WO2019001248A1 - 发送和接收参考信号的方法、网络设备和终端设备 - Google Patents

发送和接收参考信号的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2019001248A1
WO2019001248A1 PCT/CN2018/090547 CN2018090547W WO2019001248A1 WO 2019001248 A1 WO2019001248 A1 WO 2019001248A1 CN 2018090547 W CN2018090547 W CN 2018090547W WO 2019001248 A1 WO2019001248 A1 WO 2019001248A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
power
port
network device
transmit power
Prior art date
Application number
PCT/CN2018/090547
Other languages
English (en)
French (fr)
Inventor
刘永
戎璐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18824469.3A priority Critical patent/EP3595225B1/en
Publication of WO2019001248A1 publication Critical patent/WO2019001248A1/zh
Priority to US16/683,935 priority patent/US10932206B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control

Definitions

  • the present application relates to the field of communications and, more particularly, to methods, network devices, and terminal devices for transmitting and receiving reference signals.
  • MIMO Multiple input multiple output
  • 5G 5th generation mobile communication
  • DMRS demodulation reference signal
  • the transmit power of the reference signal is one of the factors that affect the accuracy of the channel estimate.
  • the accuracy of the channel estimation is also high.
  • the principle of full power utilization is proposed in the prior art, that is, on the same time-frequency resource (for example, resource element (RE)) , lend the transmit power of the idle port to the active port.
  • the relationship between the power borrowed by the active port from the idle port and the initial transmit power of the network device pre-configured to the active port may be through a power boosting value (or power compensation value, offset value). Etc.).
  • the power enhancement value is generally 3 dB, that is, 10*log 10 2 , that is, the transmission power after power enhancement is twice the initial transmission power.
  • the present application provides a method, a network device, and a terminal device for transmitting and receiving a reference signal to more flexibly configure a transmit power for a reference signal.
  • a method of transmitting a reference signal comprising:
  • the network device determines a transmit power for transmitting a reference signal, the transmit power being related to a number of ports carried on the RE occupied by the reference signal;
  • the network device transmits the reference signal based on the transmit power.
  • the embodiment of the present application can allocate the transmit power to the reference signal according to the number of ports carried by the reference signal RE, and can flexibly allocate the reference signal for each port compared to the single power enhancement value in the prior art.
  • the transmission power enables the power usage to be improved, thereby improving the accuracy of channel estimation, that is, improving the reliability of data transmission.
  • the network device can determine the transmission power directly according to the number of ports carried by each reference signal RE, and the process of allocating the initial transmission power and the power enhancement value in the prior art is omitted, which is simpler and more convenient.
  • the method further includes:
  • the network device sends first indication information, where the first indication information indicates a sum of powers allocated by the REs on each port.
  • the network device determines transmit power for transmitting the reference signal, including:
  • the network device determines, according to the number of ports currently carried by the RE, a transmit power for transmitting the reference signal.
  • the network device can determine the transmit power according to the number of ports currently carried by the reference signal RE, and the determined transmit power is more accurate.
  • the method further includes:
  • the network device sends the second indication information, where the second indication information indicates the number of ports currently carried by the RE.
  • the terminal device can determine the transmit power according to the number of ports currently carried by the reference signal RE.
  • the method further includes:
  • the network device sends indication information of the transmit power, where the indication information of the transmit power indicates a ratio of the transmit power to a sum of powers of the REs on each port.
  • the network device determines transmit power for transmitting the reference signal, including:
  • the network device determines a transmit power for transmitting the reference signal according to a maximum number of ports that the RE can carry.
  • the network device can determine the transmit power according to the maximum number of ports that the reference signal RE can carry, that is, the transmit power of the reference signal can be determined according to the pilot pattern, which saves the signaling overhead of the network device indicating the transmit power to the terminal device.
  • the network device determines transmit power for transmitting the reference signal, including:
  • the method further includes:
  • the network device sends third indication information, the third indication information indicating the power ratio.
  • the network device can determine the transmit power of each reference signal according to the power ratio assigned to each port, which is more flexible.
  • the method further includes:
  • the network device sends indication information of the transmit power, where the indication information of the transmit power indicates a ratio of the transmit power to a sum of powers of the REs on each port.
  • the terminal device can determine the transmit power of the reference signal according to the indication information of the transmit power.
  • a method of receiving a reference signal including:
  • the terminal device receives the reference signal
  • the terminal device performs channel estimation based on the reference signal and the transmit power.
  • the embodiment of the present application can allocate the transmit power to the reference signal according to the number of ports carried by the reference signal RE, and can flexibly allocate the reference signal for each port compared to the single power enhancement value in the prior art.
  • the transmission power enables the power usage to be improved, thereby improving the accuracy of channel estimation, that is, improving the reliability of data transmission.
  • the network device can directly determine the transmit power according to the number of ports carried by each reference signal RE, and the process of allocating the initial transmit power and the power boost value in the prior art is omitted, which is simpler and more convenient.
  • the method further includes:
  • the terminal device receives first indication information, where the first indication information indicates a sum of powers allocated by the RE on each port.
  • the terminal device determines a transmit power of the reference signal, including:
  • the terminal device receives the second indication information, where the second indication information indicates the number of ports currently carried by the RE;
  • the terminal device determines a transmit power of the reference signal according to the number of ports currently carried by the RE.
  • the transmit power of the reference signal is determined according to the number of ports currently carried by the reference signal RE, and the transmit power determined in this way is more accurate.
  • the terminal device determines a transmit power of the reference signal, including:
  • the terminal device determines a transmit power for transmitting the reference signal according to a maximum number of ports that the RE can carry.
  • the terminal device can determine the transmit power according to the maximum number of ports that the reference signal RE can carry, that is, the transmit power of the reference signal can be determined according to the pilot pattern, and the signaling overhead of the network device indicating the transmit power to the terminal device is saved.
  • the method further includes:
  • the terminal device receives the third indication information, where the third indication information indicates a power ratio that the RE occupied by the reference signal is allocated to each port;
  • Determining, by the terminal device, a transmit power of the reference signal including:
  • the network device determines a transmit power of the reference signal based on the power ratio.
  • the network device can determine the transmit power of each reference signal according to the power ratio assigned to each port, which is more flexible.
  • the method further includes:
  • the terminal device receives indication information of a transmit power, where the indication information of the transmit power indicates a ratio of the transmit power to a sum of powers of the REs on each port.
  • the terminal device can determine the transmit power of the reference signal according to the indication information of the transmit power.
  • a method of transmitting a reference signal including:
  • the network device determines a first power enhancement value from the at least three power-enhanced power boosting values pre-stored, the first power enhancement value being used to indicate an offset from an initial transmit power of the reference signal;
  • the embodiment of the present application has more power enhancement values pre-configured, and the power enhancement value has more optional values, which helps to determine the number of ports according to the number of ports currently scheduled.
  • a suitable power boost value is therefore more flexible than a single power boost value in the prior art.
  • transmitting the reference signal based on the power enhancement value and the initial transmit power the power can be utilized to a greater extent, the power usage rate is improved, and the accuracy of the channel estimation is improved by increasing the transmit power, which is beneficial to improving data transmission. reliability.
  • the method for determining, by the network device, the first power enhancement value may include the following two types:
  • Method 1 The network device determines the first power enhancement value according to the pilot pattern
  • Method 2 The network device determines the first power enhancement value according to the currently scheduled number of ports.
  • the determining, by the network device, the first power enhancement value from the at least three power enhancement values saved in advance includes:
  • the network device determines the first power enhancement value according to the first pilot pattern currently used, and the correspondence between the pre-stored at least three power-enhanced power boosting values and the plurality of pilot patterns.
  • the method 1 may determine the first power enhancement value according to the relationship between the bundled pilot pattern and the power enhancement value, without requiring additional signaling for indicating the first power enhancement value, and sending only to the terminal device by using the network device.
  • the indication information of the pilot pattern can be used by the terminal device to determine the corresponding first power enhancement value, thereby saving signaling overhead while using the power to a greater extent.
  • the network device determines an ideal power enhancement value according to the currently scheduled number of ports
  • the network device determines the first power enhancement value according to the ideal power enhancement value and the pre-stored at least three power enhancement values.
  • the reference signal is a reference signal of a first port
  • the network device is configured with at least one third port, a reference signal of the at least one third port and a reference signal of the first port
  • the same RE is multiplexed by code division. This situation can usually be applied to a large number of ports, for example, the number of ports is 8, 12 or even more.
  • the network device determines the ideal power enhancement value according to the number of currently scheduled ports, which specifically includes:
  • the network device determines an ideal power enhancement value according to the currently scheduled number of ports and the orthogonal cover code length.
  • the ideal power compensation value can be calculated by:
  • Power enhancement value 10 * log 10 (number of ports / orthogonal cover code length).
  • the reference signal is a reference signal of the first port, and the reference signal of the first port and the reference signal of each fourth port of the at least one fourth port are multiplexed by frequency division.
  • the same time domain resource can usually be applied when the number of ports is small, for example, the number of ports is 2, 4 or even 6.
  • each port is frequency-division multiplexed, and there is no case of code division multiplexing.
  • the ideal power compensation value can be directly determined according to the number of ports currently scheduled.
  • the ideal power compensation value can be calculated by:
  • Power enhancement value 10 * log 10 (number of ports).
  • the first power enhancement value is determined according to the currently scheduled number of ports, so that the determined first power enhancement value is more accurate.
  • the method further includes:
  • the network device sends indication information of the first power enhancement value.
  • the first power enhancement value may be indicated to the terminal device by using signaling.
  • the network device and the terminal device may pre-store a plurality of optional power enhancement values and index correspondences, where the network device may send the information to the terminal device after determining the first power enhancement value.
  • the indication information of the first power enhancement value carries an index of the first power enhancement value, so that the terminal device determines the first power enhancement value.
  • the indication information of the first power enhancement value includes an index of the first power compensation value.
  • the power configured by the network device for each port may be uneven.
  • the first power enhancement value may be calculated by method 2, and the first power enhancement value may be adopted. The indication information is notified to the terminal device.
  • the first power compensation value calculated by the method 2 still belongs to the range of the foregoing plurality of optional power enhancement values saved in advance, for example, the calculated first power compensation value and the pre-saved One of the plurality of selectable power boost values is the same or close to each other, in which case the network device may pass an index of the power compensation value that is the same as or close to the first power compensation value through the indication of the first power boost value The information is sent to the terminal device.
  • the network device may directly carry the first power enhancement value in the indication information of the first power enhancement value.
  • the indication information of the first power enhancement value includes: the first power enhancement value or a quantized value of the first power enhancement value; or the network device may also carry the indication information of the first power enhancement value.
  • the power allocation ratio is such that the terminal device calculates the first power enhancement value according to the power allocation ratio.
  • the indication information of the first power enhancement value includes a power allocation ratio or a quantization value of a power allocation ratio.
  • the method further includes:
  • Determining, by the network device, the transmit power of the reference signal according to the first power enhancement value including:
  • the network device Determining, by the network device, a transmit power of the reference signal according to the first power enhancement value and a second power enhancement value, wherein the second power enhancement value is from a transmit power of a data RE, where the data RE is used Carrying data, the data RE having the same time domain resource as the RE occupied by the reference signal.
  • the transmit power of the reference signal can be further improved, which is advantageous for improving the accuracy of the channel estimation.
  • a method for receiving a reference signal including:
  • the terminal device receives the reference signal
  • the terminal device Determining, by the terminal device, a first power enhancement value according to a first pilot pattern currently used, and a correspondence between at least three power enhancement power boosting values and a plurality of pilot patterns saved in advance, the first power enhancement value An offset for indicating an initial transmit power relative to a reference signal;
  • the terminal device determines a transmit power of the reference signal based on the first power enhancement value, and performs channel estimation based on the reference signal and the transmit power.
  • the embodiment of the present application determines the first power enhancement value according to the current number of ports and the correspondence between the pilot pattern and the power enhancement value, improves the power usage rate, and improves the channel estimation accuracy by increasing the transmission power. Conducive to improve the reliability of data transmission. And no additional signaling instructions are needed, saving signaling overhead.
  • the method further includes:
  • the terminal device Receiving, by the terminal device, indication information of a second power enhancement value, where the second power enhancement value is from a transmit power of a data RE, where the data RE is used to carry data, and the data RE is the same as the first RE Time domain resource
  • Determining, by the terminal device, the transmit power of the reference signal of the first port according to the first power enhancement value including:
  • the terminal device determines a transmit power of the reference signal according to the first power enhancement value and the second power enhancement value.
  • the transmit power of the reference signal can be further improved, which is advantageous for improving the accuracy of the channel estimation.
  • a method for receiving a reference signal including:
  • the terminal device receives the reference signal
  • the terminal device receives indication information of a first power enhancement value, where the indication information of the first power enhancement value is used to determine the first power enhancement value, where the first power enhancement value is used to indicate a reference signal
  • the terminal device determines a transmit power of the reference signal based on the first power enhancement value, and performs channel estimation based on the reference signal and the transmit power.
  • the first power enhancement value can be determined more accurately, and the power can be utilized to a greater extent, thereby improving power usage.
  • the rate and the accuracy of the channel estimation are improved by increasing the transmission power, which is advantageous for improving the reliability of data transmission.
  • the network device and the terminal device may pre-store a plurality of optional power enhancement values and index correspondences, where the indication information of the first power enhancement value received by the terminal device carries the first power enhancement.
  • the index of the value the terminal device may determine the first power enhancement value according to the correspondence between the plurality of power enhancement values and the index saved in advance.
  • the indication information of the first power enhancement value includes an index of the first power enhancement value.
  • the power configured by the network device for each port may be uneven.
  • the indication information of the first power enhancement value may also be used to determine the first power enhancement value.
  • the first power compensation value belongs to a range of a plurality of optional power enhancement values saved in advance, for example, the first power compensation value and a plurality of optional power enhancement values saved in advance.
  • the network device can still send the index of the power compensation value that is the same or close to the first power compensation value to the terminal device by using the indication information of the first power enhancement value, and the terminal device can
  • the first power enhancement value is determined according to a correspondence between a plurality of power enhancement values and indexes stored in advance.
  • the first power compensation value does not belong to the range of the foregoing plurality of optional power enhancement values saved in advance, for example, the first power compensation value and a plurality of optional power enhancements saved in advance.
  • the value of any one of the values is different or close.
  • the network device can directly carry the first power enhancement value in the indication information of the first power enhancement value.
  • the indication information of the first power enhancement value includes: the first power enhancement value or a quantized value of the first power enhancement value; or the network device may also carry the indication information of the first power enhancement value.
  • the power distribution ratio the terminal device may calculate the first power enhancement value according to the power allocation ratio.
  • the indication information of the first power enhancement value includes a power allocation ratio or a quantization value of a power allocation ratio.
  • the method further includes:
  • Determining, by the terminal device, the transmit power of the reference signal according to the first power enhancement value including:
  • the terminal device determines a transmit power of the reference signal according to the first power enhancement value and the second power enhancement value.
  • the transmit power of the reference signal can be further improved, which is advantageous for improving the accuracy of the channel estimation.
  • a network device comprising: means for performing the method for transmitting a reference signal in the first aspect or any of the possible implementations of the first aspect, or for performing the third aspect or the The various modules of the method for transmitting a reference signal in any of the possible implementations.
  • a terminal device comprising: a module for performing the method of receiving a reference signal in any of the possible implementations of the second aspect or the second aspect, or The various modules of the method for receiving a reference signal in any of the possible implementations, or the respective modules for performing the method of receiving the reference signal in any of the possible implementations of the fifth aspect or the fifth aspect.
  • a network device including a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the terminal device performs the first aspect or any of the possible implementations of the first aspect The method of any of the third or third aspects of the possible implementation.
  • a terminal device including a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network device performs any of the second aspect or the second aspect.
  • the solution implemented by the above network device can be implemented by a chip.
  • the solution implemented by the above terminal device can be implemented by a chip.
  • a communication device which may be a network device in the above method design, or a chip disposed in a network device.
  • the communication device includes: a processor coupled to the memory, and configured to execute the instructions in the memory to implement the method performed by the network device in any one of the first aspect or the first aspect of the first aspect, or the third aspect and A method of any of the possible implementations of the third aspect.
  • the communication device further comprises a memory.
  • the communication device further includes a communication interface, the processor being coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device which may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes: a processor coupled to the memory, operable to execute instructions in the memory to implement the method performed by the terminal device in any one of the possible implementation manners of the second aspect or the second aspect, or the fourth aspect and The method of any of the possible implementations of the fourth aspect, or the method of any of the possible implementations of the fifth aspect and the fifth aspect.
  • the communication device further comprises a memory.
  • the communication device further includes a communication interface, the processor being coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • processor may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be A general-purpose processor is implemented by reading software code stored in a memory, which can be integrated in the processor and can exist independently of the processor.
  • a computer program product comprising: a computer program (also referred to as a code, or an instruction), when the computer program is executed, causing the computer to perform the first aspect to The fifth aspect and the method of any one of the first aspect to the fifth aspect.
  • a computer program also referred to as a code, or an instruction
  • a thirteenth aspect a computer readable medium storing a computer program (which may also be referred to as a code, or an instruction), when executed on a computer, causing the computer to perform the first aspect described above
  • a computer program which may also be referred to as a code, or an instruction
  • the foregoing first indication information may be carried in a radio resource control (RRC) message.
  • RRC radio resource control
  • the foregoing second indication information may be carried in downlink control information (DCI).
  • DCI downlink control information
  • the foregoing third indication information may be carried in the DCI.
  • the indication information of the foregoing first power enhancement value may be carried in any one of the following: an RRC message, a media access control control element (CE), or a DCI.
  • the indication information of the foregoing second power enhancement value may be carried in any one of the following: an RRC message, a MAC CE, or a DCI.
  • the embodiment of the present application can flexibly configure the transmit power for the reference signal, and can improve the power usage rate, and improve the accuracy of the channel estimation by increasing the transmit power, thereby improving the reliability of data transmission.
  • FIG. 1 is a schematic diagram of a communication system suitable for a method of transmitting and receiving a reference signal in an embodiment of the present application
  • Figure 2 shows a pilot pattern with a port number of 8.
  • FIG. 3 is a schematic flowchart of a method for transmitting and receiving a reference signal according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for transmitting and receiving a reference signal according to another embodiment of the present application.
  • Figure 5 shows a possible pilot pattern for a port number of four
  • Figure 6 shows a possible pilot pattern for a port number of eight
  • Figure 7 shows a possible pilot pattern for a port number of 12
  • Figure 8 shows a possible pilot pattern when the number of ports is two
  • FIG. 9 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 12 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 5G fifth-generation communication
  • the 5G system can also be called a new generation wireless access technology (NR) system.
  • NR new generation wireless access technology
  • FIG. 1 shows a schematic diagram of a communication system suitable for a method and apparatus for data transmission in accordance with an embodiment of the present application.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • the network device may be any device having a wireless transceiving function or a chip that can be disposed on the device, including but not limited to: a base station (eg, a base station NodeB, an evolved base station eNodeB, a network in a 5G communication system) Equipment (such as transmission point (TP), transmission reception point (TRP), base station, small base station equipment, etc.), network equipment in future communication systems, and wireless fidelity (WiFi) system Access nodes, wireless relay nodes, wireless backhaul nodes, and the like.
  • a base station eg, a base station NodeB, an evolved base station eNodeB, a network in a 5G communication system
  • Equipment such as transmission point (TP), transmission reception point (TRP), base station, small base station equipment, etc.
  • WiFi wireless fidelity
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122.
  • Network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • the terminal device may also be referred to as a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • Device user agent, or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • VR virtual reality
  • AR augmented reality
  • the embodiment of the present application does not limit the application scenario.
  • the foregoing terminal device and a chip that can be disposed in the foregoing terminal device are collectively referred to as a terminal device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD frequency division duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • Network device 102, terminal device 116 or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network (PLMN) network or a device to device (D2D) network or a machine to machine (M2M) network or other network, and FIG. 1 is only for easy understanding.
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • FIG. 1 is only for easy understanding.
  • other network devices may also be included in the network, which are not shown in FIG.
  • the terminal device performs channel estimation and channel state information (CSI) measurement according to a reference signal (for example, a channel state information reference signal (CSI-RS)) transmitted by the network device.
  • CSI-RS channel state information reference signal
  • the terminal device may determine a channel matrix according to the received reference signal, and further feed back CSI according to the channel matrix, for example, including a precoding matrix indicator (PMI), a rank indicator (RI), and a channel quality. Channel quality indicator (CQI), etc.
  • PMI precoding matrix indicator
  • RI rank indicator
  • CQI Channel quality indicator
  • the network device can determine the precoding matrix according to the CSI fed back by the terminal device.
  • the precoding matrix determined by the network device and the precoding matrix determined by the terminal device may be the same or different, which is not limited in this application.
  • the network device pre-codes the data to be transmitted and the demodulation reference signal (eg, DMRS), and transmits the pre-coded data and the demodulation reference signal to the terminal device.
  • the terminal device may perform channel estimation according to the received DMRS to determine an equivalent channel matrix, thereby demodulating data sent by the network device.
  • the maximum number of orthogonal data streams that can be supported by the downlink using DMRS is 8, that is, the maximum number of DMRS ports is 8, and the corresponding pilot pattern can be as shown in FIG. 2 .
  • Figure 2 shows a pilot pattern with a port number of 8. As shown in the figure, different ports are distinguished by using Frequency Division Multiplexing (FDM) and Code Division Multiplexing (CDM).
  • FDM Frequency Division Multiplexing
  • CDM Code Division Multiplexing
  • the DMRS corresponding to the eight ports may be divided into two groups, and the DMRS corresponding to the ports (port) #7, port #8, port #11, and port #13 (corresponding to the port 7/8/11/ in the figure) 13) and the DMRS corresponding to port #9, port #10, port #12, port #14 (corresponding to port 9/10/12/14 in the figure) are multiplexed by frequency division multiplexing Time domain resources, the distribution between port#7, port#8, port#11, port#13 and port#9, port#10, port#12, port#14 within each group is code-separated The same time-frequency resource is multiplexed in a way.
  • code division multiplexing is implemented using an orthogonal cover code (OCC) or a cyclic shift. Therefore, port #7, port #8, port #11, port #13 can be recorded as a CDM group (for ease of distinction and description, recorded as CDM group #1) port #9, port #10, port #12, Port#14 is recorded as a CDM group (recorded as CDM group #2 for ease of distinction and explanation).
  • OCC orthogonal cover code
  • the DMRS is carried along with the data and transmitted on the physical resource via the physical channel.
  • time-frequency resources for example, resource block (RB)
  • the time-frequency resources occupied by the DMRS of port#10, port#12, and port#14 (for example, the resource element (RE) is reserved for carrying data or other signals; similarly, in port#9, The time-frequency resources of port#10, port#12, and port#14 are reserved for the time-frequency resources of port#7, port#8, port#11, and port#13, and are not used to carry the description or other signals.
  • the shaded portion of the figure is not used to carry data or other signals than DMRS on the time-frequency resources of the eight ports.
  • the transmit power of the four free ports in the CDM group #2 can be borrowed to the port in the CDM group #1.
  • the power enhancement value borrowed by one CDM group from another CDM group is 3 dB, that is, 10*log 10 2 .
  • the power of finally transmitting the DMRS after borrowing power from another CDM group is twice the initial transmission power. That is to say, the power of the active port in the CDM group #1 to transmit the DMRS may be the initial transmission power (dB) + 3 (dB).
  • the 3dB defined above assumes that the power on the time-frequency resources of each port is equally distributed, and assumes that the active ports in the CDM group #1 are the maximum, that is, the transmit power of the four ports that are idle. Each of the four active ports is lent, so the power of the final transmitted signal of each port is twice the initial transmit power.
  • the number of transmission layers of the data stream increases, the number of ports also increases, and the resources occupied by the corresponding reference signals also increase.
  • NR new radio access technology
  • a scheme for configuring multiple pilot patterns for reference signals is proposed.
  • the number of CDM groups occupying the same time-frequency resource may be greater than 2. If the port of one of the CDM groups sends the DMRS, the transmit power may be borrowed from the ports of the other multiple CDM groups.
  • the transmit power is also determined according to the power enhancement value of 3 dB defined in the LTE protocol, the use of power is not flexible enough, for example, a situation may occur in which the transmit power of more idle ports is not fully utilized. That is to cause a large power waste.
  • the present application provides a method for transmitting and receiving a reference signal, which can more flexibly configure the transmit power of the reference signal, which is beneficial to improving the power usage rate.
  • the reference signal involved in the embodiment of the present application may be used for performing channel estimation.
  • the reference signal in the embodiment of the present application may be a CSI-RS, used to estimate a channel matrix, so as to feedback CSI, and determine precoding.
  • Matrix also DMRS, used to estimate the equivalent channel matrix for data demodulation.
  • the CSI-RS and the DMRS are merely examples for ease of understanding, and the present application should not be limited.
  • the reference signal in the present application is not particularly limited, and the reference signal in the present application may be any available for channel estimation. Reference signals, such as cell-specific reference signals (CRS), or other reference signals that can be used to implement the same or similar functions.
  • CRS cell-specific reference signals
  • the reference signal of only one port (referred to as the first port for convenience of distinction and description) (for convenience of distinction and description, is referred to as the first reference signal, that is, the reference signal
  • the first port may be any one of a plurality of ports scheduled by the network device
  • the first reference signal is a reference signal corresponding to the first port, and may be any one of multiple reference signals sent by the network device.
  • the network device can perform the same process of transmitting the reference signals of the plurality of ports and the receiving process of the terminal devices for the receiving of the plurality of ports.
  • each reference signal corresponds to one port library.
  • one DMRS corresponds to one DMRS port
  • one CSI-RS corresponds to one CSI-RS port.
  • the RE for carrying the reference signal is referred to as the reference signal RE.
  • the reference signal RE does not necessarily carry the reference signal on each port, but the reference signal RE only Used to carry reference signals, not for carrying data signals or other signals.
  • the RE that it occupies can be determined based on the pilot pattern.
  • the RE for carrying data is recorded as the data RE.
  • the data RE and the reference signal RE can be frequency division multiplexing (FDM) or time division multiplexing (TDM). )of.
  • the network device may correspond to, for example, the network device 102 of FIG. 1, which may be any one of a plurality of terminal devices communicatively coupled to the network device, and may correspond to, for example, the terminal device 116 of FIG. Or 122.
  • FIG. 3 is a schematic flowchart of a method 200 for transmitting and receiving a reference signal according to an embodiment of the present application.
  • Figure 3 illustrates an embodiment of the present application from the perspective of device interaction.
  • the method 200 includes steps 210 through 260.
  • the network device determines a transmit power for transmitting the first reference signal (referred to as a first transmit power for ease of distinction and description), the transmit power and the RE occupied by the first reference signal (for ease of distinguishing Description, the number of ports carried on the first RE) is related.
  • step 220 the network device transmits the first reference signal based on the transmit power.
  • step 220 the terminal device receives the first reference signal.
  • step 230 the terminal device determines the transmit power of the first reference signal.
  • step 240 the terminal device performs channel estimation based on the first reference signal and its transmit power.
  • the sum of the powers that the network device configures on each port for each reference signal RE may be determined according to the transmission power of the downlink reference signal, and the transmission power of the downlink reference signal may be pre-configured by the upper layer and passed through high layer signaling (for example, The RRC message is indicated to the physical layer. Therefore, the network device can determine the sum of the powers allocated to each reference signal RE on each port according to the transmission power of the downlink reference signal configured by the higher layer.
  • the sum of the powers configured by the network device on the ports of the first RE is recorded as the total power of the first RE. It can be understood that the REs occupied by the corresponding reference signals may be different for different ports, and therefore, the time-frequency resources corresponding to the first RE are relative to the reference signals of one port.
  • the method 200 further includes:
  • the network device sends first indication information indicating a sum of powers allocated by the first RE on each port.
  • the terminal device can determine the sum of the powers allocated by the first RE on each port.
  • the network device may notify the terminal device of the total power of the first RE by means of the indication information, but this is only one possible implementation manner, and the present application should not be limited in any way.
  • the sum of the powers configured by the network device for each RE of the reference signal on each port may also be predefined, for example, in the protocol, the hardening is assigned to the reference signal RE on each port. The sum of the powers.
  • the specific method for the network device to determine the first transmit power may be any one of the following:
  • Method 1 The network device determines the first transmit power according to the maximum number of ports that can be carried on the first RE;
  • Method 2 The network device determines the first transmit power according to the number of ports currently carried on the first RE.
  • the network device can directly determine the maximum number of ports that can be carried on the first RE according to the currently used pilot pattern (referred to as the first pilot pattern for convenience of distinction and description) (for example, as N, N). For natural numbers). Assuming that the network device evenly distributes the total power of the first RE to each port, it can be obtained that the power allocated to each port is 1/N of the total power. Therefore, the network device can determine the transmit power of the reference signal assigned to each port, that is, determine the transmit power used to transmit the first reference signal, ie, the first transmit power.
  • the transmit power of the reference signal assigned to each port that is, determine the transmit power used to transmit the first reference signal, ie, the first transmit power.
  • the network device can send the reference signal of each port through the time-frequency resource.
  • the network device may allocate power to each port by multiplying the column vector (it can be understood that each row in the column vector corresponds to one port) in the process of precoding, the column The proportional relationship between the rows in the vector represents the power ratio assigned to each port.
  • the pre-encoded signal including the reference signal and the data
  • the RE mapping is completed, the respective transmit powers are received on the REs corresponding to the respective ports, and the corresponding reference signals are transmitted based on the respective transmit powers. For example, the network device transmits the first reference signal based on the first transmit power.
  • the terminal device may determine the maximum number of ports that can be carried on the first RE according to the currently used first pilot pattern, and determine the first transmit power based on the maximum number of ports.
  • the maximum number of ports that can be carried on the first RE can be determined according to the pilot pattern. Therefore, the network device and the terminal device can determine the first transmit power by themselves.
  • the network device can determine the first transmit power according to the number of ports currently carried on the first RE. Compared with the method 1, the determined first transmit power is more accurate and can be utilized to a greater extent. Power to improve the accuracy of channel estimation.
  • the specific method for determining, by the network device, the first transmit power may consider whether the power between the ports is evenly distributed, and the first transmit power determined by the network device in the case of average power distribution and uneven distribution between ports The ratio of the total power of the first RE is different. The following is a detailed description in combination with the average allocation and the uneven distribution.
  • the network device can directly determine the first transmit power according to the number of ports currently carried on the first RE (for example, n, it can be understood that n ⁇ N, n is a natural number).
  • the method further includes:
  • the network device sends the second indication information, where the second indication information is used to indicate the number of ports currently carried on the first RE.
  • the second indication information is carried in the DCI.
  • the method further includes:
  • the network device sends indication information of the first transmit power, where the indication information of the first transmit power indicates a ratio of the first transmit power to the total power of the first RE.
  • the indication information of the first transmit power is carried in the DCI.
  • the network device can only send any one of the foregoing second indication information and the indication information of the first transmit power, and the terminal device can determine the first transmit power according to the received indication information.
  • the network device can determine the power equally divided into each port according to the number of ports currently carried on the first RE, and then determine the allocation to each port according to the power ratio between the ports.
  • the power, that is, the first transmit power is determined.
  • the method further includes:
  • the network device sends a third indication information, where the third indication information is used to indicate a power ratio that the first RE allocates to each port.
  • the third indication information is carried in any one of the following: an RRC message, a MAC CE or a DCI.
  • the method further includes:
  • the network device sends indication information of the first transmit power, where the indication information of the first transmit power indicates a ratio of the first transmit power to the total power of the first RE.
  • the indication information of the first transmit power is carried in the DCI.
  • the network device can only send any one of the foregoing second indication information and the indication information of the first transmit power, and the terminal device can determine the first transmit power according to the received indication information.
  • the network device may send the reference signal of each port through the time-frequency resource based on the power ratio.
  • the specific process for the network device to transmit the reference signal based on the transmit power has been described in the above method 1. For brevity, no further details are provided herein.
  • the network device can determine the first transmit power according to the number of ports currently used, and the determined first transmit power is more accurate than the first method, and can be allocated according to the port.
  • the power ratio determines the first transmit power, which is more flexible than the first method.
  • the embodiment of the present application allocates transmit power to each port according to the number of ports carried by each reference signal RE, which can be more flexible for each port reference than the single power enhancement value in the prior art.
  • the signal is allocated to transmit power, so that the power usage rate is improved, thereby improving the accuracy of channel estimation, that is, improving the reliability of data transmission.
  • the network device can directly determine the transmit power according to the number of ports carried by each reference signal RE, and the process of allocating the initial transmit power and the power boost value in the prior art is omitted, which is simpler and more convenient.
  • the method for determining, by the network device, the first transmit power is not limited to the method described above, and the network device may also determine the power enhancement value for the first reference signal according to the method of power compensation in the prior art. Easy to distinguish and explain, recorded as the first power enhancement value).
  • a method of transmitting and receiving a reference signal according to another embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • An idle port can be understood as a signal on a port that does not carry a signal.
  • An active port can be understood as carrying a signal on the RE at the same time-frequency point on the port (for example, including a reference signal, a data signal, etc.) Borrowing the transmit power of the idle port to the active port can be understood as compensating (or stealing) the transmit power configured for a certain RE (for example, RE#0) that does not carry a signal on a certain port.
  • This RE (for example, RE#0) carrying the reference signal on the other port is used, thereby achieving an effect of increasing the transmission power of the reference signal on the RE.
  • RE#0 for example, RE#0
  • FIG. 5 is a schematic flowchart of a method 300 for transmitting and receiving a reference signal according to another embodiment of the present application.
  • Figure 5 illustrates an embodiment of the present application from the perspective of device interaction.
  • the method 300 includes steps 310 through 360.
  • the network device determines a power enhancement value of the first reference signal from among the at least three power enhancement values stored in advance (referred to as a first power enhancement value for ease of distinction and description).
  • step 320 the network device determines the transmit power of the first reference signal according to the first power enhancement value (referred to as the first transmit power for ease of distinction and description).
  • step 330 the network device transmits a first reference signal based on the first transmit power.
  • step 330 the terminal device receives the first reference signal.
  • step 340 the terminal device determines a first power boost value.
  • step 350 the terminal device determines the first transmit power according to the first power boost value.
  • step 360 the terminal device performs channel estimation based on the first transmit power.
  • the network device may first determine the number of ports that the current data transmission may need to use, and then allocate the transmit power for each of the scheduled ports, that is, allocate the transmit power to the time-frequency resource for carrying the signal. (Includes the RE used to carry the reference signal and the RE used to carry the data).
  • the network device may allocate power to each port by multiplying the column vector (it can be understood that each row in the column vector corresponds to one port) in the process of precoding, the column The proportional relationship between the rows in the vector represents the power ratio assigned to each port.
  • the pre-coded signals (including the reference signals and data) have the initial transmit power on the RE corresponding to each port after RE mapping is completed.
  • the network device can allocate power evenly to each port.
  • the power ratio is 1:1.
  • the present application does not exclude the possibility that the network device allocates power unevenly for each port.
  • the power ratio is 2:1.
  • the network device After determining the number of currently scheduled ports and the power ratio assigned to each port, the network device can determine the initial transmit power of each port. Thereafter, the network device may further determine the first power enhancement value according to the currently scheduled number of ports in step 210.
  • the network device may pre-store at least three selectable power enhancement values, and the power enhancement value (ie, the first power enhancement value) of the first reference signal may be from the pre-stored at least three Determined in the power enhancement value.
  • the first power enhancement value can be understood as the transmission power from the at least one second port.
  • the transmission power from the second port may be the transmission power of the RE that does not carry the signal on the second port
  • the RE may be The RE corresponding to the first reference signal (that is, the first RE referred to herein) may also be an RE corresponding to other reference signals but not used to carry signals on the second port.
  • the RE used to compensate the transmit power of the first reference signal may be an RE within the same scheduling period as the first RE (ie, an RE on the same symbol or an RE on a different symbol within a scheduling period), or Is the RE within the same symbol as the RE.
  • the REs carrying the reference signals may be one or more, and the specific number may be determined according to the number of REs occupied by one reference signal.
  • the first RE is relative to a reference signal of a certain port, and the time-frequency resources occupied by the first RE are different for reference signals of different ports.
  • the specific method for determining, by the network device, the first power enhancement value may be any one of the following:
  • Method 1 The network device determines the first power enhancement value according to the currently used first pilot pattern
  • Method 2 The network device determines the first power enhancement value according to the currently scheduled number of ports.
  • the method used by the network device to determine the first power enhancement value is different, the method for the terminal device to determine the first power enhancement value is also different.
  • the correspondence between the multiple pilot patterns and the multiple power enhancement values may be determined in advance, for example, may be defined in a protocol, and pre-configured in the network device, when the network device determines the first guide used.
  • the frequency pattern can be used to determine that the corresponding power enhancement value is the first power enhancement value.
  • Table 1 shows the correspondence between multiple pilot patterns and multiple power enhancement values.
  • the plurality of pilot patterns may be related to the number of ports.
  • the pilot pattern with index 1 indicates the time-frequency resource of the reference signal of 4 ports;
  • the pilot pattern with index 2 indicates the time of the reference signal of 8 ports.
  • the pilot pattern with index 3 indicates the time-frequency resources of the reference signals of the 12 ports.
  • the first pilot pattern currently used by the network device may be determined according to the number of ports currently scheduled. For example, when the number of ports is 1 to 4, the pilot pattern with index 1 is used; when the number of ports is 5 to 8, the index is used.
  • the first pilot pattern currently used by the network device can also be determined based on other factors, such as carrier frequency.
  • the following examples are only illustrated by borrowing the power on the same RE occupied by the reference signal (for example, the first reference signal), but this should not be construed as limiting the present application as long as Reference signal RE in the same scheduling period (it has been explained above that the reference signal RE does not necessarily carry the reference signal at each port, but the reference signal RE is only used to carry the reference signal, and is not used to carry the data signal or other The signal) is not used to carry the reference signal and can be used to compensate for the reference signal of the current port (eg, the first port).
  • Figure 5 shows a possible pilot pattern for a port number of four.
  • the reference signals of port #0 and port #1 are multiplexed by the same RE by means of code division (for easy distinction and description, denoted as RE#1, it can be understood that RE#1 is port#0 and The first RE of port #1 can be considered as a CDM group (ie, corresponding to RE#1), and port#2 and port#3 multiplex the same RE by means of code division (for ease of distinction and description, As RE#2, it can be understood that RE#2 is the first RE of port#2 and port#3, and RE#1 and RE#2 are only used to distinguish the resources of the reference signals carrying different ports), which can be considered to constitute another A CDM group (ie, corresponding to RE#2).
  • the same time domain resources are multiplexed between the two CDM groups by frequency division (ie, corresponding to the same symbol in the figure).
  • the number of REs used to distinguish the orthogonal coverage codes of the different ports is 2.
  • the number of REs occupied by the orthogonal coverage codes is recorded as the length of the CDM (CDM size), or
  • the length of the CDM in the pilot pattern with index 1 is 2.
  • the RE#1 and RE#2 are not used to carry data or other reference signals on the four ports. . Therefore, RE#2 on port #0 and port#1 and RE#1 on port#2 and port#3 are in an idle state, and the power of RE#2 on port#0 and port#1 can be borrowed to the port. ## and / or RE#2 on port#3 for transmitting reference signals of port#2 and/or port#3, the power of RE#1 on port#2 and port#3 can be borrowed to port# 0 and / or RE #1 on port #1 for transmitting reference signals for port #0 and / or port #1.
  • the two CDM groups can borrow power from each other's REs in an idle state. If it is assumed that the current four ports are used to transmit the reference signal, then each port can borrow the same power as the initial transmit power, that is, the power enhancement value is 10*log 10 (1+1), that is, 3 dB.
  • Figure 6 shows a possible pilot pattern for a port number of eight.
  • the reference signals of port#0 and port#1 are multiplexed by the same RE in a code division manner, and can be considered to constitute one CDM group, and port#2 and port#3 are multiplexed by code division.
  • RE which can be considered to constitute another CDM group
  • port#4 and port#5 multiplex the same RE by code division, which can be considered to constitute another CDM group
  • port#6 and port#7 are multiplexed by code division.
  • the same RE can be considered to constitute another CDM group.
  • the same time domain resources ie, corresponding to two adjacent symbols in the figure
  • the number of REs occupied by the orthogonal cover codes used to distinguish different ports is 2, that is, the length of the CDM is 2.
  • any CDM group can borrow the power of the other three CDM groups. If it is assumed that the current 8 ports are used to transmit the reference signal, the power that each port can borrow is three times the initial transmit power, that is, the power enhancement value is 10*log 10 (3+1), that is, 6 dB. .
  • Figure 7 shows one possible pilot pattern for a port number of 12.
  • port#0, port#1, port#2, and port#3 multiplex the same RE by code division, and can be considered to constitute one CDM group, port#4, port#5, port#6.
  • And port7 multiplexes the same RE by code division, and can be considered to constitute another CDM group.
  • Port#8, port#9, port#10, and port#11 multiplex the same RE by code division, which can be considered as a composition.
  • Another CDM group The same time domain resources (ie, corresponding to two adjacent symbols in the figure) are multiplexed by frequency division in the three CDM groups.
  • the number of REs occupied by the orthogonal cover codes used to distinguish different ports is 4, that is, the length of the CDM is 4.
  • any CDM group can borrow the power of the other two CDM groups. If it is assumed that the current 12 ports are used to transmit reference signals, the power that each port can borrow is twice the initial transmit power, that is, the power enhancement value is 10*log 10 (2+1), which is 4.7dB. .
  • pilot patterns described above in conjunction with the accompanying drawings are merely illustrative, and should not be construed as limiting the present application. Many possible pilot patterns have been proposed in the prior art, and the present application does not Eliminate the possibility of defining more different pilot patterns in future protocols. The method of binding the pilot pattern and the power enhancement value proposed in the present application is also applicable to other pilot patterns.
  • the power enhancement value corresponding to the pilot pattern can be calculated by the following formula:
  • Power enhancement value 10 * log 10 (total number of ports / length of CDM).
  • the first transmit power may be further determined according to the first power enhancement value in step 220, and based on the first step in step 230.
  • a transmit power transmits a first reference signal.
  • the possible correspondence between the three pilot patterns and the three power enhancement values is listed in Table 1 for convenience of explanation, but this should not constitute any limitation on the application, the number of pilot patterns and the corresponding power enhancement.
  • the number of values is not limited to the one shown in Table 1.
  • One possibility is that the same number of ports can be configured with different pilot patterns.
  • the length of the CDM in different pilot patterns can be different. For example, when the number of ports is 12
  • the length of the CDM can also be 2, and the corresponding power enhancement value can be 7.8 dB.
  • a plurality of pilot patterns may also correspond to the same power enhancement value, which is not specifically limited in the present application.
  • the first power enhancement value may be determined in step 240.
  • the terminal device only needs to know the first pilot pattern currently used to determine the first power enhancement value.
  • the network device may indicate to the terminal device the currently used pilot pattern (ie, the first pilot pattern) through higher layer signaling (eg, RRC message), prior to transmitting the next RRC message.
  • the network device uses the first pilot pattern as a reference signal to allocate resources. That is to say, during this period, the first power enhancement value is always the power enhancement value corresponding to the first pilot pattern. Therefore, the specific process of determining, by the terminal device, the first power enhancement value in step 240 may include: when receiving the high layer signaling indicating the pilot pattern, the terminal device determines that the corresponding power enhancement value is the first power enhancement value.
  • the network device may notify the terminal device of the correspondence between the multiple pilot patterns and the multiple power enhancement values in advance through high layer signaling (for example, an RRC message), after which the network device may pass the DCI.
  • the pilot pattern currently used by the terminal device is notified to facilitate the terminal device to determine the first power boost value in step 240. Due to the small scheduling period of the DCI, the flexibility of this design is high, and the network device can adjust the number of ports in real time.
  • the terminal device determines The first transmit power may be determined in step 250, and in step 260, channel estimation is performed based on the first transmit power.
  • the method 1 may determine the first power enhancement value according to the relationship between the bundled pilot pattern and the power enhancement value, without requiring additional signaling to indicate the first power enhancement value, thereby improving power.
  • the usage rate is beneficial to improve the accuracy of channel estimation, thereby improving the reliability of data transmission and saving signaling overhead.
  • the power borrowed from the idle port is equally distributed to the active port.
  • the pilot pattern with index 1 can be port#
  • the power of 2 and port#3 are respectively borrowed to port#0 and port#1, but if only one port in port#0 and port#1 is currently used, then when borrowing power from port#2 and port#3 Not only do you need to consider increasing the transmit power, but you also need to consider whether the power on one symbol satisfies a pre-agreed threshold.
  • the total transmit power on a symbol is greater than 1, it may cause the peak of part of the signal to exceed the peak value, and the peak clipping process is needed, so that part of the signal is processed, which reduces the accuracy of the channel estimation and makes the translation of the data. Code performance is degraded.
  • the network device may determine the first power enhancement value according to the currently scheduled number of ports.
  • the network device may determine an ideal power enhancement value according to the currently scheduled number of ports, and determine the first power enhancement value according to the ideal power compensation value and the pre-stored at least three power enhancement values.
  • the specific method for the network device to determine the ideal power enhancement value according to the number of currently scheduled ports is related to the manner in which the reference signals of the respective ports reuse the resources.
  • the ideal power compensation can be calculated by:
  • Power enhancement value 10 * log 10 (total number of ports / length of CDM).
  • This situation can usually be applied to a large number of ports, for example, the number of ports is 8, 12 or even more.
  • the ideal power compensation value can be calculated by:
  • Power enhancement value 10 * log 10 (total number of ports)
  • This situation can usually be applied when the number of ports is small, for example, the number of ports is 2, 4 or even 6.
  • Figure 8 shows a possible pilot pattern for a port number of two.
  • the reference signals of port#0 and port#1 are multiplexed by the same time domain resource by frequency division.
  • the reference signals of port#0 and port#1 are distinguished by different frequency domain resources.
  • the reference signals of the two ports do not need to be distinguished by orthogonal cover codes, and the length of the orthogonal cover codes may be considered to be 1.
  • the RE occupied by the reference signal of port#0 is RE#1
  • the RE occupied by the reference signal of port#1 is RE#2
  • RE#1 and RE#2 are two REs on the same symbol
  • RE#1 and RE#2 is not used to carry data or other signals on port #0 and port#1. Therefore, RE#1 on port#1 is in an idle state, and RE#2 on port#0 is in an idle state.
  • the power of RE#1 on port#1 can be borrowed to RE#1 on port#0 for transmitting the reference signal of port#0; when the network device passes the port #1 When transmitting the reference signal, the power of RE#2 on port#0 can be borrowed to RE#2 on port#1 for transmitting the reference signal of port#1. That is to say, the two ports can borrow power from each other's REs in an idle state.
  • the total number of ports in the formula may be the number of ports currently scheduled by the network device, without being constrained by the maximum number of ports in the pilot pattern.
  • the power enhancement value calculated by this formula can be referred to as an ideal power enhancement value. For example, if the number of currently scheduled ports is 10, the pilot pattern with index 3 in Method 1 can be used, and the length of the CDM is 4, but the ideal power enhancement value calculated by the above formula is 4 dB.
  • the network device may pre-save a plurality of optional power enhancement values, and after calculating the ideal power enhancement value according to the above formula, selecting a value closer to the ideal power enhancement value from the plurality of selectable power enhancement values as the first power Enhanced value.
  • the first transmit power may be further determined according to the first power enhancement value in step 220, and in step 230. Transmitting a first reference signal based on the first transmit power.
  • the first power enhancement value may be determined in step 240.
  • the network device may indicate the first power enhancement value to the terminal device by sending the indication information to the terminal device.
  • the method further includes: the network device sending the indication information of the first power enhancement value to the terminal device.
  • the indication information of the first power enhancement value is carried in any one of the following: RRC, MAC CE, or DCI.
  • the indication information of the first power enhancement value may be an index of the first power enhancement value.
  • the network device may pre-define a plurality of power enhancement values corresponding to optimal power enhancement values of the respective configurable pilot patterns.
  • the network device may send a plurality of power enhancement values and their indexes to the terminal device in advance, so that the terminal device saves in advance.
  • the network device may send the index of the first power enhancement value to the terminal device, so that the terminal device determines the first power enhancement value.
  • the method for the network device to notify the terminal device of the first power enhancement value by transmitting the index of the first power enhancement value is also only one possible implementation manner, and should not constitute any limitation to the present application.
  • the terminal device determines the first transmit power based on the first power boost value in step 250, and in step 260, performs channel estimation based on the first transmit power.
  • the method 2 may indicate the first power enhancement value by using signaling, and may determine a more accurate power enhancement value according to the actual number of currently scheduled ports. Compared with the method 1, the signaling overhead is brought, but the method further improves. The power usage rate is beneficial to improve the accuracy of channel estimation, thereby facilitating the reliability of data transmission.
  • the embodiment described above assumes that the transmission power of the network device to each port is averaged. In some cases, the power allocation between the ports is not average, but the method provided by the present application can still be used to determine the first. Power enhancement value.
  • the network device can determine the initial transmit power of each port according to the power allocation ratio.
  • the power enhancement value is related to the pre-configured initial transmission power, and the difference in the initial transmission power and the power enhancement value are also different. Therefore, the network device can determine the first power enhancement value and the first transmit power according to the initial transmit power determined by the power allocation ratio.
  • the first port and the second port are included.
  • the ratio of the initial transmit power of the first port to the second port is 2:1, and the reference port between the first port and the second port does not use CDM multiplexing resources, and the first port can borrow power from the second port.
  • the first reference signal is transmitted.
  • the ratio of the initial transmit power of the first port to the second port is 2:1, the first port can borrow power from the second port compared to half of the initial transmit power, that is, the power enhancement value is 10*log. 10 1.5, ie 1.76dB.
  • the second port can also borrow a power transmission reference signal (for example, as a second reference signal) from the first port, and the second port borrows twice the power from the first port, that is, the power.
  • the enhancement value is 10*log 10 3, ie, 4.76 dB.
  • the network device may notify the terminal device by using the indication information (for example, the indication information of the first power enhancement value), or may notify the terminal device of the power allocation ratio, and determine, by the terminal device, the first power enhancement value. .
  • the network device may directly send an index of the first power enhancement value to the terminal device; if the first power enhancement value is not within a range of multiple optional power enhancement values pre-stored by the network device, for example, If the calculated first power compensation value is different from or close to any one of the plurality of optional power enhancement values saved in advance, the network device may directly send the first power enhancement value to the terminal device, or Information of the first power enhancement value, such as a quantized value of the first power enhancement value, is determined. Alternatively, the network device may also send a power allocation ratio to the terminal device, or information for determining a power allocation ratio, such as a quantized value of the power allocation ratio, and the terminal device may calculate the first power enhancement value according to the power allocation ratio.
  • the power allocation ratio can be used to determine the initial transmission power of the first reference signal.
  • the power enhancement value is related to the pre-configured initial transmission power, and the difference in the initial transmission power and the power enhancement value are also different. Therefore, the terminal device can determine the first power enhancement value and the first transmission power according to the initial transmission power determined by the power allocation ratio.
  • the method further includes:
  • the network device sends the indication information of the second power enhancement value to the terminal device.
  • the network device may borrow power from the RE carrying the data (hereinafter referred to as data RE for convenience of explanation) in addition to the power of the idle port to transmit the first reference signal.
  • data RE the RE carrying the data
  • the reliability of data transmission can be improved by multi-antenna gain.
  • the transmission power of the second RE can be ensured that the data can be correctly decoded.
  • the transmit power borrowed from the second RE is recorded as the second power boost value.
  • the data RE may be an RE on the first port, or may be an RE on another port, and may be borrowed for the first port as long as it is on the same symbol as the RE used to carry the first reference signal. Sending a first reference signal.
  • the embodiment of the present application determines a suitable power enhancement value according to the number of ports currently scheduled by using a plurality of candidate power enhancement values, and sends a reference signal based on the power enhancement value and the initial transmission power.
  • the use of power is increased to a greater extent, the power usage rate is increased, and the accuracy of channel estimation is improved by increasing the transmission power, which is advantageous for improving the reliability of data transmission.
  • the first RE and the second RE are used to distinguish the bearer signal, the first RE is used to carry the reference signal, and the second RE is used to carry the data.
  • the first RE and The time-frequency resources corresponding to the second REs may be different.
  • first, second, third, and fourth are merely used to distinguish different objects, such as different ports, different reference signals, etc., and should not be construed as limiting the application.
  • the network device and the terminal device in the embodiments of the present application are described in detail below with reference to FIG. 9 to FIG.
  • FIG. 9 is a schematic block diagram of a network device 10 provided by an embodiment of the present application. As shown in FIG. 9, the network device 10 includes a processing module 11 and a transceiver module 12.
  • network device 10 may correspond to a network device in method 200 of transmitting and receiving reference signals in accordance with embodiments of the present application, which may include a network for performing method 200 of transmitting and receiving reference signals in FIG. A module of the method performed by the device.
  • the modules in the network device 10 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the method 200 for transmitting and receiving reference signals in FIG. 3, and specifically, the processing module 11 is configured to perform the steps in the method 200.
  • the transceiver module 12 is configured to perform the step 220 in the method 200.
  • the specific process of performing the foregoing steps in each module has been described in detail in the method 200. For brevity, no further details are provided herein.
  • network device 10 may correspond to a network device in method 300 of transmitting and receiving reference signals in accordance with embodiments of the present application, which may include network device execution for performing method 300 of transmitting and receiving reference signals in FIG.
  • the module of the method Moreover, the modules in the network device 10 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the method 300 for transmitting and receiving reference signals in FIG. 4, and specifically, the processing module 11 is configured to perform the steps in the method 300. 310 and step 320, the transceiver module 12 is configured to perform the step 330 in the method 300.
  • the specific process of each module performing the foregoing steps is described in detail in the method 200. For brevity, no further details are provided herein.
  • FIG. 10 is a schematic block diagram of a terminal device 20 provided by an embodiment of the present application. As shown in FIG. 10, the terminal device 20 includes a transceiver module 21 and a processing module 22.
  • the terminal device 20 may correspond to a terminal device in the method of transmitting and receiving reference signals 200 according to an embodiment of the present application, which may include a terminal device for performing the method 200 of transmitting and receiving reference signals in FIG.
  • the module of the method of execution are respectively used to implement the corresponding processes of the method 200 for transmitting and receiving reference signals in FIG. 3, and specifically, the transceiver module 21 is configured to perform the steps in the method 200.
  • the processing module 22 is configured to perform the step 230 and the step 240 in the method 200.
  • the specific process of performing the foregoing steps in each module has been described in detail in the method 200. For brevity, no further details are provided herein.
  • the terminal device 20 may correspond to a terminal device in the method of transmitting and receiving reference signals 300 according to an embodiment of the present application, which may include a terminal device for performing the method 300 of transmitting and receiving reference signals in FIG.
  • the module of the method Moreover, the modules in the terminal device 20 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the method 300 for transmitting and receiving reference signals in FIG. 4, and specifically, the transceiver module 21 is configured to perform the steps in the method 200.
  • the processing module 22 is configured to perform the steps 340 to 360 in the method 200. The specific process in which each module performs the foregoing steps is described in detail in the method 300. For brevity, no further details are provided herein.
  • FIG. 11 is another schematic block diagram of a network device 400 provided by an embodiment of the present application.
  • the network device 400 includes a processor 410 and a transceiver 420.
  • the network device 400 further includes a memory 430.
  • the processor 410, the transceiver 420, and the memory 430 communicate with each other through an internal connection path for transferring control and/or data signals.
  • the memory 430 is configured to store a computer program, and the processor 410 is configured to be called from the memory 430.
  • the computer program is run to control the transceiver 420 to send and receive signals.
  • the processor 410 and the memory 430 may be combined to form a processing device, and the processor 410 is configured to execute program code stored in the memory 430 to implement the above functions.
  • the memory 430 can also be integrated in the processor 410 or independent of the processor 410.
  • the network device may further include an antenna 440, configured to send downlink data or downlink control signaling output by the transceiver 420 by using a wireless signal.
  • the network device 400 can correspond to a network device in the method 200 of transmitting and receiving reference signals in accordance with embodiments of the present application, the network device 400 can include a method 200 for performing the transmitting and receiving of reference signals in FIG. A module of the method performed by the network device.
  • each module in the network device 400 and the other operations and/or functions described above are respectively configured to implement a corresponding process of the method 200 of transmitting and receiving a reference signal in FIG. 3, specifically, the memory 430 is configured to store program code for processing When the program code is executed, the processor 410 executes step 210 in the method 200, and controls the transceiver 420 to perform step 220 in the method 200 through the antenna 440.
  • the specific process in which each module performs the corresponding steps is already described in the method 200. For the sake of brevity, we will not repeat them here.
  • the network device 400 can correspond to a network device in the method 300 of transmitting and receiving reference signals in accordance with an embodiment of the present application, the network device 400 can include a network for performing the method 300 of transmitting and receiving reference signals in FIG. A module of the method performed by the device.
  • each module in the network device 400 and the other operations and/or functions described above are respectively configured to implement a corresponding process of the method 300 of transmitting and receiving a reference signal in FIG. 4, specifically, the memory 430 is configured to store program code for processing When executing the program code, the processor 410 performs step 310 and step 320 in the method 300, and controls the transceiver 420 to perform step 330 in the method 300 through the antenna 440.
  • the specific process in which each module performs the corresponding step is already in the method 300. Detailed descriptions are omitted here for brevity.
  • FIG. 12 is another schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes a processor 501 and a transceiver 502.
  • the terminal device 500 further includes a memory 503.
  • the processor 502, the transceiver 502 and the memory 503 communicate with each other through an internal connection path for transferring control and/or data signals
  • the memory 503 is for storing a computer program
  • the processor 501 is used for the memory 503.
  • the computer program is called and executed to control the transceiver 502 to send and receive signals.
  • the above processor 501 and memory 503 can synthesize a processing device, and the processor 501 is configured to execute the program code stored in the memory 503 to implement the above functions.
  • the memory 503 can also be integrated in the processor 501 or independent of the processor 501.
  • the terminal device 500 may further include an antenna 504, configured to send uplink data or uplink control signaling output by the transceiver 502 by using a wireless signal.
  • the terminal device 500 may correspond to a terminal device in the method 200 of transmitting and receiving a reference signal according to an embodiment of the present application, and the terminal device 500 may include the method 200 for performing the transmitting and receiving of the reference signal in FIG. A module of the method performed by the terminal device.
  • each module in the terminal device 500 and the other operations and/or functions described above respectively implement a corresponding flow of the method 200 of transmitting and receiving a reference signal in FIG. 3, specifically, the memory 503 is configured to store program code for processing
  • the transceiver 502 controls the transceiver 502 to perform step 220 in the method 200 through the antenna 504, and performs step 230 and step 240 in the method 200.
  • the specific process in which each module performs the corresponding step is in the method 200. It has been described in detail, and for brevity, it will not be repeated here.
  • the terminal device 500 may correspond to a terminal device in the method 300 of transmitting and receiving a reference signal according to an embodiment of the present application, and the terminal device 500 may include a terminal for performing the method 300 of transmitting and receiving a reference signal in FIG. A module of the method performed by the device.
  • each module in the terminal device 500 and the other operations and/or functions described above respectively implement a corresponding flow of the method 300 for transmitting and receiving a reference signal in FIG. 4, specifically, the memory 503 is configured to store program code for processing When the program code is executed, the transceiver 502 controls the transceiver 502 to perform step 330 in the method 300 through the antenna 504, and performs steps 340 to 360 in the method 300.
  • the specific process of each module performing the corresponding steps is in the method 300. It has been described in detail, and for brevity, it will not be repeated here.
  • the processor 501 can be used to perform the actions implemented by the terminal in the foregoing method embodiments, and the transceiver 502 can be used to perform the actions of the terminal to transmit or transmit to the network device in the foregoing method embodiments.
  • the transceiver 502 can be used to perform the actions of the terminal to transmit or transmit to the network device in the foregoing method embodiments.
  • the above processor 501 and memory 503 can be integrated into one processing device, and the processor 501 is configured to execute the program code stored in the memory 503 to implement the above functions.
  • the memory 503 can also be integrated in the processor 501.
  • the terminal device 500 described above may also include a power source 505 for providing power to various devices or circuits in the terminal.
  • the terminal device 500 may further include one or more of an input unit 506, a display unit 507, an audio circuit 508, a camera 509, a sensor 510, and the like, the audio circuit.
  • an input unit 506 a display unit 507
  • an audio circuit 508 a camera 509
  • a sensor 510 a sensor
  • the terminal device 500 may further include one or more of an input unit 506, a display unit 507, an audio circuit 508, a camera 509, a sensor 510, and the like, the audio circuit.
  • a speaker 5082, a microphone 5084, and the like can also be included.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded or executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送和接收参考信号的方法、网络设备和终端设备,能够提高功率的使用率,提高信道估计的准确性。该方法包括:网络设备确定用于发射参考信号的发射功率,该发射功率与该参考信号占用的 RE 上承载的端口数相关;该网络设备基于该发射功率发送该参考信号。

Description

发送和接收参考信号的方法、网络设备和终端设备
本申请要求于2017年06月28日提交中国专利局、申请号为201710510526.8、发明名称为“发送和接收参考信号的方法、网络设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及发送和接收参考信号的方法、网络设备和终端设备。
背景技术
多输入多输出(multiple input multiple output,MIMO)技术是第五代移动通信(the 5th generation mobile communication,5G)的关键技术之一。当采用MIMO技术传输数据时,接收端设备需要根据接收到的参考信号(例如,解调参考信号(demodulation reference signal,DMRS))进行信道估计。
参考信号的发射功率是影响信道估计的准确性的因素之一。当发射功率较大时,信道估计的准确性也较高。为了充分利用发射功率,以提高信道估计的准确性,现有技术中提出了全功率利用(full power utilization)原则,即,在同一时频资源上(例如,资源粒(resource element,RE)),将空闲端口的发射功率借给活跃端口使用。该活跃端口从空闲端口借用来的功率与网络设备预先配置给该活跃端口的初始发射功率间的关系可以通过功率增强(power boosting)值(或者称,功率补偿值、偏移量(offset value)等)来表示。在长期演进(Long Term Evolution,LTE)中,功率增强值一般为3dB,即,10*log 102,也就是说,通过功率增强后的发射功率是初始发射功率的两倍。
然而,采用单一的功率增强值来发射参考信号往往不够灵活。
发明内容
本申请提供一种发送和接收参考信号的方法、网络设备和终端设备,以更加灵活地为参考信号配置发射功率。
第一方面,提供了一种发送参考信号的方法,包括:
网络设备确定用于发射参考信号的发射功率,所述发射功率与所述参考信号占用的RE上承载的端口数相关;
所述网络设备基于所述发射功率发送所述参考信号。
因此,本申请实施例能够根据参考信号RE承载的端口数,为参考信号分配发射功率,相比于现有技术中单一的功率增强值而言,能够更加灵活地为每个端口的参考信号分配发射功率,使得功率的使用率得以提高,从而有利于提高信道估计的准确性,也就是提高了数据传输的可靠性。并且,网络设备能够直接根据每个参考信号RE承载的端口数确定发 射功率,而省去了现有技术中分配初始发射功率和功率增强值的过程,相比较而言,更加简单方便。
可选地,所述方法还包括:
所述网络设备发送第一指示信息,所述第一指示信息指示所述RE在各端口上分配到的功率之和。
可选地,所述网络设备确定用于发射参考信号的发射功率,包括:
所述网络设备根据所述RE当前承载的端口数,确定用于发射所述参考信号的发射功率。
因此,网络设备可以根据参考信号RE当前承载的端口数确定发射功率,确定出的发射功率更加准确。
可选地,所述方法还包括:
所述网络设备发送第二指示信息,所述第二指示信息指示所述RE当前承载的端口数。
因此,终端设备可以根据参考信号RE当前承载的端口数,确定发射功率。
可选地,所述方法还包括:
所述网络设备发送发射功率的指示信息,所述发射功率的指示信息指示所述发射功率占所述RE在各端口上的功率之和的比值。
可选地,所述网络设备确定用于发射参考信号的发射功率,包括:
所述网络设备根据所述RE能够承载的最大端口数,确定用于发射所述参考信号的发射功率。
因此,网络设备可以根据参考信号RE能够承载的最大端口数确定发射功率,即可以根据导频图样确定参考信号的发射功率,节省了网络设备向终端设备指示发射功率的信令开销。
可选地,所述网络设备确定用于发射参考信号的发射功率,包括:
所述网络设备基于所述参考信号占用的RE在各端口分配到的功率比值,确定所述参考信号的发射功率;
所述方法还包括:
网络设备发送第三指示信息,所述第三指示信息指示所述功率比值。
因此,网络设备可以根据分配到各端口间的功率比值确定各参考信号的发射功率,更加灵活。
可选地,所述方法还包括:
所述网络设备发送发射功率的指示信息,所述发射功率的指示信息指示所述发射功率占所述RE在各端口上的功率之和的比值。
因此,不论端口间的功率是否平均分配,或者,网络设备如何确定参考信号的发射功率,终端设备都可以根据该发射功率的指示信息确定参考信号的发射功率。
第二方面,提供了一种接收参考信号的方法,包括:
终端设备接收参考信号;
所述终端设备确定所述参考信号的发射功率,所述发射功率与所述参考信号占用的资源粒RE承载的端口数相关;
所述终端设备基于所述参考信号和所述发射功率进行信道估计。
因此,本申请实施例能够根据参考信号RE承载的端口数,为参考信号分配发射功率,相比于现有技术中单一的功率增强值而言,能够更加灵活地为每个端口的参考信号分配发射功率,使得功率的使用率得以提高,从而有利于提高信道估计的准确性,也就是提高了数据传输的可靠性。并且,网络设备能够直接根据每个参考信号RE承载的端口数确定发射功率,而省去了现有技术中分配初始发射功率和功率增强值的过程,相比较而言,更加简单方便。
可选地,所述方法还包括:
所述终端设备接收第一指示信息,所述第一指示信息指示所述RE在各端口上分配到的功率之和。
可选地,所述终端设备确定所述参考信号的发射功率,包括:
所述终端设备接收第二指示信息,所述第二指示信息指示所述RE当前承载的端口数;
所述终端设备根据所述RE当前承载的端口数,确定所述参考信号的发射功率。
因此,该参考信号的发射功率是根据参考信号RE当前承载的端口数确定,通过这种方式确定出的发射功率更加准确。
可选地,所述终端设备确定所述参考信号的发射功率,包括:
所述终端设备根据所述RE能够承载的最大端口数,确定用于发射所述参考信号的发射功率。
因此,终端设备可以根据参考信号RE能够承载的最大端口数确定发射功率,即可以根据导频图样确定参考信号的发射功率,节省了网络设备向终端设备指示发射功率的信令开销。
可选地,所述方法还包括:
所述终端设备接收第三指示信息,所述第三指示信息指示所述参考信号占用的RE在各端口分配到的功率比值;
所述终端设备确定所述参考信号的发射功率,包括:
所述网络设备基于所述功率比值确定所述参考信号的发射功率。
因此,网络设备可以根据分配到各端口间的功率比值确定各参考信号的发射功率,更加灵活。
可选地,所述方法还包括:
所述终端设备接收发射功率的指示信息,所述发射功率的指示信息指示所述发射功率占所述RE在各端口上的功率之和的比值。
因此,不论端口间的功率是否平均分配,或者,网络设备如何确定参考信号的发射功率,终端设备都可以根据该发射功率的指示信息确定参考信号的发射功率。
第三方面,提供了一种发送参考信号的方法,包括:
网络设备从预先保存的至少三个功率增强power boosting值中确定第一功率增强值,所述第一功率增强值用于指示相对于参考信号的初始发射功率的偏移量;
所述网络设备根据所述第一功率增强值,确定所述参考信号的发射功率,并基于所述发射功率发送所述参考信号。
本申请实施例相比于现有技术而言,通过预先配置了更多的功率增强值,功率增强值的可选值更多,有助于根据当前调度的端口数为不同的端口数确定更合适的功率增强值, 因此相比于现有技术中的单一的功率增强值而言,更加灵活。并且,基于该功率增强值和初始发射功率发送参考信号,能够更大程度地利用功率,提高了功率的使用率,并且通过增大发射功率提高了信道估计的准确性,有利于提高数据传输的可靠性。
在本申请实施例中,网络设备确定第一功率增强值的方法可以包括以下两种:
方法一:网络设备根据导频图样确定第一功率增强值;
方法二:网络设备根据当前调度的端口数确定第一功率增强值。
具体地,在方法一中,所述网络设备从预先保存的至少三个功率增强值中确定第一功率增强值,包括:
所述网络设备根据当前使用的第一导频图样,以及所述预先保存的至少三个功率增强power boosting值与多个导频图样的对应关系,确定第一功率增强值。
方法一可以根据绑定了的导频图样与功率增强值的关系,确定第一功率增强值,而不需要额外的信令用于指示第一功率增强值,仅借助于网络设备向终端设备发送的导频图样的指示信息,便可以由终端设备确定对应的第一功率增强值,因此,在更大程度地使用功率的同时,节省信令开销。
在方法二中,所述网络设备根据当前调度的端口数,确定理想功率增强值;
所述网络设备根据所述理想功率增强值和所述预先保存的至少三个功率增强值,确定所述第一功率增强值。
一种可能的情况是,所述参考信号为第一端口的参考信号,所述网络设备配置有至少一个第三端口,所述至少一个第三端口的参考信号与所述第一端口的参考信号通过码分的方式复用相同的RE。这种情况通常可以适用于端口数较多的时候,例如,端口数为8、12甚至更多。
此情况下,所述网络设备根据当前调度的端口数,确定理想功率增强值,具体包括:
所述网络设备根据当前调度的端口数和正交覆盖码长度,确定理想功率增强值。
具体地,所述理想功率补偿值可以通过下式计算得到:
功率增强值=10*log 10(端口数/正交覆盖码长度)。
另一种可能的情况是,所述参考信号为第一端口的参考信号,所述第一端口的参考信号和至少一个第四端口中每个第四端口的参考信号通过频分的方式复用相同的时域资源。这种情况通常可以适用于端口数较少的时候,例如,端口数为2、4甚至6。
此情况下,各端口之间是频分复用的,不存在码分复用的情况,理想功率补偿值可以直接根据当前调度的端口数确定。
具体地,所述理想功率补偿值可以通过下式计算得到:
功率增强值=10*log 10(端口数)。
方法二可以根据当前实际调度的端口数确定第一功率增强值,因此确定出的第一功率增强值更加准确。
可选地,所述方法还包括:
所述网络设备发送所述第一功率增强值的指示信息。
若网络设备采用方法二确定第一功率增强值,则可以通过信令向终端设备指示第一功率增强值。
在一种可能的实现方式中,网络设备和终端设备可以预先保存多个可选的功率增强值 和索引的对应关系,网络设备在确定了第一功率增强值后,可以在向终端设备发送的第一功率增强值的指示信息中携带第一功率增强值的索引,以便于终端设备确定第一功率增强值。
可选地,所述第一功率增强值的指示信息包括所述第一功率补偿值的索引。然而,在某些情况下,网络设备为各端口配置的功率有可能是不平均的,在这种情况下,可通过方法二来计算第一功率增强值,并可以通过上述第一功率增强值的指示信息通知给终端设备。
一种可能的情况是,通过方法二计算得到的第一功率补偿值仍属于上述预先保存的多个可选的功率增强值的范围,例如,该计算得到的第一功率补偿值与预先保存的多个可选的功率增强值中的一个相同或者相接近,此情况下,网络设备可以将与该第一功率补偿值相同或者相接近的功率补偿值的索引通过上述第一功率增强值的指示信息发送给终端设备。
另一种可能的情况是,通过方法二计算得到的第一功率补偿值不属于上述预先保存的多个可选的功率增强值的范围,例如,该计算得到的第一功率补偿值与预先保存的多个可选的功率增强值中的任意一个值都不相同或者接近,此情况下,网络设备可以直接在第一功率增强值的指示信息中携带第一功率增强值。可选地,所述第一功率增强值的指示信息包括:所述第一功率增强值或者第一功率增强值的量化值;或者,网络设备也可以在第一功率增强值的指示信息中携带功率分配比例,以便于终端设备根据该功率分配比例计算得到第一功率增强值。可选地,所述第一功率增强值的指示信息包括功率分配比例或者功率分配比例的量化值。
可选地,所述方法还包括:
所述网络设备发送第二功率增强值的指示信息,所述第二功率增强值由所述数据RE的发射功率确定,所述数据RE与所述参考信号占用相同的时域资源;以及
所述网络设备根据所述第一功率增强值,确定所述参考信号的发射功率,包括:
所述网络设备根据所述第一功率增强值和第二功率增强值,确定所述参考信号的发射功率,其中,所述第二功率增强值来自数据RE的发射功率,所述数据RE用于承载数据,所述数据RE与所述参考信号占用的RE具有相同的时域资源。
通过将数据RE的发射功率的部分功率借用给参考信号,可以进一步提高参考信号的发射功率,有利于提高信道估计的准确性。
第四方面,提供了一种接收参考信号的方法,包括:
终端设备接收参考信号;
所述终端设备根据当前使用的第一导频图样,以及预先保存的至少三个功率增强power boosting值与多个导频图样的对应关系,确定第一功率增强值,所述第一功率增强值用于指示相对于参考信号的初始发射功率的偏移量;
所述终端设备基于所述第一功率增强值确定所述参考信号的发射功率,并基于所述参考信号和所述发射功率进行信道估计。
本申请实施例通过根据当前调度的端口数和导频图样与功率增强值的对应关系确定第一功率增强值,提高了功率的使用率,并且通过增大发射功率提高了信道估计的准确性,有利于提高数据传输的可靠性。并且不需要额外的信令指示,节省信令开销。
可选地,所述方法还包括:
所述终端设备接收第二功率增强值的指示信息,所述第二功率增强值来自数据RE的发射功率,所述数据RE用于承载数据,所述数据RE与所述第一RE具有相同的时域资源;
所述终端设备根据所述第一功率增强值,确定所述第一端口的参考信号的发射功率,包括:
所述终端设备根据所述第一功率增强值和所述第二功率增强值,确定所述参考信号的发射功率。
通过将数据的发射功率的部分功率借用给参考信号,可以进一步提高参考信号的发射功率,有利于提高信道估计的准确性。
第五方面,提供了一种接收参考信号的方法,包括:
终端设备接收参考信号;
所述终端设备接收第一功率增强值的指示信息,所述第一功率增强值的指示信息用于确定所述第一功率增强值,所述第一功率增强值用于指示相对于参考信号的初始发射功率的偏移量;
所述终端设备基于所述第一功率增强值确定所述参考信号的发射功率,并基于所述参考信号和所述发射功率进行信道估计。
本申请实施例通过根据当前调度的端口数和正交覆盖码的长度确定第一功率增强值,能够更加准确的确定第一功率增强值,并且能够更大程度地利用功率,提高了功率的使用率,并且通过增大发射功率提高了信道估计的准确性,有利于提高数据传输的可靠性。
在一种可能的实现方式中,网络设备和终端设备可以预先保存多个可选的功率增强值和索引的对应关系,终端设备接收到的第一功率增强值的指示信息中携带第一功率增强值的索引,终端设备可根据预先保存的多个功率增强值和索引的对应关系确定第一功率增强值。
可选地,所述第一功率增强值的指示信息包括所述第一功率增强值的索引。
然而,在某些情况下,网络设备为各端口配置的功率有可能是不平均的,在这种情况下,该第一功率增强值的指示信息也可以用于确定第一功率增强值。
一种可能的情况是,该第一功率补偿值属于预先保存的多个可选的功率增强值的范围,例如,该第一功率补偿值与预先保存的多个可选的功率增强值中的一个相同或者相接近,此情况下,网络设备仍然可以将与该第一功率补偿值相同或者相接近的功率补偿值的索引通过上述第一功率增强值的指示信息发送给终端设备,终端设备可以根据预先保存的多个功率增强值和索引的对应关系确定第一功率增强值。
另一种可能的情况是,该第一功率补偿值不属于上述预先保存的多个可选的功率增强值的范围,例如,该第一功率补偿值与预先保存的多个可选的功率增强值中的任意一个值都不相同或者接近,此情况下,网络设备可以直接在第一功率增强值的指示信息中携带第一功率增强值。可选地,所述第一功率增强值的指示信息包括:所述第一功率增强值或者第一功率增强值的量化值;或者,网络设备也可以在第一功率增强值的指示信息中携带功率分配比例,终端设备可以根据该功率分配比例计算得到第一功率增强值。可选地,所述第一功率增强值的指示信息包括功率分配比例或者功率分配比例的量化值。
可选地,所述方法还包括:
所述终端设备接收第二功率增强值的指示信息,所述第二功率增强值由数据RE的发射功率确定,所述数据RE与所述参考信号占用相同的时域资源;以及
所述终端设备根据所述第一功率增强值,确定所述参考信号的发射功率,包括:
所述终端设备根据所述第一功率增强值和所述第二功率增强值,确定所述参考信号的发射功率。
通过将数据的发射功率的部分功率借用给参考信号,可以进一步提高参考信号的发射功率,有利于提高信道估计的准确性。
第六方面,提供了一种网络设备,包括用于执行第一方面或第一方面任一种可能实现方式中的发送参考信号的方法的各个模块,或者,包括用于执行第三方面或第三方面任一种可能实现方式中的发送参考信号的方法的各个模块。
第七方面,提供了一种终端设备,包括用于执行第二方面或第二方面任一种可能实现方式中的接收参考信号的方法的各个模块,或者,包括用于执行第四方面或第四方面任一种可能实现方式中的接收参考信号的方法的各个模块,或者,包括用于执行第五方面或第五方面任一种可能实现方式中的接收参考信号的方法的各个模块。
第八方面,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行第一方面或第一方面任一种可能实现方式中的方法,或者第三方面或第三方面任一种可能实现方式中的方法。
第九方面,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第二方面或第二方面任一种可能实现方式中的方法,或者,第四方面或第四方面任一种可能实现方式中的方法,或者第五方面或第五方面任一种可能实现方式中的方法。
在一种可能的设计中,上述网络设备实现的方案可以由芯片实现。
在一种可能的设计中,上述终端设备实现的方案可以由芯片实现。
第十方面,提供了一种通信装置,该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面任意一种可能的实现方式中网络设备所执行的方法,或者第三方面及第三方面任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当所述通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
当所述通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第十一方面,提供了一种通信装置,该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第二方面任意一种可能的实现方式中终端设备所执行的方法,或者第四方面及第四方面任一种可能实现方式中的方法,或者第五方面及第 五方面任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当所述通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
当所述通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
应理解,上述处理器的功能可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第五方面以及第一方面至第五方面中任一种可能实现方式中的方法。
第十三方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第五方面以及第一方面至第五方面中任一种可能实现方式中的方法。
在某些可能的实现方式中,上述第一指示信息可以承载于无线资源控制(radio resource control,RRC)消息中。
在某些可能的实现方式中,上述第二指示信息可以承载于下行控制信息(downlink control information,DCI)中。
在某些可能的实现方式中,上述第三指示信息可以承载于DCI中。
在某些可能的实现方式中,上述第一功率增强值的指示信息可以承载于以下任意一项中:RRC消息、媒体接入控制(media access control)控制元素(control element,CE)或者DCI。
在某些可能的实现方式中,上述第二功率增强值的指示信息可以承载于以下任意一项中:RRC消息、MAC CE或者DCI。
基于上述设计,本申请实施例能够更加灵活地为参考信号配置发射功率,并能够提高功率的使用率,并且通过增大发射功率提高了信道估计的准确性,有利于提高数据传输的可靠性。
附图说明
图1是适用于本申请实施例的发送和接收参考信号的方法的通信系统的示意图;
图2示出了端口数为8的导频图样;
图3是本申请一实施例提供的发送和接收参考信号的方法的示意性流程图;
图4是本申请另一实施例提供的发送和接收参考信号的方法的示意性流程图;
图5示出了端口数为4时的一种可能的导频图样;
图6示出了端口数为8时的一种可能的导频图样;
图7示出了端口数为12时的一种可能的导频图样;
图8示出了端口数为2时的一种可能的导频图样;
图9是本申请实施例提供的网络设备的示意性框图;
图10是本申请实施例提供的终端设备的示意性框图;
图11是本申请实施例提供的网络设备的另一示意性框图;
图12是本申请实施例提供的终端设备的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通信(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(LTE)系统、先进的长期演进(LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、下一代通信系统(例如,第五代通信(5G)系统)、多种接入系统的融合系统,或演进系统等。其中,5G系统也可以称为新一代无线接入技术(NR)系统。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的用于数据传输的方法和装置的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
应理解,网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、5G通信系统中的网络设备(如传输点(transmission point,TP)、发送接收点(transmission reception point,TRP)、基站、小基站设备等)、未来通信系统中的网络设备、无线保真(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。
应理解,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外, 终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(PLMN)网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
为便于理解本申请实施例,下面以下行数据传输为例,简单介绍采用MIMO技术进行数据传输的过程。终端设备根据网络设备发送的参考信号(例如,信道状态信息参考信号(channel state information reference signal,CSI-RS))进行信道估计及信道状态信息(channel state information,CSI)测量。具体地,终端设备可以根据接收到的参考信号确定信道矩阵,并进一步根据信道矩阵反馈CSI,例如,包括预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indicator,RI)和信道质量指示(channel quality indicator,CQI)等。随后,网络设备可以根据终端设备反馈的CSI,确定预编码矩阵。应理解,网络设备确定的预编码矩阵和终端设备确定的预编码矩阵可以相同或不同,本申请对此不作限定。其后,网络设备对待发送的数据以及解调参考信号(例如,DMRS)进行预编码,并将预编码后的数据和解调参考信号发送至终端设备。终端设备可以根据接收到的DMRS进行信道估计,以确定等效信道矩阵,进而解调出网络设备发送的数据。
由上述过程可以看到,信道估计的准确性会最终影响到数据的接收性能,因此,采用较高的发射功率来发送参考信号,是一种提高信道估计的准确性的方法,从而有利于提高数据传输的可靠性。
以DMRS为例,当前技术中,下行采用DMRS最大可支持的正交数据流数为8,也就是DMRS端口数最大为8,与之对应的导频图样(pattern)可如图2所示。图2示出了端口数为8的导频图样。如图所示,图中通过采用频分复用(Frequency Division Multiplexing,FDM)和码分复用(code division multiplexing,CDM)的方式来区分不同的端口。具体地,该8个端口对应的DMRS可以分为两组,与端口(port)#7、port#8、port#11、port#13对应的DMRS(对应于图中port 7/8/11/13)和与port#9、port#10、port#12、port#14对应的DMRS(对应于图中port 9/10/12/14)两组之间采用频分复用的方式复用相同的时域资源,每组之内的port#7、port#8、port#11、port#13之间以及port#9、port#10、port#12、port#14之间分布采用码分复用的方式复用相同的时频资源。例如,采用正交覆盖码(orthogonal cover code,OCC)或者循环移位(cycling shift)实现码分复用。因此,可以将port#7、port#8、port#11、port#13记作一个CDM组(为便于区分和说明,记作CDM组#1)port#9、port#10、port#12、port#14记作一个CDM组(为便于区分和说明,记作CDM组#2)。
可以理解的是,DMRS与数据一同承载在物理资源上经由物理信道传输。在数据传输过程中,为了避免数据对DMRS的干扰,在port#7、port#8、port#11、port#13的时频资源(例如,资源块(resource block,RB))上将port#9、port#10、port#12、port#14的DMRS占用的时频资源(例如,资源粒(resource element,RE)预留出来不用于承载数据或其他信号;同理,在port#9、port#10、port#12、port#14的时频资源上将port#7、port#8、port#11、port#13的时频资源预留出来不用于承载述或其他信号。也就是说,图中阴影部分在8个端口的时频资源上都不用于承载数据或除DMRS之外的其他信号。
因此,当网络设备当前调度的端口为CDM组#1中的任意一个或多个端口时,CDM组#2中的4个空闲端口的发射功率可以借用给CDM组#1中的端口。在LTE协议中规定,一个CDM组从另一个CDM组借用来的功率增强值为3dB,即10*log 102。其中,2表示从另一个CDM组借用功率之后最终发送DMRS的功率是初始发射功率的2倍。也就是说,CDM组#1中的活跃端口发送DMRS的功率可以为初始发射功率(dB)+3(dB)。
需要说明的是,上述定义的3dB是假设各端口的时频资源上功率是平均分配的,并且假设CDM组#1中的活跃端口为最大值个,即,将空闲的4个端口的发射功率分别借给活跃的4个端口,因此每个端口最终发射信号的功率是初始发射功率的2倍。
然而,随着5G多天线技术的发展,数据流的传输层数增加,端口数量也增加,与之对应的参考信号占用的资源也随之增加。为了避免浪费闲置的导频资源,在新一代无线接入技术(new radio access technology,NR)中,提出了为参考信号配置多种导频图样的方案。在这种情况下,占用相同时频资源的CDM组的数量有可能大于2,若其中的一个CDM组的端口发送DMRS时,可以从其他多个CDM组的端口借用发射功率。在这种情况下,如果还依据LTE协议中定义的3dB的功率增强值来确定发射功率,对功率的使用不够灵活,例如,可能会出现较多空闲端口的发射功率未被充分利用的情形,也就是造成了较大的功率浪费。
有鉴于此,本申请提供了一种发送和接收参考信号的方法,能够更加灵活的配置参考信号的发射功率,有利于提高功率的使用率。
下面将结合附图详细说明本申请实施例。
需要说明的是,本申请实施例所涉及的参考信号可用于进行信道估计,例如,本申请实施例中的参考信号可以为CSI-RS,用于估计信道矩阵,以便于反馈CSI,确定预编码矩阵;也可以为DMRS,用于估计等效信道矩阵,以便于进行数据解调。应理解,CSI-RS和DMRS仅为便于理解而列举的示例,不应对本申请构成任何限定,本申请对于参考信号并未特别限定,本申请中的参考信号可为任何可用作信道估计的参考信号,例如,小区参考信号(cell-specific reference signal,CRS),或者,其他可用于实现相同或相似功能的参考信号。
还需要说明的是,在本申请实施例中,仅以一个端口(为便于区分和说明,记作第一端口)的参考信号(为便于区分和说明,记作第一参考信号,即参考信号的一例)为例说明发送和接收参考信号的方法,但这不应对本申请实施例构成任何限定。应理解,第一端口可以为网络设备调度的多个端口中的任意一个,第一参考信号为第一端口对应的参考信号,可以为网络设备发送的多个参考信号中的任意一个。网络设备可以对多个端口的参考信号的发送处理以及终端设备对多个端口的接收处理的具体过程是相同的。
还需要说明的是,参考信号由端口定义,每个参考信号对应一个端口库,例如,一个DMRS对应一个DMRS端口,一个CSI-RS对应一个CSI-RS端口。
在本申请实施例中,为便于区分和说明,将用于承载参考信号的RE记作参考信号RE,可以理解参考信号RE并不一定在每个端口都承载了参考信号,但是参考信号RE仅用于承载参考信号,而不用于承载数据信号或其他信号。对于一个确定端口的参考信号来说,其占用的RE可以根据导频图样确定。与之对应地,将用于承载数据的RE记作数据RE,可以理解,数据RE与参考信号RE可以是频分复用(frequency division multiplexing,FDM)或者是时分复用(time division multiplexing,TDM)的。
以下,不失一般性,以网络设备向终端设备发送第一参考信号为例,详细说明本申请实施例的发送和接收参考信号的方法。应理解,该网络设备可以对应于例如图1中的网络设备102,该终端设备可以为与该网络设备通信连接的多个终端设备中的任意一个,可以对应于例如图1中的终端设备116或者122。
图3是本申请一实施例提供的发送和接收参考信号的方法200的示意性流程图。图3从设备交互的角度示出了本申请实施例。
如图3所示,该方法200包括步骤210至步骤260。
在步骤210中,网络设备确定用于发射第一参考信号的发射功率(为便于区分和说明,记作第一发射功率),该发射功率与该第一参考信号占用的RE(为便于区分和说明,记作第一RE)上承载的端口数相关。
在步骤220中,网络设备基于该发射功率发送该第一参考信号。
相对应地,在步骤220中,终端设备接收第一参考信号。
在步骤230中,终端设备确定第一参考信号的发射功率。
在步骤240中,终端设备基于该第一参考信号及其发射功率,进行信道估计。
具体地,由于网络设备为每个参考信号RE在各端口上配置的功率之和可以根据下行 参考信号的传输功率确定,而下行参考信号的传输功率可以由高层预先配置并通过高层信令(例如,RRC消息)指示给物理层,因此,网络设备可以根据高层配置的下行参考信号的传输功率确定分配给每个参考信号RE在各端口上的功率之和。
在本申请实施例中,为方便说明,将网络设备为第一RE在各端口上配置的功率之和记作该第一RE的总功率。可以理解,对于不同的端口来说,对应的参考信号占用的RE可能是不同的,因此,第一RE所对应的时频资源是相对于一个端口的参考信号来说的。
可选地,该方法200还包括:
网络设备发送第一指示信息,该第一指示信息指示第一RE在各端口上分配到的功率之和。
相对应地,终端设备在接收第一指示信息之后,便可以确定第一RE在各端口上分配到的功率之和。
应理解,网络设备可以通过指示信息的方法通知终端设备该第一RE的总功率,但这仅为一种可能的实现方式,不应对本申请构成任何限定。在另一种可能的实现方式中,网络设备为每个参考信号的RE在各端口上配置的功率之和也可以是预先定义的,例如,在协议中固化分配给参考信号RE在各端口上的功率之和。
下面将分别从网络设备和终端设备的角度详细说明通过不同的方法确定第一发射功率的具体实现过程。
在步骤210中,网络设备确定第一发射功率的具体方法可以为以下任意一种:
方法一:网络设备根据第一RE上能够承载的最大端口数,确定第一发射功率;
方法二:网络设备根据第一RE上当前承载的端口数,确定第一发射功率。
在方法一中,网络设备可以直接根据当前使用的导频图样(为便于区分和说明,记作第一导频图样),确定第一RE上能够承载的最大端口数(例如记作N,N为自然数)。假设网络设备将第一RE的总功率平均分配至各端口,则可以得到每个端口分配到的功率为总功率的1/N。因此,网络设备可以确定分配给各端口的参考信号的发射功率,也就是确定了用于发送第一参考信号的发射功率,即第一发射功率。
网络设备在确定了分配给各端口的参考信号的发射功率之后,便可以通过时频资源发送各端口的参考信号。在一种可能的实现方式中,网络设备可以在预编码的过程中,通过乘以列向量(可以理解,列向量中的每一个行对应于一个端口)的方式为各个端口分配功率,该列向量中各行之间的比例关系即代表了分配给各端口的功率比值。经过预编码之后的信号(包括参考信号和数据)在完成RE映射(RE mapping)后,便在各端口对应的RE上具有了各自的发射功率,并基于各自的发射功率发送对应的参考信号。例如,网络设备基于第一发射功率发送该第一参考信号。
应理解,上文描述的基于发射功率发送参考信号的方法仅为一种可能的实现方式,不应对本申请构成任何限定。还应理解,网络设备基于发射功率发送参考信号的具体方法可以与现有技术相同,为了简洁,这里不再赘述。
终端设备在接收到该第一参考信号之后,也可以根据当前使用的第一导频图样,确定第一RE上能够承载的最大端口数,并基于最大端口数确定第一发射功率。
综上,方法一中直接根据导频图样便可以确定第一RE上能够承载的最大端口数,因此网络设备和终端设备双方分别可以自行确定第一发射功率。
在方法二中,网络设备可以根据第一RE上当前承载的端口数,确定第一发射功率,相比于方法一而言,确定出的第一发射功率更加准确,也能够更大程度的利用功率,以提高信道估计的准确性。
具体地,在方法二中,网络设备确定第一发射功率的具体方法可以考虑端口间的功率是否平均分配,在端口间功率平均分配和不平均分配的情况下,网络设备确定的第一发射功率占第一RE的总功率的比例是不同的。下面分别结合平均分配和不平均分配这两种情况来详细说明。
若端口间功率平均分配,则网络设备可以直接根据第一RE上当前承载的端口数(例如记作n,可以理解,n≤N,n为自然数),确定第一发射功率。
可选地,该方法还包括:
网络设备发送第二指示信息,该第二指示信息用于指示第一RE上当前承载的端口数。
在一种可能的设计中,该第二指示信息承载于DCI中。
可选地,该方法还包括:
网络设备发送第一发射功率的指示信息,该第一发射功率的指示信息指示第一发射功率占第一RE的总功率的比值。
在一种可能的设计中,该第一发射功率的指示信息承载于DCI中。
可以理解,网络设备可以仅发送上述第二指示信息和第一发射功率的指示信息中的任意一个,终端设备可以根据接收到的指示信息确定第一发射功率。
若端口间功率非平均分配,则网络设备可以根据第一RE上当前承载的端口数,确定平分到每个端口上的功率,然后再根据各端口间的功率比值,确定分配到各端口上的功率,也就是确定了第一发射功率。
可选地,该方法还包括:
网络设备发送第三指示信息,该第三指示信息用于指示第一RE在各端口分配到的功率比值。
在一种可能的设计中,该第三指示信息承载于以下任意一项中:RRC消息、MAC CE或DCI。
可选地,该方法还包括:
网络设备发送第一发射功率的指示信息,该第一发射功率的指示信息指示第一发射功率占第一RE的总功率的比值。
在一种可能的设计中,该第一发射功率的指示信息承载于DCI中。
可以理解,网络设备可以仅发送上述第二指示信息和第一发射功率的指示信息中的任意一个,终端设备可以根据接收到的指示信息确定第一发射功率。
应理解,网络设备在确定了分配到各端口的发射功率之后,便可以基于该功率比值通过时频资源发送各端口的参考信号。网络设备基于发射功率发送参考信号的具体过程在上文方法一中已经说明,为了简洁,这里不再赘述。
综上,在方法二中,网络设备不但可以根据当前使用的端口数确定第一发射功率,确定出的第一发射功率相比于方法一来说更加准确,并且可以根据分配到各端口间的功率比值确定第一发射功率,相比于方法一来说更加灵活。
因此,本申请实施例通过根据每个参考信号RE承载的端口数,为各端口分配发射功 率,相比于现有技术中单一的功率增强值而言,能够更加灵活地为每个端口的参考信号分配发射功率,使得功率的使用率得以提高,从而有利于提高信道估计的准确性,也就是提高了数据传输的可靠性。并且,网络设备能够直接根据每个参考信号RE承载的端口数确定发射功率,而省去了现有技术中分配初始发射功率和功率增强值的过程,相比较而言,更加简单方便。
然而,应理解,网络设备确定第一发射功率的方法并不限于上文所描述的方法,网络设备也可以沿用现有技术中的功率补偿的方法,为第一参考信号确定功率增强值(为便于区分和说明,记作第一功率增强值)。下面将结合附图详细说明本申请另一实施例的发送和接收参考信号的方法。
需要说明的是,在本申请实施例中提及的将空闲端口的发射功率借给活跃端口使用的情况是以时频资源为单位来描述的,具体地,是以RE为单位来描述的,空闲端口可以理解为在该端口上的某个RE未承载信号,活跃端口可以理解为在该端口上的同一时频点上的这个RE上承载了信号(例如,包括参考信号、数据信号等),将空闲端口的发射功率借给活跃端口使用可以理解为将预先为某个端口上未承载信号的某个RE(例如记作,RE#0)配置的发射功率补偿(或者说,挪用)给另一端口上承载了参考信号的这个RE(例如,RE#0)使用,从而达到提高了该RE上参考信号的发射功率的效果。以下,为了简洁,省略对相同或相似情况的说明。
图5是本申请另一实施例提供的发送和接收参考信号的方法300的示意性流程图。图5从设备交互的角度示出了本申请实施例。
如图4所示,该方法300包括步骤310至步骤360。
在步骤310中,网络设备从预先保存的至少三个功率增强值中确定第一参考信号的功率增强值(为便于区分和说明,记作第一功率增强值)。
在步骤320中,网络设备根据第一功率增强值确定第一参考信号的发射功率(为便于区分和说明,记作第一发射功率)。
在步骤330中,网络设备基于第一发射功率发射第一参考信号。
对应地,在步骤330中,终端设备接收第一参考信号。
在步骤340中,终端设备确定第一功率增强值。
在步骤350中,终端设备根据第一功率增强值确定第一发射功率。
在步骤360中,终端设备基于第一发射功率进行信道估计。
可选地,在步骤310之前,网络设备可以首先确定当前的数据传输可能需要使用的端口数,然后为调度的各端口分配发射功率,即,将发射功率分配到用于承载信号的时频资源(包括用于承载参考信号的RE和用于承载数据的RE)上。在一种可能的实现方式中,网络设备可以在预编码的过程中,通过乘以列向量(可以理解,列向量中的每一个行对应于一个端口)的方式为各个端口分配功率,该列向量中各行之间的比例关系即代表了分配给各端口的功率比值。经过预编码之后的信号(包括参考信号和数据)在完成RE映射(RE mapping)后,便在各端口对应的RE上具有了初始发射功率。
通常情况下,网络设备可以为各端口平均分配功率,例如,对于两个端口的情形,功率比值为1:1,但本申请也并不排除网络设备为各端口分配的功率不平均的可能,例如,对于两个端口的情形,功率比值为2:1。这里,我们首先讨论功率平均分配的情况,后 文中会结合具体的例子讨论功率不平均分配的情况。
网络设备在确定了当前调度的端口数以及为各端口分配的功率比值之后,便可以确定每个端口的初始发射功率。此后,网络设备可以在步骤210中,根据当前调度的端口数,进一步确定第一功率增强值。
在本申请实施例中,网络设备可以预先保存至少三个可供选择的功率增强值,该第一参考信号的功率增强值(即,第一功率增强值)可以从该预先保存的至少三个功率增强值中确定。不失一般性,第一功率增强值可以理解为来自至少一个第二端口发射功率,这里,来自第二端口的发射功率可以是第二端口上未承载信号的RE的发射功率,该RE可以为与第一参考信号对应的RE(也就是这里所说的第一RE),也可以是与其他参考信号对应的、但在第二端口上未用于承载信号的RE。换句话说,用于补偿第一参考信号的发射功率的RE可以是与第一RE同一调度周期内的RE(即,同一符号上的RE或一个调度周期内不同符号上的RE),也可以是与RE同一符号内的RE。其中,承载参考信号的RE可以为一个或多个,具体数量可以根据一个参考信号占用的RE的数量来确定。另外,可以理解的是,第一RE是相对于某个端口的参考信号而言的,对于不同端口的参考信号,第一RE的占用的时频资源也不同。
在本申请实施例中,网络设备确定第一功率增强值的具体方法可以为以下任意一种:
方法一:网络设备根据当前使用的第一导频图样确定第一功率增强值;
方法二:网络设备根据当前调度的端口数确定第一功率增强值。
由于网络设备所采用的确定第一功率增强值的方法不同,终端设备确定第一功率增强值的方法也有所不同。
下面将分别从网络设备和终端设备的角度详细说明这两种方法的具体实现过程。
在方法一中,可以预先确定多个导频图样和多个功率增强值的对应关系,例如,可以在协议中定义,并预先配置在网络设备中,当网络设备确定了所使用的第一导频图样,便可以确定对应的功率增强值为第一功率增强值。
表一示出了多个导频图样与多个功率增强值的对应关系。
表一
导频图样的索引 功率增强值
0 0dB
1 3dB
2 6dB
3 4.7dB
其中,上述多个导频图样可以与端口数相关。具体地,索引为1的导频图样(见图5)指示了4个端口的参考信号的时频资源;索引为2的导频图样(见图6)指示了8个端口的参考信号的时频资源;索引为3的导频图样(见图5)指示了12个端口的参考信号的时频资源。网络设备当前使用的第一导频图样可以根据当前调度的端口数确定,例如,当端口数为1至4时,采用索引为1的导频图样;当端口数为5至8时,采用索引为2的导频图样;当端口数为9至12时,采用索引为3的导频图样。网络设备当前使用的第一导频图样也可以根据其他因素确定,例如,载波频点。
应理解,网络设备确定当前使用的第一导频图样的具体过程可以与现有技术相同,为 了简洁,这里不再赘述。
下面结合附图详细说明导频图样以及对应的功率增强值。
需要说明的是,为方便说明,下面的示例仅是通过借用与参考信号(例如,第一参考信号)占用的相同的RE上的功率来说明,但这不应对本申请构成任何限定,只要在同一个调度周期内的参考信号RE(上文已经说明,参考信号RE并不一定在每个端口都承载了参考信号,但是参考信号RE仅用于承载参考信号,而不用于承载数据信号或其他信号)未用于承载参考信号,均可用于补偿当前端口(例如,第一端口)的参考信号。
图5示出了端口数为4时的一种可能的导频图样。如图5所示,port#0和port#1的参考信号通过码分的方式复用相同的RE(为便于区分和说明,记作RE#1,可以理解,RE#1为port#0和port#1的第一RE),可以认为构为一个CDM组(即,对应于RE#1),port#2和port#3通过码分的方式复用相同的RE(为便于区分和说明,记作RE#2,可以理解,RE#2为port#2和port#3的第一RE,RE#1和RE#2仅用于区分承载不同端口的参考信号的资源),可以认为构成另一个CDM组(即,对应于RE#2)。并且,两个CDM组之间通过频分的方式复用相同的时域资源(即,对应于图中的同一个符号)。其中,用于区分不同端口的正交覆盖码占用的RE的数量为2,在本申请实施例中,将正交覆盖码占用的RE的数量记作CDM的长度(CDM size),或者,称正交覆盖码的长度,则,索引为1的导频图样中CDM的长度为2。
当网络设备通过port#0至port#3中的任意一个或多个端口发送一个或多个参考信号时,该RE#1和RE#2在4个端口上都不用于承载数据或其他参考信号。因此,port#0和port#1上的RE#2和port#2和port#3上的RE#1都处于空闲状态,port#0和port#1上的RE#2的功率可以借用给port#2和/或port#3上的RE#2,以用于发射port#2和/或port#3的参考信号,port#2和port#3上的RE#1的功率可以借用给port#0和/或port#1上的RE#1,以用于发射port#0和/或port#1的参考信号。也就是说,这两个CDM组之间可以互相借用对方处于空闲状态的RE上的功率。若假设当前该4个端口均用于发射参考信号,那么每个端口可以借到的功率与初始发射功率相同,即,功率增强值为10*log 10(1+1),也就是3dB。
图6示出了端口数为8时的一种可能的导频图样。如图6所示,port#0和port#1的参考信号通过码分的方式复用相同的RE,可以认为构成一个CDM组,port#2和port#3通过码分的方式复用相同的RE,可以认为构成另一个CDM组,port#4和port#5通过码分的方式复用相同的RE,可以认为构成又一个CDM组,port#6和port#7通过码分的方式复用相同的RE,可以认为构成再一个CDM组。这四个CDM组之间通过频分的方式复用相同的时域资源(即,对应于图中相邻的两个符号)。其中,用于区分不同端口的正交覆盖码占用的RE的数量为2,即,CDM的长度为2。
当网络设备通过port#0至port#7中的任意一个或多个端口发送一个或多个参考信号时,该8个端口的参考信号占用的RE在8个端口上都不用于承载数据或其他信号。因此,port#2至port#7上的功率都可以借用给port#0和/或port#1,以用于发射port#0和/或port#1的参考信号;以此类推,为了简洁,这里不再赘述其他几个端口的功率借用情况。也就是说,任意一个CDM组都可以借用另外三个CDM组的功率。若假设当前该8个端口均用于发射参考信号,那么每个端口可以借到的功率为初始发射功率的3倍,即,功率增强值 为10*log 10(3+1),也就是6dB。
图7示出了端口数为12时的一种可能的导频图样。如图7所示,port#0、port#1、port#2和port#3通过码分的方式复用相同的RE,可以认为构成一个CDM组,port#4、port#5、port#6和port7通过码分的方式复用相同的RE,可以认为构成另一个CDM组,port#8、port#9、port#10和port#11通过码分的方式复用相同的RE,可以认为构成又一个CDM组。该三个CDM组之间通过频分的方式复用相同的时域资源(即,对应于图中相邻的两个符号)。其中,用于区分不同端口的正交覆盖码占用的RE的数量为4,即,CDM的长度为4。
当网络设备通过port#0至port#11中的任意一个或多个端口发送一个或多个参考信号时,该12个端口的参考信号占用的RE在12个端口上都不用于常在数据或其他信号。因此,port#4至port#11上的功率都可以借用给port#0和/或port#1,以用于发射port#0和/或port#1的参考信号;以此类推,为了简洁,这里不再赘述其他几个端口的功率借用情况。也就是说,任意一个CDM组都可以借用另外两个CDM组的功率。若假设当前该12个端口均用于发射参考信号,那么每个端口可以借到的功率为初始发射功率的2倍,即功率增强值为10*log 10(2+1),也就是4.7dB。
应理解,上面结合附图说明的导频图样仅为示例性说明,而不应对本申请构成任何限定,现有技术中已经提出了更多种可能的导频图样,同时,本申请也并不排除在未来的协议中定义更多不同的导频图样的可能。本申请提出的绑定导频图样与功率增强值的方法同样适用于其他导频图样。
在一种可能的实现方式中,导频图样对应的功率增强值可以通过以下公式计算得到:
功率增强值=10*log 10(总端口数/CDM的长度)。
例如,将上文中列举的4个端口、8个端口以及12个端口的具体情况代入上式,总端口数为4,CDM的长度为2时,得到的功率增强值即为10*log 102=3(dB);当总端口数为8,CDM的长度为2时,得到的功率增强值即为10*log 104=6(dB);当总端口数为12,CDM的长度为4时,得到的功率增强值即为10*log 103=4.7(dB)。
网络设备在步骤210中根据当前使用的第一导频图样确定了第一功率增强值之后,可以在步骤220中进一步根据第一功率增强值确定第一发射功率,并在步骤230中基于该第一发射功率发送第一参考信号。
应理解,表一中仅为便于说明,列举了三个导频图样与三个功率增强值间可能的对应关系,但这不应对本申请构成任何限定,导频图样的数量以及对应的功率增强值的数量并不限于表一所示,一种可能的情况是,相同的端口数也可以配置不同的导频图样,不同的导频图样中CDM的长度可以不同,例如,端口数为12时,CDM的长度也可以为2,对应的功率增强值可以为7.8dB。另外,多个导频图样也有可能对应相同的功率增强值,本申请对此并未特别限定。
还应理解,网络设备基于发射功率发送参考信号的具体过程可以与现有技术相同,为了简洁,这里省略对网络设备基于第一发射功率发送第一参考信号的具体过程的说明。
与之对应地,终端设备在步骤230中接收到第一参考信号之后,便可以在步骤240中确定第一功率增强值。
在本申请实施例中,终端设备只需要知道当前所使用的第一导频图样,便可以确定第 一功率增强值。
在一种可能的设计中,网络设备可以通过高层信令(例如,RRC消息)向终端设备指示当前使用的导频图样(即,第一导频图样),在发送下一个RRC消息之前的这段时间内,网络设备均采用该第一导频图样为参考信号配置资源。也就是说,在这个时段内,第一功率增强值一直为与该第一导频图样对应的功率增强值。因此,终端设备在步骤240中确定第一功率增强值的具体过程可包括:终端设备在接收到指示导频图样的高层信令的时候,确定对应的功率增强值为第一功率增强值。
在另一种可能的设计中,网络设备可以预先通过高层信令(例如,RRC消息)将多个导频图样和多个功率增强值的对应关系通知给终端设备,此后,网络设备可以通过DCI通知终端设备当前使用的导频图样,以便于终端设备在步骤240中确定第一功率增强值。由于DCI的调度周期较小,因此,这种设计的灵活性较高,网络设备可以实时地调整端口数。
另一方面,由于在通常情况下,网络设备为各端口平均分配初始发射功率,而终端设备也默认各端口的初始发射功率是平均分配的,因此,终端设备在确定了第一功率增强值之后,便可以在步骤250中确定出第一发射功率,进而在步骤260中,基于第一发射功率进行信道估计。
应理解,终端设备基于发射功率进行信道估计的具体过程可以与现有技术相同,为了简洁,这里省略对终端设备基于第一发射功率进行信道估计的具体过程的说明。
综上,方法一可以根据绑定了的导频图样与功率增强值的关系,确定第一功率增强值,而不需要额外的信令用于指示第一功率增强值,因此,提高了功率的使用率,有利于提高信道估计的准确性,从而有利于提高数据传输的可靠性,并且节省信令开销。
但是,在方法一中,由于是假设各个端口都被使用的,因此,从空闲端口借用来的功率是被平均分配到活跃端口去的,例如,索引为1的导频图样,可以将port#2和port#3的功率分别借用给port#0和port#1,但若port#0和port#1中仅有一个端口当前被使用,则从port#2和port#3借用功率的时候就不仅需要考虑提高发射功率,还需要考虑一个符号上的功率是否满足小于或等于预先约定的门限值。如果在某个符号上的发射总功率大于1,反而可能使得部分信号的波峰超过峰值,需要进行削峰处理,使得部分信号被处理掉,反而降低了信道估计的准确性,使得对数据的译码性能下降。
在方法二中,网络设备可以根据当前调度的端口数确定第一功率增强值。
具体地,网络设备可以根据当前调度的端口数,确定理想功率增强值,并根据理想功率补偿值和预先保存的至少三个功率增强值,确定第一功率增强值。
网络设备根据当前调度的端口数确定理想功率增强值的具体方法与各端口的参考信号对资源的复用方式相关。
若多个端口的参考信号之间存在资源的码分复用,例如,第一端口的参考信号和至少一个第三端口的参考信号通过码分的方式复用相同的RE,则该理想功率补偿值可以通过下式计算:
功率增强值=10*log 10(总端口数/CDM的长度)。
这种情况通常可以适用于端口数较多的时候,例如,端口数为8、12甚至更多。
若多个端口的参考信号之间仅存在资源的频分复用,例如,第一端口的参考信号和至 少一个第四端口中的每个第四端口的参考信号通过频分的方式复用相同的时域资源,则该理想功率补偿值可以通过下式计算:
功率增强值=10*log 10(总端口数)
这种情况通常可以适用于端口数较少的时候,例如,端口数为2、4甚至6。
为便于理解这种情况,下面结合附图详细说明。
图8示出了端口数为2时的一种可能的导频图样。如图8所示,port#0和port#1的参考信号通过频分的方式复用相同的时域资源,此时port#0和port#1的参考信号通过不同的频域资源来区分,此时该两端口的参考信号不需要通过正交覆盖码来区分,可以认为正交覆盖码的长度为1。假设port#0的参考信号占用的RE为RE#1,port#1的参考信号占用的RE为RE#2,RE#1和RE#2为同一符号上的两个RE,且RE#1和RE#2在port#0和port#1上都不用于承载数据或其他信号,因此,port#1上的RE#1处于空闲状态,port#0上的RE#2处于空闲状态。
当网络设备通过port#0发送参考信号时,port#1上的RE#1的功率可以借用给port#0上的RE#1,以用于发射port#0的参考信号;当网络设备通过port#1发送参考信号时,port#0上的RE#2的功率可以借用给port#1上的RE#2,以用于发射port#1的参考信号。也就是说,这两个端口可以互相借用对方处于空闲状态的RE上的功率。
并且,可以借用的功率可以通过公式:功率增强值=10*log 10(总端口数)计算得到,也就是10*log 102=3(dB)。当然随着总端口数的增加,这个功率增强值也是呈增加的趋势。例如,总端口数为4,则功率增强值=10*log 104=6(dB)。综上,在方法二中,该公式中的总端口数可以为网络设备当前调度的端口数,而不拘泥于导频图样中的最大端口数。由此公式计算得到的功率增强值可以称为理想功率增强值。例如,若当前调度的端口数为10,可以使用方法一中索引为3的导频图样,CDM的长度为4,但通过上述公式计算得到的理想功率增强值为4dB。
网络设备可以预先保存多个可选的功率增强值,在根据上述公式计算得到理想功率增强值之后,从多个可选的功率增强值中选择与理想功率增强值较为接近的值作为第一功率增强值。
表二中示出了多个可能的功率增强值。
表二
功率增强值 0 3 4.7 6 7 7.8 8.5 9
应理解,表二中仅为便于说明,列举了八个可能的功率增强值,但这不应对本申请构成任何限定,网络设备预先定义的功率增强值并不限于表二所示,另外,多个端口数可能对应相同的功率增强值,本申请对此并未特别限定。
网络设备在步骤210中根据当前调度的端口数以及正交覆盖码的长度确定了第一功率增强值之后,可以在步骤220中进一步根据第一功率增强值确定第一发射功率,并在步骤230中基于该第一发射功率发送第一参考信号。
应理解,网络设备基于发射功率发送参考信号的具体过程可以与现有技术相同,为了简洁,这里省略对网络设备基于第一发射功率发送第一参考信号的具体过程的说明。
与之对应地,终端设备在步骤230中接收到第一参考信号之后,便可以在步骤240中确定第一功率增强值。
在本申请实施例中,网络设备可以通过向终端设备发送指示信息的方式,向终端设备指示第一功率增强值。
可选地,该方法还包括:网络设备向终端设备发送第一功率增强值的指示信息。
可选地,该第一功率增强值的指示信息承载于以下任意一项中:RRC、MAC CE或者DCI。
在一种可能的实现方式中,该第一功率增强值的指示信息可以为该第一功率增强值的索引。
具体地,网络设备可以预先定义多个功率增强值,该多个功率增强值对应于各个可配置的导频图样的最优功率增强值。网络设备可以预先将多个功率增强值及其索引发送给终端设备,以便终端设备预先保存。网络设备在为第一端口确定了第一功率增强值之后,可以将该第一功率增强值的索引发送给终端设备,以便终端设备确定第一功率增强值。
表三中示出了多个可能的功率增强值与索引的对应关系。
表三
功率增强值的索引 0 1 2 3 4 5 6 7
功率增强值 0 3 4.7 6 7 7.8 8.5 9
应理解,表三种示出的功率增强值与索引的对应关系仅为示例性说明,不应对本申请构成任何限定。
还应理解,网络设备通过发送第一功率增强值的索引来通知终端设备第一功率增强值的方法也仅为一种可能的实现方式,而不应对本申请构成任何限定。
其后,终端设备在步骤250中根据第一功率增强值确定第一发射功率,进而在步骤260中,基于第一发射功率进行信道估计。
应理解,终端设备基于发射功率进行信道估计的具体过程可以与现有技术相同,为了简洁,这里省略对终端设备基于第一发射功率进行信道估计的具体过程的说明。
综上,方法二可以通过信令指示第一功率增强值,可以根据当前调度的实际端口数确定更准确的功率增强值,相比于方法一来说,带来了信令开销,但进一步提高了功率使用率,有利于提高信道估计的准确性,从而有利于提高数据传输的可靠性。
上文中描述的实施例是假设网络设备配置给各端口的发射功率是平均的,在有些情况下下,各端口间的功率分配并不是平均的,但仍然可以采用本申请提供的方法确定第一功率增强值。
首先,网络设备可以根据功率分配比例,确定各端口的初始发射功率。通过上文中的描述可以理解,功率增强值与预先配置的初始发射功率有关,初始发射功率的不同,功率增强值也不同。因此,网络设备可以根据由功率分配比例确定出的初始发射功率,确定第一功率增强值和第一发射功率。
举例来说,若当前调度的端口数为2,例如,包括第一端口和第二端口。第一端口与第二端口的初始发射功率的比值为2:1,且第一端口与第二端口的参考信号间并不是采用CDM复用资源,则第一端口可以从第二端口借用功率用于发射第一参考信号。但由于第一端口与第二端口的初始发射功率的比值为2:1,则该第一端口可以从第二端口借来相比于初始发射功率一半的功率,即功率增强值为10*log 101.5,即,1.76dB。而第二端口也可以从第一端口借用功率发送参考信号(例如,记作第二参考信号),该第二端口从第 一端口借来了相比于初始发射功率2倍的功率,即功率增强值为10*log 103,即,4.76dB。
网络设备可以将第一功率增强值通过指示信息(例如,上述第一功率增强值的指示信息)通知终端设备,也可以将功率分配比例通知给终端设备,由终端设备自行确定第一功率增强值。
若第一功率增强值属于网络设备预先保存的多个可选的功率增强值中的一个,例如,该计算得到的第一功率补偿值与预先保存的多个可选的功率增强值中的一个相同或者相接近,则该网络设备可以直接向终端设备发送该第一功率增强值的索引;若第一功率增强值不在网络设备预先保存的多个可选的功率增强值的范围内,例如,该计算得到的第一功率补偿值与预先保存的多个可选的功率增强值中的任意一个值都不相同或者接近,则网络设备可以直接向终端设备发送第一功率增强值,或者用于确定第一功率增强值的信息,例如第一功率增强值的量化值。或者,网络设备也可以向终端设备发送功率分配比例,或者用于确定功率分配比例的信息,例如功率分配比例的量化值,终端设备可以根据功率分配比例自行计算得到该第一功率增强值。
其中,功率分配比例可以用于确定第一参考信号的初始发射功率。通过上文中的描述可以理解,功率增强值与预先配置的初始发射功率有关,初始发射功率的不同,功率增强值也不同。因此,终端设备可以根据由功率分配比例确定出的初始发射功率,确定第一功率增强值和第一发射功率。
可选地,该方法还包括:
网络设备向终端设备发送第二功率增强值的指示信息。
具体地,网络设备除了从空闲端口借用功率来发送第一参考信号之外,还可以从承载数据的RE(为便于说明,以下记作数据RE)上借用功率。例如,当网络设备使用多个天线发送数据时,可以通过多天线增益来提高数据传输的可靠性,在这种情况下,第二RE的发射功率只要保证数据能够正确译码即可。在本申请实施例中,将从第二RE借用的发射功率记作第二功率增强值。
需要说明的是,数据RE可以为第一端口上的RE,也可以为其他端口上的RE,只要与用于承载第一参考信号的RE处于同一个符号上,便可以借用给第一端口用于发送第一参考信号。
因此,本申请实施例通过预先配置多个候选的功率增强值,根据当前调度的端口数为不同的端口数确定合适的功率增强值,并基于该功率增强值和初始发射功率发送参考信号,能够更大程度地利用功率,提高了功率的使用率,并且通过增大发射功率提高了信道估计的准确性,有利于提高数据传输的可靠性。
应理解,在本申请实施例中,第一RE和第二RE用于区分承载的信号,第一RE用于承载参考信号,第二RE用于承载数据,对于不同的端口,第一RE和第二RE分别对应的时频资源可能是不同的。
还应理解,第一、第二、第三、第四仅为用于区分不同的对象,例如,不同的端口、不同的参考信号等,而不应对本申请构成任何限定。
以上,结合图3至图7详细说明了本申请实施例的发送和接收参考信号的方法,以下,结合图9至图12详细说明本申请实施例的网络设备和终端设备。
图9是本申请实施例提供的网络设备10的示意性框图。如图9所示,该网络设备10 包括:处理模块11和收发模块12。
应理解,网络设备10可以对应于根据本申请实施例的发送和接收参考信号的方法200中的网络设备,该网络设备10可以包括用于执行图3中发送和接收参考信号的方法200的网络设备执行的方法的模块。并且,该网络设备10中的各模块和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法200的相应流程,具体地,处理模块11用于执行方法200中的步骤210,收发模块12用于执行方法200中的步骤220,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,网络设备10可以对应于本申请实施例的发送和接收参考信号的方法300中的网络设备,该网络设备可以包括用于执行图4中发送和接收参考信号的方法300的网络设备执行的方法的模块。并且,该网络设备10中的各模块和上述其他操作和/或功能分别为了实现图4中发送和接收参考信号的方法300的相应流程,具体地,处理模块11用于执行方法300中的步骤310和步骤320,收发模块12用于执行方法300中的步骤330,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
图10是本申请实施例提供的终端设备20的示意性框图。如图10所示,该终端设备20包括:收发模块21和处理模块22。
应理解,终端设备20可以对应于根据本申请实施例的发送和接收参考信号方法200中的终端设备,该终端设备20可以包括用于执行图3中发送和接收参考信号的方法200的终端设备执行的方法的模块。并且,该终端设备20中的各模块和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法200的相应流程,具体地,收发模块21用于执行方法200中的步骤220,处理模块22用于执行方法200中的步骤230和步骤240,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,终端设备20可以对应于根据本申请实施例的发送和接收参考信号方法300中的终端设备,该终端设备20可以包括用于执行图4中发送和接收参考信号的方法300的终端设备执行的方法的模块。并且,该终端设备20中的各模块和上述其他操作和/或功能分别为了实现图4中发送和接收参考信号的方法300的相应流程,具体地,收发模块21用于执行方法200中的步骤330,处理模块22用于执行方法200中的步骤340至步骤360,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
图11是本申请实施例提供的网络设备400的另一示意性框图。如图11所示,该网络设备400包括处理器410和收发器420,可选的,该网络设备400还包括存储器430。其中,处理器410、收发器420和存储器430之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器430用于存储计算机程序,该处理器410用于从该存储器430中调用并运行该计算机程序,以控制该收发器420收发信号。
上述处理器410和存储器430可以合成一个处理装置,处理器410用于执行存储器430中存储的程序代码来实现上述功能。具体实现时,该存储器430也可以集成在处理器410中,或者独立于处理器410。
上述网络设备还可以包括天线440,用于将收发器420输出的下行数据或下行控制信令通过无线信号发送出去。
具体地,该网络设备400可对应于根据本申请实施例的发送和接收参考信号的方法200中的网络设备,该网络设备400可以包括用于执行图3中发送和接收参考信号的方法200的网络设备执行的方法的模块。并且,该网络设备400中的各模块和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法200的相应流程,具体地,该存储器430用于存储程序代码,使得处理器410在执行该程序代码时,执行方法200中的步骤210,并控制该收发器420通过天线440执行方法200中的步骤220,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,该网络设备400可对应于根据本申请实施例的发送和接收参考信号的方法300中的网络设备,该网络设备400可以包括用于执行图4中发送和接收参考信号的方法300的网络设备执行的方法的模块。并且,该网络设备400中的各模块和上述其他操作和/或功能分别为了实现图4中发送和接收参考信号的方法300的相应流程,具体地,该存储器430用于存储程序代码,使得处理器410在执行该程序代码时,执行方法300中的步骤310和步骤320,并控制收发器420通过天线440执行方法300中的步骤330,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
图12是本申请实施例提供的终端设备500的另一示意性框图。如图12所示,该终端设备500包括处理器501和收发器502,可选地,该终端设备500还包括存储器503。其中,其中,处理器502、收发器502和存储器503之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器503用于存储计算机程序,该处理器501用于从该存储器503中调用并运行该计算机程序,以控制该收发器502收发信号。
上述处理器501和存储器503可以合成一个处理装置,处理器501用于执行存储器503中存储的程序代码来实现上述功能。具体实现时,该存储器503也可以集成在处理器501中,或者独立于处理器501。上述终端设备500还可以包括天线504,用于将收发器502输出的上行数据或上行控制信令通过无线信号发送出去。
具体地,该终端设备500可对应于根据本申请实施例的发送和接收参考信号的方法200中的终端设备,该终端设备500可以包括用于执行图3中发送和接收参考信号的方法200的终端设备执行的方法的模块。并且,该终端设备500中的各模块和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法200的相应流程,具体地,该存储器503用于存储程序代码,使得处理器501在执行该程序代码时,控制该收发器502通过天线504执行方法200中的步骤220,并执行方法200中的步骤230和步骤240,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,该终端设备500可对应于根据本申请实施例的发送和接收参考信号的方法300中的终端设备,该终端设备500可以包括用于执行图4中发送和接收参考信号的方法300的终端设备执行的方法的模块。并且,该终端设备500中的各模块和上述其他操作和/或功能分别为了实现图4中发送和接收参考信号的方法300的相应流程,具体地,该存储器503用于存储程序代码,使得处理器501在执行该程序代码时,控制该收发器502通过天线504执行方法300中的步骤330,并执行方法300中的步骤340至步骤360,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
上述处理器501可以用于执行前面方法实施例中描述的由终端内部实现的动作,而收发器502可以用于执行前面方法实施例中描述的终端向网络设备传输或者发送的动作。具 体请见前面方法实施例中的描述,此处不再赘述。
上述处理器501和存储器503可以集成为一个处理装置,处理器501用于执行存储器503中存储的程序代码来实现上述功能。具体实现时,该存储器503也可以集成在处理器501中。
上述终端设备500还可以包括电源505,用于给终端中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备500还可以包括输入单元506,显示单元507,音频电路508,摄像头509和传感器510等中的一个或多个,所述音频电路还可以包括扬声器5082,麦克风5084等。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B 这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种发送参考信号的方法,其特征在于,包括:
    网络设备确定用于发射参考信号的发射功率,所述发射功率与所述参考信号占用的RE上承载的端口数相关;
    所述网络设备基于所述发射功率发送所述参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一指示信息,所述第一指示信息指示所述RE在各端口上分配到的功率之和。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络设备确定用于发射参考信号的发射功率,包括:
    所述网络设备根据所述RE当前承载的端口数,确定用于发射所述参考信号的发射功率。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二指示信息,所述第二指示信息指示所述RE当前承载的端口数。
  5. 根据权利要求1或2所述的方法,其特征在于,所述网络设备确定用于发射参考信号的发射功率,包括:
    所述网络设备根据所述RE能够承载的最大端口数,确定用于发射所述参考信号的发射功率。
  6. 根据权利要求1或2所述的方法,其特征在于,所述网络设备确定用于发射参考信号的发射功率,包括:
    所述网络设备基于所述参考信号占用的RE在各端口分配到的功率比值,确定所述参考信号的发射功率;
    所述方法还包括:
    网络设备发送第三指示信息,所述第三指示信息指示所述功率比值。
  7. 一种接收参考信号的方法,其特征在于,包括:
    终端设备接收参考信号;
    所述终端设备确定所述参考信号的发射功率,所述发射功率与所述参考信号占用的资源粒RE承载的端口数相关;
    所述终端设备基于所述参考信号和所述发射功率进行信道估计。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一指示信息,所述第一指示信息指示所述RE在各端口上分配到的功率之和。
  9. 根据权利要求7或8所述的方法,其特征在于,所述终端设备确定所述参考信号的发射功率,包括:
    所述终端设备接收第二指示信息,所述第二指示信息指示所述RE当前承载的端口数;
    所述终端设备根据所述RE当前承载的端口数,确定所述参考信号的发射功率。
  10. 根据权利要求7或8所述的方法,其特征在于,所述终端设备确定所述参考信号 的发射功率,包括:
    所述终端设备根据所述RE能够承载的最大端口数,确定用于发射所述参考信号的发射功率。
  11. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第三指示信息,所述第三指示信息指示所述参考信号占用的RE在各端口分配到的功率比值;
    所述终端设备确定所述参考信号的发射功率,包括:
    所述网络设备基于所述功率比值确定所述参考信号的发射功率。
  12. 一种网络设备,其特征在于,包括:
    处理模块,用于确定用于发射参考信号的发射功率,所述发射功率与所述参考信号占用的RE上承载的端口数相关;
    收发模块,用于基于所述发射功率发送所述参考信号。
  13. 根据权利要求12所述的网络设备,其特征在于,所述收发模块还用于发送第一指示信息,所述第一指示信息指示所述RE在各端口上分配到的功率之和。
  14. 根据权利要求12或13所述的网络设备,其特征在于,所述处理模块具体用于根据所述RE当前承载的端口数,确定用于发射所述参考信号的发射功率。
  15. 根据权利要求14所述的网络设备,其特征在于,所述收发模块还用于发送第二指示信息,所述第二指示信息指示所述RE当前承载的端口数。
  16. 根据权利要求12或13所述的网络设备,其特征在于,所述处理模块具体用于根据所述RE能够承载的最大端口数,确定用于发射所述参考信号的发射功率。
  17. 根据权利要求12或13所述的网络设备,其特征在于,所述处理模块具体用于基于所述参考信号占用的RE在各端口分配到的功率比值,确定所述参考信号的发射功率;
    所述收发模块还用于发送第三指示信息,所述第三指示信息指示所述功率比值。
  18. 一种终端设备,其特征在于,包括:
    接收模块,用于接收参考信号;
    处理模块,用于确定所述参考信号的发射功率,所述发射功率与所述参考信号占用的资源粒RE承载的端口数相关;
    所述处理模块还用于基于所述参考信号和所述发射功率进行信道估计。
  19. 根据权利要求18所述的终端设备,其特征在于,所述收发模块还用于接收第一指示信息,所述第一指示信息指示所述RE在各端口上分配到的功率之和。
  20. 根据权利要求18或19所述的终端设备,其特征在于,所述收发模块还用于接收第二指示信息,所述第二指示信息指示所述RE当前承载的端口数;
    所述处理模块具体用于根据所述RE当前承载的端口数,确定所述参考信号的发射功率。
  21. 根据权利要求18或19所述的终端设备,其特征在于,所述处理模块具体用于根据所述RE能够承载的最大端口数,确定用于发射所述参考信号的发射功率。
  22. 根据权利要求18或19所述的终端设备,其特征在于,所述收发模块还用于接收第三指示信息,所述第三指示信息指示所述参考信号占用的RE在各端口分配到的功率比值;
    所述处理模块具体用于根据所述功率比值确定所述参考信号的发射功率。
PCT/CN2018/090547 2017-06-28 2018-06-11 发送和接收参考信号的方法、网络设备和终端设备 WO2019001248A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18824469.3A EP3595225B1 (en) 2017-06-28 2018-06-11 Reference signal sending method and network device
US16/683,935 US10932206B2 (en) 2017-06-28 2019-11-14 Reference signal sending and receiving method, network device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710510526.8A CN109150477B (zh) 2017-06-28 2017-06-28 发送和接收参考信号的方法、网络设备和终端设备
CN201710510526.8 2017-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/683,935 Continuation US10932206B2 (en) 2017-06-28 2019-11-14 Reference signal sending and receiving method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2019001248A1 true WO2019001248A1 (zh) 2019-01-03

Family

ID=64740960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090547 WO2019001248A1 (zh) 2017-06-28 2018-06-11 发送和接收参考信号的方法、网络设备和终端设备

Country Status (4)

Country Link
US (1) US10932206B2 (zh)
EP (1) EP3595225B1 (zh)
CN (1) CN109150477B (zh)
WO (1) WO2019001248A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417183B (zh) * 2019-01-07 2023-05-05 中国移动通信有限公司研究院 一种导频功率提升方法、网络设备和存储介质
CN114826525A (zh) * 2019-01-11 2022-07-29 华为技术有限公司 发送和接收指示的方法和装置
WO2020237612A1 (en) * 2019-05-31 2020-12-03 Qualcomm Incorporated Csi report configuration for full-duplex communications
US20220417867A1 (en) * 2019-07-22 2022-12-29 Ntt Docomo, Inc. Terminal and communication method
CN112449413B (zh) * 2019-08-29 2023-05-09 中国移动通信有限公司研究院 功率指示方法、确定方法、装置、网络侧设备及终端
WO2021097625A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 信道确定的方法和通信装置
EP4216618A4 (en) * 2020-09-18 2024-06-12 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING DMRS AS WELL AS TERMINAL DEVICE AND MEDIUM
EP4277383A4 (en) * 2021-01-25 2024-03-13 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR POWER CONTROL
CN116437391A (zh) * 2021-12-31 2023-07-14 华为技术有限公司 一种通信方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088759A (zh) * 2009-12-03 2011-06-08 中兴通讯股份有限公司 一种下行功率控制的系统及方法
CN105490787A (zh) * 2014-09-15 2016-04-13 中兴通讯股份有限公司 下行导频的发送方法、检测方法、装置及基站、终端
CN106255190A (zh) * 2015-12-31 2016-12-21 北京智谷睿拓技术服务有限公司 功率控制方法及功率控制装置
US20170118665A1 (en) * 2014-04-29 2017-04-27 Lg Electronics Inc. Method for performing measurement in wireless communication system and apparatus therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297153B (zh) * 2012-02-28 2015-12-09 华为技术有限公司 功率测量方法、信号测量方法和设备
CN105812106B (zh) * 2014-12-31 2019-05-24 华为技术有限公司 传输上行数据的方法和装置
US10903958B2 (en) * 2015-06-19 2021-01-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting reference signal in wireless communication system
US10727967B2 (en) * 2015-08-20 2020-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods therein for performing and handling superposed transmissions in a wireless communications network
KR20170053338A (ko) * 2015-11-06 2017-05-16 삼성전자주식회사 통신 시스템에서 기준신호를 송신하는 방법 및 장치
CN109478974B (zh) * 2016-11-09 2022-03-29 Lg 电子株式会社 在无线通信系统中用于无线通信的方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088759A (zh) * 2009-12-03 2011-06-08 中兴通讯股份有限公司 一种下行功率控制的系统及方法
US20170118665A1 (en) * 2014-04-29 2017-04-27 Lg Electronics Inc. Method for performing measurement in wireless communication system and apparatus therefor
CN105490787A (zh) * 2014-09-15 2016-04-13 中兴通讯股份有限公司 下行导频的发送方法、检测方法、装置及基站、终端
CN106255190A (zh) * 2015-12-31 2016-12-21 北京智谷睿拓技术服务有限公司 功率控制方法及功率控制装置

Also Published As

Publication number Publication date
US20200084732A1 (en) 2020-03-12
EP3595225A4 (en) 2020-04-08
EP3595225B1 (en) 2022-03-02
CN109150477A (zh) 2019-01-04
EP3595225A1 (en) 2020-01-15
CN109150477B (zh) 2023-10-24
US10932206B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2019001248A1 (zh) 发送和接收参考信号的方法、网络设备和终端设备
US20230208606A1 (en) Methods and apparatuses for demodulation reference signal configuratio
US11736170B2 (en) Data transmission method, terminal device, and network device
JP2023071663A (ja) 超高信頼性低遅延通信のための繰り返し
EP2774438B1 (en) Dmrs arrangements for coordinated multi-point communication
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
US20120281646A1 (en) Signaling Methods for UE-Specific Dynamic Downlink Scheduler in OFDMA Systems
WO2019136723A1 (zh) 上行数据传输方法及相关设备
CN111357361B (zh) 信息传输的方法和通信设备
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
KR102230746B1 (ko) 통신 방법, 네트워크 디바이스, 단말 디바이스, 컴퓨터 판독 가능형 저장 매체, 컴퓨터 프로그램 제품, 프로세싱 장치 및 통신 시스템
CN111937319B (zh) 通信方法、通信装置和系统
US9337978B2 (en) Sequence derivation for reference signal patterns
WO2019096232A1 (zh) 通信方法和通信装置
US11212031B2 (en) Methods and apparatus for communication of a DCI
WO2019137299A1 (zh) 通信的方法和通信设备
CN109996339B (zh) 一种通信方法及装置
CN111193581B (zh) 发送和接收物理下行控制信道的方法以及通信装置
CN114902774A (zh) 一种确定参考信号的方法及装置
WO2022205022A1 (zh) 用于传输参考信号的方法和装置
WO2022147735A1 (zh) 确定发送功率的方法及装置
CN114391231B (zh) 一种通信方法及通信装置
WO2024000607A1 (en) Method and apparatus for reference signal port resource configuration
WO2020087501A1 (en) Interleaving pattern based noma technology
CN117792588A (zh) 发送和接收参考信号的方法、通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018824469

Country of ref document: EP

Effective date: 20191011

NENP Non-entry into the national phase

Ref country code: DE