WO2023024604A1 - 热管理系统及其控制方法 - Google Patents

热管理系统及其控制方法 Download PDF

Info

Publication number
WO2023024604A1
WO2023024604A1 PCT/CN2022/094016 CN2022094016W WO2023024604A1 WO 2023024604 A1 WO2023024604 A1 WO 2023024604A1 CN 2022094016 W CN2022094016 W CN 2022094016W WO 2023024604 A1 WO2023024604 A1 WO 2023024604A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
port
heat
valve
Prior art date
Application number
PCT/CN2022/094016
Other languages
English (en)
French (fr)
Inventor
王义彪
韩梦娇
Original Assignee
浙江三花智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110988150.8A external-priority patent/CN115723508A/zh
Priority claimed from CN202110989914.5A external-priority patent/CN115723509A/zh
Application filed by 浙江三花智能控制股份有限公司 filed Critical 浙江三花智能控制股份有限公司
Publication of WO2023024604A1 publication Critical patent/WO2023024604A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature

Definitions

  • the present application relates to the technical field of heat exchange, in particular to a heat management system and a control method thereof.
  • the thermal management system of a vehicle can regulate the ambient temperature in the passenger compartment and perform thermal management on the battery.
  • the thermal management system includes a refrigerant system and a coolant system.
  • the refrigerant in the refrigerant system and the coolant system The cooling liquid in the battery is exchanged through the double-channel heat exchanger.
  • the cooling liquid flowing out from the dual-channel heat exchanger flows into the battery heat exchange device and the air-cooled heat exchanger respectively.
  • the battery heat exchange device adjusts the temperature of the battery, and the air-cooled heat exchanger Regulates the temperature in the passenger compartment.
  • the coolant after heat exchange with the refrigerant flows directly to the battery heat exchange device, and the temperature of the coolant flowing out of the dual-channel heat exchanger is higher or lower, and the cooling of high or low temperature
  • the liquid directly flows into the battery heat exchange device to exchange heat with the battery. Due to the large temperature difference, it will cause thermal shock or cold shock to the battery, which will cause damage to the battery.
  • the present application provides a thermal management system capable of protecting batteries and a control method thereof.
  • a thermal management system which includes a multi-channel heat exchanger, the multi-channel heat exchanger includes a first channel part and a second channel part, the first channel The first channel part can exchange heat with the second channel part;
  • the thermal management system includes a refrigerant system and a cooling liquid system, the refrigerant system and the cooling liquid system are not connected, and the refrigerant system includes the The first flow channel part;
  • the coolant system includes the second flow channel part, a first heat exchanger and a battery heat exchange device, and the first heat exchanger includes a first heat exchange part and a second heat exchange part , the first heat exchange part and the second heat exchange part are not connected in the first heat exchanger;
  • the outlet of the second flow channel part can communicate with the inlet of the first heat exchange part,
  • the outlet of the first heat exchange part can communicate with the inlet of the battery heat exchange device, the outlet of the battery heat exchange device can communicate with the inlet of the second heat exchange part, and the outlet of the
  • the thermal management system of the present application raises or lowers the temperature of the cooling liquid flowing into the battery heat exchange device through the first heat exchanger, reducing the possibility of the cooling liquid causing cold shock or thermal shock to the battery, thereby achieving the purpose of protecting the battery.
  • a control method of a thermal management system includes a refrigerant system, a cooling liquid system and a control system, the refrigerant system and the cooling liquid system Not connected, the control system includes a controller, the controller is used to execute the control method of the thermal management system, thereby controlling the working state of the thermal management system;
  • the thermal management system includes a multi-channel heat exchanger, The multi-channel heat exchanger includes a first channel part and a second channel part;
  • the refrigerant system includes a first channel part, and the cooling liquid system includes a second channel part, a first heat exchanger, a battery A heat exchange device and a fluid drive device, the first heat exchanger includes a first heat exchange part and a second heat exchange part, and the first heat exchange part and the second heat exchange part not connected in the device;
  • the control method of the thermal management system includes: the controller controls the thermal management system to enter a working mode, and in this working mode, the refrigerant in the first flow channel part and the second flow channel part
  • the heat exchange of the coolant in the fluid drive device, the second flow channel part, the first heat exchanger and the battery heat exchange device are connected to form a circuit, and the fluid drive device is activated and used to provide the cooling liquid
  • the power of the flow, the outlet of the second flow channel part communicates with the inlet of the first heat exchange part, the outlet of the first heat exchange part communicates with the inlet of the battery heat exchange device, and the battery heat exchange
  • the outlet of the device communicates with the inlet of the second heat exchange part, the outlet of the second heat exchange part communicates with the inlet of the second channel part, the cooling liquid in the first heat exchange part communicates with the The coolant in the second heat exchange unit performs heat exchange.
  • the controller controls the thermal management system to enter the first working state, and in the first working state, the first heat exchanger is used to increase or decrease the cooling of the battery heat exchange device.
  • the temperature of the liquid reduces the possibility of the cooling liquid causing cold shock or heat shock to the battery, so as to achieve the purpose of protecting the battery.
  • Fig. 1 is a schematic connection diagram of an embodiment of the thermal management system of the present application
  • FIG. 2 is a schematic connection diagram of the first refrigeration mode of an embodiment of the thermal management system of the present application
  • Fig. 3 is a schematic connection diagram of the second refrigeration mode of an embodiment of the thermal management system of the present application.
  • Fig. 4 is a schematic connection diagram of the third refrigeration mode of an embodiment of the thermal management system of the present application.
  • Fig. 5 is a schematic connection diagram of the first heating mode of an embodiment of the thermal management system of the present application.
  • Fig. 6 is a schematic connection diagram of the second heating mode of an embodiment of the thermal management system of the present application.
  • Fig. 7 is a schematic connection diagram of the third heating mode of an embodiment of the thermal management system of the present application.
  • Fig. 8 is a schematic connection diagram of the heating and dehumidification mode of an embodiment of the thermal management system of the present application.
  • FIG. 9 is a schematic connection diagram of a defrosting mode of an embodiment of the thermal management system of the present application.
  • Fig. 10 is a partial perspective schematic diagram of an embodiment of the parallel flow liquid-cooled heat exchanger of the present application.
  • Fig. 11 is a schematic cut-away structure diagram of an embodiment of the gas-liquid separation device of the present application.
  • the thermal management system includes a first heat exchanger 5 , a second heat exchanger 2 and a third heat exchanger 4 .
  • the first heat exchanger 5 includes a first heat exchange part 52 and a second heat exchange part 51, the first heat exchange part 52 and the second heat exchange part 51 can perform heat exchange, and the first heat exchange part 52 and the second heat exchange part
  • Each part 51 is provided with flow passages, and the flow passages of the first heat exchange part 52 and the flow passages of the second heat exchange part 51 are isolated from each other and do not communicate with each other.
  • the cooling liquid of a certain section in one circuit can exchange heat with the cooling liquid of another section in the same circuit through the first heat exchanger 5 .
  • the second heat exchanger 2 includes a third heat exchange part 21 and a fourth heat exchange part 22, the third heat exchange part 21 and the fourth heat exchange part 22 can perform heat exchange, the third heat exchange part 21 and the fourth heat exchange part Each part 22 is provided with flow passages, and the flow passages of the third heat exchange part 21 and the flow passages of the fourth heat exchange part 22 are isolated from each other and do not communicate with each other.
  • the refrigerant can exchange heat with the cooling liquid through the second heat exchanger 2 .
  • the third heat exchanger 4 includes a fifth heat exchange part 41 and a sixth heat exchange part 42, the fifth heat exchange part 41 and the sixth heat exchange part 42 can perform heat exchange, the fifth heat exchange part 41 and the sixth heat exchange part Each part 42 is provided with flow passages, and the flow passages of the fifth heat exchange part 41 and the flow passages of the sixth heat exchange part 42 are isolated from each other and do not communicate with each other.
  • the refrigerant can exchange heat with the cooling liquid through the third heat exchanger 4 .
  • the second heat exchanger 2, the third heat exchanger 4 and the first heat exchanger 5 can be plate heat exchangers, casing heat exchangers, parallel flow liquid-cooled heat exchangers or other liquid-cooled heat exchangers
  • the second heat exchanger 2, the third heat exchanger 4 and the first heat exchanger 5 may be the same or different.
  • the second heat exchanger 2 and the third heat exchanger 4 are both parallel flow heat exchangers.
  • parallel flow heat exchangers Compared with plate heat exchangers, parallel flow heat exchangers have stronger pressure resistance , the risk of blasting is lower.
  • the parallel flow heat exchanger comprises a plurality of microchannel flat tubes 100 arranged side by side, a first collector 200 connected to one end of the microchannel flat tube 100, a second collector connected to the other end of the microchannel flat tube 100 The flow piece 300 and the shell 400 surrounding the microchannel flat tube 100 and located between the two flow pieces.
  • the refrigerant can flow into a cavity of the first header 200 on one side and flow through a part of the microchannel flat tubes 100 to the second header 300 on the other side, and then pass through another part of the microchannel flat tubes 100 from the second header 300.
  • the other cavity of a collector 200 flows out, and the cooling liquid flows in the gap between the cavity formed by the housing 400 and the microchannel flat tube 100 , thereby realizing the heat exchange between the refrigerant and the cooling liquid.
  • the first heat exchanger 5 can be a plate heat exchanger or a casing heat exchanger, and the structures of the plate heat exchanger and the casing heat exchanger are well known to those skilled in the art. This application will not go into details.
  • the various components of the thermal management system are connected by pipelines to form two major systems, namely the refrigerant system and the cooling liquid system.
  • the refrigerant system and the cooling liquid system are isolated and not connected to each other.
  • Refrigerant circulates in the refrigerant system, and coolant circulates in the coolant system.
  • the refrigerant can be R134A or carbon dioxide or other heat exchange medium, and the coolant can be a mixed solution of ethanol and water or other cooling medium.
  • the flow channel of the fifth heat exchange part 41 and the flow channel of the third heat exchange part 21 are connected to the refrigerant system
  • the flow channel of the heat part 52 and the flow channel of the second heat exchange part 51 are connected to the cooling liquid system.
  • the inlet and outlet of the refrigerant system can be connected with other components in the refrigerant system through pipelines, and form a circuit after being connected through pipelines when the thermal management system is working.
  • the thermal management system includes a multi-channel heat exchanger, and the multi-channel heat exchanger includes a first channel part and a second channel part, and the first channel part and the second channel part are isolated from each other and not communicated with each other.
  • the channel of the first channel part is connected to the refrigerant system
  • the channel of the second channel part is connected to the cooling liquid system.
  • the refrigerant in the first channel part and the refrigerant in the second channel part coolant heat exchange.
  • the multi-channel heat exchanger is one of the second heat exchanger 2 and the third heat exchanger 4, and correspondingly, the first flow channel part is the third heat exchange part 21 and the third heat exchanger 4.
  • One of the five heat exchange parts 41 , the second channel part is one of the fourth heat exchange part 22 and the sixth heat exchange part 42 .
  • the refrigerant system includes: a compressor 1, a throttling device 3, a fifth heat exchange part 41 and a third heat exchange part 21.
  • the above components can be connected indirectly through pipelines or valves, or can be integrated into one body structure.
  • the refrigerant system is further provided with a gas-liquid separation device 10 .
  • the gas-liquid separation device 10 includes an inner cylinder 201, an outer cylinder 202, a gas-liquid separation assembly 203 and a heat exchange assembly 204. Part of it is located in the interlayer cavity formed by the inner cylinder 201 and the outer cylinder 202 .
  • the gas-liquid separation device 10 includes a first inlet 205 , a second inlet 207 , a first outlet 206 and a second outlet 208 .
  • the gas-liquid separation component 203 is used for gas-liquid separation of the refrigerant flowing into the first inlet 205, and the liquid refrigerant after gas-liquid separation is stored in the inner cylinder 201, and the gas refrigerant flows into the interlayer cavity to exchange heat with the heat exchange component 204 Then, it flows out of the gas-liquid separation device 10 from the first outlet 206 .
  • the second inlet 207 is the inlet of the heat exchanging component 204
  • the second outlet 208 is the outlet of the heat exchanging component 204
  • the inner chamber of the heat exchanging component 204 circulates refrigerant.
  • the outlet of the compressor 1 is connected to the inlet of the third heat exchange part 21, the outlet of the third heat exchange part 21 is connected to the second inlet 207, the second outlet 208 is connected to the inlet of the throttling device 3,
  • the outlet of the throttling device 3 is connected to the inlet of the fifth heat exchange part 41 , the outlet of the fifth heat exchange part 41 is connected to the first inlet 205 , and the first outlet 206 is connected to the inlet of the compressor 1 .
  • the gas-liquid separation device 10 has the functions of a gas-liquid separator and an intermediate heat exchanger.
  • the refrigerant system is provided with a gas-liquid separator and an intermediate heat exchanger.
  • the gas-liquid separator and the intermediate heat exchanger are independent components connected to other components through pipelines.
  • the gas-liquid separator and The structure and working principle of the intermediate heat exchanger are well known to those skilled in the art, and will not be repeated in this application.
  • the refrigerant circulates in the refrigerant system.
  • the refrigerant flow direction of the refrigerant system does not switch, and the flow sequence of the refrigerant is that of the compressor 1.
  • the throttling device 3 can throttle the refrigerant.
  • the throttling device 3 is an electronic expansion valve or a thermal expansion valve.
  • the coolant system includes the sixth heat exchange part 42, the fourth heat exchange part 22, the first heat exchanger 5, the fifth heat exchanger 101, the fourth heat exchanger 102, the sixth heat exchanger 104, the seventh heat exchanger 103, battery heat exchange device 6, motor heat exchange device 9, heating device 8, multiple fluid drive devices and multiple adjustment devices, the above components can be connected indirectly through pipelines or valves, or can be integrated integrated structure.
  • the multiple fluid driving devices include a first pump 11 , a second pump 12 and a third pump 13 for providing power for the flow of cooling fluid in the cooling fluid system.
  • the first pump 11, the second pump 12 and the third pump 13 are electronic water pumps, and the types and specifications of the first pump 11, the second pump 12 and the third pump 13 can be the same or different, depending on the thermal management System requirements are selected.
  • the battery heat exchange device 6 is used for thermal management of the battery.
  • the battery heat exchanging device 6 can be an integrated part with the battery as an integral structure, or can be an independent part and then assembled with the battery.
  • the motor heat exchange device 9 is used for thermal management of the motor.
  • the motor heat exchange device 9 may be an integrated component with an integral structure with the motor, or it may be an independent component and then assembled with the motor.
  • the heating device 8 is used to heat the cooling liquid.
  • the heating device 8 is connected to the entrance of the sixth heat exchange part 42, so that the cooling liquid heated by the heating device 8 passes through the sixth heat exchange part 42 first, and fully utilizes the cooling liquid.
  • the heating device 8 is a liquid-cooled PTC electric heater.
  • the outlet of the first heat exchange part 52 is connected to the inlet of the battery heat exchange device 6
  • the outlet of the battery heat exchange device 6 is connected to the inlet of the second heat exchange part 51 .
  • the temperature of the coolant flowing through the battery heat exchange device 6 is greatly affected by the temperature of the battery, and the temperature of the coolant flowing out of the battery heat exchange device 6 will be relatively high or lower. If the coolant flowing into the first heat exchange part 52 is a coolant with a relatively low temperature, the first heat exchanger 5 is used to increase the temperature of the coolant flowing into the battery heat exchange device 6 and reduce the temperature of the coolant flowing out of the battery heat exchange device 6 .
  • the temperature of the cooling liquid improves the phenomenon that the low-temperature cooling liquid causes cold shock to the battery, and improves the phenomenon that the temperature of the cooling liquid flowing out of the battery heat exchange device 6 is too high.
  • the first heat exchanger 5 is used to reduce the temperature of the cooling liquid flowing into the battery heat exchanging device 6, and increase the temperature of the cooling liquid flowing out of the battery heat exchanging device 6.
  • the temperature of the cooling liquid improves the phenomenon that the high-temperature cooling liquid causes thermal shock to the battery, and improves the phenomenon that the temperature of the cooling liquid flowing out of the battery heat exchange device 6 is too low.
  • the first heat exchanger 5 can be used to protect the battery, reduce the thermal shock damage of the cooling liquid to the battery, and also be used to reduce the impact of the battery on the temperature of the cooling liquid.
  • a fourth pump 14 may be provided between the inlet of the battery heat exchange device 6 and the outlet of the first heat exchange part 52, or between the outlet of the battery heat exchange device 6 and the inlet of the second heat exchange part 51, Make sure there is enough power for the coolant to flow.
  • the fourth pump 14 is an electronic water pump.
  • a plurality of regulating devices include a tenth valve 15, an eleventh valve 16, a twelfth valve 17, a thirteenth valve 18, a fourteenth valve 19, a fifteenth valve 20, a seventh valve 23, an eighth valve 24, The ninth valve 25 , the sixth valve 26 , the fifth valve 27 , the third valve 28 , the fourth valve 29 , the first valve 30 and the second valve 31 .
  • the cooling liquid system can form at least two mutually disconnected cooling liquid circuits by adjusting the working states of the multiple adjusting devices.
  • the above-mentioned regulating devices are all three-way valves, and each regulating device has at least port a, port b, and port c. When the regulating device is in a working state, at least two of port a, port b, and port c connected.
  • the regulating device is a three-way proportional valve.
  • the above-mentioned regulating device can replace other types of valves or combinations of other types of valves according to their functions, such as one-way valves, shut-off valves, or combinations thereof.
  • the outlet of the first pump 11 is connected to the port a of the tenth valve 15, the port b of the tenth valve 15 is connected to the first port of the sixth heat exchanger 104, the port a of the first valve 30 and the port c of the eighth valve 24
  • the port c of the tenth valve 15 is connected to the port a of the eleventh valve 16 .
  • the tenth valve 15 is used to adjust the flow direction of the coolant flowing out of the first pump 11 .
  • the outlet of the second pump 12 is connected to the port b of the eighth valve 24, the port a of the eighth valve 24 is connected to the inlet of the fourth heat exchanger 102, the port c of the eighth valve 24 is connected to the ports b, The port a of the first valve 30 is connected to the first port of the sixth heat exchanger 104 .
  • the eighth valve 24 is used to adjust the flow direction of the cooling liquid flowing out from the second pump 12 .
  • the outlet of the third pump 13 is connected with the port a of the sixth valve 26, the port b of the sixth valve 26 is connected with the port c of the second valve 31, the port c of the sixth valve 26 is connected with the port a of the twelfth valve 17 and Port b of the fourth valve 29 is connected.
  • the sixth valve 26 is used to adjust the flow direction of the cooling liquid flowing out from the third pump 13 .
  • the port b of the eleventh valve 16 is connected to the inlet of the fifth heat exchanger 101 and the port c of the fourteenth valve 19, and the port c of the eleventh valve 16 is connected to the inlet of the first heat exchange part 52 and the port c of the twelfth valve 17 port b connection.
  • the eleventh valve 16 is used to adjust the flow direction of the cooling liquid flowing out of the port c of the tenth valve 15 .
  • Port a of the twelfth valve 17 is connected to port c of the sixth valve 26 and port b of the fourth valve 29, and port b of the twelfth valve 17 is connected to the inlet of the first heat exchange part 52 and the port of the eleventh valve 16.
  • Port c is connected, and port c of the twelfth valve 17 is connected to port b of the seventh valve 23 .
  • the eleventh valve 16 and the twelfth valve 17 can control whether the coolant flows into the first heat exchange part 52, and select whether the coolant flowing into the first heat exchange part 52 comes from the outlet of the sixth heat exchange part 42 or from the first heat exchange part 42.
  • the outlet of the four heat exchange parts 22 can control whether the coolant flows into the first heat exchange part 52, and select whether the coolant flowing into the first heat exchange part 52 comes from the outlet of the sixth heat exchange part 42 or from the first heat exchange part 42.
  • the port a of the thirteenth valve 18 is connected to the outlet of the second heat exchange part 51
  • the port b of the thirteenth valve 18 is connected to the port a of the fourteenth valve 19
  • the port c of the thirteenth valve 18 is connected to the outlet of the fourth heat exchange part 51.
  • the inlet of the heat section 22 is connected to the port a of the seventh valve 23 .
  • the flow direction of the coolant flowing out of the second heat exchange part 51 can be adjusted by the thirteenth valve 18 , and the inlet to the sixth heat exchange part 42 or the inlet to the fourth heat exchange part 22 can be selected.
  • Port a of the fourteenth valve 19 is connected to port b of the thirteenth valve 18, port b of the fourteenth valve 19 is connected to port c of the fifteenth valve 20, and port c of the fourteenth valve 19 is connected to the fifth port.
  • the inlet of the heater 101 is connected to the port b of the tenth valve 15 .
  • Port b of the fifteenth valve 20 is connected to the outlet of the fifth heat exchanger 101 , and port a of the fifteenth valve 20 is connected to port a of the ninth valve 25 .
  • the eleventh valve 16 , the fourteenth valve 19 and the fifteenth valve 20 can control whether the cooling liquid flows into the fifth heat exchanger 101 , and select the source of the cooling liquid flowing into the fifth heat exchanger 101 .
  • Port a of the seventh valve 23 is connected to port c of the thirteenth valve 18 and the inlet of the fourth heat exchange part 22, port b of the seventh valve 23 is connected to port c of the twelfth valve 17, and port c of the seventh valve 23 Port c is connected to the outlet of the fourth heat exchanger 102 .
  • the seventh valve 23 and the eighth valve 24 it is possible to control whether there is coolant flowing into the fourth heat exchanger 102, and to control whether the coolant flowing out of the fourth heat exchanger 102 flows into the fourth heat exchanging part 22 entirely, or part of it is divided. It directly flows into the fourth heat exchange part 22 , and the other part flows into the fourth heat exchange part 22 after passing through the battery heat exchange device 6 .
  • the port c of the ninth valve 25 is connected to the inlet of the heating device 8, the outlet of the heating device 8 is connected to the inlet of the sixth heat exchange part 42, the port a of the ninth valve 25 is connected to the port a of the fifteenth valve 20, and the port a of the fifth valve 20 is connected to the port a of the fifth valve 20.
  • Port b of the nine valve 25 is connected to port a of the third valve 28 .
  • the ninth valve 25 controls whether the cooling liquid flows into the sixth heat exchange part 42 , and selects the source of the cooling liquid flowing into the sixth heat exchange part 42 .
  • the port a of the fifth valve 27 is connected to the inlet of the motor heat exchange device 9, the outlet of the motor heat exchange device 9 is connected to the inlet of the third pump 13, the port b of the fifth valve 27 is connected to the port a of the fourth valve 29, Port c of the fifth valve 27 is connected to port b of the third valve 28 and port a of the second valve 31 .
  • Port a of the third valve 28 is connected to port b of the ninth valve 25 , and port c of the third valve 28 is connected to the second port of the sixth heat exchanger 104 .
  • Port b of the fourth valve 29 is connected to port c of the sixth valve 26 and port a of the twelfth valve 17 , and port c of the fourth valve 29 is connected to the second port of the seventh heat exchanger 103 .
  • the port a of the first valve 30 is connected with the first port of the sixth heat exchanger 104, the port b of the tenth valve 15, and the port c of the eighth valve 24, and the port b of the first valve 30 is connected with the seventh heat exchanger 103
  • the first port of the valve is connected, and the fourteenth port c is connected with the port b of the second valve 31 .
  • Port c of the second valve 31 is connected to port b of the sixth valve 26 .
  • the sixth valve 26 and the fifth valve 27 can control whether cooling liquid flows into the motor heat exchanging device 9 , and select the source of the cooling liquid flowing into the motor heat exchanging device 9 .
  • the application modes of the sixth heat exchanger 104 and the seventh heat exchanger 103 in the system can be controlled by the fifth valve 27 , the third valve 28 , the fourth valve 29 , the first valve 30 and the second valve 31 .
  • the coolant flowing through the sixth heat exchanger 104 and the coolant flowing through the seventh heat exchanger 103 come from the same circuit, or come from different circuits respectively;
  • the communication mode of the heat exchangers 103 is series or parallel; and the communication mode between the sixth heat exchanger 104 , the seventh heat exchanger 103 and the motor heat exchange device 9 is controlled.
  • the thermal management system provided in the embodiment of the present application can be applied to an electric vehicle.
  • the electric vehicle has an air conditioning box 20 that exchanges heat with the air in the passenger compartment.
  • the fifth heat exchanger 101 and the fourth heat exchanger 102 are arranged in the air conditioning box 20.
  • the fifth heat exchanger 101 and the fourth heat exchanger 102 are used for exchanging heat with the air in the air conditioning box 20 for adjusting the temperature of the passenger compartment.
  • the fourth heat exchanger 102 is located on the downstream side of the air flow relative to the fifth heat exchanger 101 , and a fan is provided in the air conditioning box 20 for guiding the flow of air in the air conditioning box 20 .
  • the sixth heat exchanger 104 and the seventh heat exchanger 103 are arranged near the front air intake grille of the automobile, the sixth heat exchanger 104 and the seventh heat exchanger 103 are used for exchanging heat with the atmospheric environment, and for supplying heat to the atmospheric environment Release heat or absorb heat from the atmosphere.
  • the sixth heat exchanger 104 is located on the downstream side of the air flow relative to the seventh heat exchanger 103, and is provided with a fan device for guiding the flow of air.
  • the compressor 1 and the gas-liquid separation device 7 are arranged in the front machine cavity of the driver's cab.
  • the fourth heat exchanger 102, the fifth heat exchanger 101, the sixth heat exchanger 104 and the seventh heat exchanger 103 are all air-cooled heat exchangers, and are all used for heat exchange with air.
  • the structure is well known to those skilled in the art, and will not be repeated in this application.
  • the thermal management system of this embodiment has multiple working modes, including heating mode, cooling mode, heating and dehumidification mode, battery preheating mode, battery cooling mode, and defrosting mode.
  • the second heat exchanger 2 acts as a condenser and the third heat exchanger 4 acts as an evaporator.
  • the fifth heat exchanger 101 is used as a cold air core to reduce the temperature of the air entering the passenger compartment, and the fourth heat exchanger 102 is used as a warm air core to increase the temperature of the air entering the passenger compartment.
  • the thermal management system of this embodiment is not only applicable to vehicles, but also applicable to other heat exchange systems that require thermal management.
  • the specification of this application will be described by taking the application to vehicles as an example.
  • connection status of multiple regulating devices can be adjusted to achieve single cooling of the passenger compartment, single cooling of the battery, or cooling of the passenger compartment.
  • the thermal management system when only the battery has a cooling requirement, the thermal management system is in the first cooling mode.
  • the compressor 1 is turned on, the refrigerant system is in the working state, the refrigerant in the fifth heat exchange part 41 absorbs the temperature of the coolant in the sixth heat exchange part 42, and the refrigerant in the third heat exchange part 21 transfers to the fourth heat exchange part 42.
  • the cooling liquid in the hot part 22 releases heat.
  • At least one of the first pump 11 and the fourth pump 14 is turned on, at least one of the second pump 12 and the third pump 13 is turned on, and two disconnected coolant circuits are formed through a plurality of regulating devices.
  • the first pump 11 , the fourth pump 14 , the first heat exchanger 5 , the battery heat exchange device 6 , the heating device 8 and the sixth heat exchange part 42 are connected to form a circuit.
  • Port a of the tenth valve 15 communicates with port c
  • port a of the eleventh valve 16 communicates with port c
  • port a of the twelfth valve 17 communicates with port c
  • port a of the thirteenth valve 18 communicates with port b
  • port a of the fourteenth valve 19 communicates with port b
  • port a of the fifteenth valve 20 communicates with port c
  • port a of the ninth valve 25 communicates with port c.
  • the cooling liquid flowing out from the outlet of the first pump 11 flows through the first heat exchange part 52 , the battery heat exchange device 6 , the fourth pump 14 , the second heat exchange part 51 , the heating device 8 and the sixth heat exchange part 42 sequentially. , get back to the inlet of the first pump 11, and so on.
  • the heating device 8 is turned off and is used as a pipe.
  • the cooling liquid cooled by the sixth heat exchanging part 42 first flows to the first heat exchanging part 52, and in the first heat exchanger 5, the cooling liquid in the first heat exchanging part 52 and the cooling liquid in the second heat exchanging part 51
  • the coolant exchanges heat, and the temperature of the coolant in the first heat exchange portion 52 rises.
  • the cooling liquid flowing out from the first heat exchanging part 52 flows to the battery heat exchanging device 6 , and the cooling liquid exchanges heat with the battery to realize battery cooling, and the temperature of the cooling liquid flowing through the battery heat exchanging device 6 further increases.
  • the heated coolant flows through the second heat exchange portion 51 , and then flows into the sixth heat exchange portion 42 to be cooled again, and thus circulates.
  • the temperature of the cooling liquid flowing out from the sixth heat exchanging part 42 is low, and the first heat exchanger 5 protects the battery, preventing the battery from being damaged by the cooling liquid that is too low temperature.
  • the second pump 12 , the sixth heat exchanger 104 , the motor heat exchange device 9 , the third pump 13 , the seventh heat exchanger 103 and the fourth heat exchange part 22 are connected to form a circuit.
  • Port a of the seventh valve 23 communicates with port b
  • port b of the eighth valve 24 communicates with port c
  • port a of the sixth valve 26 communicates with port b
  • port a of the fifth valve 27 communicates with port c
  • port a of the third valve 27 communicates with port c.
  • Port b of the valve 28 communicates with port c
  • port b of the fourth valve 29 communicates with port c
  • port b of the first valve 30 communicates with port c
  • port b of the second valve 31 communicates with port c.
  • the coolant flowing out from the outlet of the second pump 12 flows through the sixth heat exchanger 104, the motor heat exchange device 9, the third pump 13, the seventh heat exchanger 103 and the fourth heat exchange part 22 in sequence, and then returns to the sixth heat exchanger 104.
  • the inlet of the second pump 12 circulates like this.
  • the coolant heated in the fourth heat exchange part 22 first flows to the sixth heat exchanger 104 to exchange heat with the atmosphere, the coolant is cooled for the first time, and the cooled coolant flows to the motor heat exchange device 9 In this process, the motor is cooled by exchanging heat with the motor. After passing through the motor heat exchange device 9, the cooling liquid heats up, and the heated cooling liquid flows to the seventh heat exchanger 103, where it exchanges heat with the atmospheric environment again, and the cooling liquid is heated for the second time. After cooling, the cooled cooling liquid flows into the fourth heat exchange part 22 to be heated again, and thus circulates.
  • the cooling liquid is cooled twice by the seventh heat exchanger 103 and the sixth heat exchanger 104, which can ensure the heat dissipation capacity of the second cooling liquid circuit.
  • the motor heat exchange device 9 is connected between the sixth heat exchanger 104 and the seventh heat exchanger 103 to realize segmental heat management and reduce the influence of the heat at the fourth heat exchange part 22 on the heat dissipation of the motor.
  • the sixth heat exchanger 104 communicates with the fourth heat exchange part 22 to form a circuit
  • the seventh heat exchanger 103 communicates with the motor heat exchange device 9 to form another circuit
  • the two circuits are not connected
  • the sixth heat exchange The heat exchanger 104 releases the heat brought by the fourth heat exchange part 22, and the seventh heat exchanger 103 releases the heat of the motor. If the heat dissipation capacity of the sixth heat exchanger 104 is insufficient, the heat exchange capacity of the second heat exchanger 2 is poor, resulting in poor cooling effect of the battery. At this time, even if the heat exchange capacity of the seventh heat exchanger 103 is surplus, the motor can only be sufficiently cooled, and the heat exchange capacity of the seventh heat exchanger 103 will be wasted.
  • the heat exchange capacity of the sixth heat exchanger 104 and the seventh heat exchanger 103 can be fully utilized to increase the heat exchange capacity of the second heat exchanger 2, thereby ensuring the cooling effect of the battery. Does not affect the cooling effect of the motor.
  • the thermal management system is in the second cooling mode.
  • the refrigerant system in the second cooling mode is the same as the refrigerant system in the first cooling mode, and the coolant system in the second cooling mode is roughly the same as that in the first cooling mode.
  • the device forms two coolant circuits that are not connected.
  • port a of the eleventh valve 16 communicates with port b and port c
  • port a of the fifteenth valve 20 communicates with port b and port c.
  • the first pump 11, the fourth pump 14, the first heat exchanger 5, the battery heat exchange device 6 and the sixth heat exchange part 42 and the heating device 8 are connected to form a circuit, and the first pump 11, The fifth heat exchanger 101 , the heating device 8 and the sixth heat exchange part 42 are connected to form a circuit.
  • the coolant flowing out from the outlet of the first pump 11 is divided into two paths through the eleventh valve 16, one path flows to the battery heat exchange device 6 to realize battery cooling, and the coolant heats up; the other path flows to the fifth heat exchanger 101, and the air conditioning box 20 air heat exchange so as to realize the cooling of the passenger compartment, and the coolant heats up. After the two channels of heated cooling liquid are collected by the fifteenth valve 20 , they flow to the sixth heat exchange part 42 again to be cooled, and thus circulate.
  • the coolant temperature at the outlet of the sixth heat exchange part 42 is relatively low. If the first heat exchanger 5 is not provided, the inlet of the battery heat exchange device 6 is directly connected to the outlet of the sixth heat exchange part 42. On the one hand, if the temperature of the coolant is too low, it will cause damage to the battery.
  • the first heat exchanger 5 is provided before the inlet and after the outlet of the battery heat exchange device 6 to increase the temperature of the cooling liquid flowing into the battery heat exchange device 6 to protect the battery while reducing heat exchange from the battery.
  • the temperature of the cooling liquid flowing out of the device 6 can ensure that the temperature of the cooling liquid at the outlet of the sixth heat exchange part 42 can be low enough, so as to ensure the cooling effect of the passenger compartment.
  • the thermal management system when only the passenger compartment has a cooling demand, the thermal management system is in a third cooling mode.
  • the refrigerant system in the third cooling mode is the same as that in the first cooling mode, and the coolant system in the third cooling mode is roughly the same as that in the first cooling mode.
  • the device forms two coolant circuits that are not connected.
  • port a of the eleventh valve 16 communicates with port b
  • port a of the fifteenth valve 20 communicates with port b
  • at least one of the thirteenth valve 18 and the fourteenth valve 19 enables the battery to exchange heat
  • the device 6 is not in communication with the fifth heat exchanger 101 .
  • the first pump 11 In the first coolant circuit, the first pump 11 , the fifth heat exchanger 101 , the heating device 8 and the sixth heat exchange part 42 are connected to form a circuit.
  • the coolant cooled by the sixth heat exchange part 42 flows into the fifth heat exchanger 101, and the coolant exchanges heat with the air in the air-conditioning box 20 to realize the cooling of the passenger compartment.
  • the cooling liquid flows into the sixth heat exchange part 42 to be cooled again, and circulates like this.
  • the communication mode of the second cooling liquid circuit in this mode is the same as that of the second cooling liquid circuit in the first cooling mode. If the battery has not reached the cooling limit, that is, the battery temperature does not need to be cooled at this time, and even needs to be heated, referring to Figure 4, the twelfth valve 17 can be switched to communicate with port a and port b, and the thirteenth valve 18 can be switched to Port a communicates with port c.
  • the coolant flowing out from the seventh heat exchanger 103 flows through the first heat exchange part 52 , the battery heat exchange device 6 , the fourth pump 14 and the second heat exchange part 51 in sequence, and then flows back to the fourth heat exchange part 22 .
  • the heat storage capacity of the battery is utilized to further reduce the temperature of the cooling liquid flowing back to the fourth heat exchange part 22 and improve the heat dissipation capacity of the second cooling liquid circuit.
  • connection status of multiple regulating devices can be adjusted to achieve single heating of the passenger compartment, single heating of the battery, or heating of the passenger compartment.
  • the thermal management system when only the battery has a heating requirement, the thermal management system is in the first heating mode.
  • the compressor 1 is turned on, the refrigerant system is in the working state, the refrigerant in the fifth heat exchange part 41 absorbs the temperature of the coolant in the sixth heat exchange part 42, and the refrigerant in the third heat exchange part 21 transfers to the fourth heat exchange part 42.
  • the cooling liquid in the hot part 22 releases heat.
  • the first pump 11 is turned on, and at least one of the second pump 12 and the fourth pump 14 is turned on.
  • the coolant system forms two disconnected coolant circuits through multiple regulating devices.
  • the first pump 11, the sixth heat exchanger 104, the heating device 8 and the sixth heat exchange part 42 are connected to form a circuit
  • the first pump 11, the seventh heat exchanger 103, the heating device 8 And the sixth heat exchange part 42 is connected to form a circuit.
  • Port a of the tenth valve 15 communicates with port b
  • port b of the ninth valve 25 communicates with port c
  • port b of the fifth valve 27 communicates with port c
  • port a of the third valve 28 communicates with port b and port c
  • port a of the fourth valve 29 communicates with port c
  • port a of the first valve 30 communicates with port b.
  • the coolant flowing out from the outlet of the first pump 11 is divided into two paths, one path flows to the sixth heat exchanger 104, and the other path flows to the seventh heat exchanger 103, absorbing heat from the atmosphere respectively, and the heated coolant passes through the sixth heat exchanger 103.
  • the three valves 28 gather together, then flow through the heating device 8 and then flow into the sixth heat exchange part 42 , the temperature of the cooling liquid decreases again, and then flows back to the inlet of the first pump 11 , and thus circulates. If the heat obtained from the sixth heat exchanger 104 and the seventh heat exchanger 103 can meet the demand at the third heat exchanger 4, the heating device 8 can be turned off to reduce energy consumption; otherwise, when the heat cannot be satisfied, the heating device can be turned on 8. Used to replenish heat. In the first coolant circuit, the sixth heat exchanger 104 and the seventh heat exchanger 103 obtain heat from the atmospheric environment at the same time, make full use of the heat of the external environment, reduce the use of the heating device 8, reduce energy consumption, and thus improve battery life
  • the second pump 12 , the fourth heat exchanger 102 , the first heat exchanger 5 , the battery heat exchange device 6 , the fourth pump 14 and the fourth heat exchange part 22 are connected to form a circuit.
  • Port b of the twelfth valve 17 communicates with port c
  • port a of the thirteenth valve 18 communicates with port c
  • port b of the seventh valve 23 communicates with port c
  • port a of the eighth valve 24 communicates with port b.
  • the coolant flowing out from the outlet of the second pump 12 flows through the fourth heat exchanger 102, the first heat exchange part 52, the battery heat exchange device 6, the fourth pump 14, the second heat exchange part 51 and the fourth heat exchange After part 22, return to the inlet of the second pump 12, and so on.
  • the coolant heated in the fourth heat exchange part 22 flows through the fourth heat exchanger 102 and then flows into the first heat exchange part 52.
  • the fourth heat exchanger 102 is used as a pipeline.
  • No heat exchange occurs.
  • the coolant in the first heat exchange portion 52 exchanges heat with the coolant in the second heat exchange portion 51 , and the temperature of the coolant in the first heat exchange portion 52 decreases.
  • the cooling liquid flowing out from the first heat exchanging part 52 flows to the battery heat exchanging device 6 , and the cooling liquid exchanges heat with the battery to realize heating of the battery, and the temperature of the cooling liquid is further reduced.
  • the cooling liquid flowing out from the battery heat exchange device 6 flows through the second heat exchange portion 51 , then flows to the fourth heat exchange portion 22 , and is heated again in the fourth heat exchange portion 22 , thus circulating.
  • the temperature of the cooling liquid flowing out from the fourth heat exchange part 22 is relatively high, and the first heat exchanger 5 protects the battery, preventing the battery from being damaged by the too high temperature cooling liquid.
  • the motor does not work, so the motor has no thermal management requirements.
  • neither the first coolant circuit nor the second coolant circuit flows through the motor heat exchange device 9. In this mode, heat is absorbed from the atmospheric environment to realize heating of the battery, which is more energy-saving.
  • the thermal management system when both the passenger compartment and the battery have heating demands, the thermal management system is in the second heating mode.
  • the refrigerant system in the second heating mode is the same as that in the first heating mode, and reference may be made to related descriptions.
  • the first pump 11 and the third pump 13 are turned on, and at least one of the second pump 12 and the fourth pump 14 is turned on.
  • the coolant system forms three disconnected coolant circuits through multiple regulating devices.
  • the first pump 11 , the sixth heat exchanger 104 , the heating device 8 and the sixth heat exchange part 42 are connected to form a circuit.
  • the third pump 13 , the seventh heat exchanger 103 and the motor heat exchange device 9 are connected to form a circuit.
  • Port a of the tenth valve 15 communicates with port b
  • port b of the ninth valve 25 communicates with port c
  • port a of the sixth valve 26 communicates with port b
  • port a of the fifth valve 27 communicates with port b
  • port a of the third valve 27 communicates with port b.
  • Port a of the valve 28 communicates with port c
  • port a of the fourth valve 29 communicates with port c
  • port b of the first valve 30 communicates with port c
  • port b of the second valve 31 communicates with port c.
  • the cooling liquid flowing out from the outlet of the first pump 11 flows through the sixth heat exchanger 104, the heating device 8 and the sixth heat exchange part 42 in sequence, and then returns to the inlet of the first pump 11 , and so on.
  • the coolant cooled in the sixth heat exchange portion 42 flows into the sixth heat exchanger 104 and absorbs heat from the atmosphere and the seventh heat exchanger 103 , and the temperature of the coolant increases.
  • the cooling liquid flowing out from the sixth heat exchanger 104 flows through the heating device 8 , and then flows to the sixth heat exchanging portion 42 where the temperature of the cooling liquid decreases again, and thus circulates. If the heat obtained from the atmospheric environment and the seventh heat exchanger 103 can meet the demand at the third heat exchanger 4, the heating device 8 can be turned off to reduce energy consumption; otherwise, when it cannot be satisfied, the heating device 8 can be turned on for Replenishing heat.
  • the cooling liquid exchanges heat with the motor, thereby realizing cooling of the motor and increasing the temperature of the cooling liquid.
  • the heated coolant flows to the seventh heat exchanger 103, where heat is released to the atmosphere, and the temperature of the coolant decreases.
  • the cooling after the temperature is lowered flows to the motor heat exchange device 9 again, and the heat of the motor is absorbed again to realize the cooling of the motor, and the cycle is like this. Since the sixth heat exchanger 104 and the seventh heat exchanger 103 are placed side by side, and the seventh heat exchanger 103 is placed on the windward side of the sixth heat exchanger 104, the air in the atmospheric environment will first be mixed with the seventh heat exchanger 103.
  • the coolant in the heat exchanger 104 exchanges heat, the air is heated, and then the heated air flows through the sixth heat exchanger 104, and the coolant in the sixth heat exchanger 104 absorbs the heat in the air.
  • Such setting makes the coolant in the sixth heat exchanger 104 not only obtain heat from the atmosphere, but also obtain heat from the seventh heat exchanger 103, that is, recycle the waste heat of the motor, which can improve the performance of the third heat exchanger 4. Heat exchange capacity, thereby improving the heating effect of the passenger compartment.
  • the reason why the motor heat exchange device 9 and the sixth heat exchange part 42 are respectively connected to two disconnected circuits is: the temperature of the coolant flowing out from the motor heat exchange device 9 and the temperature of the coolant flow out from the sixth heat exchange part 42 If the difference is large, the cooling liquid flowing out from the sixth heat exchanging part 42 directly flows to the motor heat exchanging device 9 will cause damage to the motor, and the temperature of the cooling liquid at the outlet of the motor heat exchanging device 9 is unstable.
  • the second coolant circuit is used to realize the independent heat dissipation of the motor, but the seventh heat exchanger 103 can play the role of preheating the incoming air, which is beneficial for the sixth heat exchanger 104 to absorb air from the outside. more heat.
  • the second pump 12 , the fourth heat exchanger 102 , the first heat exchanger 5 , the battery heat exchange device 6 , the fourth pump 14 and the fourth heat exchange part 22 are connected to form a circuit.
  • Port b of the twelfth valve 17 communicates with port c
  • port a of the thirteenth valve 18 communicates with port c
  • port b of the seventh valve 23 communicates with port c
  • port a of the eighth valve 24 communicates with port b.
  • the coolant flowing out from the outlet of the second pump 12 flows through the fourth heat exchanger 102, the first heat exchange part 52, the battery heat exchange device 6, the fourth pump 14, the second heat exchange part 51 and the fourth heat exchange After part 22, return to the inlet of the second pump 12, and so on.
  • the coolant heated in the fourth heat exchange part 22 flows to the fourth heat exchanger 102, and the coolant in the fourth heat exchanger 102 exchanges heat with the air in the air conditioning box 20, thereby realizing the heating and cooling of the passenger compartment.
  • the temperature of the liquid drops.
  • the coolant flowing out from the fourth heat exchanger 102 flows into the first heat exchange part 52.
  • the coolant in the first heat exchange part 52 is exchanged with the coolant in the second heat exchange part 51.
  • the temperature of the coolant in the first heat exchange portion 52 further decreases due to heat.
  • the cooling liquid flowing out from the first heat exchanging part 52 flows to the battery heat exchanging device 6 , and the cooling liquid exchanges heat with the battery to realize battery heating, and the temperature of the cooling liquid decreases again.
  • the cooling liquid flowing out from the battery heat exchange device 6 flows through the second heat exchange portion 51 , then flows to the fourth heat exchange portion 22 , and is heated again in the fourth heat exchange portion 22 , thus circulating.
  • the first heat exchanger 5 protects the battery and prevents the battery from being damaged by too high temperature cooling liquid.
  • the seventh valve 23 can be switched so that port a communicates with port b and port c, and part of the coolant flowing out of the fourth heat exchanger 102 flows directly to the fourth heat exchange part 22, while the other part is cooled
  • the liquid flows to the battery heat exchange device 6 and then flows to the fourth heat exchange part 22 .
  • the temperature of the cooling liquid at the inlet of the fourth heat exchange part 22 can be increased to ensure the temperature of the outlet of the fourth heat exchange part 22.
  • the coolant temperature is high enough to ensure the heating effect of the passenger compartment.
  • the thermal management system when only the passenger compartment has a heating demand, the thermal management system is in the third heating mode.
  • the refrigerant system in the third heating mode is the same as the refrigerant system in the first heating mode, and reference may be made to related descriptions.
  • the coolant system in the third heating mode is roughly the same as the coolant system in the first heating mode.
  • the coolant system forms two disconnected coolant circuits through multiple adjustment devices.
  • port a of the seventh valve 23 communicates with port c.
  • the second pump 12 , the fourth heat exchanger 102 and the fourth heat exchange part 22 are connected to form a circuit.
  • the coolant heated by the fourth heat exchange part 22 flows into the fourth heat exchanger 102, and the coolant exchanges heat with the air in the air-conditioning box 20 to realize the heating of the passenger compartment.
  • the cooled The cooling liquid flows into the fourth heat exchange part 22 to be heated again, and thus circulates.
  • the motor and the battery do not require thermal management, and the communication mode of the first cooling liquid circuit in this mode is the same as that of the first cooling liquid circuit in the first heating mode, through the sixth heat exchange
  • the heat exchanger 104 and the seventh heat exchanger 103 absorb heat from the atmosphere.
  • the twelfth valve 17 can be switched so that port a communicates with port b , the thirteenth valve 18 is switched to communicate with port a and port b, the fourteenth valve 19 is switched to communicate with port a and port b, the fifteenth valve 20 is switched to communicate with port a and port c, and the ninth valve 25 is switched to communicate with port a communicates with port c, the sixth valve 26 is switched to communicate with port a and port c, the fifth valve 27 is switched to communicate with port a and port b, the third valve 28 is switched to communicate with port b and port c, and the fourth valve 29 is switched to In order for port a to communicate with port c, the first valve 30 is switched to communicate with port b and port c, and the second valve 31 is switched to communicate with port a and port b.
  • the coolant flowing out from the outlet of the second pump 12 sequentially flows through the sixth heat exchanger 104, the seventh heat exchanger 103, the motor heat exchange device 9, the third pump 13, the first heat exchange part 52, and the battery heat exchange device 6.
  • the cooling liquid cooled in the fourth heat exchange part 22 first absorbs heat from the atmosphere, and then absorbs heat from the motor and the battery in turn. Make full use of the ambient heat of the atmosphere, and recycle the waste heat of the motor and battery.
  • the fourteenth valve 19 can also be switched to communicate with port a, port b and port c, and the fifteenth valve 20 can be switched to communicate with port a, port b and port c, or the fourteenth valve 19 can be switched to Port a communicates with port c, and the fifteenth valve 20 is switched so that port a communicates with port b.
  • the higher temperature coolant flowing out from the second heat exchange part 51 flows through the fifth heat exchanger 101. Since the fifth heat exchanger 101 is arranged on the windward side of the fourth heat exchanger 102, the fifth heat exchanger 101 It can be used to preheat the air in the air conditioning box 20 to improve the heating effect.
  • the thermal management system is in the heating and dehumidification mode, the compressor 1 is turned on, the refrigerant system is in the working state, the refrigerant in the fifth heat exchange part 41 absorbs the temperature of the coolant in the sixth heat exchange part 42, and the third heat exchange part The refrigerant in 21 releases heat to the cooling liquid in the fourth heat exchange part 22 .
  • the first pump 11 and the second pump 12 are turned on, and the third pump 13 and the fourth pump 14 can be turned on selectively.
  • the coolant system forms two disconnected coolant circuits through multiple regulating devices.
  • the first pump 11, the sixth heat exchanger 104, the seventh heat exchanger 103, the motor heat exchange device 9, the third pump 13, the first heat exchanger 5, and the battery heat exchange device 6 , the fourth pump 14 , the heating device 8 and the sixth heat exchange part 42 are connected to form a circuit, and the first pump 11 , the fifth heat exchanger 101 , the heating device 8 and the sixth heat exchange part 42 are connected to form a circuit.
  • Port a of the tenth valve 15 communicates with port b and port c
  • port a of the eleventh valve 16 communicates with port b
  • port a of the twelfth valve 17 communicates with port b
  • port a of the thirteenth valve 18 communicates with port b.
  • Port b communicates with port b
  • port a of the fourteenth valve 19 communicates with port b
  • port a of the fifteenth valve 20 communicates with port b and port c
  • port a of the ninth valve 25 communicates with port c
  • port a of the sixth valve 26 communicates with port b.
  • Port a communicates with port c
  • port a of the fifth valve 27 communicates with port b
  • port b of the third valve 28 communicates with port c
  • port a of the fourth valve 29 communicates with port c
  • port b of the first valve 30 communicates. It communicates with port c
  • port a of the second valve 31 communicates with port b.
  • the coolant flowing out from the outlet of the first pump 11 is divided into two paths, one path flows to the fifth heat exchanger 101, and the fifth heat exchanger 101 exchanges heat with the air in the air-conditioning box 20 to achieve the purpose of dehumidification.
  • the other path flows through the sixth heat exchanger 104, the seventh heat exchanger 103, the motor heat exchange device 9, the third pump 13, the first heat exchange part 52, the battery heat exchange device 6, the fourth pump 14 and the second
  • the heat exchange part 51 absorbs heat from the atmosphere through the sixth heat exchanger 104 and the seventh heat exchanger 103, and flows through the motor heat exchange device 9 and the battery heat exchange device 6 to recover the waste heat of the motor and battery.
  • the cooling liquid flowing out from the fifth heat exchanger 101 and the cooling liquid flowing out from the second heat exchanging part 51 After passing through the heating device 8 and the sixth heat exchanging part 42, they flow back to the inlet of the first pump 11, so Circular flow.
  • the third pump 13 and the fourth pump 14 can be switched on or off, and the heating device 8 can be switched on or off.
  • the second pump 12 , the fourth heat exchanger 102 and the fourth heat exchange part 22 are connected to form a circuit.
  • the port a of the seventh valve 23 communicates with the port c
  • the port a of the eighth valve 24 communicates with the port b.
  • the coolant heated by the fourth heat exchange part 22 flows into the fourth heat exchanger 102, and the coolant exchanges heat with the air in the air-conditioning box 20 to realize the heating of the passenger compartment. After passing through the fourth heat exchanger 102, the cooled The cooling liquid flows into the fourth heat exchange part 22 to be heated again, and thus circulates.
  • the fifth heat exchanger 101 and the fourth heat exchanger 102 are arranged side by side, and the fourth heat exchanger 102 is located on the downwind side of the fifth heat exchanger 101.
  • moisture in the air is precipitated when it is cooled, and the air passing through the fifth heat exchanger 101 is dried.
  • the dried air exchanges heat with the fourth heat exchanger 102 again, the air is heated, and under the guidance of the fan, the heated dry air is blown into the passenger compartment, thereby realizing the heating and dehumidification function of the passenger compartment.
  • the states of multiple regulating devices can be switched, referring to Figure 6 and Figure 8, so that the cooling water flowing out from the outlet of the first pump 11
  • the liquid is divided into two paths, one path flows to the fifth heat exchanger 101, the other path flows to the sixth heat exchanger 104, and then flows through the heating device 8 and the sixth heat exchanging part 42 after converging, and returns to the inlet of the first pump 11. So cycle.
  • the third pump 13 , the motor heat exchange device 9 and the seventh heat exchanger 103 are connected to form a circuit, the waste heat of the motor is released into the air through the seventh heat exchanger 103 , and then recycled through the sixth heat exchanger 104 .
  • the states of multiple regulating devices can be switched, referring to Fig. 5 and Fig. 8, so that the coolant flowing out from the outlet of the first pump 11 It is divided into two paths, one path flows to the fifth heat exchanger 101 to realize the dehumidification of the passenger cabin; the other path flows again to the sixth heat exchanger 104 and the seventh heat exchanger 103 to absorb heat from the atmospheric environment, and then gathers the rear flow After passing through the heating device 8 and the sixth heat exchange part 42, it returns to the inlet of the first pump 11 and circulates like this.
  • the sixth heat exchanger 104 and the seventh heat exchanger 103 may have The phenomenon of frosting occurs.
  • it is necessary to run the defrosting mode which is used to delay the frosting of the sixth heat exchanger 104 and the seventh heat exchanger 103, or to give the sixth heat exchanger 104 and the seventh heat exchanger 103 defrost.
  • the thermal management system is in the defrosting mode. Referring to FIG. 9, the compressor 1 is turned on, the refrigerant system is in the working state, and the refrigerant in the fifth heat exchange part 41 absorbs the temperature of the coolant in the sixth heat exchange part 42. , the refrigerant in the third heat exchange portion 21 releases heat to the coolant in the fourth heat exchange portion 22 .
  • the first pump 11 , the second pump 12 and the third pump 13 are turned on, and the fourth pump 14 can be turned on selectively.
  • the coolant system forms three disconnected coolant circuits through multiple regulating devices.
  • the second pump 12 , the fourth heat exchanger 102 and the fourth heat exchange part 22 are connected to form a circuit.
  • the port a of the seventh valve 23 communicates with the port c
  • the port a of the eighth valve 24 communicates with the port b.
  • the coolant heated by the fourth heat exchange part 22 flows into the fourth heat exchanger 102, and the coolant exchanges heat with the air in the air-conditioning box 20 to realize the heating of the passenger compartment. After passing through the fourth heat exchanger 102, the cooled The cooling liquid flows into the fourth heat exchange part 22 to be heated again, and thus circulates.
  • the first pump 11 , the first heat exchanger 5 , the battery heat exchange device 6 , the fourth pump 14 , the heating device 8 and the sixth heat exchange part 42 are connected to form a circuit.
  • Port a of the tenth valve 15 communicates with port c
  • port a of the eleventh valve 16 communicates with port c
  • port a of the thirteenth valve 18 communicates with port b
  • port a of the fourteenth valve 19 communicates with port b
  • port a of the fifteenth valve 20 communicates with port c
  • port a of the ninth valve 25 communicates with port c.
  • the first heat exchanger 5 protects the battery, and according to the state of the system, the heating device 8 can be turned on to replenish heat.
  • the third pump 13, the sixth heat exchanger 104 and the motor heat exchange device 9 are connected to form a circuit, and the third pump 13, the seventh heat exchanger 103 and the motor heat exchange device 9 are connected to form a circuit .
  • Port a of the sixth valve 26 communicates with port b
  • port a of the fifth valve 27 communicates with port b and port c
  • port b of the third valve 28 communicates with port c
  • port a of the fourth valve 29 communicates with port c
  • port a of the first valve 30 communicates with port b and port c
  • port b of the second valve 31 communicates with port c.
  • the coolant exchanges heat with the motor, and the temperature of the coolant increases.
  • the heated cooling liquid flows to the sixth heat exchanger 104 and the seventh heat exchanger 103 respectively, so as to realize the defrosting of the sixth heat exchanger 104 and the seventh heat exchanger 103 and reduce the temperature of the cooling liquid.
  • the cooling after the temperature drops flows to the motor heat exchange device 9 again to absorb the heat of the motor again, and so on. Use the heat of the motor to defrost, realize the effective use of waste heat, reduce energy consumption, and thus improve battery life.
  • the connection state of the first valve 30 can be switched, and the defrosting of the sixth heat exchanger 104 can be realized firstly, and then the defrosting of the seventh heat exchanger 103 can be realized separately; or The defrosting of the seventh heat exchanger 103 is realized firstly, and then the defrosting of the sixth heat exchanger 104 is realized independently, so as to improve the efficiency of defrosting.
  • connection between two parts in this application can be a direct connection or a pipeline connection. There can only be a pipeline between the two components, or there can be a pipeline in addition to the pipeline between the two components. valves or other components. Similarly, the "communication" between two components in this application may be direct communication, or communication through pipelines, and there may be only pipeline communication between the two components, or there may be an additional connection between the two components. There are valves or other components in communication.
  • the present application also provides a control method of the thermal management system.
  • the control method in the present application is applied to the thermal management system of the above embodiment.
  • the thermal management system also includes a control system, which can be used to control the working state and cooling of the refrigerant system. The working state of the liquid system is controlled.
  • the control system includes a controller 301 and a plurality of sensors, and the plurality of sensors can be used to obtain And the working information of the battery, optionally, the working information includes temperature.
  • the controller 301 is electrically connected with components such as the compressor 1 , the throttling device 3 , the fan in the air-conditioning box 20 , the fan device at the intake grille, multiple fluid drive devices, multiple regulating devices, and multiple sensors.
  • the controller 301 can be used to acquire the working information obtained by the sensor.
  • the controller 301 can be used to adjust the working state of the compressor 1, the throttling device 3, the fan in the air-conditioning box 20, the fan device at the air intake grille, multiple fluid drive devices, and multiple regulating devices.
  • the adjustment includes at least one of an opening component, a closing component, a rotational speed adjustment, an opening adjustment, and a power adjustment.
  • the controller 301 can be used to execute the control method of the thermal management system.
  • the control method of the thermal management system includes: obtaining the passenger's demand and the working information obtained from the sensor; according to the passenger's demand and the working information obtained from the sensor, the controller 301 adjusts the working state of each component in the thermal management system, so that the thermal The management system implements the appropriate operating mode of the air conditioning, thereby achieving thermal management of the passenger compartment, electric motor and battery.
  • the thermal management system also includes an interactive device, the controller 301 is electrically connected to the interactive device, and the controller 301 can obtain passengers' requirements through the interactive device, such as the target temperature or operating mode required by the passengers.
  • the interactive device may be a control panel of an electric vehicle.
  • the air conditioner operation modes include a first cooling mode, a second cooling mode, a third cooling mode, a first heating mode, a second heating mode, a third heating mode, a heating and dehumidification mode, and a defrosting mode.
  • the connection status of the thermal management system in the above working mode can refer to the previous description, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请公开了一种热管理系统,第一流道部中的制冷剂与第二流道部中的冷却液热交换,第二流道部的出口能够与第一换热部的入口连通,第一换热部的出口能够与电池换热装置的入口连通,电池换热装置的出口能够与第二换热部的入口连通,第二换热部的出口能够与第二流道部的入口连通,且第一换热部中的冷却液能够与第二换热部中的冷却液热交换。通过第一换热器提升或降低流入电池换热装置的冷却液的温度,降低冷却液对电池造成冷冲击或热冲击的可能性,从而实现保护电池的目的。本申请还公开了一种热管理系统的控制方法。

Description

热管理系统及其控制方法
本申请要求了申请日均为2021年8月26日,申请号为202110989914.5、发明创造名称为“热管理系统及其控制方法”,和申请号为202110988150.8、发明创造名称为“热管理系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及热交换技术领域,尤其涉及一种热管理系统及其控制方法。
背景技术
车辆(例如电动汽车)的热管理统可以对乘客舱内环境温度进行调节和对电池进行热管理,热管理系统包括制冷剂系统和冷却液系统,制冷剂系统中的制冷剂与冷却液系统中的冷却液通过双流道换热器进行热交换,从双流道换热器流出的冷却液分别流入电池换热装置和风冷换热器,电池换热装置调节电池的温度,风冷换热器调节乘客舱的温度。
相关热管理系统中,电池需要热管理时,与制冷剂换热后的冷却液直接流向电池换热装置,从双流道换热器流出的冷却液温度较高或较低,高温或低温的冷却液直接流入电池换热装置与电池换热,由于温差较大,对电池造成热冲击或冷冲击,会对电池造成伤害。
发明内容
鉴于相关技术存在的上述问题,本申请提供了一种能保护电池的热管理系统及其控制方法。
为了达到上述目的,本申请提供以下技术方案:一种热管理系统,其包括多流道换热器,所述多流道换热器包括第一流道部和第二流道部,所述第一流道部能够与所述第二流道部热交换;所述热管理系统包括制冷剂系统和冷却液系统,所述制冷剂系统和所述冷却液系统不连通,所述制冷剂系统包括所述第一流道部;所述冷却液系统包括所述第二流道部、第一换热器以及电池换热装置,所述第一换热器包括第一换热部和第二换热部,所述第一换热部和所述第二换热部在所述第一换热器中不连通;所述第二流道部的出口能够与所述第一换热部的入口连通,所述第一换热部的出口能够与所述电池换热装置的入口连通,所述电池换热装置的出口能够与所述第二换热部的入口连通,所述第二换热部的出口能够与所述第二流道部的入口连通,所述第一换热部能够与所述第二换热部热交换。
本申请的热管理系统,通过第一换热器提升或降低流入电池换热装置的冷却液的温度,降低冷却液对电池造成冷冲击或热冲击的可能性,从而实现保护电池的目的。
为了达到上述目的,本申请还提供以下技术方案:一种热管理系统的控制方法,所述热管理系统包括制冷剂系统、冷却液系统以及控制系统,所述制冷剂系统和所述冷却液系统不连通,所述控制系统包括控制器,所述控制器用于 执行所述热管理系统的控制方法,从而控制所述热管理系统的工作状态;所述热管理系统包括多流道换热器,所述多流道换热器包括第一流道部和第二流道部;所述制冷剂系统包括第一流道部,所述冷却液系统包括第二流道部、第一换热器、电池换热装置以及流体驱动装置,所述第一换热器包括第一换热部和第二换热部,所述第一换热部和所述第二换热部在所述第一换热器中不连通;
所述热管理系统的控制方法包括:所述控制器控制所述热管理系统进入一种工作模式,在该工作模式下,所述第一流道部中的制冷剂与所述第二流道部中的冷却液热交换,所述流体驱动装置、所述第二流道部、所述第一换热器以及电池换热装置连通成回路,所述流体驱动装置启动且用于提供冷却液的流动的动力,所述第二流道部的出口与所述第一换热部的入口连通,所述第一换热部的出口与所述电池换热装置的入口连通,所述电池换热装置的出口与所述第二换热部的入口连通,所述第二换热部的出口与所述第二流道部的入口连通,所述第一换热部中的冷却液与所述第二换热部中的冷却液进行热交换。
本申请的热管理系统的控制方法中,所述控制器控制所述热管理系统进入第一工作状态,在第一工作状态下,通过第一换热器提升或降低流入电池换热装置的冷却液的温度,降低冷却液对电池造成冷冲击或热冲击的可能性,从而实现保护电池的目的。
附图说明
图1是本申请的热管理系统一实施例的连接示意图;
图2是本申请的热管理系统一实施例的第一制冷模式的连接示意图;
图3是本申请的热管理系统一实施例的第二制冷模式的连接示意图;
图4是本申请的热管理系统一实施例的第三制冷模式的连接示意图;
图5是本申请的热管理系统一实施例的第一制热模式的连接示意图;
图6是本申请的热管理系统一实施例的第二制热模式的连接示意图;
图7是本申请的热管理系统一实施例的第三制热模式的连接示意图;
图8是本申请的热管理系统一实施例的制热除湿模式的连接示意图;
图9是本申请的热管理系统一实施例的化霜模式的连接示意图;
图10是本申请的平行流式液冷换热器的一实施例的部分透视示意图;
图11是本申请的气液分离装置的一实施例的剖切结构示意图。
具体实施方式
下面结合附图,对本申请示例型实施例的热管理系统进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互补充或相互组合。
根据本申请的热管理系统一个具体实施例,如图1所示,热管理系统包括第一换热器5、第二换热器2以及第三换热器4。第一换热器5包括第一换热部52和第二换热部51,第一换热部52和第二换热部51能够进行热交换,第一换热部52和第二换热部51均设置有流道,第一换热部52的流道和第二换热部51的流道相互隔离不连通。一个回路中的某一段的冷却液可以通过第一换热器5 与同一回路中的另一段的冷却液进行热交换。第二换热器2包括第三换热部21和第四换热部22,第三换热部21和第四换热部22能够进行热交换,第三换热部21和第四换热部22均设置有流道,第三换热部21的流道和第四换热部22的流道相互隔离不连通。制冷剂通过第二换热器2可以与冷却液进行热交换。第三换热器4包括第五换热部41和第六换热部42,第五换热部41和第六换热部42能够进行热交换,第五换热部41和第六换热部42均设置有流道,第五换热部41的流道和第六换热部42的流道相互隔离不连通。制冷剂可以通过第三换热器4与冷却液进行热交换。第二换热器2、第三换热器4以及第一换热器5可以是板式换热器、套管式换热器、平行流的液冷换热器或其他液冷换热器中的一种,第二换热器2、第三换热器4以及第一换热器5可以相同,也可以不同。
当制冷剂采用高压冷媒时(例如CO2冷媒),第二换热器2和第三换热器4均选取平行流换热器,相对板式换热器,平行流换热器耐压能力更强,爆破风险更低。参照图10,平行流换热器包括若干并列排布的微通道扁管100、连接于微通道扁管100一端的第一集流件200、连接于微通道扁管100另一端的第二集流件300以及包围在微通道扁管100外且位于两集流件之间的外壳400。制冷剂可以从一侧第一集流件200的一腔体流入再经过一部分微通道扁管100流动至另一侧的第二集流件300,再经过另一部分微通道扁管100后从第一集流件200的另一腔体流出,冷却液在外壳400形成的腔体内与微通道扁管100之间的间隙中流动,从而实现制冷剂和冷却液的热量交换。由于冷却液的循环压力较低,第一换热器5可选取板式换热器或套管式换热器,板式换热器和套管式换热器的结构为本领域技术人员所熟知,本申请不再赘述。
热管理系统的各个组件通过管路连接形成两大系统,分别是制冷剂系统和冷却液系统,制冷剂系统和冷却液系统相互隔离不连通。制冷剂系统中流通制冷剂,冷却液系统流通冷却液,制冷剂可以是R134A或二氧化碳或其它换热介质,冷却液可以是乙醇和水的混合溶液或其他冷却介质。其中,第五换热部41的流道和第三换热部21的流道连接于制冷剂系统,第六换热部42的流道、第四换热部22的流道、第一换热部52的流道以及第二换热部51的流道连接于冷却液系统。
需要解释的是,这里的“第五换热部41的流道和第三换热部21的流道连接于制冷剂系统”指,制冷剂系统包括第五换热部41和第三换热部21,制冷剂系统中的制冷剂能够流入以及流出第五换热部41的流道和第三换热部21的流道,第五换热部41的进出口和第三换热部21的进出口能通过管路与制冷剂系统中的其他部件连接,在热管理系统工作时通过管路连通后形成回路。同样的道理,第六换热部42的流道、第四换热部22的流道、第一换热部52的流道以及第二换热部51的流道连接于冷却液系统,参考上述解释。
热管理系统包括多流道换热器,多流道换热器包括第一流道部和第二流道部,第一流道部与第二流道部相互隔离不连通。其中,第一流道部的流道连接于制冷剂系统,第二流道部的流道连接于冷却液系统,热管理系统运行时,第一流道部中的制冷剂与第二流道部中的冷却液热交换。可以理解的是,本申请中,多流道换热器为第二换热器2和第三换热器4中的一个,相对应的,第一 流道部为第三换热部21和第五换热部41中的一个,第二流道部为第四换热部22和第六换热部42中的一个。
制冷剂系统包括:压缩机1、节流装置3、第五换热部41以及第三换热部21,上述部件与部件之间可以通过管路或阀件间接连接,也可以集成后为一体结构。
在一些其他实施例中,制冷剂系统还设有气液分离装置10。参照图11,气液分离装置10包括内筒201、外筒202、气液分离组件203和换热组件204,气液分离组件203至少部分位于内筒201的内腔中,换热组件204至少部分位于内筒201与外筒202形成的夹层腔中。气液分离装置10包括第一进口205、第二进口207、第一出口206以及第二出口208。气液分离组件203用于对第一进口205流入的制冷剂进行气液分离,气液分离后的液态制冷剂储存在内筒201中,气态制冷剂流入夹层腔中与换热组件204换热后从第一出口206流出气液分离装置10。第二进口207为换热组件204的入口,第二出口208为换热组件204的出口,换热组件204的内腔中流通制冷剂。在制冷剂系统中,压缩机1的出口与第三换热部21的入口连接,第三换热部21的出口与第二进口207连接,第二出口208与节流装置3的入口连接,节流装置3的出口与第五换热部41的进口连接,第五换热部41的出口与第一进口205连接,第一出口206与压缩机1的入口连接。由此可知,换热组件204中流通高温制冷剂,从第一进口205流入的制冷剂为低温制冷剂。气液分离装置10具有气液分离器和中间换热器的功能。在一些其他实施例中,制冷剂系统设有气液分离器和中间换热器,气液分离器和中间换热器为各自独立的部件,通过管路与其他部件连接,气液分离器和中间换热器的结构和工作原理为本领域技术人员所熟知,本申请不再赘述。
本实施例中,压缩机1开启后,制冷剂在制冷剂系统中循环流动,热管理系统的工况切换时,制冷剂系统的制冷剂流向不切换,制冷剂的流动顺序为压缩机1的出口、第三换热部21、第二进口207、第二出口208、节流装置3、第五换热部41、第一进口205、第一出口206、压缩机1的进口。节流装置3可以对制冷剂进行节流,可选的,节流装置3为电子膨胀阀或热力膨胀阀。
冷却液系统包括第六换热部42、第四换热部22、第一换热器5、第五换热器101、第四换热器102、第六换热器104、第七换热器103、电池换热装置6、电机换热装置9、加热装置8、多个流体驱动装置以及多个调节装置,上述部件与部件之间可以通过管路或阀件间接连接,也可以集成后为一体结构。
多个流体驱动装置包括第一泵11、第二泵12以及第三泵13,用于为冷却液系统中的冷却液的流动提供动力。可选的,第一泵11、第二泵12以及第三泵13为电子水泵,第一泵11、第二泵12以及第三泵13的类型和规格可以相同,也可以不同,根据热管理系统的需求进行选择。
电池换热装置6用于对电池进行热管理。可选的,电池换热装置6可以是与电池为一体结构的集成部件,也可以是独立的部件然后与电池装配在一起。电机换热装置9用于对电机进行热管理。可选的,电机换热装置9可以是与电机为一体结构的集成部件,也可以是独立的部件然后与电机装配在一起。加热装置8用于加热冷却液,本实施例中,加热装置8连接于第六换热部42的入口 前,使被加热装置8加热后的冷却液优先经过第六换热部42,充分利用加热装置8的加热效果。可选的,加热装置8为液冷型的PTC电加热器。
第一换热部52的出口与电池换热装置6的入口连接,电池换热装置6的出口与第二换热部51的入口连接。热管理系统运行时,在第一换热器5中,流入电池换热装置6之前的冷却液与流出电池换热装置6后的冷却液热交换。利用电池本身的蓄热能力或者产生的热量,提升或降低流入电池换热装置6之前的冷却液的温度,不需要增加额外的加热器或低温水箱,简单而有效的实现保护电池的目的。
另外,由于电池体积较大,比热容较大,流经电池换热装置6后的冷却液的温度受电池的温度的影响较大,流出电池换热装置6的冷却液的温度会相对较高或较低。如果流入第一换热部52的冷却液为温度较低的冷却液,第一换热器5用于提升流入电池换热装置6的冷却液的温度,以及降低流出电池换热装置6后的冷却液的温度,改善低温冷却液对电池造成冷冲击的现象,且改善流出电池换热装置6后的冷却液温度过高的现象。如果流入第一换热部52的冷却液为温度较高的冷却液,第一换热器5用于降低流入电池换热装置6的冷却液的温度,以及提升流出电池换热装置6后的冷却液的温度,改善高温冷却液对电池造成热冲击的现象,且改善流出电池换热装置6后的冷却液温度过低的现象。总言之,第一换热器5可用于对电池进行保护,降低冷却液对电池的冷热冲击伤害,还用于降低电池对冷却液温度的影响。
可选的,可在电池换热装置6的入口和第一换热部52的出口之间,或电池换热装置6的出口和第二换热部51的入口之间设置第四泵14,确保冷却液流动的动力充足。可选的,第四泵14为电子水泵。
多个调节装置包括第十阀15、第十一阀16、第十二阀17、第十三阀18、第十四阀19、第十五阀20、第七阀23、第八阀24、第九阀25、第六阀26、第五阀27、第三阀28、第四阀29、第一阀30以及第二阀31。可通过对多个调节装置的工作状态的调节,使冷却液系统形成至少两个互相不连通的冷却液回路。本实施例中,上述调节装置均为三通阀,每个调节装置均至少具有端口a、端口b以及端口c,调节装置处于工作状态时,端口a、端口b以及端口c中的至少两个连通。可选的,调节装置为三通比例阀。
在一些其他实施例中,上述调节装置可以根据其功能替换其他类型的阀件或其他类型阀件的组合,例如单向阀、截止阀或者其组合等。
第一泵11的出口与第十阀15的端口a连接,第十阀15的端口b与第六换热器104的第一端口、第一阀30的端口a以及第八阀24的端口c连接,第十阀15的端口c与第十一阀16的端口a连接。第十阀15用于对第一泵11流出的冷却液的流向进行调节。
第二泵12的出口与第八阀24的端口b连接,第八阀24的端口a与第四换热器102的入口连接,第八阀24的端口c与第十阀15的端口b、第一阀30的端口a以及第六换热器104的第一端口连接。第八阀24用于对第二泵12流出的冷却液的流向进行调节。
第三泵13的出口与第六阀26的端口a连接,第六阀26的端口b与第二阀 31的端口c连接,第六阀26的端口c与第十二阀17的端口a以及第四阀29的端口b连接。第六阀26用于对第三泵13流出的冷却液的流向进行调节。
第十一阀16的端口b与第五换热器101的入口、第十四阀19的端口c连接,第十一阀16的端口c与第一换热部52的入口、第十二阀17的端口b连接。第十一阀16用于对第十阀15的端口c流出的冷却液的流向进行调节。
第十二阀17的端口a与第六阀26的端口c、第四阀29的端口b连接,第十二阀17的端口b与第一换热部52的入口、第十一阀16的端口c连接,第十二阀17的端口c与第七阀23的端口b连接。通过第十一阀16和第十二阀17可控制是否有冷却液流入第一换热部52,以及选择流入第一换热部52的冷却液来自第六换热部42的出口还是来自第四换热部22的出口。
第十三阀18的端口a与第二换热部51的出口连接,第十三阀18的端口b与第十四阀19的端口a连接,第十三阀18的端口c与第四换热部22的入口、第七阀23的端口a连接。通过第十三阀18可以对流出第二换热部51的冷却液的流向进行调节,可以选择流向第六换热部42的入口或流向第四换热部22的入口。
第十四阀19的端口a与第十三阀18的端口b连接,第十四阀19的端口b与第十五阀20的端口c连接,第十四阀19的端口c与第五换热器101的入口、第十阀15的端口b连接。第十五阀20的端口b与第五换热器101的出口连接,第十五阀20的端口a与第九阀25的端口a连接。通过第十一阀16、第十四阀19以及第十五阀20可控制是否有冷却液流入第五换热器101,以及选择流入第五换热器101的冷却液的来源。
第七阀23的端口a与第十三阀18的端口c、第四换热部22的入口连接,第七阀23的端口b与第十二阀17的端口c连接,第七阀23的端口c与第四换热器102的出口连接。通过第七阀23和第八阀24可控制是否有冷却液流入第四换热器102,以及控制流出第四换热器102的冷却液是全部流入第四换热部22,还是分流后一部分直接流入第四换热部22,另一部分流经电池换热装置6后流入第四换热部22。
第九阀25的端口c与加热装置8的入口连接,加热装置8的出口与第六换热部42的入口连接,第九阀25的端口a与第十五阀20的端口a连接,第九阀25的端口b与第三阀28的端口a连接。通过第九阀25控制是否有冷却液流入第六换热部42,以及选择流入第六换热部42的冷却液的来源。
第五阀27的端口a与电机换热装置9的入口连接,电机换热装置9的出口与第三泵13的入口连接,第五阀27的端口b与第四阀29的端口a连接,第五阀27的端口c与第三阀28的端口b、第二阀31的端口a连接。第三阀28的端口a与第九阀25的端口b连接,第三阀28的端口c与第六换热器104的第二端口连接。第四阀29的端口b与第六阀26的端口c、第十二阀17的端口a连接,第四阀29的端口c与第七换热器103的第二端口连接。第一阀30的端口a与第六换热器104的第一端口、第十阀15的端口b、第八阀24的端口c连接,第一阀30的端口b与第七换热器103的第一端口连接,第十四端口c与第二阀31的端口b连接。第二阀31的端口c与第六阀26的端口b连接。
通过第六阀26和第五阀27可控制是否有冷却液流入电机换热装置9,以及选择流入电机换热装置9的冷却液的来源。通过第五阀27、第三阀28、第四阀29、第一阀30以及第二阀31可控制第六换热器104与第七换热器103在系统中的应用方式。例如,可控制流经第六换热器104的冷却液与流经第七换热器103的冷却液来自同一回路,或者分别来自不同回路;还可控制第六换热器104与第七换热器103的连通方式是串联,或是并联;以及控制第六换热器104、第七换热器103以及电机换热装置9之间的连通方式。
本申请实施例提供的热管理系统可应用于电动汽车,电动汽车具有与乘客舱内空气换热的空调箱20,第五换热器101和第四换热器102设置于空调箱20内,第五换热器101和第四换热器102用于与空调箱20中的空气热交换,用于调节乘客舱的温度。第四换热器102相对第五换热器101位于空气流的下游侧,空调箱20内设有风机,用于引导空调箱20内的空气的流动。第六换热器104和第七换热器103设置于汽车前进气格栅附近,第六换热器104和第七换热器103用于与大气环境热交换,用于向大气环境中释放热量或从大气环境中吸收热量。第六换热器104相对第七换热器103位于空气流的下游侧,设有风扇装置用于引导空气的流动。压缩机1和气液分离装置7设置于驾驶室的前方机腔内。
第四换热器102、第五换热器101、第六换热器104以及第七换热器103均为风冷换热器,均用于与空气进行热交换,风冷换热器的结构为本领域技术人员所熟知,本申请不再赘述。
本实施例的热管理系统具有多种工作模式,包括制热模式、制冷模式、制热除湿模式、电池预热模式、电池冷却模式以及化霜模式等。在所有工作模式中,第二换热器2用作冷凝器,第三换热器4用作蒸发器。第五换热器101用作冷风芯体,可降低进入乘客舱的空气的温度,第四换热器102用作暖风芯体,可升高进入乘客舱的空气的温度。
本实施例的热管理系统不仅适用于车辆,还适用于其他需要热管理的换热系统,为便于描述,本申请的说明书以应用于车辆为例进行说明。
如图2至图4所示,当环境温度较高的情况下,根据乘客舱和电池是否有冷却需求,可调节多个调节装置的连通状态,实现乘客舱单冷、电池单冷或乘客舱与电池同时冷却的功能。
参照图2,当仅电池有冷却需求时,热管理系统处于第一制冷模式。压缩机1开启,制冷剂系统处于工作状态,第五换热部41中的制冷剂吸收第六换热部42中的冷却液的温度,第三换热部21中的制冷剂向第四换热部22中的冷却液释放热量。
冷却液系统中,第一泵11和第四泵14至少一个开启,第二泵12和第三泵13至少一个开启,通过多个调节装置形成两个不相连通的冷却液回路。
第一个冷却液回路中,第一泵11、第四泵14、第一换热器5、电池换热装置6、加热装置8以及第六换热部42连通成回路。第十阀15的端口a与端口c连通,第十一阀16的端口a与端口c连通,第十二阀17的端口a与端口c连通,第十三阀18的端口a与端口b连通,第十四阀19的端口a与端口b连通,第十五阀20的端口a与端口c连通,第九阀25的端口a与端口c连通。从第一泵 11的出口流出的冷却液依次流经第一换热部52、电池换热装置6、第四泵14、第二换热部51、加热装置8以及第六换热部42后,回到第一泵11的入口,如此循环。加热装置8关闭,用作管道。经第六换热部42冷却后的冷却液先流动至第一换热部52,在第一换热器5中,第一换热部52中的冷却液与第二换热部51中的冷却液换热,第一换热部52中冷却液的温度升高。从第一换热部52流出的冷却液流动至电池换热装置6,冷却液与电池换热从而实现电池冷却,流经电池换热装置6后的冷却液的温度进一步升高。升温后的冷却液流经第二换热部51,然后流动至第六换热部42中再次被冷却,如此循环流动。
在第一个冷却液回路中,从第六换热部42流出的冷却液温度较低,第一换热器5对电池进行保护,避免太过低温的冷却液对电池造成伤害。
第二个冷却液回路中,第二泵12、第六换热器104、电机换热装置9、第三泵13、第七换热器103以及第四换热部22连通成回路。第七阀23的端口a与端口b连通,第八阀24的端口b与端口c连通,第六阀26的端口a与端口b连通,第五阀27的端口a与端口c连通,第三阀28的端口b与端口c连通,第四阀29的端口b和端口c连通,第一阀30的端口b和端口c连通,第二阀31的端口b与端口c连通。从第二泵12的出口流出的冷却液依次流经第六换热器104、电机换热装置9、第三泵13、第七换热器103以及第四换热部22后,回到第二泵12的入口,如此循环。在第四换热部22中被加热的冷却液先流动至第六换热器104,与大气环境中换热,冷却液被第一次冷却,冷却后的冷却液流动至电机换热装置9中,与电机换热从而实现电机冷却,流经电机换热装置9后冷却液升温,升温后的冷却液流动至第七换热器103,再次与大气环境换热,冷却液被第二次冷却,再次被冷却后的冷却液流动至第四换热部22中再次被加热,如此循环流动。
在第二个冷却液回路中,通过第七换热器103和第六换热器104对冷却液进行两次冷却,可以确保第二冷却液回路的散热能力。且电机换热装置9连接于第六换热器104和第七换热器103之间,实现热量的分段管理,降低第四换热部22处的热量对电机散热的影响。
相关技术中,第六换热器104与第四换热部22连通成一个回路,第七换热器103与电机换热装置9连通成另一回路,两个回路不连通,第六换热器104释放第四换热部22带来热量,第七换热器103释放电机热量。若第六换热器104的散热能力不足,第二换热器2处的换热能力较差,从而导致电池的冷却效果较差。此时,就算第七换热器103的换热能力有富余,也只能实现电机的充分冷却,第七换热器103的换热能力会造成浪费。本申请的第一制冷模式下,可以充分利用第六换热器104和第七换热器103的换热能力,提升第二换热器2的换热能力,从而确保电池的冷却效果,但不对电机的冷却效果造成影响。
参照图3,当乘客舱和电池均有冷却需求时,热管理系统处于第二制冷模式。第二制冷模式下的制冷剂系统与第一制冷模式下的制冷剂系统相同,第二制冷模式下的冷却液系统与第一制冷模式下的冷却液系统大致相同,冷却液系统通过多个调节装置形成两个不相连通的冷却液回路,相同之处可参考第一制冷模式的相关描述,此处不再赘述。其区别在于:第十一阀16的端口a与端口b以 及端口c连通,第十五阀20的端口a与端口b以及端口c连通。第一个冷却液回路中,第一泵11、第四泵14、第一换热器5、电池换热装置6以及第六换热部42加热装置8连通成回路,且第一泵11、第五换热器101、加热装置8以及第六换热部42连通成回路。
从第一泵11的出口流出的冷却液通过第十一阀16分为两路,一路流向电池换热装置6实现电池冷却,冷却液升温;另一路流向第五换热器101,与空调箱20的空气换热从而实现乘客舱的制冷,冷却液升温。两路升温后的冷却液通过第十五阀20汇集后,再次流动至第六换热部42被冷却,如此循环流动。
为保证乘客舱的制冷效果,第六换热部42的出口冷却液温度相对较低,若未设置第一换热器5,电池换热装置6的入口直接与第六换热部42的出口连通,一方面,冷却液温度过低会对电池造成伤害,另一方面,由于电池的体积较大,电池换热装置6与电池换热后,从电池换热装置6流出的冷却液的温度相对较高,会使得第六换热部42的入口冷却液温度较高,第三换热器4的换热能力一定,无法确保再次从第六换热部42的出口冷却液温度足够的低,从而会影响乘客舱的制冷效果。
本实施例中,在电池换热装置6的入口前和出口后设置第一换热器5,提升流入电池换热装置6前的冷却液的温度,对电池进行保护,同时降低从电池换热装置6流出后的冷却液的温度,可以确保第六换热部42的出口冷却液温度可以足够的低,从而确保乘客舱的制冷效果。
参照图4,当仅乘客舱有冷却需求时,热管理系统处于第三制冷模式。第三制冷模式下的制冷剂系统与第一制冷模式下的制冷剂系统相同,第三制冷模式下的冷却液系统与第一制冷模式下的冷却液系统大致相同,冷却液系统通过多个调节装置形成两个不相连通的冷却液回路,相同之处可参考第一制冷模式的相关描述,此处不再赘述。其区别在于:第十一阀16的端口a与端口b连通,第十五阀20的端口a与端口b连通,通过第十三阀18和第十四阀19中的至少一个使得电池换热装置6与第五换热器101不连通。第一个冷却液回路中,第一泵11、第五换热器101、加热装置8以及第六换热部42连通成回路。经第六换热部42冷却后的冷却液流动至第五换热器101中,冷却液与空调箱20中的空气换热从而实现乘客舱冷却,流经第五换热器101后升温的冷却液流动至第六换热部42中再次被冷却,如此循环流动。
在第三制冷模式下,若电池不需要热管理,该模式下的第二个冷却液回路的连通方式与第一制冷模式的第二个冷却液回路的连通方式相同。若电池还未达到降温限制,即此时电池温度不需要冷却,甚至还需要加热时,参照图4,可以将第十二阀17切换为端口a与端口b连通,第十三阀18切换为端口a与端口c连通。从第七换热器103流出的冷却液依次流经第一换热部52、电池换热装置6、第四泵14以及第二换热部51后,再流回第四换热部22。利用电池的蓄热能力,进一步降低流回第四换热部22的冷却液的温度,提升第二个冷却液回路的散热能力。
如图5至图7所示,当环境温度较低的情况下,根据乘客舱和电池是否有加热需求,可调节多个调节装置的连通状态,实现乘客舱单热、电池单热或乘 客舱与电池同时加热的功能。
参照图5,当仅电池有加热需求时,热管理系统处于第一制热模式。压缩机1开启,制冷剂系统处于工作状态,第五换热部41中的制冷剂吸收第六换热部42中的冷却液的温度,第三换热部21中的制冷剂向第四换热部22中的冷却液释放热量。
冷却液系统中,第一泵11开启,第二泵12和第四泵14至少一个开启。冷却液系统通过多个调节装置形成两个不相连通的冷却液回路。
第一个冷却液回路中,第一泵11、第六换热器104、加热装置8以及第六换热部42连通成回路,且第一泵11、第七换热器103、加热装置8以及第六换热部42连通成回路。第十阀15的端口a与端口b连通,第九阀25的端口b与端口c连通,第五阀27的端口b与端口c连通,第三阀28的端口a与端口b以及端口c连通,第四阀29的端口a和端口c连通,第一阀30的端口a和端口b连通。从第一泵11的出口流出的冷却液分为两路,一路流向第六换热器104,另一路流向第七换热器103,分别从大气环境中吸热,升温后的冷却液通过第三阀28汇集,然后流经加热装置8后流动至第六换热部42中,冷却液温度再次降低,流回第一泵11的入口,如此循环流动。若从第六换热器104和第七换热器103获取的热量能满足第三换热器4处的需求,可关闭加热装置8,降低能耗;反之,不能满足时,可开启加热装置8,用于补热。在第一冷却液回路中,通过第六换热器104和第七换热器103同时从大气环境中获取热量,充分利用外界环境热量,减少加热装置8的使用,降低能耗,从而提升续航能力。
第二个冷却液回路中,第二泵12、第四换热器102、第一换热器5、电池换热装置6、第四泵14以及第四换热部22连通成回路。第十二阀17的端口b与端口c连通,第十三阀18的端口a与端口c连通,第七阀23的端口b与端口c连通,第八阀24的端口a与端口b连通。从第二泵12的出口流出的冷却液依次流经第四换热器102、第一换热部52、电池换热装置6、第四泵14、第二换热部51以及第四换热部22后,回到第二泵12的入口,如此循环。在第四换热部22中被加热的冷却液流经第四换热器102后流入第一换热部52,此时第四换热器102用作管道,在第四换热器102处不发生热交换。在第一换热器5中,第一换热部52中的冷却液与第二换热部51中的冷却液换热,第一换热部52中的冷却液的温度降低。从第一换热部52流出的冷却液流动至电池换热装置6,冷却液与电池换热从而实现电池加热,冷却液的温度进一步降低。从电池换热装置6流出的冷却液流经第二换热部51后,流动至第四换热部22,在第四换热部22中再次被加热,如此循环流动。
在第二冷却液回路中,从第四换热部22流出的冷却液温度较高,第一换热器5对电池进行保护,避免太过高温的冷却液对电池造成伤害。
在第一制热模式下,电机不工作,所以电机无热管理需求,通过对多个调节装置的控制,使得第一个冷却液回路和第二个冷却液回路均不流经电机换热装置9。本模式下,从大气环境中吸热,实现电池的加热,较为节能。
参照图6,当乘客舱与电池均有加热需求时,热管理系统处于第二制热模式。第二制热模式下的制冷剂系统与第一制热模式下的制冷剂系统相同,可参考相 关描述。
冷却液系统中,第一泵11和第三泵13开启,第二泵12和第四泵14至少一个开启。冷却液系统通过多个调节装置形成三个不相连通的冷却液回路。
第一个冷却液回路中,第一泵11、第六换热器104、加热装置8以及第六换热部42连通成回路。第二个冷却液回路中,第三泵13、第七换热器103以及电机换热装置9连通成回路。第十阀15的端口a与端口b连通,第九阀25的端口b与端口c连通,第六阀26的端口a和端口b连通,第五阀27的端口a与端口b连通,第三阀28的端口a与端口c连通,第四阀29的端口a和端口c连通,第一阀30的端口b和端口c连通,第二阀31的端口b和端口c连通。
在第一个冷却液回路中,从第一泵11的出口流出的冷却液依次流经第六换热器104、加热装置8以及第六换热部42后,回到第一泵11的入口,如此循环。在第六换热部42中被冷却的冷却液流入第六换热器104,从大气环境中和第七换热器103处吸热,冷却液温度升高。从第六换热器104流出的冷却液流经加热装置8后,流动至第六换热部42中冷却液温度再次降低,如此循环流动。若从大气环境和第七换热器103获取的热量能满足第三换热器4处的需求,可关闭加热装置8,降低能耗;反之,不能满足时,可开启加热装置8,用于补热。
在第二个冷却液回路中,电机换热装置9中,冷却液与电机换热,从而实现电机冷却,冷却液温度升高。升温后的冷却液流动至第七换热器103,在第七换热器103处将热量释放至大气环境中,冷却液温度降低。温度降低后的冷却再次流动至电机换热装置9,再次吸收电机的热量从而实现电机冷却,如此循环。由于第六换热器104与第七换热器103并排放置,且第七换热器103放置于第六换热器104的上风侧,大气环境中的空气会先与第七换热器103中的冷却液换热,空气被加热,然后被加热后的空气流经第六换热器104,第六换热器104中的冷却液吸收空气中的热量。如此设置,使得第六换热器104中的冷却液不仅从大气环境中获取热量,还能从第七换热器103处获取热量,即回收电机的余热,可以提升第三换热器4的换热能力,从而提升乘客舱的制热效果。
将电机换热装置9与第六换热部42分别连接于两个不连通回路的原因是:从电机换热装置9流出的冷却液温度与从第六换热部42流出的冷却液的温度相差较大,从第六换热部42流出的冷却液直接流动至电机换热装置9会对电机产生伤害,且电机换热装置9的出口的冷却液温度不稳定。为了避免系统引入高频波动,通过第二个冷却液回路实现电机的单独散热,但第七换热器103能起到预热进风的作用,有利于第六换热器104从外界吸到更多的热量。
第三个冷却液回路中,第二泵12、第四换热器102、第一换热器5、电池换热装置6、第四泵14以及第四换热部22连通成回路。第十二阀17的端口b与端口c连通,第十三阀18的端口a与端口c连通,第七阀23的端口b与端口c连通,第八阀24的端口a与端口b连通。从第二泵12的出口流出的冷却液依次流经第四换热器102、第一换热部52、电池换热装置6、第四泵14、第二换热部51以及第四换热部22后,回到第二泵12的入口,如此循环。在第四换热部22中被加热的冷却液流动至第四换热器102,第四换热器102中的冷却液与空调箱20中的空气换热,从而实现乘客舱的加热,冷却液温度降低。从第四换 热器102流出的冷却液流入第一换热部52,在第一换热器5中,第一换热部52中的冷却液与第二换热部51中的冷却液换热,第一换热部52中的冷却液的温度进一步降低。从第一换热部52流出的冷却液流动至电池换热装置6,冷却液与电池换热从而实现电池加热,冷却液的温度再次降低。从电池换热装置6流出的冷却液流经第二换热部51后,流动至第四换热部22,在第四换热部22中再次被加热,如此循环流动。第一换热器5对电池进行保护,避免太过高温的冷却液对电池造成伤害。
在一些其他实施例中,可以将第七阀23切换成端口a与端口b以及端口c连通,从第四换热器102流出的冷却液一部分直接流动至第四换热部22,另一部分冷却液流向电池换热装置6后流动至第四换热部22。如此设置,仅一部分冷却液流经电池换热装置6,对电池的热冲击较小,且还可以提升第四换热部22的入口的冷却液温度,确保第四换热部22的出口的冷却液温度足够高,从而确保乘客舱的制热效果。
参照图7,当仅乘客舱有加热需求时,热管理系统处于第三制热模式。第三制热模式的制冷剂系统与第一制热模式的制冷剂系统相同,可参考相关描述。
第三制热模式下的冷却液系统与第一制热模式下的冷却液系统大致相同,冷却液系统通过多个调节装置形成两个不相连通的冷却液回路,相同之处可参考第一制热模式的相关描述,此处不再赘述。其区别在于:第七阀23的端口a与端口c连通。第二个冷却液回路中,第二泵12、第四换热器102以及第四换热部22连通成回路。经第四换热部22加热后的冷却液流动至第四换热器102中,冷却液与空调箱20中的空气换热从而实现乘客舱加热,流经第四换热器102后冷却的冷却液流动至第四换热部22中再次被加热,如此循环流动。
在本实施例中,电机和电池不需要热管理,该模式下的第一个冷却液回路的连通方式与第一制热模式的第一个冷却液回路的连通方式相同,通过第六换热器104和第七换热器103从大气环境中吸热。
在一些其他实施例中,电机有余热,电池还未达到补热限制时,或者说此时电池有余热需要冷却时,参照图7,可以将第十二阀17切换为端口a与端口b连通,第十三阀18切换为端口a与端口b连通,第十四阀19切换为端口a与端口b连通,第十五阀20切换为端口a与端口c连通,第九阀25切换为端口a与端口c连通,第六阀26切换为端口a与端口c连通,第五阀27切换为端口a与端口b连通,第三阀28切换为端口b与端口c连通,第四阀29切换为端口a与端口c连通,第一阀30切换为端口b与端口c连通,第二阀31切换为端口a与端口b连通。
从第二泵12的出口流出的冷却液依次流经第六换热器104、第七换热器103、电机换热装置9、第三泵13、第一换热部52、电池换热装置6、第四泵14、第二换热部51、加热装置8以及第六换热部42后,回到第二泵12的入口,如此循环。在第四换热部22中被冷却的冷却液先从大气环境中吸热,然后依次从电机和电池中吸热。充分利用大气环境热量,且回收利用电机和电池的余热。
此时,还可以将第十四阀19切换为端口a与端口b以及端口c连通,第十五阀20切换为端口a与端口b以及端口c连通,或者,将第十四阀19切换为端 口a与端口c连通,第十五阀20切换为端口a与端口b连通。使得从第二换热部51流出的温度较高的冷却液流经第五换热器101,由于第五换热器101设置于第四换热器102的上风侧,第五换热器101可以用于预热空调箱20空气的作用,提升制热效果。
在一些其他实施例中,仅电机有余热产生时,参照图6的冷却液系统,可切换多个调节装置的状态,通过第七换热器103释放电机的余热,通过第六换热器104从第七换热器103和大气环境中吸热。
如图8所示,当环境温度较低且湿度较高的情况下,乘客舱有采暖除湿的需求。热管理系统处于制热除湿模式,压缩机1开启,制冷剂系统处于工作状态,第五换热部41中的制冷剂吸收第六换热部42中的冷却液的温度,第三换热部21中的制冷剂向第四换热部22中的冷却液释放热量。
冷却液系统中,第一泵11和第二泵12开启,第三泵13和第四泵14可选择性开启。冷却液系统通过多个调节装置形成两个不相连通的冷却液回路。
第一个冷却液回路中,第一泵11、第六换热器104、第七换热器103、电机换热装置9、第三泵13、第一换热器5、电池换热装置6、第四泵14、加热装置8以及第六换热部42连通成回路,且第一泵11、第五换热器101、加热装置8以及第六换热部42连通成回路。第十阀15的端口a与端口b以及端口c连通,第十一阀16的端口a与端口b连通,第十二阀17的端口a与端口b连通,第十三阀18的端口a与端口b连通,第十四阀19的端口a与端口b连通,第十五阀20的端口a与端口b以及端口c连通,第九阀25的端口a与端口c连通,第六阀26的端口a与端口c连通,第五阀27的端口a与端口b连通,第三阀28的端口b与端口c连通,第四阀29的端口a和端口c连通,第一阀30的端口b和端口c连通,第二阀31的端口a和端口b连通。
从第一泵11的出口流出的冷却液分为两路,一路流向第五换热器101,通过第五换热器101与空调箱20中的空气换热,实现除湿的目的。另一路依次流经第六换热器104、第七换热器103、电机换热装置9、第三泵13、第一换热部52、电池换热装置6、第四泵14以及第二换热部51,通过第六换热器104和第七换热器103从大气环境吸热,且流经电机换热装置9和电池换热装置6,回收电机和电池的余热。从第五换热器101流出的冷却液与从第二换热部51流出的冷却液汇集后,流经加热装置8和第六换热部42后,流回第一泵11的入口,如此循环流动。根据系统的状态,可开启或关闭第三泵13和第四泵14,以及可开启或关闭加热装置8。
第二个冷却液回路中,第二泵12、第四换热器102以及第四换热部22连通成回路。第七阀23的端口a与端口c连通,第八阀24的端口a与端口b连通。经第四换热部22加热后的冷却液流动至第四换热器102中,冷却液与空调箱20中的空气换热从而实现乘客舱加热,流经第四换热器102后冷却的冷却液流动至第四换热部22中再次被加热,如此循环流动。
在空调箱20中,第五换热器101与第四换热器102并排设置,第四换热器102位于第五换热器101的下风侧,潮湿的空气先流经表面温度较低的第五换热器101,空气中的水分遇冷析出,流经第五换热器101后的空气被干燥。干燥后 的空气再与第四换热器102换热,空气被加热,在风机的引导下,被加热后的干燥空气吹入乘客舱,从而实现乘客舱的制热除湿功能。
在一些其他实施例中,制热除湿模式下,当电池没有余热,电机有余热时,可切换多个调节装置的状态,参照图6和图8,使得从第一泵11的出口流出的冷却液分为两路,一路流向第五换热器101,另一路流向第六换热器104,然后汇集后流经加热装置8和第六换热部42,回到第一泵11的入口,如此循环。且第三泵13、电机换热装置9以及第七换热器103连通成回路,电机的余热通过第七换热器103释放到空气中,然后通过第六换热器104回收利用。
在一些其他实施例中,制热除湿模式下,当电池和电机均没有余热时,可切换多个调节装置的状态,参照图5和图8,使得从第一泵11的出口流出的冷却液分为两路,一路流向第五换热器101,实现乘客舱的除湿;另一路再次分流至第六换热器104和第七换热器103,从大气环境中吸热,然后汇集后流经加热装置8和第六换热部42,回到第一泵11的入口,如此循环。
车辆以第一制热模式、第二制热模式或第三制热模式工作一段时间后,由于外界环境温度较低湿度较大,第六换热器104和第七换热器103可能会有结霜的现象产生,此时需要运行化霜模式,用于延缓第六换热器104和第七换热器103结霜,或用于给第六换热器104和第七换热器103化霜。此时,热管理系统处于化霜模式,参照图9,压缩机1开启,制冷剂系统处于工作状态,第五换热部41中的制冷剂吸收第六换热部42中的冷却液的温度,第三换热部21中的制冷剂向第四换热部22中的冷却液释放热量。
冷却液系统中,第一泵11、第二泵12以及第三泵13开启,第四泵14可选择性开启。冷却液系统通过多个调节装置形成三个不相连通的冷却液回路。
第一个冷却液回路中,第二泵12、第四换热器102以及第四换热部22连通成回路。第七阀23的端口a与端口c连通,第八阀24的端口a与端口b连通。经第四换热部22加热后的冷却液流动至第四换热器102中,冷却液与空调箱20中的空气换热从而实现乘客舱加热,流经第四换热器102后冷却的冷却液流动至第四换热部22中再次被加热,如此循环流动。
第二个冷却液回路中,第一泵11、第一换热器5、电池换热装置6、第四泵14、加热装置8以及第六换热部42连通成回路。第十阀15的端口a与端口c连通,第十一阀16的端口a与端口c连通,第十三阀18的端口a与端口b连通,第十四阀19的端口a与端口b连通,第十五阀20的端口a与端口c连通,第九阀25的端口a与端口c连通。第一换热器5对电池进行保护,且根据系统的状态,可开启加热装置8补热。
第三个冷却液回路中,第三泵13、第六换热器104以及电机换热装置9连通成回路,且第三泵13、第七换热器103以及电机换热装置9连通成回路。第六阀26的端口a与端口b连通,第五阀27的端口a与端口b以及端口c连通,第三阀28的端口b与端口c连通,第四阀29的端口a和端口c连通,第一阀30的端口a与端口b以及端口c连通,第二阀31的端口b和端口c连通。电机换热装置9中,冷却液与电机换热,冷却液温度升高。升温后的冷却液分别流动至第六换热器104和第七换热器103,实现第六换热器104和第七换热器103 的化霜,冷却液温度降低。温度降低后的冷却再次流动至电机换热装置9,再次吸收电机的热量,如此循环。利用电机的热量实现化霜,实现余热的有效利用,降低能耗,从而提升续航能力。在一些其他实施例中,化霜模式下,可以切换第一阀30的连通状态,可以先单独实现第六换热器104的化霜,再单独实现第七换热器103的化霜;或者先单独实现第七换热器103的化霜,再单独实现第六换热器104的化霜,提升化霜的效率。
本申请中两个部件之间的“连接”可以是直接连接,也可以是通过管路连接,两个部件之间可以仅设有管路,也可以两者之间除管路外还设有阀件或其他部件。同样的,本申请中两个部件之间的“连通”可以是直接连通,也可以是通过管路实现连通,两个部件之间可以仅设有管路连通,也可以两者之间还设有阀件或其他部件后连通。
本申请还提供一种热管理系统的控制方法,本申请中的控制方法应用于上述实施方式的热管理系统,热管理系统还包括控制系统,控制系统可用于对制冷剂系统的工作状态和冷却液系统的工作状态进行控制。
参照图1,控制系统包括控制器301和多个传感器,多个传感器可用于获取第四换热器102、第五换热器101、第六换热器104、第七换热器103、电机以及电池的工作信息,可选的,工作信息包括温度。控制器301与压缩机1、节流装置3、空调箱20内的风机、进气格栅处的风扇装置、多个流体驱动装置、多个调节装置以及多个传感器等部件电连接。控制器301可用于获取传感器得到的工作信息。控制器301可用于对压缩机1、节流装置3、空调箱20内的风机、进气格栅处的风扇装置、多个流体驱动装置、多个调节装置的工作状态进行调节,工作状态的调节包括开启部件、关闭部件、转速调节、开度调节以及功率调节中的至少一个。控制器301可用于执行热管理系统的控制方法。
热管理系统的控制方法包括:获取乘客的需求和传感器得到的工作信息;根据乘客的需求和从传感器得到的工作信息,控制器301对热管理系统中的各个部件的工作状态进行调节,使热管理系统执行合适的空调运行模式,从而实现对乘客舱、电机以及电池的热管理。
热管理系统还包括交互装置,控制器301与交互装置电连接,控制器301通过交互装置可以获得乘客的需求,如乘客需求的目标温度或运行模式等。可选的,交互装置可以为电动汽车的控制面板。空调运行模式包括第一制冷模式、第二制冷模式、第三制冷模式、第一制热模式、第二制热模式、第三制热模式、制热除湿模式以及化霜模式。上述工作模式下的热管理系统的连接状态可参照前文描述,此处不再赘述。
以上所述仅是本申请的较佳实施例而已,并非对本申请做任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (16)

  1. 一种热管理系统,其包括多流道换热器(2、4),所述多流道换热器(2、4)包括第一流道部(21、41)和第二流道部(22、42),所述第一流道部(21、41)能够与所述第二流道部(22、42)热交换;
    所述热管理系统包括制冷剂系统和冷却液系统,所述制冷剂系统和所述冷却液系统不连通,所述制冷剂系统包括所述第一流道部(21、41);所述冷却液系统包括所述第二流道部(22、42)、第一换热器(5)以及电池换热装置(6),所述第一换热器(5)包括第一换热部(52)和第二换热部(51),所述第一换热部(52)和所述第二换热部(51)在所述第一换热器(5)中不连通;
    所述第二流道部(22、42)的出口能够与所述第一换热部(52)的入口连通,所述第一换热部(52)的出口能够与所述电池换热装置(6)的入口连通,所述电池换热装置(6)的出口能够与所述第二换热部(51)的入口连通,所述第二换热部(51)的出口能够与所述第二流道部(22、42)的入口连通,所述第一换热部(52)能够与所述第二换热部(51)热交换。
  2. 如权利要求1所述的一种热管理系统,其中,所述热管理系统包括第二换热器(2),所述第二换热器(2)包括第三换热部(21)和第四换热部(22),所述多流道换热器包括所述第二换热器(2),所述第一流道部包括第三换热部(21),所述第二流道部包括第四换热部(22);
    所述制冷剂系统包括压缩机(1)、所述第三换热部(21)、节流装置(3)、第三换热器(4),所述压缩机(1)的出口能够与所述第三换热部(21)的入口连通,第三换热部(21)的出口能够与所述节流装置(3)的入口连通,所述节流装置(3)的出口能够与所述第三换热器(4)的入口连通,所述第三换热器(4)的出口能够与所述压缩机(1)的入口连通,所述节流装置(3)具有节流功能;
    所述冷却液系统包括所述第四换热部(22),所述第四换热部(22)的出口能够与所述第一换热部(52)的入口连通。
  3. 如权利要求2所述的一种热管理系统,其中,所述热管理系统包括空调箱(20)和第四换热器(102),所述第四换热器(102)设置于所述空调箱(20)内,所述第四换热部(22)的出口能够与所述第四换热器(101)的入口连通,所述第四换热器(102)的出口能够与所述第四换热部(22)的入口,或所述第一换热部(52)的入口连通。
  4. 如权利要求3所述的一种热管理系统,其中,所述热管理系统还包括室外换热装置(103、104),所述室外换热装置(103、104)设置于所述空调箱(20)外;所述第三换热器(4)包括第五换热部(41)和第六换热部(42),所述第五换热部(41)和所述第六换热部(42)不连通,所述第四换热部(22)和所述第六换热部(42)不连通;
    所述制冷剂系统包括所述第五换热部(41),所述节流装置(3)的出口能够与所述第五换热部(41)的入口连通,所述第五换热部(41)的出口能够与所述压缩机(1)的入口连通;
    所述冷却液系统包括所述室外换热装置(103、104)和所述第六换热部(42),所述第六换热部(42)的出口能够与所述室外换热装置(103、104)的入口连 通,所述室外换热装置(103、104)的出口能够与所述第六换热部(42)的入口连通。
  5. 如权利要求4所述的一种热管理系统,其中,所述室外换热装置包括第六换热器(104)和第七换热器(103),所述第六换热部(42)的出口分别能够与所述第六换热器(104)的入口和所述第七换热器(103)的入口连通,所述第六换热器(104)的出口和所述第七换热器(103)的出口分别能够与所述第六换热部(42)的入口连通;
    或,所述第六换热部(42)的出口能够与所述第六换热器(104)的入口连通,所述第六换热器(104)的出口能够与所述第七换热器(103)的入口连通,所述第七换热器(103)的出口能够与所述第六换热部(42)的入口连通。
  6. 如权利要求5所述的一种热管理系统,其中,所述热管理系统包括电机换热装置(9);
    所述第六换热部(42)的出口能够与所述第六换热器(104)的入口和所述第七换热器(103)的入口中的至少一个连通,所述第七换热器(103)的出口和所述第六换热器(104)的出口中的至少一个能够与所述电机换热装置(9)的入口连通,所述电机换热装置(9)的出口能够与所述第一换热部(52)的入口连通,所述第一换热部(52)的出口能够与所述电池换热装置(6)的入口连通,所述电池换热装置(6)的出口能够与所述第二换热部(51)的入口连通,所述第二换热部(51)的出口能够与所述第六换热部(42)的入口连通;
    或,所述第六换热部(42)的出口能够与所述第六换热器(104)的入口连通,所述第六换热器(104)的出口能够与所述第六换热部(42)的入口连通,所述电机换热装置(9)能够与所述第七换热器(103)的入口连通,所述第七换热器(103)的出口能够与所述电机换热装置(9)的入口连通,所述第六换热器(104)与所述第七换热器(103)不连通,所述第六换热器(104)设置于所述第七换热器(103)的下风侧。
  7. 如权利要求1所述的一种热管理系统,其中,所述热管理系统包括第三换热器(4),所述第三换热器(4)包括第五换热部(41)和第六换热部(42),所述多流道换热器包括所述第三换热器(4),所述第一流道部包括第五换热部(41),所述第二流道部包括第六换热部(42);
    所述制冷剂系统包括压缩机(1)、第二换热器(2)、节流装置(3)、所述第五换热部(41),所述压缩机(1)的出口能够与所述第二换热器(2)的入口连通,所述第二换热器(2)的出口能够与所述节流装置(3)的入口连通,所述节流装置(3)的出口能够与所述第五换热部(41)的入口连通,所述第五换热部(41)的出口能够与所述压缩机(1)的入口连通,所述节流装置(3)具有节流功能;所述冷却液系统包括所述第六换热部(42),所述第六换热部(42)的出口能够与所述第一换热部(52)的入口连通。
  8. 如权利要求7所述的一种热管理系统,其中,所述热管理系统包括空调箱(20)和第五换热器(101),所述第五换热器(101)设置于所述空调箱(20)内,所述第六换热部(42)的出口能够与所述第五换热器(101)的入口连通,所述第五换热器(101)的出口能够与所述第六换热部(42)的入口连通。
  9. 如权利要求7所述的一种热管理系统,其中,所述热管理系统还包括室外换热装置(103、104),所述室外换热装置(103、104)设置于所述空调箱(20)外;所述第二换热器(2)包括第三换热部(21)和第四换热部(22),所述第三换热部(21)和所述第四换热部(22)不连通,所述第四换热部(22)和所述第六换热部(42)不连通;
    所述制冷剂系统包括所述第三换热部(21),所述压缩机(1)的出口能够与所述第三换热部(21)的入口连通,所述第三换热部(21)的出口能够与所述节流装置(3)的入口连通;
    所述冷却液系统包括所述室外换热装置(103、104)和所述第四换热部(22),所述第四换热部(22)的出口能够与所述室外换热装置(103、104)的入口连通,所述室外换热装置(103、104)的出口能够与所述第四换热部(22)的入口连通。
  10. 如权利要求9所述的一种热管理系统,其中,所述热管理系统包括电机换热装置(9),所述室外换热装置包括第六换热器(104)和第七换热器(103);
    所述第四换热部(22)的出口能够与所述第六换热器(104)的入口连通,所述第六换热器(104)的出口能够与所述电机换热装置(9)的入口连通,所述电机换热装置(9)的出口能够与所述第七换热器(103)的入口连通,所述第七换热器(103)的出口能够与所述第四换热部(22)的入口或所述第一换热部(52)的入口连通。
  11. 如权利要求1所述的一种热管理系统,其中,所述冷却液系统包括电机换热装置(9)、第六换热器(104)、第七换热器(103)、第一阀(30)、第二阀(31)、第三阀(28)、第四阀(29)、第五阀(27)以及第六阀(26),所述第一阀(30)、所述第二阀(31)、所述第三阀(28)、所述第四阀(29)、所述第五阀(27)以及所述第六阀(26)均包括端口a、端口b以及端口c,端口a、端口b以及端口c中的至少两个连通;
    所述第二流道部(22、42)的出口能够与所述第一阀(30)的端口a和所述第六换热器(104)的入口连通,所述第一阀(30)的端口b与所述第七换热器(103)的入口连通,所述第六换热器(104)的出口与所述第三阀(28)的端口c连通,所述第七换热器(103)的出口与所述第四阀(29)的端口c连通,所述第一阀(30)的端口c与所述第二阀(31)的端口b连通;
    所述第五阀(27)的端口c、所述第三阀(28)的端口b以及所述第二阀(31)的端口a连通,所述第五阀(27)的端口b与所述第四阀(29)的端口a连通,所述第五阀(27)的端口a与所述电机换热装置(9)的入口连通,所述电机换热装置(9)的出口与所述第六阀(26)的端口a连通;
    所述第二阀(31)的端口c与所述第六阀(26)的端口b连通,所述第四阀(29)的端口b和所述第六阀(26)的端口c能够与所述第二流道部(22、42)的入口连通。
  12. 如权利要求11所述的一种热管理系统,其中,所述第一阀(30)的端口a与所述第一阀(30)的端口b连通,所述第二流道部(22、42)的出口分别能够与所述第六换热器(104)的入口和所述第七换热器(103)的入口连通, 所述第六换热器(104)的出口和所述第七换热器(103)的出口分别能够与所述第二流道部(22、42)入口连通。
  13. 如权利要求11所述的一种热管理系统,其中,所述第一阀(30)的端口b与所述第一阀(30)的端口c连通,所述第二阀(31)的端口a与所述第二阀(31)的端口b连通,所述第三阀(28)的端口b与所述第三阀(28)的端口c连通,所述第六换热器(104)的出口与所述第七换热器(103)的入口连通;
    所述第四阀(29)的端口a与所述第四阀(29)的端口c连通,所述第五阀(27)的端口a与所述第五阀(27)的端口b连通,所述第七换热器(103)的出口与所述电机换热装置(9)的入口连通;
    或,所述第四阀(29)的端口c与所述第四阀(29)的端口b连通,所述第七换热器(103)的出口能够与所述第二流道部(22、42)的入口连通。
  14. 如权利要求11所述的一种热管理系统,其中,所述第一阀(30)的端口b与所述第一阀(30)的端口c连通,所述第二阀(31)的端口b与所述第二阀(31)的端口c连通,所述第三阀(28)的端口b与所述第三阀(28)的端口c连通,所述第四阀(29)的端口b与所述第四阀(29)的端口c连通,所述第五阀(27)的端口a与所述第五阀(27)的端口c连通,所述第六阀(26)的端口a与所述第六阀(26)的端口b连通,所述第六换热器(104)的出口与所述电机换热装置(9)的入口连通,所述电机换热装置(9)的出口所述第七换热器(103)的入口连通。
  15. 一种热管理系统的控制方法,其中,所述热管理系统包括制冷剂系统、冷却液系统以及控制系统,所述制冷剂系统和所述冷却液系统不连通,所述控制系统包括控制器(301),所述控制器(301)用于执行所述热管理系统的控制方法,从而控制所述热管理系统的工作状态;
    所述热管理系统包括多流道换热器,所述多流道换热器包括第一流道部(21、41)和第二流道部(22、42);所述制冷剂系统包括第一流道部(21、41),所述冷却液系统包括第二流道部(22、42)、第一换热器(5)、电池换热装置(6)以及流体驱动装置(11、12、14),所述第一换热器(5)包括第一换热部(52)和第二换热部(51),所述第一换热部(52)和所述第二换热部(51)在所述第一换热器(5)中不连通;
    所述热管理系统的控制方法包括:所述控制器(301)控制所述热管理系统进入一种工作模式,在该工作模式下,所述第一流道部(21、41)中的制冷剂与所述第二流道部(22、42)中的冷却液进行热交换,所述流体驱动装置(11、12、14)、所述第二流道部(22、42)、所述第一换热器(5)以及电池换热装置(6)连通成回路,所述流体驱动装置(11、12、14)启动且用于提供冷却液的流动的动力,所述第二流道部(22、42)的出口与所述第一换热部(52)的入口连通,所述第一换热部(52)的出口与所述电池换热装置(6)的入口连通,所述电池换热装置(6)的出口与所述第二换热部(51)的入口连通,所述第二换热部(51)的出口与所述第二流道部(22、42)的入口连通,所述第一换热部(52)中的冷却液与所述第二换热部(51)中的冷却液进行热交换。
  16. 一种热管理系统,其包括:
    多流道换热器(2、4),所述多流道换热器(2、4)包括相互分隔的第一流道部(21、41)和第二流道部(22、42);
    制冷剂系统,所述制冷剂系统包括压缩机(1)、所述第一流道部(21、41)和节流装置(3);
    冷却液系统,所述冷却液系统包括流体驱动装置(11、12、14)、第一换热器(5)、电池换热装置(6)以及所述第二流道部(22、42),所述第一换热器(5)包括相互分隔的第一换热部(52)和第二换热部(51);
    控制器(301),所述控制器(301)配置于控制所述制冷剂系统和所述冷却液系统运行,且在不同的工作模式之间切换;
    在一种工作模式下,所述制冷剂系统中所述压缩机(1)压缩制冷剂,所述节流装置(3)对制冷剂进行节流,所述制冷剂经节流前或经节流后流经所述第一流道部(21、41);
    所述冷却液系统中所述流体驱动装置(11、12、14)驱动冷却液在所述第一换热部(52)、所述电池换热装置(6)、所述第二换热部(51)、所述第二流道部(22、42)内流动,所述第二流道部(22、42)内的冷却液与所述第一流道部(21、41)内的制冷剂交换热量后,先流入所述第一换热部(52),所述第一换热部(52)内的冷却液和所述第二换热部(51)内的冷却液换热后,再流经电池换热装置(6),从所述电池换热装置(6)流出的冷却液流入所述第二换热部(52)。
PCT/CN2022/094016 2021-08-26 2022-05-20 热管理系统及其控制方法 WO2023024604A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110988150.8 2021-08-26
CN202110988150.8A CN115723508A (zh) 2021-08-26 2021-08-26 热管理系统
CN202110989914.5 2021-08-26
CN202110989914.5A CN115723509A (zh) 2021-08-26 2021-08-26 热管理系统及热管理系统的控制方法

Publications (1)

Publication Number Publication Date
WO2023024604A1 true WO2023024604A1 (zh) 2023-03-02

Family

ID=85321381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094016 WO2023024604A1 (zh) 2021-08-26 2022-05-20 热管理系统及其控制方法

Country Status (1)

Country Link
WO (1) WO2023024604A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108749513A (zh) * 2018-06-13 2018-11-06 上海加冷松芝汽车空调股份有限公司 一种电动车热管理系统
US20200346523A1 (en) * 2019-04-30 2020-11-05 Hyundai Motor Company Thermal management system for vehicle
US20210126304A1 (en) * 2019-10-28 2021-04-29 Baidu Usa Llc Control logic for a battery cooling system
CN113173047A (zh) * 2020-07-31 2021-07-27 三花控股集团有限公司 热管理系统
CN113263889A (zh) * 2021-06-25 2021-08-17 三花控股集团有限公司 热管理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108749513A (zh) * 2018-06-13 2018-11-06 上海加冷松芝汽车空调股份有限公司 一种电动车热管理系统
US20200346523A1 (en) * 2019-04-30 2020-11-05 Hyundai Motor Company Thermal management system for vehicle
US20210126304A1 (en) * 2019-10-28 2021-04-29 Baidu Usa Llc Control logic for a battery cooling system
CN113173047A (zh) * 2020-07-31 2021-07-27 三花控股集团有限公司 热管理系统
CN113263889A (zh) * 2021-06-25 2021-08-17 三花控股集团有限公司 热管理系统

Similar Documents

Publication Publication Date Title
CN109291763B (zh) 一种热泵空调系统及其控制方法和汽车
WO2020108532A1 (zh) 车辆热管理系统及其控制方法、车辆
US20230158856A1 (en) Heat pump system for vehicle
US20230271478A1 (en) Thermal management system with first flow regulating device having bi-directional throttling function and control method thereof
WO2020108542A1 (zh) 车辆热管理系统及其控制方法、车辆
WO2018161907A1 (zh) 一种热管理系统
EP3984795B1 (en) Thermal management system
CN114312205B (zh) 热管理系统、热管理系统的控制方法与电动汽车
CN114734778B (zh) 一种集成式模块化整车热管理系统
WO2019001351A1 (zh) 一种热管理系统
CN216659503U (zh) 车辆热管理系统
EP3982054A1 (en) Heat exchanger and heat exchange system
US20230382181A1 (en) Thermal management system and control method for same
CN111251814A (zh) 车辆的热管理系统及车辆
WO2023051746A1 (zh) 热管理系统及其控制方法
CN113263889B (zh) 热管理系统
WO2023024604A1 (zh) 热管理系统及其控制方法
US20230356564A1 (en) Thermal management system with improved working efficiency of compressor
KR102577144B1 (ko) 자동차용 히트펌프 시스템
CN220923757U (zh) 一种用于车辆的热管理系统
CN218054792U (zh) 热泵空调系统和车辆
CN115723508A (zh) 热管理系统
CN115723509A (zh) 热管理系统及热管理系统的控制方法
CN220555302U (zh) 直冷直热式热管理系统及汽车
CN221090418U (zh) 间接式热泵热管理系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE