WO2019000983A1 - 液晶镜片和液晶眼镜 - Google Patents

液晶镜片和液晶眼镜 Download PDF

Info

Publication number
WO2019000983A1
WO2019000983A1 PCT/CN2018/076965 CN2018076965W WO2019000983A1 WO 2019000983 A1 WO2019000983 A1 WO 2019000983A1 CN 2018076965 W CN2018076965 W CN 2018076965W WO 2019000983 A1 WO2019000983 A1 WO 2019000983A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
substrate
lens
layer
Prior art date
Application number
PCT/CN2018/076965
Other languages
English (en)
French (fr)
Inventor
王倩
陈小川
赵文卿
陈祯祐
王海燕
李忠孝
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/301,860 priority Critical patent/US11067833B2/en
Publication of WO2019000983A1 publication Critical patent/WO2019000983A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Definitions

  • the present disclosure relates to the field of liquid crystal display technology, and specifically discloses liquid crystal lenses and liquid crystal glasses.
  • liquid crystal glasses have appeared.
  • the liquid crystal changes its order under the voltage driving tube, thereby changing the focal length of the lens.
  • natural light contains randomly polarized light
  • a four-layer cylindrical lens or a two-layer circular lens is usually required. Therefore, in general, liquid crystal glasses are produced by means of a circular lens. This results in a box thickness that is too heavy, a heavy and awkward device, and a high level of process requirements.
  • a liquid crystal lens includes: a first substrate and a second substrate disposed opposite to each other; a liquid crystal layer between the first substrate and the second substrate; and an electrode unit including the first electrode and the second electrode. At least one of the first electrode and the second electrode includes a ring electrode. The first electrode is located on a side of the first substrate facing the second substrate, and the second electrode is located on a side of the second substrate facing the first substrate. Under the action of the first electrode and the second electrode, the liquid crystal in the liquid crystal layer further forms a Fresnel lens with adjustable focal length.
  • the first electrode includes a first common electrode and a first pixel electrode, wherein the first pixel electrode is a ring electrode, and the first common electrode is a planar electrode.
  • the second electrode includes a second common electrode and a second pixel electrode, wherein the second pixel electrode is a ring electrode, and the second common electrode is a planar electrode.
  • the liquid crystal in the liquid crystal layer is a nematic liquid crystal or a smectic liquid crystal.
  • the first pixel electrode includes a plurality of concentric, spaced-apart first ring electrodes, and the distance between adjacent ones of the first ring electrodes is equal.
  • the second pixel electrode includes a plurality of concentric, spaced apart second ring electrodes that are in one-to-one correspondence with the first ring electrode, and the distance between adjacent ones of the second ring electrodes is equal.
  • the liquid crystal lens further includes: a plurality of first annular spacers disposed on a side of the first substrate facing the second substrate; and an interval disposed on the second substrate a plurality of second annular spacers on one side of the first substrate.
  • the liquid crystal in the liquid crystal layer is configured to form a liquid crystal retardation amount curve under the action of the first electrode and the second electrode, and the liquid crystal retardation amount curve includes a plurality of peak-valley falling sections and a plurality of Valley-peak rising section.
  • each of the plurality of first annular spacers and the plurality of second annular spacers is disposed at a peak-to-valley descending section or a valley-peak rising section to form a convex phenanthrene Nyer lens or concave Fresnel lens.
  • the liquid crystal lens further includes: a first alignment film disposed on a side of the first substrate next to the liquid crystal layer, and a second alignment substrate disposed adjacent to the liquid crystal layer a second alignment film on one side, wherein an orientation direction of the first alignment film and an orientation direction of the second alignment film are perpendicular to each other.
  • the first electrode comprises a first pixel electrode, wherein the first pixel electrode is a ring electrode; and the second electrode comprises a second common electrode, wherein the second common electrode It is a planar electrode.
  • the liquid crystal in the liquid crystal layer is a blue phase liquid crystal.
  • the first pixel electrode includes a plurality of concentric, spaced-apart first ring electrodes, wherein distances between adjacent ones of the first ring electrodes are equal.
  • the liquid crystal lens further includes a plurality of annular spacers spaced apart on a side of the first substrate facing the second substrate.
  • the liquid crystal in the liquid crystal layer is configured to form a liquid crystal retardation amount curve under the action of the first electrode and the second electrode, and the liquid crystal retardation amount curve includes a plurality of peak-valley falling sections and a plurality of Valley-peak rising section.
  • each of the annular spacers is disposed at a peak-valley drop section or a valley-peak rise section such that a convex Fresnel lens or a concave Fresnel lens is formed.
  • the shape of the first ring electrode is circular or elliptical.
  • the first substrate comprises a first substrate
  • the second substrate comprises a second substrate
  • the first substrate and the second substrate are transparent flexible substrates.
  • the liquid crystal lens further includes: an electrochromic layer and a third electrode sequentially disposed on a side of the second substrate away from the liquid crystal layer, wherein the electrochromic layer is configured to be An emotional pattern is formed in the case where the third electrode is applied with a voltage.
  • the third electrode comprises a plurality of block sub-electrodes distributed in an array.
  • the electrochromic layer comprises a tungsten trioxide layer and an electrolyte layer.
  • liquid crystal glasses comprising the liquid crystal lens described in any of the above embodiments.
  • the liquid crystal glasses further include a sensing unit and a control unit.
  • the sensing unit includes a plurality of distance sensors, wherein each of the distance sensors is coupled to the control unit for detecting a distance between the distance sensor and a human eye, and transmitting the distance to the control unit.
  • the control unit is configured to calculate a focal length of the human eye according to the distance, and calculate a magnitude of a voltage to be supplied to the first electrode and the second electrode according to a focal length of the human eye, thereby adjusting a Fresnel lens. focal length.
  • the liquid crystal glasses further comprise a detector.
  • the detector is for detecting a physiological state of a human body and feeding it back to the control unit.
  • the control unit controls the liquid crystal lens to display an emotional pattern corresponding to the physiological state according to the physiological state of the feedback of the detector.
  • FIG. 1 is a cross-sectional view of a liquid crystal lens in accordance with an embodiment of the present disclosure
  • Figure 2 is a plan view of a ring electrode in the liquid crystal lens shown in Figure 1;
  • Figure 3 is a cross-sectional view showing a horizontal electric field formed in the vicinity of a first substrate in the liquid crystal lens shown in Figure 1;
  • Figure 4 is a cross-sectional view showing a horizontal electric field formed in the vicinity of a second substrate in the liquid crystal lens shown in Figure 1;
  • FIG. 5 is a schematic diagram of an equivalent principle of a Fresnel lens according to an embodiment of the present disclosure
  • FIG. 6 is a computational explanatory diagram of a Fresnel lens according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of refractive calculation of a Fresnel lens according to an embodiment of the present disclosure.
  • FIGS. 8A and 8B are schematic diagrams showing a liquid crystal retardation curve of a liquid crystal lens according to an embodiment of the present disclosure
  • Figure 9 is a schematic view of a spacer disposed corresponding to the liquid crystal retard amount of the liquid crystal lens of Figure 8A;
  • FIG. 10 is a cross-sectional view of a liquid crystal lens according to another embodiment of the present disclosure.
  • 11A is a schematic diagram of an optical refractive index of a blue phase liquid crystal according to another embodiment of the present disclosure.
  • 11B is a schematic diagram of a liquid crystal lens under an electric field according to another embodiment of the present disclosure.
  • FIG. 12 is a structural block diagram of liquid crystal glasses according to still another embodiment of the present disclosure.
  • FIGS. 13A and 13B are schematic diagrams of liquid crystal glasses for adjusting for different astigmatism degrees, respectively, according to still another embodiment of the present disclosure
  • FIG. 16 is a top plan view of a third electrode in a liquid crystal lens in accordance with yet another embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of an emotional pattern in a liquid crystal lens according to still another embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of an emotional pattern in liquid crystal glasses according to other embodiments of the present disclosure.
  • FIG. 19 is a structural block diagram of liquid crystal glasses according to other embodiments of the present disclosure.
  • liquid crystal lens and the liquid crystal glasses provided by the present disclosure will be further described in detail below with reference to the accompanying drawings and specific embodiments.
  • the present application provides a liquid crystal lens equivalent to a Fresnel lens, and a corresponding liquid crystal glasses.
  • the liquid crystal lens includes an electrode unit and a liquid crystal layer, wherein the liquid crystal in the liquid crystal layer forms a Fresnel lens with an adjustable focal length under the action of the electrode unit.
  • a liquid crystal lens that is functionally equivalent to a Fresnel lens is provided.
  • the focal length of the glasses can be flexibly adjusted according to the demand, thereby obtaining a pair of glasses that can be worn permanently.
  • the liquid crystal lens includes a first substrate 1 and a second substrate 2 which are oppositely disposed, a liquid crystal layer 3 disposed between the first substrate 1 and the second substrate 2, and an electrode unit.
  • the electrode unit includes a first electrode and a second electrode, wherein at least any of the first electrode or the second electrode includes a ring electrode.
  • the first electrode is located on a side of the first substrate 1 facing the second substrate, and the second electrode is located on a side of the second substrate facing the first substrate 1 .
  • a circular pixel electrode and a common electrode of the entire surface are used.
  • the first electrode includes a first common electrode 12 and a first pixel electrode 14, wherein a first insulating layer 13 is further disposed between the first common electrode 12 and the first pixel electrode 14.
  • the first pixel electrode 14 is a ring electrode
  • the first common electrode 12 is a planar electrode.
  • the first electric field formed by the first pixel electrode 14 and the first common electrode 12 is a horizontal electric field.
  • the second electrode includes the second common electrode 22 and the second pixel electrode 24, and a second insulating layer 13 is further disposed between the second common electrode 22 and the second pixel electrode 24.
  • the second pixel electrode 24 is a ring electrode
  • the second common electrode 22 is a planar electrode. Based on this, the second electric field formed by the second pixel electrode 24 and the second common electrode 22 is a horizontal electric field.
  • the liquid crystal in the liquid crystal layer 3 is a nematic liquid crystal or a smectic liquid crystal.
  • the ring electrode includes a plurality of concentric ring electrodes. That is, the first pixel electrode 14 includes a plurality of concentric, spaced apart first ring electrodes, wherein the distance between adjacent first ring electrodes is equal.
  • the second pixel electrode 24 includes a plurality of concentric, spaced apart second ring electrodes disposed corresponding to the first ring electrodes, wherein the distance between adjacent second ring electrodes is equal.
  • both the first pixel electrode 14 and the second pixel electrode 24 are in the form of concentric ring electrodes to facilitate control of the distribution of the liquid crystal.
  • first ring electrode and the second ring electrode are in the shape of a ring or an elliptical ring.
  • the first substrate 1 further includes a plurality of first thin film transistors, wherein an output electrode of each of the first thin film transistors is connected to a first ring electrode.
  • the second substrate may also include a plurality of second thin film transistors, wherein an output electrode of each of the second thin film transistors is connected to a second ring electrode.
  • the thin film transistor is used as a control element for controlling the liquid crystal shift in the first substrate 1 and the second substrate. Thereby, the liquid crystal is deflected by the electric field, thereby controlling the direction of the light.
  • the first substrate 1 further includes a first alignment film disposed next to the liquid crystal layer 3; meanwhile, the second substrate further includes a second alignment film disposed next to the liquid crystal layer 3, wherein The orientation direction of one of the alignment films and the orientation direction of the second alignment film are perpendicular to each other.
  • the liquid crystal lens (specifically, the first and second alignment films) may be disposed such that the liquid crystal is oriented perpendicular to the paper surface near the second substrate 2; and at the same time, close to the first substrate 1 The place where the liquid crystal is oriented along the paper.
  • the liquid crystal in the vicinity of the upper and lower substrates, the liquid crystal is initially vertically aligned. That is, the liquid crystal molecules in the liquid crystal layer 3 close to the first substrate 1 are oriented in a direction parallel to the plane of the paper, and the liquid crystal molecules in the liquid crystal layer 3 close to the second substrate 2 are oriented in a direction perpendicular to the plane of the paper.
  • the liquid crystal layer 3 is a single layer liquid crystal cell.
  • the first alignment film and the second alignment film have mutually perpendicular alignment directions, in the initial case, the liquid crystals in the upper and lower portions of the entire liquid crystal layer will be oriented in different forms, that is, perpendicular to each other.
  • the fixed arrangement of the first electrode and the second electrode with respect to the human eye is not required.
  • the first electrode can be placed closer to the human eye, or the second electrode can be placed closer to the human eye, wherein the positions of both of them can be interchanged.
  • the liquid crystal is controlled by the electrode unit to form an equivalent Fresnel lens.
  • the original cell thickness can be reduced, which is advantageous for thinning and thinning the device.
  • such liquid crystal lenses are more practical and the preparation process is also simpler.
  • glasses having different modes for example, different focal lengths
  • the first substrate 1 includes a first substrate 11, and the second substrate includes a second substrate, wherein the first substrate 11 and the second substrate 21 are transparent flexible substrates.
  • the flexible substrate structure is more suitable for human eye wear.
  • FIG. 3 is a cross-sectional view of the liquid crystal lens when a horizontal electric field is formed in the vicinity of the upper first substrate 1. Specifically, initially, the orientation direction of the liquid crystal molecules is perpendicular to the paper surface due to the presence of the first alignment film. However, under the action of the first electric field, a portion of the liquid crystal layer 3 adjacent to the first substrate will be deflected in-plane, thereby being oriented in the direction of the horizontal first electric field.
  • FIG. 4 is a cross-sectional view of the liquid crystal lens when a horizontal electric field is formed in the vicinity of the lower second substrate. Specifically, initially, due to the presence of the second alignment film, the alignment direction of the liquid crystal molecules is parallel to the paper surface.
  • the slope angle of the nth arc surface in the Fresnel lens can be calculated from the deflection angle ⁇ Specifically, according to Figure 7, if the incident angle is selected as (The angle of incidence here is seen from the direction of the eye) and the angle of emergence is Then follow the law of refraction:
  • n1 is the refractive index of the liquid crystal lens material
  • n2 is the refractive index of air
  • the liquid crystal lens further includes a spacer 5, 5', for example, a spacer 5 (also referred to as a first spacer) formed on an upper side of the second substrate, and formed on the first substrate A spacer 5' on the underside of the lower side (also referred to as a second spacer).
  • the plurality of spacers 5, 5' are disposed at annular intervals, and each of the spacers 5, 5' corresponds to a liquid crystal retardation curve generated by the liquid crystal in the liquid crystal layer under the action of an electric field formed by the electrode unit.
  • the peak or valley drop section or the valley peak rise section Based on this, a convex Fresnel lens or a concave Fresnel lens can be formed.
  • the retardation curve of the liquid crystal under the electric field can be simulated according to the set electrode position and the nature of the liquid crystal used.
  • the liquid crystal retardation curve is corrected by the arrangement of the spacers 5, 5', thereby obtaining a vertical curve change equivalent to a concave lens or a convex lens effect and a different type of lens model.
  • the voltage required for the second pixel electrode 24 is simulated by software.
  • the horizontal electric field drives the liquid crystal deflection, and forms a liquid crystal deflection as shown in the upper portion of FIG. 8A and a liquid crystal retardation amount curve shown in the lower portion of FIG. 8A (wherein the abscissa direction is the position, and the ordinate direction is the liquid crystal retard amount amplitude).
  • the left half lens effect of the convex Fresnel lens it is necessary to correct the liquid crystal retardation curve so that the liquid crystal retardation curve retains the left inclined portion and the other side changes vertically.
  • the spacer 5 as shown in the lower part of FIG. 9 is employed such that the spacer 5 blocks the right inclined portion and retains the left inclined portion.
  • the retardation curve is caused to vary vertically, and finally the left half effect of the convex Fresnel lens as shown by the dashed line in Fig. 9 is obtained.
  • the left inclined portion should be blocked by providing the spacer 5, and the right inclined portion is retained, thereby realizing the overall convex Fresnel lens effect, which is required for the lens of the eye. Model matching.
  • the design of the concave lens model can be similarly accomplished with reference to the convex lens model to achieve an overall concave Fresnel lens effect that matches the lens model required by the eye.
  • FIGS. 8A and 8B the cross-sectional view is taken as an example, so a description of the two-dimensional space is employed.
  • the spacers 5 due to the presence of the ring electrodes, the spacers 5 have a structure arranged in an annular interval and correspond to a corresponding peak-to-valley drop section or valley peak rise section of the liquid crystal retardation amount curve.
  • FIGS. 8A and 8B represent adjustment of different degrees.
  • Fig. 8A represents a height number of glasses, which requires a large voltage (e.g., 10 V) to drive the liquid crystal, thereby obtaining a large retardation difference (1400 nm) which corresponds to a large tilt angle (poll angle) of the lens.
  • FIG. 8B represents low-degree glasses, which requires a small voltage (such as 5 V) to drive the liquid crystal, thereby obtaining a smaller retardation difference (400 nm), which corresponds to a smaller tilt angle of the lens (pore angle) ).
  • the effect of forming a two-layer Fresnel liquid crystal lens through a single-layer liquid crystal cell is particularly suitable for producing liquid crystal glasses.
  • the electric field is adjustable, it can be varied for different visions of the human eye. In this way, various vision problems such as myopia, hyperopia, astigmatism, presbyopia, and the like are solved, and glasses that can be worn permanently are provided, which frees people from the trouble of changing glasses.
  • a liquid crystal lens equivalent to a Fresnel lens which can flexibly adjust the eyeglass focal length as needed, thereby achieving realization of a pair of glasses that can be permanently worn.
  • the first electrode includes a first pixel electrode 14, wherein the first pixel electrode 14 is a ring electrode.
  • the second electrode includes a second common electrode 22, wherein the second common electrode 22 is a planar electrode.
  • the electric field formed by the first pixel electrode 14 and the second common electrode 22 is a vertical electric field
  • the liquid crystal in the liquid crystal layer 3 is a blue phase liquid crystal.
  • FIG. 11A shows the refractive index characteristics of the blue phase liquid crystal.
  • the incident light enters the blue phase liquid crystal vertically upward, since the plane of the polarization state is perpendicular to the direction of propagation of the light, the polarization state coincides with the no plane. In the no face, regardless of the direction of the polarization state, its refractive index in the no face is equal to no. It can be seen that when light is incident in such a direction, the liquid crystal lens formed by the blue phase liquid crystal will be independent of the polarization state of the incident light.
  • Fig. 11B shows the variation of the distribution of the blue phase liquid crystal with the electrode under the action of an electric field, wherein the closer to the central ring electrode, the greater the tensile deformation of the liquid crystal molecules.
  • the first pixel electrode 14 includes a plurality of concentric, spaced-apart first ring electrodes, wherein the distance between adjacent first ring electrodes is equal.
  • the first pixel electrode 14 employs concentric ring electrodes to control the distribution of the liquid crystal.
  • the first substrate 1 further includes a plurality of first thin film transistors, wherein an output electrode of each of the first thin film transistors is connected to a first ring electrode.
  • the thin film transistor serves as a control element for controlling the liquid crystal shift in the first substrate 1, so that the liquid crystal is deflected by the electric field, so that the direction of the light can be controlled.
  • the liquid crystal lens is formed using a blue phase liquid crystal, thereby achieving complete modulation of natural light.
  • the use of a multi-layer liquid crystal cell is avoided, making the device light and thin.
  • the principle that the liquid crystal lens forms an equivalent Fresnel lens is the same as the principle that the liquid crystal lens of Embodiment 1 forms an equivalent Fresnel lens, and can refer to FIG. 5 at the same time, and will not be described in detail herein.
  • a refractive index change similar to a lens will be produced under the action of a gradient gradual vertical electric field.
  • a liquid crystal lens can also be applied to light of any polarization state, so that the liquid crystal lens is free from dependence on the polarization state of the incident light.
  • the liquid crystal lens unit if the liquid crystal forms a convex lens, the voltage at the intermediate position is small and the voltage at both positions is large. At this time, the blue phase liquid crystal will generate a Kerr effect under the action of an electric field, as shown in formula (4):
  • the shape of the first ring electrode is a ring or an elliptical ring.
  • a blue phase liquid crystal is used to form a concentric circle structure of a Fresnel lens under the action of a vertical electric field, which is particularly suitable for producing single-layer liquid crystal glasses.
  • the electric field is adjustable in size, it can be applied to different visual changes of the human eye.
  • various vision problems such as myopia, hyperopia, astigmatism, presbyopia, and the like are solved, and glasses that can be permanently worn are provided, so that people get rid of the trouble of changing glasses.
  • the liquid crystal lens in the present embodiment, can effectively reduce the thickness of the liquid crystal cell, and the device is thinned. Therefore, it is more practical and the process is simpler.
  • a liquid crystal glasses is further provided.
  • the liquid crystal glasses include the liquid crystal lens described in any of the above embodiments. Since the focal length of the glasses can be flexibly adjusted according to requirements, the liquid crystal glasses can be permanently worn and adapted to applications in different scenarios.
  • the substrate plane of the liquid crystal lens is the same as the plane of the glasses.
  • the liquid crystal glasses further include a sensing unit 102 and a control unit 103.
  • the sensing unit 102 includes a plurality of distance sensors, wherein each distance sensor is coupled to the control unit 103 for detecting a distance between the distance sensor and the human eye and transmitting the distance to the control unit 103.
  • control unit 103 is configured to determine the focal length of the human eye based on the distance between the sensing unit 102 and the human eye, and further calculate the magnitude of the voltage to be supplied to the electrode unit according to the focal length of the human eye, thereby adjusting the focal length of the Fresnel lens.
  • the liquid crystal lens 101 will match the patient's vision. Taking the usual myopia as an example, the liquid crystal lens 101 will form a concave lens effect. Corresponding to this, in the case of far vision, the liquid crystal lens 101 will form a convex lens. In both cases, it is necessary to adjust different electrode voltages for different degrees so that the liquid crystal lens produces different curvatures. Further, if the degree of the user's glasses changes, it is only necessary to perform the optometry for the new degree, and thereby adjust the voltage of the liquid crystal glasses.
  • the human eye may also have astigmatism.
  • astigmatism is a phenomenon in which the focal positions in two perpendicular directions in the plane of the lens are different. In such a case, the circular lens cannot be simply used, but the curvature of the lens needs to be additionally corrected.
  • the liquid crystal lens 101 can be formed as a toroidal lens.
  • a lenticular correction may be performed using a cylindrical lens or a toroidal lens as shown in FIG. 13A.
  • the distance vision or myopia glasses can be further adjusted according to the patient's astigmatism. For example, assuming that the human eye has 200 degrees of hyperopia and 100 degrees of astigmatism, as shown in FIG. 13B, the degree of glasses in one direction can be increased by 100 degrees.
  • the elasticity of the eyeball will become smaller, so it is impossible to self-adjust to achieve focus.
  • multifocal glasses are required to achieve the adjustment.
  • the electrode voltage By appropriately adjusting the electrode voltage, the focal length of the lens can be changed to suit the needs of the patient at different ages.
  • the sensor can be used to measure the distance between the human eye and the sensor in real time and convert it into the focal length of the human eye for real-time adjustment.
  • the electrochromic layer 42 and the electrolyte layer 41 may be sequentially disposed on the side of the second substrate away from the liquid crystal layer 3.
  • a third electrode 43 Specifically, a third electric field, which is a vertical electric field, is formed by the third electrode 43 and the second common electrode 22. At this time, the electrochromic layer 42 can be formed into an emotional pattern by means of the third electric field.
  • electrochromic refers to a phenomenon in which the optical properties (eg, reflectance, transmittance, absorptivity, etc.) of a material undergo a stable, reversible change under the action of an applied electric field. Such changes appear in appearance as reversible changes in color and transparency.
  • a material having electrochromic properties may be referred to as an electrochromic material.
  • an emotional pattern of different colors or graphics may be formed, thereby providing an emotional expression or entertainment effect.
  • the first pixel electrode 14 in the first substrate 1 employs a ring electrode
  • the second common electrode 22 in the second substrate 2 employs a full-surface electrode, wherein the first substrate 1 and the second substrate pass through
  • the electrodes in the substrate 2 form a vertical electric field, thereby controlling the liquid crystal layer 3.
  • the second common electrode 22 in the second substrate is shared by the liquid crystal layer 3 and the electrochromic layer 42, wherein a vertical electric field is formed by the second substrate 2 and the third substrate 4, thereby controlling the electrochromic material.
  • sub-electrodes in an array form or a graphic form may be employed.
  • a more diverse pattern can be represented by the array type sub-electrodes.
  • the array electrode is designed to have a micron-sized size and also includes an electrochromic material that matches the three colors, more colors can be mixed, thereby enriching the displayed pattern.
  • the third electrode 43 is a plurality of block-shaped sub-electrodes distributed in an array.
  • ions in the electrolyte layer 41 are controlled to be injected into or extracted from the electrochromic layer 42 by the third electric field, and the electrochromic layer 42 is in a region corresponding to the different sub-electrodes 42.
  • Different colors or graphics will be formed to ultimately form a matching emotional pattern, such as the pattern shown in FIG.
  • the electrochromic material in the electrochromic layer 42 comprises tungsten trioxide WO3.
  • the metal cations in the electrolyte layer 41 are injected into the tungsten trioxide material, thereby causing the electrochromic material to become blue.
  • the metal cations in the electrolyte layer 41 are extracted from the tungsten trioxide material, thereby causing the electrochromic material to become colorless and transparent. It can be seen that by controlling the third electric field formed by the second common electrode 22 and the third electrode 43, different patterns can be formed by means of the electrochromic layer 42.
  • the third substrate 44 may be a transparent flexible substrate suitable for human eye wear.
  • the corresponding image can be displayed on the liquid crystal glasses in accordance with the human eye intake information. For example, when a person sees something he likes, he or she can send out a message expressing joy.
  • the liquid crystal glasses including the liquid crystal lens can also serve as an entertainment product.
  • a liquid crystal glasses is also provided.
  • the liquid crystal glasses include the liquid crystal lenses described in any of the above embodiments. Since the focal length of the glasses can be flexibly adjusted according to requirements, the liquid crystal glasses can be permanently worn and adapted to applications in different scenarios.
  • the sensing unit 102 and the control unit 103 may be further included, wherein the sensing unit 102 includes a plurality of distance sensors, and each distance sensor is connected to the control unit 103. For detecting the distance between the distance sensor and the human eye, and transmitting the distance to the control unit 103. Further, the control unit 103 is configured to determine the focal length of the human eye based on the distance between the sensing unit 102 and the human eye, and calculate the magnitude of the voltage to be supplied to the electrode unit according to the focal length of the human eye, thereby adjusting the focal length of the Fresnel lens. In such a case, by the configuration of the distance sensor and the control unit 103, automatic ranging can be achieved, and different voltages are applied to the electrodes according to different applications.
  • the liquid crystal glasses may further include a detector 104 as shown in FIG.
  • the detector 104 is used to detect the physiological state of the human body and feed it back to the control unit. Further, the control unit 103 controls the liquid crystal lens to display an emotional pattern corresponding to the physiological state according to the physiological state fed back by the detector 104. In this manner, by providing the detector 104 for collecting emotion information, the electrochromic layer can display the corresponding emotion in real time.
  • the detector 104 can include a camera, as well as an optional pulse monitor or heart rate monitor.
  • a pattern expressing the emotion can be displayed, for example, a smile or a crying face expressing joy or sadness is displayed, for example, The pattern shown in Fig. 18.
  • the adjustment function and the emotion expression function of the planar second common electrode are independent, respectively.
  • liquid crystal glasses In the liquid crystal glasses according to the current embodiment, a patterned electrochromic material is deposited on the liquid crystal lens, thereby obtaining liquid crystal glasses having an image display function. For example, when you see something you like, you can send out a message that expresses your mood. In this way, the glasses are a functional product that can feedback the mood or needs of the wearer in real time. In addition, it also adds an entertainment function to the LCD glasses.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

公开了一种液晶镜片和液晶眼镜,涉及液晶显示技术领域。液晶镜片包括:相对设置的第一基板(1)和第二基板(2);位于第一基板(1)和第二基板(2)之间的液晶层(3);以及包括第一电极和第二电极的电极单元。第一电极和第二电极中的至少一个包括环形电极(14,24)。第一电极位于第一基板(1)朝向第二基板(2)的一侧,并且第二电极位于第二基板(2)朝向第一基板(1)的一侧。在第一电极和第二电极的作用下,液晶层(3)中的液晶进一步形成焦距可调的菲涅尔透镜。

Description

液晶镜片和液晶眼镜
对相关申请的交叉引用
本申请要求2017年6月30日提交的中国专利申请号201710526682.3的优先权,该中国专利申请以其整体通过引用并入本文。
技术领域
本公开涉及液晶显示技术领域,并且具体地公开了液晶镜片和液晶眼镜。
背景技术
伴随着科技的发展,现代人每天面对电子屏幕的时间越来越长。因此,眼睛变得容易疲劳,从而导致视力越来越差。很多人近视的同时,还伴随着散光。而且,在每年的体检复查中,近视度数都可能发生变化。另外,随着年龄的增长,又可能出现“老花眼”。这导致需要新的眼镜来矫正视力。根据目前的眼镜市场,一副镜框就得耗费数百元甚至上千元。而且,从配镜到研磨镜片再到取镜,通常需要几天的周期。在等待过程中,人们要么沿用旧眼镜,要么无眼镜可戴而导致“摸黑”。由此,因为必须到现场试镜而导致路途奔波。此外,频繁地更换眼镜,不仅增加了人们的经济负担,而且还为人们的生活增添了诸多的不便。
随着技术的进步,目前已经出现了液晶眼镜。在液晶眼镜中,液晶在电压的驱动管下改变排列次序,从而改变镜片的焦距。由于自然光包含随机偏振光的缘故,在液晶透镜中,通常需要四层柱状透镜或二层圆形透镜。因此,一般地,都会采用圆形透镜的方式来制作液晶眼镜。这导致盒厚太大、器件沉重笨拙、并且工艺水平要求较高。
由此可见,如何设计一种结构简单且轻薄多用的眼镜是目前亟待解决的技术问题。
发明内容
根据本公开的一方面,提供了一种液晶镜片。该液晶镜片包括: 相对设置的第一基板和第二基板;位于所述第一基板和所述第二基板之间的液晶层;以及包括第一电极和第二电极的电极单元。所述第一电极和所述第二电极中的至少一个包括环形电极。所述第一电极位于所述第一基板朝向所述第二基板的一侧,并且所述第二电极位于所述第二基板朝向所述第一基板的一侧。在所述第一电极和所述第二电极的作用下,所述液晶层中的液晶进一步形成焦距可调的菲涅尔透镜。
根据一种实施方案,所述第一电极包括第一公共电极和第一像素电极,其中,所述第一像素电极为环形电极,并且所述第一公共电极为面状电极。此外,所述第二电极包括第二公共电极和第二像素电极,其中,所述第二像素电极为环形电极,并且所述第二公共电极为面状电极。在这样的情况下,所述液晶层中的液晶为向列相液晶或者近晶相液晶。
可选的是,所述第一像素电极包括多个同心、间隔分布的第一环形电极,相邻的所述第一环形电极之间的距离相等。类似地,所述第二像素电极包括与所述第一环形电极一一对应的多个同心、间隔分布的第二环形电极,相邻的所述第二环形电极之间的距离相等。
可选的是,所述液晶镜片还包括:间隔设置在所述第一基板朝向所述第二基板的一侧上的多个第一环形隔垫物;以及间隔设置在所述第二基板朝向所述第一基板的一侧上的多个第二环形隔垫物。具体地,所述液晶层中的液晶配置为在所述第一电极和所述第二电极的作用下形成液晶延迟量曲线,所述液晶延迟量曲线包括多个峰-谷下降段和多个谷-峰上升段。此外,所述多个第一环形隔垫物和所述多个第二环形隔垫物中的每一个都设置在一个峰-谷下降段或者一个谷-峰上升段处,使得形成凸型菲涅尔透镜或凹型菲涅尔透镜。
可选的是,所述液晶镜片还包括:设置在所述第一基板紧接所述液晶层的一侧上的第一取向膜,以及设置在所述第二基板紧接所述液晶层的一侧上的第二取向膜,其中,所述第一取向膜的取向方向与所述第二取向膜的取向方向互相垂直。
根据另一种实施方案,所述第一电极包括第一像素电极,其中,所述第一像素电极为环形电极;并且所述第二电极包括第二公共电极,其中,所述第二公共电极为面状电极。在这样的情况下,所述液晶层中的液晶为蓝相液晶。
可选的是,所述第一像素电极包括多个同心、间隔分布的第一环形电极,其中,相邻的所述第一环形电极之间的距离相等。
可选的是,所述液晶镜片还包括间隔设置在所述第一基板朝向所述第二基板的一侧上的多个环形隔垫物。具体地,所述液晶层中的液晶配置为在所述第一电极和所述第二电极的作用下形成液晶延迟量曲线,所述液晶延迟量曲线包括多个峰-谷下降段和多个谷-峰上升段。此外,每一个所述环形隔垫物设置在一个峰-谷下降段或者一个谷-峰上升段处,使得形成凸型菲涅尔透镜或凹型菲涅尔透镜。
可选的是,所述第一环形电极的形状为圆形或椭圆形。
可选的是,所述第一基板包括第一衬底,所述第二基板包括第二衬底,并且所述第一衬底和所述第二衬底为透明柔性衬底。
可选的是,所述液晶镜片还包括:依次设置在所述第二基板远离所述液晶层的一侧上的电致变色层和第三电极,其中,所述电致变色层配置为在所述第三电极施加有电压的情况下形成情感图案。
可选的是,所述第三电极包括阵列分布的多个块状子电极。
可选的是,所述电致变色层包括三氧化钨层和电解液层。
根据本公开的另一方面,还提供了一种液晶眼镜,其包括在以上任一个实施例中描述的液晶镜片。
可选的是,所述液晶眼镜还包括传感单元和控制单元。所述传感单元包括多个距离传感器,其中,每一个所述距离传感器与所述控制单元连接,用于检测所述距离传感器与人眼之间的距离,并且将该距离传输至所述控制单元。此外,所述控制单元用于根据所述距离来计算人眼焦距,并且根据人眼焦距来计算要向所述第一电极和所述第二电极提供的电压大小,从而调整菲涅尔透镜的焦距。
可选的是,所述液晶眼镜还包括检测器。所述检测器用于检测人体的生理状态并且将其反馈至所述控制单元。所述控制单元根据所述检测器反馈的生理状态来控制所述液晶镜片显示与生理状态相应的情感图案。
附图说明
图1为根据本公开的一个实施例中的液晶镜片的剖视图;
图2为图1所示的液晶镜片中的环形电极的俯视图;
图3为在图1所示的液晶镜片中的第一基板附近形成的水平电场的剖视图;
图4为在图1所示的液晶镜片中的第二基板附近形成的水平电场的剖视图;
图5为根据本公开的一个实施例的菲涅尔透镜的等效原理示意图;
图6为根据本公开的一个实施例的菲涅尔透镜的计算说明图;
图7为根据本公开的一个实施例的菲涅尔透镜的折射计算示意图;
图8A和图8B为根据本公开的一个实施例的液晶镜片的液晶延迟量曲线示意图;
图9为与图8A中的液晶镜片的液晶延迟量对应设置的隔垫物的示意图;
图10为根据本公开的另一个实施例的液晶镜片的剖视图;
图11A为根据本公开的另一个实施例的蓝相液晶的光学折射率示意图;
图11B为根据本公开的另一个实施例的电场作用下的液晶镜片的示意图;
图12为根据本公开的再一个实施例的液晶眼镜的结构框图;
图13A和图13B分别为根据本公开的再一个实施例的液晶眼镜用于针对不同散光度数进行调节的示意图;
图14和图15分别为根据本公开的又一个实施例的液晶镜片的剖视图;
图16为根据本公开的又一个实施例的液晶镜片中的第三电极的俯视图;
图17为根据本公开的又一个实施例的液晶镜片中的情感图案的示意图;
图18为根据本公开的其它实施例的液晶眼镜中的情感图案的示意图;以及
图19为根据本公开的其它实施例的液晶眼镜的结构框图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开提供的液晶镜片和液晶眼镜作进一步详细 描述。
对于普通眼镜,用户一般需要根据不同的应用而更换不同的眼镜。比如,近视用户需要佩戴近视眼镜,而老花用户可能需要佩戴老花眼镜。然而,目前的液晶透镜通常较厚且比较笨重。基于此,本申请提供了一种等效于菲涅尔透镜的液晶镜片,以及一种相应的液晶眼镜。该液晶镜片包括电极单元和液晶层,其中,液晶层中的液晶在电极单元的作用下形成焦距可调的菲涅尔透镜。由此,可以根据需求灵活调节眼镜的焦距,从而获得一副可以永久配戴的眼镜。
根据本公开的一个实施例,提供了一种在功能上等效于菲涅尔透镜的液晶镜片。由此,可以根据需求灵活调节眼镜的焦距,从而获得一副可以永久配戴的眼镜。
图1为根据本公开的一个实施例的液晶镜片的剖视图。如图1所示,液晶镜片包括:相对设置的第一基板1和第二基板2、设置于第一基板1与第二基板2之间的液晶层3、以及电极单元。电极单元包括第一电极和第二电极,其中,第一电极或第二电极至少任一包括环形电极。具体地,如图1所示,第一电极位于第一基板1朝向第二基板的一侧上,并且第二电极位于第二基板朝向第一基板1的一侧。在第一基板1和第二基板2中,均采用圆环形的像素电极和整面的公共电极。
在图1中,第一电极包括第一公共电极12和第一像素电极14,其中,在第一公共电极12和第一像素电极14之间还设置有第一绝缘层13。作为示例,第一像素电极14为环形电极,并且第一公共电极12为面状电极。由此,通过第一像素电极14和第一公共电极12形成的第一电场为水平电场。与此类似,第二电极包括第二公共电极22和第二像素电极24,其中,在第二公共电极22和第二像素电极24之间还设置有第二绝缘层13。作为示例,第二像素电极24为环形电极,并且第二公共电极22为面状电极。基于此,通过第二像素电极24和第二公共电极22形成的第二电场为水平电场。在该情况下,液晶层3中的液晶为向列相液晶或者近晶相液晶。
如图2所示,环形电极包括多个同心的环形电极。即,第一像素电极14包括多个同心、间隔分布的第一环形电极,其中,相邻的第一环形电极之间的距离相等。与此类似,第二像素电极24包括与第一环形电极对应设置的多个同心、间隔分布的第二环形电极,其中,相邻 的第二环形电极之间的距离相等。在这样的实施例中,第一像素电极14和第二像素电极24均采用同心环形电极的形式,从而有利于控制液晶的分布。
进一步可选的是,第一环形电极和第二环形电极的形状为圆环或椭圆环。
可选的是,第一基板1进一步包括多个第一薄膜晶体管,其中,每一个第一薄膜晶体管的输出电极与一个第一环形电极连接。类似地,第二基板同样可以包括多个第二薄膜晶体管,其中,每一个第二薄膜晶体管的输出电极与一个第二环形电极连接。在这样的情况下,薄膜晶体管在第一基板1和第二基板中用作控制液晶偏移的控制元件。由此,使得液晶在电场的作用下发生偏转,从而控制光的方向。
在通常情况下,需要设置取向膜以便设定液晶分子的初始取向。在根据当前实施例的液晶镜片中,第一基板1还包括紧接液晶层3设置的第一取向膜;同时,第二基板还包括紧接液晶层3设置的第二取向膜,其中,第一取向膜的取向方向与第二取向膜的取向方向互相垂直。例如,在当前实施例中,液晶镜片(具体地,第一和第二取向膜)可以设置为使得在靠近第二基板2的地方,液晶垂直纸面取向;而同时,在靠近第一基板1的地方,液晶沿纸面取向。即,在上下基板附近,初始地,液晶垂直取向。即,靠近第一基板1的液晶层3中的液晶分子以平行于纸面的方向取向,而靠近第二基板2的液晶层3中的液晶分子以垂直于纸面的方向取向。在根据当前实施例的液晶镜片中,液晶层3为单层液晶盒。但是,由于第一取向膜和第二取向膜具有互相垂直的取向方向,因此在初始情况下,整个液晶层的上下两个部分中的液晶将以不同的形式发生取向,即,相互垂直取向。这样,可以保证自然光(同时包含相互垂直的两种偏振方向)在无电压施加的情况下顺利透过。此外,还需要指出的是,在应用液晶眼镜的场合中,并不要求第一电极和第二电极相对人眼的固定设置。相反地,可以将第一电极设置成更靠近人眼,也可以将第二电极设置成更靠近人眼,其中,它们二者的位置可以互换。
基于上述结构,在根据当前实施例的液晶镜片中,通过电极单元控制液晶以形成等效的菲涅尔透镜(Fresnel Lens)。由此,可以降低原本的盒厚,从而有利于器件轻薄化。此外,这样的液晶镜片还更加 实用,并且制备工艺也更简单。以该方式,可以根据人眼的视力情况提供具有不同模式(例如,不同焦距)的眼镜,从而获得一副可以永久佩戴的眼镜。
作为示例,第一基板1包括第一衬底11,并且第二基板包括第二衬底,其中,第一衬底11和第二衬底21为透明柔性衬底。采用柔性的衬底结构,更适用于人眼配戴。
图3是在上部第一基板1附近形成水平电场时液晶镜片的剖视图。具体地,最初,由于第一取向膜的存在,液晶分子的取向方向垂直于纸面。但是,在第一电场的作用下,液晶层3中靠近第一基板的部分液晶将在面内发生偏转,由此沿着水平第一电场的方向取向。与此类似,图4是在下部第二基板附近形成水平电场时液晶镜片的剖视图。具体地,最初,由于第二取向膜的存在,液晶分子的取向方向平行于纸面。但是,在第二电场的作用下,液晶层3中靠近第二基板的部分液晶将在面内发生偏转,由此最终将沿着水平第二电场的方向取向。此处,考虑到第一像素电极14和第二像素电极24的类似布置,以及同为面状电极的两个公共电极12、22,第一电场和第二电场的电场方向将大致相同。由此可见,在第一电场和第二电场的作用下,单层液晶盒中的上下两部分液晶的取向方向将发生改变,具体地,从原本相互垂直的取向为起点分别发生偏转,其中,具体偏转角度将由这两个电场(即,第一电场和第二电场)决定。由此,在单层液晶盒的上下两个部分中分别形成两个液晶透镜,从而实现对自然光(同时包含两个相互垂直的偏振方向)的完全调制。需要指出的是,在图3和4中,分别利用曲线示意性地指示由电极单元生成的电场的大概方向。当然,本领域技术人员应当理解到,这样的示意性表示仅代表示例,并且不用于对实际所形成的电场的任何限制。
现有眼镜通常采用单透镜镜片来制作。由于一般镜片尺寸在5cm左右,所以形成的盒厚很大,器件厚重,而且工艺难度高。然而,与此相对,在根据当前实施例的液晶镜片中,参考图5,其示出了菲涅尔透镜的等效原理示意图。具体地,在菲涅尔结构中,单透镜镜片的弧面被切分成一系列小弧面,但是原来弧度保持不变。由此,降低了盒厚。因为菲涅尔透镜能够有效地降低液晶盒厚,所以使得器件薄型化,并且工艺要求相对较低。
例如,如果人眼是600度远视,那么屈光度就是6。在这样的情况下,所需要的眼镜焦距就是1/6=167mm。参考图6,其示出了等效菲涅尔透镜的计算说明图。此时,以通过透镜焦点且垂直于菲涅尔透镜的线为中心轴,其对应的位置记为M(0),那么第n个弧面距中心位置M(0)的距离记为M(n),其中,n为自然数。此时,如果选定P为透镜总尺寸,则第x个弧面距中心位置M(0)的距离M(x)为:
Figure PCTCN2018076965-appb-000001
公式(1)
并且与M(x)对应的焦点位置处的偏折角θ为:
Figure PCTCN2018076965-appb-000002
公式(2)
由偏折角θ可以计算出菲涅尔透镜中的第n个弧面的坡角
Figure PCTCN2018076965-appb-000003
具体地,根据图7,如果选定入射角为
Figure PCTCN2018076965-appb-000004
(这里的入射角是从眼睛方向看出)并且出射角为
Figure PCTCN2018076965-appb-000005
那么按照折射定律:
Figure PCTCN2018076965-appb-000006
公式(3)
其中,n1是液晶透镜材料的折射率,并且n2是空气的折射率。
可选的是,液晶镜片还包括隔垫物5、5′,例如,形成在第二基板的上侧上的隔垫物5(又称为第一隔垫物),以及形成在第一基板的下侧上的隔垫物5′(又称为第二隔垫物)。具体地,多个隔垫物5、5′呈环形间隔设置,并且每一个隔垫物5、5′对应于液晶层中的液晶在电极单元形成的电场的作用下产生的液晶延迟量曲线的峰谷下降段或者谷峰上升段。基于此,可以形成凸型菲涅尔透镜或凹型菲涅尔透镜。在应用中,可以根据设置好的电极位置和所采用的液晶的性质,模拟得到液晶在电场作用下的延迟曲线。由此,通过隔垫物5、5′的设置对液晶延迟曲线进行修正,从而获得等效于凹透镜或凸透镜效果的垂直曲线变化以及不同类型的透镜模型。
以第二基板以及形成在其上的隔垫物5为例说明,当确定第n个弧面的坡角之后,通过软件模拟第二像素电极24所需要的电压。此时,水平电场驱动液晶偏转,并且形成如图8A上方所示的液晶偏转以及图8A下方所示的液晶延迟量曲线(其中,横坐标方向为位置,并且纵坐标方向为液晶延迟量幅度)。如果要形成凸型菲涅尔透镜的左半部分透镜效果,那么需要修正液晶延迟量曲线,使液晶延迟量曲线保留左 倾斜部分而另一侧垂直变化。即,采用如图9下方所示的隔垫物5,使得隔垫物5遮挡右倾斜部分并且保留左倾斜部分。由此,使延迟量曲线产生垂直变化,并且最终得到如图9上方虚线所示的凸型菲涅尔透镜的左半部分效果。容易推知,对于右半部分透镜的处理,则应通过设置隔垫物5而遮挡左倾斜部分,并且保留右倾斜部分,从而实现整体的凸型菲涅尔透镜效果,其与眼睛所需要的透镜模型匹配。
以类似方式,对于上基板以及形成在其上的隔垫物5′,也可以对应地形成凸型菲涅尔透镜效果,其与眼睛所需要的透镜模型匹配。此时,需要指出的是,虽然在图9中将形成在两个基板上的隔垫物5、5′示出为彼此横向错位,但是这并不代表对本公开的任何限制。事实上,在获益于本公开的教导的情况下,本领域技术人员应当能够根据对应的延迟量曲线而清楚地设想到这两种隔垫物5、5′在对应基板上的位置,并且本公开在这一方面不受附图以及说明书中的具体描述所限制。
对于凹型透镜模型的设计,可以参考凸型透镜模型类似完成,从而实现整体的凹型菲涅尔透镜效果,其与眼睛所需要的透镜模型匹配。当然,在图8A和图8B中,均以剖视图作为示例,所以采用了二维空间的描述。事实上,由于环形电极的存在,隔垫物5具有呈环形间隔设置的结构,并且对应于液晶延迟量曲线的相应峰谷下降段或者谷峰上升段。
同样,以图8A和图8B作为示例,对不同度数的调节进行说明。图8A代表高度数眼镜,这需要较大电压(如10V)来驱动液晶,由此获得较大的延迟量差值(1400nm),其对应于透镜的较大倾斜角度(坡角)。与此相对,图8B代表低度数眼镜,这需要较小电压(如5V)来驱动液晶,由此获得较小的延迟量差值(400nm),其对应于透镜的较小倾斜角度(坡角)。
根据当前实施例的液晶镜片,可以通过单层液晶盒形成双层菲涅尔液晶透镜的效果,其特别适用于制作液晶眼镜。特别地,由于电场可调,因此可以针对人眼的不同视力而变化。以这样的方式,解决了诸如近视、远视、散光、老花眼等各种视力问题,并且提供一种可以永久佩戴的眼镜,这使得人们摆脱更换眼镜的烦恼。
根据本公开的另一个实施例,提供了一种等效于菲涅尔透镜的液晶镜片,其可以根据需求灵活调节眼镜焦距,从而获得实现一副可以 永久配戴的眼镜。
如图10所示,其为根据本公开的另一个实施例的液晶镜片的剖视图。具体地,第一电极包括第一像素电极14,其中,第一像素电极14为环形电极。第二电极包括第二公共电极22,其中,第二公共电极22为面状电极。在该情况下,通过第一像素电极14与第二公共电极22形成的电场为垂直电场,并且液晶层3中的液晶为蓝相液晶。
蓝相液晶的一个显著特点是其在暗态下的光学各向同性。参照图11A,其图示了蓝相液晶的折射率特性。当入射光竖直向上进入蓝相液晶中时,由于偏振态所在的平面与光的传播方向垂直,所以偏振态与no面重合的。在no面中,无论偏振态具有什么方向,其在no面中的折射率都等于no。由此可见,当光以这样的方向入射时,通过蓝相液晶形成的液晶透镜将与入射光的偏振态无关。图11B示出了蓝相液晶在电场作用下随电极分布的变化情况,其中,越靠近中心环形电极,液晶分子的拉伸变形就越大。
在根据当前实施例的液晶镜片中,第一像素电极14包括多个同心、间隔分布的第一环形电极,其中,相邻的第一环形电极之间的距离相等。第一像素电极14采用同心环形电极,以控制液晶的分布。
可选的是,第一基板1还包括多个第一薄膜晶体管,其中,每一个第一薄膜晶体管的输出电极与一个第一环形电极连接。薄膜晶体管作为第一基板1中控制液晶偏移的控制元件,使得液晶在电场的作用下发生偏转,从而可以控制光的方向。
在当前实施例中,液晶镜片采用蓝相液晶形成,由此实现了对自然光的完全调制。此外,还避免了多层液晶盒的使用,使器件轻薄化。该液晶镜片形成等效菲涅尔透镜的原理与实施例1中液晶镜片形成等效菲涅尔透镜的原理相同,并且可以同时参考图5,这里不再详述。
在根据当前实施例的液晶镜片的工作过程中,在梯度渐变的垂直电场的作用下,将产生类似透镜的折射率变化。而且,这样的液晶透镜还可以适用于任何偏振态的光,使得液晶透镜摆脱了对入射光偏振态的依赖。在一个液晶透镜单元内,如果液晶形成凸透镜,那么中间位置处的电压较小而两边位置处的电压较大。此时,蓝相液晶在电场作用下将产生克尔效应,如公式(4)所示:
Δn=λKE 2 公式(4)
其中,λ是波长,K是克尔系数,并且E是电场强度。可见,电场强度越大,产生的双折射率Δn就越大。
进一步可选的是,第一环形电极的形状为圆环或椭圆环。
在根据当前实施例的液晶镜片中,采用蓝相液晶在垂直电场的作用下形成菲涅尔透镜的同心圆结构,其特别适用于制作单层液晶眼镜。特别地,由于电场大小可调,因此可以适用于人眼的不同视力变化。由此,解决了诸如近视、远视、散光、老花眼等各种视力问题,并且提供了一种可以永久佩戴的眼镜,使得人们摆脱更换眼镜的烦恼。
与前一个实施例中的液晶镜片相同,在当前实施例中,液晶镜片能够有效降低液晶盒厚,而且器件薄型化。因此,更加实用,并且工艺更为简单。
根据本公开的又一个实施例,还提供一种液晶眼镜。该液晶眼镜包括在以上任一个实施例中描述的液晶镜片。由于可以根据需求灵活调节眼镜的焦距,因此,该液晶眼镜能够永久配戴,并且适应不同场景下的应用。
在形成液晶眼镜时,液晶镜片的基板平面与眼镜平面相同。如图12所示,除了液晶镜片101之外,该液晶眼镜还包括传感单元102和控制单元103。具体地,传感单元102包括多个距离传感器,其中,每一个距离传感器与控制单元103连接,用于检测距离传感器与人眼之间的距离,并且将该距离传输至控制单元103。此外,控制单元103用于根据传感单元102与人眼之间的距离来确定人眼焦距,并且根据人眼焦距进一步计算要向电极单元提供的电压大小,从而调整菲涅尔透镜的焦距。通过设置距离传感器和控制单元103,实现了自动测距,并且能够根据不同的应用向电极施加不同的电压。
由此,液晶镜片101将与患者的视力情况相匹配。以通常的近视情况为例,液晶镜片101将形成凹透镜效果。与此对应,在远视情况下,液晶镜片101将形成凸透镜。在以上两种情况下,需要针对不同的度数调节不同的电极电压,使得液晶透镜产生不同的弧度。进一步地,如果用户的眼镜度数发生变化,那么仅需要针对新的度数做一次验光,并且由此调节液晶眼镜的电压即可。
另外,除了近视和远视之外,人眼还可能出现散光情况。本质上说,散光是在镜片平面中两个垂直方向上的焦点位置不同的现象。在 这样的情况下,不能简单地使用圆形透镜,而是需要额外地修正透镜的曲率。在散光情况下,液晶镜片101可以形成为环曲面透镜。作为示例,可以采用如图13A所示的柱形透镜或者环曲面透镜来进行散光矫正。当患者出现散光问题时,可以根据患者的散光情况对远视或近视眼镜做进一步调整。例如,假设人眼有200度的远视以及100度的散光,那么如图13B所示,将一个方向上的眼镜度数增加100度即可。
当人步入老龄化阶段时,眼球的弹性将变小,因此无法自我调节以实现聚焦。此时,需要多焦点眼镜实现调节。具体地,通过适当调整电极电压,就可以改变透镜焦距,以适于患者不同年龄阶段的需求。在这样的情况下,可以采用感应器实时测量人眼与感应器的距离,并且将其转换为人眼焦距,以实现实时调整。
伴随着科技的发展,眼镜的功能也变得越来越多样化。诸如,从普通的视力矫正,到室外护眼(例如,太阳镜),再到谷歌眼镜,其实现了眼镜的娱乐性和多功能性。在本公开的再一个实施例中,还提供了一种液晶镜片,其在形成等效菲涅尔透镜的基础上还添加有情感示意的新功能。由此,在一副永久配戴的眼镜上,还可以提供情感表达或娱乐效果。
如图14和图15所示,在图1或图10所示的液晶镜片的基础上,还可以在第二基板远离液晶层3的一侧上依次设置电致变色层42、电解液层41和第三电极43。具体地,通过第三电极43和第二公共电极22形成第三电场,其为垂直电场。此时,可以借助于第三电场而使电致变色层42形成情感图案。如本领域技术人员将容易设想到,电致变色是指材料的光学属性(例如,反射率、透过率、吸收率等)在外加电场的作用下发生稳定、可逆的变化的现象。这样的变化在外观上表现为颜色和透明度的可逆变化。具有电致变色特性的材料可以被称为电致变色材料。在本公开的实施例中,根据电致变色材料的性质,可以形成不同颜色或图形的情感图案,由此提供情感表达或娱乐效果。
例如,在图15中,第一基板1中的第一像素电极14采用圆环电极,并且第二基板2中的第二公共电极22采用整面电极,其中,通过第一基板1和第二基板2中的电极形成垂直电场,从而控制液晶层3。此外,第二基板中的第二公共电极22为液晶层3和电致变色层42所共用,其中,通过第二基板2和第三基板4形成垂直电场,从而控制 电致变色材料。
可选的是,在根据当前实施例的液晶镜片中,可以采用阵列形式或图形形式的子电极。通过阵列式子电极,可以表示更加多样化的图案。此外,如果阵列式电极设计成具有微米级的尺寸,并且还包括与三种颜色匹配的电致变色材料,那么可以混合出更多的颜色,从而使显示的图案更加丰富。如图16所示,第三电极43为阵列分布的多个块状子电极。在该情况下,通过第三电场控制电解液层41中的离子向电致变色层42中注入或者从电致变色层42中抽出,在与不同子电极对应的区域中,电致变色层42将形成不同的颜色或图形,从而最终形成匹配的情感图案,例如,图17所示的图案。
同时,可选地,电致变色层42中的电致变色材料包括三氧化钨WO3。在加电(约5~10V)的情况下,电解液层41中的金属阳离子注入三氧化钨材料中,由此使得电致变色材料变成蓝色。与此相反,当无电压施加时,电解液层41中的金属阳离子从三氧化钨材料抽出,由此导致电致变色材料变成无色透明。可见,通过控制由第二公共电极22和第三电极43形成的第三电场,可以借助于电致变色层42形成不同的图形。
同理,在根据当前实施例的液晶镜片中,第三衬底44可以为透明柔性衬底,以适用于人眼配戴。
在根据当前实施例的液晶镜片中,可以按照人眼摄入信息在液晶眼镜上显示对应的图像。例如,当人看见喜欢的事物时,可以发出表达喜悦心情的信息。由此,包括该液晶镜片的液晶眼镜还可以充当一种娱乐产品。
根据本公开的其它实施例,还提供了一种液晶眼镜。该液晶眼镜包括以上在任一个实施例中描述的液晶镜片。由于可以根据需求灵活调节眼镜的焦距,因此,该液晶眼镜能够永久配戴,并且适应不同场景下的应用。
如图19所示,在该液晶眼镜中,除了液晶镜片外,还可以包括传感单元102和控制单元103,其中,传感单元102包括多个距离传感器,每一个距离传感器与控制单元103连接,用于检测距离传感器与人眼之间的距离,并且将该距离传输至控制单元103。此外,控制单元103用于根据传感单元102与人眼之间的距离来确定人眼焦距,并且根据 人眼焦距来计算要向电极单元提供的电压大小,从而调整菲涅尔透镜的焦距。在这样的情况下,通过对距离传感器和控制单元103的配置,可以实现自动测距,并且根据不同的应用向电极施加不同的电压。
在以上描述的具有情感示意功能的液晶镜片中,该液晶眼镜还可以包括检测器104,如图19所示。检测器104用于检测人体的生理状态并且将其反馈至控制单元。进一步地,控制单元103根据检测器104反馈的生理状态,控制液晶镜片显示与生理状态相应的情感图案。以这样的方式,通过设置用于采集情感信息的检测器104,使得电致变色层能够实时显示对应情感。
在液晶眼镜中,检测器104可以包括摄像头,以及可选的脉搏监测仪或者心率检测仪。在该情况下,通过检测人的体温或心跳,再进一步结合人眼摄入的信息或看到的实物,可以显示出表达情感的图案,比如,显示表达喜悦或忧伤的笑脸或哭脸,例如图18所示的图案。
在根据当前实施例的液晶眼镜中,面状第二公共电极的调节功能和情感表露功能分别独立。对于视力的调节可以参考前面描述的实施例中的液晶眼镜的调节,这里不再详述。
在根据当前实施例的液晶眼镜中,在液晶镜片上沉积有图形化的电致变色材料,由此得到具有图像显示功能的液晶眼镜。例如,当看见喜欢的事物时,可以发出表达心情的信息。以这样的方式,使眼镜成为一种能够实时反馈佩戴者心情或需求的功能产品。此外,还为液晶眼镜增添了一种娱乐功能。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式。然而,本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,并且所有这些变型和改进同样落入本公开的保护范围内。
附图标记列表
1 第一基板
11 第一衬底
12 第一公共电极
13 第一绝缘层
14 第一像素电极
2 第二基板
21 第二衬底
22 第二公共电极
23 第二绝缘层
24 第二像素电极
3 液晶层
4 第三基板
41 电解液层
42 电致变色层
43 第三电极
44 第三衬底
55′隔垫物
101 液晶镜片
102 传感单元
103 控制单元
104 检测器

Claims (16)

  1. 一种液晶镜片,包括:
    相对设置的第一基板和第二基板;
    位于所述第一基板和所述第二基板之间的液晶层;以及
    包括第一电极和第二电极的电极单元,所述第一电极和所述第二电极中的至少一个包括环形电极,其中
    所述第一电极位于所述第一基板朝向所述第二基板的一侧,而所述第二电极位于所述第二基板朝向所述第一基板的一侧,并且
    所述液晶层中的液晶配置为在所述第一电极和所述第二电极的作用下形成焦距可调的菲涅尔透镜。
  2. 根据权利要求1所述的液晶镜片,其中
    所述第一电极包括第一公共电极和第一像素电极,所述第一像素电极为环形电极,而所述第一公共电极为面状电极;
    所述第二电极包括第二公共电极和第二像素电极,所述第二像素电极为环形电极,而所述第二公共电极为面状电极;并且
    所述液晶层中的液晶为向列相液晶或者近晶相液晶。
  3. 根据权利要求2所述的液晶镜片,其中
    所述第一像素电极包括多个同心、间隔分布的第一环形电极,相邻的所述第一环形电极之间的距离相等;并且
    所述第二像素电极包括与所述第一环形电极一一对应的多个同心、间隔分布的第二环形电极,相邻的所述第二环形电极之间的距离相等。
  4. 根据权利要求3所述的液晶镜片,还包括:
    间隔设置在所述第一基板朝向所述第二基板的一侧上的多个第一环形隔垫物;以及
    间隔设置在所述第二基板朝向所述第一基板的一侧上的多个第二环形隔垫物,其中
    所述液晶层中的液晶配置为在所述第一电极和所述第二电极的作用下形成液晶延迟量曲线,所述液晶延迟量曲线包括多个峰-谷下降段和多个谷-峰上升段,并且
    所述多个第一环形隔垫物和所述多个第二环形隔垫物中的每一个 都设置在一个峰-谷下降段或者一个谷-峰上升段处,使得形成凸型菲涅尔透镜或凹型菲涅尔透镜。
  5. 根据权利要求2所述的液晶镜片,还包括:
    设置在所述第一基板紧接所述液晶层的一侧上的第一取向膜,以及
    设置在所述第二基板紧接所述液晶层的一侧上的第二取向膜,其中
    所述第一取向膜的取向方向与所述第二取向膜的取向方向互相垂直。
  6. 根据权利要求1所述的液晶镜片,其中
    所述第一电极包括第一像素电极,所述第一像素电极为环形电极;
    所述第二电极包括第二公共电极,所述第二公共电极为面状电极;并且
    所述液晶层中的液晶为蓝相液晶。
  7. 根据权利要求6所述的液晶镜片,其中
    所述第一像素电极包括多个同心、间隔分布的第一环形电极,相邻的所述第一环形电极之间的距离相等。
  8. 根据权利要求7所述的液晶镜片,还包括:间隔设置在所述第一基板朝向所述第二基板的一侧上的多个环形隔垫物,其中
    所述液晶层中的液晶配置为在所述第一电极和所述第二电极的作用下形成液晶延迟量曲线,所述液晶延迟量曲线包括多个峰-谷下降段和多个谷-峰上升段,并且
    每一个所述环形隔垫物设置在一个峰-谷下降段或者一个谷-峰上升段处,使得形成凸型菲涅尔透镜或凹型菲涅尔透镜。
  9. 根据权利要求3-4和7-8中任一项所述的液晶镜片,其中
    所述第一环形电极的形状为圆环或椭圆环。
  10. 根据权利要求1-8中任一项所述的液晶镜片,其中
    所述第一基板包括第一衬底,所述第二基板包括第二衬底,并且所述第一衬底和所述第二衬底为透明柔性衬底。
  11. 根据权利要求1-8中任一项所述的液晶镜片,还包括:
    依次设置在所述第二基板远离所述液晶层的一侧上的电致变色层和第三电极,其中
    所述电致变色层配置为在所述第三电极施加有电压的情况下形成情感图案。
  12. 根据权利要求11所述的液晶镜片,其中
    所述第三电极包括阵列分布的多个块状子电极。
  13. 根据权利要求11所述的液晶镜片,其中
    所述电致变色层包括三氧化钨层和电解液层。
  14. 一种液晶眼镜,包括根据权利要求1-13中任一项所述的液晶镜片。
  15. 根据权利要求14所述的液晶眼镜,还包括:传感单元和控制单元,其中
    所述传感单元包括多个距离传感器,每一个所述距离传感器与所述控制单元连接,用于检测所述距离传感器与人眼之间的距离,并且将所述距离传输至所述控制单元;以及
    所述控制单元,用于根据所述距离来计算人眼焦距,并且根据人眼焦距来计算要向所述第一电极和所述第二电极提供的电压大小,从而调整菲涅尔透镜的焦距。
  16. 根据权利要求15所述的液晶眼镜,还包括检测器,
    所述检测器用于检测人体的生理状态并且将其反馈至所述控制单元;以及
    所述控制单元根据所述检测器反馈的生理状态来控制所述液晶镜片显示与生理状态相应的情感图案。
PCT/CN2018/076965 2017-06-30 2018-02-22 液晶镜片和液晶眼镜 WO2019000983A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/301,860 US11067833B2 (en) 2017-06-30 2018-02-22 Liquid crystal lens and liquid crystal spectacles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710526682.3 2017-06-30
CN201710526682.3A CN107085316A (zh) 2017-06-30 2017-06-30 液晶镜片和液晶眼镜

Publications (1)

Publication Number Publication Date
WO2019000983A1 true WO2019000983A1 (zh) 2019-01-03

Family

ID=59605928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076965 WO2019000983A1 (zh) 2017-06-30 2018-02-22 液晶镜片和液晶眼镜

Country Status (3)

Country Link
US (1) US11067833B2 (zh)
CN (1) CN107085316A (zh)
WO (1) WO2019000983A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085316A (zh) 2017-06-30 2017-08-22 京东方科技集团股份有限公司 液晶镜片和液晶眼镜
EP3521868A1 (en) * 2018-01-31 2019-08-07 Essilor International Phase change optical device
CN110286529B (zh) * 2018-03-19 2021-04-06 京东方科技集团股份有限公司 液晶盒及其驱动方法和液晶镜片
CN108490704B (zh) * 2018-03-30 2021-08-20 京东方科技集团股份有限公司 液晶镜片及其控制方法和液晶眼镜
CN108646448B (zh) * 2018-05-09 2021-03-23 京东方科技集团股份有限公司 一种镜片基板、液晶镜片及液晶眼镜
CN108845433A (zh) * 2018-07-19 2018-11-20 三星电子(中国)研发中心 智能眼镜及其控制方法
CN108873505B (zh) * 2018-07-27 2022-04-05 京东方科技集团股份有限公司 液晶透镜、模组、增强现实设备、眼镜、显示方法
CN109669278B (zh) * 2018-11-21 2021-01-29 京东方科技集团股份有限公司 镜片和眼镜
CN109491107B (zh) * 2019-01-04 2021-04-02 京东方科技集团股份有限公司 一种液晶眼镜、眼镜度数的调节方法及显示装置
CN109799628B (zh) * 2019-02-18 2022-04-12 合肥京东方光电科技有限公司 一种液晶眼镜装置
CN109828396B (zh) * 2019-03-21 2021-10-15 京东方科技集团股份有限公司 兼具图像显示功能的液晶眼镜及其控制方法
CN111090209B (zh) * 2019-11-13 2023-01-24 昆山龙腾光电股份有限公司 可变焦的液晶透镜、液晶透镜的驱动方法及显示装置
CN111443534A (zh) * 2020-05-09 2020-07-24 京东方科技集团股份有限公司 液晶透镜、液晶器件及液晶透镜的驱动方法
CN111580310B (zh) * 2020-06-18 2023-08-29 京东方科技集团股份有限公司 液晶透镜、其制作方法及显示装置
US11733547B1 (en) * 2022-09-27 2023-08-22 Pixieray Oy Modulating impedance to segments of ground plane

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2153072Y (zh) * 1993-01-26 1994-01-12 杨启梁 一种可控变色眼镜
US20070139777A1 (en) * 2005-12-21 2007-06-21 Intel Corporation Reconfigurable zone plate lens
CN101194198A (zh) * 2005-01-21 2008-06-04 庄臣及庄臣视力保护公司 具有可变焦距的自适应电激活透镜
CN101334566A (zh) * 2007-06-26 2008-12-31 株式会社东海理化电机制作所 电致变色镜
US20100225834A1 (en) * 2009-03-06 2010-09-09 The Curators Of The University Of Missouri Adaptive lens for vision correction
CN102608814A (zh) * 2012-04-16 2012-07-25 信利半导体有限公司 一种连续变焦菲涅尔透镜
CN202502298U (zh) * 2012-01-11 2012-10-24 江苏万新光学有限公司 一种表情眼镜
CN102902128A (zh) * 2012-11-05 2013-01-30 信利半导体有限公司 一种液晶变焦透镜
CN107085316A (zh) * 2017-06-30 2017-08-22 京东方科技集团股份有限公司 液晶镜片和液晶眼镜

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8618345D0 (en) * 1986-07-28 1986-09-03 Purvis A Optical components
JP4349781B2 (ja) * 2002-09-10 2009-10-21 パイオニア株式会社 液晶レンズ並びにその駆動方法及び装置
US8885139B2 (en) 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
US8243251B2 (en) 2007-12-06 2012-08-14 Citizen Holdings Co., Ltd. Liquid crystal fresnel lens
CN101477244B (zh) * 2009-01-05 2010-07-14 东南大学 具有两个单球面透镜的液体透镜阵列
US8994915B2 (en) * 2010-12-17 2015-03-31 Lensvector Inc. Multiple cell liquid crystal optical device with coupled electric field control
TWI476499B (zh) * 2011-06-09 2015-03-11 Nat Univ Chung Hsing 多聚焦模式之繞射光學元件
US9164206B2 (en) * 2012-04-04 2015-10-20 The Arizona Board Of Regents Of Behalf Of The University Of Arizona Variable focal length achromatic lens system comprising a diffractive lens and a refractive lens
KR101915623B1 (ko) * 2012-04-18 2018-11-08 삼성디스플레이 주식회사 액정 렌즈 패널 및 이를 구비하는 표시 장치
CN105120424B (zh) * 2012-12-22 2020-02-14 华为技术有限公司 一种眼镜式通信装置、系统及方法
TWI505011B (zh) * 2013-11-13 2015-10-21 Au Optronics Corp 透鏡結構及具有此透鏡結構之立體顯示裝置
CN103558724B (zh) 2013-11-15 2015-02-11 京东方科技集团股份有限公司 一种液晶棱镜及其制作方法、显示装置
CN103955067B (zh) * 2014-04-15 2016-11-02 京东方科技集团股份有限公司 一种三维显示系统
CN104020615A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种液晶显示面板及显示装置
KR20150139695A (ko) * 2014-06-03 2015-12-14 삼성디스플레이 주식회사 액정 렌즈 장치 및 이를 포함하는 표시 장치
WO2016017966A1 (en) * 2014-07-29 2016-02-04 Samsung Electronics Co., Ltd. Method of displaying image via head mounted display device and head mounted display device therefor
CN104216138B (zh) * 2014-09-05 2015-12-02 京东方科技集团股份有限公司 一种眼镜
CN104777696A (zh) * 2015-05-08 2015-07-15 京东方科技集团股份有限公司 一种背光模组及显示装置
EP3115436A1 (en) * 2015-07-08 2017-01-11 Essilor International (Compagnie Generale D'optique) Method for obtaining a material comprising a liquid crystal mix with a stabilized blue phase and optical article comprising this material
KR102491852B1 (ko) * 2015-08-28 2023-01-26 삼성전자주식회사 광 센서 및 그 동작 방법
CN206002817U (zh) * 2016-08-31 2017-03-08 京东方科技集团股份有限公司 一种液晶透镜及其显示装置
CN106773380B (zh) * 2017-03-22 2022-05-20 京东方科技集团股份有限公司 一种液晶显示器、显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2153072Y (zh) * 1993-01-26 1994-01-12 杨启梁 一种可控变色眼镜
CN101194198A (zh) * 2005-01-21 2008-06-04 庄臣及庄臣视力保护公司 具有可变焦距的自适应电激活透镜
US20070139777A1 (en) * 2005-12-21 2007-06-21 Intel Corporation Reconfigurable zone plate lens
CN101334566A (zh) * 2007-06-26 2008-12-31 株式会社东海理化电机制作所 电致变色镜
US20100225834A1 (en) * 2009-03-06 2010-09-09 The Curators Of The University Of Missouri Adaptive lens for vision correction
CN202502298U (zh) * 2012-01-11 2012-10-24 江苏万新光学有限公司 一种表情眼镜
CN102608814A (zh) * 2012-04-16 2012-07-25 信利半导体有限公司 一种连续变焦菲涅尔透镜
CN102902128A (zh) * 2012-11-05 2013-01-30 信利半导体有限公司 一种液晶变焦透镜
CN107085316A (zh) * 2017-06-30 2017-08-22 京东方科技集团股份有限公司 液晶镜片和液晶眼镜

Also Published As

Publication number Publication date
CN107085316A (zh) 2017-08-22
US11067833B2 (en) 2021-07-20
US20200355942A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019000983A1 (zh) 液晶镜片和液晶眼镜
JP7436059B2 (ja) 眼鏡および光学素子
JP6649901B2 (ja) 動的レンズの制御
ES2469842T3 (es) Pieza inicial de lente electro-activa semiacabada
WO2016033926A1 (zh) 眼镜
WO2017181590A1 (zh) 显示装置及显示方法
WO2016179933A1 (zh) 一种背光模组及显示装置
US11221508B2 (en) Adaptive harmonic diffractive liquid crystal lens and method of making and use thereof
US10495921B2 (en) Flexible liquid crystal lens
JP2015530610A (ja) カスタム化可能眼用レンズを装着者の眼に提供する方法と関連アクティブ視覚システム
BRPI0713008A2 (pt) região de superfìcie progressiva de estática em uma comunicação óptica com um ótico dinámico
US11086143B1 (en) Tunable and foveated lens systems
US10520651B2 (en) Voltage adjustable near-eye optical lens
US11221488B1 (en) Tunable and foveated lens systems
JP2022534558A (ja) 近視の治療のための電気的に調整可能な視力補助具
JPS61156227A (ja) フレネル液晶眼鏡
CN109491107B (zh) 一种液晶眼镜、眼镜度数的调节方法及显示装置
US20240168342A1 (en) Optical devices and head-mounted displays employing tunable cylindrical lenses
KR101976640B1 (ko) 유연 액정 프레넬 렌즈
CN104662467B (zh) 用于提高佩戴者的视觉舒适度的方法以及相关联的主动视觉系统
TWI490595B (zh) 以液晶轉向調整透鏡焦距之光學系統
CN112596269A (zh) 一种可调控液体透镜镜片、光学视力矫正眼镜及其控制方法
WO2018214688A1 (zh) 眼镜
US20230375859A1 (en) Lens element comprising an activable optical element
JP2007212622A (ja) ピンホール眼鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18823573

Country of ref document: EP

Kind code of ref document: A1