WO2019000935A1 - 压力传感器及其制作方法、电子器件 - Google Patents

压力传感器及其制作方法、电子器件 Download PDF

Info

Publication number
WO2019000935A1
WO2019000935A1 PCT/CN2018/074416 CN2018074416W WO2019000935A1 WO 2019000935 A1 WO2019000935 A1 WO 2019000935A1 CN 2018074416 W CN2018074416 W CN 2018074416W WO 2019000935 A1 WO2019000935 A1 WO 2019000935A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
forming
elastic recovery
pressure sensor
Prior art date
Application number
PCT/CN2018/074416
Other languages
English (en)
French (fr)
Inventor
彭锐
王庆贺
贾文斌
叶志杰
范招康
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/086,137 priority Critical patent/US10921200B2/en
Publication of WO2019000935A1 publication Critical patent/WO2019000935A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means

Definitions

  • the present disclosure relates to the field of pressure detection technology, and in particular, to a pressure sensor, a manufacturing method thereof, and an electronic device.
  • Pressure sensors are the most commonly used sensors in industrial practice and are widely used in a variety of industrial automation environments.
  • the pressure sensors in the related art are mostly mechanical sensors, such as piezoresistive pressure sensors and capacitive pressure sensors, which realize the detection of the pressure by converting the pressure signal into an electrical signal.
  • a pressure sensor is provided in the embodiment of the present disclosure, including:
  • An electroluminescent device comprising a first electrode, a second electrode, and an electroluminescent layer disposed between the first electrode and the second electrode;
  • a resistance layer wherein the resistance layer is deformed to cause a change in resistance of the resistance layer, wherein the first electrode and the resistance layer are respectively connected to a pole of a power source Connecting to form a loop;
  • At least one photosensor for obtaining a parameter related to a change in brightness of the electroluminescent device
  • a detecting unit is coupled to the photosensor, the detecting unit configured to determine a magnitude of the applied pressure based on a parameter related to a change in brightness of the electroluminescent device.
  • the pressure sensor further comprises:
  • the elastic recovery layer is disposed in contact with the resistance layer and is made of an elastic material. When the pressure is removed, the elastic recovery layer is deformed and the deformation of the resistance layer is restored to an initial state.
  • the pressure sensor further comprises a carrier layer
  • the resistance layer includes:
  • the resistance layer being deformed by pressure, the first The contact area of the conductor structure and the second conductor structure changes, causing the resistance of the resistance layer to change.
  • the first conductor structure comprises a plurality of first protrusion structures
  • the second conductor structure comprises a plurality of second protrusion structures
  • the first protrusion structures being correspondingly disposed a region between the second raised structures
  • the second raised structure corresponding to a region disposed between the first raised structures
  • the resistive layer being deformed by pressure, causing the first protrusion
  • the contact area of the structure and the second raised structure is increased, causing the resistance of the resistive layer to decrease.
  • resistance layer further comprises:
  • a pressure sensor as described above, wherein the pressure sensor further comprises a flexible substrate, the elastic recovery layer being disposed on the flexible substrate, the resistance layer being disposed on a surface of the elastic recovery layer facing away from the flexible substrate on.
  • the embodiment of the present disclosure further provides a method for manufacturing a pressure sensor as described above, comprising:
  • Forming the electroluminescent device comprising the steps of forming the first electrode, the second electrode, and an electroluminescent layer between the first electrode and the second electrode;
  • the photosensor is configured to acquire a parameter related to a change in brightness of the electroluminescent device
  • the detection unit is provided, wherein the detection unit is coupled to the photosensor for determining a magnitude of an applied pressure based on a parameter related to a change in brightness of the electroluminescent device.
  • manufacturing method as described above, wherein the manufacturing method further comprises:
  • An elastic recovery layer disposed in contact with the resistance layer is formed by using an elastic material, wherein when the pressure is removed, the elastic recovery layer undergoes deformation recovery and causes the resistance layer deformation to return to an initial state.
  • manufacturing method as described above, wherein the manufacturing method further comprises:
  • the step of forming the resistive layer includes:
  • the forming the first conductor structure comprises:
  • the step of forming the second conductor structure includes:
  • the first protruding structure corresponds to a region disposed between the second protruding structures
  • the second protruding structure corresponding to a region disposed between the first protruding structures
  • the resistive layer is under pressure The influence is deformed to increase the contact area of the first raised structure and the second raised structure, so that the resistance of the resistive layer is reduced.
  • the manufacturing method as described above, wherein the forming the second conductor structure on the carrier layer comprises forming the second conductor structure on the second electrode, wherein the carrier layer and the second electrode are an integral structure .
  • the first substrate and the second substrate are fixed to the cassette, and then the third transition substrate is removed.
  • the manufacturing method further comprises:
  • an electronic device including the pressure sensor as described above.
  • FIG. 1 is a schematic structural view 1 of a pressure sensor in an embodiment of the present disclosure
  • Figure 2 is a schematic view showing the operation of the pressure sensor of Figure 1;
  • FIG. 3 is a schematic structural view 2 of a pressure sensor in an embodiment of the present disclosure
  • FIG. 14 are schematic diagrams showing a manufacturing process of a pressure sensor in an embodiment of the present disclosure.
  • Figure 15 is a flow chart showing a method of fabricating a pressure sensor in an embodiment of the present disclosure
  • Fig. 16 is a view showing the structure of a resistive layer provided with a first semiconductor film and a second semiconductor film.
  • the electroluminescent device has the characteristics of self-luminous, high luminous efficiency, low working voltage, light and thin, flexible, and simple process technology, and is widely used in the field of display illumination.
  • the present disclosure utilizes the characteristics of an electroluminescent device to combine an electroluminescent device with a sensor to create a novel pressure sensor that converts a pressure signal into an optical signal and determines the magnitude of the pressure through the optical signal.
  • the pressure sensor of the present disclosure includes:
  • An electroluminescent device comprising a first electrode, a second electrode, and an electroluminescent layer disposed between the first electrode and the second electrode;
  • a resistance layer wherein the resistance layer is deformed to cause a change in resistance of the resistance layer, wherein the first electrode and the resistance layer are respectively connected to a pole of a power source Connecting to form a loop;
  • At least one photosensor for obtaining a parameter related to a change in brightness of the electroluminescent device
  • a detecting unit is coupled to the photosensor, the detecting unit configured to determine a magnitude of the applied pressure based on a parameter related to a change in brightness of the electroluminescent device.
  • the specific working principle of the pressure sensor is: when pressure is applied to the pressure sensor, the resistance layer is deformed by the influence of the pressure, and the deformation of the resistance layer causes the resistance to change, so that the current on the power supply circuit of the electroluminescent device changes.
  • the brightness of the electroluminescent device changes. Since the change in luminance is related to the magnitude of the pressure, the magnitude of the pressure can be judged by detecting the change in the luminance of the electroluminescent device.
  • the magnitude of the pressure applied to the pressure sensor is proportional to the deformation of the resistance layer, that is, the greater the pressure applied to the pressure sensor and the larger the deformation of the resistance layer.
  • the pressure sensor of the present disclosure achieves a novel pressure magnitude detection by converting a pressure signal into an optical signal and detecting a change in the optical signal to determine the magnitude of the pressure.
  • the pressure sensor of the present disclosure can be applied to an electronic device to detect the magnitude of pressure and achieve automatic pressure-based control. It can be applied to various self-control environments, involving water conservancy and hydropower, railway transportation, intelligent construction, production automation, aerospace, military, petrochemical, oil well, electric power, shipbuilding, machine tools, pipelines and many other industries.
  • the pressure sensor can also be applied to an electronic skin.
  • the electroluminescent device of the pressure sensor in this embodiment is an organic light emitting diode, which makes the pressure sensor flexible.
  • the pressure sensor specifically includes:
  • the organic light emitting diode 3 includes a first electrode 30, a second electrode 31, and an organic light emitting layer 32 disposed between the first electrode 30 and the second electrode 31.
  • the materials of the first electrode 30 and the second electrode 31 may be Selecting a metal material such as a metal such as Cu, Al, Ag, Mo, Cr, Nd, Ni, Mn, Ti, Ta, W, and an alloy of these metals, the first electrode 30 and the second electrode 31 may have a single layer structure or Multi-layer structure, multi-layer structure such as Cu ⁇ Mo, Ti ⁇ Cu ⁇ Ti, Mo ⁇ Al ⁇ Mo, etc.
  • the material of the first electrode 30 and the second electrode 31 may also be selected from a conductive polymer.
  • the material of the organic light-emitting layer 32 may be selected from a fluorescent material or a phosphorescent material;
  • the resistance layer 1, the first electrode 30 and the resistance layer 1 are respectively connected with the two poles of a power source 100 to form a loop.
  • the resistance layer 1 is deformed by the influence of the pressure, and the resistance thereof changes, resulting in application to the organic
  • the current on the light emitting diode 3 changes, and the brightness of the organic light emitting diode 3 changes;
  • At least one photosensor 4 for acquiring a parameter related to a change in brightness of the organic light emitting diode 3;
  • the detecting unit is connected to the photosensor 4 for determining the magnitude of the pressure applied to the pressure sensor based on a parameter related to the change in the brightness of the organic light emitting diode 3.
  • the pressure sensor having the above structure converts the deformation caused by the pressure into the change of the brightness of the organic light emitting diode, and determines the magnitude of the pressure according to the change of the brightness, and has the advantages of low driving voltage, high efficiency, simple structure, and simple process technology. Moreover, by utilizing the flexibility of the organic light emitting diode, a flexible pressure sensor can be realized, which can be applied to the electronic skin.
  • the pressure sensor is further provided with an elastic recovery layer 2 made of an elastic material disposed in contact with the resistance layer 1, and the elastic recovery layer 2 is also deformed when pressure is applied to the pressure sensor. ,as shown in picture 2.
  • the elastic recovery layer 2 undergoes deformation recovery, and the deformation of the resistive layer 1 is restored to the initial state, as shown in FIG.
  • the initial state of the resistance layer 1 is generally a natural state in which the resistance layer 1 is not deformed by an external force.
  • the organic light emitting diode 3 may further include other functional layers such as an electron transport layer 33, a hole transport layer 34, and the like.
  • pressure can be applied to the pressure sensor through a side of the elastic recovery layer 2 facing away from the resistance layer 1 , as shown in FIG. 2 ; the pressure sensor can also be passed through a side of the resistance layer 1 facing away from the elastic recovery layer. Apply pressure, see Figure 3. Further, the pressure is applied to the pressure sensor through the surface of the elastic recovery layer 2 facing away from the resistance layer 1, or the pressure is applied to the pressure sensor through the surface of the resistance layer 1 facing away from the elastic recovery layer 2, thereby improving the sensitivity of the pressure detection. Detection of small pressure.
  • the photosensor 4 can be disposed on the surface of the first electrode 30 facing away from the organic light-emitting layer 32, that is, the photosensor 4 is integrated with the organic light-emitting diode 3.
  • the photoelectric sensor can also be a separate structure.
  • the photosensor 4 can be, but is not limited to, a photodiode, which is a semiconductor device composed of two electrodes and a PN junction between the two electrodes, and has a unidirectional conductive characteristic for the optical signal. Converted into an electrical signal.
  • one electrode of the photosensor 4 may share the first electrode 30 of the organic light emitting diode 3.
  • the pressure sensor further includes a flexible substrate 101, and the elastic recovery layer 2 and the resistance layer 1 are disposed on the flexible substrate 101 to facilitate the fabrication of the elastic recovery layer 2 and the resistance layer 1, and the flexible substrate can also implement the device. Flexibility.
  • the flexible substrate 101 may be a plastic substrate, a metal foil, an ultra-thin glass, or the like.
  • the resistive layer 1 may be disposed on a surface of the elastic recovery layer 2 facing away from the flexible substrate 101, as shown in FIGS. 1 and 3.
  • the resistive layer may also be disposed between the flexible substrate and the elastic recovery layer, and only needs to ensure that the elastic recovery layer and the resistive layer are in contact with each other, so that the deformation recovery of the elastic recovery layer can bring the resistive layer deformation back to the initial state.
  • the organic light emitting diode can also be fabricated on the flexible substrate to further integrate and realize flexibility of the device.
  • the specific structure of the pressure sensor may be any one of the following two structures.
  • the resistance layer 1 and the elastic recovery layer 2 are sequentially disposed on the flexible substrate 101, and the second electrode 31, the organic light-emitting layer 32, and the first electrode 30 of the organic light-emitting diode 3 are sequentially disposed.
  • the first electrode 30 and the resistive layer 1 are respectively connected to the two poles of a power source 100 to form a loop.
  • the elastic recovery layer 2 and the resistance layer 1 are deformed by applying pressure to the pressure sensor by the surface of the flexible substrate 101 facing away from the elastic recovery layer 1, and the deformation of the resistance layer 1 causes the resistance to change, so that the current on the organic light emitting diode 3 occurs. Change, its brightness changes.
  • the resistance layer 1 and the elastic recovery layer 2 are disposed on the surface of the flexible substrate 101, and the second electrode 31, the organic light-emitting layer 32, and the first electrode 30 of the organic light-emitting diode 3 are sequentially
  • the resistive layer 1 and the second electrode 31 of the organic light emitting diode 2 are connectable on the back surface of the flexible substrate 101 opposite to the surface, and the resistive layer 1 and the first electrode 30 are respectively connected with the two poles of a power source 100. Loop.
  • the elastic recovery layer 2 and the resistance layer 1 are deformed by applying pressure to the pressure sensor on the side where the surface of the flexible substrate 101 is located, and the deformation of the resistance layer 1 causes the resistance thereof to change, so that the current on the organic light emitting diode 3 changes. Its brightness changes.
  • the elastic recovery layer 2 may be disposed between the flexible substrate 101 and the resistance layer 1, and the elastic recovery layer may also be disposed on a surface of the resistance layer facing away from the flexible substrate.
  • the resistive layer 1, the elastic recovery layer 2 and the organic light emitting diode 3 are disposed on the same flexible substrate.
  • the specific implementation structure has been described above, and details are not described herein.
  • the photosensor 4 is disposed on the light exiting side of the organic light emitting diode 3. For example, when light emitted from the organic light emitting diode 3 is emitted through the first electrode 30, the photosensor 4 is disposed on a surface of the first electrode 30 facing away from the organic light emitting layer 32.
  • the above embodiment achieves a high degree of integration of the pressure sensor, simplifying the structure of the device. And the flexibility of the device is realized to suit the flexibility of the electronic device, for example, applied to electronic skin.
  • the pressure sensor of the present disclosure adds a resistance layer in the power supply circuit of the organic light emitting diode, and the pressure applied to the pressure sensor can cause the resistance layer to be deformed, and the resistance thereof changes, and the current in the power supply circuit changes, thereby the pressure signal.
  • the light signal converted into an organic light emitting diode realizes the detection of the pressure.
  • the pressure sensor is further provided with a carrier layer 102 for providing a load for the resistance layer 1.
  • the resistance layer 1 having the above functions specifically includes:
  • the first conductor structure and the second conductor structure being located between the carrier layer 102 and the elastic recovery layer 2, the resistance layer 1 being deformed by pressure, the first conductor structure
  • the contact area with the second conductor structure changes, causing the resistance of the resistance layer 1 to change.
  • the resistive layer is located between the carrier layer and the elastic recovery layer, and includes two conductor structures disposed opposite each other.
  • the contact area of the two conductor structures is changed by the influence of the pressure, so that the resistance of the resistive layer changes.
  • the first conductor structure may be provided to include a plurality of first protruding structures 10 disposed on an upper surface of the elastic recovery layer 2 as shown in FIGS. 1-3, the second conductor structure including a second electrode 31 as shown in FIG. 1-2 or a plurality of second protrusion structures 11 on the lower surface of the carrier layer 102 as shown in FIG. 3, the upper surface of the elastic recovery layer 2 and the The lower surface of the second electrode 31 or the carrier layer 102 is oppositely disposed, and the plurality of first protrusion structures 10 and the plurality of second protrusion structures 11 are alternately arranged with each other.
  • the orthographic projection of each of the first raised structures 10 on the flexible substrate 101 and each of the second raised structures 11 adjacent to the first raised structures 11 on the flexible substrate 101 The orthographic projections are separated from each other or not completely overlapping, and vice versa.
  • the first convex structure 10 corresponds to a region disposed between the second convex structures 11
  • the second convex structure 11 corresponds to a region disposed between the first convex structures 10 when applied on the pressure sensor
  • the first raised structure 10 that is affected by the pressure and changes in position can completely fill between the two second raised structures 11 adjacent thereto.
  • the space is such that the contact area between the first raised structure 10 and the two second raised structures 11 is maximized.
  • first convex structure 10 and the second convex structure 11 are shown as trapezoidal bodies in the respective drawings of the present application, the first convex structure 10 and the second convex structure 11
  • the shape is not limited to this.
  • the shape of the first raised structure 10 and the second raised structure 11 may be any such that the contact area between the first raised structure 10 and the second raised structure 11 increases when pressure is applied to the pressure sensor Shapes such as a rectangular body, a square body, a columnar body, and the like.
  • the shape and size of the first raised structure 10 may be different or identical to the shape and size of the second raised structure 11, and the shape and size of each of the first raised structures 10 or the shape and size of each of the second raised structures 11 They may also be different or identical to each other.
  • the resistor layer is located between the carrier layer and the elastic recovery layer, and includes two conductor structures disposed opposite each other, and the surface of each conductor structure is an uneven structure of irregularities, when pressure is applied to the pressure sensor, The resistive layer is deformed, and the contact area of the two conductor structures is increased, so that the resistance of the resistive layer is reduced.
  • the first convex structure is directly disposed on the elastic recovery layer, and the second convex structure is directly disposed on the bearing layer as an example, when the pressure sensor is not applied
  • the distance between the elastic recovery layer and the carrier layer should be smaller than the height of the first protrusion structure and the second protrusion structure, so that when the resistance layer is deformed, the first protrusion structure and the second layer are caused.
  • the contact area of the raised structure changes corresponding to the magnitude of the pressure, and the detection of the magnitude of the pressure is achieved.
  • the height of the first raised structure and the second raised structure refers to the extended length of the first raised structure and the second raised structure in a direction perpendicular to the plane in which the elastic recovery layer is located.
  • the structure of the resistance layer is not limited to the above one, as long as the deformation of the resistance layer can be made to change the resistance of the resistor itself.
  • the carrier layer is disposed integrally with the second electrode 31 of the organic light emitting diode, that is, the resistive layer 1 is located between the elastic recovery layer 2 and the second electrode 31.
  • the organic light-emitting layer 32 and the first electrode 30 of the organic light-emitting diode 3 are sequentially disposed on the side of the second electrode 31 facing away from the elastic recovery layer 2, eliminating the process of separately forming the carrier layer, thereby reducing the cost. And achieve integration, simplifying the structure of the device.
  • the organic light emitting diode 3, the resistive layer 1 and the elastic recovery layer 2 may be sequentially disposed on the surface of the flexible substrate 101, and the flexible substrate 101 can provide a load to facilitate fabrication of the device, and the flexible substrate 101 can also implement the device. Flexibility.
  • the photosensor 4 is disposed on a surface of the first electrode 30 facing away from the organic light-emitting layer 32, and light emitted from the organic light-emitting diode 3 is emitted through the first electrode 30.
  • the photosensor may also be disposed on the back surface of the flexible substrate facing away from the elastic recovery layer, and the light emitted by the organic light emitting diode is emitted from the back surface of the flexible substrate via the second electrode.
  • the materials of the first electrode 30 and the second electrode 31 are disposed according to the light emitting side of the organic light emitting diode.
  • the second electrode selects a material capable of reflecting light, such as : Ag.
  • the first electrode selects a transparent conductive material having a high light transmittance, such as ITO (Indium Tin Oxide) or I-ZnO (Intrinsic Zinc Oxide, intrinsic zinc oxide).
  • the first protruding structure 10 and the second protruding structure 11 of the resistive layer 1 may be metal nanorods or carbon nanotubes, and the metal nanorods or carbon nanotubes are favorable for forming a minute convex structure.
  • the amount of change in the contact area of the first convex structure and the second convex structure can be increased, and the detection sensitivity is improved.
  • the resistance layer 1 shown in FIGS. 1 and 2 further includes:
  • the second semiconductor film 42 over the portion of the second electrode 31 between the adjacent second raised structures 11 is covered.
  • first semiconductor film 42 and the second semiconductor film 42 described above are not shown in FIGS. 1 and 2 for the sake of clarity, and although only one first semiconductor is schematically shown in FIG. a film 41 and a second semiconductor film 42, but actually a first semiconductor film may be disposed on a portion of the elastic recovery layer 2 between each two adjacent first protrusion structures 10 in the resistance layer 41.
  • a second semiconductor film 42 may be disposed on a portion of the second electrode 31 between each two adjacent second protruding structures 11.
  • a first semiconductor film may be disposed on the upper portion, and a second semiconductor film may be disposed on a portion of the carrier layer 102 between each two adjacent second protruding structures 11.
  • the first protruding structure of the resistive layer is electrically connected by the first semiconductor film
  • the second protruding structure is electrically connected by the second semiconductor film, and can be realized by the first semiconductor film and the second semiconductor film with a power source or other electric The connection of sexual structure.
  • the material of the first semiconductor film and the second semiconductor film may be graphene.
  • the first semiconductor film and the second semiconductor film select different types of semiconductor materials to form a PN junction, which can realize a single conduction, which is beneficial to protect the performance of the device.
  • an electronic device including the pressure sensor as described above to detect the magnitude of the pressure to achieve automatic pressure-based control.
  • a method for manufacturing a pressure sensor including:
  • Forming an electroluminescent device comprising the steps of forming a first electrode, a second electrode, and an electroluminescent layer between the first electrode and the second electrode;
  • Forming a photosensor wherein the photosensor is configured to acquire a parameter related to a change in brightness of the electroluminescent device;
  • a detection unit is provided coupled to the photosensor, the detection unit for determining a magnitude of the applied pressure based on a parameter related to a change in brightness of the electroluminescent device.
  • the pressure sensor converts the deformation caused by the pressure into the change of the brightness of the organic light emitting diode, and determines the magnitude of the pressure according to the change of the brightness, and has the advantages of low driving voltage, high efficiency, simple structure, simple process and the like.
  • the flexible structure of the organic light-emitting diode can realize a flexible pressure sensor, which can be applied to an electronic device such as an electronic skin which is required for flexibility.
  • the manufacturing method further includes:
  • the elastic recovery layer disposed in contact with the resistance layer is formed by using an elastic material, and when the pressure is removed, the elastic recovery layer is deformed and the deformation of the resistance layer is restored to an initial state.
  • the elastic recovery layer provided in contact with the resistance layer is obtained by the above-described production method, and when the pressure is removed, the resistance layer is restored to the initial state, and the cyclic detection of the pressure is realized.
  • the manufacturing method further includes: providing a carrier layer.
  • the step of forming the resistive layer includes:
  • the resistance layer obtained by the above manufacturing method is located between the carrier layer and the elastic recovery layer, and includes two conductor structures disposed opposite to each other, and the contact area of the two conductor structures is changed by the influence of the pressure, so that the resistance of the resistance layer occurs. Variety.
  • the step of forming the first conductor structure specifically includes:
  • a plurality of first raised structures are formed.
  • the step of forming the second conductor structure specifically includes:
  • a plurality of second raised structures are formed.
  • the resistance layer The deformation is affected by the pressure, so that the contact area of the first convex structure and the second convex structure is increased, so that the electrical resistance of the resistance layer is reduced.
  • the resistive layer obtained by the above steps is located between the carrier layer and the elastic recovery layer, and includes two conductor structures disposed opposite each other, and the surface of each of the conductor structures is an uneven structure of irregularities when applied on the pressure sensor When the pressure is applied, the resistive layer is deformed, and the contact area of the two conductor structures is increased, so that the resistance of the resistive layer is reduced.
  • the carrier layer is disposed integrally with the second electrode of the organic light emitting diode, and the second conductor structure is formed on the second electrode. That is, the resistive layer is located between the elastic recovery layer and the second electrode, and the organic light emitting layer and the first electrode of the organic light emitting diode are sequentially disposed on the side of the second electrode facing away from the elastic recovery layer, thereby eliminating the process of separately manufacturing the carrier layer. ,cut costs. And achieve integration, simplifying the structure of the device.
  • the corresponding method for manufacturing the pressure sensor specifically includes:
  • first grooves Forming a plurality of first grooves on a first transition substrate, the first grooves having a diameter of a nanometer
  • the first substrate and the second substrate are fixed to the cassette, and then the third transition substrate is removed.
  • the pressure sensor obtained by the above steps has an elastic recovery layer, a resistance layer and an organic light emitting diode sequentially formed on the surface of a flexible substrate to realize flexibility and integration of the device.
  • the organic light emitting layer of the organic light emitting diode and the first electrode are sequentially formed on the surface of the second electrode facing away from the elastic recovery layer.
  • the manufacturing method before the step of fixing the first substrate and the second substrate to the box, the manufacturing method further includes:
  • a second semiconductor film covering a second electrode between the second conductor structure and the second conductor structure is formed.
  • the first protruding structure of the resistive layer obtained through the above steps is electrically connected through the first semiconductor film, and the second protruding structure is electrically connected through the second semiconductor film, and can be realized by the first semiconductor film and the second semiconductor film. Connection of a power source or other electrical structure.
  • a photosensor may be formed on a surface of the first electrode of the organic light emitting diode facing away from the organic light emitting layer, and light emitted by the organic light emitting diode is emitted through the first electrode.
  • a photosensor may be formed on the back side of the flexible substrate facing away from the elastic recovery layer, at which time the light emitted by the organic light emitting diode is emitted from the back side of the flexible substrate via the second electrode.
  • the method for manufacturing the pressure sensor specifically includes:
  • Step S1 see FIG. 4, a plurality of first grooves are formed on a first transition substrate 103, the first groove has a depth of 1 ⁇ m and a diameter of 50 nm;
  • the first transition substrate may specifically be a silicon substrate, and the first groove is prepared by photolithography and etching. Specifically, a photoresist is formed on the surface of the first transition substrate, and the photoresist is exposed, and after the development, a photoresist retention region and a photoresist non-retention region are formed, wherein the photoresist does not retain the region. Corresponding to the region where the first groove is located; then, in a N 2 atmosphere, the first transition substrate is immersed in a 0.03 mol/l silane solution for 1 h; finally, the remaining photoresist is peeled off, and at 110-120 Bake at a temperature of °C for 20-30 min.
  • Step S2 as shown in Figure 4, vapor deposition of metal Pt or Ag in the first recess, forming a first metal nanotube, that is, a first raised structure 10;
  • Step S3 forming an elastic recovery layer 2 (shown in FIG. 5) and a flexible support layer (ie, the flexible substrate 101, as shown in FIG. 6) on the surface of the first transition substrate 103 having the first metal nanotube 10, and then The fourth transition substrate 104 is pressed, specifically a plastic substrate, as shown in FIG. 7;
  • a PUA (polyurethane acrylate) precursor and a PDMS (polydimethylsiloxane) are sequentially coated on the surface of the first transition substrate 103 having the first metal nanotube 10, and then pressed.
  • the fourth transition substrate 104 is covered.
  • the flexible support layer 101 is formed from a PDMS material.
  • Step S4 the pre-polymer of the PUA is cured to form the elastic recovery layer 2, and then the first transition substrate 103 is removed, as shown in FIG. 8;
  • the fabrication of the first substrate is completed, which is formed by the fourth transition substrate 104, the flexible substrate 101, the elastic recovery layer 2 on the flexible substrate 101, and the first protrusion structure 10 on the elastic recovery layer 2.
  • the first conductor structure of the resistance layer is specifically composed of a plurality of first protrusion structures 10.
  • the fourth transition substrate 104 can provide a load to facilitate subsequent processes.
  • Step S5 as shown in FIG. 9, a plurality of second grooves are formed on a second transition substrate 105.
  • the second grooves have a diameter of nanometers, and the metal Pt is vapor-deposited in the second grooves. Ag, forming a second metal nanotube, that is, a second convex structure 11;
  • Step S6 forming a second electrode 31 of the organic light emitting diode on the surface of the second transition substrate 105 having the second metal nanotube 11, as shown in FIG. 10, and then pressing the third transition substrate 106 on the second electrode 31, Specifically, it may be a plastic substrate, as shown in FIG. 11;
  • the material of the second electrode 31 can be specifically selected from a conductive polymer such as PEDOT:PSS, and is more suitable for a flexible device.
  • PEDOT:PSS consists of PEDOT (poly(3,4-ethylenedioxythiophene)) and PSS (polystyrene sulfonate).
  • PEDOT is a polymer of EDOT (3,4-ethylenedioxythiophene, 3,4-ethylenedioxythiophene monomer), and PSS is a polystyrene sulfonate.
  • Step S7 removing the second transition substrate 105, as shown in FIG. 11 and FIG.
  • the fabrication of the second substrate is completed, which is formed by the third transition substrate 106, the second electrode 31 on the third transition substrate 106, and the second protrusion structure 11 on the second electrode 31.
  • the second conductor structure of the resistance layer is specifically composed of a plurality of second protrusion structures 11.
  • the order of making the first substrate and the second substrate may be interchanged, and is not limited herein.
  • Step S7 fixing the first substrate and the second substrate of the box, as shown in FIG. 13, then removing the fourth transition substrate 104 and the third transition substrate 106, as shown in FIG.
  • Step S8 as shown in FIG. 1, the organic light-emitting layer 32 of the organic light-emitting diode 3 and the first electrode 30 are sequentially formed on the surface of the second electrode 31 facing away from the elastic recovery layer 2;
  • Step S9 referring to FIG. 1, the photosensor 4 is formed on the surface of the first electrode 30 facing away from the organic light-emitting layer 32.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种压力传感器及其制作方法、电子器件。压力传感器包括电致发光器件(3)和电阻层(1),电阻层(1)和电致发光器件(3)的一个电极分别与电源(100)的两极连接,形成回路。压力传感器将压力导致的形变转换为电致发光器件(3)的亮度变化,并根据亮度的变化确定压力的大小。

Description

压力传感器及其制作方法、电子器件
相关申请的交叉引用
本申请主张在2017年6月28日在中国提交的中国专利申请No.201710508581.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及压力检测技术领域,特别是涉及一种压力传感器及其制作方法、电子器件。
背景技术
压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境。相关技术中的压力传感器多为力学传感器,如:压阻式压力传感器、电容式压力传感器,通过将压力信号转换为电信号,来实现对压力大小的检测。
发明内容
本公开文本实施例中提供一种压力传感器,包括:
电致发光器件,包括第一电极、第二电极,以及设置在所述第一电极和第二电极之间的电致发光层;
电阻层,在所述电阻层上施加有压力的情况下,所述电阻层能够发生形变,从而使所述电阻层的电阻发生变化,其中所述第一电极和电阻层分别与一电源的两极连接形成回路;
至少一个光电传感器,用于获取与所述电致发光器件的亮度变化相关的参数;
检测单元,与所述光电传感器连接,所述检测单元用于根据与所述电致发光器件的亮度变化相关的参数,确定施加压力的大小。
如上所述的压力传感器,其中,所述压力传感器还包括:
弹性恢复层,与所述电阻层接触设置、由弹性材料制得,当移除压力时, 所述弹性恢复层发生形变恢复,并带动电阻层形变恢复至初始状态。
如上所述的压力传感器,其中,所述压力传感器还包括承载层;
所述电阻层包括:
设置在所述弹性恢复层上的第一导体结构;
设置在所述承载层上的第二导体结构,所述第一导体结构和第二导体结构位于所述承载层和弹性恢复层之间,所述电阻层受压力影响发生形变,所述第一导体结构和第二导体结构的接触面积发生变化,致使所述电阻层的电阻发生变化。
如上所述的压力传感器,其中,所述第一导体结构包括多个第一凸起结构,所述第二导体结构包括多个第二凸起结构,所述第一凸起结构对应设置在所述第二凸起结构之间的区域,所述第二凸起结构对应设置在所述第一凸起结构之间的区域,所述电阻层受压力影响发生形变,使所述第一凸起结构和第二凸起结构的接触面积增加,致使所述电阻层的电阻减小。
如上所述的压力传感器,其中,所述承载层与所述第二电极为一体结构。
如上所述的压力传感器,其中,所述第二电极的材料为导电聚合物。
如上所述的压力传感器,其中,所述第一凸起结构和第二凸起结构为金属纳米棒或碳纳米管。
如上所述的压力传感器,其中,所述电阻层还包括:
覆盖所述第一凸起结构和所述第一凸起结构之间的弹性恢复层的第一半导体薄膜;
覆盖所述第二凸起结构和所述第二凸起结构之间的第二电极的第二半导体薄膜。
如上所述的压力传感器,其中,所述第一半导体薄膜和第二半导体薄膜的材料为石墨烯。
如上所述的压力传感器,其中,所述光电传感器设置在所述第一电极的背离电致发光层的表面上。
如上所述的压力传感器,其中,所述压力传感器还包括柔性基底,所述弹性恢复层设置在所述柔性基底上,所述电阻层设置在所述弹性恢复层的背离所述柔性基底的表面上。本公开文本实施例中还提供一种如上所述的压力 传感器的制作方法,包括:
形成所述电致发光器件,包括形成所述第一电极、第二电极、以及位于所述第一电极和第二电极之间的电致发光层的步骤;
形成所述电阻层,其中所述第一电极和电阻层分别与一电源的两极连接形成回路;
形成所述光电传感器,其中所述光电传感器用于获取与所述电致发光器件的亮度变化相关的参数;
提供所述检测单元,其中所述检测单元与所述光电传感器连接,用于根据与所述电致发光器件的亮度变化相关的参数,确定施加压力的大小。
如上所述的制作方法,其中,所述制作方法还包括:
利用弹性材料形成与所述电阻层接触设置的弹性恢复层,其中当移除压力时,所述弹性恢复层发生形变恢复,并带动电阻层形变恢复至初始状态。
如上所述的制作方法,其中,所述制作方法还包括:
提供一承载层;
形成所述电阻层的步骤包括:
在所述弹性恢复层上形成第一导体结构;
在所述承载层上形成第二导体结构,所述第一导体结构和第二导体结构位于所述承载层和弹性恢复层之间,所述电阻层受压力影响发生形变,所述第一导体结构和第二导体结构的接触面积发生变化,致使所述电阻层的电阻发生变化。
如上所述的制作方法,其中,形成所述第一导体结构的步骤包括:
形成多个第一凸起结构;
形成所述第二导体结构的步骤包括:
形成多个第二凸起结构;
所述第一凸起结构对应设置在所述第二凸起结构之间的区域,所述第二凸起结构对应设置在所述第一凸起结构之间的区域,所述电阻层受压力影响发生形变,使所述第一凸起结构和第二凸起结构的接触面积增加,致使所述电阻层的电阻减小。
如上所述的制作方法,其中,在所述承载层上形成第二导体结构包括在 所述第二电极上形成所述第二导体结构,其中所述承载层与所述第二电极为一体结构。
如上所述的制作方法,其中,所述制作方法具体包括:
在一第一过渡基底上形成多个第一凹槽;
在所述第一凹槽内填充导体材料,形成第一凸起结构;
利用弹性材料在所述第一过渡基底的具有第一凸起结构的表面成膜,形成弹性恢复层;
在所述弹性恢复层的背离所述第一过渡基底的表面形成柔性基底;
移除所述第一过渡基底,由所述柔性基底、位于所述柔性基底上的弹性恢复层和位于所述弹性恢复层上的第一凸起结构形成第一基板;
在一第二过渡基底形成多个第二凹槽;
在所述第二凹槽内填充导体材料,形成第二凸起结构;
在所述第二过渡基底的具有第二凸起结构的表面形成第二电极;
在第二电极上压覆第三过渡基底;
移除所述第二过渡基底,由所述第三过渡基底、位于所述第三过渡基底上的第二电极和位于所述第二电极上的第二凸起结构形成第二基板;
固定对盒所述第一基板和第二基板,然后移除所述第三过渡基底。
如上所述的制作方法,其中,固定对盒所述第一基板和第二基板的步骤之前,所述制作方法还包括:
形成覆盖所述第一凸起结构和所述第一凸起结构之间的弹性恢复层的第一半导体薄膜;
形成覆盖所述第二凸起结构和所述第二凸起结构之间的第二电极的第二半导体薄膜。
如上所述的制作方法,其中,所述第一凹槽的直径和所述第二凹槽的直径均为纳米级。
本公开文本实施例中还提供一种电子器件,包括如上所述的压力传感器。
附图说明
为了更清楚地说明本公开文本实施例或相关技术中的技术方案,下面将 对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开文本实施例中压力传感器的结构示意图一;
图2表示图1中压力传感器的工作示意图;
图3表示本公开文本实施例中压力传感器的结构示意图二;
图4-图14表示本公开文本实施例中压力传感器的制作过程示意图;
图15表示本公开文本实施例中压力传感器的制作方法的流程图;
图16表示设置有第一半导体薄膜和第二半导体薄膜的电阻层的结构示意图。
具体实施方式
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例的附图,对本公开文本实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开文本的一部分实施例,而不是全部的实施例。基于所描述的本公开文本的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开文本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
电致发光器件具有自发光、高发光效率、低工作电压、轻薄、可柔性化以及制程工艺简单等特点,在显示照明领域应用广泛。本公开文本利用电致 发光器件的特点,将电致发光器件与传感器结合,制作一种新型的压力传感器,将压力信号转变为光信号,通过光信号来确定压力的大小。
本公开文本的压力传感器包括:
电致发光器件,包括第一电极、第二电极,以及设置在所述第一电极和第二电极之间的电致发光层;
电阻层,在所述电阻层上施加有压力的情况下,所述电阻层能够发生形变,从而使所述电阻层的电阻发生变化,其中所述第一电极和电阻层分别与一电源的两极连接形成回路;
至少一个光电传感器,用于获取与所述电致发光器件的亮度变化相关的参数;
检测单元,与所述光电传感器连接,所述检测单元用于根据与所述电致发光器件的亮度变化相关的参数,确定施加压力的大小。
该压力传感器具体的工作原理为:当在压力传感器上施加压力时,电阻层受压力影响发生形变,电阻层的形变导致其电阻发生变化,致使电致发光器件的供电回路上的电流发生变化,电致发光器件的亮度改变。由于亮度变化与压力的大小相关,因此通过检测电致发光器件的亮度变化,能够判断压力的大小。其中,施加在压力传感器上的压力大小与电阻层的形变量呈正比关系,即,施加在压力传感器上的压力越大与电阻层的形变量越大。
本公开文本的压力传感器通过将压力信号转换为光信号,并检测光信号的变化来确定压力的大小,实现一种新型的压力大小检测。
本公开文本的压力传感器可以应用在电子器件上,用以检测压力的大小,实现基于压力的自动控制。具体可以应用于各种自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。
进一步地,电致发光器件选择柔性的有机电致发光二极管时,所述压力传感器还可应用在电子皮肤上。
下面将结合附图和实施例,对本公开文本的具体实施方式作进一步详细描述。以下实施例用于说明本公开文本,但不用来限制本公开文本的范围。
结合图1和图2所示,本实施例中压力传感器的电致发光器件为有机发 光二极管,使压力传感器具有可柔性化的特点。所述压力传感器具体包括:
有机发光二极管3,包括第一电极30、第二电极31,以及设置在第一电极30和第二电极31之间的有机发光层32,其中,第一电极30和第二电极31的材料可以选择金属材料,如:Cu,Al,Ag,Mo,Cr,Nd,Ni,Mn,Ti,Ta,W等金属以及这些金属的合金,第一电极30和第二电极31可以为单层结构或者多层结构,多层结构比如Cu\Mo,Ti\Cu\Ti,Mo\Al\Mo等。第一电极30和第二电极31的材料也可以选择导电聚合物。有机发光层32的材料可以选择荧光材料或磷光材料;
电阻层1、第一电极30和电阻层1分别与一电源100的两极连接形成回路,当在压力传感器上施加压力时,电阻层1受压力影响发生形变,其电阻发生变化,导致施加在有机发光二极管3上的电流发生变化,有机发光二极管3的亮度发生变化;
至少一个光电传感器4,用于获取与有机发光二极管3的亮度变化相关的参数;
检测单元,与光电传感器4连接,所述检测单元用于根据与有机发光二极管3的亮度变化相关的参数,确定施加在压力传感器上的压力的大小。
具有上述结构的压力传感器将压力导致的形变转换为有机发光二极管的亮度变化,并根据亮度的变化确定压力的大小,具有驱动电压低、高效率、结构简单、制程工艺简单等优点。而且利用有机发光二极管可柔性化的特点,可以实现柔性化的压力传感器,能够应用于电子皮肤上。
为了实现对压力的循环检测,设置所述压力传感器还包括与电阻层1接触设置的、由弹性材料制得的弹性恢复层2,当在压力传感器上施加压力时,弹性恢复层2也发生形变,如图2所示。而当移除压力时,弹性恢复层2发生形变恢复,并带动电阻层1形变恢复至初始状态,如图1所示。
其中,电阻层1的初始状态通常为电阻层1不因受外力而发生形变的自然状态。有机发光二极管3还可以包括电子传输层33、空穴传输层34等其它功能层。
具体可以通过弹性恢复层2的背离电阻层1的一侧向所述压力传感器施加压力,如图2所示;也可以通过电阻层1的背离所述弹性恢复层的一侧向 所述压力传感器施加压力,参见图3所示。进一步地,压力通过弹性恢复层2的背离电阻层1的表面施加在压力传感器上,或压力通过电阻层1的背离弹性恢复层2的表面施加在压力传感器上,提高压力检测的灵敏度,实现对微小压力的检测。
为了增加产品的集成度,可以将光电传感器4设置在第一电极30的背离有机发光层32的表面上,即光电传感器4与有机发光二极管3集成在一起。当然,光电传感器也可以为独立的结构。其中,光电传感器4可以但并不局限于为光电二极管,该光电二极管是由两个电极和位于两个电极之间的一个PN结组成的半导体器件,具有单方向导电特性,用于把光信号转换成电信号。当光电传感器4设置在有机发光二极管3的第一电极30上时,光电传感器4的一个电极可以共用有机发光二极管3的第一电极30。
本实施例中,所述压力传感器还包括柔性基底101,弹性恢复层2和电阻层1设置在柔性基底101上,以方便弹性恢复层2和电阻层1的制作,而且柔性基底还能够实现器件的柔性化。其中,柔性基底101可以为塑料基底、金属箔片、超薄玻璃等。电阻层1可以设置在弹性恢复层2的背离柔性基底101的表面上,参见图1和图3所示。当然,所述电阻层也可以设置在所述柔性基底和弹性恢复层之间,只需保证弹性恢复层和电阻层接触设置,使得弹性恢复层的形变恢复能够带动电阻层形变恢复至初始状态。
进一步地,还可以将所述有机发光二极管制作在所述柔性基底上,进一步实现集成化,并实现器件的柔性化。为了不妨碍对压力的检测,压力传感器的具体结构可以为以下两种结构中的任意一种。
在第一种结构中,如图1所示,电阻层1和弹性恢复层2依次设置在柔性基底101上,有机发光二极管3的第二电极31、有机发光层32和第一电极30依次设置在电阻层1的背离弹性恢复层2的表面上,第一电极30和电阻层1分别与一电源100的两极连接形成回路。通过柔性基底101的背离弹性恢复层1的表面向压力传感器施加压力,使弹性恢复层2和电阻层1发生形变,电阻层1的形变致使其电阻发生变化,从而有机发光二极管3上的电流发生变化,其亮度发生变化。
在第二种结构中,如图3所示,电阻层1和弹性恢复层2设置在柔性基 底101的表面上,有机发光二极管3的第二电极31、有机发光层32和第一电极30依次设置在柔性基底101的与所述表面相对的背面上,电阻层1与有机发光二极管2的第二电极31可以连接,并将电阻层1和第一电极30分别与一电源100的两极连接形成回路。通过柔性基底101的表面所在的一侧向压力传感器施加压力,使弹性恢复层2和电阻层1发生形变,电阻层1的形变致使其电阻发生变化,从而有机发光二极管3上的电流发生变化,其亮度发生变化。其中,弹性恢复层2可以设置在柔性基底101和电阻层1之间,所述弹性恢复层也可以设置在所述电阻层的背离所述柔性基底的表面上。
在一个具体的实施方式中,电阻层1、弹性恢复层2和有机发光二极管3设置在同一柔性基底上,具体的实现结构已在上面的内容中描述,在此不再赘述。光电传感器4设置在有机发光二极管3的出光侧。例如:当有机发光二极管3发出的光线经由第一电极30射出时,光电传感器4设置在第一电极30的背离有机发光层32的表面上。
上述实施方式实现了压力传感器的高度集成化,简化了器件的结构。并实现了器件的柔性化,以适用于电子器件对柔性的需求,例如:应用在电子肌肤上。
本公开文本的压力传感器在有机发光二极管的供电回路中增设电阻层,施加在压力传感器上的压力能够致使电阻层发生形变,进而其电阻发生变化,供电回路中的电流发生变化,从而将压力信号转换为有机发光二极管的光信号,实现对压力大小的检测。
本实施例中,如图3所示,设置压力传感器还包括一承载层102,用于为电阻层1提供承载。具有上述功能的电阻层1具体包括:
设置在弹性恢复层2上的第一导体结构;
设置在承载层102上的第二导体结构,所述第一导体结构和第二导体结构位于承载层102和弹性恢复层2之间,电阻层1受压力影响发生形变,所述第一导体结构和第二导体结构的接触面积发生变化,致使电阻层1的电阻发生变化。
上述电阻层位于承载层和弹性恢复层之间,包括正对设置的两个导体结构,所述两个导体结构的接触面积受压力影响发生变化,致使电阻层的电阻 发生变化。
具体地,可以设置所述第一导体结构包括设置在如图1-3中所示的弹性恢复层2的上表面上的多个第一凸起结构10,所述第二导体结构包括设置在如图1-2中所示的第二电极31或如图3中所示的承载层102的下表面上的多个第二凸起结构11,所述弹性恢复层2的上表面与所述第二电极31或承载层102的下表面相对设置,所述多个第一凸起结构10和所述多个第二凸起结构11彼此交错设置。从上可以看出,每一第一凸起结构10在柔性基底101上的正投影和与该第一凸起结构11相邻的每一第二凸起结构11在所述柔性基底101上的正投影彼此分离或不完全交叠,反之亦然。从而,第一凸起结构10对应设置在第二凸起结构11之间的区域,第二凸起结构11对应设置在第一凸起结构10之间的区域,当在所述压力传感器上施加压力时,电阻层1受压力影响发生形变,使第一凸起结构10和第二凸起结构11的接触面积增加,致使电阻层1的电阻减小。在一个实施例中,当在所述压力传感器上施加适当的压力时,受该压力影响而位置改变的第一凸起结构10能够完全填充与其相邻的两个第二凸起结构11之间的空间,使得第一凸起结构10与该两个第二凸起结构11之间的接触面积最大化。
需要说明的是,尽管在本申请的各个附图中将第一凸起结构10和第二凸起结构11的形状均示为了梯形体,但第一凸起结构10和第二凸起结构11的形状并不限于此。第一凸起结构10和第二凸起结构11的形状可以为任何能够使得在所述压力传感器上施加压力时第一凸起结构10和第二凸起结构11彼此之间的接触面积增加的形状,例如矩形体、方形体、柱状体等。第一凸起结构10的形状和大小可以不同于或相同于第二凸起结构11的形状和大小,且各个第一凸起结构10形状和大小或各个第二凸起结构11的形状和大小也可以彼此不同或相同。
上述电阻层位于承载层和弹性恢复层之间,包括正对设置的两个导体结构,每一导体结构的表面为凹凸起伏的不平整结构,当在所述压力传感器上施加压力时,所述电阻层发生形变,两个导体结构的接触面积增加,致使所述电阻层的电阻减小。
很容易想到的是,以所述第一凸起结构直接设置在所述弹性恢复层上、 所述第二凸起结构直接设置在所述承载层上为例,当所述压力传感器上未施加压力时,所述弹性恢复层和承载层之间的距离应小于第一凸起结构和第二凸起结构的高度,从而在电阻层发生形变时,才会导致第一凸起结构和第二凸起结构的接触面积发生与压力大小对应的变化,实现对压力大小的检测。第一凸起结构和第二凸起结构的高度是指:在垂直于所述弹性恢复层所在平面的方向上,第一凸起结构和第二凸起结构的延伸长度。
需要说明的是,电阻层的结构并不局限于上述一种,只要能够实现电阻层的形变可以致使其本身的电阻发生变化即可。
作为一个可选的实施方式,如图1所示,设置所述承载层与有机发光二极管的第二电极31为一体结构,即,电阻层1位于弹性恢复层2和第二电极31之间,有机发光二极管3的有机发光层32和第一电极30依次设置在第二电极31的背离弹性恢复层2的一侧,省去了单独制作承载层的工艺,降低成本。并实现集成化,简化器件的结构。
进一步地,还可以将有机发光二极管3、电阻层1和弹性恢复层2依次设置在一柔性基底101的表面上,柔性基底101能够提供承载,方便器件的制作,同时柔性基底101还能够实现器件的柔性化。
为了进一步实现集成化,将光电传感器4设置在第一电极30的背离有机发光层32的表面上,且有机发光二极管3发出的光线经由第一电极30射出。当然,也可以将所述光电传感器设置在所述柔性基底的背离所述弹性恢复层的背面上,此时有机发光二极管发出的光线经由第二电极从柔性基底的背面射出。上述技术方案将电阻层、有机发光二级管和光电传感器集成为一体结构,实现高度集成化,进一步简化器件的结构。其中,第一电极30和第二电极31的材料根据有机发光二极管的出光侧来设置,例如:当有机发光二极管发出的光线经由第一电极射出时,第二电极选择能够反射光线的材料,如:Ag。第一电极选择透光率高的透明导电材料,如:ITO(Indium Tin Oxide,铟锡氧化物)、I-ZnO(Intrinsic Zinc Oxide,本征氧化锌)。
上述可选实施方式中,电阻层1的第一凸起结构10和第二凸起结构11可以为金属纳米棒或碳纳米管,金属纳米棒或碳纳米管有利于形成微小的凸起结构,在相同的电阻层形变量条件下,能够增加所述第一凸起结构和第二 凸起结构的接触面积的变化量,提高检测灵敏度。
进一步地,如图16所示,图1和2所示的所述电阻层1还包括:
覆盖在相邻的第一凸起结构10之间的弹性恢复层2的部分上的第一半导体薄膜41;
覆盖在相邻的第二凸起结构11之间的第二电极31的部分上的第二半导体薄膜42。
需要注意的是,为清晰起见,在图1和2中并未示出上述的第一半导体薄膜42和第二半导体薄膜42,并且尽管在图16中仅示意性地示出了一个第一半导体薄膜41和一个第二半导体薄膜42,但实际上在所述电阻层中每两个相邻的第一凸起结构10之间的弹性恢复层2的部分上可以均设置有一个第一半导体薄膜41,且每两个相邻的第二凸起结构11之间的第二电极31的部分上可以均设置有一个第二半导体薄膜42。此外类似地,尽管图中未示出,但本领域技术人员能够理解在图3所示的电阻层1中,每两个相邻的第一凸起结构10之间的弹性恢复层2的部分上可以均设置有一个第一半导体薄膜,且每两个相邻的第二凸起结构11之间的承载层102的部分上可以均设置有一个第二半导体薄膜。
上述的电阻层的第一凸起结构通过第一半导体薄膜电性连接,第二凸起结构通过第二半导体薄膜电性连接,可以通过第一半导体薄膜和第二半导体薄膜实现与电源或其它电性结构的连接。
其中,所述第一半导体薄膜和第二半导体薄膜的材料可以为石墨烯。当然,第一半导体薄膜和第二半导体薄膜选择不同类型的半导体材料,形成PN结,能够实现单向导通,有利于保护器件的性能。
本实施例中还提供一种电子器件,包括如上所述的压力传感器,以检测压力大小,实现基于压力的自动控制。
如图15所示,基于同一发明构思,本实施例中提供一种压力传感器的制作方法,包括:
形成电致发光器件,包括形成第一电极、第二电极、以及位于所述第一电极和第二电极之间的电致发光层的步骤;
形成电阻层,其中在所述电阻层上施加有压力的情况下,所述电阻层能 够发生形变,从而使所述电阻层的电阻发生变化,其中所述第一电极和电阻层分别与一电源的两极连接形成回路;
形成光电传感器,其中所述光电传感器用于获取与所述电致发光器件的亮度变化相关的参数;
提供一检测单元,与所述光电传感器连接,所述检测单元用于根据与所述电致发光器件的亮度变化相关的参数,确定施加压力的大小。
通过上述步骤制得压力传感器将压力导致的形变转换为有机发光二极管的亮度变化,并根据亮度的变化确定压力的大小,具有驱动电压低、高效率、结构简单、制程工艺简单等优点。而且有机发光二极管可柔性化的特点,可以实现柔性化的压力传感器,能够应用于电子皮肤等对柔性有需求的电子器件上。
本实施例中,所述制作方法还包括:
利用弹性材料形成与所述电阻层接触设置的弹性恢复层,当移除压力时,所述弹性恢复层发生形变恢复,并带动电阻层形变恢复至初始状态。
通过上述制作方法制得与电阻层接触设置的弹性恢复层,能够使压力移除时,电阻层恢复至初始状态,实现对压力的循环检测。
为了方便器件的制作,所述制作方法还包括:提供一承载层。则形成电阻层的步骤包括:
在所述弹性恢复层上形成第一导体结构;
在所述承载层上形成第二导体结构,所述第一导体结构和第二导体结构位于所述承载层和弹性恢复层之间,所述电阻层受压力影响发生形变,所述第一导体结构和第二导体结构的接触面积发生变化,致使所述电阻层的电阻发生变化。
通过上述制作方法制得的电阻层位于承载层和弹性恢复层之间,包括正对设置的两个导体结构,所述两个导体结构的接触面积受压力影响发生变化,致使电阻层的电阻发生变化。
本实施例中,形成所述第一导体结构的步骤具体包括:
形成多个第一凸起结构。
形成所述第二导体结构的步骤具体包括:
形成多个第二凸起结构。
其中,所述第一凸起结构对应设置在所述第二凸起结构之间的区域,所述第二凸起结构对应设置在所述第一凸起结构之间的区域,所述电阻层受压力影响发生形变,使所述第一凸起结构和第二凸起结构的接触面积增加,致使所述电阻层的电阻减小。
通过上述步骤制得的电阻层位于承载层和弹性恢复层之间,包括正对设置的两个导体结构,每一导体结构的表面为凹凸起伏的不平整结构,当在所述压力传感器上施加压力时,所述电阻层发生形变,两个导体结构的接触面积增加,致使所述电阻层的电阻减小。
作为一个可选的实施方式,设置所述承载层与有机发光二极管的第二电极为一体结构,具体在所述第二电极上形成所述第二导体结构。即,电阻层位于弹性恢复层和第二电极之间,有机发光二极管的有机发光层和第一电极依次设置在第二电极的背离弹性恢复层的一侧,省去了单独制作承载层的工艺,降低成本。并实现集成化,简化器件的结构。
对应的压力传感器的制作方法具体包括:
在一第一过渡基底上形成多个第一凹槽,所述第一凹槽的直径为纳米级;
在所述第一凹槽内填充导体材料,形成第一凸起结构;
利用弹性材料在所述第一过渡基底的具有第一凸起结构的表面成膜,形成弹性恢复层;
在所述弹性恢复层的背离所述第一过渡基底的表面形成柔性基底;
移除所述第一过渡基底,由所述柔性基底、位于所述柔性基底上的弹性恢复层和位于所述弹性恢复层上的第一凸起结构形成第一基板;
在一第二过渡基底形成多个第二凹槽,所述第二凹槽的直径为纳米级;
在所述第二凹槽内填充导体材料,形成第二凸起结构;
在所述第二过渡基底的具有第二凸起结构的表面形成第二电极;
在第二电极上压覆第三过渡基底;
移除所述第二过渡基底,由所述第三过渡基底、位于所述第三过渡基底上的第二电极和位于所述第二电极上的第二凸起结构形成第二基板;
固定对盒所述第一基板和第二基板,然后移除所述第三过渡基底。
通过上述步骤制得的压力传感器,其弹性恢复层、电阻层和有机发光二极管依次形成在一柔性基底的表面上,实现器件的柔性化和集成化。其中,有机发光二极管的有机发光层和第一电极依次形成在第二电极的背离弹性恢复层的表面上。
在上述的制作方法中,固定对盒所述第一基板和第二基板的步骤之前,所述制作方法还包括:
形成覆盖所述第一导体结构和所述第一导体结构之间的弹性恢复层的第一半导体薄膜;
形成覆盖所述第二导体结构和所述第二导体结构之间的第二电极的第二半导体薄膜。
通过上述步骤制得的电阻层的第一凸起结构通过第一半导体薄膜电性连接,第二凸起结构通过第二半导体薄膜电性连接,可以通过第一半导体薄膜和第二半导体薄膜实现与电源或其它电性结构的连接。
进一步地,还可以在有机发光二极管的第一电极的背离有机发光层的表面上形成光电传感器,且有机发光二极管发出的光线经由第一电极射出。当然,也可以在柔性基底的背离弹性恢复层的背面上形成光电传感器,此时有机发光二极管发出的光线经由第二电极从柔性基底的背面射出。上述技术方案将电阻层、有机发光二级管和光电传感器集成为一体结构,进一步简化器件的结构。
本实施例中,压力传感器的制作方法具体包括:
步骤S1、参见图4所示,在一第一过渡基底103上形成多个第一凹槽,所述第一凹槽的深度为1μm,直径为50nm;
所述第一过渡基底具体可以为硅基底,通过光刻和刻蚀的方法制备第一凹槽。具体为:在所述第一过渡基底的表面形涂覆光刻胶,对光刻胶进行曝光,显影后形成光刻胶保留区域和光刻胶不保留区域,其中,光刻胶不保留区域对应第一凹槽所在的区域;然后,在N 2氛围中,将所述第一过渡基底在0.03mol/l的硅烷溶液中浸泡1h;最后,剥离剩余的光刻胶,并在110-120℃的温度下烘20-30min。
步骤S2、如图4所示,在所述第一凹槽内蒸镀金属Pt或者Ag,形成第 一金属纳米管,即第一凸起结构10;
步骤S3、在第一过渡基底103的具有第一金属纳米管10的表面依次形成弹性恢复层2(如图5所示)、柔性支撑层(即柔性基底101,如图6所示),再压覆第四过渡基底104,具体可以为塑料基底,如图7所示;
具体在在第一过渡基底103的具有第一金属纳米管10的表面依次涂覆PUA(polyurethane acrylate,聚氨酯丙烯酸酯)的前聚体和PDMS(polydimethylsiloxane,聚二甲基硅氧烷),再压覆第四过渡基底104。由PDMS材料形成柔性支撑层101。
步骤S4、PUA的前聚体经过固化后,形成弹性恢复层2,然后移除第一过渡基底103,如图8所示;
至此完成第一基板的制作,所述第一基板由第四过渡基底104、柔性基底101、位于柔性基底101上的弹性恢复层2和位于弹性恢复层2上的第一凸起结构10形成。其中,电阻层的第一导体结构具体由多个第一凸起结构10组成。第四过渡基底104能够提供承载,方便后续的工艺。
步骤S5、如图9所示,在一第二过渡基底105形成多个第二凹槽,所述第二凹槽的直径为纳米级,并在所述第二凹槽内蒸镀金属Pt或者Ag,形成第二金属纳米管,即第二凸起结构11;
步骤S6、在第二过渡基底105的具有第二金属纳米管11的表面形成有机发光二极管的第二电极31,如图10所示,然后在第二电极31上压覆第三过渡基底106,具体可以为塑料基底,如图11所示;
第二电极31的材料具体可以选择导电聚合物,如:PEDOT:PSS,更适用于柔性器件。
其中,PEDOT:PSS由PEDOT(poly(3,4-ethylenedioxythiophene))和PSS(polystyrene sulfonate,聚磺苯乙烯)两种物质构成。PEDOT是EDOT(3,4-ethylenedioxythiophene,3,4-乙撑二氧噻吩单体)的聚合物,PSS是聚苯乙烯磺酸盐。这两种物质在一起极大的提高了PEDOT的溶解性,水溶液导电物主要应用于有机发光二极管(Organic Light-Emitting Diode,OLED)、有机太阳能电池、有机薄膜晶体管等。
步骤S7、移除第二过渡基底105,结合图11和图12所示。
至此完成第二基板的制作,所述第二基板由第三过渡基底106、位于所述第三过渡基底106上的第二电极31和位于第二电极31上的第二凸起结构11形成。其中,电阻层的第二导体结构具体由多个第二凸起结构11组成。
其中,第一基板和第二基板的制作顺序可以互换,在此不作限制。
步骤S7、固定对盒所述第一基板和第二基板,如图13所示,然后移除第四过渡基底104和第三过渡基底106,如图14所示。
步骤S8、参见图1所示,在第二电极31的背离弹性恢复层2的表面依次形成有机发光二极管3的有机发光层32和第一电极30;
步骤S9、参见图1所示,在第一电极30的背离有机发光层32的表面形成光电传感器4。
至此完成压力传感器的制作。上述步骤顺序只是一个示例,不局限于上述顺序。
通过上述步骤制得的压力传感器,有机发光二极管的第一电极和电阻层(包括第一金属纳米管和第二金属纳米管)与一电源的两极连接形成回路,压力传感器件的灵敏度S=(I 1-I 0/)/P,I 0、I 1分别为在压力传感器上施加压力前后所述回路中的电流,P为施加的压力。具体通过在柔性基底的背离弹性恢复层的背面向压力传感器施加压力。
以上所述仅是本公开文本的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开文本技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本公开文本的保护范围。

Claims (24)

  1. 一种压力传感器,包括:
    电致发光器件,包括第一电极、第二电极、以及设置在所述第一电极和第二电极之间的电致发光层;
    电阻层,被设置在所述第二电极的远离所述电致发光层的一侧,并被配置为在所述电阻层上施加有压力的情况下,所述电阻层能够发生形变,从而使所述电阻层的电阻发生变化,其中所述第一电极和电阻层分别与一电源的两极连接形成回路;
    至少一个光电传感器,用于获取与所述电致发光器件的亮度变化相关的参数;
    检测单元,与所述光电传感器连接,所述检测单元用于根据与所述电致发光器件的亮度变化相关的参数,确定施加压力的大小。
  2. 根据权利要求1所述的压力传感器,还包括:
    弹性恢复层,被设置在所述电阻层的远离第一电极的一侧或靠近所述第一电极的一侧,并由弹性材料制得,所述弹性恢复层被设置为当移除压力时,所述弹性恢复层发生形变恢复,并带动电阻层形变恢复至初始状态。
  3. 根据权利要求2所述的压力传感器,其中,所述压力传感器还包括承载层;
    所述电阻层包括:
    设置在所述弹性恢复层上的第一导体结构;
    设置在所述承载层上的第二导体结构,所述第一导体结构和第二导体结构位于所述承载层和弹性恢复层之间,所述电阻层受压力影响发生形变,所述第一导体结构和第二导体结构的接触面积发生变化,致使所述电阻层的电阻发生变化。
  4. 根据权利要求2所述的压力传感器,其中,所述电阻层包括:
    设置在所述弹性恢复层上的第一导体结构;
    设置在所述第二电极上的第二导体结构,所述第一导体结构和第二导体结构位于所述弹性恢复层和第二电极之间,所述电阻层受压力影响发生形变, 所述第一导体结构和第二导体结构的接触面积发生变化,致使所述电阻层的电阻发生变化。
  5. 根据权利要求3或4所述的压力传感器,其中,所述压力传感器还包括柔性基底,所述第一导体结构包括设置在所述弹性恢复层的远离所述柔性基底一侧的第一表面上的多个第一凸起结构,所述第二导体结构包括多个第二凸起结构,所述多个第二凸起结构设置在所述第二电极的靠近所述柔性基底一侧的第二表面上且所述第一表面与第二表面相对设置、或所述多个第二凸起结构设置在所述承载层的靠近所述柔性基底一侧的第三表面上且所述第一表面与第三表面相对设置,所述多个第一凸起结构和所述多个第二凸起结构彼此交错设置,所述电阻层受压力影响发生形变,使所述第一凸起结构和第二凸起结构的接触面积增加,致使所述电阻层的电阻减小。
  6. 根据权利要求5所述的压力传感器,其中,所述承载层与所述第二电极为一体结构。
  7. 根据权利要求6所述的压力传感器,其中,所述第二电极的材料为导电聚合物。
  8. 根据权利要求5所述的压力传感器,其中,所述第一凸起结构和第二凸起结构为金属纳米棒或碳纳米管。
  9. 根据权利要求8所述的压力传感器,其中,所述金属纳米棒为铂或银的垂直纳米棒。
  10. 根据权利要求8所述的压力传感器,其中,所述电阻层还包括:
    覆盖在相邻的第一凸起结构之间的弹性恢复层部分上的第一半导体薄膜;
    覆盖在相邻的所述第二凸起结构之间的第二电极部分或承载层部分上的第二半导体薄膜。
  11. 根据权利要求10所述的压力传感器,其中,所述第一半导体薄膜和第二半导体薄膜的材料为石墨烯。
  12. 根据权利要求1所述的压力传感器,其中,所述光电传感器设置在所述第一电极的背离电致发光层的表面上。
  13. 根据权利要求5所述的压力传感器,其中,所述弹性恢复层设置在所述柔性基底上,所述电阻层设置在所述弹性恢复层的背离所述柔性基底的 表面上。
  14. 根据权利要求13所述的压力传感器,其中,每一所述第一凸起结构在所述柔性基底上的正投影和与该第一凸起结构相邻的每一所述第二凸起结构在所述柔性基底上的正投影彼此分离或不完全交叠。
  15. 一种权利要求1-14任一项所述的压力传感器的制作方法,包括:
    形成所述电致发光器件,包括形成所述第一电极、第二电极、以及位于所述第一电极和第二电极之间的电致发光层的步骤;
    形成所述电阻层,其中所述第一电极和电阻层分别与一电源的两极连接形成回路;
    形成所述光电传感器,其中所述光电传感器用于获取与所述电致发光器件的亮度变化相关的参数;
    提供所述检测单元,其中所述检测单元与所述光电传感器连接,用于根据与所述电致发光器件的亮度变化相关的参数,确定施加压力的大小。
  16. 根据权利要求15所述的制作方法,还包括:
    利用弹性材料在所述电阻层的远离第一电极的一侧或靠近所述第一电极的一侧形成弹性恢复层,其中当移除压力时,所述弹性恢复层发生形变恢复,并带动电阻层形变恢复至初始状态。
  17. 根据权利要求16所述的制作方法,还包括:
    提供一承载层;
    形成所述电阻层的步骤包括:
    在所述弹性恢复层上形成第一导体结构;
    在所述承载层上形成第二导体结构,所述第一导体结构和第二导体结构位于所述承载层和弹性恢复层之间,所述电阻层受压力影响发生形变,所述第一导体结构和第二导体结构的接触面积发生变化,致使所述电阻层的电阻发生变化。
  18. 根据权利要求16所述的制作方法,其中形成所述电阻层的步骤包括:
    在所述弹性恢复层上形成第一导体结构;
    在所述第二电极上形成第二导体结构,所述第一导体结构和第二导体结构位于所述承载层和弹性恢复层之间,所述电阻层受压力影响发生形变,所 述第一导体结构和第二导体结构的接触面积发生变化,致使所述电阻层的电阻发生变化。
  19. 根据权利要求17或18所述的制作方法,其中,形成所述第一导体结构的步骤包括:
    形成多个第一凸起结构;
    形成所述第二导体结构的步骤包括:
    形成多个第二凸起结构;
    所述第一凸起结构对应设置在所述第二凸起结构之间的区域,所述第二凸起结构对应设置在所述第一凸起结构之间的区域,所述电阻层受压力影响发生形变,使所述第一凸起结构和与其相邻的第二凸起结构的相对位置关系发生变化,从而所述第一凸起结构和与其相邻的第二凸起结构的接触面积增加,致使所述电阻层的电阻减小。
  20. 根据权利要求19所述的制作方法,其中在所述承载层上形成第二导体结构包括在所述第二电极上形成所述第二导体结构,其中所述承载层与所述第二电极为一体结构。
  21. 根据权利要求20所述的制作方法,具体包括:
    在一第一过渡基底上形成多个第一凹槽;
    在所述第一凹槽内填充导体材料,形成第一凸起结构;
    利用弹性材料在所述第一过渡基底的具有第一凸起结构的表面成膜,形成弹性恢复层;
    在所述弹性恢复层的背离所述第一过渡基底的表面形成柔性基底;
    移除所述第一过渡基底,由所述柔性基底、位于所述柔性基底上的弹性恢复层和位于所述弹性恢复层上的第一凸起结构形成第一基板;
    在一第二过渡基底形成多个第二凹槽;
    在所述第二凹槽内填充导体材料,形成第二凸起结构;
    在所述第二过渡基底的具有第二凸起结构的表面形成第二电极;
    在第二电极上压覆第三过渡基底;
    移除所述第二过渡基底,由所述第三过渡基底、位于所述第三过渡基底上的第二电极和位于所述第二电极上的第二凸起结构形成第二基板;
    固定对盒所述第一基板和第二基板,然后移除所述第三过渡基底。
  22. 根据权利要求21所述的制作方法,其中,固定对盒所述第一基板和第二基板的步骤之前,所述制作方法还包括:
    形成覆盖在相邻的第一凸起结构之间的弹性恢复层部分上的第一半导体薄膜;
    形成覆盖在相邻的第二凸起结构之间的第二电极部分或承载层部分上的第二半导体薄膜。
  23. 根据权利要求21所述的制作方法,其中,所述第一凹槽的直径和所述第二凹槽的直径均为纳米级。
  24. 一种电子器件,包括权利要求1-14任一项所述的压力传感器。
PCT/CN2018/074416 2017-06-28 2018-01-29 压力传感器及其制作方法、电子器件 WO2019000935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/086,137 US10921200B2 (en) 2017-06-28 2018-01-29 Pressure sensor, manufacturing method thereof, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710508581.3A CN107290084B (zh) 2017-06-28 2017-06-28 一种压力传感器及其制作方法、电子器件
CN201710508581.3 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019000935A1 true WO2019000935A1 (zh) 2019-01-03

Family

ID=60098383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074416 WO2019000935A1 (zh) 2017-06-28 2018-01-29 压力传感器及其制作方法、电子器件

Country Status (3)

Country Link
US (1) US10921200B2 (zh)
CN (1) CN107290084B (zh)
WO (1) WO2019000935A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763375A (zh) * 2019-11-07 2020-02-07 南方科技大学 一种介电层、离子电容式柔性触觉传感器及其制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290084B (zh) * 2017-06-28 2019-08-30 京东方科技集团股份有限公司 一种压力传感器及其制作方法、电子器件
CN108534930B (zh) * 2018-03-23 2019-12-10 京东方科技集团股份有限公司 压力可视化装置及其制备方法、检测设备
CN108760111B (zh) 2018-05-22 2020-02-21 京东方科技集团股份有限公司 压力传感器和制备方法、压力感应方法以及显示装置
CN110553766A (zh) * 2018-05-30 2019-12-10 浙江清华柔性电子技术研究院 力传感器及其制造方法
CN108898003B (zh) * 2018-07-27 2022-05-17 福州大学 一种基于量子点发光器件的息屏指纹解锁方法
CN109343734B (zh) * 2018-09-14 2022-04-12 京东方科技集团股份有限公司 一种触控板、手写输入方法和显示面板
CN109443630B (zh) * 2018-10-31 2020-11-10 福州大学 一种基于qled发光器件的压力传感器
CN109683737B (zh) 2018-11-23 2021-02-26 京东方科技集团股份有限公司 一种触控基板、显示基板和显示面板
CN109822625A (zh) * 2019-03-21 2019-05-31 苏州大学 一种机器人手臂柔性安全预警器及其制造方法
CN110228789A (zh) * 2019-06-17 2019-09-13 五邑大学 一种柔性压阻式应力传感器及其制备方法
CN110608825B (zh) * 2019-09-12 2021-08-20 复旦大学 基于聚酰亚胺基底微结构的柔性压力传感器及其制备方法
US11386544B2 (en) 2019-10-30 2022-07-12 Toyota Motor Engineeeing & Manufacturing North America, Inc. Visualizing and modeling thermomechanical stress using photoluminescence
CN111211222A (zh) * 2020-02-19 2020-05-29 国家纳米科学中心 一种有机薄膜晶体管的用途及基于其的有机薄膜的杨氏模量值评估方法
CN116638536B (zh) * 2023-07-27 2023-12-26 之江实验室 机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150082897A1 (en) * 2013-09-24 2015-03-26 Samsung Electro-Mechanics Co., Ltd. Touch sensor module
CN104868778A (zh) * 2014-02-20 2015-08-26 北京纳米能源与系统研究所 一种自驱动瞬态应力传感装置
CN105651429A (zh) * 2016-01-04 2016-06-08 京东方科技集团股份有限公司 压电元件及其制造方法、压电传感器
CN105675178A (zh) * 2015-12-31 2016-06-15 联想(北京)有限公司 一种具有压力检测功能的电子设备以及压力检测方法
CN107290084A (zh) * 2017-06-28 2017-10-24 京东方科技集团股份有限公司 一种压力传感器及其制作方法、电子器件

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1051762A1 (en) * 1998-02-02 2000-11-15 Uniax Corporation X-y addressable electric microswitch arrays and sensor matrices employing them
US6584857B1 (en) * 2000-11-20 2003-07-01 Eastman Kodak Company Optical strain gauge
EP1359402B1 (en) * 2002-05-01 2014-10-01 Infineon Technologies AG Pressure sensor
US20100045705A1 (en) * 2006-03-30 2010-02-25 Roel Vertegaal Interaction techniques for flexible displays
EP2167931B1 (en) * 2007-07-12 2015-11-04 ABB Research Ltd. Pressure sensor
CN103154867B (zh) * 2010-10-12 2017-09-22 纽约大学 用于传感利用瓷片、具有一组板的传感器和多点触摸表面目标识别的装置和方法
US9158369B2 (en) * 2010-10-12 2015-10-13 Tactonic Technologies, Llc Sensors having a connecting frame and method for composite sensors
CN103063342A (zh) * 2012-12-28 2013-04-24 深圳职业技术学院 一种压力检测装置及压力检测系统
EP2770638A1 (en) * 2013-02-20 2014-08-27 Aito Interactive Oy Piezoelectric sensor, and an electrical appliance, an installation or a gadget comprising at least one piezoelectric sensor
EP2889596B1 (en) * 2013-12-24 2020-07-22 Honeywell Romania S.R.L. Dynamic strain sensor and method
CN104359597A (zh) * 2014-11-13 2015-02-18 中国科学院重庆绿色智能技术研究院 一种基于三维柔性衬底石墨烯的电子皮肤及其制备方法
CN105987781B (zh) * 2015-02-10 2021-01-05 北京纳米能源与系统研究所 动态应力传感器、制备方法及动态应力测量系统
CN104677528B (zh) * 2015-03-13 2017-02-01 中国电子科技集团公司第二十四研究所 一种电容式压力传感器及其制备方法
CN106153223A (zh) * 2015-03-27 2016-11-23 北京纳米能源与系统研究所 应力传感器阵列及其制备方法和应力分布传感系统及传感方法
CN105136375A (zh) * 2015-09-09 2015-12-09 宁波绿凯节能科技有限公司 一种具有高灵敏度柔性压力传感器的制备方法
CN106370327B (zh) * 2016-10-08 2020-09-15 中国科学院深圳先进技术研究院 一种柔性压力传感器及其制作方法
CN106768520B (zh) * 2016-12-28 2022-08-12 中国科学院深圳先进技术研究院 压力传感器及其制备方法
CN106898704B (zh) * 2017-04-21 2019-01-22 京东方科技集团股份有限公司 一种有机发光二极管及显示面板
US10180337B1 (en) * 2017-07-11 2019-01-15 International Business Machines Corporation Optical deformation detection sensor and system having a material disposed on the inner surface of an elongated hollow housing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150082897A1 (en) * 2013-09-24 2015-03-26 Samsung Electro-Mechanics Co., Ltd. Touch sensor module
CN104868778A (zh) * 2014-02-20 2015-08-26 北京纳米能源与系统研究所 一种自驱动瞬态应力传感装置
CN105675178A (zh) * 2015-12-31 2016-06-15 联想(北京)有限公司 一种具有压力检测功能的电子设备以及压力检测方法
CN105651429A (zh) * 2016-01-04 2016-06-08 京东方科技集团股份有限公司 压电元件及其制造方法、压电传感器
CN107290084A (zh) * 2017-06-28 2017-10-24 京东方科技集团股份有限公司 一种压力传感器及其制作方法、电子器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763375A (zh) * 2019-11-07 2020-02-07 南方科技大学 一种介电层、离子电容式柔性触觉传感器及其制备方法和应用

Also Published As

Publication number Publication date
US20200309619A1 (en) 2020-10-01
CN107290084B (zh) 2019-08-30
US10921200B2 (en) 2021-02-16
CN107290084A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2019000935A1 (zh) 压力传感器及其制作方法、电子器件
Bao et al. Light-emission enhancement in a flexible and size-controllable ZnO nanowire/organic light-emitting diode array by the piezotronic effect
Peng et al. Energy harvesting for nanostructured self‐powered photodetectors
CN108922918B (zh) 一种oled显示面板及其制作方法、oled显示装置
US20130341610A1 (en) Transparent organic light emitting diode lighting device
CN107610802B (zh) 透明导电薄膜、光电器件及其制作方法
Chou et al. Transparent perovskite light-emitting touch-responsive device
Ma et al. Highly efficient and mechanically robust stretchable polymer solar cells with random buckling
Qian et al. Thin-film organic semiconductor devices: from flexibility to ultraflexibility
KR101818033B1 (ko) 플렉시블 전극 기판의 제조방법
CN103682078A (zh) 压力传感器阵列及其制备方法
WO2015043088A1 (zh) 触控式有机发光二极管显示装置及其制作方法
CN207474495U (zh) 一种光伏电池结构
TW201143086A (en) Optoelectronic device array
KR20150025184A (ko) 에너지 하베스팅 소자 및 이의 제조방법
WO2016019665A1 (zh) 具有触摸功能的有机发光显示器件及其制作方法、显示装置
JP5606450B2 (ja) 電気光学素子およびその製造方法
KR102116067B1 (ko) 전도성 고분자를 활용한 반투명 유기태양광전지 및 그 제조방법
CN107093619A (zh) 一种有机电致发光光源及其制作方法
US20130009143A1 (en) Photo sensor and method of fabricating the same
US9647231B2 (en) Electrical connection of an OLED device
CN105826359B (zh) Oled阵列基板及制作方法、显示装置
KR101876436B1 (ko) 발광 소자 및 제조방법
Wang et al. Flexible transparent conductive electrode of Au/PDMS prepared by electrochemical-assisted peeling
JP7186785B2 (ja) 光電変換素子および光電変換素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 08.04.2020

122 Ep: pct application non-entry in european phase

Ref document number: 18825297

Country of ref document: EP

Kind code of ref document: A1