WO2019129244A1 - 冰箱的散热控制方法与冰箱 - Google Patents

冰箱的散热控制方法与冰箱 Download PDF

Info

Publication number
WO2019129244A1
WO2019129244A1 PCT/CN2018/125058 CN2018125058W WO2019129244A1 WO 2019129244 A1 WO2019129244 A1 WO 2019129244A1 CN 2018125058 W CN2018125058 W CN 2018125058W WO 2019129244 A1 WO2019129244 A1 WO 2019129244A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
cooling fan
refrigerator
air outlet
heat dissipation
Prior art date
Application number
PCT/CN2018/125058
Other languages
English (en)
French (fr)
Inventor
姬立胜
陶海波
李伟
聂圣源
戚斐斐
陈建全
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2019129244A1 publication Critical patent/WO2019129244A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0023Control of the air flow cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow

Definitions

  • the present invention relates to the field of home appliance technology, and in particular, to a heat dissipation control method for a refrigerator and a refrigerator.
  • the built-in refrigerator not only has the function of a general refrigerator, but also integrates with the style of the cabinet. Embedding the refrigerator into the cabinet formally forms the kitchen as a whole and is more beautiful.
  • the embedded refrigerator is generally provided with a condenser on the back, and an air outlet is arranged at the bottom and the top of the cabinet to form a ventilation and heat dissipation circulation system through natural convection.
  • this type of embedded refrigerator has a large requirement for the reserved distance of the cabinet or the surrounding walls, and it is often necessary to reserve 15 cm to 30 cm. If the reserved space is too large, it will affect the overall aesthetics. If the reserved space is insufficient, it will affect the heat dissipation of the refrigerator, which will seriously affect the normal service life of the refrigerator. In addition, it will cause damage to the surrounding cabinets or walls.
  • the present invention provides a heat dissipation control method for a refrigerator
  • the refrigerator includes: a casing having a storage space and a compressor compartment therein, and the compressor compartment is located at the bottom of the tank, and the compressor compartment is provided with a An air inlet and a first air outlet; the air outlet duct is disposed at the back of the box and extends vertically upward, and is connected to the compressor compartment through the first air outlet, and the second air outlet of the air outlet is provided with a first air outlet a cooling fan configured to provide a cooling capacity to the storage space
  • the refrigeration system includes a condenser disposed in the compressor compartment, a first cooling fan, and a compressor
  • the heat dissipation control method includes: acquiring the compressor The operation signal determines whether the compressor is turned on according to the operation signal; and if so, controls the first cooling fan and the second cooling fan to be turned on to dissipate heat from the compressor chamber, wherein the rotation speed of the first cooling fan is greater than the rotation speed
  • the first cooling fan is controlled to stop.
  • the method further includes: controlling the second cooling fan to continue to be turned off after the preset duration is turned on.
  • the preset duration is from 2 minutes to 5 minutes.
  • a refrigerator comprising: a casing defining a storage space and a compressor compartment therein, and the compressor compartment is located at the bottom of the tank, and the compressor compartment is provided with a first inlet The tuyere and the first air outlet; the air outlet duct is disposed on the back of the box body and extends vertically upward, and communicates with the compressor compartment through the first air outlet, and the second air outlet is disposed at the second air outlet of the air outlet duct a cooling system configured to provide a cooling capacity to the storage space, wherein the refrigeration system includes a condenser disposed in the compressor compartment, a first cooling fan, and a compressor; and a heat dissipation control device including: an acquisition module configured to obtain compression The operation signal of the machine; the determination module is configured to determine whether the compressor is turned on according to the operation signal; and the fan opening module is configured to control the first cooling fan and the second cooling fan to be turned on when the compressor is turned on, to perform the compressor chamber
  • an acquisition module configured to obtain compression The operation signal of
  • the heat dissipation control device further includes: a fan shutdown module configured to control the first cooling fan to stop when the compressor is stopped according to the operation signal.
  • the fan shutdown module is further configured to: control the second cooling fan to continue to be turned off after a preset duration.
  • the condenser is disposed at a side of the compressor chamber away from the first air outlet; the compressor is disposed at a side of the compressor chamber near the first air outlet; and the first cooling fan is disposed at the condenser and the compressor between.
  • the first air inlet is disposed on a side of the compressor compartment near the condenser, so that the cold air entering the compressor compartment passes through the condenser, the first cooling fan, and the compressor in sequence.
  • an angle between an air outlet direction of the second cooling fan and a horizontal ground where the refrigerator is located is greater than or equal to a preset angle.
  • the heat dissipation control method of the refrigerator of the present invention and the refrigerator wherein the refrigerator comprises: a box body defining a storage space and a compressor compartment therein, and the compressor compartment is located at the bottom of the tank body, and the compressor inlet is provided with a first air inlet and a first air outlet; the air outlet duct is disposed on the back of the box body and extends vertically upward, and communicates with the compressor compartment through the first air outlet, and a second cooling fan is disposed at the second air outlet of the air outlet duct; And a refrigeration system configured to provide a cooling capacity to the storage space, wherein the refrigeration system includes a condenser disposed in the compressor compartment, a first cooling fan, and a compressor, and the heat dissipation control method includes: obtaining an operation signal of the compressor; The signal determines whether the compressor is turned on; and if so, controls the first cooling fan and the second cooling fan to be turned on to dissipate heat from the compressor chamber, wherein the speed of the first cooling fan is
  • An air outlet duct is arranged at the back of the cabinet to prevent the hot air discharged from the compressor compartment from being directly blown to the cabinet or wall around the refrigerator, so as to prevent the hot air environment from damaging the cabinet or the wall for a long time.
  • the rotation speed of the second cooling fan is smaller than the rotation speed of the first cooling fan, which can prevent the cold air entering the compressor compartment from being directly discharged, so that the cold air can be fully utilized, effectively reducing the temperature of the compressor compartment, and the heat dissipation control method is more reasonable, and the refrigerator is strengthened. heat radiation.
  • the heat dissipation control method of the refrigerator of the present invention and the refrigerator control the first cooling fan to stop when the compressor is stopped according to the operation signal.
  • the method further comprises: controlling the second cooling fan to continue to be turned off after the preset duration is started.
  • the preset duration is 2 minutes to 5 minutes.
  • the second preset duration is set to 2 minutes to 5 minutes, so that the opening and closing time points of the first cooling fan and the second cooling fan are more reasonable, effectively enhancing the overall heat dissipation effect of the refrigerator, and effectively reducing the refrigerator and surrounding cabinets or walls.
  • the required heat dissipation distance between the refrigerators and the surrounding space is improved.
  • FIG. 1 is a schematic structural view of a refrigerator in the prior art
  • FIG. 2 is a side view of a refrigerator in accordance with one embodiment of the present invention.
  • FIG. 3 is a rear elevational view of the refrigerator in accordance with one embodiment of the present invention.
  • FIG. 4 is a top plan view of a refrigerator in accordance with one embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a heat dissipation control apparatus for a refrigerator according to an embodiment of the present invention
  • FIG. 6 is a block diagram showing the structure of a heat dissipation control device for a refrigerator according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a heat dissipation control method of a refrigerator according to an embodiment of the present invention.
  • FIG. 8 is a detailed flowchart of a heat dissipation control method of a refrigerator according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a refrigerator 300 in the prior art.
  • the refrigerator 300 is an embedded refrigerator and is disposed in the cabinet 200.
  • the current embedded refrigerator is generally provided with a condenser 303 at the back, a cabinet air inlet 307 at the bottom of the cabinet 200, and a cabinet air outlet 306 at the top to form a ventilation and heat dissipation circulation system through natural convection.
  • the wind enters through the cabinet air inlet 307 from the outside of the refrigerator 300, and enters the compressor compartment 301 via the compressor compartment air inlet 304 of the compressor compartment 301 to cool the compressor 302.
  • the compressor bed 301 flows out through the compressor bed air outlet 305, and then flows upward along the gap formed by the back of the refrigerator 300 and the cabinet 200, and the condenser 303 is cooled in the process, and finally from the cabinet air outlet 306. Flow out.
  • the ventilation and heat dissipation circulation system formed by the natural convection has a large requirement for the reserved distance between the embedded refrigerator and the cabinet 200 or the surrounding walls, and it is often required to reserve 15 cm to 30 cm. If the reserved space is too large, it will affect the overall aesthetics. If the reserved space is insufficient, it will affect the heat dissipation of the refrigerator, which will seriously affect the normal service life of the refrigerator. In addition, it will cause damage to the surrounding cabinet 200 or the wall.
  • the present invention first provides a refrigerator 100 that can prevent hot air discharged from the compressor compartment 12 from being directly blown to the cabinet 200 or wall around the refrigerator 100, thereby preventing the hot air environment from damaging the cabinet 200 or the wall for a long time.
  • cold air entering the compressor compartment 12 can be prevented from being directly discharged, so that the cold air can be fully utilized, the temperature of the compressor compartment 12 is effectively reduced, the heat dissipation control method is more reasonable, and the heat dissipation effect of the refrigerator 100 is enhanced.
  • 2 is a side view of a refrigerator 100 according to an embodiment of the present invention
  • FIG. 3 is a rear view of the refrigerator 100 according to an embodiment of the present invention
  • FIG. 4 is a plan view of the refrigerator 100 according to an embodiment of the present invention
  • the refrigerator 100 of the present embodiment may generally include a cabinet 10, an air outlet duct 30, a refrigeration system, and a heat dissipation control device 50.
  • the casing 10 defines a storage space 11 and a compressor compartment 12 therein, and the compressor compartment 12 is located at the bottom of the casing 10.
  • the compressor compartment 12 may be provided with a first air inlet 121 and a first air outlet 122.
  • the second air inlet 123 may be disposed at the compressor compartment 12 to increase the number of air inlets of the compressor compartment 12, so that more outside cold air can enter the compressor compartment 12, and the compressor compartment is strengthened. 12 heat dissipation effect.
  • the first air inlet 121 may be disposed at the bottom front end of the compressor compartment 12, and the second air inlet 123 may be disposed at the lower end of the compressor compartment 12.
  • a gap may be formed between the box 10 and the horizontal floor or the bottom surface of the cabinet 200, and the cold air outside the refrigerator 100 passes through the gap by the first air inlet 121 and / or the second air inlet 123 enters the compressor compartment 12.
  • the number and structure of the storage spaces 11 can be configured as needed.
  • the storage space 11 can be configured as a refrigerating space, a freezing space, a temperature changing space, or a fresh keeping space depending on the purpose.
  • Each of the storage spaces 11 may be divided into a plurality of storage areas by a partition plate, and the articles are stored using a rack or a drawer.
  • the refrigerator 100 of the present embodiment may further include a door body 20 pivotally disposed on a front surface of the cabinet 10 for the user to open and close the storage space 11.
  • the door body 20 can be disposed corresponding to the storage space 11, that is, each storage space 11 corresponds to one or more door bodies.
  • the refrigerator 100 of the present embodiment shown in FIG. 2 is provided with two storage spaces from top to bottom, and the two storage spaces can be respectively set as a refrigerating space and a freezing space, and the freezing space can be disposed below the refrigerating space.
  • the compressor compartment 12 is disposed below the freezing space.
  • the air outlet duct 30 is disposed on the back of the casing 10 and extends vertically upward, and communicates with the compressor compartment 12 through the first air outlet 122, and the second air outlet 31 of the air outlet duct 30 is provided with a second cooling fan. 32. That is to say, the cold air outside the refrigerator 100 enters the compressor compartment 12 through the first air inlet 121 and/or the second air inlet 123, and the compressor compartment 12 is sufficiently cooled, and the hot air after the heat exchange passes through the first air outlet 122.
  • the outlet air duct 30 is discharged.
  • the second air outlet 31 of the air outlet duct 30 may be disposed at the top of the box body 10, and the hot air discharged from the air outlet duct 30 may continue to pass through the gap between the top of the box body 10 and the ceiling or the top surface of the cabinet 200. discharge.
  • the angle between the air blowing direction of the second cooling fan 32 and the horizontal ground where the refrigerator 100 is located is greater than or equal to a preset angle.
  • the predetermined angle can be 30°.
  • the angle between the air outlet direction of the second cooling fan 32 and the horizontal ground where the refrigerator 100 is located is greater than or equal to a preset angle, and the hot air discharge in the air outlet duct 30 can be accelerated.
  • the second cooling fan 32 can also face the wind.
  • the hot air in the track 30 has a certain cooling effect to prevent the discharged hot air from damaging the cabinet 200 or the wall.
  • the wind outside the refrigerator 100 of the present embodiment is separated from the bottom of the cabinet 10 by the horizontal floor or the bottom surface of the cabinet 200 by the first air inlet 121 and/or the second inlet.
  • the tuyere 123 enters the compressor compartment 12.
  • the cold air entering the compressor compartment 12 is sufficiently cooled to the compressor 42 and the condenser 41 inside the compressor compartment 12, and the hot air after the heat exchange enters the outlet air duct 30 through the first air outlet 122, and passes through the second cooling fan 32.
  • the two air outlets 31 are discharged, and finally a gap is formed along the top of the cabinet 10 and the top surface of the cabinet 200 or the wall to achieve sufficient heat dissipation of the refrigerator 100.
  • the refrigeration system is configured to provide a cooling capacity to the storage space 11, wherein the refrigeration system includes a condenser 41 disposed in the compressor housing 12, a first cooling fan 43, and a compressor 42.
  • the condenser 41 is disposed on a side of the compressor compartment 12 away from the first air outlet 122; the compressor 42 is disposed in a side of the compressor compartment 12 adjacent to the first air outlet 122; and the first cooling fan 43 is disposed Between the condenser 41 and the compressor 42.
  • the first air inlet 121 is disposed on a side of the compressor compartment 12 near the condenser 41, so that the cold air entering the compressor compartment 12 sequentially passes through the condenser 41, the first cooling fan 43, and the compressor 42 to realize the compressor compartment 12 Cool down sufficiently.
  • the condenser 41 may be a coiled condenser, and a coiled tube or fin is wound around the condenser 41 to increase the heat exchange area.
  • Both the first cooling fan 43 and the second cooling fan 32 may be axial fans.
  • the refrigeration system may be a refrigeration cycle system composed of a compressor 42, a condenser 41, a throttle device, an evaporator, and the like.
  • the interior of the casing 10 may further define an evaporator chamber and communicate with the storage space 11.
  • the refrigeration system further includes an evaporator disposed in the evaporator chamber to circulate and cool the storage space 11.
  • the refrigeration system provides different amounts of cooling to various types of storage spaces, resulting in different temperatures within various types of storage spaces.
  • the temperature in the refrigerated space is generally between 2 ° C and 10 ° C, preferably between 3 ° C and 8 ° C.
  • the temperature range in the freezer space is generally between -22 ° C and -14 ° C.
  • the optimal storage temperatures for different types of items are not the same, and the storage space suitable for storage is also different. For example, fruit and vegetable foods are suitable for storage in refrigerated spaces or fresh-keeping spaces, while meat foods are suitable for storage in frozen spaces.
  • the heat dissipation control device 50 may generally include an acquisition module 51, a determination module 52, and a fan on module 53.
  • the acquisition module 51 can be configured to acquire an operational signal of the compressor 42.
  • the determination module 52 can be configured to determine whether the compressor 42 is on based on the operational signal.
  • the fan opening module 53 can be configured to control the first cooling fan 43 and the second cooling fan 32 to be turned on when the compressor 42 is turned on to dissipate heat from the compressor block 12, wherein the first cooling fan 43 has a higher rotational speed than the second cooling fan. 32 rpm.
  • the refrigerator 100 of the present embodiment is provided with an air outlet duct 30 on the back of the cabinet 10, so that hot air discharged from the compressor compartment 12 can be prevented from being directly blown to the cabinet 200 or the wall around the refrigerator 100, thereby avoiding damage to the cabinet by a long hot air environment. 200 or wall.
  • the compressor 42 When the compressor 42 is turned on, the first cooling fan 43 and the second cooling fan 32 are controlled to be turned on, and the rotation speed of the second cooling fan 32 is smaller than the rotation speed of the first cooling fan 43, so that the cold air entering the compressor chamber 12 can be prevented from being blocked.
  • the direct discharge allows the cold air to be fully utilized, effectively reducing the temperature of the compressor compartment 12, and the heat dissipation control method is more reasonable, and the heat dissipation effect of the refrigerator 100 is enhanced.
  • FIG. 6 is a block diagram showing the structure of a heat dissipation control device 50 for a refrigerator according to another embodiment of the present invention. Based on the previous embodiment, the heat dissipation control device 50 may further include: a fan shutdown module 54.
  • the fan shutdown module 54 can be configured to control the first cooling fan 43 to stop when the compressor 42 is stopped according to the operation signal.
  • the fan shutdown module 54 can also be configured to control the second cooling fan 32 to continue to be turned off after a preset period of time.
  • the preset duration may be from 2 minutes to 5 minutes. That is, the preset duration can be set to any length between 2 minutes and 5 minutes, and specifically, can be set according to actual conditions. For example, if the preset duration is 3 minutes, when it is determined that the compressor 42 is stopped, the first cooling fan 43 is immediately stopped; and the second cooling fan 32 is kept on for 3 minutes and then stopped. It should be noted that the specific value of the second preset duration of 3 minutes is only an example, and is not limited to the present invention. The second preset duration may be set to any length between 2 minutes and 5 minutes, specifically , can be set according to the actual situation.
  • the refrigerator 100 of the embodiment controls the first cooling fan 43 to stop when the compressor 42 is stopped according to the operation signal.
  • the method further includes: controlling the second cooling fan 32 to continue to be turned off after the preset time period is turned on.
  • the preset duration is 2 minutes to 5 minutes.
  • the first cooling fan 43 is first stopped to prevent the cold air from continuing to enter the compressor compartment 12; the second cooling fan 32 is kept running for a preset period of time and then stopped, and the compressor compartment 12 and the blasting wind can be avoided.
  • the hot gas remaining in the road 30 affects the heat dissipation effect of the refrigerator 100.
  • the second preset duration is set to 2 minutes to 5 minutes, so that the opening and closing time points of the first cooling fan 43 and the second cooling fan 32 are more reasonable, and the overall heat dissipation effect of the refrigerator 100 is effectively enhanced, and the refrigerator 100 and the surrounding area can be effectively reduced.
  • the heat dissipation distance between the cabinet or the wall needs to be reserved, thereby improving the overall aesthetics of the refrigerator 100 and the surrounding space.
  • FIG. 7 is a schematic diagram of a heat dissipation control method of a refrigerator according to an embodiment of the present invention.
  • the heat dissipation control method of the refrigerator can be performed by the heat dissipation control device 50 of any of the above embodiments. As shown in FIG. 7, the heat dissipation control method of the refrigerator can perform the following steps:
  • Step S702 acquiring an operation signal of the compressor 42
  • Step S704 determining whether the compressor 42 is turned on according to the operation signal, and if so, executing step S706, and if not, returning to step S702;
  • step S706 the first cooling fan 43 and the second cooling fan 32 are controlled to be turned on to dissipate heat from the compressor compartment 12.
  • the rotational speeds of the first cooling fan 43 and the second cooling fan 32 are different in step S706. Specifically, the rotational speed of the first cooling fan 43 is greater than the rotational speed of the second cooling fan 32.
  • the cold air entering the compressor compartment 12 can be prevented from being directly discharged, so that the cold air can be fully utilized, the temperature of the compressor compartment 12 is effectively reduced, the heat dissipation control method is more reasonable, and the heat dissipation effect of the refrigerator 100 is enhanced.
  • the method further includes: controlling the second cooling fan 32 to continue to be turned off after the preset time period is turned on.
  • the preset duration may be any length in the range of 2 minutes to 5 minutes, and may be set according to actual conditions.
  • the first cooling fan 43 is first stopped to prevent the cold air from continuing to enter the compressor compartment 12; the second cooling fan 32 is kept running for a preset period of time and then stopped, so that the compressor compartment 12 and the outlet are avoided.
  • the hot air in the air duct 30 remains, which affects the heat dissipation effect of the refrigerator 100.
  • the refrigerator 100 can achieve a higher technical effect by further optimizing and configuring the foregoing steps.
  • the heat dissipation control method of the refrigerator of the embodiment is described below with reference to an optional execution flow of the embodiment. For detailed description, this embodiment is only an example of the execution flow. In a specific implementation, the execution order and operating conditions of some steps may be modified according to specific implementation requirements.
  • FIG. 8 is a detailed flowchart of a method for controlling heat dissipation of a refrigerator according to an embodiment of the present invention, the method for controlling heat dissipation of the refrigerator includes the following steps:
  • Step S802 acquiring an operation signal of the compressor 42
  • Step S804 determining whether the compressor 42 is turned on according to the operation signal, and if so, executing step S806, and if not, returning to step S802;
  • Step S806 controlling the first cooling fan 43 and the second cooling fan 32 to be turned on to dissipate heat from the compressor compartment 12;
  • Step S808 determining whether the compressor 42 is stopped according to the operation signal, and if so, executing step S810, and if not, returning to step S806;
  • step S810 the first cooling fan 43 is controlled to stop, and the second cooling fan 32 is controlled to continue to be turned off after a preset period of time.
  • the rotational speeds of the first cooling fan 43 and the second cooling fan 32 are different in step S806. Specifically, the rotational speed of the first cooling fan 43 is greater than the rotational speed of the second cooling fan 32.
  • the cold air entering the compressor compartment 12 can be prevented from being directly discharged, so that the cold air can be fully utilized, the temperature of the compressor compartment 12 is effectively reduced, the heat dissipation control method is more reasonable, and the heat dissipation effect of the refrigerator 100 is enhanced.
  • the first cooling fan 43 can be controlled to stop, and the second cooling fan 32 is controlled to continue to be turned off after a preset period of time.
  • the preset duration in step S810 can be any length in the range of 2 minutes to 5 minutes, and can be set according to actual conditions.
  • step S810 when it is determined that the compressor 42 is stopped, the first cooling fan 43 is controlled to stop, and the second cooling fan 32 is controlled to continue to be turned on for a preset period of time, and the premise is that the compressor 42 is in the running state first.
  • the cooling fan 43 and the second cooling fan 32 are also in an operating state. Under this premise, after the compressor 42 is stopped, it is possible to control the first cooling fan 43 and the second cooling fan 32 which are originally in an operating state to be stopped.
  • the air outlet duct 30 is disposed on the back of the cabinet 10, so that the hot air discharged from the compressor compartment 12 can be prevented from being directly blown to the cabinet or wall around the refrigerator 100, thereby avoiding a long-time hot air environment. Damage to the cabinet or wall.
  • the rotation speed of the second cooling fan 32 is smaller than the rotation speed of the first cooling fan 43, and the cold air entering the compressor compartment 12 can be prevented from being directly discharged, so that the cold air can be fully utilized, the temperature of the compressor compartment 12 is effectively reduced, and the heat dissipation control method is more reasonable.
  • the heat dissipation effect of the refrigerator 100 is enhanced.
  • the heat dissipation control method of the refrigerator of the embodiment controls the first cooling fan 43 to stop when the compressor 42 is stopped according to the operation signal.
  • the method further includes: controlling the second cooling fan 32 to continue to be turned off after the preset time period is turned on.
  • the preset duration is 2 minutes to 5 minutes.
  • the first cooling fan 43 is first stopped to prevent the cold air from continuing to enter the compressor compartment 12; the second cooling fan 32 is kept running for a preset period of time and then stopped, and the compressor compartment 12 and the blasting wind can be avoided.
  • the hot gas remaining in the road 30 affects the heat dissipation effect of the refrigerator 100.
  • the second preset duration is set to 2 minutes to 5 minutes, so that the opening and closing time points of the first cooling fan 43 and the second cooling fan 32 are more reasonable, and the overall heat dissipation effect of the refrigerator 100 is effectively enhanced, and the refrigerator 100 and the surrounding area can be effectively reduced.
  • the heat dissipation distance between the cabinet or the wall needs to be reserved, thereby improving the overall aesthetics of the refrigerator 100 and the surrounding space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种冰箱的散热控制方法与冰箱。冰箱(100)的散热控制方法包括:获取压缩机(42)的运行信号;根据运行信号判断压缩机(42)是否开启;以及若是,控制第一冷却风机(43)和第二冷却风机(32)开启,以对压缩机仓(12)进行散热,其中第一冷却风机(43)的转速大于第二冷却风机(32)的转速。冰箱(100)的结构包括,在箱体(10)背部设置有出风风道(30),以防止从压缩机仓(12)排出的热风直接吹向冰箱周围的橱柜(200)或墙壁。

Description

冰箱的散热控制方法与冰箱 技术领域
本发明涉及家电技术领域,特别是涉及一种冰箱的散热控制方法与冰箱。
背景技术
随着社会日益发展和人们生活水平不断提高,人们的生活节奏也越来越快,因而越来越愿意买很多食物放置在冰箱中,冰箱已经成为了人们日常生活中不可缺少的家用电器之一。
由于一体化装修普及度程度提高,人们对冰箱的要求标准也逐步提升,不仅是外观颜值高、性能优越,还要求其能够符合家庭装修需求。嵌入式冰箱不仅具备一般冰箱的功能,还能够与橱柜的风格融为一体。把冰箱嵌入橱柜在形式上将厨房形成了一个整体,比较美观。
目前的嵌入式冰箱一般在后背设置有冷凝器,在橱柜的底部和顶部设置有出风口,通过自然对流形成通风散热循环系统。但是这种形式的嵌入式冰箱对橱柜或者四周墙壁的预留距离有较大要求,往往需要预留15㎝至30㎝。预留空间过大会影响整体美观程度,若预留空间不足,又会影响冰箱散热,进而严重影响冰箱的正常使用寿命,此外,还会对周围的橱柜或墙壁造成损坏。
发明内容
本发明的一个目的是加强冰箱的散热效果。
本发明一个进一步的目的是减少冰箱与橱柜或墙壁之间的距离,提升冰箱与周围空间的整体美观度。
特别地,本发明提供了一种冰箱的散热控制方法,其中冰箱包括:箱体,其内部限定有储物空间和压缩机仓,且压缩机仓位于箱体底部,压缩机仓处设置有第一进风口和第一出风口;出风风道,设置于箱体背部且竖直向上延伸,并通过第一出风口与压缩机仓连通,出风风道的第二出风口处设置有第二冷却风机;以及制冷系统,配置成向储物空间提供冷量,其中制冷系统包括设置于压缩机仓的冷凝器、第一冷却风机和压缩机,且该散热控制方法包括:获取压缩机的运行信号;根据运行信号判断压缩机是否开启;以及若是, 控制第一冷却风机和第二冷却风机开启,以对压缩机仓进行散热,其中第一冷却风机的转速大于第二冷却风机的转速。
可选地,根据运行信号确定压缩机停机时,控制第一冷却风机停机。
可选地,在根据运行信号确定压缩机停机的步骤之后还包括:控制第二冷却风机继续开启预设时长之后停机。
可选地,预设时长为2分钟至5分钟。
根据本发明的另一个方面,还提供了一种冰箱,包括:箱体,其内部限定有储物空间和压缩机仓,且压缩机仓位于箱体底部,压缩机仓处设置有第一进风口和第一出风口;出风风道,设置于箱体背部且竖直向上延伸,并通过第一出风口与压缩机仓连通,出风风道的第二出风口处设置有第二冷却风机;制冷系统,配置成向储物空间提供冷量,其中制冷系统包括设置于压缩机仓的冷凝器、第一冷却风机和压缩机;以及散热控制装置,包括:获取模块,配置成获取压缩机的运行信号;判断模块,配置成根据运行信号判断压缩机是否开启;以及风机开启模块,配置成在压缩机开启时,控制第一冷却风机和第二冷却风机开启,以对压缩机仓进行散热,其中第一冷却风机的转速大于第二冷却风机的转速。
可选地,散热控制装置还包括:风机停机模块,配置成根据运行信号确定压缩机停机时,控制第一冷却风机停机。
可选地,风机停机模块还配置成:控制第二冷却风机继续开启预设时长之后停机。
可选地,冷凝器设置于压缩机仓内远离第一出风口的一侧;压缩机设置于压缩机仓内靠近第一出风口的一侧;且第一冷却风机设置于冷凝器和压缩机之间。
可选地,第一进风口设置于压缩机仓靠近冷凝器的一侧,以使进入压缩机仓的冷风依次经过冷凝器、第一冷却风机、压缩机。
可选地,第二冷却风机的出风方向与冰箱所在的水平地面的夹角大于等于预设角度。
本发明的冰箱的散热控制方法与冰箱,其中冰箱包括:箱体,其内部限定有储物空间和压缩机仓,且压缩机仓位于箱体底部,压缩机仓处设置有第一进风口和第一出风口;出风风道,设置于箱体背部且竖直向上延伸,并通过第一出风口与压缩机仓连通,出风风道的第二出风口处设置有第二冷却风 机;以及制冷系统,配置成向储物空间提供冷量,其中制冷系统包括设置于压缩机仓的冷凝器、第一冷却风机和压缩机,且散热控制方法包括:获取压缩机的运行信号;根据运行信号判断压缩机是否开启;以及若是,控制第一冷却风机和第二冷却风机开启,以对压缩机仓进行散热,其中第一冷却风机的转速大于第二冷却风机的转速。在箱体背部设置有出风风道,可以防止从压缩机仓排出的热风直接吹向冰箱周围的橱柜或墙壁,避免长时间的热风环境损坏橱柜或墙壁。第二冷却风机的转速小于第一冷却风机的转速,可以防止进入压缩机仓的冷风被直接排出,使得冷风能够被充分利用,有效降低压缩机仓的温度,散热控制方法更加合理,加强冰箱的散热效果。
进一步地,本发明的冰箱的散热控制方法与冰箱,根据运行信号确定压缩机停机时,控制第一冷却风机停机。在根据运行信号确定压缩机停机的步骤之后还包括:控制第二冷却风机继续开启预设时长之后停机。其中,预设时长为2分钟至5分钟。在压缩机停止工作之后,首先使第一冷却风机停机,避免冷风继续进入压缩机仓;保持第二冷却风机继续运行预设时长后停机,可以避免压缩机仓和出风风道中热气残留,影响冰箱的散热效果。第二预设时长设置为2分钟至5分钟,使得第一冷却风机和第二冷却风机的开、关机时间点更加合理,有效增强冰箱的整体散热效果,可以有效减少冰箱与周围橱柜或墙壁之间需要预留的散热距离,从而提升冰箱与周围空间的整体美观度,此外,可以实现自由嵌入橱柜或墙壁间隙,不必预先对橱柜或墙壁进行改造,使得橱柜必须设置有橱柜进风口和橱柜出风口。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是现有技术中冰箱的结构示意图;
图2是根据本发明一个实施例的冰箱的侧视图;
图3是根据本发明一个实施例的冰箱的后视图;
图4是根据本发明一个实施例的冰箱的俯视图;
图5是根据本发明一个实施例的冰箱的散热控制装置的结构框图;
图6是根据本发明另一个实施例的冰箱的散热控制装置的结构框图;
图7是根据本发明一个实施例的冰箱的散热控制方法的示意图;以及
图8是根据本发明一个实施例的冰箱的散热控制方法的详细流程图。
具体实施方式
图1是现有技术中冰箱300的结构示意图,该冰箱300为嵌入式冰箱,设置于橱柜200中。如图1所示,目前的嵌入式冰箱一般在后背设置有冷凝器303,在橱柜200的底部设置有橱柜进风口307,在顶部设置有橱柜出风口306,通过自然对流形成通风散热循环系统。具体地,按照图1中的箭头所示方向,风由冰箱300外部通过橱柜进风口307进入,再经由压缩机仓301的压缩机仓进风口304进入压缩机仓301,对压缩机302进行冷却后,经由压缩机仓出风口305流出压缩机仓301,之后沿着冰箱300与的背部与橱柜200形成的间隙向上流动,并在此过程中对冷凝器303进行冷却,最后从橱柜出风口306流出。这种自然对流形成的通风散热循环系统对嵌入式冰箱与橱柜200或者四周墙壁的预留距离有较大要求,往往需要预留15㎝至30㎝。预留空间过大会影响整体美观程度,若预留空间不足,又会影响冰箱散热,进而严重影响冰箱的正常使用寿命,此外,还会对周围的橱柜200或墙壁造成损坏。
本发明首先提供了一种冰箱100,可以可以防止从压缩机仓12排出的热风直接吹向冰箱100周围的橱柜200或墙壁,避免长时间的热风环境损坏橱柜200或墙壁。此外,可以防止进入压缩机仓12的冷风被直接排出,使得冷风能够被充分利用,有效降低压缩机仓12的温度,散热控制方法更加合理,加强冰箱100的散热效果。图2是根据本发明一个实施例的冰箱100的侧视图,图3是根据本发明一个实施例的冰箱100的后视图,图4是根据本发明一个实施例的冰箱100的俯视图,图5是根据本发明一个实施例的冰箱的散热控制装置50的结构框图。如图2至图5所示,本实施例的冰箱100一般性地可以包括:箱体10、出风风道30、制冷系统以及散热控制装置50。
其中,箱体10,其内部限定有储物空间11和压缩机仓12,且压缩机仓12位于箱体10底部,压缩机仓12处可以设置有第一进风口121和第一出风口122。在其他一些实施例中,压缩机仓12处还可以设置有第二进风口123, 增加压缩机仓12进风口的数量,可以使更多的外界冷风进入压缩机仓12,加强对压缩机仓12的散热效果。如图2所示,第一进风口121可以设置于压缩机仓12的底部前端,第二进风口123可以设置于压缩机仓12的背部下端。需要说明的是,由于箱体10的底部一般设置有垫脚,因而箱体10与水平地面或橱柜200底面之间可以形成有间隙,冰箱100外部的冷风即通过该间隙由第一进风口121和/或第二进风口123进入压缩机仓12。
储物空间11的数量以及结构可以根据需求进行配置。储物空间11按照用途不同可以配置为冷藏空间、冷冻空间、变温空间或者保鲜空间。各个储物空间11可以由分隔板分割为多个储物区域,利用搁物架或者抽屉储存物品。
本实施例的冰箱100还可以包括:门体20,可枢转地设置于箱体10的前表面,以供用户开闭储物空间11。门体20可以与储物空间11对应设置,即每一个储物空间11都对应有一个或多个门体。图2示出的本实施例的冰箱100由上至下设置有两个储物空间,且该两个储物空间可以分别设置为冷藏空间和冷冻空间,且冷冻空间可以设置于冷藏空间的下方,压缩机仓12设置于冷冻空间的下方。
出风风道30,设置于箱体10背部且竖直向上延伸,并通过第一出风口122与压缩机仓12连通,出风风道30的第二出风口31处设置有第二冷却风机32。也就是说,冰箱100外部的冷风通过第一进风口121和/或第二进风口123进入压缩机仓12,对压缩机仓12进行充分冷却,热交换后的热风通过第一出风口122经过出风风道30排出。需要说明的是,出风风道30的第二出风口31可以设置于箱体10的顶部,出风风道30排出的热风可以继续通过箱体10顶部与天花板或橱柜200顶面形成的间隙排出。第二冷却风机32的出风方向与冰箱100所在的水平地面的夹角大于等于预设角度。在一种具体的实施例中,该预设角度可以为30°。第二冷却风机32的出风方向与冰箱100所在的水平地面的夹角大于等于预设角度,可以加速出风风道30中的热风排出,此外,第二冷却风机32还可以对出风风道30中的热风具有一定冷却效果,避免排出的热风损坏橱柜200或墙壁。
如图2至图4中的箭头所示,本实施例的冰箱100外部的风沿着箱体10底部与水平地面或橱柜200底面形成的间隙,由第一进风口121和/或第二进风口123进入压缩机仓12。进入压缩机仓12的冷风对压缩机仓12内部的压 缩机42和冷凝器41充分冷却,换热后的热风通过第一出风口122进入出风风道30,通过第二冷却风机32由第二出风口31排出,最后沿着箱体10顶部与橱柜200顶面或墙壁形成间隙排出,实现对冰箱100的充分散热。
制冷系统,配置成向储物空间11提供冷量,其中制冷系统包括设置于压缩机仓12的冷凝器41、第一冷却风机43和压缩机42。具体地,冷凝器41设置于压缩机仓12内远离第一出风口122的一侧;压缩机42设置于压缩机仓12内靠近第一出风口122的一侧;且第一冷却风机43设置于冷凝器41和压缩机42之间。第一进风口121设置于压缩机仓12靠近冷凝器41的一侧,以使进入压缩机仓12的冷风依次经过冷凝器41、第一冷却风机43、压缩机42,实现对压缩机仓12充分冷却。在一种优选的实施例中,冷凝器41可以为盘管式冷凝器,且冷凝器41上缠绕有丝管或翅片,以增大换热面积。第一冷却风机43和第二冷却风机32均可以为轴流风机。
具体地,制冷系统可以为由压缩机42、冷凝器41、节流装置和蒸发器等构成的制冷循环系统。箱体10内部还可以限定有蒸发器室,且与储物空间11连通,制冷系统还包括:蒸发器,设置于蒸发器室内,以向储物空间11循环制冷。制冷系统向各种类型的储物空间提供的冷量不同,使得各种类型的储物空间内的温度也不相同。其中冷藏空间内的温度一般处于2℃至10℃之间,优先为3℃至8℃。冷冻空间内的温度范围一般处于-22℃至-14℃。不同种类的物品的最佳存储温度并不相同,进而适宜存放的储物空间也并不相同。例如果蔬类食物适宜存放于冷藏空间或者保鲜空间,而肉类食物适宜存放于冷冻空间。
如图5所示,散热控制装置50一般性地可以包括:获取模块51、判断模块52以及风机开启模块53。在以上模块中,获取模块51可以配置成获取压缩机42的运行信号。判断模块52可以配置成根据运行信号判断压缩机42是否开启。风机开启模块53可以配置成在压缩机42开启时,控制第一冷却风机43和第二冷却风机32开启,以对压缩机仓12进行散热,其中第一冷却风机43的转速大于第二冷却风机32的转速。
本实施例的冰箱100,在箱体10背部设置有出风风道30,可以防止从压缩机仓12排出的热风直接吹向冰箱100周围的橱柜200或墙壁,避免长时间的热风环境损坏橱柜200或墙壁。在压缩机42开启工作时,控制第一冷却风机43和第二冷却风机32开启,并使第二冷却风机32的转速小于第 一冷却风机43的转速,可以防止进入压缩机仓12的冷风被直接排出,使得冷风能够被充分利用,有效降低压缩机仓12的温度,散热控制方法更加合理,加强冰箱100的散热效果。
图6是根据本发明另一个实施例的冰箱的散热控制装置50的结构框图。在上一实施例的基础上,散热控制装置50还可以包括:风机停机模块54。
其中,风机停机模块54可以配置成根据运行信号确定压缩机42停机时,控制第一冷却风机43停机。此外,风机停机模块54还可以配置成:控制第二冷却风机32继续开启预设时长之后停机。在一种具体的实施例中,预设时长可以为2分钟至5分钟。即预设时长可以设置为2分钟至5分钟之间的任意时长,具体地,可以根据实际情况进行设置。例如,若预设时长为3分钟,则在确定压缩机42停机时,立即控制第一冷却风机43停机;并使第二冷却风机32继续开启3分钟后停机。需要说明的是,上述第二预设时长为3分钟的具体数值仅为例举,而并非对本发明的限定,第二预设时长可以设置为2分钟至5分钟之间的任意时长,具体地,可以根据实际情况进行设置。
本实施例的冰箱100,根据运行信号确定压缩机42停机时,控制第一冷却风机43停机。在根据运行信号确定压缩机42停机的步骤之后还包括:控制第二冷却风机32继续开启预设时长之后停机。其中,预设时长为2分钟至5分钟。在压缩机42停止工作之后,首先使第一冷却风机43停机,避免冷风继续进入压缩机仓12;保持第二冷却风机32继续运行预设时长后停机,可以避免压缩机仓12和出风风道30中热气残留,影响冰箱100的散热效果。第二预设时长设置为2分钟至5分钟,使得第一冷却风机43和第二冷却风机32的开、关机时间点更加合理,有效增强冰箱100的整体散热效果,可以有效减少冰箱100与周围橱柜或墙壁之间需要预留的散热距离,从而提升冰箱100与周围空间的整体美观度,此外,可以实现自由嵌入橱柜或墙壁间隙,不必预先对橱柜或墙壁进行改造,使得橱柜必须设置有橱柜进风口和橱柜出风口。
图7是根据本发明一个实施例的冰箱的散热控制方法的示意图。该冰箱的散热控制方法可以由上述任一实施例的散热控制装置50执行。如图7所示,该冰箱的散热控制方法可以执行以下步骤:
步骤S702,获取压缩机42的运行信号;
步骤S704,根据运行信号判断压缩机42是否开启,若是,执行步骤S706, 若否,返回执行步骤S702;
步骤S706,控制第一冷却风机43和第二冷却风机32开启,以对压缩机仓12进行散热。
在以上步骤中,步骤S706中第一冷却风机43和第二冷却风机32的转速不同,具体地,第一冷却风机43的转速大于第二冷却风机32的转速。可以防止进入压缩机仓12的冷风被直接排出,使得冷风能够被充分利用,有效降低压缩机仓12的温度,散热控制方法更加合理,加强冰箱100的散热效果。
根据步骤S702中压缩机42的运行信号可以确定压缩机42是开启还是停机。在根据运行信号确定压缩机42停机时,可以控制第一冷却风机43停机。此外,在其他一些实施例中,在根据运行信号确定压缩机42停机的步骤之后还可以包括:控制第二冷却风机32继续开启预设时长之后停机。具体地,预设时长可以为2分钟至5分钟范围内的任意时长,可以根据实际情况进行设置。在压缩机42停止工作之后,首先使第一冷却风机43停机,避免冷风继续进入压缩机仓12;保持第二冷却风机32继续运行预设时长后再停机,可以避免压缩机仓12和出风风道30中热气残留,影响冰箱100的散热效果。
在一些可选实施例中,可以通过对上述步骤的进一步优化和配置使得冰箱100实现更高的技术效果,以下结合对本实施例的一个可选执行流程的介绍对本实施例的冰箱的散热控制方法进行详细说明,该实施例仅为对执行流程的举例说明,在具体实施时,可以根据具体实施需求,对部分步骤的执行顺序、运行条件进行修改。图8是根据本发明一个实施例的冰箱的散热控制方法的详细流程图,该冰箱的散热控制方法包括以下步骤:
步骤S802,获取压缩机42的运行信号;
步骤S804,根据运行信号判断压缩机42是否开启,若是,执行步骤S806,若否,返回执行步骤S802;
步骤S806,控制第一冷却风机43和第二冷却风机32开启,以对压缩机仓12进行散热;
步骤S808,根据运行信号判断压缩机42是否停机,若是,执行步骤S810,若否,返回执行步骤S806;
步骤S810,控制第一冷却风机43停机,控制第二冷却风机32继续开 启预设时长之后停机。
在以上步骤中,步骤S806中第一冷却风机43和第二冷却风机32的转速不同,具体地,第一冷却风机43的转速大于第二冷却风机32的转速。可以防止进入压缩机仓12的冷风被直接排出,使得冷风能够被充分利用,有效降低压缩机仓12的温度,散热控制方法更加合理,加强冰箱100的散热效果。
根据步骤S802中压缩机42的运行信号可以确定压缩机42是开启还是停机。在根据运行信号确定压缩机42停机时,可以控制第一冷却风机43停机,控制第二冷却风机32继续开启预设时长之后停机。具体地,步骤S810中的预设时长可以为2分钟至5分钟范围内的任意时长,可以根据实际情况进行设置。在压缩机42停止工作之后,首先使第一冷却风机43停机,避免冷风继续进入压缩机仓12;保持第二冷却风机32继续运行预设时长后再停机,可以避免压缩机仓12和出风风道30中热气残留,影响冰箱100的散热效果。
需要说明的是,步骤S810中在确定压缩机42停机时控制第一冷却风机43停机,控制第二冷却风机32继续开启预设时长后停机,前提都是之前压缩机42处于运行状态,第一冷却风机43和第二冷却风机32也均处于工作状态。在此前提之下,压缩机42停机之后,才可以控制原本是工作状态的第一冷却风机43和第二冷却风机32停机。
本实施例的冰箱的散热控制方法,在箱体10背部设置有出风风道30,可以防止从压缩机仓12排出的热风直接吹向冰箱100周围的橱柜或墙壁,避免长时间的热风环境损坏橱柜或墙壁。第二冷却风机32的转速小于第一冷却风机43的转速,可以防止进入压缩机仓12的冷风被直接排出,使得冷风能够被充分利用,有效降低压缩机仓12的温度,散热控制方法更加合理,加强冰箱100的散热效果。
进一步地,本实施例的冰箱的散热控制方法,根据运行信号确定压缩机42停机时,控制第一冷却风机43停机。在根据运行信号确定压缩机42停机的步骤之后还包括:控制第二冷却风机32继续开启预设时长之后停机。其中,预设时长为2分钟至5分钟。在压缩机42停止工作之后,首先使第一冷却风机43停机,避免冷风继续进入压缩机仓12;保持第二冷却风机32继续运行预设时长后停机,可以避免压缩机仓12和出风风道30中热气残留, 影响冰箱100的散热效果。第二预设时长设置为2分钟至5分钟,使得第一冷却风机43和第二冷却风机32的开、关机时间点更加合理,有效增强冰箱100的整体散热效果,可以有效减少冰箱100与周围橱柜或墙壁之间需要预留的散热距离,从而提升冰箱100与周围空间的整体美观度,此外,可以实现自由嵌入橱柜或墙壁间隙,不必预先对橱柜或墙壁进行改造,使得橱柜必须设置有橱柜进风口和橱柜出风口。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱的散热控制方法,其中所述冰箱包括:箱体,其内部限定有储物空间和压缩机仓,且所述压缩机仓位于所述箱体底部,所述压缩机仓处设置有第一进风口和第一出风口;出风风道,设置于所述箱体背部且竖直向上延伸,并通过所述第一出风口与所述压缩机仓连通,所述出风风道的第二出风口处设置有第二冷却风机;以及制冷系统,配置成向所述储物空间提供冷量,其中所述制冷系统包括设置于所述压缩机仓的冷凝器、第一冷却风机和压缩机,且所述散热控制方法包括:
    获取所述压缩机的运行信号;
    根据所述运行信号判断所述压缩机是否开启;以及
    若是,控制所述第一冷却风机和所述第二冷却风机开启,以对所述压缩机仓进行散热,其中所述第一冷却风机的转速大于所述第二冷却风机的转速。
  2. 根据权利要求1所述的冰箱的散热控制方法,其中,
    根据所述运行信号确定所述压缩机停机时,控制所述第一冷却风机停机。
  3. 根据权利要求2所述的冰箱的散热控制方法,其中在根据所述运行信号确定所述压缩机停机的步骤之后还包括:
    控制所述第二冷却风机继续开启预设时长之后停机。
  4. 根据权利要求3所述的冰箱的散热控制方法,其中,
    所述预设时长为2分钟至5分钟。
  5. 一种冰箱,包括:
    箱体,其内部限定有储物空间和压缩机仓,且所述压缩机仓位于所述箱体底部,所述压缩机仓处设置有第一进风口和第一出风口;
    出风风道,设置于所述箱体背部且竖直向上延伸,并通过所述第一出风口与所述压缩机仓连通,所述出风风道的第二出风口处设置有第二冷却风机;
    制冷系统,配置成向所述储物空间提供冷量,其中所述制冷系统包括设置于所述压缩机仓的冷凝器、第一冷却风机和压缩机;以及
    散热控制装置,包括:获取模块,配置成获取所述压缩机的运行信号;判断模块,配置成根据所述运行信号判断所述压缩机是否开启;以及风机开 启模块,配置成在所述压缩机开启时,控制所述第一冷却风机和所述第二冷却风机开启,以对所述压缩机仓进行散热,其中所述第一冷却风机的转速大于所述第二冷却风机的转速。
  6. 根据权利要求5所述的冰箱,其中所述散热控制装置还包括:
    风机停机模块,配置成根据所述运行信号确定所述压缩机停机时,控制所述第一冷却风机停机。
  7. 根据权利要求6所述的冰箱,其中所述风机停机模块还配置成:
    控制所述第二冷却风机继续开启预设时长之后停机。
  8. 根据权利要求5所述的冰箱,其中,
    所述冷凝器设置于所述压缩机仓内远离所述第一出风口的一侧;
    所述压缩机设置于所述压缩机仓内靠近所述第一出风口的一侧;且
    所述第一冷却风机设置于所述冷凝器和所述压缩机之间。
  9. 根据权利要求8所述的冰箱,其中,
    所述第一进风口设置于所述压缩机仓靠近所述冷凝器的一侧,以使进入所述压缩机仓的冷风依次经过所述冷凝器、所述第一冷却风机、所述压缩机。
  10. 根据权利要求5所述的冰箱,其中,
    所述第二冷却风机的出风方向与所述冰箱所在的水平地面的夹角大于等于预设角度。
PCT/CN2018/125058 2017-12-29 2018-12-28 冰箱的散热控制方法与冰箱 WO2019129244A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711484684.7 2017-12-29
CN201711484684.7A CN108266959B (zh) 2017-12-29 2017-12-29 冰箱的散热控制方法与冰箱

Publications (1)

Publication Number Publication Date
WO2019129244A1 true WO2019129244A1 (zh) 2019-07-04

Family

ID=62772869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125058 WO2019129244A1 (zh) 2017-12-29 2018-12-28 冰箱的散热控制方法与冰箱

Country Status (2)

Country Link
CN (1) CN108266959B (zh)
WO (1) WO2019129244A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108266959B (zh) * 2017-12-29 2020-06-23 青岛海尔股份有限公司 冰箱的散热控制方法与冰箱
CN209893774U (zh) * 2019-01-04 2020-01-03 青岛海尔股份有限公司 冷藏冷冻装置
CN113465280B (zh) * 2020-03-30 2022-11-01 青岛海尔电冰箱有限公司 冰箱的控制系统及控制方法
CN114508887B (zh) * 2022-04-19 2022-07-22 合肥美的电冰箱有限公司 嵌入式冰箱
CN115717808A (zh) * 2022-11-25 2023-02-28 珠海格力电器股份有限公司 一种冷凝风机控制方法、装置及冰箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536197A2 (en) * 2003-11-26 2005-06-01 Norcold, Inc. System and method of controlling ammonium absorption refrigerators
CN202648286U (zh) * 2012-05-01 2013-01-02 姚紫阳 热量直排电冰箱
CN205079516U (zh) * 2015-09-30 2016-03-09 合肥华凌股份有限公司 嵌入式冰箱
CN105758077A (zh) * 2016-04-13 2016-07-13 青岛海尔股份有限公司 冰箱及其控制方法
CN108266959A (zh) * 2017-12-29 2018-07-10 青岛海尔股份有限公司 冰箱的散热控制方法与冰箱

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178320A (ja) * 1995-12-22 1997-07-11 Toshiba Corp 冷蔵庫の放熱用ファン運転制御方法
JP5081880B2 (ja) * 2009-09-09 2012-11-28 日立アプライアンス株式会社 冷蔵庫
CN202719823U (zh) * 2012-06-25 2013-02-06 中山市维诺电器有限公司 一种具有前散热风道的电子冰箱或酒柜
CN102927745A (zh) * 2012-10-24 2013-02-13 合肥美菱股份有限公司 一种冰箱强制散热结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536197A2 (en) * 2003-11-26 2005-06-01 Norcold, Inc. System and method of controlling ammonium absorption refrigerators
CN202648286U (zh) * 2012-05-01 2013-01-02 姚紫阳 热量直排电冰箱
CN205079516U (zh) * 2015-09-30 2016-03-09 合肥华凌股份有限公司 嵌入式冰箱
CN105758077A (zh) * 2016-04-13 2016-07-13 青岛海尔股份有限公司 冰箱及其控制方法
CN108266959A (zh) * 2017-12-29 2018-07-10 青岛海尔股份有限公司 冰箱的散热控制方法与冰箱

Also Published As

Publication number Publication date
CN108266959A (zh) 2018-07-10
CN108266959B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2019129244A1 (zh) 冰箱的散热控制方法与冰箱
WO2019129245A1 (zh) 冰箱的散热控制方法与冰箱
JP3167695B2 (ja) 冷蔵庫の庫内温度制御装置及びその方法
WO2019001494A1 (zh) 冰箱的制冷控制方法与计算机存储介质
CN106679265B (zh) 一种冰箱及其控制方法
WO2019001503A1 (zh) 冰箱的制冷控制方法与计算机存储介质
WO2019001475A1 (zh) 冰箱的制冷控制方法与计算机存储介质
US20160370091A1 (en) Cool air circulation structure of refrigerator and method for controlling the same
CN108278825A (zh) 冰箱
WO2019052512A1 (zh) 冰箱的化霜控制方法与冰箱
CN107192200A (zh) 多门冰箱
CN107289729A (zh) 多门冰箱的控制方法
CN112050532A (zh) 一种单系统冰箱恒温间室及其控制方法
JP6963035B2 (ja) 冷蔵庫の冷却制御方法
CN105466106A (zh) 冰箱
WO2019105426A1 (zh) 冰箱的制冷控制方法与计算机存储介质
CN206989555U (zh) 一种新型风冷冰箱
WO2019105424A1 (zh) 冰箱的制冷控制方法与计算机存储介质
WO2019052513A1 (zh) 冰箱的化霜控制方法与冰箱
WO2019105425A1 (zh) 冰箱的制冷控制方法与计算机存储介质
US20200278136A1 (en) Hydrophobic Coating on Evaporator to Enhance Food Preservation
KR100454056B1 (ko) 직간냉식 복합형 김치냉장고
KR100487317B1 (ko) 직냉식 냉장고
KR20100084715A (ko) 복합형 김치냉장고
JP3819815B2 (ja) 冷蔵庫の冷媒洩れ検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897297

Country of ref document: EP

Kind code of ref document: A1