WO2019052512A1 - 冰箱的化霜控制方法与冰箱 - Google Patents

冰箱的化霜控制方法与冰箱 Download PDF

Info

Publication number
WO2019052512A1
WO2019052512A1 PCT/CN2018/105560 CN2018105560W WO2019052512A1 WO 2019052512 A1 WO2019052512 A1 WO 2019052512A1 CN 2018105560 W CN2018105560 W CN 2018105560W WO 2019052512 A1 WO2019052512 A1 WO 2019052512A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
defrosting
space
supply device
temperature
Prior art date
Application number
PCT/CN2018/105560
Other languages
English (en)
French (fr)
Inventor
李春阳
陶海波
李登强
吴淑娟
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2019052512A1 publication Critical patent/WO2019052512A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/02Timing

Definitions

  • the present invention relates to the field of refrigeration equipment, and in particular to a defrosting control method for a refrigerator and a refrigerator.
  • the current air-cooled refrigerator has the following disadvantages: during the defrosting process, the heat generated by the heating device tends to enter the freezing space, causing the temperature of the freezing space to rise, which is not conducive to the storage of food; in addition, after the defrosting of the evaporator, it may be It will cause condensation on the components around the evaporator. More seriously, it may freeze on the above components, affecting the normal operation of the above components, affecting the normal operation of the refrigerator, reducing the storage effect of the food in the refrigerator, and affecting the user. The experience of using.
  • a further object of the present invention is to improve the operational reliability of the shunt air supply device and improve the overall refrigeration effect of the refrigerator.
  • the present invention provides a defrosting control method for a refrigerator
  • the refrigerator includes: a casing defining a refrigerating space therein and a freezing space disposed below the refrigerating space; and a door body disposed on a front side of the box body, For the user to open or close the refrigerated space and the freezing space; the refrigeration system, including the compressor, and configured to provide cooling to the refrigerating space and the freezing space; the split air supply device, including the fan, and having controlled connection with the refrigerated space a refrigerated air outlet and a refrigerated air outlet in controlled communication with the freezing space to controlably control the amount of cooling provided by the refrigeration system into the refrigerated space and/or the freezing space; the heating device configured to control the evaporation of the refrigerator The device is heated to perform defrosting; and a temperature sensor configured to obtain a temperature at the bypass air supply device, and the defrosting control method of the refrigerator includes: obtaining a defrosting start signal of the refrigerator; and
  • the working state corresponding to the defrosting start signal includes: closing the compressor and the fan, turning on the heating device, and closing the refrigerating air outlet and the freezing air outlet of the shunt air supply device.
  • the compressor is turned on.
  • the fan is turned on, the refrigerating air outlet of the shunt air blowing device is turned on, and the freezing air outlet is closed, wherein the second preset time length is greater than the first preset time length.
  • the shunting air supply device comprises: a casing having a refrigerating air outlet, a freezing air outlet and at least one air inlet, so that the airflow enters the casing through the at least one air inlet, and from the refrigerating air outlet and/or Or the freezing air outlet exiting the casing; the adjusting member is configured to controlly completely shield, partially shield or completely expose the refrigerating air outlet and the freezing air outlet to adjust the respective air outlet areas of the refrigerating air outlet and the freezing air outlet; And a motor configured to drive the adjustment member to operate.
  • the step of continuously operating the split air supply device comprises: continuously operating the motor drive adjustment member of the split air supply device.
  • the refrigerator further includes: a refrigerating damper configured to adjust the amount of cooling delivered to the refrigerating space in conjunction with the refrigerating air outlet.
  • a refrigerating damper configured to adjust the amount of cooling delivered to the refrigerating space in conjunction with the refrigerating air outlet.
  • the working state corresponding to the defrosting start signal further includes: closing the refrigerating damper.
  • the refrigerating damper is opened.
  • a refrigerator comprising: a box body defining a refrigerating space therein and a freezing space disposed under the refrigerating space; and a door body disposed on a front side of the box body,
  • the refrigeration system includes a compressor and is configured to provide cooling to the refrigerating space and the freezing space
  • the shunting air supply device includes a fan and has controlled connection with the refrigerating space a refrigerating air outlet and a refrigerated air outlet in controlled communication with the freezing space to controlably control the amount of cooling provided by the refrigeration system into the refrigerating space and/or the freezing space
  • the heating device configured to control the evaporator of the refrigerator Heating to perform defrosting; a temperature sensor configured to obtain a temperature at the bypass air supply device; and a defrosting control device configured to acquire a defrosting start signal of the refrigerator; and the compressor, the fan, and the heating device according to
  • the defrosting control method of the refrigerator of the present invention and the refrigerator obtain a defrosting start signal of the refrigerator; and according to the defrosting start signal, the compressor, the fan, the heating device, and the branch air blowing device are operated according to the defrosting start signal.
  • the defrosting control method and the refrigerator of the refrigerator of the present invention close the compressor and the fan after the defrosting start signal is acquired, the heating device is turned on, and the refrigerating air outlet and the freezing air outlet of the shunt air blowing device are both closed; After acquiring the defrosting end signal for a first preset time period, the compressor is turned on, and after the defrosting end signal is acquired for a second preset time period, the fan is turned on, the refrigerating air outlet of the shunt air blowing device is turned on, and the freezing air outlet is closed.
  • the compressor, the fan, the heating device and the split air supply device perform different actions at different times to prevent the heat in the defrosting process from entering the freezing space and affecting the internal temperature thereof, according to different ways of the branch air supply device.
  • the temperature condition determines whether the operation is continued, thereby effectively preventing condensation or even freezing into ice on the branch air supply device, thereby improving the operational reliability of the branch air supply device, thereby improving the overall refrigeration effect of the refrigerator.
  • Figure 1a is a schematic structural view of a refrigerator in accordance with one embodiment of the present invention.
  • Figure 1b is a schematic block diagram of a refrigerator in accordance with one embodiment of the present invention.
  • Figure 1c is a schematic structural view of a refrigerator in accordance with another embodiment of the present invention.
  • Figure 2a is a schematic structural view of a split air supply device in the refrigerator of Figure 1a;
  • Figure 2b is a schematic exploded view of the split air supply device of the refrigerator of Figure 1a;
  • FIG. 3 is a schematic diagram of a defrosting control method of a refrigerator according to an embodiment of the present invention.
  • FIG. 4 is a detailed flow chart of a defrosting control method of a refrigerator in accordance with one embodiment of the present invention.
  • the first embodiment provides a refrigerator, which can prevent the heat in the defrosting process from entering the freezing space and affecting the internal temperature thereof, and effectively prevent condensation or even freezing into ice on the shunting air supply device, thereby improving the shunt delivery.
  • 1 is a schematic structural diagram of a refrigerator 100 according to an embodiment of the present invention.
  • the refrigerator 100 generally includes a cabinet 10, a door body 15, a refrigeration system 300, a split air supply device 20, and a heating device 40. Temperature sensor 70 and defrosting control device 60.
  • the inside of the box 10 may define a plurality of storage spaces.
  • the quantity and structure of the storage space can be configured according to requirements.
  • FIG. 1 shows the first space, the second space and the third space which are arranged one above the other; the above storage space can be separately configured as a refrigerating space according to the use. Freezing space, variable temperature space or fresh space.
  • the interior of each storage space can be divided into a plurality of storage areas by a partition plate, and the articles are stored by the rack or the drawer.
  • the refrigerator 10 of the refrigerator 100 of the present embodiment defines a refrigerating space 11 and a freezing space disposed below the refrigerating space 11.
  • the freezing space may include a first freezing space 12 and a second freezing space 13, that is, the refrigerator 100 of the present embodiment.
  • a refrigerating space 11, a first freezing space 12, and a second freezing space 13 are provided in this order from top to bottom.
  • the door body 15 is disposed on the front side of the cabinet 10 for the user to open or close the storage space of the refrigerator 100.
  • the storage space of the refrigerator 100 of the present embodiment includes: the refrigerating space 11, the first freezing space 12, and the second The freezing space 13; the door body can be arranged corresponding to the storage space, that is, each storage space corresponds to one or more door bodies.
  • the function of the storage space and the number of doors and the storage space can be selected by the actual situation.
  • the door opening method of the storage space can also be opened by a drawer to realize a drawer type storage space.
  • the refrigeration system of the refrigerator 100 is configured to provide a cooling capacity to the storage space.
  • the refrigeration system of the present embodiment includes a compressor 30 that can be installed in a compressor chamber.
  • the refrigeration system may be a refrigeration cycle system composed of a compressor 30, a condenser, a throttle device, an evaporator 32, and the like.
  • the housing 10 may also have a cooling space therein, and the evaporator of the refrigeration system may be disposed in the cooling space.
  • the refrigeration system can also be other types of refrigeration systems, such as a semiconductor refrigeration system, in which the cold end diffuser of the semiconductor refrigeration system can be disposed.
  • the storage space of the refrigerator 100 of the present embodiment includes a refrigerating space 11, a first freezing space 12, and a second freezing space 13 from top to bottom, and the cooling system provides different cooling amounts to the refrigerating space 11 and the freezing space, so that the refrigerating space is made 11 and the temperature in the freezing space is also different.
  • the temperature in the refrigerated space 11 is generally between 2 ° C and 10 ° C, preferably between 3 ° C and 8 ° C.
  • the temperature range in the freezer space is generally between -22 ° C and -14 ° C.
  • the optimal storage temperatures for different types of foods are not the same, and the storage space suitable for storage is also different. For example, fruit and vegetable foods are suitable for storage in the refrigerated space 11, and meat foods are suitable for storage in the freezer space.
  • the split air supply device 20 may generally include a housing 21, an adjustment member 24, and a motor 22.
  • the housing 21 may have at least one air inlet 221 and a plurality of air outlets 22 to allow airflow into the housing 21 via the at least one air inlet 221 and out of the housing 21 from the plurality of air outlets 22.
  • the adjustment member can be configured to controlfully occlude, partially shield, or fully expose each of the air outlets 22 to adjust the respective air outlet areas of the plurality of air outlets 22.
  • the motor can be configured to drive the adjustment member to operate such that the adjustment member can completely, partially or completely expose each of the air outlets 22 at different locations.
  • the adjusting member of the shunting air supply device 20 in the embodiment of the present invention can controllably distribute the cold air flowing in from the air inlet 221 to the plurality of air outlets 22, and can control the air outlet ducts that communicate with each air outlet 22 Open and close and / or adjust the air volume in each air duct to meet the cooling demand of different storage spaces.
  • the air outlet 22 of the shunt air supply device 20 can be disposed corresponding to the storage space.
  • the shunt air supply device 20 of the present embodiment can have three air outlets, and the three air outlets can be sequentially followed by the circumferential direction of the housing 21. Interval setting.
  • the three air outlets 22 include a refrigerated air outlet 222 having controlled communication with the refrigerating space 11, a first refrigerating air outlet 223 in controlled communication with the first freezing space 12, and a controlled communication with the second freezing space 13
  • the second freezing air outlet 224 is to controllably feed the cooling amount provided by the refrigeration system into the refrigerating space 11 and/or the first freezing space 12 and/or the second freezing space 13.
  • the fan 23 in the branch air supply device 20 of the present embodiment is configured to cause airflow to flow from the at least one air inlet 221 into the casing 21 and out of the casing 21 via one or more of the plurality of air outlets 22 to improve the air supply. s efficiency.
  • the fan 23 can also independently introduce air into the split air supply device 20 in the embodiment of the present invention.
  • the fan 23 may be a centrifugal impeller disposed in the housing 21; in some alternative embodiments, the fan 23 may also be an axial fan, an axial fan or a centrifugal fan, disposed in the At the air inlet 221 of the casing 21. It is obvious that the fan 23 is a centrifugal impeller and is located in the casing 21, so that the shunt air blowing device 20 can be compact and small in size.
  • the heating device can be configured to control the evaporator of the refrigerator to be defrosted in a controlled manner to prevent the frost layer on the surface of the evaporator from being too thick to affect the refrigeration effect of the refrigeration system.
  • the temperature sensor can be configured to obtain the temperature at the shunt air supply device 20. It should be noted that the temperature sensor can be directly disposed at the shunt air supply device 20 to directly detect the temperature at the shunt air supply device 20; or can be a temperature sensor disposed at the evaporator, by detecting the evaporator at the evaporator The temperature is indirectly estimated to obtain the temperature at the branch air supply device 20.
  • the defrosting control device may be configured to acquire a defrosting start signal of the refrigerator; and operate the compressor, the fan 23, the heating device, and the split air blowing device 20 according to the defrosting start signal according to an operating state corresponding to the defrosting start signal; The defrosting end signal of the refrigerator and the temperature at the branch air supply device 20; and when the temperature at the shunt air supply device 20 is less than the first preset temperature, the shunt air supply device 20 is continuously operated and is shunted When the temperature at the air blowing device 20 is less than the second preset temperature, the shunt air blowing device 20 stops the continuous operation, wherein the second preset temperature is less than the first preset temperature.
  • the compressor, the fan 23, the heating device and the split air supply device 20 are in different working states before and after defrosting, which can prevent the heat in the defrosting process from entering the freezing space and affecting the internal temperature thereof, and effectively preventing the shunting
  • the air blowing device 20 forms condensation or even freezes into ice, and the temperature at the branch air supply device 20 can accurately know whether there is a need for anti-condensation or anti-icing at the place, and the work of the branch air supply device 20 is improved. Reliability, which improves the overall cooling effect of the refrigerator.
  • the refrigerator 100 may further include: a refrigerating damper 50 configured to adjust the amount of cooling to be delivered to the refrigerating space 11 in conjunction with the refrigerating air outlet 222, the refrigerating damper 50 being disposed at the bottom of the refrigerating space 11 in order to avoid refrigerating the air outlet 222
  • a refrigerating damper 50 configured to adjust the amount of cooling to be delivered to the refrigerating space 11 in conjunction with the refrigerating air outlet 222
  • the refrigerating damper 50 being disposed at the bottom of the refrigerating space 11 in order to avoid refrigerating the air outlet 222
  • the sealing property can be further ensured by the refrigerating damper, and the temperature control of the refrigerating space 11 is more precise.
  • FIG. 3 is a schematic diagram of a defrosting control method of a refrigerator in accordance with one embodiment of the present invention.
  • the defrosting control method of the refrigerator can be applied to the refrigerator 100 of any of the above embodiments. As shown in FIG. 3, the defrosting control method of the refrigerator can perform the following steps:
  • Step S302 acquiring a defrosting start signal of the refrigerator
  • Step S304 the compressor, the fan 23, the heating device, and the branch air supply device 20 are operated according to the defrosting start signal according to the working state corresponding to the defrosting start signal;
  • Step S306 acquiring a defrosting end signal of the refrigerator and a temperature at the shunting air blowing device 20;
  • Step S308 when the temperature of the shunt air supply device 20 is less than the first preset temperature, the shunt air supply device 20 is continuously operated, and when the temperature at the shunt air supply device 20 is less than the second preset temperature, The branch air blowing device 20 is stopped from continuous operation.
  • the working state corresponding to the defrosting start signal in step S304 may include: closing the compressor and the fan 23, the heating device is turned on, and the refrigerating air outlet 222 and the freezing air outlet 223 of the shunting air blowing device 20, 224 are all closed.
  • the temperature at the shunting device 20 can be obtained by the temperature sensor in step S306, wherein the temperature sensor can be directly disposed at the shunting device 20 to directly detect the temperature at the shunting device 20;
  • the temperature sensor at the evaporator indirectly estimates the temperature at the branch air supply device 20 by detecting the temperature at the evaporator.
  • the second preset temperature in step S308 is less than the first preset temperature, that is, the temperature gradually decreases as the divided air supply device 20 continues to operate.
  • the step of continuously operating the branch air supply device 20 includes continuously operating the motor drive adjustment member of the split air supply device 20.
  • the compressor is turned on after acquiring the defrosting end signal for a first predetermined period of time in step S306.
  • the fan 23 is turned on, the refrigerating air outlet 222 of the shunt air blowing device 20 is turned on, and the freezing air outlets 223 and 224 are closed, wherein the second preset duration is greater than the first preset. duration. Then, it can be determined whether the temperature at the branch air supply device 20 in step S308 is less than the first preset temperature.
  • the working state corresponding to the defrosting start signal further includes: closing the refrigerating damper. After the defrosting end signal is acquired for a second predetermined period of time, the refrigerating damper is opened.
  • the defrosting control method of the refrigerator of the present embodiment acquires a defrosting start signal of the refrigerator; and causes the compressor, the fan 23, the heating device, and the bypass air blowing device 20 to operate according to the defrosting start signal according to the defrosting start signal.
  • the refrigerator 100 can achieve higher technical effects by further optimizing and configuring the above steps.
  • the following describes the defrosting control of the refrigerator of the embodiment in combination with an optional execution flow of the embodiment. The method is described in detail. This embodiment is only an example of the execution process. In the specific implementation, the execution sequence and operating conditions of some steps may be modified according to specific implementation requirements.
  • 4 is a detailed flow chart of a defrosting control method of a refrigerator in accordance with one embodiment of the present invention.
  • the defrosting control method of the refrigerator includes the following steps:
  • Step S402 acquiring a defrosting start signal of the refrigerator
  • Step S404 the compressor, the fan 23 and the refrigerating damper are closed, the heating device is turned on, and the refrigerating air outlet 222 and the refrigerating air outlet 223, 224 of the shunt air blowing device 20 are all closed;
  • Step S406 acquiring a defrosting end signal of the refrigerator and a temperature at the shunting air blowing device 20;
  • Step S408 after the first preset time length of the defrosting end signal is acquired, the compressor is turned on;
  • Step S410 after acquiring the defrosting end signal for a second preset time length, the fan 23 and the refrigerating damper are opened, the refrigerating air outlet 222 of the shunt air blowing device 20 is opened, and the freezing air outlets 223, 224 are closed;
  • Step S412 it is determined whether the temperature at the bypass air supply device 20 is less than the first preset temperature, and if so, step S414 is performed, and if not, step S410 is performed;
  • Step S414 the motor driving adjustment member of the shunt air blowing device 20 is continuously operated
  • Step S416 it is determined whether the temperature at the shunt air supply device 20 is less than the second preset temperature, and if so, step S418 is performed, and if not, step S414 is performed;
  • step S4108 the motor of the branch air supply device 20 stops driving the adjustment member to continuously operate.
  • the second preset duration in the above steps is greater than the first preset duration, that is, after the defrosting end signal is acquired, step S408 and step S410 are performed in order.
  • the second preset temperature in step S416 is smaller than the first preset temperature in step S412, that is, the temperature gradually decreases as the divided air supply device 20 continues to operate.
  • step S414 the motor drive adjusting member of the shunt air blowing device 20 is continuously operated, and the operation of the shunt air blowing device 20 itself can prevent the condensation on the shunt air blowing device 20 from forming or even freezing into ice, thereby causing the adjusting member to fail.
  • Normally adjusting the opening and closing state of the plurality of air outlets affects the normal operation of the branch air blowing device 20.
  • step S4108 the air outlet area of each air outlet can be adjusted according to the actual temperature of each storage space, and normal cooling control can be performed.
  • the defrosting control method of the refrigerator of the present embodiment acquires a defrosting start signal of the refrigerator; and causes the compressor, the fan 23, the heating device, and the bypass air blowing device 20 to operate according to the defrosting start signal according to the defrosting start signal.
  • the compressor and the blower 23 are turned off, the heating device is turned on, and the refrigerating air outlet 222 and the refrigerating air outlet 223 of the shunting air blowing device 20 are turned on.
  • And 224 are both closed; after the first preset time length of the defrosting end signal is acquired, the compressor is turned on, and after the defrosting end signal is acquired for the second predetermined time length, the fan 23 is turned on, and the shunting device 20 is refrigerated.
  • the tuyere 222 is opened, and the freezing air outlets 223, 224 are closed, so that the compressor, the fan 23, the heating device, and the split air supply device 20 perform different actions at different times, thereby preventing heat in the defrosting process from entering the freezing space and affecting the same.
  • the internal temperature determines whether the continuous operation is performed according to different temperature conditions at the branch air supply device 20, thereby effectively preventing condensation or even freezing into ice on the split air supply device 20, and improving the reliable operation of the split air supply device 20. Sex, which improves the overall cooling effect of the refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种冰箱(100)的化霜控制方法与冰箱(100)。其中冰箱(100)的化霜控制方法包括:获取冰箱(100)的化霜开始信号(S302);根据化霜开始信号使压缩机(30)、风机(23)、加热装置(40)以及分路送风装置(20)按照与化霜开始信号对应的工作状态工作(S304);获取冰箱(100)的化霜结束信号和分路送风装置(20)处的温度(S306);以及在分路送风装置(20)处的温度小于第一预设温度时,使分路送风装置(20)连续运转,在分路送风装置(20)处的温度小于第二预设温度时,使分路送风装置(20)停止连续运转(S308)。通过分路送风装置(20)处的温度确定该处是否有防凝露或防结冰的需求,从而能够有效防止分路送风装置(20)产生凝露甚至冻结成冰,提高了分路送风装置(20)的工作可靠性,从而提升冰箱(100)的整体制冷效果。

Description

冰箱的化霜控制方法与冰箱 技术领域
本发明涉及制冷设备领域,特别是涉及一种冰箱的化霜控制方法与冰箱。
背景技术
随着社会日益发展和人们生活水平不断提高,人们的生活节奏也越来越快,因而越来越愿意买很多食物放置在冰箱中,冰箱已经成为了人们日常生活中不可缺少的家用电器之一。
但是目前的风冷冰箱存在以下缺点:在化霜过程中,加热装置产生的热量往往会进入冷冻空间,导致冷冻空间的温度上升,不利于食物的存储;此外,对蒸发器进行化霜之后可能会导致蒸发器周围的部件产生凝露,更严重地,可能在上述部件上冻结成冰,影响上述部件正常运行,并对冰箱的正常工作造成影响,降低冰箱内食物的存储效果,并影响用户的使用体验。
发明内容
本发明的一个目的是防止冰箱的分路送风装置上凝露结冰。
本发明一个进一步的目的是提高分路送风装置的工作可靠性,提升冰箱的整体制冷效果。
特别地,本发明提供了一种冰箱的化霜控制方法,其中冰箱包括:箱体,其内限定有冷藏空间和设置于冷藏空间下方的冷冻空间;门体,设置于箱体的前侧,以供用户打开或关闭冷藏空间和冷冻空间;制冷系统,包括压缩机,且配置成向冷藏空间和冷冻空间提供冷量;分路送风装置,包括风机,且具有与冷藏空间受控地连通的冷藏出风口以及与冷冻空间受控地连通的冷冻出风口,以将制冷系统提供的冷量受控地送入冷藏空间和/或冷冻空间;加热装置,配置成受控地对冰箱的蒸发器加热以进行化霜;以及温度传感器,配置成获取分路送风装置处的温度,并且该冰箱的化霜控制方法包括:获取冰箱的化霜开始信号;根据化霜开始信号使压缩机、风机、加热装置以及分路送风装置按照与化霜开始信号对应的工作状态工作;获取冰箱的化霜结束信号和分路送风装置处的温度;以及在分路送风装置处的温度小于第一预设温 度时,使分路送风装置连续运转,并在分路送风装置处的温度小于第二预设温度时,使分路送风装置停止连续运转,其中第二预设温度小于第一预设温度。
可选地,与化霜开始信号对应的工作状态包括:使压缩机和风机关闭,加热装置开启,且分路送风装置的冷藏出风口以及冷冻出风口均关闭。
可选地,在获取化霜结束信号第一预设时长之后,使压缩机开启。
可选地,在获取化霜结束信号第二预设时长之后,使风机开启,分路送风装置的冷藏出风口开启,冷冻出风口关闭,其中第二预设时长大于第一预设时长。
可选地,分路送风装置包括:壳体,其上开设有冷藏出风口、冷冻出风口以及至少一个进风口,以使气流经由至少一个进风口进入壳体内,并从冷藏出风口和/或冷冻出风口流出壳体;调节件,配置成受控地对冷藏出风口和冷冻出风口进行完全遮蔽、部分遮蔽或完全暴露,以调整冷藏出风口、和冷冻出风口各自的出风面积;以及电机,配置成驱动调节件运转。
可选地,使分路送风装置连续运转的步骤包括:使分路送风装置的电机驱动调节件连续运转。
可选地,冰箱还包括:冷藏风门,配置成配合冷藏出风口调节向冷藏空间输送的冷量。
可选地,与化霜开始信号对应的工作状态还包括:使冷藏风门关闭。
可选地,在获取化霜结束信号第二预设时长之后,使冷藏风门开启。
根据本发明的另一个方面,还提供了一种冰箱,该冰箱包括:箱体,其内限定有冷藏空间和设置于冷藏空间下方的冷冻空间;门体,设置于箱体的前侧,以供用户打开或关闭冷藏空间和冷冻空间;制冷系统,包括压缩机,且配置成向冷藏空间和冷冻空间提供冷量;分路送风装置,包括风机,且具有与冷藏空间受控地连通的冷藏出风口以及与冷冻空间受控地连通的冷冻出风口,以将制冷系统提供的冷量受控地送入冷藏空间和/或冷冻空间;加热装置,配置成受控地对冰箱的蒸发器加热以进行化霜;温度传感器,配置成获取分路送风装置处的温度;以及化霜控制装置,配置成获取冰箱的化霜开始信号;根据化霜开始信号使压缩机、风机、加热装置以及分路送风装置按照与化霜开始信号对应的工作状态工作;获取冰箱的化霜结束信号和分路送风装置处的温度;以及在分路送风装置处的温度小于第一预设温度时,使分 路送风装置连续运转,并在分路送风装置处的温度小于第二预设温度时,使分路送风装置停止连续运转,其中第二预设温度小于第一预设温度。
本发明的冰箱的化霜控制方法与冰箱,通过获取冰箱的化霜开始信号;根据化霜开始信号使压缩机、风机、加热装置以及分路送风装置按照与化霜开始信号对应的工作状态工作;获取冰箱的化霜结束信号和分路送风装置处的温度;以及在分路送风装置处的温度小于第一预设温度时,使分路送风装置连续运转,并在分路送风装置处的温度小于第二预设温度时,使分路送风装置停止连续运转,其中第二预设温度小于第一预设温度,通过分路送风装置处的温度确定该处是否有防凝露或防结冰的需求,从而能够有效防止分路送风装置产生凝露,并进一步防止在分路送风装置上冻结成冰,影响其正常运行,保证冰箱的正常工作,提高冰箱内食物的存储效果,提升用户的使用体验。
进一步地,本发明的冰箱的化霜控制方法与冰箱,在获取化霜开始信号后使压缩机和风机关闭,加热装置开启,且分路送风装置的冷藏出风口以及冷冻出风口均关闭;在获取化霜结束信号第一预设时长之后,使压缩机开启,在获取化霜结束信号第二预设时长之后,使风机开启,分路送风装置的冷藏出风口开启,冷冻出风口关闭,使得压缩机、风机、加热装置以及分路送风装置在不同的时间执行不同的动作,避免化霜过程中的热量进入冷冻空间而影响其内部的温度,根据分路送风装置处不同的温度情况确定是否持续运转,从而有效防止分路送风装置上形成凝露甚至冻结成冰,提高了分路送风装置的工作可靠性,从而提升冰箱的整体制冷效果。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1a是根据本发明一个实施例的冰箱的示意性结构图;
图1b是根据本发明一个实施例的冰箱的示意性框图;
图1c是根据本发明另一个实施例的冰箱的示意性结构图;
图2a是图1a冰箱中分路送风装置的示意性结构图;
图2b是图1a冰箱中分路送风装置的示意性分解图;
图3是根据本发明一个实施例的冰箱的化霜控制方法的示意图;以及
图4是根据本发明一个实施例的冰箱的化霜控制方法的详细流程图。
具体实施方式
本实施例首先提供了一种冰箱,可以避免化霜过程中的热量进入冷冻空间而影响其内部的温度,并有效防止分路送风装置上形成凝露甚至冻结成冰,提高了分路送风装置的工作可靠性。图1是根据本发明一个实施例的冰箱100的示意性结构图,该冰箱100一般性地可以包括:箱体10、门体15、制冷系统300、分路送风装置20、加热装置40、温度传感器70以及化霜控制装置60。
其中,箱体10内部可以限定有多个储物空间。储物空间的数量以及结构可以根据需求进行配置,图1示出了上下依次设置的第一空间、第二空间和第三空间的情况;以上储物空间按照用途不同可以分别配置为冷藏空间、冷冻空间、变温空间或者保鲜空间。各个储物空间内部可以由分隔板分割为多个储物区域,利用搁物架或者抽屉储存物品。本实施例的冰箱100的箱体10内限定有冷藏空间11和设置于冷藏空间11下方的冷冻空间,冷冻空间可以包括第一冷冻空间12和第二冷冻空间13,即本实施例的冰箱100由上至下依次设置有冷藏空间11、第一冷冻空间12和第二冷冻空间13。
门体15设置于箱体10的前侧,以供用户打开或关闭冰箱100的储物空间,其中本实施例的冰箱100的储物空间包括:冷藏空间11、第一冷冻空间12和第二冷冻空间13;门体可以与储物空间对应设置,即每一个储物空间都对应有一个或多个门体。而储物空间及门体的数量、储物空间的功能可由具体情况实际选择。在其他一些实施例中,储物空间的开门方式还可以采用抽屉式开启,以实现抽屉式的储物空间。
冰箱100的制冷系统配置成向储物空间提供冷量。本实施例的制冷系统包括压缩机30,压缩机30可以安装于压缩机仓内。具体地,制冷系统可以为由压缩机30、冷凝器、节流装置和蒸发器32等构成的制冷循环系统。箱体10内还可以具有冷却空间,制冷系统的蒸发器可以设置于冷却空间内。由本领域技术人员所习知的,制冷系统也可为其它类型的制冷系统,如半导 体制冷系统,半导体制冷系统的冷端散冷器可设置于冷却空间内。本实施例的冰箱100的储物空间由上至下包括:冷藏空间11、第一冷冻空间12和第二冷冻空间13,制冷系统向冷藏空间11和冷冻空间提供的冷量不同,使得冷藏空间11和冷冻空间内的温度也不相同。其中冷藏空间11内的温度一般处于2℃至10℃之间,优先为3℃至8℃。冷冻空间内的温度范围一般处于-22℃至-14℃。不同种类的食物的最佳存储温度并不相同,进而适宜存放的储物空间也并不相同。例如果蔬类食物适宜存放于冷藏空间11,而肉类食物适宜存放于冷冻空间。
图2是图1冰箱100中分路送风装置20的示意性结构图,分路送风装置20一般性地可以包括壳体21、调节件24和电机22。壳体21可具有至少一个进风口221和多个出风口22,以使气流经由至少一个进风口221进入壳体21内,并从多个出风口22流出该壳体21。调节件可配置成受控地对每个出风口22进行完全遮蔽、部分遮蔽或完全暴露,以调整多个出风口22各自的出风面积。电机可以配置成驱动调节件运转,以使调节件可在不同的位置处对每个出风口22进行完全遮蔽、部分遮蔽或完全暴露。本发明实施例中的分路送风装置20的调节件能够将从进风口221流入的冷风可控地分配至多个出风口22,可以实现控制与每个出风口22连通的出风风道的开闭和/或对每个出风风道内的出风风量进行调节,进而来满足不同储物空间的冷量需求。
分路送风装置20的出风口22可以与储物空间对应设置,本实施例的分路送风装置20可以具有三个出风口,并且三个出风口可以沿壳体21的周向方向依次间隔设置。这三个出风口22包括具有与冷藏空间11受控地连通的冷藏出风口222、与第一冷冻空间12受控地连通的第一冷冻出风口223以及与第二冷冻空间13受控地连通的第二冷冻出风口224,以将制冷系统提供的冷量受控地送入冷藏空间11和/或第一冷冻空间12和/或第二冷冻空间13。
本实施例的分路送风装置20中的风机23配置成促使气流从至少一个进风口221流入壳体21并经由多个出风口22中的一个或多个流出壳体21,以提高送风的效率。该风机23也可使本发明实施例中的分路送风装置20独立进风。进一步地,在一些实施方式中,风机23可为离心叶轮,设置于壳体21内;在一些替代性实施方式中,风机23也可为轴流风机、轴流风筒或离心风机,设置在壳体21的进风口221处。显然,风机23为离心叶轮,且位 于壳体21内,可使分路送风装置20的结构紧凑、体积小。
加热装置可以配置成受控地对冰箱的蒸发器加热以进行化霜,避免蒸发器表面霜层过厚而影响制冷系统的制冷效果。温度传感器,可以配置成获取分路送风装置20处的温度。需要说明的是,该温度传感器可以直接设置于分路送风装置20处,直接检测分路送风装置20处的温度;还可以为设置于蒸发器处的温度传感器,通过检测蒸发器处的温度间接推算得到分路送风装置20处的温度。
化霜控制装置,可以配置成获取冰箱的化霜开始信号;根据化霜开始信号使压缩机、风机23、加热装置以及分路送风装置20按照与化霜开始信号对应的工作状态工作;获取冰箱的化霜结束信号和分路送风装置20处的温度;以及在分路送风装置20处的温度小于第一预设温度时,使分路送风装置20连续运转,并在分路送风装置20处的温度小于第二预设温度时,使分路送风装置20停止连续运转,其中第二预设温度小于第一预设温度。使得压缩机、风机23、加热装置以及分路送风装置20在化霜前后处于不同的工作状态,不仅可以避免化霜过程中的热量进入冷冻空间而影响其内部的温度,并有效防止分路送风装置20上形成凝露甚至冻结成冰,通过分路送风装置20处的温度可以准确了解该处是否有防凝露或防结冰的需求,提高了分路送风装置20的工作可靠性,从而提升冰箱的整体制冷效果。
在其他一些实施例中,冰箱100还可以包括:冷藏风门50,配置成配合冷藏出风口222调节向冷藏空间11输送的冷量,冷藏风门50设置于冷藏空间11底部,为了避免冷藏出风口222关闭时由于漏风导致冷藏空间11温度过低的情况,通过冷藏风门可以进一步保证密封性,进而对冷藏空间11温度的控制更加精确。
图3是根据本发明一个实施例的冰箱的化霜控制方法的示意图。该冰箱的化霜控制方法可以适用于上述任一实施例的冰箱100。如图3所示,该冰箱的化霜控制方法可以执行以下步骤:
步骤S302,获取冰箱的化霜开始信号;
步骤S304,根据化霜开始信号使压缩机、风机23、加热装置以及分路送风装置20按照与化霜开始信号对应的工作状态工作;
步骤S306,获取冰箱的化霜结束信号和分路送风装置20处的温度;
步骤S308,在分路送风装置20处的温度小于第一预设温度时,使分路 送风装置20连续运转,并在分路送风装置20处的温度小于第二预设温度时,使分路送风装置20停止连续运转。
在以上步骤中,步骤S304中与化霜开始信号对应的工作状态可以包括:使压缩机和风机23关闭,加热装置开启,且分路送风装置20的冷藏出风口222以及冷冻出风口223、224均关闭。
步骤S306中分路送风装置20处的温度可以通过温度传感器获取,其中温度传感器可以直接设置于分路送风装置20处,直接检测分路送风装置20处的温度;还可以为设置于蒸发器处的温度传感器,通过检测蒸发器处的温度间接推算得到分路送风装置20处的温度。步骤S308中的第二预设温度小于第一预设温度,即随着分路送风装置20的连续运转,其温度逐渐下降。此外,使分路送风装置20连续运转的步骤包括:使分路送风装置20的电机驱动调节件连续运转。
在一种具体的实施例中,在获取步骤S306中化霜结束信号第一预设时长之后,使压缩机开启。在获取化霜结束信号第二预设时长之后,使风机23开启,分路送风装置20的冷藏出风口222开启,冷冻出风口223、224关闭,其中第二预设时长大于第一预设时长。然后可以进行步骤S308中分路送风装置20处的温度是否小于第一预设温度的判断。
在冰箱还包括冷藏风门的情况下,与化霜开始信号对应的工作状态还包括:使冷藏风门关闭。在获取化霜结束信号第二预设时长之后,使冷藏风门开启。
本实施例的冰箱的化霜控制方法,通过获取冰箱的化霜开始信号;根据化霜开始信号使压缩机、风机23、加热装置以及分路送风装置20按照与化霜开始信号对应的工作状态工作;获取冰箱的化霜结束信号和分路送风装置20处的温度;以及在分路送风装置20处的温度小于第一预设温度时,使分路送风装置20连续运转,并在分路送风装置20处的温度小于第二预设温度时,使分路送风装置20停止连续运转,其中第二预设温度小于第一预设温度,通过分路送风装置20处的温度确定该处是否有防凝露或防结冰的需求,从而能够有效防止分路送风装置20产生凝露,并进一步防止在分路送风装置20上冻结成冰,影响其正常运行,保证冰箱的正常工作,提高冰箱内食物的存储效果,提升用户的使用体验。
在一些可选实施例中,可以通过对上述步骤的进一步优化和配置使得冰 箱100实现更高的技术效果,以下结合对本实施例的一个可选执行流程的介绍对本实施例的冰箱的化霜控制方法进行详细说明,该实施例仅为对执行流程的举例说明,在具体实施时,可以根据具体实施需求,对部分步骤的执行顺序、运行条件进行修改。图4是根据本发明一个实施例的冰箱的化霜控制方法的详细流程图。该冰箱的化霜控制方法包括以下步骤:
步骤S402,获取冰箱的化霜开始信号;
步骤S404,使压缩机、风机23和冷藏风门关闭,加热装置开启,且分路送风装置20的冷藏出风口222以及冷冻出风口223、224均关闭;
步骤S406,获取冰箱的化霜结束信号和分路送风装置20处的温度;
步骤S408,在获取化霜结束信号第一预设时长之后,使压缩机开启;
步骤S410,在获取化霜结束信号第二预设时长之后,使风机23和冷藏风门开启,分路送风装置20的冷藏出风口222开启,冷冻出风口223、224关闭;
步骤S412,判断分路送风装置20处的温度是否小于第一预设温度,若是,执行步骤S414,若否,执行步骤S410;
步骤S414,使分路送风装置20的电机驱动调节件连续运转;
步骤S416,判断分路送风装置20处的温度是否小于第二预设温度,若是,执行步骤S418,若否,执行步骤S414;
步骤S418,使分路送风装置20的电机停止驱动调节件连续运转。
上述步骤中的第二预设时长大于第一预设时长,即在获取化霜结束信号之后,按照先后次序执行步骤S408和步骤S410。步骤S416中的第二预设温度小于步骤S412中的第一预设温度,即随着分路送风装置20的连续运转,其温度逐渐下降。
步骤S414中使分路送风装置20的电机驱动调节件连续运转,可以通过分路送风装置20自身的运转防止分路送风装置20上形成凝露甚至冻结成冰,从而导致调节件无法正常调节多个出风口的开闭状态,影响分路送风装置20的正常工作。
需要说明的是,在步骤S418电机停止驱动调节件连续运转之后,可以根据各个储物空间的实际温度调节各个出风口的出风面积,进行正常的制冷控制。
本实施例的冰箱的化霜控制方法,通过获取冰箱的化霜开始信号;根据 化霜开始信号使压缩机、风机23、加热装置以及分路送风装置20按照与化霜开始信号对应的工作状态工作;获取冰箱的化霜结束信号和分路送风装置20处的温度;以及在分路送风装置20处的温度小于第一预设温度时,使分路送风装置20连续运转,并在分路送风装置20处的温度小于第二预设温度时,使分路送风装置20停止连续运转,其中第二预设温度小于第一预设温度,通过分路送风装置20处的温度确定该处是否有防凝露或防结冰的需求,从而能够有效防止分路送风装置20产生凝露,并进一步防止在分路送风装置20上冻结成冰,影响其正常运行,保证冰箱的正常工作,提高冰箱内食物的存储效果,提升用户的使用体验。
进一步地,本实施例的冰箱的化霜控制方法,在获取化霜开始信号后使压缩机和风机23关闭,加热装置开启,且分路送风装置20的冷藏出风口222以及冷冻出风口223、224均关闭;在获取化霜结束信号第一预设时长之后,使压缩机开启,在获取化霜结束信号第二预设时长之后,使风机23开启,分路送风装置20的冷藏出风口222开启,冷冻出风口223、224关闭,使得压缩机、风机23、加热装置以及分路送风装置20在不同的时间执行不同的动作,避免化霜过程中的热量进入冷冻空间而影响其内部的温度,根据分路送风装置20处不同的温度情况确定是否持续运转,从而有效防止分路送风装置20上形成凝露甚至冻结成冰,提高了分路送风装置20的工作可靠性,从而提升冰箱的整体制冷效果。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱的化霜控制方法,其中所述冰箱包括:箱体,其内限定有冷藏空间和设置于所述冷藏空间下方的冷冻空间;门体,设置于所述箱体的前侧,以供用户打开或关闭所述冷藏空间和所述冷冻空间;制冷系统,包括压缩机,且配置成向所述冷藏空间和所述冷冻空间提供冷量;所述分路送风装置,包括风机,且具有与所述冷藏空间受控地连通的冷藏出风口以及与所述冷冻空间受控地连通的冷冻出风口,以将所述制冷系统提供的冷量受控地送入所述冷藏空间和/或所述冷冻空间;加热装置,配置成受控地对所述冰箱的蒸发器加热以进行化霜;以及温度传感器,配置成获取所述分路送风装置处的温度,并且所述方法包括:
    获取所述冰箱的化霜开始信号;
    根据所述化霜开始信号使所述压缩机、所述风机、所述加热装置以及所述分路送风装置按照与所述化霜开始信号对应的工作状态工作;
    获取所述冰箱的化霜结束信号和所述分路送风装置处的温度;以及
    在所述分路送风装置处的温度小于第一预设温度时,使所述分路送风装置连续运转,并在所述分路送风装置处的温度小于第二预设温度时,使所述分路送风装置停止连续运转,其中所述第二预设温度小于所述第一预设温度。
  2. 根据权利要求1所述的冰箱的化霜控制方法,其中与所述化霜开始信号对应的工作状态包括:
    使所述压缩机和所述风机关闭,所述加热装置开启,且所述分路送风装置的所述冷藏出风口以及所述冷冻出风口均关闭。
  3. 根据权利要求2所述的冰箱的化霜控制方法,其中,
    在获取所述化霜结束信号第一预设时长之后,使所述压缩机开启。
  4. 根据权利要求3所述的冰箱的化霜控制方法,其中,
    在获取所述化霜结束信号第二预设时长之后,使所述风机开启,所述分路送风装置的所述冷藏出风口开启,所述冷冻出风口关闭,其中所述第二预设时长大于所述第一预设时长。
  5. 根据权利要求4所述的冰箱的化霜控制方法,其中所述分路送风装置包括:
    壳体,其上开设有所述冷藏出风口、所述冷冻出风口以及至少一个进风 口,以使气流经由至少一个进风口进入壳体内,并从所述冷藏出风口和/或所述冷冻出风口流出所述壳体;
    调节件,配置成受控地对所述冷藏出风口和所述冷冻出风口进行完全遮蔽、部分遮蔽或完全暴露,以调整所述冷藏出风口、和所述冷冻出风口各自的出风面积;以及
    电机,配置成驱动所述调节件运转。
  6. 根据权利要求5所述的冰箱的化霜控制方法,其中使分路送风装置连续运转的步骤包括:
    使所述分路送风装置的所述电机驱动所述调节件连续运转。
  7. 根据权利要求6所述的冰箱的化霜控制方法,其中所述冰箱还包括:
    冷藏风门,配置成配合所述冷藏出风口调节向所述冷藏空间输送的冷量。
  8. 根据权利要求7所述的冰箱的化霜控制方法,其中与所述化霜开始信号对应的工作状态还包括:
    使所述冷藏风门关闭。
  9. 根据权利要求8所述的冰箱的化霜控制方法,其中,
    在获取化霜结束信号第二预设时长之后,使所述冷藏风门开启。
  10. 一种冰箱,包括:
    箱体,其内限定有冷藏空间和设置于所述冷藏空间下方的冷冻空间;
    门体,设置于所述箱体的前侧,以供用户打开或关闭所述冷藏空间和所述冷冻空间;
    制冷系统,包括压缩机,且配置成向所述冷藏空间和所述冷冻空间提供冷量;
    所述分路送风装置,包括风机,且具有与所述冷藏空间受控地连通的冷藏出风口以及与所述冷冻空间受控地连通的冷冻出风口,以将所述制冷系统提供的冷量受控地送入所述冷藏空间和/或所述冷冻空间;
    加热装置,配置成受控地对所述冰箱的蒸发器加热以进行化霜;
    温度传感器,配置成获取所述分路送风装置处的温度;以及
    化霜控制装置,配置成获取所述冰箱的化霜开始信号;根据所述化霜开始信号使所述压缩机、所述风机、所述加热装置以及所述分路送风装置按照与所述化霜开始信号对应的工作状态工作;获取所述冰箱的化霜结束信号和 所述分路送风装置处的温度;以及在所述分路送风装置处的温度小于第一预设温度时,使所述分路送风装置连续运转,并在所述分路送风装置处的温度小于第二预设温度时,使所述分路送风装置停止连续运转,其中所述第二预设温度小于所述第一预设温度。
PCT/CN2018/105560 2017-09-13 2018-09-13 冰箱的化霜控制方法与冰箱 WO2019052512A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710823862.8A CN108020000B (zh) 2017-09-13 2017-09-13 冰箱的化霜控制方法与冰箱
CN201710823862.8 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019052512A1 true WO2019052512A1 (zh) 2019-03-21

Family

ID=62080337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105560 WO2019052512A1 (zh) 2017-09-13 2018-09-13 冰箱的化霜控制方法与冰箱

Country Status (2)

Country Link
CN (1) CN108020000B (zh)
WO (1) WO2019052512A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351305A (zh) * 2020-03-09 2020-06-30 合肥美的电冰箱有限公司 用于冰箱的控制方法、控制装置、冰箱和存储介质
US11644229B2 (en) 2020-01-28 2023-05-09 Whirlpool Corporation Cooling assembly for refrigerator appliance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108020000B (zh) * 2017-09-13 2020-03-31 青岛海尔股份有限公司 冰箱的化霜控制方法与冰箱
CN110906610B (zh) * 2018-09-17 2022-01-21 重庆海尔制冷电器有限公司 风冷冰箱
CN110906609B (zh) * 2018-09-17 2021-12-21 重庆海尔制冷电器有限公司 风冷冰箱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251454A (en) * 1991-01-31 1993-10-12 Samsung Electronics Co., Ltd. Defrost control apparatus and method for a refrigerating system
CN104879984A (zh) * 2015-05-21 2015-09-02 青岛海尔股份有限公司 冰箱
CN105180563A (zh) * 2015-09-29 2015-12-23 青岛海尔股份有限公司 冰箱及其控制方法
CN105953500A (zh) * 2016-05-23 2016-09-21 广州美的华凌冰箱有限公司 冰箱的控制方法、控制装置及冰箱
CN106766532A (zh) * 2016-12-28 2017-05-31 青岛海尔股份有限公司 恒温冰箱及其控制方法
CN108020000A (zh) * 2017-09-13 2018-05-11 青岛海尔股份有限公司 冰箱的化霜控制方法与冰箱

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178315A (zh) * 1996-09-30 1998-04-08 大宇电子株式会社 控制冰箱风扇的方法
KR0172082B1 (ko) * 1996-09-30 1999-03-20 배순훈 냉장고의 냉각팬제어방법
EP2757334B1 (en) * 2011-09-14 2019-01-23 Hefei Midea Refrigerator Co., Ltd. Refrigerator and method of controlling humidity in a refrigerating chamber of refrigerator
CN106196840B (zh) * 2015-08-28 2018-02-02 青岛海尔股份有限公司 分路送风装置及具有该分路送风装置的冰箱
CN107062771B (zh) * 2017-03-21 2019-09-17 Tcl家用电器(合肥)有限公司 化霜控制方法及风冷冰箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251454A (en) * 1991-01-31 1993-10-12 Samsung Electronics Co., Ltd. Defrost control apparatus and method for a refrigerating system
CN104879984A (zh) * 2015-05-21 2015-09-02 青岛海尔股份有限公司 冰箱
CN105180563A (zh) * 2015-09-29 2015-12-23 青岛海尔股份有限公司 冰箱及其控制方法
CN105953500A (zh) * 2016-05-23 2016-09-21 广州美的华凌冰箱有限公司 冰箱的控制方法、控制装置及冰箱
CN106766532A (zh) * 2016-12-28 2017-05-31 青岛海尔股份有限公司 恒温冰箱及其控制方法
CN108020000A (zh) * 2017-09-13 2018-05-11 青岛海尔股份有限公司 冰箱的化霜控制方法与冰箱

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644229B2 (en) 2020-01-28 2023-05-09 Whirlpool Corporation Cooling assembly for refrigerator appliance
CN111351305A (zh) * 2020-03-09 2020-06-30 合肥美的电冰箱有限公司 用于冰箱的控制方法、控制装置、冰箱和存储介质
CN111351305B (zh) * 2020-03-09 2021-08-10 合肥美的电冰箱有限公司 用于冰箱的控制方法、控制装置、冰箱和存储介质

Also Published As

Publication number Publication date
CN108020000A (zh) 2018-05-11
CN108020000B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN106766532B (zh) 恒温冰箱及其控制方法
WO2019052512A1 (zh) 冰箱的化霜控制方法与冰箱
CN104792094B (zh) 一种冷冻冷藏装置及其除霜控制方法
WO2016173226A1 (zh) 一种冷冻冷藏装置及其除霜控制方法
CN106642974B (zh) 具有风机遮蔽的冰箱的控制方法及冰箱
CN101937247B (zh) 风冷冰箱的保湿控制方法、系统及一种风冷冰箱
CN105698462B (zh) 一种直冷冰箱风机控制方法系统及冰箱
CN107044756B (zh) 风门防结冰的控制方法及冰箱
CN107228522B (zh) 风冷冰箱的控制方法
CN106679265B (zh) 一种冰箱及其控制方法
KR20080070511A (ko) 냉장고 및 그 제어방법
CN109798713B (zh) 三循环风冷冰箱及其化霜方法
CN106595215A (zh) 风冷冰箱的除霜控制方法和装置
US9970699B2 (en) Combined refrigerator/freezer appliances with dampers having ice prevention treatments
CN107763933A (zh) 冰箱的制冷控制方法与冰箱
WO2019001494A1 (zh) 冰箱的制冷控制方法与计算机存储介质
WO2019129244A1 (zh) 冰箱的散热控制方法与冰箱
WO2019001503A1 (zh) 冰箱的制冷控制方法与计算机存储介质
WO2019001475A1 (zh) 冰箱的制冷控制方法与计算机存储介质
WO2019129245A1 (zh) 冰箱的散热控制方法与冰箱
CN111059824B (zh) 一种风冷冰箱
CN106766535B (zh) 一种冰箱的控制方法
KR100496229B1 (ko) 멀티기능 냉각장치
CN104266452A (zh) 风冷冰箱的控制方法和风冷冰箱的控制装置
CN107726711B (zh) 冰箱的化霜控制方法与冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856215

Country of ref document: EP

Kind code of ref document: A1