WO2019001330A1 - 热管理系统 - Google Patents

热管理系统 Download PDF

Info

Publication number
WO2019001330A1
WO2019001330A1 PCT/CN2018/092133 CN2018092133W WO2019001330A1 WO 2019001330 A1 WO2019001330 A1 WO 2019001330A1 CN 2018092133 W CN2018092133 W CN 2018092133W WO 2019001330 A1 WO2019001330 A1 WO 2019001330A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve device
valve
communication
communication port
heat exchanger
Prior art date
Application number
PCT/CN2018/092133
Other languages
English (en)
French (fr)
Inventor
谭永翔
叶克立
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to US16/621,201 priority Critical patent/US11458797B2/en
Priority to EP18825009.6A priority patent/EP3647086B1/en
Publication of WO2019001330A1 publication Critical patent/WO2019001330A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H3/024Moistening ; Devices influencing humidity levels, i.e. humidity control for only dehumidifying the air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00935Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising four way valves for controlling the fluid direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the invention relates to the field of vehicle thermal management technology.
  • a thermal management system including a battery heat exchanger, a first pump, a second pump, a first heat exchanger, a heater, a radiator, a first valve device, and the A heat exchanger includes a first flow channel and a second flow channel, the first flow channel and the second flow channel being isolated from each other and the fluid in the first flow channel and the fluid in the second flow channel being capable of heat exchange;
  • the thermal management system includes a refrigerant system including a first flow path of a first heat exchanger, and a coolant system including a second flow path of the first heat exchanger and a battery a heat exchanger, a first pump, a second pump, a heater, a first valve device, and a radiator;
  • the coolant system includes a battery circuit and a heating/cooling circuit, a second flow path of the first heat exchanger, a battery heat exchanger, a first pump forming part of the battery circuit, the heater, a radiator, a second pump forming part of the heating/cooling circuit, the first valve device enabling the battery circuit and a passage between the heating/cooling circuits is turned on or blocked;
  • the coolant system includes a connection portion that enables a path between the battery circuit and the heating/cooling circuit to be conducted or blocked Broken.
  • a thermal management system including a battery heat exchanger, a first pump, a second pump, a first heat exchanger, a heater, a radiator, a second valve device, and a second a heat exchanger
  • the first heat exchanger and the second heat exchanger each include two flow passages
  • the first flow passage of the first heat exchanger is isolated from the second flow passage of the first heat exchanger
  • the fluid in the first flow path of the first heat exchanger and the fluid in the second flow path of the first heat exchanger are capable of performing heat exchange
  • the first flow path of the second heat exchanger and the second flow of the second heat exchanger The channels are isolated from each other, and the fluid in the first flow path of the second heat exchanger and the fluid in the second flow path of the second heat exchanger are capable of heat exchange
  • the thermal management system includes a refrigerant system including a first flow passage of a first heat exchanger, and a coolant system including a second flow passage of the first heat exchanger a battery heat exchanger, the first pump, the second pump, the heater, the second valve device, the second heat exchanger, and the radiator;
  • the coolant system includes a battery a circuit and a heating/cooling circuit, a first flow path of the second heat exchanger, a second flow path of the first heat exchanger, the battery heat exchanger, and the first pump forming the battery circuit
  • the second flow path of the second heat exchanger, the heater, the radiator, the second valve device, and the second pump form part of the heating/cooling circuit.
  • the coolant system of the above technical solution of the present invention comprises a battery circuit and a heating/cooling circuit, and the heating/cooling circuit and the battery circuit are coupled, so that the battery can be heated by a heating/cooling circuit at a low temperature, and when the battery temperature is high, The heat can be dissipated through the refrigerant system and the heating/cooling circuit. This is beneficial to the battery having good charging and discharging efficiency at high temperature and low temperature, and is advantageous for prolonging the service life of the battery.
  • Figure 1 is a schematic view of an embodiment of the present invention
  • FIG. 1 is a schematic view of different working modes of the system shown in Fig. 1;
  • Figure 14 is a schematic view of another embodiment of the present invention.
  • Figure 15 is a schematic view of still another embodiment of the present invention.
  • Figure 16 is a schematic illustration of an embodiment of a third valve device
  • Figure 17 is a schematic illustration of an embodiment of a fourth valve device
  • Figure 18 is a schematic illustration of an embodiment of a first valve device
  • Figure 19 is a schematic illustration of another embodiment of a first valve device
  • Figure 20 is a schematic view of still another embodiment of the first valve device
  • Figure 21 is a schematic illustration of an embodiment of a second valve device
  • Figure 22 is a schematic illustration of another embodiment of a second valve device
  • Figure 23 is a schematic view showing still another embodiment of the second valve device.
  • Figure 24 is a schematic illustration of another embodiment of a third valve device
  • Figure 25 is a schematic view showing still another embodiment of the third valve device.
  • Figure 26 is a schematic illustration of another embodiment of a third valve device.
  • Figures 1 - 13 illustrate an embodiment of a thermal management system including a refrigerant system and a coolant system, the refrigerant of the refrigerant system and the cooling of the coolant system
  • the liquids are isolated from each other without circulation;
  • the thermal management system includes a first heat exchanger 103 having two flow passages, the fluid in the first flow passage of the first heat exchanger 103 and the first heat exchanger 103
  • the fluid in the second flow path is capable of performing heat exchange in the first heat exchanger; wherein the refrigerant system includes a first flow path of the first heat exchanger 103, and the coolant system includes a second flow path of the first heat exchanger 103 .
  • the coolant system includes a battery heat exchanger 107, a first pump 108, a second flow path of the first heat exchanger 103, a first valve device 115, a second pump 109, a heater 110, a radiator 111, and thermal management.
  • the system includes an air conditioner box, wherein the heater 110 is disposed in an outer space of the air conditioner box, and the heat sink 111 is disposed in an inner space of the air conditioner box, thereby eliminating electricity from entering the air conditioner box, thereby reducing safety hazards, and the heat sink is opposite to the device with the electric heater.
  • the coolant system includes a battery circuit including a second flow path of the first heat exchanger 103, a battery heat exchanger 107, and a first pump 108, and a heating/cooling circuit, the first heat exchanger 103
  • the second flow path, the battery heat exchanger 107 and the first pump 108 are connected to form part of a battery circuit
  • the heating/cooling circuit includes a second pump 109, a heater 110, a radiator 111, a second pump 109, a heater 110,
  • the radiator 111 is connected to form part of a heating/cooling circuit
  • the coolant system includes a first valve device 115, and the first valve device 115 includes three communication ports, that is, a first communication port 115a of the first valve device, first The second communication port 115b of the valve device, the third communication port 115c
  • connection or communication includes a direct connection or a communication and an indirect connection or communication, for example, by providing components to realize the connection, and the connection between the components does not limit the connection order thereof, for example, the second flow of the first heat exchanger 103.
  • the connection of the battery, the battery heat exchanger 107 and the first pump 108 does not limit the connection order, that is, the second flow path of the first heat exchanger 103, the battery heat exchanger 107 and the first pump 108 may be sequentially connected, or The second flow path of the first heat exchanger 103, the first pump 108, and the battery heat exchanger 107 are sequentially connected, and the like.
  • the coolant system includes a connection portion 130 (see FIG. 1) that is capable of communicating a heating/cooling circuit and a battery circuit, and the connection portion may be a tee or a three-way valve.
  • the connecting portion includes a valve member including three interfaces, at least one of a first interface of the valve member, a second interface of the valve member, and a third interface of the valve member is located at the battery a circuit, at least one of the first interface of the valve member, the second interface of the valve member, and the third interface of the valve member is located in the heating/cooling circuit, the valve member can control the first interface of the valve member, the valve The second interface of the piece, the flow rate of the third interface of the valve member; or the connection portion includes a tee, the three-way also includes three interfaces, the first interface of the three-way, the second interface of the three-way, and At least one of the third interfaces of the tee is located in the battery loop, and at least one of the first interface of the t
  • the coolant system includes a first circulation mode, a second circulation mode, and a third circulation mode.
  • the first circulation mode the first valve device is in a first working state, that is, the first communication port of the first valve device is The second communication port of the first valve device is turned on, the second communication port of the first valve device is electrically connected to the third communication port of the first valve device, the heater is turned on, and the connection portion turns on the battery circuit and the first valve a third communication port of the device, a part of the coolant in the battery circuit enters the heating/cooling circuit through the first communication port and the second communication port of the first valve device, and is heated by the heater to enter the heat sink.
  • the cooling liquid in the heating/cooling circuit releases heat to the surrounding air in the radiator, and a part of the cooling liquid at the radiator outlet flows into the battery circuit through the connection portion, and releases heat to the outside in the battery heat exchanger, and another part is Returning the third communication port of the first valve device; in the second cycle mode, the first valve device is in the first working state, that is, the first communication port of the first valve device and the second communication port of the first valve device Conduction, first The first communication port of the device is electrically connected to the third communication port of the first valve device, the heater is closed, and the connection portion is connected to the battery circuit and the third communication port of the first valve device, and the coolant in the battery circuit And a part of the coolant enters the heating/cooling circuit through the first communication port and the second communication port of the first valve device, and the surrounding air is radiated by the heat sink, and a part of the coolant of the radiator outlet flows into the connection portion through the connection portion.
  • the first valve device in the third cycle mode, is in a second operating state, That is, the first communication port of the first valve device and the second communication port of the first valve device are not electrically connected, and the battery circuit and the heating/cooling circuit are not conductive.
  • the coolant system has a battery cooling function, a battery heating function and a heating function, and the first communication port 115a of the first valve device is in communication with the battery circuit, and a portion of the coolant in the battery circuit is first connected to the first valve device.
  • the port 115a enters the heating/cooling circuit, and the coolant in the heating/cooling circuit is heated by the heater and then enters the radiator, and the radiator radiates heat to the passenger compartment to achieve a heating effect.
  • a portion of the cooling/cooling circuit coolant is returned to the battery circuit for heating the battery.
  • the first valve means By adjusting the first valve means, it is possible to control the flow of coolant from the first communication port 115a of the first valve means into the second communication port 115b of the first valve means, thus achieving the heating requirement in the passenger compartment and the battery being at a suitable temperature.
  • the coolant system may have a heating function
  • the first communication port 115a of the first valve device is not in communication with the battery circuit
  • the coolant in the heating/cooling circuit is heated by the heater and enters the radiator.
  • the radiator radiates heat to the passenger compartment to achieve a heating effect.
  • the first pump 108 is activated, the coolant is circulated in the battery circuit, and the fluid in the first flow path of the first heat exchanger 103 absorbs heat of the fluid in the second flow path of the first heat exchanger 103, and the battery circuit
  • the inner coolant is cooled, and the cooled fluid cools the battery and the like in the battery heat exchanger 107 to realize the function of cooling the battery.
  • the first valve device may be a three-way proportional regulating valve, and the first valve device is capable of adjusting a coolant entering the second communication port of the first valve device from a first communication port of the first valve device
  • the flow rate can either regulate the flow into the battery circuit or can regulate the flow into the heating/cooling circuit; as other embodiments, referring to Figure 19, the first valve device 115' includes a first valve module 115d, the first The valve module 115d includes two ports, a first port of the first valve module 115d can communicate with the first communication port 115a, and a second port of the first valve module 115d can be coupled with the second communication port 115b In communication, the second port of the first valve module 115d can communicate with the third communication port 115c, and the first valve module 115d can block or conduct or adjust the entry into the first valve module 115d from the first communication port 115a.
  • the first valve device 115 includes a first valve module 115d and a second valve module 115f, the first valve module 115d includes two ports, and the second valve module 115f also includes two ports.
  • a first port of the first valve module 115d is in communication with the first communication port 115a, and a first port of the second valve module 115f is in communication with a third communication port 115c of the first valve device,
  • the second port of the first valve module 115d and the second port of the second valve module 115f are in communication with the second communication port 115b of the first valve device, and the first valve module 115d can be blocked or turned on or regulated
  • the first communication port 115a of the first valve device enters the fluid flow of the second port of the first valve module, and the second valve module 115f is adjustable to enter the second port of the second valve module from the third communication port 115c of the first valve device Fluid flow rate, in the first operational state of the first valve device, the first valve module 115d is open, in the second operational state of the first valve device, the first valve module 115d is closed,
  • the second valve module 115e is opened. wherein the first valve module
  • the second flow regulating valve module can be cut and having
  • the coolant system may further include a kettle 116 having a height higher than a battery heat exchanger, a first pump, a second pump, a first heat exchanger, a heater, a radiator, a first valve device, a kettle 116 and After the coolant is connected, the air in the coolant system can be removed.
  • the first valve device 115 is a three-way proportional regulating valve, wherein the second communication port 115b is in communication with the inlet of the second pump 109, and the outlet of the second pump 109 is in communication with the heater 110, the heater 110 It is in communication with the inlet of the radiator 111, and the outlet of the radiator 111 is in communication with the kettle 116.
  • the outlet of the kettle 116 is divided into two paths, one of which is in communication with the third communication port 115c, and the other of which is in communication with the inlet of the first pump 108, first
  • the outlet of the pump 108 is in communication with the inlet of the second flow passage of the first heat exchanger 103, and the outlet of the second flow passage of the first heat exchanger 103 is divided into two paths, one of which is in communication with the inlet of the battery heat exchanger 107, and the other
  • One way is in communication with the first communication port 115a, and the outlet of the battery heat exchanger 107 is in communication with the inlet of the first pump 108.
  • the first communication port of the first valve device 115 is in communication with the battery circuit
  • the second communication port 115b of the first valve device 115 is in communication with the heating/cooling circuit
  • the third valve device 115 is in the third The communication port 115c is in communication with the battery circuit.
  • FIG. 14 illustrates another embodiment of a thermal management system including a second heat exchanger 121, the second heat exchanger 121 including two streams a first flow path of the second heat exchanger 121 and a second flow path of the second heat exchanger 121, a first flow path of the second heat exchanger 121 and a second flow of the second heat exchanger 121
  • the fluid in the channel performs fluid heat exchange in the second heat exchanger 121;
  • the coolant system includes a battery circuit and a heating/cooling circuit, the battery circuit including a second flow path of the first heat exchanger 103, and a battery heat exchanger 107.
  • the rail connection constitutes a part of a battery circuit
  • the heating/cooling circuit includes a second pump 109, a heater 110, a radiator 111, a second flow path of the second heat exchanger 121, a second pump 109, a heater 110, and a heat dissipation
  • the second flow path connection of the second heat exchanger 121 and the second heat exchanger 121 constitute a part of the heating/cooling circuit;
  • the heating/cooling circuit includes a second valve device 122.
  • the second valve device 122 has at least a first communication port 122a, a second communication port 122b, and a third communication port 122c.
  • the first valve device 122 is first.
  • the communication port is in communication with the second flow path of the second heat exchanger, and the second communication port of the second valve device 122 is in communication with an outlet or outlet line of the second flow path of the second heat exchanger.
  • the third communication port of the second valve device 122 is in communication with the heat sink 111, and the third communication port of the second valve device 122 is capable of conducting and blocking the first communication port of the second valve device, a second communication port;
  • the second valve device may be, for example, a three-way proportional adjustment valve, and the second valve device is capable of adjusting a flow rate of the coolant entering the first communication port from the third communication port.
  • the second valve device 122' includes at least a first valve module 122d, the first valve module 122d includes two ports, and the first port of the first valve module 122d is The first communication port 122a is in communication, the second port of the first valve module 122d is in communication with the second communication port 122b and the third communication port 122c, and the first valve module 122d can block or conduct or adjust from the third communication.
  • the port 122d enters the fluid flow rate of the second port of the first valve module 122d, and the second valve device includes a first working state and a second working state. In the first working state, the first valve module 122d is turned off, and in the second working state. At the time, the first valve module 122d is opened.
  • the coolant system includes a first circulation mode, a second circulation mode, and a third circulation mode, the second valve device 122 including a first operational state and a second operational state, the first operation of the second valve device a state in which the third communication port 122c of the second valve device 122 is electrically connected to the first communication port 122a of the second valve device 122, and the third communication port 122c of the second valve device 122 is
  • the second communication port 122b of the second valve device 122 is conductive; in the second operating state of the second valve device 122, that is, the third communication port 122c of the second valve device 122 and the second valve device
  • the first communication port 122a is not conductive, and the third communication port 122c of the second valve device 122 is electrically connected to the second communication port 122b of the second valve device 122;
  • the second valve device 122 In the first cycle mode, the second valve device 122 is in the first working state, the second valve device is connected to the third communication port 122c and the first communication port 122a, and the second valve device 122 is in the third communication state.
  • the port 122c is connected to the second communication port 122b, the heater 110 is opened, and the damper 120 is opened at the periphery of the radiator 111.
  • the second circulation mode the second valve device 122 is in the second working state, and the second valve device 122 is blocked.
  • the third communication port 122c and the first communication port 122a are opened, the heater 110 is opened, and the damper 120 is opened at the periphery of the radiator 111.
  • the second valve device 122 In the third circulation mode, the second valve device 122 is in the first working state.
  • the second valve device 122 turns on the third communication port 122c and the first communication port 122a, the heater 110 is closed, and the damper 120 around the radiator 111 is opened.
  • the second valve device 122" includes a first valve module 122d and a second valve module 122e.
  • the first valve module 122d and the second valve module 122e each include two ports, and the first port of the first valve module 122d is The first communication port 122a is in communication, the first port of the second valve module 122e is in communication with the second communication port 122b, and the second port of the first valve module 122d and the second port of the second valve module 122e are in communication with the third communication port 122c.
  • the first valve module 122d In the first working state, the first valve module 122d is closed, the second valve module 122e is opened, in the second working state, the first valve module 122d is opened, and the second valve module 122e is opened, wherein the first valve module, the first
  • the two-valve module can be a module with flow regulation and cut-off function, such as a flow regulating valve with a cut-off function.
  • the second valve device 122 regulates the flow rate of the refrigerant entering the second flow passage of the second heat exchanger to control the amount of heat exchange with the refrigerant in the first flow passage of the second heat exchanger to control the battery heat exchanger pair The heating efficiency of the battery.
  • the heater is located in the outer space of the air conditioner box, and the heat sink is located in the inner space of the air conditioner box, so that the electric power enters the air conditioner box to prevent the safety hazard, and the heat sink has a relatively simple structure with respect to the device with the heater.
  • the radiator has a small wind resistance, and the air can still obtain a large air volume after flowing through it.
  • the heating/cooling circuit includes a kettle 116b.
  • the battery circuit includes a kettle 116a.
  • the kettles 116a, 116b are used for exhausting in a heating/cooling circuit and a battery circuit.
  • the height of the kettle 116a is higher than that of the first heat exchanger and the battery.
  • the height of the heat exchanger, the first pump, and the second heat exchanger, the height of the kettle 116b is higher than the heights of the second heat exchanger, the heater, the radiator, the second valve device, and the second pump.
  • a kettle is provided in both the heating/cooling circuit and the battery circuit to help eliminate air bubbles during operation.
  • the coolant system may have a heating function
  • the second pump 109 is activated, the fluid circulates in the heating/cooling circuit, and the outside air is heated by the radiator.
  • the coolant system may have a battery heating function
  • the first pump 108 is activated
  • the second pump 109 is activated
  • the fluid is heated by the heater 110, passes through the radiator 111, and the second valve device 122 flows in.
  • the second flow path of the second heat exchanger 121 the fluid in the first flow path of the second heat exchanger absorbs the heat of the fluid in the second flow path of the second heat exchanger, and the adjustment of the first pump 108 makes the battery suitable temperature.
  • the first pump 108 is activated, the coolant is circulated in the battery circuit, and the fluid in the first flow path of the first heat exchanger 103 absorbs the heat of the fluid in the second flow path of the first heat exchanger 103, so that The coolant in the battery circuit is cooled to bring the battery to a suitable temperature.
  • the outlet of the first pump 108 is in communication with the inlet of the second flow path of the first heat exchanger 103, and the outlet of the second flow path of the first heat exchanger 103 and the second heat exchanger
  • the inlet of the first flow path of 121 is in communication
  • the outlet of the second flow path of the second heat exchanger 121 is in communication with the inlet of the battery heat exchanger 107
  • the outlet of the battery heat exchanger 107 is in communication with the inlet of the kettle 116a
  • the outlet of the kettle 116a It is in communication with the inlet of the first pump 108
  • the outlet of the second flow passage of the second heat exchanger 121 is in communication with the inlet of the kettle 116b
  • the outlet of the kettle 116b is in communication with the inlet of the second pump 109
  • the outlet and heating of the second pump 109
  • the inlet of the heater 110 is in communication
  • the outlet of the heater 110 is in communication with the inlet of the radiator 111
  • the outlet of the radiator 111
  • the refrigerant system includes a compressor 101, a first throttle device 102, a first flow path of the first heat exchanger 103, a fifth heat exchanger 104, a third heat exchanger 105, and a third valve device. 112, fourth valve device 113, second throttle device 114, fourth heat exchanger 106;
  • the third valve device 112 includes four ports, that is, a first communication port 112a of the third valve device, a second communication port 112b of the third valve device, a third communication port 112c of the third valve device, and a third valve.
  • the fourth communication port 112d of the device, the fourth valve device 113 includes two ports, that is, the first communication port 113a of the fourth valve device, the second communication port 113b of the fourth valve device, the outlet of the compressor 101, and the third
  • the inlet of the heat exchanger 105 is connected, the outlet of the third heat exchanger 105 is connected to the first communication port 112a of the third valve device, and the second communication port 112b of the third valve device is connected to one end of the fourth heat exchanger 106.
  • the other end of the fourth heat exchanger 106 of the third valve device is connected to the first communication port 113a of the fourth valve device 113, and the second communication port 113b of the fourth valve device 113 and the fourth communication port of the third valve device 112 112d, the second throttle device 114 or the first throttle device 102 is in communication, the third communication port 112c of the third valve device is in communication with the inlet of the compressor 101, and the fourth communication port 112d of the third valve device is connected to the first throttle The device 102, the second throttle device 114, and the fourth valve device 113 are in communication;
  • the third valve device 112 includes at least a first working state and a second working state. In the first working state of the third valve device 112, the first communication port 112a and the second communication port 112b are turned on, and the fourth communication port 112d is The third communication port 112c is not electrically connected. In the second operation state of the third valve device, the first communication port 112a and the fourth communication port 112d are electrically connected, and the second communication port 112b is electrically connected to the third communication port 112c. Specifically, referring to FIG.
  • the third valve device 112 of the thermal management system may be the first multi-way reversing device 201, and the first multi-way reversing device 201 includes a first valve hole 2011, a second valve hole 2012, and a third The valve hole 2013 and the first inlet 2014, or the first multi-way switching device 201 further includes a first communication tube communicating with the first valve hole, a second communication tube communicating with the second valve hole, and communicating with the third valve hole
  • the third communication pipe and the fourth communication pipe communicating with the first inlet 2014, wherein the first inlet 2014 communicates with the first communication port 112a, the first valve hole 2011 communicates with the second communication port 112b, and the second valve hole 2012 Communicating with the third communication port 112c, the third valve hole 2013 communicates with the fourth communication port 112d.
  • the first multi-way switching device 201 can make the first inlet 2014 and the first valve
  • the communication passage of the hole 2011 is electrically connected, and the communication passage of the third valve hole 2013 and the second valve hole 2012 can be closed; in the second working state of the third valve device, the first multi-way reversing device 201 can make the first inlet 2014
  • the communication passage with the third valve hole 2013 is electrically connected while the first valve hole 2011 and the second valve hole 20 are made
  • the communication channel of 12 is turned on.
  • the third valve device may also include a second multi-way reversing device 201' and a first valve member 209, wherein the second multi-way reversing device 201' includes a second inlet 2014', The fourth valve hole 2011', the fifth valve hole 2012' and the sixth valve hole 2013', similarly, the second multi-way switching device 201' may also include a communication tube communicating with each valve hole or inlet, the first valve member The two ports of the 209 are respectively connected to the sixth valve hole 2013' and the fourth communication port 112d, the second inlet 2014' is in communication with the first communication port 112a, and the fourth valve hole 2011' is in communication with the second communication hole 112b.
  • the valve hole 2012' communicates with the third communication port 112c.
  • the second multi-way switching device 201' guides the communication passage between the second inlet 2014' and the fourth valve hole 2011'.
  • the first valve member 209 can be closed by closing the communication passage of the sixth valve hole 2013' with the fifth valve hole 2012'; in the second working state of the third valve device, the second multi-way switching device 201'
  • the communication passage of the fourth valve hole 2011' and the fifth valve hole 2012' can be electrically connected to enable the sixth valve 2013 'and the second inlet 2014' of the communication channel is turned on, while the first valve member 209 is turned on.
  • the first valve member 209 may be a shut-off valve, a flow regulating valve or a one-way valve.
  • the refrigerant flows into the sixth valve hole 2013', the check valve is blocked, and the refrigerant flows out.
  • the sixth valve hole is in the direction of 2013', and the check valve is turned on.
  • the third valve device 112 includes a first valve module 401 , a second valve module 402 , and a third valve module 403 .
  • the first valve module 401 and the second valve module 402 are connected to the third valve device 112 .
  • the third valve module 403 may be a shut-off valve or a two-way flow regulating valve
  • the first valve module 401, the second valve module 402, and the third valve module 403 each include two ports, a first port of the first valve module 401 and The first port of the second valve module 402 is in communication with the fourth communication port 112d, the second port of the first valve module 401 is in communication with the first communication port 112a, and the second port of the second valve module 402 and the third valve module 403
  • the second port is in communication with the second communication port 112b, and the third valve module 403 is in communication with the third communication port 112c.
  • the second valve module 402 is opened, and the first valve module 401 is opened.
  • the third valve module 403 is turned off.
  • the first valve module 401 is opened, the third valve module 403 is opened, and the second valve module 402 is turned off.
  • the first valve module 401 and the second valve module 402 may be replaced by a first three-way valve (not shown).
  • the first three-way valve includes three interfaces, the first three.
  • the first interface of the valve is in communication with the fourth communication port 112d, and the second port of the first three-way valve and the second port of the third valve module are both in communication with the second communication port 112b, and the third valve module and the third communication port 112c is connected, the third interface of the first three-way valve is in communication with the first communication port 112a, and in the first working state of the third valve device, the first three-way valve opens the first interface of the first three-way valve and a communication passage of the second interface of the three-way valve, the first three-way valve closing the communication passage between the first interface of the first three-way valve and the third interface of the first three-way valve, and the third shut-off valve is closed a second working state of the third valve device, the first three-way valve opens a communication passage between the first interface of the first three-way valve and the third interface of the first three-way valve, the third valve module is opened, and the first three-way valve The communication path between the first interface of the first three-way valve and the second interface of
  • the first port of the first three-way valve is in communication with the refrigerant outlet of the first heat exchanger 103, and the second port of the first three-way valve is in communication with the first port of the fifth heat exchanger 104, the first three-way valve
  • the third interface is connected to the inlet of the second heat exchanger 121, the first flow path of the fourth heat exchanger 106, and the second port of the fifth heat exchanger 104 or through the inlet of the four-way and second heat exchanger 121,
  • the first flow path of the fourth heat exchanger 106 is in communication with the second port of the fifth heat exchanger 104.
  • the thermal management system includes a gas-liquid separator 118 that is in communication with an inlet of the compressor.
  • the refrigerant may be liquid or gas-liquid two phases
  • a gas-liquid separator may be provided, and the gas-liquid separator 118 separates the gas-liquid two-phase refrigerant, and the liquid refrigerant is stored in the gas-liquid separator, and the gaseous state
  • the refrigerant enters the compressor 101; in addition, in the case where the compressor can withstand the liquid refrigerant, the gas-liquid separator 118 may not be provided, and the gas-liquid separator 118 may be replaced with a liquid reservoir. In the case where the refrigerant is not a two-phase flow, the gas-liquid separator may not be provided.
  • the fourth valve device 113 includes a throttle structure unit 113c and a unidirectional structure unit 113d.
  • the unidirectional structure unit 113d conducts a flow path from the first communication port 113a to the second communication port 113b, and the throttle structure unit 113c is turned on. a flow path from the second communication port 113b to the first communication port 113a.
  • the fourth valve device 113 may specifically be an electronic expansion valve with a one-way valve, or a combination or other pipe connection structure of other throttling devices and one-way valve devices.
  • the first throttling device 102 and the second throttling device 114 herein may be a thermal expansion valve or an electronic expansion valve or a throttling device such as a capillary tube that can regulate the flow of the refrigerant; the unidirectional structural unit 113d may have an on-off
  • the control function of the shut-off valve or the flow regulating valve or the solenoid valve can also be a one-way valve that flows in one direction and is blocked in the other direction; the throttle device can also be integrated with the heat exchanger to form a combination, and the structure is more compact, such as An assembly of two throttling devices 114 and a first heat exchanger 103 assembly.
  • the refrigerant system includes a four-way structure 124 (see FIG. 1), and the four-way structure 124 includes four ports, wherein a first port of the four-way structure 124 is in communication with a second throttling device 114, and a second portion of the four-way structure 124 The port is in communication with the fourth communication port 112d, the third port of the four-way structure 124 is in communication with the second communication port 113b of the fourth valve device 113, and the fourth port of the four-way structure 124 is in communication with the first throttle device 102.
  • the thermal management system further includes an air conditioning box (not numbered), the air conditioning box includes an air conditioning box, the air conditioning box is provided with a plurality of air passages communicating with the vehicle interior, and the third heat exchanger 105 is disposed in the inner space of the air conditioning box, in the air conditioning box A fan 119 is disposed at a position close to the tuyere.
  • a damper 120 is also provided on the windward side (upstream) of the third heat exchanger 105, and the flow of air around the third heat exchanger 105 is controlled by adjusting the damper 120.
  • the thermal management system includes a heating mode, a cooling mode, a dehumidification mode, and a circulation mode.
  • the heating mode of the thermal management system includes a first heating mode, a second heating mode, and a third heating mode.
  • the thermal management system In the case of heating only with a heater, the thermal management system is in the first heating mode. In the first heating mode, the compressor does not start.
  • the second pump 109 In the case where the battery circuit is not activated, referring to FIG. 11, the second pump 109 is activated, the heater 110 is activated, and the battery circuit and the heating/cooling circuit are not electrically connected. The coolant in the cooling circuit is heated by the heater 110 and then enters the radiator 111.
  • the damper 120 is opened, and the coolant dissipates heat to the outside air in the radiator 111.
  • a pump 108 and a second pump 109 are activated to adjust the flow rate of the first valve device 115.
  • a portion of the coolant in the battery circuit enters the second pump 109 via the first communication port 115a and the second communication port 115b, and the heater 110 does not start.
  • the radiator 110 enters the radiator 111.
  • the damper 120 is opened, and the coolant releases heat to the air.
  • the fan 119 is started, and the hot air in the passenger compartment is discharged to the outside air through the external circulation, and the temperature is lowered.
  • a portion of the coolant is drawn into the battery circuit by the first pump 108 to cool the battery device in the battery heat exchanger 107, and another portion of the cooled coolant is returned from the third communication port 115c to the second pump 109. Ring.
  • the refrigerant system can be additionally heated, the thermal management system is in the second heating mode, the second pump 109 is turned on, the heater 110 is turned on, and the coolant is circulated in the heating/cooling circuit.
  • the third valve device is in the second working state, and the throttle structure unit 113c and the second throttle device 114 are opened, and the first communication port 112a of the third valve device 112 is connected to the fourth communication port 112d of the third valve device 112.
  • the fourth communication port 112d is in communication with the fourth valve device 113, the fourth heat exchanger 106, the second communication port 112b of the third valve device 112, the third communication port 112c, and the compressor 101, and the battery is not processed.
  • the battery circuit and the heating/cooling circuit are not circulated.
  • the refrigerant of the thermal management system is compressed by the compressor 101, and the low-temperature low-pressure refrigerant is compressed into a high-temperature high-pressure refrigerant, and the refrigerant enters the third heat exchanger from the outlet end of the compressor 101 through the refrigerant inlet of the third heat exchanger 105. 105.
  • the refrigerant of the third heat exchanger 105 exchanges heat with the air around the third heat exchanger 105 in the air passage, and the refrigerant of the third heat exchanger 105 releases heat to the surrounding air.
  • the refrigerant outlet of the third heat exchanger 105 communicates with the throttle structure unit 113d via the first communication port 112a and the fourth communication port 112d, and the refrigerant is throttled by the throttle structure unit 113c and then enters the fourth heat exchanger 106.
  • the low temperature and low pressure refrigerant exchanges heat with the air around the heat exchanger in the fourth heat exchanger 106 to absorb the heat of the air.
  • the fan 117 disposed near the fourth heat exchanger 106 blows air around the fourth heat exchanger 106 to form an air flow, accelerates heat exchange between the fourth heat exchanger 106 and the surrounding air, and promotes the fourth heat exchanger 106.
  • the refrigerant absorbs heat from the air.
  • the third valve device is in the second working state, the first communication port of the third valve device and the fourth valve device are fourth.
  • the communication port is connected, the fourth communication port of the third valve device is in communication with the second throttle device, the first flow channel of the first heat exchanger, and the fourth communication port of the third valve device and the fourth valve
  • the device 113 and the fourth heat exchanger 106 are in communication, the first flow path and the fourth heat exchanger of the first heat exchanger 103 are in communication with the compressor 101, the first pump 108 is activated, the second pump 109 is activated, and the battery circuit is
  • the heating/cooling circuit is turned on, the coolant in the battery circuit is circulated, and the refrigerant outlet of the third heat exchanger 105 is divided by the first communication port 112a of the third valve device and the fourth communication port 112d of the third valve device.
  • Two ways one way is connected with the throttle structure unit 113d, the other way is connected with the second throttle device 114, the refrigerant is throttled by the throttle structure unit 113c, and then enters the fourth heat exchanger 106, and the low temperature and low pressure refrigerant is in the fourth
  • the heat exchanger 106 exchanges heat with the air around the fourth heat exchanger 106, Absorbs heat from the air.
  • the fluid passing through the second throttling device 114 enters the first flow path of the first heat exchanger 103, and the refrigerant of the first flow path of the first heat exchanger 103 and the coolant of the second flow path of the first heat exchanger 103 are performed.
  • the heat exchange, the cooled coolant is exchanged with the battery and the like in the battery heat exchanger 107, the battery heat exchanger 107 absorbs the heat of the battery and the like, and the thermal management system acquires the battery heat exchanger through the first heat exchanger 103.
  • the third valve device 112 When the temperature of the device such as the battery is low, the battery needs to be heated, the third valve device 112 is in the second working state, and the first communication port of the third valve device is in communication with the fourth communication port of the third valve device, a fourth communication port of the three-valve device is in communication with the second throttling device, the first flow path of the first heat exchanger, the fourth communication port of the third valve device, and the fourth valve device and the fourth heat exchanger Connected, the first flow path and the fourth heat exchanger of the first heat exchanger are in communication with the compressor, the first pump 108 is activated, the second pump 109 is activated, and the battery circuit is electrically connected to the heating/cooling circuit, or The battery circuit is non-conducting with the heating/cooling circuit.
  • the first pump 108, the second pump 109, the coolant in the heating/cooling circuit are circulated by the heater, the first valve device 115 is opened to a certain degree of opening, and the first pump 108 is pumped away and heated by the heater. A portion of the coolant enters the battery circuit, and the heated coolant heats the battery or the like in the battery heat exchanger 107. Or referring to FIG. 14, the first pump 108 is activated, the second pump 109, the coolant in the heating/cooling circuit is heated by the heater, and the coolant in the battery circuit absorbs the second heat exchanger in the second heat exchanger.
  • the heat of the heated coolant in the second flow path is heated by the heated coolant in the battery heat exchanger 107 to the battery or the like.
  • the first pump 108 is activated, the second pump 109, the cooling liquid in the heating/cooling circuit is heated by the heater, and the first valve device 115 is opened to a certain opening degree, and the first pump 108 is pumped away through the heater.
  • the heated portion of the coolant enters the battery circuit, and the heated coolant heats the battery and the like in the battery heat exchanger 107.
  • the refrigerant outlet of the third heat exchanger 105 is divided into two paths through the first communication port 112a of the third valve device and the fourth communication port 112d of the third valve device, and one channel is connected to the throttle structure unit 113d, and the other path and the first
  • the two throttling devices 114 are connected, the refrigerant is throttled by the throttling structure unit 113c, and then enters the fourth heat exchanger 106.
  • the low temperature and low pressure refrigerant exchanges heat with the air around the heat exchanger in the fourth heat exchanger 106, and absorbs The heat of the air.
  • the fluid passing through the second throttling device 114 enters the first flow path of the first heat exchanger 103, and the refrigerant of the first flow path of the first heat exchanger 103 and the coolant of the second flow path of the first heat exchanger 103 are performed.
  • the higher fluid drawn from the heating/cooling circuit of the first pump 108 is cooled by the first heat exchanger 103 to a suitable temperature, and the temperature is more suitable for the coolant in the battery heat exchanger 107 and the battery and the like.
  • the coolant flow path of the heating device at this time is only the circulation passage of the coolant system.
  • the refrigerant can flow back to the compressor after flowing out of the fourth heat exchanger 106; when the refrigerant may be liquid or gas-liquid two phases, the gas-liquid separator can be set, from the fourth exchange
  • the refrigerant flowing out of the heater 106 enters the gas-liquid separator 118, and is separated by the gas-liquid separator 118.
  • the liquid refrigerant is stored in the gas-liquid separator, and the low-temperature low-pressure refrigerant enters the compressor 101 and is again subjected to the compressor 101.
  • the refrigerant is compressed into a high-temperature and high-pressure refrigerant, and the cycle is operated.
  • the gas-liquid separator 118 may not be provided, and the gas-liquid separator 118 may be replaced with a liquid reservoir.
  • the gas-liquid separator may not be provided.
  • the thermal management system is in the third heating mode.
  • the first pump 108 and the second pump 109 are not required to be heated or cooled.
  • the third valve device 112 is in the second working state, the first communication port 112a of the third valve device 112, the fourth communication port 112d of the third valve device 112 are in communication, the second communication port 112b of the third valve device 112,
  • the third communication port 112c of the third valve device 112 is in communication, and the fourth communication port 112d of the third valve device 112 is in communication with the second communication port 113b of the fourth valve device 113 and the fourth heat exchanger 106, and the third valve device 112
  • the second communication port 112b, the third communication port 112c of the third valve device 112, and the compressor 101 communicate with each other, and the refrigerant at the outlet of the third heat exchanger 105 passes through the first communication port 112a and the third port of the third valve device
  • the fourth communication port 112d of the valve device 112 enters the throttle structure unit 113c, the refrigerant is throttled by the throttle structure unit 113c, and then enters the fourth heat exchanger 106, and the low temperature and low pressure refrigerant in the fourth heat exchanger 106 and the heat exchange Heat exchange around the air to absorb heat from the air And then returns to the compressor 101.
  • the first pump 108 is activated, the coolant circulates in the battery circuit, the third valve device 112 is in the second operating state, and the first valve device 112 is in the first communication.
  • the port 112a, the fourth communication port 112d of the third valve device 112 communicate, the second communication port 112b of the third valve device 112, the third communication port 112c of the third valve device 112 communicate, and the fourth communication of the third valve device 112
  • the port 112d communicates with the second communication port 113b of the fourth valve device 113, the fourth heat exchanger 106, the second communication port 112b of the third valve device 112, the third communication port 112c of the third valve device 112, and the compressor 101.
  • the fourth communication port 112d of the third valve device 112 is also in communication with the second throttle device 114, the first flow passage of the first heat exchanger 103, and the compressor; and the refrigerant outlet of the third heat exchanger 105 passes through the third
  • the first communication port 112a of the valve device 112 and the fourth communication port 112d of the third valve device 112 are divided into two paths, one is connected to the throttle structure unit 113d, and the other is connected to the second throttle device 114.
  • the flow structure unit 113c is throttled and enters the fourth heat exchanger 106, and the low temperature is low.
  • fourth heat exchanger 106 exchanges heat with the ambient air heat exchanger, the refrigerant absorbing the air.
  • the fluid passing through the second throttling device 114 enters the first flow path of the first heat exchanger 103, and the refrigerant of the first flow path of the first heat exchanger 103 and the coolant of the second flow path of the first heat exchanger 103 are performed.
  • the heat exchange, the cooled coolant exchanges heat with the battery and the like in the battery heat exchanger 107
  • the battery heat exchanger 107 absorbs the heat of the battery and the like
  • the thermal management system acquires the battery heat exchanger through the first heat exchanger 103.
  • the passenger compartment air needs to be dehumidified, that is, the dehumidification mode of the thermal management system, including the first dehumidification mode. a second dehumidification mode and a third dehumidification mode.
  • the dehumidification mode of the thermal management system including the first dehumidification mode. a second dehumidification mode and a third dehumidification mode.
  • the third valve device 108 is pumped into the battery circuit, circulated in the battery circuit, the coolant heats the battery and the like in the battery heat exchanger 107, the third valve device is in the second working state, and the third valve device communicates with the third valve device a first communication port and a fourth communication port of the third valve device, wherein the fourth communication port of the third valve device is in communication with the first throttle device and the fifth heat exchanger, the third valve
  • the fourth communication port of the device is in communication with the first valve device, the fourth heat exchanger, the fifth heat exchanger, the fourth heat exchanger, and the compressor, and the refrigerant at the outlet of the fourth communication port 112d is divided into two paths, wherein One way is in communication with the fourth valve device 113, enters the fourth heat exchanger 106 via the throttle structure unit 113c, and the other channel communicates with the second throttle device 102, and then enters the fifth heat exchanger 104 after throttling, and the refrigerant is in the fifth
  • the heat exchanger 104
  • the gas is cooled and condensed to achieve the effect of dehumidification.
  • the refrigerant at the outlet of the compressor 101 exotherms in the third heat exchanger 105, heating the air around the third heat exchanger 105 to meet the needs of the user.
  • the battery does not need to be heated separately.
  • the battery needs to be cooled, and then enters the second dehumidification mode.
  • the first pump 108 is activated, the coolant circulates in the battery circuit, and the third valve device 113 is in the second working state.
  • the first communication port 112a of the third valve device 112 is in communication with the fourth communication port of the third valve device, the fourth communication port of the third valve device is opposite to the first throttle device, and the fifth The heat exchanger is in communication, the fourth communication port of the third valve device is in communication with the second throttle device, the first flow channel of the first heat exchanger, and the fourth communication port of the third valve device is The fourth valve device and the fourth heat exchanger are in communication, and the fifth heat exchanger, the first flow path of the first heat exchanger, and the fourth heat exchanger outlet are in communication with the compressor inlet, and the third valve device 112
  • the refrigerant at the outlet of the fourth communication port 112d is divided into three paths, one of which is in communication with the first throttle device 102, and the refrigerant is throttled by the first throttle device 102 and then enters the fifth heat exchanger 104, in the fifth heat exchanger.
  • the heat is absorbed in 104, so that the air around the fifth heat exchanger 104 is cooled, so that the water is steamed in the air.
  • the air is condensed to achieve the effect of dehumidification; the other is in communication with the second throttling device 114, and the refrigerant absorbs heat in the first heat exchanger 103, so that the coolant of the second flow path of the first heat exchanger 103 is cooled, and the temperature is lowered.
  • the coolant enters the battery heat exchanger 107 to cool the battery and the like; the third channel communicates with the fourth valve device 113, passes through the throttle structure unit 113c, and then enters the fourth heat exchanger 106, and the refrigerant is in the fourth heat exchange.
  • the heat is absorbed in the unit 106 and then returned to the compressor 101, thus circulating.
  • the first pump 108 When the battery is at a suitable temperature, entering the third dehumidification mode, the first pump 108 is shut off, the coolant in the heating/cooling circuit is not circulated, and the third valve device 113 enters the second working state, the third valve device a communication port is communicated with the fourth communication port of the third valve device, and the fourth communication port of the third valve device is in communication with the first throttle device and the fifth heat exchanger, the third valve device The fourth communication port is in communication with the first valve device and the fourth heat exchanger, and the fifth heat exchanger and the fourth heat exchanger outlet are in communication with the compressor inlet.
  • the refrigerant at the outlet of the fourth communication port 112d of the third valve device 112 is divided into two paths, one of which communicates with the second communication port 113b of the fourth valve device 113, and enters the fourth heat exchanger 106 via the throttle structure unit 113c.
  • the other way is in communication with the first throttling device 102, and after throttling, enters the fifth heat exchanger 104, and the refrigerant absorbs heat in the fifth heat exchanger 104, reducing the temperature of the surrounding air and condensing the water vapor in the air.
  • the refrigerant at the outlet of the compressor 101 enters the third heat exchanger 105, and the refrigerant releases heat in the third heat exchanger 105 to heat the air around the third heat exchanger 105.
  • the thermal management system When the temperature in the passenger compartment is high and the passenger compartment temperature needs to be lowered to improve the comfort, the thermal management system enters the cooling mode. At this time, the external temperature is already high, and there is no case where the battery is heated continuously.
  • the cooling mode of the thermal management system includes The first cooling mode and the second cooling mode, in the first cooling mode, the battery temperature is too high and requires cooling. Referring to FIG. 4, the first pump 108 is activated, the coolant circulates in the battery circuit, and the third valve device 112 enters the first work.
  • a third valve device that conducts the first communication port of the third valve device and the second communication port of the third valve device, the second communication port of the third valve device and the fourth exchange
  • the heat exchanger and the unidirectional structural unit are in communication, and the unidirectional structural unit is in communication with the second throttling device and the first flow path of the first heat exchanger; the unidirectional structural unit and the first throttling device,
  • the fifth heat exchanger is in communication, the fifth heat exchanger and the first heat exchanger outlet are in communication with the compressor inlet, and the high temperature and high pressure refrigerant discharged from the compressor 101 enters the fifth heat exchanger 105, and the damper 120 is closed.
  • the fifth heat exchanger 105 leaves the first communication port 112a of the third valve device 112, and the high temperature and high pressure refrigerant enters the second communication port 112b of the third valve device 112 after passing through the first communication port 112a of the third valve device 112. Then entering the fourth heat exchanger 106, the heat is released into the lower temperature and high pressure refrigerant in the fourth heat exchanger 106. To improve the effect, the fan 117 is turned on, and the lower temperature and high pressure refrigerant is divided into two paths after passing through the unidirectional structural unit 113d.
  • the low temperature and low pressure refrigerant enters the first heat exchanger 103, and the low temperature and low pressure refrigerant absorbs the second flow of the first heat exchanger 103 in the first heat exchanger 103.
  • the heat of the cooling liquid in the channel, the cooled cooling liquid enters the battery heat exchanger 107, and cools the battery and other equipment; the other enters the first throttling device 102, and becomes a low-temperature low-pressure refrigerant into the fifth heat exchanger after throttling.
  • the low temperature and low pressure refrigerant absorbs heat in the fifth heat exchanger 104, reduces the heat of the air around the fifth heat exchanger 104, and achieves the effect of cooling, the refrigerant from the fifth heat exchanger 104, the first heat exchanger 103 Return to compressor 101 after leaving, so cycle
  • the first pump 108 When the battery is at a suitable temperature, entering the second cooling mode, referring to FIG. 1, the first pump 108 is shut down, the third valve device 112 enters a first working state, and the first communication port of the third valve device Communicating with the second communication port of the third valve device, the second communication port of the third valve device and the fourth heat exchanger, the unidirectional structural unit, the first throttling device, and the fifth heat exchanger
  • the compressor is connected, and the high-pressure high-temperature refrigerant discharged from the compressor 101 enters the third heat exchanger 105.
  • the temperature damper 120 is closed, and the high-temperature high-pressure refrigerant flows through the first communication port 112a and the second communication port 112b to enter the fourth.
  • the heat exchanger 106 is exothermic in the fourth heat exchanger 106 to become a high-pressure low-temperature refrigerant, and then enters the first throttling device 102 via the unidirectional structural unit 113d, and the high-pressure low-temperature refrigerant becomes low-pressure and low-temperature after throttling.
  • the refrigerant absorbs heat in the fifth heat exchanger 104 to lower the temperature of the air around the fifth heat exchanger 104, thus achieving the effect of cooling, and the low-pressure higher-temperature refrigerant exiting the fifth heat exchanger 104 returns to the compressor. 101, this cycle.
  • the thermal management system also includes a first cycle mode, a second cycle mode, and a third cycle mode, see FIG. 7, FIG. 7a, and FIG.
  • the first cycle mode the compressor 101 of the thermal management system is turned off, or the refrigerant in the refrigerant system does not flow.
  • the first pump 108 is activated.
  • the second pump 109 adjusting the flow rate of the first valve device 115, so that the coolant is heated by the heater 110, and then enters the radiator 111.
  • the damper 120 is closed, and a part of the coolant leaving the radiator 111 passes through the first pump 108.
  • the battery circuit is drawn, the battery is heated in the battery heat exchanger 107, and the other portion of the coolant flows through the third communication port 115c of the first valve device 115, and a part of the coolant in the battery circuit flows through the first communication port 115a.
  • the two portions of the coolant are returned from the second communication port 115b to the heater 110, and thus circulated.
  • the battery In the case of battery charging, the battery needs to be cooled.
  • the second circulation mode is entered, the first pump 108 and the second pump 109 are activated to adjust the flow rate of the first valve device 115, and the coolant in the battery circuit.
  • a part enters the second pump 109 via the first communication port 115a and the second communication port 115b, the heater 110 does not start, and the coolant passes through the heater 110 and enters the radiator 111.
  • the damper 120 is opened, and the coolant releases heat to the air.
  • the fan 119 is started, and the hot air in the passenger compartment is discharged to the outside air through the external circulation, and a part of the cooled cooling liquid is drawn into the battery circuit by the first pump 108, so that the battery device is performed in the battery heat exchanger 107. Cooling, another portion of the cooled coolant returns from the third communication port 115c of the first valve device 115 to the second pump 109, and thus circulates.
  • the third cycle mode is entered.
  • the first pump 108 is started, the coolant circulates in the battery circuit, and the compressor 101 is started.
  • the valve device 112 is in the first working state, and the refrigerant discharged from the compressor 101 enters the third heat exchanger 105.
  • the damper 120 is closed, and the refrigerant is from the first communication port 112a and the third valve device 112 of the third valve device 112.
  • the second communication port 112b enters the fourth heat exchanger 106 to release heat, and the cooled refrigerant enters the second throttle device 114, is throttled to become a low-temperature low-pressure refrigerant, and then enters the first heat exchanger 103,
  • the low temperature and low pressure refrigerant absorbs heat in the first heat exchanger 103, reduces the temperature of the coolant in the second flow path of the first heat exchanger 103, and the cooled coolant enters the battery heat exchanger 107 to cool the battery and the like.
  • the refrigerant leaving the first heat exchanger 103 returns to the compressor 101, and thus circulates.
  • the refrigerant system includes a compressor 101 , a third heat exchanger 105 , a third valve device 112 , a fourth heat exchanger 106 , a gas-liquid separator 118 , and a first heat exchanger 103 .
  • the first flow passage, the first throttle device 102, the second throttle device 114, and the third valve device 112 include four communication ports, that is, the first communication port 112a of the third valve device 112, and the third valve device 112.
  • the outlet of the compressor 101 is connected to the inlet of the third heat exchanger 105, the outlet of the third heat exchanger 105 is in communication with the first communication port 112a of the third valve device 112, and the second communication port 112b of the third valve device 112 is One end of the fourth heat exchanger 106 is connected, and the refrigerant at the outlet of the fourth heat exchanger 106 is divided into two paths, one way communicating with the first throttling device 102, the fifth heat exchanger 104, and the fourth communication port 112d, and the third valve
  • the third communication port 112c of the device 112 is in communication with the gas-liquid separator 118 and the compressor 101, the other channel and the second throttle device 114, the first flow path of the first heat exchanger 103, the gas-liquid separator 118, and the compressor 101 Connected.
  • the third valve device 112 has a first working state and a second working state.
  • the first communication port 112a and the second communication port 112b are electrically connected, and the third communication port 112c is electrically connected to the fourth communication port 112d.
  • the fifth heat exchanger 104 absorbs the heat of the surrounding air, so that the air in the passenger compartment is cooled to meet the needs of the user.
  • the first communication port 112a is electrically connected to the fourth communication port 112d
  • the second communication port 112b is electrically connected to the third communication port 112c.
  • the damper 120 is opened, and the third heat exchanger 105 is opposite to the surrounding air. Heat up and heat the air in the passenger compartment to meet user needs.
  • the refrigerant system includes a first flow path of the first heat exchanger, a fifth heat exchanger, a third heat exchanger, a fourth heat exchanger, a compressor, a third valve device, and a throttling
  • the function realized by the refrigerant system comprises: realizing refrigeration at the fifth heat exchanger, achieving heating at the third heat exchanger 105; and, for example, the refrigerant system including the first flow passage and the fifth exchange of the first heat exchanger
  • the heat exchanger, the fourth heat exchanger, the compressor, the third valve device, and the throttling device, the functions realized by the refrigerant system include achieving refrigeration at the fifth heat exchanger; and others.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Secondary Cells (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种热管理系统,热管理系统包括冷却液系统,冷却液系统包括电池回路和加热/冷却回路,第一换热器(103)的第二流道、电池换热器(107)、第一泵(108)形成电池回路的一部分,加热器(110)、散热器(111)、第二泵(109)形成加热/冷却回路的一部分,第一阀装置(115)导通或阻断电池回路和加热/冷却回路;冷却液系统包括连接部(130),连接部(130)导通或阻断电池回路和加热/冷却回路。

Description

热管理系统
本申请要求于2017年6月27日提交中国专利局的申请号为201710499039.6、发明名称为“热管理系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及车辆热管理技术领域。
背景技术
现有的电动车辆或混合动力车辆都设置有电池冷却系统,这是因为电池在使用过程中容易发热,故需要经常对电池进行冷却,但是电池在特定情况下,例如环境温度较低时,其充放电效率、寿命都较低。因此,如何使电池的充放电效率提高是目前亟需解决的问题。
发明内容
本发明的目的在于提供一种热管理系统,使得电池处于不同环境温度下仍能具有较高的充放电效率,提高电池寿命及实现快速充电。
为实现上述目的,采用如下技术方案:一种热管理系统,包括电池换热器、第一泵、第二泵、第一换热器、加热器、散热器、第一阀装置,所述第一换热器包括第一流道和第二流道,所述第一流道与第二流道相互隔离且第一流道内的流体与第二流道内的流体能够热交换;
所述热管理系统包括制冷剂系统和冷却液系统,所述制冷剂系统包括第一换热器的第一流道,所述冷却液系统包括所述第一换热器的第二流道、电池换热器、第一泵、第二泵、加热器、第一阀装置和散热器;所述冷却液系统包括电池回路和加热/冷却回路,所述第一换热器的第二流道、电池换热器、第一泵形成所述电池回路的一部分,所述加热器、散热器、第二泵形成所述加热/冷却回路的一部分,所述第一阀装置能够使所述电池回路和所述加热/冷却回路之间的通路导通或阻断;所述冷却液系统包括连接部,所述连接部能够使所述电池回路和所述加热/冷却回路之间的通路导通 或阻断。
为实现上述目的,还采用如下技术方案:一种热管理系统,包括电池换热器、第一泵、第二泵、第一换热器、加热器、散热器、第二阀装置、第二换热器,所述第一换热器和所述第二换热器均包括两个流道,所述第一换热器的第一流道与第一换热器的第二流道相互隔离,且第一换热器的第一流道内流体与第一换热器的第二流道内流体能够进行热交换,所述第二换热器的第一流道与第二换热器的第二流道相互隔离,且第二换热器的第一流道内流体与第二换热器的第二流道内流体能够进行热交换;
所述热管理系统包括制冷剂系统和冷却液系统,所述制冷剂系统包括第一换热器的第一流道,所述冷却液系统包括所述第一换热器的第二流道、所述电池换热器、所述第一泵、所述第二泵、所述加热器、所述第二阀装置、所述第二换热器和所述散热器;所述冷却液系统包括电池回路和加热/冷却回路,所述第二换热器的第一流道、所述第一换热器的第二流道、所述电池换热器、所述第一泵形成所述电池回路的一部分,所述第二换热器的第二流道、所述加热器、所述散热器、所述第二阀装置、所述第二泵形成所述加热/冷却回路的一部分。
本发明的上述技术方案的冷却液系统包括电池回路和加热/冷却回路,加热/冷却回路和电池回路耦合,使得电池在低温情况下,可通过加热/冷却回路进行加热,电池温度较高时,可通过制冷剂系统和加热/冷却回路进行放热。如此有利于电池在高温、低温下均具有较好的充放电效率,且有利于延长电池使用寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种实施方式的示意图;
图2-图13为图1所示系统不同工作模式的示意图;
图14为本发明另一种实施方式的示意图;
图15为本发明又一种实施方式的示意图;
图16为第三阀装置的一种实施方式的示意图;
图17为第四阀装置的一种实施方式的示意图;
图18为第一阀装置的一种实施方式的示意图;
图19为第一阀装置的另一种实施方式的示意图;
图20为第一阀装置的又一种实施方式的示意图;
图21为第二阀装置的一种实施方式的示意图;
图22为第二阀装置的另一种实施方式的示意图;
图23为第二阀装置的又一种实施方式的示意图;
图24为第三阀装置的另一种实施方式的示意图;
图25为第三阀装置的又一种实施方式的示意图;
图26为第三阀装置的其他实施方式的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
参照图1-图13,图1-图13示意出热管理系统一种实施方式,热管理系统包括制冷剂系统和冷却液系统,所述制冷剂系统的制冷剂与所述冷却液系统的冷却液相互隔离而不流通;热管理系统包括第一换热器103,第一换热器103具有两个流道,第一换热器103的第一流道内的流体与第一换热器103的第二流道内的流体能够在第一换热器进行热交换;其中所述制冷剂系统包括第一换热器103的第一流道,冷却液系统包括第一换热器103的第二流道。
所述冷却液系统包括电池换热器107、第一泵108、第一换热器103的第二流道,第一阀装置115、第二泵109、加热器110、散热器111,热管理系统包括空调箱,其中加热器110设置于空调箱的外部空间,散热器111设置于空调箱的内部空间,如此杜绝了电进入空调箱,降低安全隐患, 散热器相对带有电加热器的器件来说,结构相对简单紧凑,如此使得空调箱结构相对紧凑,散热器风阻小,空气流经其后仍能获得较大的风量。所述冷却液系统包括电池回路和加热/冷却回路,所述电池回路包括第一换热器103的第二流道、电池换热器107和第一泵108,第一换热器103的第二流道、电池换热器107和第一泵108连接构成电池回路的一部分,所述加热/冷却回路包括第二泵109、加热器110、散热器111,第二泵109、加热器110、散热器111连接构成加热/冷却回路的一部分;所述冷却液系统包括第一阀装置115,第一阀装置115包括三个连通口,也即第一阀装置的第一连通口115a、第一阀装置的第二连通口115b、第一阀装置的第三连通口115c,第一阀装置的第一连通口115a能够与电池回路连通,第一阀装置的第二连通口115b、第一阀装置的第三连通口115c与加热/冷却回路连通,所述第一阀装置的第二连通口115b处的流体压力小于所述第一阀装置的第一连通口115a、第一阀装置的第三连通口115c处的流体压力,第一阀装置的第一连通口115a可以与电池换热器107之前的管路内腔连通,也可以与第一泵108之前的管路内腔连通,也可以与第一换热器103的第二流道之前的管路内腔连通。
本文中,连接或连通包括直接连接或连通以及间接连接或连通,例如通过设置零部件实现连接,另外,零部件间的连接也不限制其连接顺序,例如第一换热器103的第二流道、电池换热器107和第一泵108连接并不限制其连接顺序,即可以为第一换热器103的第二流道、电池换热器107和第一泵108依次连接,也可以为第一换热器103的第二流道、第一泵108和电池换热器107依次连接,以及类似情况。
所述冷却液系统包括连接部130(见图1),所述连接部130能够连通加热/冷却回路和电池回路,所述连接部可以为三通管,也可以为三通阀。具体地,所述连接部包括阀件,所述阀件包括三个接口,所述阀件的第一接口、阀件的第二接口和阀件的第三接口中的至少一个位于所述电池回路,所述阀件的第一接口、阀件的第二接口和阀件的第三接口中的至少一个位于所述加热/冷却回路,所述阀件可控制阀件的第一接口、阀件的第二接口、阀件的第三接口的流量;或者所述连接部包括三通,所述三通也包括三个接口,所述三通的第一接口、三通的第二接口和三通的第三接口中的至少 一个位于所述电池回路,所述三通的第一接口、三通的第二接口和三通的第三接口中的至少一个位于所述加热/冷却回路。
所述冷却液系统包括第一循环模式、第二循环模式和第三循环模式,在第一循环模式下,第一阀装置处于第一工作状态,也即第一阀装置的第一连通口与第一阀装置的第二连通口导通,第一阀装置的第二连通口与第一阀装置的第三连通口导通,加热器开启,所述连接部导通电池回路和第一阀装置的第三连通口,电池回路中的冷却液的一部分经所述第一阀装置的第一连通口、第二连通口进入所述加热/冷却回路,经加热器加热后进入散热器,所述加热/冷却回路中的冷却液在散热器对周围空气放热,散热器出口的冷却液的一部分经连接部流入所述电池回路,并在电池换热器中对外放热,另一部分经所述第一阀装置的第三连通口返回;在第二循环模式下,第一阀装置处于第一工作状态,也即第一阀装置的第一连通口与第一阀装置的第二连通口导通,第一阀装置的第一连通口与第一阀装置的第三连通口导通,加热器关闭,所述连接部导通电池回路和第一阀装置的第三连通口,所述电池回路中的冷却液的一部分经所述第一阀装置的第一连通口、第二连通口进入所述加热/冷却回路,通过散热器对周围空气放热,散热器出口的冷却液的一部分经连接部流入所述电池回路,并在电池换热器中吸收热量,另一部分经所述第一阀装置的第三连通口返回;在所述第三循环模式下,所述第一阀装置处于第二工作状态,也即第一阀装置的第一连通口与第一阀装置的第二连通口不导通,电池回路与加热/冷却回路不导通。
所述冷却液系统具有电池冷却、电池加热功能和制热功能,所述第一阀装置的第一连通口115a与电池回路连通,电池回路中的一部分冷却液经第一阀装置的第一连通口115a进入加热/冷却回路,加热/冷却回路内的冷却液经加热器加热后进入散热器,散热器对乘客舱进行放热,实现制热效果。加热/冷却回路的一部分冷却液回到电池回路,用于加热电池。通过调节第一阀装置,可以控制自第一阀装置的第一连通口115a进入第一阀装置的第二连通口115b的冷却液流量,如此实现乘客舱内制热需求和电池处于适宜温度。
在电池不需要加热的情况下,冷却液系统可具有制热功能,第一阀装 置的第一连通口115a与电池回路不连通,加热/冷却回路内的冷却液经加热器加热后进入散热器,散热器对乘客舱进行放热,实现制热效果。
在电池需要冷却的情况下,第一泵108启动,冷却液在电池回路循环,第一换热器103的第一流道内流体吸收第一换热器103的第二流道内流体的热量,电池回路内冷却液降温,经降温的流体在电池换热器107内对电池等设备进行降温,实现电池冷却的功能。
所述第一阀装置可为三通比例调节阀,所述第一阀装置能够调节自所述第一阀装置的第一连通口进入所述第一阀装置的第二连通口的冷却液的流量或能够调节进入所述电池回路的流量或能够调节进入加热/冷却回路的流量;作为其他实施方式,参照图19,所述第一阀装置115’包括第一阀模块115d,所述第一阀模块115d包括两个端口,所述第一阀模块115d的第一端口能够与所述第一连通口115a连通,所述第一阀模块115d的第二端口能够与所述第二连通口115b连通,所述第一阀模块115d的第二端口能够与第三连通口115c连通,所述第一阀模块115d能够阻断或导通或调节自第一连通口115a进入第一阀模块115d的第二端口的流体流量,在所述第一阀装置的第一工作状态,所述第一阀模块115d打开,在所述第一阀装置的第二工作状态,所述第一阀模块115d截止。作为其他实施方式,参照图20,第一阀装置115”包括第一阀模块115d和第二阀模块115f,所述第一阀模块115d包括两个端口,第二阀模块115f也包括两个端口,所述第一阀模块115d的第一端口与所述第一连通口115a连通,所述第二阀模块115f的第一端口与所述第一阀装置的第三连通口115c连通,所述第一阀模块115d的第二端口、所述第二阀模块115f的第二端口与第一阀装置的第二连通口115b连通,所述第一阀模块115d能够阻断或导通或调节自第一阀装置的第一连通口115a进入第一阀模块的第二端口的流体流量,第二阀模块115f能够调节自第一阀装置的第三连通口115c进入第二阀模块的第二端口的流体流量,在所述第一阀装置的第一工作状态,所述第一阀模块115d打开,在所述第一阀装置的第二工作状态,所述第一阀模块115d截止,所述第二阀模块115e打开。其中第一阀模块、第二阀模块可以为具有流量调节及截止功能的模块,例如为带有截止功能的流量调节阀等。
所述冷却液系统还可包括水壶116,水壶116的高度高于电池换热器、 第一泵、第二泵、第一换热器、加热器、散热器、第一阀装置,水壶116与冷却液连通后,可去除冷却液系统中的空气。
作为一种具体的实施方式,第一阀装置115为三通比例调节阀,其中第二连通口115b与第二泵109的进口连通,第二泵109的出口与加热器110连通,加热器110与散热器111的进口连通,散热器111的出口与水壶116连通,水壶116的出口分为两路,其中一路与第三连通口115c连通,另一路与第一泵108的进口连通,第一泵108的出口与第一换热器103的第二流道的进口连通,第一换热器103的第二流道的出口分成两路,其中一路与电池换热器107的进口连通,另一路与第一连通口115a连通,电池换热器107的出口与第一泵108的进口连通。
作为另一种具体的实施方式,第一阀装置115的第一连通口与电池回路连通,第一阀装置115的第二连通口115b与加热/冷却回路连通,第一阀装置115的第三连通口115c与电池回路连通。
作为另一种实施方式,参照图14,图14示意出热管理系统的另一种实施方式,所述热管理系统包括第二换热器121,所述第二换热器121包括两个流道,也即第二换热器121的第一流道和第二换热器121的第二流道,所述第二换热器121的第一流道与第二换热器121的第二流道内流体在第二换热器121内进行流体热交换;所述冷却液系统包括电池回路和加热/冷却回路,所述电池回路包括第一换热器103的第二流道、电池换热器107、第一泵108、第二换热器121的第一流道,第一换热器103的第二流道、电池换热器107、第一泵108、第二换热器121的第一流道连接构成电池回路的一部分,所述加热/冷却回路包括第二泵109、加热器110、散热器111、第二换热器121的第二流道,第二泵109、加热器110、散热器111、第二换热器121的第二流道连接构成加热/冷却回路的一部分;
所述加热/冷却回路包括第二阀装置122,参照图21,第二阀装置122至少具有第一连通口122a、第二连通口122b和第三连通口122c,第二阀装置122的第一连通口与所述第二换热器的第二流道连通,所述第二阀装置122的第二连通口与所述第二换热器的第二流道的出口或出口管路连通,所述第二阀装置122的第三连通口与所述散热器111连通,所述第二阀装置122的第三连通口能够导通、阻断所述第二阀装置的第一连通口、 第二连通口;所述第二阀装置例如可为三通比例调节阀,所述第二阀装置能够调节自所述第三连通口进入所述第一连通口的冷却液的流量。
作为其他实施方式,参照图22,所述第二阀装置122’至少包括第一阀模块122d,所述第一阀模块122d包括两个端口,所述第一阀模块122d的第一端口与所述第一连通口122a连通,第一阀模块122d的第二端口与第二连通口122b、第三连通口122c连通,所述第一阀模块122d能够阻断或导通或调节自第三连通口122d进入第一阀模块122d的第二端口的流体流量,第二阀装置包括第一工作状态和第二工作状态,在第一工作状态时,第一阀模块122d截止,在第二工作状态时,第一阀模块122d打开。
所述冷却液系统包括第一循环模式、第二循环模式和第三循环模式,所述第二阀装置122包括第一工作状态和第二工作状态,在所述第二阀装置的第一工作状态,也即所述第二阀装置122的第三连通口122c与所述第二阀装置122的第一连通口122a导通,所述第二阀装置122的第三连通口122c与所述第二阀装置122的第二连通口122b导通;在所述第二阀装置122的第二工作状态,也即所述第二阀装置122的第三连通口122c与所述第二阀装置的第一连通口122a不导通,所述第二阀装置122的第三连通口122c与所述第二阀装置122的第二连通口122b导通;
在第一循环模式下,第二阀装置122处于第一工作状态,所述第二阀装置导通所述第三连通口122c与第一连通口122a,第二阀装置122导通第三连通口122c与第二连通口122b,加热器110开启,散热器111周边风门120打开;在第二循环模式下,第二阀装置122处于第二工作状态,所述第二阀装置122阻断所述第三连通口122c与所述第一连通口122a,加热器110开启,散热器111周边风门120打开;在所述第三循环模式下,所述第二阀装置122处于第一工作状态,第二阀装置122导通第三连通口122c与第一连通口122a,加热器110关闭,散热器111周边风门120打开。
参照图23,第二阀装置122”包括第一阀模块122d、第二阀模块122e,第一阀模块122d和第二阀模块122e均包括两个端口,第一阀模块122d的第一端口与第一连通口122a连通,第二阀模块122e的第一端口与第二连通口122b连通,第一阀模块122d的第二端口以及第二阀模块122e的第二端口与第三连通口122c连通,在第一工作状态时,第一阀模块122d截 止,第二阀模块122e打开,在第二工作状态时,第一阀模块122d打开,第二阀模块122e打开,其中第一阀模块、第二阀模块可以为具有流量调节及截止功能的模块,例如为带有截止功能的流量调节阀等。
第二阀装置122调节进入第二换热器的第二流道内的制冷剂的流量,以控制与第二换热器的第一流道内的制冷剂的热交换量,以便控制电池换热器对电池的加热效率。
本实施方式中,加热器位于空调箱的外部空间,散热器位于空调箱的内部空间,如此杜绝了电进入空调箱,降低安全隐患,散热器相对带有加热器的器件来说,结构相对简单紧凑,如此使得空调箱结构相对紧凑,散热器风阻小,空气流经其后仍能获得较大的风量。
所述加热/冷却回路包括水壶116b,所述电池回路包括水壶116a,水壶116a、116b在加热/冷却回路、电池回路中用于排气,水壶116a的高度高于第一换热器、电池换热器、第一泵、第二换热器的高度,水壶116b的高度高于第二换热器、加热器、散热器、第二阀装置、第二泵的高度。在加热/冷却回路和电池回路都设置有水壶,有助于排除工作过程中的气泡。
在电池不需要加热的情况下,冷却液系统可具有制热功能,第二泵109启动,流体在加热/冷却回路内循环,通过散热器对外部空气进行制热。
在乘客舱不需要加热的情况下,冷却液系统可具有电池加热功能,第一泵108启动,第二泵109启动,流体经加热器110加热后经散热器111,第二阀装置122,流入第二换热器121的第二流道,第二换热器的第一流道内的流体吸取第二换热器的第二流道内的流体热量,通过第一泵108的调节,使电池处于适宜温度。
在电池需要冷却的情况下,第一泵108启动,冷却液在电池回路循环,第一换热器103的第一流道内的流体吸取第一换热器103的第二流道内的流体热量,使得电池回路内冷却液降温,使电池处于适宜温度。
具体的,作为一种实施方式,第一泵108的出口与第一换热器103的第二流道的进口连通,第一换热器103的第二流道的出口与第二换热器121的第一流道的进口连通,第二换热器121的第二流道的出口与电池换热器107的进口连通,电池换热器107的出口与水壶116a的进口连通,水壶116a 的出口与第一泵108的进口连通;第二换热器121的第二流道的出口与水壶116b的进口连通,水壶116b的出口与第二泵109的进口连通,第二泵109的出口与加热器110的进口连通,加热器110的出口与散热器111的进口连通,散热器111的出口与第二阀装置122的第三连通口122c连通,第一连通口122a与水壶116b的进口连通,第二连通口122b与第二换热器121的第二流道的进口连通。
参照图3,所述制冷剂系统包括压缩机101、第一节流装置102、第一换热器103的第一流道、第五换热器104、第三换热器105、第三阀装置112、第四阀装置113、第二节流装置114、第四换热器106;
所述第三阀装置112包括四个端口,也即第三阀装置的第一连通口112a、第三阀装置的第二连通口112b、第三阀装置的第三连通口112c、第三阀装置的第四连通口112d,第四阀装置113包括两个端口,也即第四阀装置的第一连通口113a、第四阀装置的第二连通口113b,压缩机101的出口与第三换热器105的入口连接,第三换热器105的出口与第三阀装置的第一连通口112a连接,第三阀装置的第二连通口112b与第四换热器106的一端连接,第三阀装置的第四换热器106的另一端与第四阀装置113的第一连通口113a连接,第四阀装置113的第二连通口113b与第三阀装置112的第四连通口112d、第二节流装置114或第一节流装置102连通,第三阀装置的第三连通口112c与压缩机101的进口连通,第三阀装置的第四连通口112d与第一节流装置102、第二节流装置114、第四阀装置113连通;
第三阀装置112至少包括第一工作状态和第二工作状态,在第三阀装置112的第一工作状态,第一连通口112a与第二连通口112b的导通,第四连通口112d与第三连通口112c不导通,在第三阀装置的第二工作状态,第一连通口112a与第四连通口112d导通,第二连通口112b与第三连通口112c导通。具体地,参照图25,热管理系统的第三阀装置112可以为第一多通换向装置201,第一多通换向装置201包括第一阀孔2011、第二阀孔2012、第三阀孔2013和第一进口2014,或第一多通换向装置201还包括与第一阀孔连通的第一连通管、与第二阀孔连通的第二连通管、与第三阀孔连通的第三连通管及与第一进口2014连通的第四连通管,其中,第一进 口2014与第一连通口112a连通,第一阀孔2011与第二连通口112b连通,第二阀孔2012与第三连通口112c连通,第三阀孔2013与第四连通口112d连通,在第三阀装置的第一工作状态,第一多通换向装置201能够使第一进口2014与第一阀孔2011的连通通道导通,能够关闭第三阀孔2013与第二阀孔2012的连通通道;在第三阀装置的第二工作状态,第一多通换向装置201能够使第一进口2014与第三阀孔2013的连通通道导通,同时使第一阀孔2011与第二阀孔2012的连通通道导通。
作为其他实施方式,参照图26,第三阀装置也可以包括第二多通换向装置201’与第一阀件209,其中第二多通换向装置201’包括第二进口2014’、第四阀孔2011’、第五阀孔2012’和第六阀孔2013’,同样地,第二多通换向装置201’也可以包括与各个阀孔或进口连通的连通管,第一阀件209的两个端口分别与第六阀孔2013’和第四连通口连通112d,第二进口2014’与第一连通口112a连通,第四阀孔2011’与第二连通孔112b连通,第五阀孔2012’与第三连通口112c连通,在第三阀装置112的第一工作状态,第二多通换向装置201’使第二进口2014’与第四阀孔2011’的连通通道导通,能够使第六阀孔2013’与第五阀孔2012’的连通通道导通,关闭第一阀件209;在第三阀装置的第二工作状态,第二多通换向装置201’能够使第四阀孔2011’与第五阀孔2012’的连通通道导通,能够使第六阀孔2013’与第二进口2014’的连通通道导通,同时使第一阀件209导通。第一阀件209可以是截止阀、流量调节阀或单向阀,其中,第一阀件209为单向阀时,制冷剂流入第六阀孔2013’的方向单向阀截止,制冷剂流出第六阀孔2013’方向,单向阀导通。
请参阅图24,请参阅热管理系统的其他实施方式,第三阀装置112包括第一阀模块401、第二阀模块402和第三阀模块403,第一阀模块401、第二阀模块402和第三阀模块403可以是截止阀或二通流量调节阀,第一阀模块401、第二阀模块402和第三阀模块403均包括两个端口,第一阀模块401的第一端口和第二阀模块402的第一端口均与第四连通口112d连通,第一阀模块401的第二端口与第一连通口112a连通,第二阀模块402的第二端口和第三阀模块403的第二端口与所述第二连通口112b连通,第三阀模块403与第三连通口112c连通,在第三阀装置的第一工作状 态,第二阀模块402打开,第一阀模块401、第三阀模块403截止,在第三阀装置的第二工作状态,第一阀模块401打开,第三阀模块403打开,第二阀模块402截止。在本实施例的其它技术方案,第一阀模块401和第二阀模块402可以用第一三通阀代替(未图示),具体地,第一三通阀包括三个接口,第一三通阀的第一接口与第四连通口112d连通,第一三通阀的第二接口和第三阀模块的第二端口均与第二连通口112b连通,第三阀模块与第三连通口112c连通,第一三通阀的第三接口与第一连通口112a连通,在第三阀装置的第一工作状态,第一三通阀打开所述第一三通阀的第一接口与第一三通阀的第二接口的连通通路,第一三通阀关闭所述第一三通阀的第一接口与第一三通阀的第三接口的连通通路,第三截止阀关闭,在第三阀装置的第二工作状态,第一三通阀打开第一三通阀的第一接口与第一三通阀的第三接口的连通通路,第三阀模块打开,第一三通阀关闭第一三通阀的第一接口与第一三通阀的第二接口的连通通路。第一三通阀的第一接口与第一换热器103的制冷剂出口连通,第一三通阀的第二接口与第五换热器104的第一端口连通,第一三通阀的第三接口与第二换热器121的入口、第四换热器106的第一流道和第五换热器104的第二端口连通或通过四通与第二换热器121的入口、第四换热器106的第一流道和第五换热器104的第二端口连通。
所述热管理系统包括气液分离器118,所述气液分离器118与所述压缩机的进口连通。在制冷剂可能为液态或气液两相时,可设置气液分离器,气液分离器118对气液两相的制冷剂进行分离,液态的制冷剂储藏于气液分离器,而气态的制冷剂进入压缩机101;另外,在压缩机可以承受液态制冷剂的情况下,可以不设置气液分离器118,另外气液分离器118还可以用贮液器替代。而在制冷剂不是两相流的情况也可以不设置气液分离器。
所述第四阀装置113包括节流结构单元113c和单向结构单元113d,单向结构单元113d导通第一连通口113a至第二连通口113b的流路,节流结构单元113c导通第二连通口113b至第一连通口113a的流路。第四阀装置113具体可为带有单向阀的电子膨胀阀,或者其他节流器件与单向阀器件的组合或者管路连接结构。
本文中的第一节流装置102、第二节流装置114可以是热力膨胀阀或 者电子膨胀阀或者毛细管等可以调节流过的制冷剂的节流装置;单向结构单元113d可以为具有通断控制功能的截止阀或流量调节阀或电磁阀,也可以是一个方向流通、另一方向截止的单向阀;节流装置也可以与换热器集成,形成组合件,结构更加紧凑,如第二节流装置114和第一换热器103集合的组合件。
所述制冷剂系统包括四通结构124(见图1),四通结构124包括四个端口,其中四通结构124的第一端口与第二节流装置114连通,四通结构124的第二端口与第四连通口112d连通,四通结构124的第三端口与第四阀装置113的第二连通口113b连通,四通结构124的第四端口与第一节流装置102连通。
热管理系统还包括空调箱(未标号),空调箱包括空调箱体,空调箱体设置有若干风道与车辆室内连通,第三换热器105设置于空调箱体的内部空间,在空调箱体靠近风口的位置设置有一个风机119。在第三换热器105的上风侧(上游)还设置有风门120,通过调节风门120,控制第三换热器105周围空气的流动。
热管理系统包括制热模式、制冷模式、除湿模式、循环模式,下面分别对几种模式下热管理系统的工作状况进行说明。其中,热管理系统的制热模式包括第一制热模式、第二制热模式和第三制热模式。在只用加热器进行加热的情况下,热管理系统处于第一制热模式。在第一制热模式,压缩机不启动,在电池回路不启用的情况下,参照图11,第二泵109启动,加热器110启动,电池回路与所述加热/冷却回路不导通,加热/冷却回路内的冷却液经加热器110加热后,进入散热器111,这时风门120打开,冷却液在散热器111内对外部空气散热;在电池回路启用的情况下,参照图7a,第一泵108、第二泵109启动,调节第一阀装置115的流量,电池回路中的冷却液的一部分经第一连通口115a、第二连通口115b进入第二泵109,加热器110不启动,冷却液经加热器110后进入散热器111,此时风门120打开,冷却液对空气放热,此时风机119启动,乘客舱内较热空气通过外循环排到外界空气中,经降温的冷却液一部分被第一泵108抽入电池回路,使其在电池换热器107中对电池设备进行冷却,经降温的冷却液的另一部分自第三连通口115c返回到第二泵109,如此循环。
在加热器110的加热效率较低时,可启动制冷剂系统额外制热,热管理系统处于第二制热模式,开启第二泵109,开启加热器110,冷却液在加热/冷却回路循环,此时第三阀装置处于第二工作状态,开启节流结构单元113c和第二节流装置114,第三阀装置112的第一连通口112a与第三阀装置112的第四连通口112d连通,且第四连通口112d与第四阀装置113、第四换热器106、第三阀装置112的第二连通口112b、第三连通口112c、压缩机101连通,在电池不处理的情况下,参照图11a,电池回路与所述加热/冷却回路循环不导通。热管理系统的制冷剂经过压缩机101压缩,低温低压的制冷剂压缩成高温高压的制冷剂,制冷剂从压缩机101出口端经过第三换热器105的制冷剂入口进入第三换热器105,第三换热器105的制冷剂在风道内与第三换热器105周围的空气进行热交换,第三换热器105的制冷剂向周围空气释放热量。第三换热器105的制冷剂出口经第一连通口112a、第四连通口112d后与节流结构单元113d连通,制冷剂经节流结构单元113c节流后进入第四换热器106,低温低压的制冷剂在第四换热器106与换热器周围的空气进行热交换,吸收空气的热量。其中,第四换热器106附近设置的风扇117吹动第四换热器106周围的空气形成空气流,加速第四换热器106与周围空气的热交换,促进第四换热器106内制冷剂吸收空气中的热量。当电池等设备温度较高时,需要对电池进行冷却,参照图12,第三阀装置处于第二工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,所述第三阀装置的第四连通口与第二节流装置、第一换热器的第一流道连通,所述第三阀装置的第四连通口与所述第四阀装置113、第四换热器106连通,第一换热器103的第一流道和第四换热器与压缩机101连通,第一泵108启动,第二泵109启动,所述电池回路与所述加热/冷却回路导通,电池回路内冷却液循环,第三换热器105的制冷剂出口经第三阀装置的第一连通口112a、第三阀装置的第四连通口112d后分成两路,一路与节流结构单元113d连通,另一路与第二节流装置114连通,制冷剂经节流结构单元113c节流后进入第四换热器106,低温低压的制冷剂在第四换热器106与第四换热器106周围的空气进行热交换,吸收空气的热量。经第二节流装置114的流体进入第一换热器103的第一流道,第一换热器103的第一流道的制冷剂与第一换热器103 的第二流道的冷却液进行热交换,冷却后的冷却液在电池换热器107内与电池等设备进行热交换,电池换热器107吸收电池等设备的热量,热管理系统通过第一换热器103获取电池换热器107从电池等设备吸收的热量。当电池等设备温度较低时,需要对电池进行加热,第三阀装置112处于第二工作状态,第三阀装置的第一连通口与第三阀装置的第四连通口连通,所述第三阀装置的第四连通口与第二节流装置、第一换热器的第一流道连通,所述第三阀装置的第四连通口与所述第四阀装置、第四换热器连通,第一换热器的第一流道和第四换热器与压缩机连通,第一泵108启动,第二泵109启动,所述电池回路与所述加热/冷却回路导通,或者所述电池回路与所述加热/冷却回路不导通。参照图10,启动第一泵108,第二泵109,加热/冷却回路内的冷却液由加热器加热后循环,第一阀装置115打开一定开度,第一泵108抽走经加热器加热过的部分冷却液进入电池回路,经加热的冷却液在电池换热器107内对电池等设备加热。或者参照图14,启动第一泵108,第二泵109,加热/冷却回路内的冷却液由加热器加热后循环,电池回路内的冷却液在第二换热器吸收第二换热器第二流道内经加热的冷却液的热量,经加热的冷却液在电池换热器107内对电池等设备加热。或者参照图13,启动第一泵108,第二泵109,加热/冷却回路内的冷却液由加热器加热后循环,第一阀装置115打开一定开度,第一泵108抽走经加热器加热过的部分冷却液进入电池回路,经加热的冷却液在电池换热器107内对电池等设备加热。第三换热器105的制冷剂出口经第三阀装置的第一连通口112a、第三阀装置的第四连通口112d后分成两路,一路与节流结构单元113d连通,另一路与第二节流装置114连通,制冷剂经节流结构单元113c节流后进入第四换热器106,低温低压的制冷剂在第四换热器106与换热器周围的空气进行热交换,吸收空气的热量。经第二节流装置114的流体进入第一换热器103的第一流道,第一换热器103的第一流道的制冷剂与第一换热器103的第二流道的冷却液进行热交换,第一泵108从加热/冷却回路抽入的较高流体经第一换热器103降温后达到合适的温度,该温度较为合适的冷却液在电池换热器107内与电池等设备进行热交换,对电池等设备加热。
可以知道,此时加热装置的冷却液流道仅为冷却液系统的流通通道。 另外,如果热量仍不能满足要求,制冷剂从第四换热器106流出后可回到压缩机;在制冷剂可能为液态或气液两相时,可设置气液分离器,从第四换热器106流出的制冷剂进入气液分离器118,经过气液分离器118的分离,液态的制冷剂储藏于气液分离器,而低温低压的制冷剂进入压缩机101,再次被压缩机101压缩为高温高压的制冷剂,如此循环工作;另外,在压缩机可以承受液态制冷剂的情况下,可以不设置气液分离器118,另外气液分离器118还可以用贮液器替代。而在制冷剂不是两相流的情况也可以不设置气液分离器。
当外界温度较低,运行热泵足以提供乘客足够的热量时,热管理系统处于第三制热模式下,参照图3,电池不需要加热、冷却的情况下,第一泵108、第二泵109关闭,第三阀装置112处于第二工作状态,第三阀装置112的第一连通口112a、第三阀装置112的第四连通口112d连通,第三阀装置112的第二连通口112b、第三阀装置112的第三连通口112c连通,第三阀装置112的第四连通口112d与第四阀装置113的第二连通口113b、第四换热器106连通,第三阀装置112的第二连通口112b、第三阀装置112的第三连通口112c、压缩机101连通,第三换热器105的出口的制冷剂经第三阀装置112的第一连通口112a、第三阀装置112的第四连通口112d进入节流结构单元113c,制冷剂经节流结构单元113c节流后进入第四换热器106,低温低压的制冷剂在第四换热器106与换热器周围的空气进行热交换,吸收空气的热量,然后回到压缩机101。当在电池温度过热,需要冷却的情况下,参照图6,启动第一泵108,冷却液在电池回路内循环,第三阀装置112处于第二工作状态,第三阀装置112的第一连通口112a、第三阀装置112的第四连通口112d连通,第三阀装置112的第二连通口112b、第三阀装置112的第三连通口112c连通,第三阀装置112的第四连通口112d与第四阀装置113的第二连通口113b、第四换热器106连通,第三阀装置112的第二连通口112b、第三阀装置112的第三连通口112c、压缩机101连通,第三阀装置112的第四连通口112d还与第二节流装置114、第一换热器103的第一流道、压缩机连通;第三换热器105的制冷剂出口经第三阀装置112的第一连通口112a、第三阀装置112的第四连通口112d后分成两路,一路与节流结构单元113d连通,另一路与第二节流装置114 连通,制冷剂经节流结构单元113c节流后进入第四换热器106,低温低压的制冷剂在第四换热器106与换热器周围的空气进行热交换,吸收空气的热量。经第二节流装置114的流体进入第一换热器103的第一流道,第一换热器103的第一流道的制冷剂与第一换热器103的第二流道的冷却液进行热交换,经冷却的冷却液在电池换热器107内与电池等设备进行热交换,电池换热器107吸收电池等设备的热量,热管理系统通过第一换热器103获取电池换热器107从电池等设备吸收的热量。
当车辆乘客舱相对湿度较大时,空气中的水蒸气容易在车窗玻璃冷凝影响视野,形成安全隐患,因此需要对乘客舱空气进行除湿,即热管理系统的除湿模式,包括第一除湿模式、第二除湿模式和第三除湿模式。当电池过热需要加热时,在第一除湿模式,参照图9,启动第一泵108,第二泵109,冷却液在加热/冷却回路中经加热器加热后,一部分的冷却液经第一泵108抽吸到电池回路,在电池回路内循环,冷却液在电池换热器107中对电池等设备进行加热,第三阀装置处于第二工作状态,第三阀装置连通所述第三阀装置的第一连通口与所述第三阀装置的第四连通口,所述第三阀装置的第四连通口与所述第一节流装置、第五换热器连通,所述第三阀装置的第四连通口与所述第一阀装置、第四换热器,第五换热器、第四换热器、压缩机连通,第四连通口112d出口的制冷剂分成两路,其中一路与第四阀装置113连通,经节流结构单元113c进入第四换热器106,另一路与第二节流装置102连通,节流后进入第五换热器104,制冷剂在第五换热器104吸热,第五换热器104周围空气中的水蒸气降温冷凝,以达到除湿的效果。压缩机101出口的制冷剂在第三换热器105中放热,使得第三换热器105周围的空气加热,以满足用户需求。当然在外界温度较高时,电池便不需要另外加热。但是当电池温度过高时,需要对电池进行冷却,此时进入第二除湿模式,参照图5,启动第一泵108,冷却液在电池回路内循环,第三阀装置113处于第二工作状态,所述第三阀装置112的第一连通口112a与所述第三阀装置的第四连通口连通,所述第三阀装置的第四连通口与所述第一节流装置、第五换热器连通,所述第三阀装置的第四连通口与所述第二节流装置、第一换热器的第一流道连通,所述第三阀装置的第四连通口与所述第四阀装置、第四换热器连通,所述第五换热器、第一 换热器的第一流道、第四换热器出口与所述压缩机进口连通,第三阀装置112的第四连通口112d出口的制冷剂分成三路,其中一路与第一节流装置102连通,制冷剂经第一节流装置102节流后进入第五换热器104,在第五换热器104中吸热,使得第五换热器104周围的空气降温,如此空气中水蒸气冷凝,达到除湿的效果;另一路与第二节流装置114连通,制冷剂在第一换热器103中吸热,使得第一换热器103第二流道的冷却液降温,经降温的冷却液进入电池换热器107,对电池等设备进行冷却;第三路与第四阀装置113连通,经节流结构单元113c后进入第四换热器106,制冷剂在第四换热器106中吸热,然后回到压缩机101,如此循环。
在电池处于适宜温度下,进入第三除湿模式,关停第一泵108,加热/冷却回路中的冷却液不循环,第三阀装置113进入第二工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,所述第三阀装置的第四连通口与所述第一节流装置、第五换热器连通,所述第三阀装置的第四连通口与所述第一阀装置、第四换热器连通,所述第五换热器、第四换热器出口与所述压缩机进口连通。第三阀装置112的第四连通口112d出口的制冷剂分成两路,其中一路与第四阀装置113的第二连通口113b连通,经节流结构单元113c后进入第四换热器106,另外一路与第一节流装置102连通,节流后进入第五换热器104,制冷剂在第五换热器104中吸热,降低周围空气的温度,并使得空气中的水蒸气冷凝,达到除湿的效果,压缩机101出口的制冷剂进入第三换热器105,制冷剂在第三换热器105中放热,对第三换热器105周围空气加热。
当乘客舱内温度较高,需要降低乘客舱温度以提高舒适度时,热管理系统进入制冷模式,此时外界温度已较高,不存在继续对电池加热的情况,热管理系统的制冷模式包括第一制冷模式和第二制冷模式,在第一制冷模式,电池温度过高需要冷却,参照图4,启动第一泵108,冷却液在电池回路中循环,第三阀装置112进入第一工作状态,第三阀装置使所述第三阀装置的第一连通口与所述第三阀装置的第二连通口导通,所述第三阀装置的第二连通口与所述第四换热器、单向结构单元连通,所述单向结构单元与所述第二节流装置、第一换热器的第一流道连通;所述单向结构单元与所述第一节流装置、第五换热器连通,所述第五换热器、第一换热器出口 与压缩机进口连通,压缩机101排出的高温高压制冷剂进入第五换热器105,此时风门120关闭,高温高压制冷剂从第五换热器105离开进入第三阀装置112的第一连通口112a,高温高压制冷剂经第三阀装置112的第一连通口112a后进入第三阀装置112的第二连通口112b,然后进入第四换热器106,在第四换热器106中放热变为较低温高压制冷剂,为提高效果,开启风扇117,较低温高压制冷剂经单向结构单元113d后分成两路,一路进入第二节流装置114,节流后变成低温低压制冷剂进入第一换热器103,低温低压制冷剂在第一换热器103中吸收第一换热器103的第二流道中冷却液的热量,经降温的冷却液进入电池换热器107,对电池等设备进行冷却;另一路进入第一节流装置102,节流后变成低温低压制冷剂进入第五换热器104,低温低压制冷剂在第五换热器104中吸热,降低第五换热器104周围空气的热量,达到制冷的效果,制冷剂从第五换热器104、第一换热器103离开后回到压缩机101,如此循环。
在电池已处于较适宜温度的情况下,进入第二制冷模式,参照图1,关停第一泵108,第三阀装置112进入第一工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第二连通口连通,所述第三阀装置的第二连通口与所述第四换热器、单向结构单元、第一节流装置、第五换热器、压缩机连通,压缩机101排出的高压高温制冷剂进入第三换热器105,此时温度风门120关闭,高温高压制冷剂再流经第一连通口112a、第二连通口112b进入第四换热器106,在第四换热器106中放热变为高压低温制冷剂,然后经单向结构单元113d后进入第一节流装置102,高压低温制冷剂经节流后变为低压低温制冷剂,在第五换热器104中吸热,降低第五换热器104周围空气的温度,如此达到制冷的效果,从第五换热器104离开的低压较高温制冷剂回到压缩机101,如此循环。
热管理系统还包括第一循环模式、第二循环模式和第三循环模式,请参阅图7、图7a和图8。在第一循环模式,关闭热管理系统的压缩机101,或者说制冷剂系统内的制冷剂不流动,当电池等设备的温度较低时,电池需要加热,参照图8,启动第一泵108和第二泵109,调节第一阀装置115的流量,使得冷却液经加热器110加热后,进入散热器111,此时风门120关闭,从散热器111离开的冷却液一部分经第一泵108抽入电池回路,在 电池换热器107中对电池进行加热,另一部分冷却液流经第一阀装置115的第三连通口115c,电池回路中的部分冷却液流经第一连通口115a,这两部分冷却液从第二连通口115b返回到加热器110,如此循环。
在电池充电的情况下,电池需要冷却,参照图7a,此时进入第二循环模式,第一泵108、第二泵109启动,调节第一阀装置115的流量,电池回路中的冷却液的一部分经第一连通口115a、第二连通口115b进入第二泵109,加热器110不启动,冷却液经加热器110后进入散热器111,此时风门120打开,冷却液对空气放热,此时风机119启动,乘客舱内较热空气通过外循环排到外界空气中,经降温的冷却液一部分被第一泵108抽入电池回路,使其在电池换热器107中对电池设备进行冷却,经降温的冷却液的另一部分自第一阀装置115的第三连通口115c返回到第二泵109,如此循环。
在电池工作时间较长,导致过热时,需要对电池进行冷却,此时进入第三循环模式,参照图7,启动第一泵108,冷却液在电池回路中循环,启动压缩机101,第三阀装置112处于第一工作状态,压缩机101排出的制冷剂进入第三换热器105,此时风门120关闭,制冷剂自第三阀装置112的第一连通口112a、第三阀装置112的第二连通口112b进入第四换热器106中放热,经降温的制冷剂进入第二节流装置114,经节流后变为低温低压制冷剂,然后进入第一换热器103,低温低压制冷剂在第一换热器103中吸热,降低第一换热器103的第二流道中冷却液的温度,经降温的冷却液进入电池换热器107中对电池等设备进行降温,从第一换热器103离开的制冷剂回到压缩机101,如此循环。
作为其他实施方式,参照图15,制冷剂系统包括压缩机101、第三换热器105、第三阀装置112、第四换热器106、气液分离器118、第一换热器103的第一流道,第一节流装置102、第二节流装置114,第三阀装置112包括四个连通口,也即第三阀装置112的第一连通口112a、第三阀装置112的第一连通口112b、第三阀装置112的第三连通口112c和第三阀装置112的第四连通口112d。
压缩机101的出口与第三换热器105的进口连接,第三换热器105的出口与第三阀装置112的第一连通口112a连通,第三阀装置112的第二连 通口112b与第四换热器106的一端连通,第四换热器106出口的制冷剂分成两路,一路与第一节流装置102、第五换热器104、第四连通口112d连通,第三阀装置112的第三连通口112c与气液分离器118、压缩机101连通,另一路与第二节流装置114、第一换热器103的第一流道、气液分离器118、压缩机101连通。
第三阀装置112具有第一工作状态和第二工作状态,在第一工作状态时,第一连通口112a与第二连通口112b导通,第三连通口112c与第四连通口112d导通,此时第五换热器104吸收周围空气的热量,使得乘客舱内空气降温,以满足用户需求。在第二工作状态时,第一连通口112a与第四连通口112d导通,第二连通口112b与第三连通口112c导通,此时风门120打开,第三换热器105对周围空气放热,加热乘客舱内空气,以满足用户需求。
避免赘述,以下不再对冷却液系统进行详细说明,冷却液系统如上所述。
应当知道,上述给出的制冷剂系统的结构图仅作为例示,并不限制为本发明的制冷剂系统,各部件的连接关系可改变,并需要如图上所示,本发明的制冷剂系统可以有多种形式,例如制冷剂系统包括第一换热器的第一流道、第五换热器、第三换热器、第四换热器、压缩机、第三阀装置、以及节流装置,制冷剂系统实现的功能包括在第五换热器处实现制冷、在第三换热器105处实现制热;又如制冷剂系统包括第一换热器的第一流道、第五换热器、第四换热器、压缩机、第三阀装置、以及节流装置,制冷剂系统实现的功能包括在第五换热器处实现制冷;以及其他。
需要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,例如对“前”、“后”、“左”、“右”、“上”、“下”等方向性的界定,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行相互组合、修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (16)

  1. 一种热管理系统,包括电池换热器、第一泵、第二泵、第一换热器、加热器、散热器、第一阀装置,所述第一换热器包括第一流道和第二流道,所述第一流道与第二流道相互隔离且第一流道内的流体与第二流道内的流体能够热交换;
    所述热管理系统包括制冷剂系统和冷却液系统,所述制冷剂系统包括第一换热器的第一流道,所述冷却液系统包括所述第一换热器的第二流道、电池换热器、第一泵、第二泵、加热器、第一阀装置和散热器;所述冷却液系统包括电池回路和加热/冷却回路,所述第一换热器的第二流道、电池换热器、第一泵形成所述电池回路的一部分,所述加热器、散热器、第二泵形成所述加热/冷却回路的一部分;
    所述第一阀装置能够使所述电池回路和所述加热/冷却回路之间的通路导通或阻断;和/或所述冷却液系统包括连接部,所述连接部能够使所述电池回路和所述加热/冷却回路之间的通路导通或阻断。
  2. 根据权利要求1所述的热管理系统,其特征在于:所述第一阀装置包括两个连通口,所述第一阀装置的第一连通口与所述电池回路连通,所述第一阀装置的第二连通口与所述加热/冷却回路连通,所述第一阀装置能够调节所述第一阀装置的第一连通口进入所述第一阀装置的第二连通口的冷却液流量,所述电池回路与所述第一阀装置的第一连通口连通管路中的流体压力大于所述加热/冷却回路与所述第一阀装置的第二连通口连通管路中的流体压力;所述冷却液系统包括水壶,所述水壶的高度高于所述电池换热器、所述第一泵、所述第二泵、所述第一换热器、所述加热器、所述散热器、所述第一阀装置的高度。
  3. 根据权利要求2所述的热管理系统,其特征在于:所述第一阀装置还包括第三连通口,所述第一阀装置的第三连通口与所述加热/冷却回路连通,所述第一阀装置包括第一工作状态和第二工作状态,在所述第一阀装置的第一工作状态时,所述第一阀装置的第一连通口与所述第一阀装置的第二连通口导通,所述第一阀装置的第三连通口与所述第一阀装置第二连通口导通,在所述第一阀装置的第二工作状态时,所述第一阀装置的第一连通口与所述第一阀装置的第二连通口阻断;
    所述冷却液系统包括第一循环模式、第二循环模式和第三循环模式,在第一循环模式下,所述第一阀装置处于第一工作状态,所述加热器开启,所述连接部使所述电池回路和所述加热/冷却回路导通;在所述第二循环模式下,所述第一阀装置处于第一工作状态,所述加热器关闭,所述连接部使所述电池回路和所述加热/冷却回路导通;在所述第三循环模式,所述第一阀装置处于第二工作状态,所述第一阀装置的第一连通口与所述第一阀装置的第二连通口不导通,所述电池回路与所述加热/冷却回路不导通。
  4. 根据权利要求1所述的热管理系统,其特征在于:所述第一阀装置为三通比例调节阀,所述第一阀装置能够调节自所述第一阀装置的第一连通口进入所述第二连通口的冷却液的流量;或者所述第一阀装置包括第一阀模块,所述第一阀模块包括两个端口,所述第一阀模块的第一端口与所述第一阀装置的第一连通口连通,所述第一阀模块的第二端口与所述第一阀装置的第二连通口、所述第一阀装置的第三连通口连通,所述第一阀模块能够阻断或导通或调节自所述第一阀装置的第一连通口进入第一阀模块的第二端口的流体流量,在所述第一阀装置的第一工作状态,所述第一阀模块打开,在所述第一阀装置的第二工作状态,所述第一阀模块截止;或者所述第一阀装置包括第一阀模块、第二阀模块,所述第一阀模块和第二阀模块均包括两个端口,所述第一阀模块的第一端口与所述第一阀装置的第一连通口连通,所述第二阀模块的第一端口与所述第一阀装置的第三连通口连通,所述第一阀模块的第二端口和所述第二阀模块的第二端口与所述第一阀装置的第二连通口连通,所述第一阀模块能够阻断或导通或调节自所述第一阀装置的第一连通口进入第一阀模块的第二端口的流体流量,第二阀模块能够调节自所述第一阀装置的第三连通口进入第二阀模块的第二端口的流体流量,在所述第一阀装置的第一工作状态,所述第一阀模块打开,所述第二阀模块打开;在所述第一阀装置的第二工作状态,所述第一阀模块截止,所述第二阀模块打开;
    所述连接部包括阀件,所述阀件包括三个接口,所述阀件的第一接口、所述阀件的第二接口和所述阀件的第三接口中的至少一个位于所述电池回路,所述阀件的第一接口、所述阀件的第二接口和所述阀件的第三接口中的至少一个位于所述加热/冷却回路,所述阀件可控制所述阀件的第一接 口、所述阀件的第二接口、所述阀件的第三接口的流量;或者所述连接部包括三通,所述三通包括三个接口,所述三通的第一接口、所述三通的第二接口和三通的第三接口中的至少一个位于所述电池回路,所述三通的第一接口、所述三通的第二接口和所述三通的第三接口中的至少一个位于所述加热/冷却回路。
  5. 根据权利要求2所述的热管理系统,其特征在于:所述第一阀装置为三通比例调节阀,所述第一阀装置能够调节自所述第一阀装置的第一连通口进入所述第二连通口的冷却液的流量;或者所述第一阀装置包括第一阀模块,所述第一阀模块包括两个端口,所述第一阀模块的第一端口与所述第一阀装置的第一连通口连通,所述第一阀模块的第二端口与所述第一阀装置的第二连通口、所述第一阀装置的第三连通口连通,所述第一阀模块能够阻断或导通或调节自所述第一阀装置的第一连通口进入第一阀模块的第二端口的流体流量,在所述第一阀装置的第一工作状态,所述第一阀模块打开,在所述第一阀装置的第二工作状态,所述第一阀模块截止;或者所述第一阀装置包括第一阀模块、第二阀模块,所述第一阀模块和第二阀模块均包括两个端口,所述第一阀模块的第一端口与所述第一阀装置的第一连通口连通,所述第二阀模块的第一端口与所述第一阀装置的第三连通口连通,所述第一阀模块的第二端口和所述第二阀模块的第二端口与所述第一阀装置的第二连通口连通,所述第一阀模块能够阻断或导通或调节自所述第一阀装置的第一连通口进入第一阀模块的第二端口的流体流量,第二阀模块能够调节自所述第一阀装置的第三连通口进入第二阀模块的第二端口的流体流量,在所述第一阀装置的第一工作状态,所述第一阀模块打开,所述第二阀模块打开;在所述第一阀装置的第二工作状态,所述第一阀模块截止,所述第二阀模块打开;
    所述连接部包括阀件,所述阀件包括三个接口,所述阀件的第一接口、所述阀件的第二接口和所述阀件的第三接口中的至少一个位于所述电池回路,所述阀件的第一接口、所述阀件的第二接口和所述阀件的第三接口中的至少一个位于所述加热/冷却回路,所述阀件可控制所述阀件的第一接口、所述阀件的第二接口、所述阀件的第三接口的流量;或者所述连接部包括三通,所述三通包括三个接口,所述三通的第一接口、所述三通的第 二接口和三通的第三接口中的至少一个位于所述电池回路,所述三通的第一接口、所述三通的第二接口和所述三通的第三接口中的至少一个位于所述加热/冷却回路。
  6. 根据权利要求3所述的热管理系统,其特征在于:所述第一阀装置为三通比例调节阀,所述第一阀装置能够调节自所述第一阀装置的第一连通口进入所述第二连通口的冷却液的流量;或者所述第一阀装置包括第一阀模块,所述第一阀模块包括两个端口,所述第一阀模块的第一端口与所述第一阀装置的第一连通口连通,所述第一阀模块的第二端口与所述第一阀装置的第二连通口、所述第一阀装置的第三连通口连通,所述第一阀模块能够阻断或导通或调节自所述第一阀装置的第一连通口进入第一阀模块的第二端口的流体流量,在所述第一阀装置的第一工作状态,所述第一阀模块打开,在所述第一阀装置的第二工作状态,所述第一阀模块截止;或者所述第一阀装置包括第一阀模块、第二阀模块,所述第一阀模块和第二阀模块均包括两个端口,所述第一阀模块的第一端口与所述第一阀装置的第一连通口连通,所述第二阀模块的第一端口与所述第一阀装置的第三连通口连通,所述第一阀模块的第二端口和所述第二阀模块的第二端口与所述第一阀装置的第二连通口连通,所述第一阀模块能够阻断或导通或调节自所述第一阀装置的第一连通口进入第一阀模块的第二端口的流体流量,第二阀模块能够调节自所述第一阀装置的第三连通口进入第二阀模块的第二端口的流体流量,在所述第一阀装置的第一工作状态,所述第一阀模块打开,所述第二阀模块打开;在所述第一阀装置的第二工作状态,所述第一阀模块截止,所述第二阀模块打开;
    所述连接部包括阀件,所述阀件包括三个接口,所述阀件的第一接口、所述阀件的第二接口和所述阀件的第三接口中的至少一个位于所述电池回路,所述阀件的第一接口、所述阀件的第二接口和所述阀件的第三接口中的至少一个位于所述加热/冷却回路,所述阀件可控制所述阀件的第一接口、所述阀件的第二接口、所述阀件的第三接口的流量;或者所述连接部包括三通,所述三通包括三个接口,所述三通的第一接口、所述三通的第二接口和三通的第三接口中的至少一个位于所述电池回路,所述三通的第一接口、所述三通的第二接口和所述三通的第三接口中的至少一个位于所 述加热/冷却回路。
  7. 根据权利要求1-6中任一项所述的热管理系统,其特征在于:所述制冷剂系统还包括压缩机、第三阀装置、第一节流装置、第五换热器、第三换热器、第四换热器;所述第三阀装置包括四个连通口,所述第三阀装置至少包括第一工作状态和第二工作状态,在所述第三阀装置的第一工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第二连通口连通,所述第三阀装置的第三连通口与所述第三阀装置的第四连通口不连通,在所述第三阀装置的第二工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,所述第三阀装置的第二连通口与所述第三阀装置的第三连通口连通;
    所述压缩机的出口与所述第三换热器、所述第三阀装置的第一连通口连通,所述第三阀装置的第二连通口与所述第四换热器、所述第四阀装置连通,所述第三阀装置的第三连通口与所述压缩机的进口连通,所述第三阀装置的第四连通口与所述第四阀装置、所述第一节流装置、所述第二节流装置连通。
  8. 根据权利要求7所述的热管理系统,其特征在于:所述热管理系统包括第一制热模式、第二制热模式、第三制热模式,在所述第一制热模式,所述压缩机不启动,所述第二泵启动,所述加热器开启;在所述第二制热模式,所述第三阀装置处于第二工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,且所述第四连通口与所述第一阀装置、所述第四换热器、所述第三阀装置的第二连通口、所述第三连通口、所述压缩机连通,所述第二泵启动,所述加热器开启;在所述第三制热模式,所述第三阀装置处于所述第二工作状态,所述第三阀装置的第一连通口与所述第四连通口连通,所述第四连通口与所述第二节流装置、所述第一换热器的第一流道连通,所述第四连通口与所述第四阀装置、所述第四换热器连通,所述第一换热器的第一流道和所述第四换热器与所述压缩机连通。
  9. 根据权利要7所述的热管理系统,其特征在于:所述热管理系统包括空调箱和风门,所述加热器位于所述空调箱外,所述散热器位于所述空调箱内;所述第五换热器、第三换热器位于所述空调箱内;所述散热器 位于所述风门的下风向;
    所述第四阀装置包括节流结构单元和单向结构单元,所述第四阀装置包括两个连通口,所述单向结构单元导通所述第四阀装置的第一连通口至所述第四阀装置的第二连通口的流路,所述节流结构单元导通所述第四阀装置的第二连通口至所述第四阀装置的第一连通口的流路。
  10. 根据权利要求7中所述的热管理系统,其特征在于:所述制冷剂系统包括四通结构,所述四通结构包括四个端口,所述四通结构的第一端口与所述第二节流装置连通,所述四通结构的第二端口与所述第三阀装置的第四连通口连通,所述四通结构的第三端口与所述第四阀装置连通,所述四通结构的第四端口与所述第一节流装置连通;
    所述热管理系统包括第一制冷模式和第二制冷模式,在所述第一制冷模式,启动所述第一泵,所述第三阀装置进入第一工作状态,所述第三阀装置使所述第三阀装置的第一连通口与所述第三阀装置的第二连通口导通,所述第三阀装置的第二连通口与所述第四换热器、所述单向结构单元连通,所述单向结构单元与所述第二节流装置、所述第一换热器的第一流道连通;所述单向结构单元与所述第一节流装置、所述第五换热器连通,所述第五换热器、所述第一换热器出口与所述压缩机进口连通;
    在所述第二制冷模式,关停所述第一泵,所述第三阀装置进入第一工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第二连通口连通,所述第三阀装置的第二连通口与所述第四换热器、所述单向结构单元、所述第一节流装置、所述第五换热器、所述压缩机连通;
    和/或所述热管理系统包括第一除湿模式、第二除湿模式、第三除湿模式,在所述第一除湿模式,所述第三阀装置处于第二工作状态,所述第三阀装置使所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,所述第三阀装置的第四连通口与所述第一节流装置、所述第五换热器连通,所述第三阀装置的第四连通口与所述第一阀装置、所述第四换热器,所述第五换热器、所述第四换热器、所述压缩机连通;在所述第二除湿模式,所述第三阀装置处于第二工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,所述第三阀装置的第四连通口与所述第一节流装置、所述第五换热器连通,所述第三阀装置的第四连通口与所 述第二节流装置、所述第一换热器的第一流道连通,所述第三阀装置的第四连通口与所述第四阀装置、所述第四换热器连通,所述第五换热器、所述第一换热器的第一流道、所述第四换热器出口与所述压缩机进口连通;在所述第三除湿模式,所述第三阀装置处于第二工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,所述第三阀装置的第四连通口与所述第一节流装置、所述第五换热器连通,所述第三阀装置的第四连通口与所述第一阀装置、所述第四换热器连通,所述第五换热器、所述第四换热器出口与所述压缩机进口连通。
  11. 一种热管理系统,包括电池换热器、第一泵、第二泵、第一换热器、加热器、散热器、第二阀装置、第二换热器,所述第一换热器和所述第二换热器均包括两个流道,所述第一换热器的第一流道与第一换热器的第二流道相互隔离,且第一换热器的第一流道内流体与第一换热器的第二流道内流体能够进行热交换,所述第二换热器的第一流道与第二换热器的第二流道相互隔离,且第二换热器的第一流道内流体与第二换热器的第二流道内流体能够进行热交换;
    所述热管理系统包括制冷剂系统和冷却液系统,所述制冷剂系统包括第一换热器的第一流道,所述冷却液系统包括所述第一换热器的第二流道、所述电池换热器、所述第一泵、所述第二泵、所述加热器、所述第二阀装置、所述第二换热器和所述散热器;所述冷却液系统包括电池回路和加热/冷却回路,所述第二换热器的第一流道、所述第一换热器的第二流道、所述电池换热器、所述第一泵形成所述电池回路的一部分,所述第二换热器的第二流道、所述加热器、所述散热器、所述第二阀装置、所述第二泵形成所述加热/冷却回路的一部分。
  12. 根据权利要求11所述的热管理系统,其特征在于:所述第二阀装置包括三个连通口,所述第二阀装置的第一连通口与所述第二换热器的第二流道连通,所述第二阀装置的第二连通口与所述第二换热器的第二流道的出口或出口管路连通,所述第三连通口与所述加热/冷却回路连通,所述第二阀装置能够使所述第二阀装置的第三连通口与所述第二阀装置的第一连通口导通或阻断,和/或所述第二阀装置能够使所述第二阀装置的第三连通口与所述第二阀装置的第二连通口导通或阻断;
    所述第二阀装置为三通比例调节阀,所述第二阀装置能够调节自所述第三连通口进入所述第一连通口的冷却液的流量;或者所述第二阀装置至少包括第一阀模块,所述第一阀模块包括两个端口,所述第一阀模块的第一端口与所述第二阀装置的第一连通口连通,所述第一阀模块的第一端口与所述第二阀装置的第二连通口连通,所述第一阀模块的第二端口、所述第二阀模块的第二端口与所述第二阀装置的第三连通口连通,所述第一阀模块能够阻断或导通或调节自第二阀装置的第三连通口进入第一阀模块的第一端口的流体流量,在所述第二阀装置包括第一工作状态和第二工作状态,在所述第二阀装置的第一工作状态时,所述第一阀模块截止,在所述第二阀装置的第二工作状态时,所述第二阀模块打开;或者所述第二阀装置包括第一阀模块、第二阀模块,所述第一阀模块和所述第二阀模块均包括两个端口,所述第一阀模块的第一端口与所述第二阀装置的第一连通口连通,所述第二阀模块的第一端口与所述第二阀装置的第二连通口连通,所述第一阀模块的第二端口、所述第二阀模块的第二端口与所述第二阀装置的第三连通口连通,在所述第二阀装置的第一工作状态时,所述第一阀模块截止,第二阀模块打开,在所述第二阀装置的第二工作状态时,所述第一阀模块打开,所述第二阀模块打开。
    所述冷却液系统包括第一循环模式、第二循环模式和第三循环模式,在所述第二阀装置的第一工作状态,所述第二阀装置的第三连通口与所述第二阀装置的第一连通口导通,所述第二阀装置的第三连通口与所述第二阀装置的第二连通口导通;在所述第二阀装置的第二工作状态,所述第二阀装置的第三连通口与所述第二阀装置的第一连通口不导通,所述第二阀装置的第三连通口与所述第二阀装置的第二连通口导通;
    在第一循环模式下,所述第二阀装置处于第一工作状态,所述第二阀装置使所述第三连通口与第一连通口导通,所述第二阀装置使第三连通口与第二连通口导通,所述加热器开启;在第二循环模式下,所述第二阀装置处于第二工作状态,所述第二阀装置使所述第二阀装置的第三连通口与所述第二阀装置的第一连通口阻断,所述加热器开启;在所述第三循环模式下,所述第二阀装置处于第一工作状态,所述第二阀装置使所述第二阀装置的第三连通口与第二阀装置的第一连通口导通,所述加热器关闭。
  13. 根据权利要求11或12所述的热管理系统,其特征在于:所述制冷剂系统还包括压缩机、第三阀装置、第一节流装置、第五换热器、第三换热器、第四换热器;所述第三阀装置包括四个连通口,所述第三阀装置至少包括第一工作状态和第二工作状态,在所述第三阀装置的第一工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第二连通口连通,所述第三阀装置的第三连通口与所述第三阀装置的第四连通口不连通,在所述第三阀装置的第二工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,所述第三阀装置的第二连通口与所述第三阀装置的第三连通口连通;
    所述压缩机的出口与所述第三换热器、所述第三阀装置的第一连通口连通,所述第三阀装置的第二连通口与所述第四换热器、所述第四阀装置连通,所述第三阀装置的第三连通口与所述压缩机的进口连通,所述第三阀装置的第四连通口与所述第四阀装置、所述第一节流装置、所述第二节流装置连通。
  14. 根据权利要求13所述的热管理系统,其特征在于:所述热管理系统包括第一制热模式、第二制热模式、第三制热模式,在所述第一制热模式,所述压缩机不启动,所述第二泵启动,所述加热器开启;在所述第二制热模式,所述第三阀装置处于第二工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,且所述第四连通口与所述第一阀装置、所述第四换热器、所述第三阀装置的第二连通口、所述第三连通口、所述压缩机连通,所述第二泵启动,所述加热器开启;在所述第三制热模式,所述第三阀装置处于所述第二工作状态,所述第三阀装置的第一连通口与所述第四连通口连通,所述第四连通口与所述第二节流装置、所述第一换热器的第一流道连通,所述第四连通口与所述第四阀装置、所述第四换热器连通,所述第一换热器的第一流道和所述第四换热器与所述压缩机连通。
  15. 根据权利要13所述的热管理系统,其特征在于:所述热管理系统包括空调箱和风门,所述加热器位于所述空调箱外,所述散热器位于所述空调箱内;所述第五换热器、第三换热器位于所述空调箱内;所述散热器位于所述风门的下风向;
    所述第四阀装置包括节流结构单元和单向结构单元,所述第四阀装置包括两个连通口,所述单向结构单元导通所述第四阀装置的第一连通口至所述第四阀装置的第二连通口的流路,所述节流结构单元导通所述第四阀装置的第二连通口至所述第四阀装置的第一连通口的流路。
  16. 根据权利要求13中所述的热管理系统,其特征在于:所述制冷剂系统包括四通结构,所述四通结构包括四个端口,所述四通结构的第一端口与所述第二节流装置连通,所述四通结构的第二端口与所述第三阀装置的第四连通口连通,所述四通结构的第三端口与所述第四阀装置连通,所述四通结构的第四端口与所述第一节流装置连通;
    所述热管理系统包括第一制冷模式和第二制冷模式,在所述第一制冷模式,启动所述第一泵,所述第三阀装置进入第一工作状态,所述第三阀装置使所述第三阀装置的第一连通口与所述第三阀装置的第二连通口导通,所述第三阀装置的第二连通口与所述第四换热器、所述单向结构单元连通,所述单向结构单元与所述第二节流装置、所述第一换热器的第一流道连通;所述单向结构单元与所述第一节流装置、所述第五换热器连通,所述第五换热器、所述第一换热器出口与所述压缩机进口连通;
    在所述第二制冷模式,关停所述第一泵,所述第三阀装置进入第一工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第二连通口连通,所述第三阀装置的第二连通口与所述第四换热器、所述单向结构单元、所述第一节流装置、所述第五换热器、所述压缩机连通;
    和/或所述热管理系统包括第一除湿模式、第二除湿模式、第三除湿模式,在所述第一除湿模式,所述第三阀装置处于第二工作状态,所述第三阀装置使所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,所述第三阀装置的第四连通口与所述第一节流装置、所述第五换热器连通,所述第三阀装置的第四连通口与所述第一阀装置、所述第四换热器,所述第五换热器、所述第四换热器、所述压缩机连通;在所述第二除湿模式,所述第三阀装置处于第二工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,所述第三阀装置的第四连通口与所述第一节流装置、所述第五换热器连通,所述第三阀装置的第四连通口与所述第二节流装置、所述第一换热器的第一流道连通,所述第三阀装置的第 四连通口与所述第四阀装置、所述第四换热器连通,所述第五换热器、所述第一换热器的第一流道、所述第四换热器出口与所述压缩机进口连通;在所述第三除湿模式,所述第三阀装置处于第二工作状态,所述第三阀装置的第一连通口与所述第三阀装置的第四连通口连通,所述第三阀装置的第四连通口与所述第一节流装置、所述第五换热器连通,所述第三阀装置的第四连通口与所述第一阀装置、所述第四换热器连通,所述第五换热器、所述第四换热器出口与所述压缩机进口连通。
PCT/CN2018/092133 2017-06-27 2018-06-21 热管理系统 WO2019001330A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/621,201 US11458797B2 (en) 2017-06-27 2018-06-21 Thermal management system
EP18825009.6A EP3647086B1 (en) 2017-06-27 2018-06-21 Thermal management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710499039.6A CN109228962B (zh) 2017-06-27 2017-06-27 热管理系统
CN201710499039.6 2017-06-27

Publications (1)

Publication Number Publication Date
WO2019001330A1 true WO2019001330A1 (zh) 2019-01-03

Family

ID=64740379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092133 WO2019001330A1 (zh) 2017-06-27 2018-06-21 热管理系统

Country Status (4)

Country Link
US (1) US11458797B2 (zh)
EP (1) EP3647086B1 (zh)
CN (1) CN109228962B (zh)
WO (1) WO2019001330A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220097478A1 (en) * 2019-10-30 2022-03-31 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109140815B (zh) * 2017-06-27 2020-09-25 杭州三花研究院有限公司 一种热管理系统及一种流量控制装置
CN111854208B (zh) * 2019-04-29 2021-12-14 杭州三花研究院有限公司 热管理系统
CN112092566B (zh) * 2019-06-17 2024-04-05 杭州三花研究院有限公司 一种热管理系统
US11820220B2 (en) 2019-10-04 2023-11-21 Hyundai Motor Company Vehicular battery unit and vehicular underbody including the same
US11807092B2 (en) * 2019-10-04 2023-11-07 Hyundai Motor Company Vehicular battery unit and vehicular underbody including the same
US11932097B2 (en) 2019-10-04 2024-03-19 Hyundai Motor Company Battery unit for vehicle and underbody of vehicle including the same
CN112428767B (zh) * 2020-03-30 2024-06-11 杭州三花研究院有限公司 车辆热管理系统
FR3110876B1 (fr) * 2020-05-26 2022-05-13 Psa Automobiles Sa Vehicule automobile avec motorisation electrique equipe d’un distributeur de fluide caloporteur
WO2022061547A1 (zh) * 2020-09-22 2022-03-31 华为技术有限公司 一种热管理系统及电动汽车
RU202152U1 (ru) * 2020-09-28 2021-02-04 Публичное акционерное общество "КАМАЗ" Устройство термостатирования тяговых батарей
CN113173050B (zh) * 2021-02-26 2022-09-09 三花控股集团有限公司 热管理系统
CN113173049B (zh) * 2021-02-26 2022-10-18 三花控股集团有限公司 热管理系统
CN113035386B (zh) * 2021-03-05 2022-11-18 哈尔滨工程大学 一种采用双轮双叶复合动力吸气式的安全壳内置高效换热器
CN112959872B (zh) * 2021-04-01 2022-11-08 青岛朗进新能源设备有限公司 一种电动客车及其空调系统
WO2023051746A1 (zh) * 2021-09-30 2023-04-06 三花控股集团有限公司 热管理系统及其控制方法
WO2024045138A1 (zh) * 2022-09-01 2024-03-07 广东德昌电机有限公司 热管理系统
WO2024092359A1 (en) * 2022-11-01 2024-05-10 Litens Automotive Partnership Coolant-refrigerant heat exchanger with induction heater and thermal management system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253149A (zh) * 2013-05-30 2013-08-21 天津清源电动车辆有限责任公司 电动汽车空气循环电池箱温度管理系统
CN103358851A (zh) * 2012-04-05 2013-10-23 杭州三花研究院有限公司 一种汽车空调系统
CN105835653A (zh) * 2015-01-14 2016-08-10 北京长城华冠汽车科技有限公司 一种新能源车辆的集中式多工况热管理系统
CN206141270U (zh) * 2016-11-14 2017-05-03 吉林大学 具有电池热管理功能的热泵式汽车空调

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195999B1 (en) * 2000-01-06 2001-03-06 General Motors Corporation Electrochemical engine
US7975757B2 (en) * 2008-07-21 2011-07-12 GM Global Technology Operations LLC Vehicle HVAC and RESS thermal management
JP5422348B2 (ja) * 2009-11-18 2014-02-19 株式会社日立製作所 車両用空調システム
CN102452297B (zh) * 2010-10-29 2014-07-09 杭州三花研究院有限公司 电动汽车及其热管理系统
JP5861495B2 (ja) * 2011-04-18 2016-02-16 株式会社デンソー 車両用温度調整装置、および車載用熱システム
US8620506B2 (en) 2011-12-21 2013-12-31 Ford Global Technologies, Llc Method and system for thermal management of a high voltage battery for a vehicle
JP2013129353A (ja) * 2011-12-22 2013-07-04 Mitsubishi Heavy Ind Ltd 車両用空調装置
WO2013128899A1 (ja) * 2012-02-28 2013-09-06 株式会社日本クライメイトシステムズ 車両用空調装置
JP5867305B2 (ja) * 2012-06-20 2016-02-24 株式会社デンソー 車両用熱管理システム
JP5962556B2 (ja) * 2013-03-19 2016-08-03 株式会社デンソー 車両用熱管理システム
US9515357B2 (en) * 2014-01-15 2016-12-06 Ford Global Technologies, Llc Battery thermal management system for electrified vehicle
JP2015186989A (ja) * 2014-03-12 2015-10-29 カルソニックカンセイ株式会社 車載温調装置、車両用空調装置及びバッテリ温調装置
US9822752B2 (en) * 2014-05-19 2017-11-21 Ford Global Technologies, Llc Vehicle heating system and method
JP6339419B2 (ja) * 2014-06-03 2018-06-06 サンデンホールディングス株式会社 車両用空気調和装置
US20160023532A1 (en) 2014-07-25 2016-01-28 Atieva, Inc. EV Integrated Temperature Control System
US9758012B2 (en) * 2014-10-21 2017-09-12 Atieva, Inc. EV multi-mode thermal management system
US9758010B2 (en) * 2014-10-21 2017-09-12 Atieva, Inc. EV multi mode thermal management system
JP6633303B2 (ja) * 2015-06-25 2020-01-22 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
DE102015110571A1 (de) * 2015-07-01 2017-01-05 Halla Visteon Climate Control Corporation Fahrzeugklimaanlage und Verfahren zur Steuerung der Fahrzeugklimaanlage zur Temperierung einer Fahrzeugbatterie
US9950638B2 (en) * 2015-07-10 2018-04-24 Ford Global Technologies, Llc Preconditioning an electric vehicle
US20180201094A1 (en) 2015-07-14 2018-07-19 Denso Corporation Heat pump cycle
DE102015112030A1 (de) * 2015-07-23 2017-01-26 Halla Visteon Climate Control Corporation Modulares Klimatisierungssystem eines Kraftfahrzeugs
US9819063B2 (en) * 2015-08-18 2017-11-14 Ford Global Technologies, Llc Climate control system for a vehicle
US10603978B2 (en) * 2016-07-20 2020-03-31 Ford Global Technologies, Llc Vehicle auxiliary HVAC system using a coolant loop for cooling a component and vehicle interior
JP6948146B2 (ja) * 2017-04-18 2021-10-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6884028B2 (ja) * 2017-04-26 2021-06-09 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
KR102399618B1 (ko) * 2017-05-30 2022-05-18 현대자동차주식회사 차량의 공조시스템
KR20200045727A (ko) * 2018-10-23 2020-05-06 현대자동차주식회사 차량용 히트펌프 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358851A (zh) * 2012-04-05 2013-10-23 杭州三花研究院有限公司 一种汽车空调系统
CN103253149A (zh) * 2013-05-30 2013-08-21 天津清源电动车辆有限责任公司 电动汽车空气循环电池箱温度管理系统
CN105835653A (zh) * 2015-01-14 2016-08-10 北京长城华冠汽车科技有限公司 一种新能源车辆的集中式多工况热管理系统
CN206141270U (zh) * 2016-11-14 2017-05-03 吉林大学 具有电池热管理功能的热泵式汽车空调

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647086A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220097478A1 (en) * 2019-10-30 2022-03-31 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system

Also Published As

Publication number Publication date
CN109228962A (zh) 2019-01-18
US20200108690A1 (en) 2020-04-09
EP3647086A1 (en) 2020-05-06
CN109228962B (zh) 2021-04-09
EP3647086B1 (en) 2024-04-17
EP3647086A4 (en) 2021-03-17
US11458797B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2019001330A1 (zh) 热管理系统
WO2018161907A1 (zh) 一种热管理系统
US11840122B2 (en) Thermal management system
CN107499086B (zh) 车辆热管理系统和车辆
US20220097478A1 (en) Thermal management system
US20100000713A1 (en) Vehicle air conditioning system
EP3647679B1 (en) Thermal management system
CN109140815B (zh) 一种热管理系统及一种流量控制装置
CN109968940B (zh) 一种应用于电动汽车的空调系统及电动汽车
US11358438B2 (en) Automotive air conditioning system
US20230391160A1 (en) Thermal management system
CN109974318B (zh) 一种热管理系统
CN109690198B (zh) 一种具有节能装置的中央空调热泵系统
CN111231621A (zh) 车辆热管理系统和车辆
EP4224088A1 (en) Thermal management system
CN113173047B (zh) 热管理系统
CN112140829B (zh) 车辆热管理系统和车辆
CN111845244B (zh) 热综合管理系统
CN217994053U (zh) 热泵空调系统及车辆
CN219154183U (zh) 车辆及其热管理系统
CN221162111U (zh) 热泵系统及车辆
CN216139781U (zh) 电动车及其热泵系统
WO2022142164A1 (zh) 车辆热管理系统和车辆
WO2023024604A1 (zh) 热管理系统及其控制方法
JP2024040735A (ja) 空気調和システム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018825009

Country of ref document: EP

Effective date: 20200127