WO2019001500A1 - 冰箱的制冷控制方法 - Google Patents

冰箱的制冷控制方法 Download PDF

Info

Publication number
WO2019001500A1
WO2019001500A1 PCT/CN2018/093280 CN2018093280W WO2019001500A1 WO 2019001500 A1 WO2019001500 A1 WO 2019001500A1 CN 2018093280 W CN2018093280 W CN 2018093280W WO 2019001500 A1 WO2019001500 A1 WO 2019001500A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
freezing
refrigerating
space
air outlet
Prior art date
Application number
PCT/CN2018/093280
Other languages
English (en)
French (fr)
Inventor
朱小兵
李春阳
陶海波
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Priority to US16/626,513 priority Critical patent/US11236937B2/en
Priority to JP2019565895A priority patent/JP6963035B2/ja
Priority to KR1020197031350A priority patent/KR102255750B1/ko
Priority to EP18823604.6A priority patent/EP3647690A4/en
Publication of WO2019001500A1 publication Critical patent/WO2019001500A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the temperature of the two freezer spaces is controlled by a single sensor, which results in poor temperature uniformity and stability, and there may be some The temperature in the freezing space is too high, or the temperature in a freezing space is too low, which is not conducive to energy saving and food preservation.
  • a further object of the present invention is to reduce the energy consumption of the refrigerator and improve the storage effect of the food in the refrigerator.
  • the freezing space includes a first freezing space and a second freezing space
  • the freezing parameter includes a first freezing parameter of the first freezing space and a second freezing parameter of the second freezing space
  • the freezing air outlet of the branch air blowing device A first freezing vent that is in controlled communication with the first freezing space and a second freezing vent that is in controlled communication with the second freezing space
  • the step of setting the first freezing parameter includes determining the actual of the first freezing space Whether the temperature is greater than a preset first freezing start temperature; and if so, setting the first freezing parameter to a second parameter, if not, setting the first freezing parameter to the first parameter
  • setting the second freezing parameter comprises: determining the second Whether the actual temperature of the freezing space is greater than a preset second freezing start temperature; and if so, setting the second freezing parameter to the second parameter, and if not, setting the second freezing parameter to the first parameter.
  • the compressor and the wind mechanism are stopped, the refrigerating damper is closed, the refrigerating air outlet of the shunting air supply device, and the first freezing out Both the tuyere and the second freezing vent are closed.
  • the compressor when the refrigerating parameter and the first freezing parameter are the first parameter, and the second freezing parameter is the second parameter, the compressor is operated at the preset second compressor speed, and the fan is preset to the second fan speed.
  • the refrigerating damper is closed, the refrigerating air outlet of the branch air supply device and the first freezing air outlet are closed, and the second freezing air outlet is opened.
  • the refrigerating parameter and the second freezing parameter are the first parameter
  • the first freezing parameter is the second parameter
  • the compressor is operated at the second compressor speed
  • the fan is operated at the second fan speed
  • the refrigerating damper is closed.
  • the refrigerating air outlet of the shunt air supply device and the second freezing air outlet are closed, and the first freezing air outlet is opened.
  • the compressor is operated at a third compressor speed greater than or equal to the second compressor speed, and the fan is greater than or equal to The third fan speed of the second fan speed is operated, the refrigerating damper is closed, the refrigerating air outlet of the branch air supply device is closed, and the first freezing air outlet and the second freezing air outlet are opened.
  • the compressor is operated at a first compressor speed less than or equal to the second compressor speed, and the fan is less than or equal to The first fan speed of the second fan speed is operated, the refrigerating damper is opened, the refrigerating air outlet of the branch air supply device is opened, and the first freezing air outlet and the second freezing air outlet are closed.
  • the refrigerating parameter and the second freezing parameter are the first parameter
  • the first freezing parameter is the third parameter
  • the compressor is operated at the fourth compressor speed
  • the fan is operated at the fourth fan speed
  • the refrigerating damper is closed.
  • the refrigerating air outlet of the shunt air supply device and the second freezing air outlet are closed, and the first freezing air outlet is opened.
  • the compressor when the refrigerating parameter and the second freezing parameter are the third parameter, when the first freezing parameter is the first parameter, the compressor is operated at a fifth compressor speed greater than or equal to the fourth compressor speed, and the fan is greater than or equal to The fifth fan speed of the fourth fan speed works, the refrigerating damper is opened, the refrigerating air outlet of the shunt air supply device and the second freezing air outlet are opened, and the first freezing air outlet is closed.
  • the refrigerating parameter and the first freezing parameter are the third parameter
  • the second freezing parameter is the first parameter
  • the compressor is operated at the fifth compressor speed
  • the fan is operated at the fifth fan speed
  • the refrigerating damper is opened.
  • the refrigerating air outlet of the branch air supply device and the first freezing air outlet are opened, and the second freezing air outlet is closed.
  • the compressor is operated at a sixth compressor speed greater than or equal to the fifth compressor speed, and the fan is greater than or equal to The sixth fan speed of the fifth fan speed is operated, the refrigerating damper is closed, the refrigerating air outlet of the branch air supply device is closed, and the first freezing air outlet and the second freezing air outlet are opened.
  • the compressor is operated at a seventh compressor speed greater than or equal to the sixth compressor speed, and the fan is greater than or equal to the sixth fan.
  • the seventh fan speed of the rotation speed works, the refrigerating damper is opened, and the refrigerating air outlet of the branch air supply device, the first freezing air outlet and the second freezing air outlet are all opened.
  • a computer storage medium in which a computer program is stored, and the device in which the computer program is run causes the device in which the computer storage medium is located to perform the refrigeration control method of any of the above-described refrigerators.
  • the refrigeration control method and the computer storage medium of the refrigerator of the present invention by detecting the actual temperature of the freezing space, setting the freezing parameter of the freezing space according to the actual temperature of the freezing space; when the actual temperature of the at least one freezing space is greater than the preset freezing starting temperature , detecting the actual temperature of the refrigerating space, setting the refrigerating parameter of the refrigerating space according to the actual temperature of the refrigerating space, and the actual temperature in the refrigerating space is greater than the preset refrigerating starting temperature, and the difference between the actual temperature of the at least one freezing space and the freezing booting temperature
  • the refrigerating parameter and the freezing parameter are reset; and the compressor, the fan, the refrigerating damper and the shunting air supply device are operated according to the preset state corresponding to the set according to the set of the refrigerating parameter and the freezing parameter, It can realize single cooling of a single storage space or simultaneous cooling of multiple storage spaces, comprehensively consider the actual temperature conditions
  • the refrigeration control method of the refrigerator of the present invention and the computer storage medium wherein the freezing space of the refrigerator includes a first freezing space and a second freezing space, and the freezing parameter includes the first freezing parameter of the first freezing space and the second freezing space a second freezing parameter, and the freezing air outlet of the split air supply device includes a first freezing air outlet that is in controlled communication with the first freezing space and a second freezing air outlet that is in controlled communication with the second freezing space, at least When the actual temperature of a freezing space is greater than the preset freezing temperature, if the actual temperature of the refrigerating space is greater than the preset refrigerating temperature, it is necessary to determine the eagerness of the freezing space to be refrigerated to reset the refrigerating parameters and freezing parameters, and to freeze When the difference between the actual temperature of the space and the freezing start temperature is greater than the first preset threshold and the difference between the actual temperature of the refrigerating space and the refrigerating start temperature is greater than the second preset threshold, further setting the refrigerating parameters may determine different storage spaces
  • FIG. 1 is a schematic structural view of a refrigerator to which a refrigeration control method of a refrigerator is applied, according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a split air supply device in the refrigerator of FIG. 1.
  • FIG. 3 is a schematic diagram of a refrigeration control method of a refrigerator in accordance with one embodiment of the present invention.
  • the first embodiment of the present invention provides a refrigeration control method for a refrigerator, which can realize single cooling of a single storage space or simultaneous cooling of a plurality of storage spaces, comprehensively considering the actual temperature conditions of the refrigerating space and the freezing space, and performing refrigeration more reasonably.
  • the cooling requirements of each storage space increase the temperature stability of the storage space of the refrigerator.
  • 1 is a schematic structural diagram of a refrigerator 100 to which a refrigeration control method for a refrigerator is applied according to an embodiment of the present invention.
  • the refrigerator 100 generally includes a cabinet 10, a door body, a refrigeration system, and a split air supply device 20 And a refrigerated damper.
  • the space 13 that is, the refrigerator 100 of the present embodiment, is provided with a refrigerating space 11, a first freezing space 12, and a second freezing space 13 in this order from top to bottom.
  • the refrigerator 100 may be provided with only one refrigerated space and one freezer space.
  • the door body 20 is disposed on the front side of the cabinet 10 for the user to open or close the storage space of the refrigerator 100.
  • the storage space of the refrigerator 100 of the present embodiment includes: the refrigerating space 11, the first freezing space 12, and the second The freezing space 13; the door body can be arranged corresponding to the storage space, that is, each storage space corresponds to one or more door bodies.
  • the function of the storage space and the number of doors and the storage space can be selected by the actual situation.
  • the door opening method of the storage space can also be opened by a drawer to realize a drawer type storage space.
  • the storage space of the refrigerator 100 of the present embodiment includes a refrigerating space 11, a first freezing space 12, and a second freezing space 13 from top to bottom, and the cooling system provides different cooling amounts to the refrigerating space 11 and the freezing space, so that the refrigerating space is made 11 and the temperature in the freezing space is also different.
  • the temperature in the refrigerated space 11 is generally between 2 ° C and 10 ° C, preferably between 3 ° C and 8 ° C.
  • the temperature range in the freezer space is generally between -22 ° C and -14 ° C.
  • the optimal storage temperatures for different types of foods are not the same, and the storage space suitable for storage is also different. For example, fruit and vegetable foods are suitable for storage in the refrigerated space 11, and meat foods are suitable for storage in the freezer space.
  • the split air supply device 20 may generally include a housing 21 and an adjusting member (not shown in the figure due to being disposed inside the housing 21). Shown in it).
  • the housing 21 may have at least one air inlet 221 and a plurality of air outlets 22 to allow airflow into the housing 21 via the at least one air inlet 221 and out of the housing 21 from the plurality of air outlets 22.
  • the adjustment member can be configured to controlfully occlude, partially shield, or fully expose each of the air outlets 22 to adjust the respective air outlet areas of the plurality of air outlets 22. For example, the adjustment member can completely, partially or completely expose each of the air outlets 22 at different locations.
  • the adjusting member of the shunting air supply device 20 in the embodiment of the present invention can controllably distribute the cold air flowing in from the air inlet 221 to the plurality of air outlets 22, and can control the air outlet ducts that communicate with each air outlet 22 Open and close and / or adjust the air volume in each air duct to meet the cooling demand of different storage spaces.
  • the shunt air blowing device 20 of the present embodiment may have three air outlets, and the three air outlets may be sequentially spaced apart along the circumferential direction of the casing 21.
  • the three air outlets 22 include a refrigerated air outlet 222 having controlled communication with the refrigerating space 11, a first refrigerating air outlet 223 in controlled communication with the first freezing space 12, and a controlled communication with the second freezing space 13
  • the second freezing air outlet 224 is to controllably feed the cooling amount provided by the refrigeration system into the refrigerating space 11 and/or the first freezing space 12 and/or the second freezing space 13.
  • the shunting air supply device 20 may have only two air outlets, which are in controlled communication with the refrigerating space and the freezing space, respectively.
  • the fan 23 in the branch air supply device 20 of the present embodiment is configured to cause airflow to flow from the at least one air inlet 221 into the casing 21 and out of the casing 21 via one or more of the plurality of air outlets 22 to improve the air supply. s efficiency.
  • the fan 23 can also independently introduce air into the split air supply device 20 in the embodiment of the present invention.
  • the fan 23 may be a centrifugal impeller disposed in the housing 21; in some alternative embodiments, the fan 23 may also be an axial fan, an axial fan or a centrifugal fan, disposed in the At the air inlet 221 of the casing 21.
  • the fan 23 is a centrifugal impeller and is located in the casing 21, so that the shunt air blowing device 20 can be compact and small in size.
  • the refrigerating damper is configured to adjust the cooling amount delivered to the refrigerating space 11 in conjunction with the refrigerating air outlet 222, and the refrigerating damper (not shown) is disposed at the bottom of the refrigerating space 11, in order to avoid the temperature of the refrigerating space 11 due to air leakage when the refrigerating air outlet 222 is closed. In the case of too low, the sealing can be further ensured by the refrigerating damper, and the temperature control of the refrigerating space 11 is more precise.
  • FIG. 3 is a schematic diagram of a refrigeration control method of a refrigerator in accordance with one embodiment of the present invention.
  • the refrigeration control method of the refrigerator can be applied to the refrigerator 100 of any of the above embodiments.
  • the food-based refrigerator temperature control method can perform the following steps:
  • Step S302 detecting an actual temperature of the freezing space, and setting a freezing parameter of the freezing space according to an actual temperature of the freezing space;
  • Step S304 detecting the actual temperature of the refrigerating space 11 when the actual temperature of the at least one freezing space is greater than the preset freezing starting temperature, setting the refrigerating parameter of the refrigerating space 11 according to the actual temperature of the refrigerating space 11, and actually in the refrigerating space 11
  • the refrigeration parameter and the freezing parameter are reset when the temperature is greater than the preset refrigerating temperature and the difference between the actual temperature of the at least one freezing space and the freezing and starting temperature is greater than the first preset threshold;
  • step S306 the compressor, the fan 23, the refrigerating damper, and the split air supply device 20 are operated according to a preset state corresponding to the set according to the set of the refrigerating parameter and the freezing parameter.
  • the actual temperatures of the refrigerating space 11 and the freezing space can be detected by temperature sensors provided in the refrigerating space 11 and the freezing space.
  • the type, size and installation position of the temperature sensor can be set according to actual needs and conditions.
  • the refrigerator 100 of the present embodiment is provided with a refrigerating space 11, a first freezing space 12, and a second freezing space 13, and temperature sensors may be respectively disposed in the three storage spaces to detect the actual temperatures of the three storage spaces.
  • the refrigerating parameter and the freezing parameter in step S302 and step S304 each include: a first parameter, a second parameter, and a third parameter.
  • the first parameter, the second parameter, and the third parameter are all different.
  • the first parameter may be 0, the second parameter may be 1, and the third parameter may be 2.
  • Three parameters may indicate whether each storage space requires refrigeration and the degree of urgency required for refrigeration.
  • the first parameter 0 indicates that refrigeration is not required
  • the second parameter 1 and the third parameter indicate that refrigeration is required
  • the third parameter 2 indicates the ratio.
  • the second parameter 1 is more urgently needed for refrigeration.
  • the specific values of the above three parameters are merely examples, and are not intended to limit the present invention. In other embodiments, the three parameters may be other different three values.
  • the freezing parameter may include the first freezing parameter of the first freezing space 12 and the second freezing of the second freezing space 13 parameter. That is, the set of parameters in step S306 is a set of three values. In other embodiments, when the refrigerator 100 is provided with only one refrigerated space and one freezer space, the set of parameters may be a set of two values.
  • the setting of the freezing parameters of the freezing space in step S302 includes setting the first freezing parameter of the first freezing space 12 and the second freezing parameter of the second freezing space 13.
  • the step of setting the first freezing parameter may include: determining whether the actual temperature of the first freezing space 12 is greater than a preset first freezing booting temperature; and if so, setting the first freezing parameter to the second parameter, and if not, setting The first freezing parameter is a first parameter;
  • the step of setting the second freezing parameter may include: determining whether the actual temperature of the second freezing space 13 is greater than a preset second freezing starting temperature; and if so, setting the second freezing parameter to the second Parameter, if not, set the second freezing parameter to the first parameter.
  • the method further includes: determining whether a difference between the actual temperature of the refrigerating space 11 and the refrigerating start temperature is greater than a second preset threshold; and if so, setting the refrigerating parameter to a third parameter, and if not, maintaining the refrigerating The parameter is the same as the first parameter. It can be further determined whether the actual temperature of the refrigerated space is too high and whether there is an urgent need for refrigeration.
  • the refrigerator 100 of the embodiment is provided with two freezing spaces of the first freezing space 12 and the second freezing space 13, as long as the actual temperature of one of the freezing spaces is greater than a preset freezing start temperature, that is, the first freezing space 12 or the second When the freezing space 13 needs to be cooled, it is necessary to judge whether or not the refrigerating space 11 has a cooling demand. If the refrigerating space 11 has the same cooling demand, only the actual temperature of the first freezing space 12 or the second freezing space 13 (the difference from the preset freezing start temperature is greater than the first preset threshold) is too high, and the refrigerating space is considered for cooling. If the actual temperature of the first freezing space 12 or the second freezing space 13 is only higher than the freezing start temperature and is not too high, the refrigerating space 11 is preferentially cooled.
  • the actual temperature of the at least one freezing space is greater than the preset freezing start temperature, that is, when the actual temperature of the first freezing space 12 is greater than the first freezing start temperature or the actual temperature of the second freezing space 13 is greater than the second freezing start temperature
  • the actual temperature of the refrigerating space 11 can be detected, and the refrigerating parameters of the refrigerating space 11 are set according to the actual temperature of the refrigerating space 11.
  • the set of different refrigeration parameters and freezing parameters in step S306, the preset states of the corresponding compressor, fan 23, refrigerating damper and split air supply device 20 are also different.
  • a state information table may be pre-configured, and the preset state corresponding to different parameter sets is pre-stored in the state information table, and after determining the parameter set, the corresponding preset state may be matched.
  • the preset state includes: the rotation speed of the compressor and the fan 23; the opening and closing state of the refrigerating damper; the opening and closing state of the refrigerating air outlet 222, the first freezing air outlet 223, and the second freezing air outlet 224 of the branch air blowing device 20. .
  • the corresponding preset state is: the compressor and the fan 23 are shut down, the refrigerating damper is closed, and the refrigerating air outlet 222 of the shunting air supply device 20 is closed.
  • the first freezing air outlet 223 and the second freezing air outlet 224 are both closed.
  • the corresponding preset state is: the compressor operates at the fourth compressor speed, and the fan 23 operates at the fourth fan speed, and refrigerates
  • the damper is closed, the refrigerating air outlet 222 and the second freezing air outlet 224 of the branch air blowing device 20 are closed, and the first freezing air outlet 223 is opened.
  • the corresponding preset state is: the compressor operates at the fifth compressor speed, the fan operates at the fifth fan speed, and the refrigerating damper When it is opened, the refrigerating air outlet 222 of the branch air blowing device 20 and the first freezing air outlet 223 are opened, and the second freezing air outlet 224 is closed.
  • Step S402 detecting the actual temperatures TR, TF1 and TF2 of the refrigerating space 11, the first freezing space 12 and the second freezing space 13;
  • Step S414 setting the first freezing parameter F1 (Stste) as the second parameter;
  • Step S416 it is determined whether the actual temperature TR of the refrigerating space 11 is greater than the preset refrigerating boot temperature tr, and if so, step S420 is performed, and if not, step S418 is performed;
  • Step S434 setting the second freezing parameter F2 (State) as the first parameter and executing step S412;
  • Step S4308 it is determined whether the difference between the actual temperature TR of the refrigerating space 11 and the refrigerating start temperature tr is greater than a second predetermined threshold B, and if so, step S440 is performed, and if not, step S412 is performed;
  • Step S440 setting the refrigerating parameter R (State) to the third parameter and performing step S412;
  • Step S442 setting a second freezing parameter F2 (State) as a second parameter
  • Step S444 it is determined whether the actual temperature TR of the refrigerating space 11 is greater than the preset refrigerating boot temperature tr, and if so, step S420 is performed, and if not, step S446 is performed;
  • step S446 the refrigerating parameter R (State) is set as the first parameter and step S412 is performed.
  • the refrigerating parameter R (State), the first freezing parameter F1 (Stste), and the second freezing parameter F2 (State) in the above steps all include: a first parameter, a second parameter, and a third parameter.
  • the first parameter, the second parameter, and the third parameter are all different.
  • the first parameter may be 0, the second parameter may be 1, and the third parameter may be 2.
  • Three parameters may indicate whether each storage space requires refrigeration and the degree of urgency required for refrigeration.
  • the first parameter 0 indicates that refrigeration is not required
  • the second parameter 1 and the third parameter indicate that refrigeration is required
  • the third parameter 2 indicates the ratio.
  • the second parameter 1 is more urgently needed for refrigeration.
  • the specific values of the above three parameters are merely examples, and are not intended to limit the present invention. In other embodiments, the three parameters may be other different three values.
  • the preset state is also different. Specifically, a state information table may be pre-configured, and the preset state corresponding to different parameter sets is pre-stored in the state information table, and after determining the parameter set, the corresponding preset state may be matched.
  • the preset state includes: the rotation speed of the compressor and the fan 23; the opening and closing state of the refrigerating damper; the opening and closing state of the refrigerating air outlet 222, the first freezing air outlet 223, and the second freezing air outlet 224 of the branch air blowing device 20. .
  • the preset state corresponding to the set (0, 0, 0) is: the compressor
  • the refrigerating damper is closed, and the refrigerating air outlet 222, the first refrigerating air outlet 223, and the second refrigerating air outlet 224 of the branch air blowing device 20 are both closed.
  • the refrigerating parameter R (State) and the first freezing parameter F1 (Stste) are the first parameter 0, and the second freezing parameter F2 (State) is the second parameter 1, the preset state corresponding to the set (0, 0, 1)
  • the compressor is operated at a preset second compressor speed
  • the fan 23 is operated at a preset second fan speed
  • the refrigerating damper is closed
  • the refrigerating air outlet 222 and the first refrigerating air outlet 223 of the shunt air supply device 20 are closed.
  • the second freezing air outlet 224 is opened.
  • the fan 23, the refrigerating damper, and the split air supply device 20 After determining the corresponding preset states of the compressor, the fan 23, the refrigerating damper, and the split air supply device 20 according to the set of the refrigerating parameter R (State), the first freezing parameter F1 (Stste), and the second freezing parameter F2 (State)
  • the compressor, the fan 23, the refrigerating damper, and the split air supply unit 20 can be operated to determine the preset state.
  • the specific values of compressor speed and fan speed can be set according to actual needs and conditions. And in most cases, the compressor speed and fan speed are proportional to the ambient temperature of the refrigerator 100, that is, the higher the ambient temperature, the greater the compressor speed and fan speed. For example, when the ambient temperature is less than 16 ° C, the first compressor speed is 1200, the second compressor speed is 1380, the third compressor speed is 1800, the fourth compressor speed is 2160, and the fifth compressor speed is 2280.
  • the seventh compressor The rotational speed is 3420; when the ambient temperature is greater than or equal to 35 ° C and less than 43 ° C, the first compressor speed is 1800, the second compressor speed is 1980, the third compressor speed is 2580, and the fourth compressor speed is 3420, the first Five compressor speed is 354 0, the sixth compressor speed is 3660, the seventh compressor speed is 3840; when the ambient temperature is greater than or equal to 43 °C, the first compressor speed is 2160, the second compressor speed is 3000, and the third compressor speed is 3420.
  • the fourth compressor speed is 3840, and the fifth compressor speed, the sixth compressor speed, and the seventh compressor speed are both 4200.
  • the fan speed is 1790, the sixth fan speed is 1860, the seventh fan speed is 1930; when the ambient temperature is greater than or equal to 28 °C and less than 35 °C, the first fan speed is 1440, the second fan speed is 1510, and the third fan speed is 1510.
  • the fourth fan speed is 1790
  • the fifth fan speed is 1860
  • the sixth fan speed is 1930
  • the seventh fan speed is 2000
  • the ambient temperature is greater than or equal to 35 °C and less than 43 °C
  • the first fan speed is 1510.
  • the second fan speed is 1580, the third fan speed is 1720, the fourth fan speed is 1860, the fifth fan speed is 1930, the sixth fan speed is 2000, the seventh fan speed is 2070; the ambient temperature is greater than or equal to 4
  • the first fan speed is 1650
  • the second fan speed is 1790
  • the third fan speed is 1860
  • the fourth fan speed is 1930
  • the fifth fan speed is 2000
  • the sixth fan speed is 2070
  • the seventh fan speed is 2070.
  • the specific values of the above compressor speeds and fan speeds are merely examples, and are not intended to limit the present invention.
  • the first preset threshold A and the second preset threshold B in the above steps are all values greater than zero.
  • Space cooling if the actual temperature of the first freezing space 12 or the second freezing space 13 is only higher than the freezing start temperature, and is not too high, the refrigerating space 11 is preferentially cooled.
  • the refrigeration parameter may be directly set to The first parameter, the default refrigerated space does not require refrigeration, can reduce the opening frequency of compressors and other equipment, and effectively reduce energy consumption.
  • step S412 the compressor, the fan 23, the refrigerating damper, and the split air supply device 20 can operate for a preset period according to a preset state corresponding to the set to meet the cooling demand of each storage space.
  • the process of setting the duration the process of detecting the temperature and setting the parameters is no longer performed, and it can be determined that the actual temperature of the storage space is slightly lowered to determine that it does not require refrigeration, thereby causing the working state of the compressor and the like to frequently change.
  • the above steps can be re-executed for a new cooling control.
  • the refrigeration control method of the refrigerator of the embodiment can realize single cooling of a single storage space or simultaneous cooling of a plurality of storage spaces, and comprehensively consider the actual temperature conditions of the refrigerating space 11, the first freezing space 12, and the second freezing space 13,
  • the storage space that is more urgently needed for cooling is determined, so that the refrigeration can be performed more reasonably, the cooling demand of each storage space can be met, and the temperature stability of the storage space of the refrigerator can be improved.
  • the compressor, the fan 23, the refrigerating damper, and the branch air supply device 20 are arranged in accordance with the set according to the refrigerating parameter, the first freezing parameter, and the second freezing parameter.
  • Set the state work to avoid the temperature uniformity and stability of each storage space is poor, and the temperature of a certain storage space is too high or too low, which can effectively reduce energy consumption and improve the storage effect of food in each storage space. .
  • FIG. 5 is a schematic diagram of a computer storage medium 200 in accordance with one embodiment of the present invention.
  • the computer storage medium 200 stores a computer program 201, and the computer program 201 causes the computer to store when it is running.
  • the apparatus in which the medium 200 is located performs the refrigeration control method of the refrigerator of any of the above embodiments.
  • the device in which the computer storage medium 200 is located is the refrigerator 100.
  • the refrigerator 100 can perform the refrigeration control method of the refrigerator according to any of the above embodiments.
  • the computer storage medium 200 of the present embodiment may be an electronic memory such as a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), an EPROM, a hard disk, or a ROM.
  • Computer storage medium 200 has a storage space for computer program 201 for performing any of the method steps described above. These computer programs 201 can be read from or written to one or more computer program products. These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱的制冷控制方法,包括:测冷冻室(12,13)实际温度,设冷冻参数;至少一个冷冻室(12,13)实际温度大于冷冻开机温度时,测冷藏室(11)实际温度,设冷藏参数,在冷藏室(11)实际温度大于冷藏开机温度且至少一个冷冻室(12,13)实际温度与冷冻开机温度的差值大于预设值时,重设冷藏参数和冷冻参数;根据冷藏参数、冷冻参数使压缩机、风机(23)、冷藏风门及分路送风装置(20)按对应的预设状态工作。

Description

冰箱的制冷控制方法
本申请要求了申请日为2017年06月29日,申请号为201710516009.1,发明名称为“冰箱的制冷控制方法与计算机存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及制冷控制领域,特别是涉及一种冰箱的制冷控制方法与计算机存储介质。
背景技术
随着社会日益发展和人们生活水平不断提高,人们的生活节奏也越来越快,因而越来越愿意买很多食物放置在冰箱中,冰箱已经成为了人们日常生活中不可缺少的家用电器之一。
但是目前设置有冷藏空间和冷冻空间的单系统风冷冰箱存在以下缺点:第一,无法实现单独给冷藏空间制冷,在冷藏空间制冷的同时必然会给冷冻空间送风,冷藏空间的热风回到蒸发器时,使蒸发器的温度回升的较高,吹出来的风的温度就比较高,进而使得冷冻空间的温度上升,不利于冷冻空间的温度稳定,影响食物的存储效果;第二,无法实现冷冻空间的温度分区控制,对于有两个冷冻空间的冰箱,两个冷冻空间的温度是由一个传感器来控制的,这就会导致温度均匀性和稳定性比较差,有可能会出现某个冷冻空间的温度过高,或某个冷冻空间的温度过低,不利于节能和保存食物。
发明内容
本发明的一个目的是提高冰箱储物空间的温度稳定性。
本发明一个进一步的目的是降低冰箱能耗,提高冰箱内食物的存储效果。
特别地,本发明提供了一种冰箱的制冷控制方法,其中冰箱包括:箱体,其内限定有冷藏空间和设置于冷藏空间下方的至少一个冷冻空间;门体,设置于箱体的前侧,以供用户打开或关闭冷藏空间和冷冻空间;制冷系统,包括压缩机,且配置成向冷藏空间和冷冻空间提供冷量;分路送风装置,包括风机,且具有与冷藏空间受控地连通的冷藏出风口和与冷冻空间受控地连通的冷冻出风口,以将制冷系统提供的冷量受控地送入冷藏空间和/或冷冻空间;以及冷藏风门,配置成配合冷藏出风口调节向冷藏空间输送的冷量,并且制冷控制方法包括:检测冷冻空间的实际温度,根据冷冻空间的实际温度设置冷冻空间的冷冻参数;在至少一个冷冻空间的实际温度大于预设的冷冻开机温度时,检测冷藏空间的实际温度,根据冷藏空间的实际温度设置冷藏空间的冷藏参数,并在冷藏空间的实际温度大于预设的冷藏开机温度,且至少一个冷冻空间的实际温度与冷冻开机温度的差值大于第一预设阈值时,重设冷藏参数 和冷冻参数,其中冷藏参数和冷冻参数均包括:第一参数、第二参数和第三参数;以及根据冷藏参数、冷冻参数的集合使压缩机、风机、冷藏风门以及分路送风装置按照与集合对应的预设状态工作。
可选地,冷冻空间包括第一冷冻空间和第二冷冻空间,冷冻参数包括第一冷冻空间的第一冷冻参数和第二冷冻空间的第二冷冻参数,且分路送风装置的冷冻出风口包括与第一冷冻空间受控地连通的第一冷冻出风口以及与第二冷冻空间受控地连通的第二冷冻出风口,并且设置第一冷冻参数的步骤包括:判断第一冷冻空间的实际温度是否大于预设的第一冷冻开机温度;以及若是,设置第一冷冻参数为第二参数,若否,设置第一冷冻参数为第一参数;设置第二冷冻参数的步骤包括:判断第二冷冻空间的实际温度是否大于预设的第二冷冻开机温度;以及若是,设置第二冷冻参数为第二参数,若否,设置第二冷冻参数为第一参数。
可选地,在第一冷冻空间的实际温度大于第一冷冻开机温度或第二冷冻空间的实际温度大于第二冷冻开机温度时,设置冷藏空间的冷藏参数的步骤包括:判断冷藏空间的实际温度是否大于预设的冷藏开机温度;以及若是,设置冷藏参数为第二参数,若否,设置冷藏参数为第一参数。
可选地,在第一冷冻空间的实际温度小于等于第一冷冻开机温度且第二冷冻空间的实际温度小于等于第二冷冻开机温度时,设置冷藏参数为第一参数。
可选地,重设冷藏参数和冷冻参数的步骤包括:判断第一冷冻空间的实际温度与第一冷冻开机温度的差值是否大于第一预设阈值;以及若是,设置冷藏参数为第一参数,设置第一冷冻参数为第三参数,若否,设置第一冷冻参数为第一参数;判断第二冷冻空间的实际温度与第二冷冻开机温度的差值是否大于第一预设阈值;以及若是,设置冷藏参数为第一参数,设置第二冷冻参数为第三参数,若否,设置第二冷冻参数为第一参数。
可选地,在重设冷藏参数的步骤之后还包括:判断冷藏空间的实际温度与冷藏开机温度的差值是否大于第二预设阈值;以及若是,设置冷藏参数为第三参数,若否,保持冷藏参数为第一参数不变。
可选地,在冷藏参数、第一冷冻参数和第二冷冻参数均为第一参数时,使压缩机和风机关停,冷藏风门关闭,分路送风装置的冷藏出风口、第一冷冻出风口和第二冷冻出风口均关闭。
可选地,在冷藏参数和第一冷冻参数为第一参数,第二冷冻参数为第二参数时,使压缩机以预设的第二压缩机转速工作,风机以预设的第二风机转速工作,冷藏风门关闭,分路送风装置的冷藏出风口和第一冷冻出风口关闭,第二冷冻出风口开启。
可选地,在冷藏参数和第二冷冻参数为第一参数,第一冷冻参数为第二参数时,使压缩机以第二压缩机转速工作,风机以第二风机转速工作,冷藏风门关闭,分路送风装置的冷藏出风口和第二冷冻出风口关闭,第一冷冻出风口开启。
可选地,在冷藏参数为第一参数,第一冷冻参数和第二冷冻参数为第二参数时,使压缩机以大于等于第二压缩机转速的第三压缩机转速工作,风机以大于等于第二风机转速的第三风机转速工作,冷藏风门关闭,分路送风装置的冷藏出风口关闭,第一冷冻出风口和第二冷冻出风口开启。
可选地,在冷藏参数为第二参数,第一冷冻参数和第二冷冻参数为第一参数时,使压缩机以小于等于第二压缩机转速的第一压缩机转速工作,风机以小于等于第二风机转速的第一风机转速工作,冷藏风门开启,分路送风装置的冷藏出风口开启,第一冷冻出风口和第二冷冻出风口关闭。
可选地,在冷藏参数和第一冷冻参数为第一参数,第二冷冻参数为第三参数时,使压缩机以大于等于第三压缩机转速的第四压缩机转速工作,风机以大于等于第三风机转速的第四风机转速工作,冷藏风门关闭,分路送风装置的冷藏出风口和第一冷冻出风口关闭,第二冷冻出风口开启。
可选地,在冷藏参数和第二冷冻参数为第一参数,第一冷冻参数为第三参数时,使压缩机以第四压缩机转速工作,风机以第四风机转速工作,冷藏风门关闭,分路送风装置的冷藏出风口和第二冷冻出风口关闭,第一冷冻出风口开启。
可选地,在冷藏参数和第二冷冻参数为第三参数,第一冷冻参数为第一参数时,使压缩机以大于等于第四压缩机转速的第五压缩机转速工作,风机以大于等于第四风机转速的第五风机转速工作,冷藏风门开启,分路送风装置的冷藏出风口和第二冷冻出风口开启,第一冷冻出风口关闭。
可选地,在冷藏参数和第一冷冻参数为第三参数,第二冷冻参数为第一参数时,使压缩机以第五压缩机转速工作,风机以第五风机转速工作,冷藏风门开启,分路送风装置的冷藏出风口和第一冷冻出风口开启,第二冷冻出风口关闭。
可选地,在冷藏参数为第一参数,第一冷冻参数和第二冷冻参数为第三参数时,使压缩机以大于等于第五压缩机转速的第六压缩机转速工作,风机以大于等于第五风机转速的第六风机转速工作,冷藏风门关闭,分路送风装置的冷藏出风口关闭,第一冷冻出风口和第二冷冻出风口开启。
可选地,在冷藏参数、第一冷冻参数和第二冷冻参数均为第三参数时,使压缩机以大于 等于第六压缩机转速的第七压缩机转速工作,风机以大于等于第六风机转速的第七风机转速工作,冷藏风门开启,分路送风装置的冷藏出风口、第一冷冻出风口和第二冷冻出风口均开启。
根据本发明的另一个方面,还提供了一种计算机存储介质,其中存储有计算机程序,并且计算机程序运行时导致计算机存储介质的所在设备执行上述任一种冰箱的制冷控制方法。
本发明的冰箱的制冷控制方法与计算机存储介质,通过检测冷冻空间的实际温度,根据冷冻空间的实际温度设置冷冻空间的冷冻参数;在至少一个冷冻空间的实际温度大于预设的冷冻开机温度时,检测冷藏空间的实际温度,根据冷藏空间的实际温度设置冷藏空间的冷藏参数,并在冷藏空间的实际温度大于预设的冷藏开机温度,且至少一个冷冻空间的实际温度与冷冻开机温度的差值大于第一预设阈值时,重设冷藏参数和冷冻参数;并根据冷藏参数、冷冻参数的集合使压缩机、风机、冷藏风门以及分路送风装置按照与集合对应的预设状态工作,可以实现单个储物空间单独制冷或多个储物空间同时制冷,综合考虑冷藏空间和冷冻空间的实际温度情况,满足各个储物空间的制冷需求,提高冰箱储物空间的温度稳定性。
进一步地,本发明的冰箱的制冷控制方法与计算机存储介质,其中冰箱的冷冻空间包括第一冷冻空间和第二冷冻空间,冷冻参数包括第一冷冻空间的第一冷冻参数和第二冷冻空间的第二冷冻参数,且分路送风装置的冷冻出风口包括与第一冷冻空间受控地连通的第一冷冻出风口以及与第二冷冻空间受控地连通的第二冷冻出风口,在至少一个冷冻空间的实际温度大于预设的冷冻开机温度时,若冷藏空间的实际温度大于预设的冷藏开机温度,需要确定冷冻空间需要制冷的急切程度以重设冷藏参数和冷冻参数,并在冷冻空间的实际温度与冷冻开机温度的差值大于第一预设阈值且冷藏空间的实际温度与冷藏开机温度的差值大于第二预设阈值时,进一步设置冷藏参数,可以确定不同储物空间的制冷需求的急切程度,优先满足更急需制冷的储物空间,控制制冷的方法更加科学合理,避免各个储物空间的温度均匀性和稳定性较差,出现某个储物空间温度过高或过低的情况,能够有效降低能耗并提升各储物空间内食物的存储效果。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的制冷控制方法适用的冰箱的示意性结构图。
图2是图1冰箱中分路送风装置的示意性结构图。
图3是根据本发明一个实施例的冰箱的制冷控制方法的示意图。
图4是根据本发明一个实施例的冰箱的制冷控制方法的详细流程图。
以及图5是根据本发明一个实施例的计算机存储介质的示意图。
具体实施方式
本实施例首先提供了一种冰箱的制冷控制方法,可以实现单个储物空间单独制冷或多个储物空间同时制冷,综合考虑冷藏空间和冷冻空间的实际温度情况,更加合理地进行制冷,满足各个储物空间的制冷需求,提高冰箱储物空间的温度稳定性。图1是根据本发明一个实施例的冰箱的制冷控制方法适用的冰箱100的示意性结构图,该冰箱100一般性地可以包括:箱体10、门体、制冷系统、分路送风装置20以及冷藏风门。
其中,箱体10内部可以限定有多个储物空间。储物空间的数量以及结构可以根据需求进行配置,图1示出了上下依次设置的第一空间、第二空间和第三空间的情况;以上储物空间按照用途不同可以分别配置为冷藏空间、冷冻空间、变温空间或者保鲜空间。各个储物空间内部可以由分隔板分割为多个储物区域,利用搁物架或者抽屉储存物品。本实施例的冰箱100的箱体10内限定有冷藏空间11和设置于冷藏空间11下方的至少一个冷冻空间,本实施例中冷冻空间为两个,分别是第一冷冻空间12和第二冷冻空间13,即本实施例的冰箱100由上至下依次设置有冷藏空间11、第一冷冻空间12和第二冷冻空间13。在其他一些实施例中,冰箱100可以只设置有一个冷藏空间和一个冷冻空间。
门体20设置于箱体10的前侧,以供用户打开或关闭冰箱100的储物空间,其中本实施例的冰箱100的储物空间包括:冷藏空间11、第一冷冻空间12和第二冷冻空间13;门体可以与储物空间对应设置,即每一个储物空间都对应有一个或多个门体。而储物空间及门体的数量、储物空间的功能可由具体情况实际选择。在其他一些实施例中,储物空间的开门方式还可以采用抽屉式开启,以实现抽屉式的储物空间。
冰箱100的制冷系统配置成向储物空间提供冷量。本实施例的制冷系统包括压缩机,压缩机可以安装于压缩机仓内。具体地,制冷系统可以为由压缩机、冷凝器、节流装置和蒸发器等构成的制冷循环系统。箱体10内还可以具有冷却空间,制冷系统的蒸发器可以设置于冷却空间内。由本领域技术人员所习知的,制冷系统也可为其它类型的制冷系统,如半导体制冷系统,半导体制冷系统的冷端散冷器可设置于冷却空间内。本实施例的冰箱100的储物空间由上至下包括:冷藏空间11、第一冷冻空间12和第二冷冻空间13,制冷系统向冷藏空 间11和冷冻空间提供的冷量不同,使得冷藏空间11和冷冻空间内的温度也不相同。其中冷藏空间11内的温度一般处于2℃至10℃之间,优先为3℃至8℃。冷冻空间内的温度范围一般处于-22℃至-14℃。不同种类的食物的最佳存储温度并不相同,进而适宜存放的储物空间也并不相同。例如果蔬类食物适宜存放于冷藏空间11,而肉类食物适宜存放于冷冻空间。
图2是图1冰箱100中分路送风装置20的示意性结构图,分路送风装置20一般性地可以包括壳体21和调节件(由于设置于壳体21内部因而并未在图中示出)。壳体21可具有至少一个进风口221和多个出风口22,以使气流经由至少一个进风口221进入壳体21内,并从多个出风口22流出该壳体21。调节件可配置成受控地对每个出风口22进行完全遮蔽、部分遮蔽或完全暴露,以调整多个出风口22各自的出风面积。例如,调节件可在不同的位置处对每个出风口22进行完全遮蔽、部分遮蔽或完全暴露。本发明实施例中的分路送风装置20的调节件能够将从进风口221流入的冷风可控地分配至多个出风口22,可以实现控制与每个出风口22连通的出风风道的开闭和/或对每个出风风道内的出风风量进行调节,进而来满足不同储物空间的冷量需求。
本实施例的分路送风装置20可以具有三个出风口,并且三个出风口可以沿壳体21的周向方向依次间隔设置。这三个出风口22包括具有与冷藏空间11受控地连通的冷藏出风口222、与第一冷冻空间12受控地连通的第一冷冻出风口223以及与第二冷冻空间13受控地连通的第二冷冻出风口224,以将制冷系统提供的冷量受控地送入冷藏空间11和/或第一冷冻空间12和/或第二冷冻空间13。在其他一些实施例中,冰箱100只设置有一个冷藏空间和一个冷冻空间时,分路送风装置20可以只具有两个出风口,分别为与冷藏空间和冷冻空间受控地连通。
本实施例的分路送风装置20中的风机23配置成促使气流从至少一个进风口221流入壳体21并经由多个出风口22中的一个或多个流出壳体21,以提高送风的效率。该风机23也可使本发明实施例中的分路送风装置20独立进风。进一步地,在一些实施方式中,风机23可为离心叶轮,设置于壳体21内;在一些替代性实施方式中,风机23也可为轴流风机、轴流风筒或离心风机,设置在壳体21的进风口221处。显然,风机23为离心叶轮,且位于壳体21内,可使分路送风装置20的结构紧凑、体积小。
冷藏风门配置成配合冷藏出风口222调节向冷藏空间11输送的冷量,冷藏风门(图中未示出)设置于冷藏空间11底部,为了避免冷藏出风口222关闭时由于漏风导致冷藏空间11温度过低的情况,通过冷藏风门可以进一步保证密封性,进而对冷藏空间11温度的控制更加精确。
图3是根据本发明一个实施例的冰箱的制冷控制方法的示意图。该冰箱的制冷控制方法可以适用于上述任一实施例的冰箱100。如图3所示,该基于食物的冰箱温度控制方法可以执行以下步骤:
步骤S302,检测冷冻空间的实际温度,根据冷冻空间的实际温度设置冷冻空间的冷冻参数;
步骤S304,在至少一个冷冻空间的实际温度大于预设的冷冻开机温度时,检测冷藏空间11的实际温度,根据冷藏空间11的实际温度设置冷藏空间11的冷藏参数,并在冷藏空间11的实际温度大于预设的冷藏开机温度,且至少一个冷冻空间的实际温度与冷冻开机温度的差值大于第一预设阈值时,重设冷藏参数和冷冻参数;
步骤S306,根据冷藏参数和冷冻参数的集合使压缩机、风机23、冷藏风门以及分路送风装置20按照与集合对应的预设状态工作。
步骤S302和步骤S304中可以通过设置于冷藏空间11和冷冻空间的温度传感器检测冷藏空间11和冷冻空间的实际温度。其中温度传感器的种类、大小和安装位置可以根据实际需求和情况进行设置。本实施例的冰箱100设置有冷藏空间11、第一冷冻空间12和第二冷冻空间13,可以在三个储物空间分别设置有温度传感器,以检测三个储物空间的实际温度。
步骤S302和步骤S304中的冷藏参数和冷冻参数均包括:第一参数、第二参数和第三参数。其中第一参数、第二参数和第三参数均不相同,例如第一参数可以为0,第二参数可以为1,第三参数可以为2。三个参数可以表明各个储物空间是否需要制冷以及需要制冷的急切程度,例如第一参数0表明不需要制冷,第二参数1和第三2参数表明需要制冷,且第三参数2能够表明比第二参数1更急需制冷。以上三个参数的具体数值仅为例举,而并非对本发明的限定,在其他一些实施例中,三个参数可以为其他不同的三个数值。
由于本实施例的冰箱100设置有冷藏空间11、第一冷冻空间12和第二冷冻空间13,因而冷冻参数可以包括第一冷冻空间12的第一冷冻参数和第二冷冻空间13的第二冷冻参数。即步骤S306中参数的集合为三个数值的集合。在其他一些实施例中,冰箱100只设置有一个冷藏空间和一个冷冻空间时,参数的集合可以为两个数值的集合。
步骤S302中设置冷冻空间的冷冻参数包括设置第一冷冻空间12的第一冷冻参数和第二冷冻空间13的第二冷冻参数。具体地,设置第一冷冻参数的步骤可以包括:判断第一冷冻空间12的实际温度是否大于预设的第一冷冻开机温度;以及若是,设置第一冷冻参数为第二参数,若否,设置第一冷冻参数为第一参数;设置第二冷冻参数的步骤可以包括:判断第二冷冻空间13的实际温度是否大于预设的第二冷冻开机温度;以及若是,设置第二冷冻 参数为第二参数,若否,设置第二冷冻参数为第一参数。
步骤S304中在至少一个冷冻空间的实际温度大于预设的冷冻开机温度时,即在第一冷冻空间12的实际温度大于第一冷冻开机温度或第二冷冻空间13的实际温度大于第二冷冻开机温度时,可以检测冷藏空间11的实际温度,根据冷藏空间11的实际温度设置冷藏空间11的冷藏参数。具体地,可以判断冷藏空间11的实际温度是否大于预设的冷藏开机温度;以及若是,设置冷藏参数为第二参数,若否,设置冷藏参数为第一参数。并且在冷藏空间11的实际温度大于预设的冷藏开机温度且至少一个冷冻空间的实际温度与冷冻开机温度的差值大于第一预设阈值时,重设冷藏参数和冷冻参数。可以确定出更加急需制冷的储物空间,以对更急需制冷的储物空间进行制冷,制冷控制方法更加科学合理。
重设冷藏参数和冷冻参数的步骤可以包括:判断第一冷冻空间12的实际温度与第一冷冻开机温度的差值是否大于第一预设阈值;以及若是,设置冷藏参数为第一参数,设置第一冷冻参数为第三参数,若否,设置第一冷冻参数为第一参数;判断第二冷冻空间13的实际温度与第二冷冻开机温度的差值是否大于第一预设阈值;以及若是,设置冷藏参数为第一参数,设置第二冷冻参数为第三参数,若否,设置第二冷冻参数为第一参数。
在重设冷藏参数的步骤之后还可以包括:判断冷藏空间11的实际温度与冷藏开机温度的差值是否大于第二预设阈值;以及若是,设置冷藏参数为第三参数,若否,保持冷藏参数为第一参数不变。可以进一步判断冷藏空间的实际温度是否过高,是否有迫切的制冷需求。
由于本实施例的冰箱100设置有第一冷冻空间12和第二冷冻空间13两个冷冻空间,只要有一个冷冻空间的实际温度大于预设的冷冻开机温度,即第一冷冻空间12或第二冷冻空间13需要制冷时,就需要判断冷藏空间11是否有制冷需求。若冷藏空间11同样有制冷需求,只有第一冷冻空间12或第二冷冻空间13的实际温度(与预设冷冻开机温度的差值大于第一预设阈值)过高,才考虑对冷冻空间制冷;若第一冷冻空间12或第二冷冻空间13的实际温度只是高于冷冻开机温度,并没有过高,优先对冷藏空间11进行制冷。
只有在至少一个冷冻空间的实际温度大于预设的冷冻开机温度时,即在第一冷冻空间12的实际温度大于第一冷冻开机温度或第二冷冻空间13的实际温度大于第二冷冻开机温度时,才可以检测冷藏空间11的实际温度,根据冷藏空间11的实际温度设置冷藏空间11的冷藏参数。若第一冷冻空间12的实际温度小于等于第一冷冻开机温度且第二冷冻空间13的实际温度小于等于第二冷冻开机温度时,即所有冷冻空间均不需要制冷时,可以直接设置冷藏参数为第一参数,默认冷藏空间不需要制冷,可以降低压缩机等设备的开启频率,有效降低能耗。
步骤S306中不同的冷藏参数和冷冻参数的集合,对应的压缩机、风机23、冷藏风门以及分路送风装置20的预设状态也不同。具体地,可以预设有状态信息表,该状态信息表中预先保存有不同的参数集合对应的预设状态,在确定参数集合后,可以匹配得出对应的预设状态。其中预设状态包括:压缩机和风机23的转速;冷藏风门的开闭状态;分路送风装置20的冷藏出风口222、第一冷冻出风口223和第二冷冻出风口224的开闭状态。
以下对一个状态信息表的具体实例进行介绍:
在冷藏参数、第一冷冻参数和第二冷冻参数均为第一参数时,对应的预设状态为:压缩机和风机23关停,冷藏风门关闭,分路送风装置20的冷藏出风口222、第一冷冻出风口223和第二冷冻出风口224均关闭。
在冷藏参数和第一冷冻参数为第一参数,第二冷冻参数为第二参数时,对应的预设状态为:压缩机以预设的第二压缩机转速工作,风机23以预设的第二风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222和第一冷冻出风口223关闭,第二冷冻出风口224开启。
在冷藏参数和第二冷冻参数为第一参数,第一冷冻参数为第二参数时,对应的预设状态为:压缩机以第二压缩机转速工作,风机23以第二风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222和第二冷冻出风口224关闭,第一冷冻出风口223开启。
在冷藏参数为第一参数,第一冷冻参数和第二冷冻参数为第二参数时,对应的预设状态为:压缩机以大于等于第二压缩机转速的第三压缩机转速工作,风机23以大于等于第二风机转速的第三风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222关闭,第一冷冻出风口223和第二冷冻出风口224开启。
在冷藏参数为第二参数,第一冷冻参数和第二冷冻参数为第一参数时,对应的预设状态为:压缩机以小于等于第二压缩机转速的第一压缩机转速工作,风机23以小于等于第二风机转速的第一风机转速工作,冷藏风门开启,分路送风装置20的冷藏出风口222开启,第一冷冻出风口223和第二冷冻出风口224关闭。
在冷藏参数和第一冷冻参数为第一参数,第二冷冻参数为第三参数时,对应的预设状态为:压缩机以大于等于第三压缩机转速的第四压缩机转速工作,风机23以大于等于第三风机转速的第四风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222和第一冷冻出风口223关闭,第二冷冻出风口224开启。
在冷藏参数和第二冷冻参数为第一参数,第一冷冻参数为第三参数时,对应的预设状态为:压缩机以第四压缩机转速工作,风机23以第四风机转速工作,冷藏风门关闭,分路送 风装置20的冷藏出风口222和第二冷冻出风口224关闭,第一冷冻出风口223开启。
在冷藏参数和第二冷冻参数为第三参数,第一冷冻参数为第一参数时,对应的预设状态为:压缩机以大于等于第四压缩机转速的第五压缩机转速工作,风机23以大于等于第四风机转速的第五风机转速工作,冷藏风门开启,分路送风装置20的冷藏出风口222和第二冷冻出风口224开启,第一冷冻出风口223关闭。
在冷藏参数和第一冷冻参数为第三参数,第二冷冻参数为第一参数时,对应的预设状态为:压缩机以第五压缩机转速工作,风机以第五风机转速工作,冷藏风门开启,分路送风装置20的冷藏出风口222和第一冷冻出风口223开启,第二冷冻出风口224关闭。
在冷藏参数为第一参数,第一冷冻参数和第二冷冻参数为第三参数时,对应的预设状态为:压缩机以大于等于第五压缩机转速的第六压缩机转速工作,风机以大于等于第五风机转速的第六风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222关闭,第一冷冻出风口223和第二冷冻出风口224开启。
在冷藏参数、第一冷冻参数和第二冷冻参数均为第三参数时,对应的预设状态为:压缩机以大于等于第六压缩机转速的第七压缩机转速工作,风机以大于等于第六风机转速的第七风机转速工作,冷藏风门开启,分路送风装置20的冷藏出风口222、第一冷冻出风口223和第二冷冻出风口224均开启。
需要说明的是,步骤S306中压缩机、风机23、冷藏风门以及分路送风装置20可以按照与集合对应的预设状态工作预设时长,以满足各储物空间的制冷需求,在工作预设时长的过程中,不再执行检测温度、设置参数的过程,可以避免储物空间的实际温度稍有下降就判定其不需要制冷,从而导致压缩机等设备的工作状态频繁改变的情况。在工作预设时长之后,可以重新执行上述步骤,进行新一次的制冷控制。
本实施例的冰箱的制冷控制方法,通过检测冷冻空间的实际温度,根据冷冻空间的实际温度设置冷冻空间的冷冻参数;在至少一个冷冻空间的实际温度大于预设的冷冻开机温度时,检测冷藏空间11的实际温度,根据冷藏空间11的实际温度设置冷藏空间11的冷藏参数,并在冷藏空间11的实际温度大于预设的冷藏开机温度,且至少一个冷冻空间的实际温度与冷冻开机温度的差值大于第一预设阈值时,重设冷藏参数和冷冻参数;并根据冷藏参数、冷冻参数的集合使压缩机、风机23、冷藏风门以及分路送风装置20按照与集合对应的预设状态工作,可以实现单个储物空间单独制冷或多个储物空间同时制冷,综合考虑冷藏空间11和冷冻空间的实际温度情况,能够确定更急需制冷的储物空间,从而可以更加合理地进行制冷,满足各个储物空间的制冷需求,提高冰箱储物空间的温度稳定性。
在一些可选实施例中,可以通过对上述步骤的进一步优化和配置使得冰箱100实现更高的技术效果,以下结合对本实施例的一个可选执行流程的介绍对本实施例的冰箱的制冷控制方法进行详细说明,该实施例仅为对执行流程的举例说明,在具体实施时,可以根据具体实施需求,对部分步骤的执行顺序、运行条件进行修改。图4是根据本发明一个实施例的冰箱的制冷控制方法的详细流程图。本实施例的冰箱100设置有冷藏空间11、第一冷冻空间12和第二冷冻空间13,该冰箱的制冷控制方法包括以下步骤:
步骤S402,检测冷藏空间11、第一冷冻空间12和第二冷冻空间13的实际温度TR、TF1和TF2;
步骤S404,判断第一冷冻空间12的实际温度TF1是否大于预设的第一冷冻开机温度tf1,若是,执行步骤S414,若否,执行步骤S406;
步骤S406,设置第一冷冻参数F1(Stste)为第一参数,设置冷藏参数R(State)为第一参数;
步骤S408,判断第二冷冻空间13的实际温度TF2是否大于预设的第二冷冻开机温度tf2,若是,执行步骤S442,若否,执行步骤S410;
步骤S410,设置第二冷冻参数F2(Stste)为第一参数,设置冷藏参数R(State)为第一参数;
步骤S412,根据冷藏参数R(State)、第一冷冻参数F1(Stste)和第二冷冻参数F2(State)的集合使压缩机、风机23、冷藏风门以及分路送风装置20按照与集合对应的预设状态工作;
步骤S414,设置第一冷冻参数F1(Stste)为第二参数;
步骤S416,判断冷藏空间11的实际温度TR是否大于预设的冷藏开机温度tr,若是,执行步骤S420,若否,执行步骤S418;
步骤S418,设置冷藏参数R(State)为第一参数并执行步骤S408;
步骤S420,设置冷藏参数R(State)为第二参数;
步骤S422,判断第一冷冻空间12的实际温度TF1与第一冷冻开机温度tf1的差值是否大于第一预设阈值A,若是,执行步骤S426,若否,执行步骤S424;
步骤S424,设置第一冷冻参数F1(Stste)为第一参数并执行步骤S432;
步骤S426,设置第一冷冻参数F1(Stste)为第三参数,设置冷藏参数R(State)为第一参数;
步骤S428,判断冷藏空间11的实际温度TR与冷藏开机温度tr的差值是否大于第二预设阈值B,若是,执行步骤S430,若否,执行步骤S432;
步骤S430,设置冷藏参数R(State)为第三参数;
步骤S432,判断第二冷冻空间13的实际温度TF2与第二冷冻开机温度tf2的差值是否大于第一预设阈值A,若是,执行步骤S436,若否,执行步骤S434;
步骤S434,设置第二冷冻参数F2(State)为第一参数并执行步骤S412;
步骤S436,设置第二冷冻参数F2(State)为第三参数,设置冷藏参数R(State)为第一参数;
步骤S438,判断冷藏空间11的实际温度TR与冷藏开机温度tr的差值是否大于第二预设阈值B,若是,执行步骤S440,若否,执行步骤S412;
步骤S440,设置冷藏参数R(State)为第三参数并执行步骤S412;
步骤S442,设置第二冷冻参数F2(State)为第二参数;
步骤S444,判断冷藏空间11的实际温度TR是否大于预设的冷藏开机温度tr,若是,执行步骤S420,若否,执行步骤S446;
步骤S446,设置冷藏参数R(State)为第一参数并执行步骤S412。
步骤S402中可以通过设置于冷藏空间11、第一冷冻空间12和第二冷冻空间13的温度传感器检测冷藏空间11、第一冷冻空间12和第二冷冻空间13的实际温度TR、TF1和TF2。其中温度传感器的种类、大小和安装位置可以根据实际需求和情况进行设置。
以上步骤中的冷藏参数R(State)、第一冷冻参数F1(Stste)和第二冷冻参数F2(State)均包括:第一参数、第二参数和第三参数。其中第一参数、第二参数和第三参数均不相同,例如第一参数可以为0,第二参数可以为1,第三参数可以为2。三个参数可以表明各个储物空间是否需要制冷以及需要制冷的急切程度,例如第一参数0表明不需要制冷,第二参数1和第三2参数表明需要制冷,且第三参数2能够表明比第二参数1更急需制冷。以上三个参数的具体数值仅为例举,而并非对本发明的限定,在其他一些实施例中,三个参数可以为其他不同的三个数值。
步骤S436中不同的冷藏参数R(State)、第一冷冻参数F1(Stste)和第二冷冻参数F2(State)的集合,对应的压缩机、风机23、冷藏风门以及分路送风装置20的预设状态也不同。具体地,可以预设有状态信息表,该状态信息表中预先保存有不同的参数集合对应的预设状态,在确定参数集合后,可以匹配得出对应的预设状态。其中预设状态包括:压缩机和风机23的转速;冷藏风门的开闭状态;分路送风装置20的冷藏出风口222、第一冷冻出风口223和第二冷冻出风口224的开闭状态。
以下对一个状态信息表的具体实例进行介绍:
若第一参数为0,第二参数为1,第三参数为2,则冷藏参数R(State)、第一冷冻参数F1(Stste)和第二冷冻参数F2(State)的集合根据以上步骤的判断可以由以下几种形式:(0,0,0)、(0,0,1)、(0,1,0)、(0,1,1)、(1,0,0)、(0,0,2)、(0,2,0)、(2,0,2)、(2,2,0)、(0,2,2)、(2,2,2)。
在冷藏参数R(State)、第一冷冻参数F1(Stste)和第二冷冻参数F2(State)均为第一参数0时,集合(0,0,0)对应的预设状态为:压缩机和风机23关停,冷藏风门关闭,分路送风装置20的冷藏出风口222、第一冷冻出风口223和第二冷冻出风口224均关闭。
在冷藏参数R(State)和第一冷冻参数F1(Stste)为第一参数0,第二冷冻参数F2(State)为第二参数1时,集合(0,0,1)对应的预设状态为:压缩机以预设的第二压缩机转速工作,风机23以预设的第二风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222和第一冷冻出风口223关闭,第二冷冻出风口224开启。
在冷藏参数R(State)和第二冷冻参数F2(State)为第一参数0,第一冷冻参数F1(Stste)为第二参数1时,集合(0,1,0)对应的预设状态为:压缩机以第二压缩机转速工作,风机23以第二风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222和第二冷冻出风口224关闭,第一冷冻出风口223开启。
在冷藏参数R(State)为第一参数0,第一冷冻参数F1(Stste)和第二冷冻参数F2(State)为第二参数1时,集合(0,1,1)对应的预设状态为:压缩机以大于等于第二压缩机转速的第三压缩机转速工作,风机23以大于等于第二风机转速的第三风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222关闭,第一冷冻出风口223和第二冷冻出风口224开启。
在冷藏参数R(State)为第二参数1,第一冷冻参数F1(Stste)和第二冷冻参数F2(State)为第一参数0时,集合(1,0,0)对应的预设状态为:压缩机以小于等于第二压缩机转速的第一压缩机转速工作,风机23以小于等于第二风机转速的第一风机转速工作,冷藏风门开启,分路送风装置20的冷藏出风口222开启,第一冷冻出风口223和第二冷冻出风口224关闭。
在冷藏参数R(State)和第一冷冻参数F1(Stste)为第一参数0,第二冷冻参数F2(State)为第三参数2时,集合(0,0,2)对应的预设状态为:压缩机以大于等于第三压缩机转速的第四压缩机转速工作,风机23以大于等于第三风机转速的第四风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222和第一冷冻出风口223关闭,第二冷冻出风口224开启。
在冷藏参数R(State)和第二冷冻参数F2(State)为第一参数0,第一冷冻参数F1(Stste)为第三参数2时,集合(0,2,0)对应的预设状态为:压缩机以第四压缩机转速工作,风机23以第四风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222和第二冷冻出风口224关闭,第一冷冻出风口223开启。
在冷藏参数R(State)和第二冷冻参数F2(State)为第三参数2,第一冷冻参数F1(Stste)为第一参数0时,集合(2,0,2)对应的预设状态为:压缩机以大于等于第四压缩机转速的第五压缩机转速工作,风机23以大于等于第四风机转速的第五风机转速工作,冷藏风门开启,分路送风装置20的冷藏出风口222和第二冷冻出风口224开启,第一冷冻出风口223关闭。
在冷藏参数R(State)和第一冷冻参数F1(State)为第三参数2,第二冷冻参数F2(Stste)为第一参数0时,集合(2,2,0)对应的预设状态为:压缩机以第五压缩机转速工作,风机23以第五风机转速工作,冷藏风门开启,分路送风装置20的冷藏出风口222和第一冷冻出风口223开启,第二冷冻出风口224关闭。
在冷藏参数R(State)为第一参数0,第一冷冻参数F1(State)和第二冷冻参数F2(Stste)为第三参数2时,集合(0,2,2)对应的预设状态为:压缩机以大于等于第五压缩机转速的第六压缩机转速工作,风机23以大于等于第五风机转速的第六风机转速工作,冷藏风门关闭,分路送风装置20的冷藏出风口222关闭,第一冷冻出风口223和第二冷冻出风口224开启。
在冷藏参数R(State)、第一冷冻参数F1(State)和第二冷冻参数F2(Stste)均为第三参数2时,集合(2,2,2)对应的预设状态为:压缩机以大于等于第六压缩机转速的第七压缩机转速工作,风机23以大于等于第六风机转速的第七风机转速工作,冷藏风门开启,分路送风装置20的冷藏出风口222、第一冷冻出风口223和第二冷冻出风口224均开启。
在根据冷藏参数R(State)、第一冷冻参数F1(Stste)和第二冷冻参数F2(State)的集合确定压缩机、风机23、冷藏风门以及分路送风装置20的对应预设状态后,就可以使压缩机、风机23、冷藏风门以及分路送风装置20以确定出的预设状态工作。
其中,压缩机转速和风机转速的具体数值可以根据实际需求和情况进行设定。并且在大多数情况下,压缩机转速和风机转速与冰箱100所在环境温度成正比,即环境温度越高,压缩机转速和风机转速越大。例如,在环境温度小于16℃时,第一压缩机转速为1200,第二压缩机转速为1380,第三压缩机转速为1800,第四压缩机转速为2160,第五压缩机转速为2280,第六压缩机转速为2400,第七压缩机转速为2580;在环境温度大于等于16℃且小于 28℃时,第一压缩机转速为1380,第二压缩机转速为1590,第三压缩机转速为1980,第四压缩机转速为2580,第五压缩机转速为2700,第六压缩机转速为2820,第七压缩机转速为3000;在环境温度大于等于28℃且小于35℃时,第一压缩机转速为1590,第二压缩机转速为1800,第三压缩机转速为2160,第四压缩机转速为3000,第五压缩机转速为3120,第六压缩机转速为3240,第七压缩机转速为3420;在环境温度大于等于35℃且小于43℃时,第一压缩机转速为1800,第二压缩机转速为1980,第三压缩机转速为2580,第四压缩机转速为3420,第五压缩机转速为3540,第六压缩机转速为3660,第七压缩机转速为3840;在环境温度大于等于43℃时,第一压缩机转速为2160,第二压缩机转速为3000,第三压缩机转速为3420,第四压缩机转速为3840,第五压缩机转速、第六压缩机转速和第七压缩机转速均为4200。
在环境温度小于16℃时,第一风机转速为1300,第二风机转速为1370,第三风机转速为1510,第四风机转速为1650,第五风机转速为1720,第六风机转速为1790,第七风机转速为1860;在环境温度大于等于16℃且小于28℃时,第一风机转速为1370,第二风机转速为1440,第三风机转速为1580,第四风机转速为1720,第五风机转速为1790,第六风机转速为1860,第七风机转速为1930;在环境温度大于等于28℃且小于35℃时,第一风机转速为1440,第二风机转速为1510,第三风机转速为1650,第四风机转速为1790,第五风机转速为1860,第六风机转速为1930,第七风机转速为2000;在环境温度大于等于35℃且小于43℃时,第一风机转速为1510,第二风机转速为1580,第三风机转速为1720,第四风机转速为1860,第五风机转速为1930,第六风机转速为2000,第七风机转速为2070;在环境温度大于等于43℃时,第一风机转速为1650,第二风机转速为1790,第三风机转速为1860,第四风机转速为1930,第五风机转速为2000,第六风机转速为2070,第七风机转速为2140。需要说明的是,以上各压缩机转速和风机转速的具体数值仅为例举,而并非对本发明的限定。
以上步骤中的第一预设阈值A和第二预设阈值B均为大于0的数值。本实施例的冰箱的制冷控制方法,只有在第一冷冻空间12或第二冷冻空间13需要制冷时,才判断冷藏空间11是否有制冷需求。若冷藏空间11同样有制冷需求,只有第一冷冻空间12或第二冷冻空间13的实际温度(与预设冷冻开机温度的差值大于第一预设阈值)过高,才对需要制冷的冷冻空间制冷;若第一冷冻空间12或第二冷冻空间13的实际温度只是高于冷冻开机温度,并没有过高,优先对冷藏空间11进行制冷。此外,在第一冷冻空间12或第二冷冻空间13的实际温度(与预设冷冻开机温度的差值大于第一预设阈值)过高时,还要重设冷藏参数为第一参数,即默认冷藏空间11不需要制冷,此时只有冷藏空间11的实际温度与冷藏开机温 度的差值大于第二预设阈值,即冷藏空间的温度也过高,才进一步设置冷藏参数为第三参数,对冷藏空间进行制冷。
若第一冷冻空间12的实际温度小于等于第一冷冻开机温度且第二冷冻空间13的实际温度小于等于第二冷冻开机温度时,即所有冷冻空间均不需要制冷时,可以直接设置冷藏参数为第一参数,默认冷藏空间不需要制冷,可以降低压缩机等设备的开启频率,有效降低能耗。
需要说明的是,步骤S412中压缩机、风机23、冷藏风门以及分路送风装置20可以按照与集合对应的预设状态工作预设时长,以满足各储物空间的制冷需求,在工作预设时长的过程中,不再执行检测温度、设置参数的过程,可以避免储物空间的实际温度稍有下降就判定其不需要制冷,从而导致压缩机等设备的工作状态频繁改变的情况。在工作预设时长之后,可以重新执行上述步骤,进行新一次的制冷控制。
本实施例的冰箱的制冷控制方法,可以实现单个储物空间单独制冷或多个储物空间同时制冷,综合考虑冷藏空间11、第一冷冻空间12和第二冷冻空间13的实际温度情况,能够确定更急需制冷的储物空间,从而可以更加合理地进行制冷,满足各个储物空间的制冷需求,提高冰箱储物空间的温度稳定性。
进一步地,本实施例的冰箱的制冷控制方法,根据冷藏参数、第一冷冻参数和第二冷冻参数的集合使压缩机、风机23、冷藏风门以及分路送风装置20按照与集合对应的预设状态工作,避免各个储物空间的温度均匀性和稳定性较差,出现某个储物空间温度过高或过低的情况,能够有效降低能耗并提升各个储物空间内食物的存储效果。
本实施例还提供了一种计算机存储介质200,图5是根据本发明一个实施例的计算机存储介质200的示意图,该计算机存储介质200保存有计算机程序201,并且计算机程序201运行时导致计算机存储介质200的所在设备执行上述任一实施例的冰箱的制冷控制方法。其中计算机存储介质200的所在设备即为冰箱100,可以由冰箱100执行上述任一实施例的冰箱的制冷控制方法。
本实施例的计算机存储介质200可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。计算机存储介质200具有用于执行上述方法中的任何方法步骤的计算机程序201的存储空间。这些计算机程序201可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。计算机存储介质200的所在设备运行上述计算机程序201时,可以执行上述描述的方法中的各个步骤。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实 施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (15)

  1. 一种冰箱的制冷控制方法,其中所述冰箱包括:箱体,其内限定有冷藏空间和设置于所述冷藏空间下方的至少一个冷冻空间;门体,设置于所述箱体的前侧,以供用户打开或关闭所述冷藏空间和所述冷冻空间;制冷系统,包括压缩机,且配置成向所述冷藏空间和所述冷冻空间提供冷量;分路送风装置,包括风机,且具有与所述冷藏空间受控地连通的冷藏出风口和与所述冷冻空间受控地连通的冷冻出风口,以将所述制冷系统提供的冷量受控地送入所述冷藏空间和/或所述冷冻空间;以及冷藏风门,配置成配合所述冷藏出风口调节向所述冷藏空间输送的冷量,并且所述制冷控制方法包括:
    检测所述冷冻空间的实际温度,根据所述冷冻空间的实际温度设置所述冷冻空间的冷冻参数;
    在至少一个所述冷冻空间的实际温度大于预设的冷冻开机温度时,检测所述冷藏空间的实际温度,根据所述冷藏空间的实际温度设置所述冷藏空间的冷藏参数,并在所述冷藏空间的实际温度大于预设的冷藏开机温度,且至少一个所述冷冻空间的实际温度与所述冷冻开机温度的差值大于第一预设阈值时,重设所述冷藏参数和所述冷冻参数,其中所述冷藏参数和所述冷冻参数均包括:第一参数、第二参数和第三参数;以及
    根据所述冷藏参数、所述冷冻参数的集合使所述压缩机、所述风机、所述冷藏风门以及所述分路送风装置按照与所述集合对应的预设状态工作。
  2. 根据权利要求1所述的冰箱的制冷控制方法,其中所述冷冻空间包括第一冷冻空间和第二冷冻空间,所述冷冻参数包括所述第一冷冻空间的第一冷冻参数和所述第二冷冻空间的第二冷冻参数,且所述分路送风装置的冷冻出风口包括与所述第一冷冻空间受控地连通的第一冷冻出风口以及与所述第二冷冻空间受控地连通的第二冷冻出风口,并且
    设置所述第一冷冻参数的步骤包括:判断所述第一冷冻空间的实际温度是否大于预设的第一冷冻开机温度;以及若是,设置所述第一冷冻参数为所述第二参数,若否,设置所述第一冷冻参数为所述第一参数;
    设置所述第二冷冻参数的步骤包括:判断所述第二冷冻空间的实际温度是否大于预设的第二冷冻开机温度;以及若是,设置所述第二冷冻参数为所述第二参数,若否,设置所述第二冷冻参数为所述第一参数。
  3. 根据权利要求2所述的冰箱的制冷控制方法,其中在所述第一冷冻空间的实际温度大于所述第一冷冻开机温度或所述第二冷冻空间的实际温度大于所述第二冷冻开机温度时, 设置所述冷藏空间的冷藏参数的步骤包括:
    判断所述冷藏空间的实际温度是否大于预设的冷藏开机温度;以及
    若是,设置所述冷藏参数为所述第二参数,
    若否,设置所述冷藏参数为所述第一参数。
  4. 根据权利要求3所述的冰箱的制冷控制方法,其中,
    在所述第一冷冻空间的实际温度小于等于所述第一冷冻开机温度且所述第二冷冻空间的实际温度小于等于所述第二冷冻开机温度时,设置所述冷藏参数为所述第一参数。
  5. 根据权利要求4所述的冰箱的制冷控制方法,其中重设所述冷藏参数和所述冷冻参数的步骤包括:
    判断所述第一冷冻空间的实际温度与所述第一冷冻开机温度的差值是否大于所述第一预设阈值;以及若是,设置所述冷藏参数为所述第一参数,设置所述第一冷冻参数为所述第三参数,若否,设置所述第一冷冻参数为所述第一参数;
    判断所述第二冷冻空间的实际温度与所述第二冷冻开机温度的差值是否大于所述第一预设阈值;以及若是,设置所述冷藏参数为所述第一参数,设置所述第二冷冻参数为所述第三参数,若否,设置所述第二冷冻参数为所述第一参数。
  6. 根据权利要求5所述的冰箱的制冷控制方法,其中在重设所述冷藏参数的步骤之后还包括:
    判断所述冷藏空间的实际温度与所述冷藏开机温度的差值是否大于第二预设阈值;以及若是,设置所述冷藏参数为所述第三参数,
    若否,保持所述冷藏参数为所述第一参数不变。
  7. 根据权利要求6所述的冰箱的制冷控制方法,其中,
    在所述冷藏参数、所述第一冷冻参数和所述第二冷冻参数均为所述第一参数时,使所述压缩机和所述风机关停,所述冷藏风门关闭,所述分路送风装置的所述冷藏出风口、所述第一冷冻出风口和所述第二冷冻出风口均关闭。
  8. 根据权利要求7所述的冰箱的制冷控制方法,其中,
    在所述冷藏参数和所述第一冷冻参数为所述第一参数,所述第二冷冻参数为所述第二参数时,使所述压缩机以预设的第二压缩机转速工作,所述风机以预设的第二风机转速工作,所述冷藏风门关闭,所述分路送风装置的所述冷藏出风口和所述第一冷冻出风口关闭,所述第二冷冻出风口开启。
  9. 根据权利要求8所述的冰箱的制冷控制方法,其中,
    在所述冷藏参数和所述第二冷冻参数为所述第一参数,所述第一冷冻参数为所述第二参数时,使所述压缩机以所述第二压缩机转速工作,所述风机以所述第二风机转速工作,所述冷藏风门关闭,所述分路送风装置的所述冷藏出风口和所述第二冷冻出风口关闭,所述第一冷冻出风口开启。
  10. 根据权利要求9所述的冰箱的制冷控制方法,其中,
    在所述冷藏参数为所述第一参数,所述第一冷冻参数和所述第二冷冻参数为所述第二参数时,使所述压缩机以大于等于所述第二压缩机转速的第三压缩机转速工作,所述风机以大于等于所述第二风机转速的第三风机转速工作,所述冷藏风门关闭,所述分路送风装置的所述冷藏出风口关闭,所述第一冷冻出风口和所述第二冷冻出风口开启。
  11. 根据权利要求10所述的冰箱的制冷控制方法,其中,
    在所述冷藏参数为所述第二参数,所述第一冷冻参数和所述第二冷冻参数为所述第一参数时,使所述压缩机以小于等于所述第二压缩机转速的第一压缩机转速工作,所述风机以小于等于所述第二风机转速的第一风机转速工作,所述冷藏风门开启,所述分路送风装置的所述冷藏出风口开启,所述第一冷冻出风口和所述第二冷冻出风口关闭。
  12. 根据权利要求11所述的冰箱的制冷控制方法,其中,
    在所述冷藏参数和所述第一冷冻参数为所述第一参数,所述第二冷冻参数为所述第三参数时,使所述压缩机以大于等于所述第三压缩机转速的第四压缩机转速工作,所述风机以大于等于所述第三风机转速的第四风机转速工作,所述冷藏风门关闭,所述分路送风装置的所述冷藏出风口和所述第一冷冻出风口关闭,所述第二冷冻出风口开启。
  13. 根据权利要求12所述的冰箱的制冷控制方法,其中,
    在所述冷藏参数和所述第二冷冻参数为所述第一参数,所述第一冷冻参数为所述第三参数时,使所述压缩机以所述第四压缩机转速工作,所述风机以所述第四风机转速工作,所述冷藏风门关闭,所述分路送风装置的所述冷藏出风口和所述第二冷冻出风口关闭,所述第一冷冻出风口开启。
  14. 根据权利要求13所述的冰箱的制冷控制方法,其中,
    在所述冷藏参数和所述第二冷冻参数为所述第三参数,所述第一冷冻参数为所述第一参数时,使所述压缩机以大于等于所述第四压缩机转速的第五压缩机转速工作,所述风机以大于等于所述第四风机转速的第五风机转速工作,所述冷藏风门开启,所述分路送风装置的所述冷藏出风口和所述第二冷冻出风口开启,所述第一冷冻出风口关闭。
  15. 根据权利要求14所述的冰箱的制冷控制方法,其中,
    在所述冷藏参数和所述第一冷冻参数为所述第三参数,所述第二冷冻参数为所述第一参数时,使所述压缩机以所述第五压缩机转速工作,所述风机以所述第五风机转速工作,所述冷藏风门开启,所述分路送风装置的所述冷藏出风口和所述第一冷冻出风口开启,所述第二冷冻出风口关闭;
    在所述冷藏参数为所述第一参数,所述第一冷冻参数和所述第二冷冻参数为所述第三参数时,使所述压缩机以大于等于所述第五压缩机转速的第六压缩机转速工作,所述风机以大于等于所述第五风机转速的第六风机转速工作,所述冷藏风门关闭,所述分路送风装置的所述冷藏出风口关闭,所述第一冷冻出风口和所述第二冷冻出风口开启;
    在所述冷藏参数、所述第一冷冻参数和所述第二冷冻参数均为所述第三参数时,使所述压缩机以大于等于所述第六压缩机转速的第七压缩机转速工作,所述风机以大于等于所述第六风机转速的第七风机转速工作,所述冷藏风门开启,所述分路送风装置的所述冷藏出风口、所述第一冷冻出风口和所述第二冷冻出风口均开启。
PCT/CN2018/093280 2017-06-29 2018-06-28 冰箱的制冷控制方法 WO2019001500A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/626,513 US11236937B2 (en) 2017-06-29 2018-06-28 Cooling control method for refrigerator
JP2019565895A JP6963035B2 (ja) 2017-06-29 2018-06-28 冷蔵庫の冷却制御方法
KR1020197031350A KR102255750B1 (ko) 2017-06-29 2018-06-28 냉장고의 냉각 제어 방법
EP18823604.6A EP3647690A4 (en) 2017-06-29 2018-06-28 COOLING CONTROL METHOD FOR REFRIGERATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710516009.1 2017-06-29
CN201710516009.1A CN107421202B (zh) 2017-06-29 2017-06-29 冰箱的制冷控制方法与计算机存储介质

Publications (1)

Publication Number Publication Date
WO2019001500A1 true WO2019001500A1 (zh) 2019-01-03

Family

ID=60426430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093280 WO2019001500A1 (zh) 2017-06-29 2018-06-28 冰箱的制冷控制方法

Country Status (6)

Country Link
US (1) US11236937B2 (zh)
EP (1) EP3647690A4 (zh)
JP (1) JP6963035B2 (zh)
KR (1) KR102255750B1 (zh)
CN (1) CN107421202B (zh)
WO (1) WO2019001500A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421202B (zh) * 2017-06-29 2019-10-01 青岛海尔股份有限公司 冰箱的制冷控制方法与计算机存储介质
CN114111201B (zh) * 2021-11-09 2023-09-19 Tcl家用电器(合肥)有限公司 冰箱制冷控制方法、装置、控制设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146400A (ja) * 1998-11-10 2000-05-26 Toshiba Corp 冷蔵庫
CN203672041U (zh) * 2012-08-03 2014-06-25 三菱电机株式会社 冷冻冷藏箱
CN107421202A (zh) * 2017-06-29 2017-12-01 青岛海尔股份有限公司 冰箱的制冷控制方法与计算机存储介质

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932459A1 (de) * 1989-09-28 1991-04-11 Bosch Siemens Hausgeraete Kuehlschrank, insbesondere mehrtemperaturen-kuehlschrank
CN1110676C (zh) * 1995-10-18 2003-06-04 Lg电子株式会社 控制冰箱冷藏室温度的装置和方法
KR0170878B1 (ko) * 1995-11-23 1999-03-20 윤종용 냉장고 및 그 운전제어방법
KR100208345B1 (ko) * 1996-04-02 1999-07-15 윤종용 냉장고의 온도제어방법 및 온도제어장치
KR100557433B1 (ko) * 1999-02-25 2006-03-07 삼성전자주식회사 냉장고 및 냉장고의 온도제어방법
JP2001280800A (ja) * 2000-03-31 2001-10-10 Sanyo Electric Co Ltd 空気調節装置及び貯蔵庫の空気流制御装置
US6668568B2 (en) * 2001-01-05 2003-12-30 General Electric Company Flexible sealed system and fan control algorithm
US6725680B1 (en) * 2002-03-22 2004-04-27 Whirlpool Corporation Multi-compartment refrigerator control algorithm for variable speed evaporator fan motor
US7337620B2 (en) * 2005-05-18 2008-03-04 Whirlpool Corporation Insulated ice compartment for bottom mount refrigerator
US8061153B2 (en) * 2006-12-28 2011-11-22 Whirlpool Corporation Refrigeration appliance with optional storage module
KR20090046251A (ko) * 2007-11-05 2009-05-11 엘지전자 주식회사 냉장고 및 그 제어방법
KR101570348B1 (ko) * 2008-11-19 2015-11-19 엘지전자 주식회사 바텀프리져타입 냉장고 및 그 제어방법
US20130061618A1 (en) * 2011-09-14 2013-03-14 General Electric Company Adaptive controller for a refrigeration appliance
JP5985212B2 (ja) * 2012-03-06 2016-09-06 ダイヤモンド電機株式会社 冷却コンプレッサ制御装置
CN105091493B (zh) * 2015-06-26 2018-02-02 青岛海尔股份有限公司 冰箱冷藏室的分区制冷控制方法和分区制冷控制装置
CN106482441B (zh) * 2015-08-26 2021-07-30 博西华电器(江苏)有限公司 制冷设备工作方法以及制冷设备
CN105042989B (zh) * 2015-08-26 2018-12-14 青岛海尔特种电冰箱有限公司 冰箱
CN105783411B (zh) * 2016-04-20 2018-02-13 合肥美的电冰箱有限公司 冰箱分时控制方法和装置
CN106123450B (zh) * 2016-06-23 2018-12-14 青岛海尔股份有限公司 冰箱的制冷控制方法与冰箱
US10288340B2 (en) * 2017-02-09 2019-05-14 Haier Us Appliance Solutions, Inc. Refrigerator appliance with dual freezer compartments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146400A (ja) * 1998-11-10 2000-05-26 Toshiba Corp 冷蔵庫
CN203672041U (zh) * 2012-08-03 2014-06-25 三菱电机株式会社 冷冻冷藏箱
CN107421202A (zh) * 2017-06-29 2017-12-01 青岛海尔股份有限公司 冰箱的制冷控制方法与计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647690A4

Also Published As

Publication number Publication date
US11236937B2 (en) 2022-02-01
EP3647690A4 (en) 2020-09-09
EP3647690A1 (en) 2020-05-06
KR102255750B1 (ko) 2021-05-25
US20200284491A1 (en) 2020-09-10
CN107421202B (zh) 2019-10-01
JP2020521937A (ja) 2020-07-27
JP6963035B2 (ja) 2021-11-05
CN107421202A (zh) 2017-12-01
KR20190138303A (ko) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2019001494A1 (zh) 冰箱的制冷控制方法与计算机存储介质
WO2019001503A1 (zh) 冰箱的制冷控制方法与计算机存储介质
WO2019001475A1 (zh) 冰箱的制冷控制方法与计算机存储介质
CN101937247B (zh) 风冷冰箱的保湿控制方法、系统及一种风冷冰箱
WO2019129244A1 (zh) 冰箱的散热控制方法与冰箱
CN110345692A (zh) 冰箱、冰箱变温室及用于冰箱变温室的控制方法
US20160370091A1 (en) Cool air circulation structure of refrigerator and method for controlling the same
CN108020000B (zh) 冰箱的化霜控制方法与冰箱
WO2019129245A1 (zh) 冰箱的散热控制方法与冰箱
WO2019105426A1 (zh) 冰箱的制冷控制方法与计算机存储介质
CN208170825U (zh) 一种具有门体干燥室的冰箱
WO2019001500A1 (zh) 冰箱的制冷控制方法
CN107314613B (zh) 冰箱的制冷控制方法与计算机存储介质
CN107763943B (zh) 冰箱的化霜控制方法与冰箱
CN107726711B (zh) 冰箱的化霜控制方法与冰箱
WO2019105424A1 (zh) 冰箱的制冷控制方法与计算机存储介质
WO2019105425A1 (zh) 冰箱的制冷控制方法与计算机存储介质
CN107677033B (zh) 冰箱的化霜控制方法与冰箱
US20200278136A1 (en) Hydrophobic Coating on Evaporator to Enhance Food Preservation
CN111059858A (zh) 冰箱的控制方法与计算机存储介质
JP2007120913A (ja) 冷蔵庫
CN115507580A (zh) 冰箱的控制方法与冰箱
CN107763960A (zh) 制冷模式的控制方法、控制装置、制冷设备和存储介质
JPS5833078A (ja) 冷蔵庫の温度制御装置
KR20040059358A (ko) 냉장고 및 냉동실 도어 열림방지방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197031350

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019565895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018823604

Country of ref document: EP

Effective date: 20200129