tub 6 through the sixth switching member 46 to extract liquid from the reagent tub 6.
  • the syringe communicates with the second reservoir 8 through the sixth switching member 46, and the syringe injects the liquid in the syringe into the second reservoir a liquid pool 8 for replenishing the liquid in the second liquid storage tank 8 so that the second liquid storage tank 8 can continue to supply liquid to the second liquid-using component 7, and thus the second liquid storage tank 8 can realize continuous liquid supply, thereby avoiding the limitation of the detection speed of the sample analyzer due to the discontinuity of the liquid supply, and the detection speed of the sample analyzer is faster.
  • the syringe is capable of maintaining the pressure in the second reservoir 8 while the second reservoir 8 is being poured, so that the second reservoir 8 can supply the liquid normally. Since the second liquid storage tank 8 can realize continuous liquid supply without switching internal pressure, the air consumption of the sample analyzer can be reduced, and the energy consumption of the sample analyzer can be reduced.
  • the syringe is capable of stably replenishing the liquid into the second reservoir 8.
  • liquid supply device 100 of the embodiment can be designed with reference to the liquid supply device 100 described in the foregoing embodiment.
  • an embodiment of the present invention further provides a liquid supply method, which can be performed by the liquid supply device 100 as described in the above embodiment.
  • the liquid supply method can be used for the sample analyzer described in the above embodiments.
  • the liquid supply method includes:
  • the liquid in the first liquid storage tank 2 when the liquid in the first liquid storage tank 2 is sufficient, the liquid in the first liquid storage tank 2 supplies liquid to the first liquid component 1 when the first storage When the liquid in the liquid pool 2 is insufficient, the standby liquid in the reserve liquid storage assembly 3 can continue to supply the first liquid component 1, so that the liquid supply method can realize continuous liquid supply, thereby avoiding
  • the detection speed of the sample analyzer to which the liquid supply method is applied is limited due to the discontinuity of the liquid supply, and the detection speed of the sample analyzer is faster.
  • the process of "filling the reserve liquid in the reserve liquid storage assembly 3 (step S01)" includes:
  • the first liquid storage tank 2 and the standby liquid storage assembly 3 are connected, and the liquid in the first liquid storage tank 2 enters the reserve liquid storage assembly 3 to form the standby liquid.
  • the liquid storage component 3 before the first liquid storage unit 2 supplies the liquid to the first liquid component 1, the liquid storage component 3 is first supplied with liquid, so that the spare liquid storage component 3 has sufficient
  • the liquid storage unit 3 is capable of supplying the first liquid component 1 when the liquid in the first liquid storage tank 2 is insufficient.
  • the reserve liquid storage assembly 3 includes a metering pump 31 including a liquid chamber 311 and a gas chamber 312 that "fills the reserve liquid in the reserve liquid storage assembly 3 (step S01)
  • the process includes:
  • the first reservoir 2 communicates with a second positive pressure source 53 that pushes liquid from the first reservoir 2 into the chamber 311.
  • the flow rate of the first negative pressure source 52 is smaller than the flow rate of the first positive pressure source 51.
  • the gas chamber 312 is connected to the atmosphere or the first negative pressure source 52, and the liquid chamber 311 is connected to the second positive pressure source 53 through the first liquid storage tank 2,
  • the second positive pressure source 53 pushes the inner diaphragm of the metering pump 31 toward the air chamber 312 to push the liquid in the first reservoir 2 into the liquid chamber 311, so the metering pump 31
  • the main positive pressure drive is used for perfusion.
  • the reserve reservoir assembly 3 includes a metering pump 31 comprising a liquid chamber 311 and a plenum 312, the "the reserve reservoir 3 supplying the reserve liquid to The process of the first liquid component 1 (step S03) includes:
  • the gas chamber 312 Connecting the liquid chamber 311 to the first liquid component 1 , the gas chamber 312 is connected to the first positive pressure source 51 , and the first positive pressure source 51 pushes the reserve liquid in the liquid chamber 311 The first liquid component 1 is inserted.
  • the first positive pressure source 51 will quantify the quantitative The inner diaphragm of the pump 31 is pushed toward the liquid chamber 311 to push the liquid in the liquid chamber 311 into the first liquid component 1, so that the metering pump 31 is mainly driven by a positive pressure to supply liquid. .
  • the metering pump 31 adopts a bidirectional positive pressure driving mode, and the driving difficulty is small, which is beneficial to save energy consumption of the sample analyzer.
  • the liquid supply method further includes:
  • step S03 and step S04 can be performed simultaneously, thereby greatly reducing the time consumption of instrument measurement and maintenance, and improving the flexibility of the timing action arrangement.
  • the liquid supply method further includes:
  • the rehydration component 9 extracts the supplemental liquid from the reagent tank 6;
  • the liquid replenishing assembly 9 injects the supplementary liquid into the second liquid storage tank 8, so that the second liquid storage tank 8 can continue to be
  • the second liquid component 7 is supplied with liquid.
  • the second reservoir 8 when the liquid in the second reservoir 8 is sufficient, the second reservoir 8 supplies the second liquid component 7 with liquid.
  • the liquid replenishing assembly 9 communicates with the second liquid storage tank 8 through the sixth switching member 46, and the liquid replenishing assembly 9 will liquid the liquid replenishing assembly 9 Injecting the second liquid storage tank 8 to supplement the liquid in the second liquid storage tank 8 so that the second liquid storage tank 8 can continue to supply liquid to the second liquid storage unit 7
  • the second liquid storage tank 8 can realize continuous liquid supply, thereby avoiding the limitation of the detection speed of the sample analyzer due to the discontinuity of the liquid supply, and the detection speed of the sample analyzer is faster. Since the second liquid storage tank 8 can realize continuous liquid supply without switching internal pressure, the air consumption of the sample analyzer can be reduced, and the energy consumption of the sample analyzer can be reduced.
  • steps S11-S13 and steps S01-S03 can be performed separately or simultaneously, thereby improving the flexibility of the timing action arrangement of the liquid supply method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种供液装置,包括第一用液组件(1)及连接第一用液组件(1)的第一储液池(2)和备用储液组件(3),第一储液池(2)用于为第一用液组件(1)供液,备用储液组件(3)在第一储液池(2)内液体不足时为第一用液组件(1)供液。本发明的供液装置能够连续供液。本发明还公开一种包括供液装置的样本分析仪及一种供液方法。

Description

供液装置、样本分析仪及供液方法 技术领域
本发明涉及医疗器械技术领域,尤其涉及一种供液装置、一种样本分析仪以及一种供液方法。
背景技术
目前的血细胞分析仪中,当储液池中的液体被消耗,需要补充液体时,通常采用的方法是将储液池的压力切换成负压,利用试剂桶与储液池之间的压差,将液体吸入储液池中,加液完成后,储液池再切换成正压,以向外排液。如此一来,在储液池补充液体过程中,无法继续向外排液,将导致血细胞分析仪中需要上述液体的管路被迫停止工作,从而降低了血细胞分析仪的工作效率。
发明内容
本发明所要解决的技术问题在于提供一种能够连续供液的供液装置、样本分析仪及供液方法。
为了实现上述目的,本发明实施方式采用如下技术方案:
第一方面,提供一种供液装置,包括第一用液组件及连接所述第一用液组件的第一储液池和备用储液组件,所述第一储液池用于为所述第一用液组件供液,所述备用储液组件在所述第一储液池内液体不足时为所述第一用液组件供液。
其中,所述第一储液池连接所述备用储液组件,用于为所述备用储液组件供液。
其中,所述第一储液池与所述第一用液组件之间设有第一切换件,所述备用储液组件连接在所述第一切换件和第一用液组件之间。
其中,所述第一储液池与所述第一用液组件之间设有第一切换件和第二切换件,所述备用储液组件连接在所述第一切换件与所述第二切换件之间,所述第一切换件用于实现连通或切断,所述第二切换件用于实现连通或切断。
其中,所述备用储液组件包括注射器和驱动注射器的驱动装置。
其中,所述备用储液组件包括定量泵和第三切换件,所述定量泵的液室连接所述第一用液组件,所述定量泵的气室连接所述第三切换件,当所述气室通过所述第三切换件连通第一正压源时,所述第一正压源将所述液室内的液体推入所述第一用液组件。
其中,所述供液装置还包括第四切换件,所述第四切换件连接所述第一储液池,所述液室连接所述第一储液池,当所述气室通过所述第三切换件连通大气或第一负压源时,所述第一储液池通过所述第四切换件连通第二正压源,所述第二正压源将所述第一储液池内液体推入所述液室。
其中,所述供液装置还包括连接所述第一储液池的试剂桶,所述第一储液池连通至第二负压源时,所述试剂桶内液体在压差作用下进入所述第一储液池。
其中,所述第一储液池与所述试剂桶之间设置有第五切换件,所述第五切换件用于连通或切断所述第一储液池与所述试剂桶。
其中,所述供液装置还包括第二用液组件、第二储液池、补液组件以及第六切换件,所述第二储液池连接所述第二用液组件,用于为所述第二用液组件供液,所述补液组件通过所述第六切换件连接所述第二储液池和所述试剂桶;
所述第六切换件用于连通所述补液组件与所述试剂桶以使所述补液组件抽取所述试剂桶内液体,或连通所述补液组件与所述第二储液池以使所述补液组件将所述补液组件内液体注入所述第二储液池。
其中,所述补液组件包括注射器或定量泵。
其中,所述供液装置还包括压力传感器和第七切换件,所述压力传感器连接所述第二储液池,用于检测所述第二储液池内的压力值,所述第二储液池连接所述第七切换件;
当所述压力值大于预设值时,所述第七切换件连通所述第二储液池至大气或第三负压源。
其中,所述第七切换件用于连接大气或第三负压源的接口处设有限流件,所述限流件用于释放部分所述第二储液池内的压力。
第二方面,还提供一种供液装置,包括第二用液组件、第二储液池、注射器、第六切换件以及试剂桶,所述第二储液池连接所述第二用液组件,用于为所述第二用液组件供液,所述注射器通过所述第六切换件连接所述第二储液池 和所述试剂桶;
所述第六切换件用于连通所述注射器与所述试剂桶以使所述注射器抽取所述试剂桶内液体,或连通所述注射器与所述第二储液池以使所述注射器将所述注射器内液体注入所述第二储液池。
第三方面,还提供一种样本分析仪,包括上述供液装置。
第四方面,还提供一种供液方法,包括:
在备用储液组件内灌注备用液体;
第一储液池为第一用液组件供液;以及
当所述第一储液池内液体不足时,所述备用储液组件将所述备用液体供应给所述第一用液组件。
其中,所述“在备用储液组件内灌注备用液体”的过程包括:
连通所述第一储液池与所述备用储液组件,所述第一储液池内液体进入所述备用储液组件以形成所述备用液体。
其中,所述备用储液组件包括定量泵,所述定量泵包括液室和气室,所述“在备用储液组件内灌注备用液体”的过程包括:
断开所述液室与所述第一用液组件并连通所述液室与所述第一储液池,所述气室连通大气或第一负压源,所述第一储液池连通第二正压源,所述第二正压源将所述第一储液池内液体推入所述液室。
其中,所述备用储液组件包括定量泵,所述定量泵包括液室和气室,所述“所述备用储液组件将所述备用液体供应给所述第一用液组件”的过程包括:
连通所述液室与所述第一用液组件,所述气室连通第一正压源,所述第一正压源将所述液室内的所述备用液体推入所述第一用液组件。
其中,所述供液方法还包括:
当所述第一储液池内液体不足时,断开所述第一储液池与所述第一用液组件并连通所述第一储液池与试剂桶,所述第一储液池连通至第二负压源,使得所述试剂桶内液体在压差作用下进入所述第一储液池。
其中,所述供液方法还包括:
补液组件自试剂桶内抽取补充液体;
第二储液池为第二用液组件供液;
当所述第二储液池内液体不足时,所述补液组件将所述补充液体灌注进所述第二储液池,使得所述第二储液池能够持续为所述第二用液组件供液。
其中,所述供液方法还包括:
所述备用储液组件包括注射器和驱动注射器的驱动装置,所述“在备用储液组件内灌注备用液体”的过程包括,连通注射器与所述第一储液池,所述第一储液池连通第二正压源,所述驱动装置使得第一储液池的液体进入注射器。优选的,当所述第一储液池连通第二正压源,所述驱动装置使得第一储液池的液体进入注射器前,断开所述注射器与第一用液组件。当断开注射器与第一储液池,连通注射器与第一用液组件时,所述驱动装置将所述注射器内的所述备用液体推入所述第一用液组件。
相较于现有技术,本发明具有以下有益效果:
当所述供液装置的所述第一储液池内的液体足够时,所述第一储液池内的液体为所述第一用液组件供液,当所述第一储液池内的液体不足时,所述备用储液组件能够继续为所述第一用液组件供液,因此所述供液装置能够实现连续供液,从而避免因供液不连续而导致所述样本分析仪的检测速度受限,所述样本分析仪的检测速度较快。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以如这些附图获得其他的附图。
图1是本发明实施例提供的一种供液装置的示意图。
图2是本发明另一个实施例提供的一种供液装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明实施例提供一种样本分析仪。所述样本分析仪可用于进行生物样本分析,所述生物样本可以为血液、尿液等。所述样本分析仪包括供液装置100。
所述样本分析仪包括驱动组件、采样组件、反应组件、检测组件、废液处理组件以及控制器。所述驱动组件用于驱动所述样本分析仪中的各种流路(包括气路和液路)。所述驱动组件包括多个储气罐和气泵,气泵在所述多个储气罐内分别建立正压和负压,所述正压和所述负压用于实现驱动。所述采样组件用于采集和分配生物样本。所述采样组件包括采样针。所述反应组件用于对所述生物样本进行处理以形成待测液。所述反应组件包括多个反应池。所述检测组件用于检测所述待测液以形成检测信息。所述检测组件包括流动室。所述废液处理组件用于收集和排放所述样本分析仪中的废液。所述控制器用于控制所述样本分析仪的工作流程并处理所述检测信息以形成分析结果。
请参阅图1,本发明实施例提供一种供液装置100,所述供液装置100包括第一用液组件1及连接所述第一用液组件1的第一储液池2和备用储液组件3。所述第一储液池2用于为所述第一用液组件1供液,所述备用储液组件3在所述第一储液池2内液体不足时为所述第一用液组件1供液。
在本实施例中,当所述第一储液池2内的液体足够时,所述第一储液池2内的液体为所述第一用液组件1供液,当所述第一储液池2内的液体不足时,所述备用储液组件3能够继续为所述第一用液组件1供液,因此所述供液装置100能够实现连续供液,从而避免因供液不连续而导致所述样本分析仪的检测速度受限,所述样本分析仪的检测速度较快。
可以理解的,当所述备用储液组件3为所述第一用液组件1供液时,可以对所述第一储液池2灌注液体,以使所述第一储液池2内液体足够,方便后续继续为所述第一用液组件1供液,从而提高所述样本分析仪的检测速度。
可选的,所述第一用液组件1可以为所述反应组件或所述检测组件。例如,所述第一用液组件1可以为反应池。所述第一储液池2可用于存储稀释液。
可选的,所述第一储液池2内设置有第一液位传感器,用于检测所述第一储液池2内的液面高度。所述第一液位传感器可为浮子传感器。
作为一种可选实施例,所述第一储液池2连接所述备用储液组件3,用于为所述备用储液组件3供液。所述第一储液池2为所述第一用液组件1供液之前,可以先为所述备用储液组件3供液,使得所述备用储液组件3内有足够的液体,所述备用储液组件3从而能够在所述第一储液池2内液体不足时为所述第一用液组件1供液。
作为一种可选实施例,所述第一储液池2与所述第一用液组件1之间设有第一切换件41和第二切换件42。所述备用储液组件3连接在所述第一切换件41与所述第二切换件42之间。所述备用储液组件3通过所述第一切换件41连接所述第一储液池2。所述备用储液组件3通过所述第二切换件42连接所述第一用液组件1。所述第一切换件41用于实现连通或切断,所述第二切换件42用于实现连通或切断。
在本实施例中,所述第二切换件42切断所述第一用液组件1与所述第一储液池2及所述备用储液组件3,且所述第一切换件41连通所述第一储液池2与所述备用储液组件3时,所述第一储液池2为所述备用储液组件3供液。所述第一切换件41和所述第二切换件42连通所述第一储液池2与所述第一用液组件1时,所述第一储液池2为所述第一用液组件1供液。所述第一切换件41切断所述第一储液池2与所述第一用液组件1及所述备用储液组件3,且所述第二切换件42连通所述备用储液组件3与所述第一用液组件1时,所述备用储液组件3为所述第一用液组件1供液。
可选的,所述第一切换件41与所述第二切换件42之间设置三通件43,所述三通件43连接所述第一切换件41、所述第二切换件42以及所述备用储液组件3。所述第一切换件41可以为截止阀。所述第二切换件42可以为截止阀。
作为一种可选实施例,所述备用储液组件3包括定量泵31和第三切换件32。所述定量泵31的液室311连接所述第一用液组件1,所述定量泵31的气室312连接所述第三切换件32。当所述气室312通过所述第三切换件32连通第一正压源51时,所述第一正压源51将所述液室311内的液体推入所述第一用液组件1。所述第三切换件32可以为单个两位三通电磁阀或者两个截止阀。
可选的,所述供液装置100还包括第四切换件44,所述第四切换件44连 接所述第一储液池2。所述液室311连接所述第一储液池2。当所述定量泵31的所述气室312通过所述第三切换件32连通大气或第一负压源52时,所述第一储液池2通过所述第四切换件44连通第二正压源53,所述第二正压源53将所述第一储液池2内液体推入所述液室311。所述第四切换件44可以为单个两位三通电磁阀或者两个截止阀。
在本实施例中,所述第三切换件32用于将所述气室312连通至所述第一正压源51,或将所述气室312连通至大气或所述第一负压源52。由于所述气室312连通大气或所述第一负压源52(所述第一负压源52的流量小于所述第一正压源51的流量)、所述液室311通过第一储液池2连接至所述第二正压源53时,所述第二正压源53将所述定量泵31内部隔膜推向所述气室312的方向,以将所述第一储液池2内液体推入所述液室311,因此所述定量泵31主要正压驱动以进行灌注。由于所述液室311连通所述第一用液组件1、所述气室312连通所述第一正压源51时,所述第一正压源51将所述定量泵31内部隔膜推向所述液室311的方向,以将所述液室311内的液体推入所述第一用液组件1,因此所述定量泵31主要由正压驱动以进行供液。故而,所述定量泵31采用双向正压驱动方式,驱动难度小,有利于节约所述样本分析仪的能耗。
可以理解的,所述第一负压源52起辅助驱动的作用,即使所述第一负压源52的稳定性和建压精度有所不足,也几乎不会影响到所述定量泵31的工作状态,所述定量泵31仍可以保持稳定的工作状态,所述供液装置100供液状态稳定。
可以理解的,所述定量泵31也可不采用所述第一负压源52,也即所述气室312通过所述第三切换件32连通所述第一正压源51或所述大气。由于所述样本分析仪能够实现对正压环境的准确控制,因此有利于稳定控制所述定量泵31的动作,避免因负压环境不稳定而导致所述定量泵31灌注或供液动作不稳定。
在另一实施例中,所述备用储液组件3也可以包括注射器。在所述第一储液池2为所述第一用液组件1供液之前,所述注射器先抽取所述第一储液池2内的液体,使得所述注射器内具有足够的液体。所述第一储液池2内液体不足时,所述注射器将其内部的液体推入所述第一用液组件1。具体而言,参照图 2,所述三通件43连接所述第一切换件41、所述第二切换件42以及所述备用储液组件3,所述备用储液组件3包括注射器和驱动注射器的驱动装置,如电机。在需要连续为第一用液组件1供液的情况下,当第一储液池2通过第四切换件44连接到第二正压源53,给第一用液组件1供液,同时控制注射器3吸液,使得注射器内有足够的液体;或者也可以当第一储液池2通过第四切换件44连接到第二正压源53,第二切换件42切断所述第一用液组件1与所述第一储液池2及所述备用储液组件3,且所述第一切换件41连通所述第一储液池2与所述备用储液组件3,同时控制注射器3吸液,使得注射器内有足够的液体。第一储液池2需要灌注时,通过第四切换件44切换到负压进行灌注,此时,第一切换件41通电,关闭通道,控制注射器向上推将内部的液体推入所述第一用液组件1,实现连续供液。在本实施例中,也可以没有第二切换件42,因为注射器由电机驱动,可以保证注射器中的塞杆处于稳定可控状态,维持注射器中液体稳定,避免管路中液体波动对第一用液组件1中液面的影响,从而保证反应和测量的精确性。在使用定量泵为备用储液组件时,优选使用第二切换件42,当第一储液2为定量泵供液时,切断第二切换件42,可以避免定量泵中膜片震动对第一用液组件1中液面的影响。
作为一种可选实施例,所述供液装置100还包括连接所述第一储液池2的试剂桶6。所述第一储液池2连通至第二负压源54时,所述试剂桶6内液体在压差作用下进入所述第一储液池2。所述第一储液池2供液时,其内部压力为正压。所述第一储液池2灌注时,其内部压力为负压。
可选的,所述第一储液池2与所述试剂桶6之间设置有第五切换件45,所述第五切换件45用于连通或切断所述第一储液池2与所述试剂桶6。所述第五切换件45可以为截止阀。
在一种实施方式中,所述备用储液组件3也可连接所述试剂桶6,所述试剂桶6还用于为所述备用储液组件3供液。
作为一种可选实施例,所述供液装置100还包括第二用液组件7、第二储液池8、补液组件9以及第六切换件46。所述第二储液池8连接所述第二用液组件7,用于为所述第二用液组件7供液。所述补液组件9通过所述第六切换件46连接所述第二储液池8和所述试剂桶6。所述第六切换件46用于连通所 述补液组件9与所述试剂桶6以使所述补液组件9抽取所述试剂桶6内液体,或连通所述补液组件9与所述第二储液池8以使所述补液组件9将所述补液组件9内液体注入所述第二储液池8。所述第六切换件46可以为单个两位三通电磁阀或者两个截止阀。
在本实施例中,所述第二储液池8内液体足够时,所述第二储液池8为所述第二用液组件7供液。此时,所述补液组件9可通过所述第六切换件46连通所述试剂桶6,从而从所述试剂桶6内抽取液体。当所述第二储液池8内液体不足时,所述补液组件9通过所述第六切换件46连通所述第二储液池8,所述补液组件9将所述补液组件9内液体注入所述第二储液池8,用以补充所述第二储液池8内的液体,使得所述第二储液池8能够继续为所述第二用液组件7供液,因此所述第二储液池8能够实现连续供液,从而避免因供液不连续而导致所述样本分析仪的检测速度受限,所述样本分析仪的检测速度较快。所述补液组件9能够在对所述第二储液池8进行灌注的时候,保持所述第二储液池8内的压力,使得所述第二储液池8能够正常进行供液。由于所述第二储液池8无需切换内部的压力即可实现连续供液,因此可以减少所述样本分析仪的耗气量,降低所述样本分析仪的能耗。
可选的,所述第二用液组件7可以为所述反应组件或所述检测组件。例如,所述第二用液组件7可以为流动室。所述第二储液池8可用于存储鞘液。
可选的,所述第二储液池8内设置有第二液位传感器,用于检测所述第二储液池8内的液面高度。所述第二液位传感器可为浮子传感器。
可选的,所述补液组件9包括注射器或定量泵。当然,在其他实施方式中,所述补液组件9也可以包括其他的可以实现定量加液的装置。
可选的,所述供液装置100还包括压力传感器81和第七切换件82。所述压力传感器81连接所述第二储液池8,用于检测所述第二储液池8内的压力值。所述第二储液池8连接所述第七切换件82。当所述压力值大于预设值时,所述第七切换件82连通所述第二储液池8至大气或第三负压源55。当所述压力值小于等于阈值时,所述第七切换件82连通所述第二储液池8至第三正压源56。所述第七切换件82可以为单个两位三通电磁阀或者两个截止阀。
在本实施例中,所述压力传感器81持续检测所述第二储液池8内的压力。 在所述补液组件9对所述第二储液池8进行灌注的时候,所述第二储液池8内的压力可能会发生上升。如果所述第二储液池8内压力的所述压力值大于预设值时,所述第二储液池8内的压力高于正常工作范围,则通过所述所述第七切换件82连通所述第二储液池8至大气或第三负压源55,以释放部分所述第二储液池8内的压力,使所述压力值降低到正常工作范围内,从而保证所述第二储液池8能够正常进行供液。在所述第二储液池8的供液过程中,如果所述第二储液池8内压力的所述压力值小于等于所述阈值,所述压力值低于正常工作范围,则通过所述第七切换件82连通所述第二储液池8至第三正压源56,使得所述第三正压源56在所述第二储液池8内建压,使所述压力值升高到正常工作范围内,从而保证所述第二储液池8能够正常进行供液。简言之,所述供液装置100能够控制所述第二储液池8内压力的所述压力值,使所述压力值保持在正常工作范围内,从而保证所述第二储液池8能够正常进行供液。
可以理解的,可以通过对所述预设值和所述阈值的设定,调整所述第二储液池8的供液压力,从而满足不同的供液需求。
在其他实施例中,也可以在所述第二储液池8上设置压力阀,从而通过所述压力阀将第二储液池8内压力的所述压力值控制在正常工作范围内。当然,在其他实施方式中,也可将所述压力阀更换为其他机械结构或者电子结构,以使所述第二储液池8的压力维持在指定的范围内。
可选的,所述第七切换件82用于连接大气或第三负压源55的接口处设有限流件83,所述限流件83用于释放部分所述第二储液池8内的压力。所述限流件83用于缓慢且稳定地释放所述第二储液池8内的压力,从而避免因释放过多所述第二储液池8内的压力而导致气量浪费(如所述第二储液池8内的压力释放过多,则还需要第三正压源56将所述第二储液池8内的压力升高,浪费所述供液装置100的气量)。
可选的,所述第二储液池8与所述第二用液组件7之间设置有第八切换件47。所述第八切换件47用于连通或切断所述第二储液池8与所述第二用液组件7。所述第八切换件47可以为截止阀。
可以理解的,在本发明实施例中,所述第一储液池2和所述第二储液池8的灌注动作和供液动作,是通过对其内部的液体消耗量、其内部的液位传感器 状态以及灌注时间的精确控制来实现的。基本原则是:A.每个功能时序对所述第一储液池2和所述第二储液池8内液体的消耗量(即所述第一储液池2和所述第二储液池8的供液量)应少于所述第一储液池2和所述第二储液池8灌满状态的总量,例如总量为140mL,消耗量为120mL。B.每个功能时序如果消耗了所述第一储液池2和所述第二储液池8内的液体,就必须在时序结束之前将所述第一储液池2和所述第二储液池8灌满。C.每个功能时序中,灌注的时机,对于所述第二储液池8是供液和灌注既可以分开进行,也可以同步进行,从而大幅减少仪器测量和维护的耗时,提高时序动作安排的灵活性;对于所述第一储液池2,依据所述定量泵31的所述液室311的容量设置同步进行的时长,通常在时序其他动作功能都完成后,在时序末尾进行所述第一储液池2和所述定量泵31灌注。
请参阅图1,本发明实施例还提供一种供液装置100,包括第二用液组件7、第二储液池8、注射器(如图1中序号9所指向部件)、第六切换件46以及试剂桶6。所述第二储液池8连接所述第二用液组件7,用于为所述第二用液组件7供液。所述注射器通过所述第六切换件46连接所述第二储液池8和所述试剂桶6。所述第六切换件46用于连通所述注射器与所述试剂桶6以使所述注射器抽取所述试剂桶6内液体,或连通所述注射器与所述第二储液池8以使所述注射器将所述注射器内液体注入所述第二储液池8。
在本实施例中,所述第二储液池8内液体足够时,所述第二储液池8为所述第二用液组件7供液。此时,所述注射器可通过所述第六切换件46连通所述试剂桶6,从而从所述试剂桶6内抽取液体。当所述第二储液池8内液体不足时,所述注射器通过所述第六切换件46连通所述第二储液池8,所述注射器将所述注射器内液体注入所述第二储液池8,用以补充所述第二储液池8内的液体,使得所述第二储液池8能够继续为所述第二用液组件7供液,因此所述第二储液池8能够实现连续供液,从而避免因供液不连续而导致所述样本分析仪的检测速度受限,所述样本分析仪的检测速度较快。所述注射器能够在对所述第二储液池8进行灌注的时候,保持所述第二储液池8内的压力,使得所述第二储液池8能够正常进行供液。由于所述第二储液池8无需切换内部的压力即可实现连续供液,因此可以减少所述样本分析仪的耗气量,降低所述样本 分析仪的能耗。所述注射器能够稳定地向所述第二储液池8内补入液体。
可以理解的,本实施例所述供液装置100可参考前述实施例所述供液装置100进行设计。
请参阅图1,本发明实施例还提供一种供液方法,所述供液方法可采用如上实施例所述供液装置100进行供液。所述供液方法可用于上述实施例所述的样本分析仪。
所述供液方法包括:
S01:在备用储液组件3内灌注备用液体;
S02:第一储液池2为第一用液组件1供液;以及
S03:当所述第一储液池2内液体不足时,所述备用储液组件3将所述备用液体供应给所述第一用液组件1。
在本实施例中,当所述第一储液池2内的液体足够时,所述第一储液池2内的液体为所述第一用液组件1供液,当所述第一储液池2内的液体不足时,所述备用储液组件3内的所述备用液体能够继续为所述第一用液组件1供液,因此所述供液方法能够实现连续供液,从而避免因供液不连续而导致应用所述供液方法的样本分析仪的检测速度受限,所述样本分析仪的检测速度较快。
作为一种可选实施例,所述“在备用储液组件3内灌注备用液体(步骤S01)”的过程包括:
连通所述第一储液池2与所述备用储液组件3,所述第一储液池2内液体进入所述备用储液组件3以形成所述备用液体。
在本实施例中,所述第一储液池2为所述第一用液组件1供液之前,先为所述备用储液组件3供液,使得所述备用储液组件3内有足够的液体,所述备用储液组件3能够在所述第一储液池2内液体不足时为所述第一用液组件1供液。
作为一种可选实施例,所述备用储液组件3包括定量泵31,所述定量泵31包括液室311和气室312,所述“在备用储液组件3内灌注备用液体(步骤S01)”的过程包括:
断开所述液室311与所述第一用液组件1并连通所述液室311与所述第一储液池2,所述气室312连通大气或第一负压源52,所述第一储液池2连通第 二正压源53,所述第二正压源53将所述第一储液池2内液体推入所述液室311。
其中,所述第一负压源52的流量小于所述第一正压源51的流量。
在本实施例中,由于所述气室312连通大气或所述第一负压源52、所述液室311通过第一储液池2连接至所述第二正压源53时,所述第二正压源53将所述定量泵31内部隔膜推向所述气室312的方向,以将所述第一储液池2内液体推入所述液室311,因此所述定量泵31主要正压驱动以进行灌注。
作为一种可选实施例,所述备用储液组件3包括定量泵31,所述定量泵31包括液室311和气室312,所述“所述备用储液组件3将所述备用液体供应给所述第一用液组件1(步骤S03)”的过程包括:
连通所述液室311与所述第一用液组件1,所述气室312连通第一正压源51,所述第一正压源51将所述液室311内的所述备用液体推入所述第一用液组件1。
在本实施例中,由于所述液室311连通所述第一用液组件1、所述气室312连通所述第一正压源51时,所述第一正压源51将所述定量泵31内部隔膜推向所述液室311的方向,以将所述液室311内的液体推入所述第一用液组件1,因此所述定量泵31主要由正压驱动以进行供液。
故而,所述定量泵31采用双向正压驱动方式,驱动难度小,有利于节约所述样本分析仪的能耗。
作为一种可选实施例,所述供液方法还包括:
S04:当所述第一储液池2内液体不足时,断开所述第一储液池2与所述第一用液组件1并连通所述第一储液池2与试剂桶6,所述第一储液池2连通至第二负压源54,使得所述试剂桶6内液体在压差作用下进入所述第一储液池2。
可以理解的,步骤S03和步骤S04可同时进行,从而大幅减少仪器测量和维护的耗时,提高时序动作安排的灵活性。
作为一种可选实施例,所述供液方法还包括:
S11:补液组件9自试剂桶6内抽取补充液体;
S12:第二储液池8为第二用液组件7供液;
S13:当所述第二储液池8内液体不足时,所述补液组件9将所述补充液 体灌注进所述第二储液池8,使得所述第二储液池8能够持续为所述第二用液组件7供液。
在本实施例中,所述第二储液池8内液体足够时,所述第二储液池8为所述第二用液组件7供液。当所述第二储液池8内液体不足时,所述补液组件9通过所述第六切换件46连通所述第二储液池8,所述补液组件9将所述补液组件9内液体注入所述第二储液池8,用以补充所述第二储液池8内的液体,使得所述第二储液池8能够继续为所述第二用液组件7供液,因此所述第二储液池8能够实现连续供液,从而避免因供液不连续而导致所述样本分析仪的检测速度受限,所述样本分析仪的检测速度较快。由于所述第二储液池8无需切换内部的压力即可实现连续供液,因此可以减少所述样本分析仪的耗气量,降低所述样本分析仪的能耗。
可以理解的,步骤S11-S13与步骤S01-S03可以分开进行,也可以同时进行,从而提高所述供液方法的时序动作安排的灵活性。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (24)

  1. 一种供液装置,其特征在于,包括第一用液组件及连接所述第一用液组件的第一储液池和备用储液组件,所述第一储液池用于为所述第一用液组件供液,所述备用储液组件在所述第一储液池内液体不足时为所述第一用液组件供液。
  2. 如权利要求1所述的供液装置,其特征在于,所述第一储液池连接所述备用储液组件,用于为所述备用储液组件供液。
  3. 如权利要求1或2所述的供液装置,其特征在于,所述第一储液池与所述第一用液组件之间设有第一切换件,所述备用储液组件连接在所述第一切换件和第一用液组件之间。
  4. 如权利要求1或2所述的供液装置,其特征在于,所述第一储液池与所述第一用液组件之间设有第一切换件和第二切换件,所述备用储液组件连接在所述第一切换件与所述第二切换件之间,所述第一切换件用于实现连通或切断,所述第二切换件用于实现连通或切断。
  5. 如权利要求1所述的供液装置,其特征在于,所述备用储液组件包括注射器和驱动注射器的驱动装置。
  6. 如权利要求1所述的供液装置,其特征在于,所述备用储液组件包括定量泵和第三切换件,所述定量泵的液室连接所述第一用液组件,所述定量泵的气室连接所述第三切换件,当所述气室通过所述第三切换件连通第一正压源时,所述第一正压源将所述液室内的液体推入所述第一用液组件。
  7. 如权利要求6所述的供液装置,其特征在于,所述供液装置还包括第四切换件,所述第四切换件连接所述第一储液池,所述液室连接所述第一储液池,当所述气室通过所述第三切换件连通大气或第一负压源时,所述第一储液池通过所述第四切换件连通第二正压源,所述第二正压源将所述第一储液池内液体推入所述液室。
  8. 如权利要求1所述的供液装置,其特征在于,所述供液装置还包括连接所述第一储液池的试剂桶,所述第一储液池连通至第二负压源时,所述试剂桶内液体在压差作用下进入所述第一储液池。
  9. 如权利要求8所述的供液装置,其特征在于,所述第一储液池与所述试剂桶之间设置有第五切换件,所述第五切换件用于连通或切断所述第一储液池与所述试剂桶。
  10. 如权利要求8所述的供液装置,其特征在于,所述供液装置还包括第二用液组件、第二储液池、补液组件以及第六切换件,所述第二储液池连接所述第二用液组件,用于为所述第二用液组件供液,所述补液组件通过所述第六切换件连接所述第二储液池和所述试剂桶;
    所述第六切换件用于连通所述补液组件与所述试剂桶以使所述补液组件抽取所述试剂桶内液体,或连通所述补液组件与所述第二储液池以使所述补液组件将所述补液组件内液体注入所述第二储液池。
  11. 如权利要求10所述的供液装置,其特征在于,所述补液组件包括注射器或定量泵。
  12. 如权利要求10所述的供液装置,其特征在于,所述供液装置还包括压力传感器和第七切换件,所述压力传感器连接所述第二储液池,用于检测所述第二储液池内的压力值,所述第二储液池连接所述第七切换件;
    当所述压力值大于预设值时,所述第七切换件连通所述第二储液池至大气或第三负压源。
  13. 如权利要求12所述的供液装置,其特征在于,所述第七切换件用于连接大气或第三负压源的接口处设有限流件,所述限流件用于释放部分所述第二储液池内的压力。
  14. 一种供液装置,其特征在于,包括第二用液组件、第二储液池、注射器、第六切换件以及试剂桶,所述第二储液池连接所述第二用液组件,用于为所述第二用液组件供液,所述注射器通过所述第六切换件连接所述第二储液池和所述试剂桶;
    所述第六切换件用于连通所述注射器与所述试剂桶以使所述注射器抽取所述试剂桶内液体,或连通所述注射器与所述第二储液池以使所述注射器将所述注射器内液体注入所述第二储液池。
  15. 一种样本分析仪,其特征在于,包括如权利要求1~14任一项所述的供液装置。
  16. 一种供液方法,其特征在于,包括:
    在备用储液组件内灌注备用液体;
    第一储液池为第一用液组件供液;以及
    当所述第一储液池内液体不足时,所述备用储液组件将所述备用液体供应给所述第一用液组件。
  17. 如权利要求16所述的供液方法,其特征在于,所述“在备用储液组件内灌注备用液体”的过程包括:
    连通所述第一储液池与所述备用储液组件,所述第一储液池内液体进入所述备用储液组件以形成所述备用液体。
  18. 如权利要求16所述的供液方法,其特征在于,所述备用储液组件包括定量泵,所述定量泵包括液室和气室,所述“在备用储液组件内灌注备用液体”的过程包括:
    断开所述液室与所述第一用液组件并连通所述液室与所述第一储液池,所述气室连通大气或第一负压源,所述第一储液池连通第二正压源,所述第二正压源将所述第一储液池内液体推入所述液室。
  19. 如权利要求16所述的供液方法,其特征在于,所述备用储液组件包括定量泵,所述定量泵包括液室和气室,所述“所述备用储液组件将所述备用液体供应给所述第一用液组件”的过程包括:
    连通所述液室与所述第一用液组件,所述气室连通第一正压源,所述第一正压源将所述液室内的所述备用液体推入所述第一用液组件。
  20. 如权利要求16所述的供液方法,其特征在于,所述供液方法还包括:
    当所述第一储液池内液体不足时,断开所述第一储液池与所述第一用液组件并连通所述第一储液池与试剂桶,所述第一储液池连通至第二负压源,使得所述试剂桶内液体在压差作用下进入所述第一储液池。
  21. 如权利要求16所述的供液方法,其特征在于,所述供液方法还包括:
    补液组件自试剂桶内抽取补充液体;
    第二储液池为第二用液组件供液;
    当所述第二储液池内液体不足时,所述补液组件将所述补充液体灌注进所述第二储液池,使得所述第二储液池能够持续为所述第二用液组件供液。
  22. 如权利要求16所述的供液方法,其特征在于,所述供液方法还包括:所述备用储液组件包括注射器和驱动注射器的驱动装置,所述“在备用储液组件内灌注备用液体”的过程包括,连通注射器与所述第一储液池,所述第一储液池连通第二正压源,所述驱动装置使得第一储液池的液体进入注射器。
  23. 如权利要求22所述供液方法,其特征在于,所述第一储液池连通第二正压源,所述驱动装置使得第一储液池的液体进入注射器前,断开所述注射器与第一用液组件。
  24. 如权利要求22所述供液方法,其特征在于,在“所述备用储液组件将备用液体供应给所述第一用液组件”的过程包括,断开注射器与第一储液池,连通注射器与第一用液组件,所述驱动装置将所述注射器内的所述备用液体推入所述第一用液组件。
PCT/CN2018/093482 2017-06-30 2018-06-28 供液装置、样本分析仪及供液方法 WO2019001547A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880039306.4A CN110741263B (zh) 2017-06-30 2018-06-28 供液装置、样本分析仪及供液方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/091345 2017-06-30
PCT/CN2017/091345 WO2019000459A1 (zh) 2017-06-30 2017-06-30 供液装置、样本分析仪及供液方法

Publications (1)

Publication Number Publication Date
WO2019001547A1 true WO2019001547A1 (zh) 2019-01-03

Family

ID=64740915

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/091345 WO2019000459A1 (zh) 2017-06-30 2017-06-30 供液装置、样本分析仪及供液方法
PCT/CN2018/093482 WO2019001547A1 (zh) 2017-06-30 2018-06-28 供液装置、样本分析仪及供液方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091345 WO2019000459A1 (zh) 2017-06-30 2017-06-30 供液装置、样本分析仪及供液方法

Country Status (2)

Country Link
CN (1) CN110741263B (zh)
WO (2) WO2019000459A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1344565A1 (en) * 2002-03-13 2003-09-17 The Automation Partnership (Cambridge) Limited Low volume droplet dispensing
CN103047539A (zh) * 2012-12-21 2013-04-17 北京七星华创电子股份有限公司 化学药液供给系统
CN104297108A (zh) * 2013-07-16 2015-01-21 成都深迈瑞医疗电子技术研究院有限公司 粒子分析仪及其液路系统
CN106814183A (zh) * 2016-12-27 2017-06-09 深圳开立生物医疗科技股份有限公司 一种鞘流检测系统及鞘流控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4194233B2 (ja) * 2000-08-18 2008-12-10 シスメックス株式会社 シース液供給装置および供給方法並びに試料分析装置
CN101290313B (zh) * 2007-04-16 2013-04-17 深圳迈瑞生物医疗电子股份有限公司 一种流式细胞装置及方法
JP5550364B2 (ja) * 2010-01-26 2014-07-16 シスメックス株式会社 試薬調製装置
CN102538891B (zh) * 2010-12-31 2016-04-20 深圳迈瑞生物医疗电子股份有限公司 一种集成流体定量装置及其标定方法和样本分析仪
CN102565063B (zh) * 2010-12-31 2017-11-28 深圳迈瑞生物医疗电子股份有限公司 试剂检测装置、系统及方法、血液分析装置
CN102704960B (zh) * 2012-06-14 2014-12-03 湖南星奥信息技术有限公司 矿用高效节能乳化供液机组
CN103575633B (zh) * 2012-08-10 2017-11-17 深圳迈瑞生物医疗电子股份有限公司 一种流式仪器及其液路系统
CN103630700A (zh) * 2012-08-22 2014-03-12 深圳中科强华科技有限公司 分析仪试样装置及其试剂测试方法
CN103811297B (zh) * 2012-11-15 2016-09-28 沈阳芯源微电子设备有限公司 一种化学液供给装置
CN104436815B (zh) * 2014-12-20 2016-08-17 应跃斌 气动恒压的液体连续送料装置及方法
CN106730088A (zh) * 2016-12-12 2017-05-31 广州奥柏仕医疗器械有限公司 一种用于血液净化的双腔配液平衡供液系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1344565A1 (en) * 2002-03-13 2003-09-17 The Automation Partnership (Cambridge) Limited Low volume droplet dispensing
CN103047539A (zh) * 2012-12-21 2013-04-17 北京七星华创电子股份有限公司 化学药液供给系统
CN104297108A (zh) * 2013-07-16 2015-01-21 成都深迈瑞医疗电子技术研究院有限公司 粒子分析仪及其液路系统
CN106814183A (zh) * 2016-12-27 2017-06-09 深圳开立生物医疗科技股份有限公司 一种鞘流检测系统及鞘流控制方法

Also Published As

Publication number Publication date
CN110741263A (zh) 2020-01-31
WO2019000459A1 (zh) 2019-01-03
CN110741263B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2019127562A1 (zh) 样本分析仪及其试剂供应方法
US7951597B2 (en) Pressurized fluid sample injector and method of injecting fluid samples
CN109212246B (zh) 供液装置、样本分析仪、建压装置及供液方法
CN109012444A (zh) 一种浓缩洗液自动配比系统及配比方法
CN215711746U (zh) 试剂加注装置
JP4564356B2 (ja) 加圧流体試料インジェクタおよび流体試料の射出方法
CN203178290U (zh) 一种全自动生化离子分析液路系统
WO2019001547A1 (zh) 供液装置、样本分析仪及供液方法
CN208334379U (zh) 样本分析仪
CN111587371A (zh) 鞘流阻抗法粒子分析仪及其测量方法
CN116037588A (zh) 一种分类池清洗系统、方法及分析仪
CN212757369U (zh) 一种用于仪器分析的注射泵去除气泡装置
CN114643241B (zh) 一种供液系统和供液方法
JPH11126598A (ja) 電解液注入装置
CN113759139A (zh) 样本分析仪及其供液方法
CN113884427A (zh) 鞘流阻抗粒子分析仪及其样本测量方法
CN219565551U (zh) 一种用于ivd行业试剂的自动定量加注装置
CN204793024U (zh) 自动补液装置
CN115676759A (zh) 试剂加注装置和方法
CN213845456U (zh) 一种泵吸式辅助负压定量抽真空注液装置
JP2694315B2 (ja) 自動電解質分析装置の簡易温度調節方法
CN110873291A (zh) 灌注系统及样本分析仪
CN219348889U (zh) 一种全自动精密加样及清洗装置
CN212380389U (zh) 自动快速进样器
CN110873292A (zh) 稀释液灌注系统以及样本分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825181

Country of ref document: EP

Kind code of ref document: A1