WO2019000691A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2019000691A1
WO2019000691A1 PCT/CN2017/104791 CN2017104791W WO2019000691A1 WO 2019000691 A1 WO2019000691 A1 WO 2019000691A1 CN 2017104791 W CN2017104791 W CN 2017104791W WO 2019000691 A1 WO2019000691 A1 WO 2019000691A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
zone
air conditioner
air
air inlet
Prior art date
Application number
PCT/CN2017/104791
Other languages
English (en)
French (fr)
Inventor
季振勤
邢志钢
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720761246.XU external-priority patent/CN206959163U/zh
Priority claimed from CN201710498191.2A external-priority patent/CN107101279A/zh
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2019000691A1 publication Critical patent/WO2019000691A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to an air conditioner.
  • the air conditioner includes a filter, and the filter can be disposed at the air inlet of the air duct to filter the air entering the air duct.
  • the filtering of the filter is performed at certain positions. The effect is not good or the utilization of some parts of the filter is not high.
  • Embodiments of the present invention provide an air conditioner.
  • the air conditioner of the embodiment of the present invention is formed with an air inlet, the air inlet includes a high flow rate zone and a low flow velocity zone, and the velocity of the air flowing to the high flow velocity zone is greater than the velocity of the flow to the low flow velocity zone, and the air conditioner further includes a purification filter screen covering the air inlet, the purification filter screen is formed with a plurality of filter holes, and the purification filter network comprises:
  • the purification filter screen has a wave shape
  • the first filter zone includes a plurality of first filter segments, and the plurality of the first filter segments are sequentially connected, and the two adjacent ones are adjacent Forming a first angle between the filter segments
  • the second filter zone includes a plurality of second filter segments, and the plurality of the second filter segments are sequentially connected, between the adjacent two of the second filter segments Forming a second angle, the first angle being less than the second angle.
  • the first included angle is one of 30 degrees, 45 degrees, 60 degrees; and/or
  • the second included angle is one of 120 degrees, 135 degrees, and 180 degrees.
  • the plurality of first filter segments are of equal length and/or the plurality of second filter segments are of equal length.
  • the density of the filter holes of the first filtration zone is greater than the density of the filter holes of the second filtration zone.
  • an aperture of the filter hole of the first filter zone is equal to an aperture of the filter hole of the second filter zone, and the filter hole of the first filter zone of a unit area
  • the number of the filter holes is larger than the number of filter holes of the second filter zone per unit area.
  • the number of the filter holes per unit area of the first filter zone is equal to the number of the filter holes of the second filter zone per unit area, where the first filter zone is The pore size of the filter pore is larger than the pore diameter of the filter pore of the second filtration zone.
  • the first filtration zone and the second filtration zone each comprise a basic filtration layer, the first filtration zone further comprising one or more additional filtration layers stacked with the basic filtration layer .
  • the additional filter layer is disposed downstream of the base filter layer, the filter pores of the additional filter layer having a pore size equal to or smaller than the pore size of the filter pores of the base filter layer.
  • the air conditioner further includes a heat exchanger disposed downstream of the air inlet, the purification screen being disposed between the air inlet and the heat exchanger; or
  • the purification filter is disposed upstream of the air inlet.
  • the air conditioner further includes a temperature probe disposed in the air duct, the temperature probe being disposed downstream of the heat exchanger to detect after passing through the heat exchanger The temperature of the air stream.
  • the air conditioner is further formed with a duct downstream of the air inlet, the air conditioner further includes an ion generator disposed in the air duct, the ion generator for generating a positive ion And / or negative ions.
  • the ionizer is capable of generating negative ions and the purification screen is positively charged.
  • the air duct is formed with an air outlet from which air flows out, and the ion generator is disposed at the air outlet.
  • the high flow rate zone is intermediate the air inlet and the low flow zone is located at a periphery of the high flow zone.
  • the cross-section of the air inlet is formed in a rectangular shape
  • the high flow rate region is rectangular and located at an intermediate position of the air inlet
  • the low flow rate region is located on both sides of the high flow rate region.
  • the air inlet has a circular cross-sectional shape
  • the high flow velocity region is circular and coaxial with the air inlet
  • the low velocity region is distributed around the high velocity region and Ring.
  • the air conditioner further includes a heat exchanger and a fan disposed downstream of the purification screen, the fan is configured to establish a gas flow, and the heat exchanger is configured to exchange heat with the gas flow .
  • the air conditioner includes a housing, the air inlet is formed on the housing, and the high flow rate region is closer to an intermediate position of the fan than the low flow rate region, the low flow rate The zone is closer to the housing than the high flow rate zone.
  • the purification screen comprises an electrostatic electret filter or an active electrostatic dust filter.
  • the density of the filter holes of the purifying filter of the air conditioner provided by the present invention in the high flow rate region is greater than the density of the filter holes in the low flow rate region, so that the amount of air filtered by the filter pores per unit area of the purifying filter in different regions is higher. On average, the overall filtration effect of the purification filter is good and the utilization rate is high.
  • FIG. 1 is a perspective view of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an air conditioner according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the projection of the purification filter screen at the air inlet according to the embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of an air inlet according to an embodiment of the present invention.
  • Figure 5 is a schematic cross-sectional view showing an air conditioner according to an embodiment of the present invention.
  • Figure 6 is a plan view showing the purification filter screen of the embodiment of the present invention taken along the angle of view shown in Figure 5;
  • FIG. 7 is a schematic plan view of a purification filter screen according to an embodiment of the present invention.
  • FIG. 8 is a schematic plan view of a purification filter screen according to an embodiment of the present invention.
  • Fig. 9 is a schematic cross-sectional view showing a purification filter screen according to an embodiment of the present invention.
  • the air conditioner 10 The air inlet 11, the high flow rate area 112, the low flow rate area 114, the purification filter 12, the filter hole 121, the first filter area 122, the first filter section 1222, the second filter zone 123, and the second filter section 1232
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature The “above”, “above” and “above” features of the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • the air conditioner 10 of the embodiment of the present invention is formed with an air inlet 11 including a high flow velocity region 112 and a low flow velocity region 114, and the air flow rate to the high flow velocity region 112 is greater than the flow direction to the low flow velocity region 114. speed.
  • the air conditioner 10 further includes a purification screen 12 that covers the air inlet 11, and the purification screen 12 is formed with a plurality of filter holes 121.
  • the purification screen 12 includes a first filtration zone 122 and a second filtration zone 123.
  • the first filter zone 122 is disposed corresponding to the high flow rate zone 112.
  • the second filter zone 123 is disposed corresponding to the low flow rate zone 114.
  • the density of the orthographic projection of the filter hole 121 of the second filter zone 123 at the air inlet port 11 is smaller than the density of the orthographic projection of the filter hole 121 of the first filter zone 122 at the air inlet port 11.
  • the density of the filter holes 121 of the purification filter 12 of the air conditioner 10 provided in the high flow rate region 112 is larger than the density of the filter holes 121 at the low flow rate region 114, so that the filtration of the filter screen 12 in different areas is performed.
  • the amount of air filtered by the holes 121 is relatively average, and the overall filtering effect of the purification filter 12 is good and the utilization rate is high.
  • the density of the orthographic projection of the filter hole 121 in the air inlet 11 refers to the area of the filter hole 121 that is projected in the air inlet 11 in the projection of the purification screen 12 per unit area.
  • the area of the orthographic projection of the first filter zone 122 at the air inlet 11 is S1
  • the area of the filter hole 121 of the first filter zone 122 at the air inlet 11 is S1'
  • the second filter zone is S2
  • the area of the filter hole 121 of the second filter area 123 at the air inlet 11 is S2'
  • the filter hole 121 of the second filter area 123 is at the air inlet 11.
  • the density of the orthographic projection of the filter hole 121 of the first filter zone 122 at the air inlet 11 may be expressed as S2': S2 ⁇ S1': S1.
  • the ratio of (S2': S2) to (S1': S1) may be 0.2, 0.3, 0.5, 0.7, etc., depending on the actual velocity of the air in the high velocity region 112 and the velocity in the low velocity region 114. The ratio is determined.
  • the air conditioner 10 may be a split type air conditioner or an integrated air conditioner.
  • the indoor unit in which the air conditioner 10 is a split type air conditioner will be described as an example. It can be understood that the embodiment of the present invention is also applicable to the outdoor unit of the split type air conditioner and the integrated type air conditioner.
  • the air conditioner 10 further includes a heat exchanger 13 disposed downstream of the purification screen 12 and a blower 14 for establishing a gas flow, and the heat exchanger 13 for heat exchange with the gas stream.
  • the air conditioner 10 further includes a casing 15 formed with a duct 16, the heat exchanger 13 and the fan 14 are disposed in the air duct 16, and the heat exchanger 13 may be located upstream of the fan 14, the heat exchanger 13 can also be located downstream of the fan 14.
  • the fan 14 may be a cross flow fan, an axial flow fan, a centrifugal fan, etc., under the driving of the fan 14, the air flows to form an air flow, and the airflow passes through the air inlet 11 and enters the air passage 16, and the airflow passes through the heat exchanger 13
  • the heat exchanger 13 exchanges heat so that the temperature of the gas stream is lowered or increased, and further reduces the indoor temperature or improves the indoor temperature. The purpose of the temperature.
  • the air flow rates of different regions of the air inlet 11 may be inconsistent due to the obstruction of the housing 15, or the difference in the relative positions of the different regions of the air inlet 11 and the fan 14, for example, in the middle of the vicinity of the fan 14.
  • the air flow rate in the area is large, and the air flow rate in the area of the air inlet 11 near the housing 15 is small.
  • the air conditioner 10 further includes a temperature sensing probe 17 disposed in the air duct 16, and the temperature sensing probe 17 may be disposed downstream of the heat exchanger 13 to detect the temperature of the airflow passing through the heat exchanger 13. And determining, by the processor of the air conditioner 10, whether the current airflow temperature reaches the set temperature, and calculating the difference between the current airflow temperature and the set temperature.
  • the processor further sends a corresponding driving signal according to the difference to drive the compressor and the fan 14 of the air conditioner 10 to operate, so that the actual temperature in the room continuously approaches the target temperature set by the user.
  • the high flow rate zone 112 is located intermediate the air inlet opening 11 and the low flow rate zone 114 is located at the periphery of the high flow rate zone 112.
  • the cross-sectional shape of the air inlet 11 is substantially rectangular, the high flow velocity region 112 is substantially rectangular and located at an intermediate position of the air inlet 11, and the low flow velocity region 114 is located at a high flow velocity. Both sides of the area 112.
  • the specific distribution of the high flow velocity region 112 and the low flow velocity region 114 may differ.
  • the cross-sectional shape of the air inlet port 11 is substantially circular.
  • the high flow velocity region 112 is circular and substantially coaxial with the air inlet port 11, and the low flow velocity region 114 is distributed around the high velocity region 112 and is annular.
  • the first filter region 122 is also circular, and the second filter region 123 is It is annular and distributed around the first filter zone 122.
  • the air conditioner 10 further includes a heat exchanger 13 disposed downstream of the air inlet 11.
  • the purification filter 12 is disposed between the air inlet 11 and the heat exchanger 13, or the purification screen 12 is disposed upstream of the air inlet 11.
  • the purification filter 12 is disposed upstream of the heat exchanger 13, and the air passes through the purification filter 12 and then flows through the heat exchanger 13, so that the air flowing through the heat exchanger 13 is relatively clean, and impurities in the air are avoided. Adhering to the surface of the heat exchanger 13 affects the heat exchange efficiency of the heat exchanger 13.
  • the casing 15 includes a grille 152, the grille 152 is disposed at the air inlet 11, and the purifying screen 12 may be disposed upstream of the grille 152, and the air passes through the purifying filter 12 and then worn.
  • the purifying filter 12 is easily disassembled.
  • the purification filter 12 may also be disposed downstream of the grille 152. The air passes through the grille 152 and then passes through the purifying filter 12.
  • the purifying screen 12 may be installed in the grille 152, and the grille 152 may be further removed after being removed. The screen 12 is taken out of the grid 152.
  • the purification filter 12 is wave-shaped, and the first filter zone 122 includes a plurality of first filter segments 1222 , and the plurality of first filter segments 1222 are sequentially adjacent to each other. Two first filter segments A first angle ⁇ is formed between the 1222, the second filter area 123 includes a plurality of second filter segments 1232, the plurality of second filter segments 1232 are sequentially connected, and a second is formed between the adjacent two second filter segments 1232. The angle ⁇ is smaller than the second angle ⁇ .
  • the first filter segment 1222 and the second filter segment 1232 since there is a difference between the first angle ⁇ and the second angle ⁇ , there is a difference in the windward angle between the first filter segment 1222 and the second filter segment 1232.
  • the first filter The angle between the segment 1222 and the direction of the airflow is smaller than the angle between the second filter segment 1232 and the direction of the airflow.
  • the normal component of the flow rate at the same flow rate in the first filter segment 1222 is made smaller than the normal component at the second filter segment 1232.
  • the air flow rate V1 passing through the first filter segment 1222 is larger than the air flow rate V2 of the second filter segment 1232, wherein the normal component of V1 in the first filter segment 1222 is V1', and V2 is in the second filter segment 1232.
  • the component of the direction is V2', so that the flow rate of the high flow velocity region 112 and the flow velocity (V1, V2) of the low flow velocity region 114 can be detected and analyzed, and the first angle ⁇ and the second angle ⁇ can be reasonably set to
  • the normal components (V1', V2') of the air flow rate over the entire surface of the purification filter 12 are made substantially equal, and the filtration effect of the purification filter 12 is relatively uniform at each position.
  • the purification filter 12 is wavy, the total surface area of the purification filter 12 is increased, and the dust holding capacity of the purification filter 12 is increased, and the service life of the purification filter 12 is increased.
  • the first angle ⁇ may be an angle of 30 degrees, 45 degrees, 60 degrees, etc.
  • the second angle ⁇ may be an angle of 120 degrees, 135 degrees, 180 degrees, or the like.
  • the lengths L1 of the plurality of first filter segments 1222 are equal, and/or the lengths L2 of the plurality of second filter segments 1232 are equal. Specifically, the lengths L1 of the plurality of first filtering segments 1222 are equal and the lengths L2 of the plurality of second filtering segments 1232 are not equal, or the lengths L2 of the plurality of second filtering segments 1232 are equal and the plurality of first filterings may be The lengths L1 of the segments 1222 are not equal, and the lengths L1 of the plurality of first filter segments 1222 may be equal and the lengths L2 of the plurality of second filter segments 1232 may be equal.
  • the first filter segment 1222 or the second filter segment 1232 is easily folded, and the heights of the plurality of first filter segments 1222 are equal, or the heights of the second filter segments 1232 are equal, and the structure of the purification filter 12 is relatively compact.
  • the density of the filter holes 121 of the first filter zone 122 is greater than the density of the filter holes 121 of the second filter zone 123 .
  • the ability of the first filter zone 122 to allow air to pass is greater than the ability of the second filter zone 123 to allow air to pass, and since the wind speed of the high flow zone 112 is greater, the ability of the first filter zone 122 per unit area to allow air to pass requires Larger to meet the need for air to pass through the purification screen 12.
  • the density of the filter hole 121 of the first filter zone 122 is greater than the density of the filter hole 121 of the second filter zone 123.
  • the filter hole 121 may have the same aperture, and the first filter zone of the unit area.
  • the number of the filter holes 121 of the 122 is larger than the number of the filter holes 121 of the second filter area 123 per unit area; please refer to FIG. 8 , and the number and unit of the filter holes 121 of the first filter area 122 per unit area.
  • Second filter area 123 of the area The number of the filter holes 121 is equal, and the diameter of the first filter hole 121 is larger than the diameter of the second filter hole 121.
  • the first filter zone 122 and the second filter zone 123 each include a basic filter layer 124, and the first filter zone 122 further includes one or more additional layers stacked with the base filter layer 124. Filter layer 125.
  • the additional filter layer 125 can effectively increase the filtration capacity of the first filter zone 122 to better purge air passing through the high flow rate zone 112.
  • the additional filter layer 125 may be disposed downstream of the basic filter layer 124, and the air passes through the base filter layer 124 and then passes through the additional filter layer 125.
  • the filter hole 121 of the additional filter layer 125 may have a hole diameter equal to or smaller than the basic filter layer. The aperture of the filter hole 121 of 124.
  • the air conditioner 10 is further formed with an air duct 16 located downstream of the air inlet 11, and the air conditioner 10 further includes an ion generator 18 disposed in the air duct 16, the ion generator 18. Used to generate positive and/or negative ions.
  • the ionizer 18 uses a high voltage transformer to boost the power frequency voltage to a desired voltage to generate ions and release them into the surrounding environment to purify the air.
  • the ionizer 18 can be a negative ion generator, or a positive ion generator, or a positive and negative ion generator. It can be understood that a negative ion generator is used to generate negative ions, a positive ion generator is used to generate positive ions, and a positive and negative ion generator is used to generate positive ions and negative ions.
  • the type of ion generator 18 can be selected according to actual conditions.
  • the ionizer 18 generates positive ions and/or negative ions, which on the one hand can kill bacteria in the air, and on the other hand can charge dust or particles in the air, thereby being more easily adsorbed on the purification screen 12.
  • the pores of the filter holes 121 are much larger than the dust or the size of the particles of the purification filter 12 (especially through the oppositely charged purification filter 12), it is very high. Efficiency is absorbed.
  • the diameter of the filter hole 121 of the purification filter 12 can be much larger than the diameter of the dust or particles, thereby greatly reducing the passage wind resistance of the purification filter 12, and ensuring that the cooling and heating performance and the air volume of the air conditioner 10 itself are substantially unaffected.
  • the ionizer 18 can be used in conjunction with the purification screen 12.
  • the purification screen 12 can be a positively charged purification screen 12.
  • the ionizer 18 generates negative ions, so that dust or particles in the air are negatively charged, so that it is more easily adsorbed on the positively charged purification filter 12, thereby increasing the CADR (clean air delivery rate) value.
  • the air duct 16 is formed with an air outlet 162 through which air flows out of the air duct 16, and the ion generator 18 may also be disposed at the air outlet 162.
  • the ionizer 18 can also be disposed at other locations of the air conditioner 10 to achieve the effect of killing germs and purifying the air.
  • the purification screen 12 includes an electrostatic electret filter or an active electrostatic precipitator.
  • the electrostatic electret filter can capture the dust particles by the electrostatic force of the electric charge.
  • the electrostatic electret filter is made of electrostatic electret material.
  • the electrostatic electret material has excellent dielectric properties, such as high body resistance and surface resistance, high dielectric breakdown strength, low moisture absorption and air permeability, etc. When there is no external power input, the space charge or the dipole charge is stored for a long period of time, thereby exerting the function of trapping dust particles in the air by the electrostatic force of the electric charge.
  • Electrostatic electret materials are mainly high polymers, including polypropylene, polytetrafluoroethylene, hexafluoroethylene/polytetrafluoroethylene copolymer, polytrifluoroethylene, polypropylene (blend) and polyester.
  • the active electrostatic dust filter uses Coulomb force to capture dust particles from the air.
  • the active electrostatic dust filter is composed of a vacuum electrode.
  • the specific arrangement is that the positive and negative electrodes are staggered to form a plurality of electric field regions, and the dust particles in the air are captured by the Coulomb force.
  • electrostatic electret filter and the active electrostatic dust filter can be removed for cleaning or replacement.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • a plurality means at least two, for example two, three, unless specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

一种空调器(10),空调器(10)形成有进风口(11),进风口(11)包括高流速区(112)和低流速区(114),空气流向高流速区(112)的速度大于流向低流速区(114)的速度,空调器(10)还包括遮盖进风口(11)的净化滤网(12),净化滤网(12)形成有多个过滤孔(121),净化滤网(12)包括第一过滤区(122)和第二过滤区(123),第一过滤器(122)与高流速区(112)对应设置,第二过滤器(123)与低流速区(114)对应设置,第二过滤区(123)的过滤孔(121)在进风口(11)的正投影的密度小于第一过滤区(122)的过滤孔(121)在进风口(11)的正投影的密度。

Description

空调器
优先权信息
本申请请求2017年06月27日向中国国家知识产权局提交的、专利申请号为201710498191.2和201720761246.X的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及空调技术领域,特别涉及一种空调器。
背景技术
空调器包括有过滤网,过滤网可以设置在风道的进风口处以对进入风道内的空气进行过滤,然而,由于进风口的不同位置的空气的流速有差异,导致过滤网某些位置的过滤效果不好或过滤网某些位置的利用率不高。
发明内容
本发明的实施方式提供了一种空调器。
本发明实施方式的空调器形成有进风口,所述进风口包括高流速区和低流速区,空气流向所述高流速区的速度大于流向所述低流速区的速度,所述空调器还包括遮盖所述进风口的净化滤网,所述净化滤网形成有多个过滤孔,所述净化滤网包括:
与所述高流速区对应设置的第一过滤区;和
与所述低流速区对应设置的第二过滤区,所述第二过滤区的所述过滤孔在所述进风口的正投影的密度小于所述第一过滤区的所述过滤孔在所述进风口的正投影的密度。
在某些实施方式中,所述净化滤网呈波浪形,所述第一过滤区包括多个第一过滤段,多个所述第一过滤段依次相接,相邻的两个所述第一过滤段之间形成第一夹角,所述第二过滤区包括多个第二过滤段,多个所述第二过滤段依次相接,相邻的两个所述第二过滤段之间形成第二夹角,所述第一夹角小于所述第二夹角。
在某些实施方式中,所述第一夹角为30度、45度、60度中的一个;和/或
所述第二夹角为120度、135度、180度中的一个。
在某些实施方式中,多个所述第一过滤段的长度相等,和/或多个所述第二过滤段的长度相等。
在某些实施方式中,所述第一过滤区的所述过滤孔的密度大于所述第二过滤区的所述过滤孔的密度。
在某些实施方式中,所述第一过滤区的所述过滤孔的孔径与所述第二过滤区的所述过滤孔的孔径相等,单位面积的所述第一过滤区的所述过滤孔的数量大于单位面积的所述第二过滤区的所述过滤孔的数量。
在某些实施方式中,单位面积的所述第一过滤区的所述过滤孔的数量与单位面积的所述第二过滤区的所述过滤孔的数量相等,所述第一过滤区的所述过滤孔的孔径大于所述第二过滤区的所述过滤孔的孔径。
在某些实施方式中,所述第一过滤区和所述第二过滤区均包括基本过滤层,所述第一过滤区还包括一个或多个与所述基本过滤层层叠设置的附加过滤层。
在某些实施方式中,所述附加过滤层设置在所述基本过滤层的下游,所述附加过滤层的过滤孔的孔径等于或小于所述基本过滤层的过滤孔的孔径。
在某些实施方式中,所述空调器还包括设置在所述进风口的下游处的换热器,所述净化滤网设置在所述进风口与所述换热器之间;或
所述净化滤网设置在所述进风口的上游。
在某些实施方式中,所述空调器还包括设置在所述风道内的感温探头,所述感温探头设置在所述换热器的下游,以检测穿过所述换热器后的气流的温度。
在某些实施方式中,所述空调器还形成有位于所述进风口下游的风道,所述空调器还包括设置在所述风道内的离子发生器,所述离子发生器用于产生正离子和/或负离子。
在某些实施方式中,所述离子发生器能够产生负离子,所述净化滤网带正电。
在某些实施方式中,所述风道形成有出风口,空气从所述出风口流出所述风道,所述离子发生器设置在所述出风口处。
在某些实施方式中,所述高流速区位于所述进风口的中间位置,所述低流速区位于所述高流速区的周缘。
在某些实施方式中,所述进风口的横截面形成呈矩形,所述高流速区呈矩形且位于所述进风口的中间位置,所述低流速区位于所述高流速区的两侧。
在某些实施方式中,所述进风口的横截面形状呈圆形,所述高流速区呈圆形且与所述进风口同轴,所述低流速区围绕所述高流速区分布且呈环形。
在某些实施方式中,所述空调器还包括设置在所述净化滤网的下游处的换热器和风机,所述风机用于建立气流,所述换热器用于对所述气流换热。
在某些实施方式中,所述空调器包括壳体,所述进风口形成在所述壳体上,所述高流速区较所述低流速区靠近所述风机的中间位置,所述低流速区较所述高流速区靠近所述壳体。
在某些实施方式中,所述净化滤网包括静电驻极滤网或有源静电吸尘滤网。
本发明提供的空调器的净化滤网在高流速区的过滤孔的密度,大于在低流速区的过滤孔的密度,使得净化滤网在不同区域的单位面积的过滤孔过滤的空气的量较平均,净化滤网的整体过滤效果较好且利用率较高。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的空调器的立体示意图;
图2是本发明实施方式的空调器的截面示意图;
图3是本发明实施方式的净化滤网在进风口的投影示意图;
图4是本发明实施方式的进风口的截面示意图;
图5是本发明实施方式的空调器的截面示意图;
图6是本发明实施方式的净化滤网沿图5所示视角的平面示意图;
图7是本发明实施方式的净化滤网的平面示意图;
图8是本发明实施方式的净化滤网的平面示意图;
图9是本发明实施方式的净化滤网的截面示意图。
主要元件符号附图说明:
空调器10、进风口11、高流速区112、低流速区114、净化滤网12、过滤孔121、第一过滤区122、第一过滤段1222、第二过滤区123、第二过滤段1232、基本过滤层124、附加过滤层125、换热器13、风机14、壳体15、格栅152、风道16、出风口162、感温探头17、离子发生器18。
具体实施方式
以下结合附图对本发明的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本发明的实施方式是示例性的,仅用于解释本发明的实施方式,而不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征 在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1至图3,本发明实施方式的空调器10形成有进风口11,进风口11包括高流速区112和低流速区114,空气流向高流速区112的速度大于流向低流速区114的速度。空调器10还包括遮盖进风口11的净化滤网12,净化滤网12形成有多个过滤孔121。净化滤网12包括第一过滤区122和第二过滤区123。第一过滤区122与高流速区112对应设置。第二过滤区123与低流速区114对应设置。第二过滤区123的过滤孔121在进风口11的正投影的密度小于第一过滤区122的过滤孔121在进风口11的正投影的密度。
本发明提供的空调器10的净化滤网12在高流速区112的过滤孔121的密度,大于在低流速区114的过滤孔121的密度,使得净化滤网12在不同区域的单位面积的过滤孔121过滤的空气的量较平均,净化滤网12的整体过滤效果较好且利用率较高。
需要说明的是,上述的过滤孔121在进风口11的正投影的密度指的是在单位面积的净化滤网12的投影中,过滤孔121在进风口11的正投影的面积。例如,请参阅图3,第一过滤区122在进风口11的正投影的面积为S1,第一过滤区122的过滤孔121在进风口11的正投影的面积为S1’,第二过滤区123在进风口11的正投影的面积为S2,第二过滤区123的过滤孔121在进风口11的正投影的面积为S2’,则第二过滤区123的过滤孔121在进风口11的正投影的密度小于第一过滤区122的过滤孔121在进风口11的正投影的密度可以表示为S2’:S2<S1’:S1。具体地,(S2’:S2)与(S1’:S1)的比值可以是0.2、0.3、0.5、0.7等,可以依据实际的空气在高流速区112的速度与在低流速区114的速度的比值来确定。
具体地,空调器10可以是分体式空调器,也可以是一体式空调器。在对本发明实施方式的描述中,以空调器10为分体式空调器的室内机为例进行说明,可以理解,本发明实施方式也适用于分体式空调器的室外机和一体式空调器。
在某些实施方式中,空调器10还包括设置在净化滤网12的下游处的换热器13和风机14,风机14用于建立气流,换热器13用于对气流换热。
进一步地,空调器10还包括壳体15,壳体15形成有风道16,换热器13和风机14均设置在风道16内,换热器13可以位于风机14的上游,换热器13也可以位于风机14的下游。风机14可以是贯流风机、轴流风机、离心风机等,在风机14的驱动下,空气流动以形成气流,气流穿过进风口11后进入风道16,气流穿过换热器13时与换热器13换热,以使得气流的温度降低或升高,并进一步达到降低室内温度或提高室内 温度的目的。
可以理解,由于壳体15的阻碍作用,或者进风口11的不同区域与风机14的相对位置的差异等因素,进风口11的不同区域的空气流速会不一致,例如与靠近风机14的中间位置的区域的空气流速较大,进风口11靠近壳体15的位置的区域的空气流速较小等。
请再参阅图2,空调器10还包括设置在风道16内的感温探头17,感温探头17可以设置在换热器13的下游,以检测穿过换热器13后的气流的温度,并由空调器10的处理器判断当前气流温度是否达到设定温度,以及计算当前气流温度与设定温度之间的差值。处理器进一步根据该差值发出相应的驱动信号驱动空调器10的压缩机和风机14工作,从而使得室内的实际温度不断趋近于用户设置的目标温度。
请参阅图3,在某些实施方式中,高流速区112位于进风口11的中间位置,低流速区114位于高流速区112的周缘。
具体地,如图3所示,在本发明实施例中,进风口11的横截面形状大致呈矩形,高流速区112大致呈矩形且位于进风口11的中间位置,低流速区114位于高流速区112的两侧。当然,在不同的空调器10中,高流速区112与低流速区114的具体分布可以有差异,例如,如图4所示,在一个例子中,进风口11的横截面形状大致呈圆形,高流速区112呈圆形且大致与进风口11同轴,低流速区114围绕高流速区112分布且呈环形,对应地,第一过滤区122也呈圆形,第二过滤区123呈环形且围绕第一过滤区122分布。
请结合图2和图5,在某些实施方式中,空调器10还包括换热器13,换热器13设置在进风口11的下游处。净化滤网12设置在进风口11与换热器13之间,或净化滤网12设置在进风口11的上游。
也就是说,净化滤网12设置在换热器13的上游处,空气经过净化滤网12后再流经换热器13,使得流经换热器13的空气较洁净,避免空气中的杂质附着在换热器13的表面而影响了换热器13的换热效率。
具体地,在本发明实施例中,壳体15包括格栅152,格栅152设置在进风口11,净化滤网12可以设置在格栅152的上游,空气穿过净化滤网12后再穿过格栅152,净化滤网12容易拆装。净化滤网12也可以设置在格栅152的下游,空气穿过格栅152后再穿过净化滤网12,净化滤网12可以安装在格栅152内,拆卸格栅152后可进一步将净化滤网12从格栅152内取出。
请参阅图2和图6,在某些实施方式中,净化滤网12呈波浪形,第一过滤区122包括多个第一过滤段1222,多个第一过滤段1222依次相接,相邻的两个第一过滤段 1222之间形成第一夹角α,第二过滤区123包括多个第二过滤段1232,多个第二过滤段1232依次相接,相邻的两个第二过滤段1232之间形成第二夹角β,第一夹角α小于第二夹角β。
也就是说,请参阅图6,由于第一夹角α与第二夹角β存在差异,也就使得第一过滤段1222与第二过滤段1232的迎风角度存在差异,具体地,第一过滤段1222与气流方向的夹角小于第二过滤段1232与气流方向的夹角。使得相同流速的气流在第一过滤段1222的法向分量小于在第二过滤段1232的法向分量。而由于穿过第一过滤段1222的空气流速V1较第二过滤段1232的空气流速V2大,其中V1在第一过滤段1222的法向分量为V1’,V2在第二过滤段1232的法向分量为V2’,故可通过检测并分析高流速区112的流速与低流速区114的流速(V1、V2),可合理地设置第一夹角α与第二夹角β的大小,以使得在整个净化滤网12表面的空气流速的法向分量(V1’、V2’)大致相等,净化滤网12的过滤效果在各个位置较均衡。
另外,由于净化滤网12呈波浪型,增加了净化滤网12的总的表面积,提升了净化滤网12的容尘量,净化滤网12的使用寿命得以增加。
具体地,第一夹角α可以是30度、45度、60度等角度,第二夹角β可以是120度、135度、180度等角度。
请再参阅图6,在某些实施方式中,多个第一过滤段1222的长度L1相等,和/或多个第二过滤段1232的长度L2相等。具体地,可以是多个第一过滤段1222的长度L1相等且多个第二过滤段1232的长度L2不相等,也可以是多个第二过滤段1232的长度L2相等且多个第一过滤段1222的长度L1不相等,也可以是多个第一过滤段1222的长度L1相等且多个第二过滤段1232的长度L2相等。如此,容易折叠得到第一过滤段1222或第二过滤段1232,且多个第一过滤段1222的高度相等,或者第二过滤段1232的高度相等,净化滤网12的结构较紧凑。
请参阅图7和图8,在某些实施方式中,第一过滤区122的过滤孔121的密度大于第二过滤区123的过滤孔121的密度。
如此,第一过滤区122允许空气通过的能力大于第二过滤区123允许空气通过的能力,由于高流速区112的风速较大,故单位面积的第一过滤区122的允许空气通过的能力需要较大以满足空气穿过净化滤网12的需求。
具体地,第一过滤区122的过滤孔121的密度大于第二过滤区123的过滤孔121的密度,请参阅图7,可以是过滤孔121的孔径均相等,且单位面积的第一过滤区122的过滤孔121的个数大于单位面积的第二过滤区123的过滤孔121的个数;请参阅图8,也可以是单位面积的第一过滤区122的过滤孔121的个数与单位面积的第二过滤区123 的过滤孔121的个数相等,且第一过滤孔121的孔径大于第二过滤孔121的孔径。
请参阅图9,在某些实施方式中,第一过滤区122和第二过滤区123均包括基本过滤层124,第一过滤区122还包括一个或多个与基本过滤层124层叠设置的附加过滤层125。
如此,附加过滤层125能有效地增加第一过滤区122的过滤能力,更好地净化通过高流速区112的空气。具体地,附加过滤层125可以设置在基本过滤层124的下游,空气穿过基本过滤层124后再穿过附加过滤层125,附加过滤层125的过滤孔121的孔径可以等于或小于基本过滤层124的过滤孔121的孔径。
请再参阅图2,在某些实施方式中,空调器10还形成有位于进风口11下游的风道16,空调器10还包括设置在风道16内的离子发生器18,离子发生器18用于产生正离子和/或负离子。
具体地,离子发生器18利用高压变压器将工频电压升压到所需电压的方法产生离子,并释放到周围的环境中,以净化空气。离子发生器18可以为负离子发生器、或者正离子发生器、或者正负离子发生器。可以理解,负离子发生器用于产生负离子,正离子发生器用于产生正离子,正负离子发生器用于产生正离子和负离子。离子发生器18的种类可以根据实际情况进行选择。
离子发生器18产生正离子和/或负离子,一方面可以杀灭空气中的病菌,另一方面可以使得空气中的尘埃或颗粒带电,从而更容易吸附在净化滤网12上。此外,空气中的尘埃或颗粒带电后,即使通过过滤孔121的孔径远大于尘埃或颗粒自身尺寸的净化滤网12(特别是通过带相反电荷的净化滤网12),也会以非常高的效率被吸附。如此,净化滤网12的过滤孔121的孔径可以远大于尘埃或颗粒的直径,从而大幅较低净化滤网12的通过风阻,保证空调器10自身的制冷制热性能和风量基本不受影响。
较佳地,离子发生器18可以与净化滤网12搭配使用。例如,当离子发生器18为负离子发生器18时,净化滤网12可以为带正电荷的净化滤网12。如此,离子发生器18产生负离子,使得空气中的尘埃或颗粒带负电,从而更容易吸附在带正电荷的净化滤网12上,进而提升CADR(clean air delivery rate,洁净空气量)数值。
请参阅图2,在某些实施方式中,风道16形成有出风口162,空气从出风口流出风道16,离子发生器18还可设置在出风口162处。
当然,在其他实施方式中,离子发生器18还可以设置在空调器10的其他位置,以达到杀灭病菌和净化空气的作用。
请再参阅图3,在某些实施方式中,净化滤网12包括静电驻极滤网或有源静电吸尘滤网。
静电驻极滤网可利用电荷的静电力作用捕集尘粒。静电驻极滤网采用静电驻极材料制作而成,静电驻极材料具备优异的介电性能,如高体电阻和表面电阻,高介电击穿强度,低吸湿性和透气率等,能够在无外界电源输入的情况下长期存储空间电荷或偶极电荷,从而发挥利用电荷的静电力捕集空气中尘埃粒子的功能。静电驻极材料主要以高聚物为主,包括聚丙烯、聚四氟乙烯、六氟乙烯/聚四氟乙烯共聚物、聚三氟乙烯、聚丙烯(共混)及聚酯等。
有源静电吸尘滤网可利用库仑力捕集空气中的尘粒。有源静电吸尘滤网由吸尘电极组成,具体排布方式为正负电极交错排布,从而形成多个电场区域,利用库仑力捕集空气中的尘埃粒子。
进一步地,静电驻极滤网和有源静电吸尘滤网均可拆卸清洗或更换。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种空调器,其特征在于,所述空调器形成有进风口,所述进风口包括高流速区和低流速区,空气流向所述高流速区的速度大于流向所述低流速区的速度,所述空调器还包括遮盖所述进风口的净化滤网,所述净化滤网形成有多个过滤孔,所述净化滤网包括:
    与所述高流速区对应设置的第一过滤区;和
    与所述低流速区对应设置的第二过滤区,所述第二过滤区的所述过滤孔在所述进风口的正投影的密度小于所述第一过滤区的所述过滤孔在所述进风口的正投影的密度。
  2. 根据权利要求1所述的空调器,其特征在于,所述净化滤网呈波浪形,所述第一过滤区包括多个第一过滤段,多个所述第一过滤段依次相接,相邻的两个所述第一过滤段之间形成第一夹角,所述第二过滤区包括多个第二过滤段,多个所述第二过滤段依次相接,相邻的两个所述第二过滤段之间形成第二夹角,所述第一夹角小于所述第二夹角。
  3. 根据权利要求2所述的空调器,其特征在于,所述第一夹角为30度、45度、60度中的一个;和/或
    所述第二夹角为120度、135度、180度中的一个。
  4. 根据权利要求2所述的空调器,其特征在于,多个所述第一过滤段的长度相等,和/或多个所述第二过滤段的长度相等。
  5. 根据权利要求1所述的空调器,其特征在于,所述第一过滤区的所述过滤孔的密度大于所述第二过滤区的所述过滤孔的密度。
  6. 根据权利要求5所述的空调器,其特征在于,所述第一过滤区的所述过滤孔的孔径与所述第二过滤区的所述过滤孔的孔径相等,单位面积的所述第一过滤区的所述过滤孔的数量大于单位面积的所述第二过滤区的所述过滤孔的数量。
  7. 根据权利要求5所述的空调器,其特征在于,单位面积的所述第一过滤区的所述过滤孔的数量与单位面积的所述第二过滤区的所述过滤孔的数量相等,所述第一过滤区的所述过滤孔的孔径大于所述第二过滤区的所述过滤孔的孔径。
  8. 根据权利要求1所述的空调器,其特征在于,所述第一过滤区和所述第二过滤区均 包括基本过滤层,所述第一过滤区还包括一个或多个与所述基本过滤层层叠设置的附加过滤层。
  9. 根据权利要求8所述的空调器,其特征在于,所述附加过滤层设置在所述基本过滤层的下游,所述附加过滤层的过滤孔的孔径等于或小于所述基本过滤层的过滤孔的孔径。
  10. 根据权利要求1-9任意一项所述的空调器,其特征在于,所述空调器还包括设置在所述进风口的下游处的换热器,所述净化滤网设置在所述进风口与所述换热器之间;或
    所述净化滤网设置在所述进风口的上游。
  11. 根据权利要求10所述的空调器,其特征在于,所述空调器还包括设置在所述风道内的感温探头,所述感温探头设置在所述换热器的下游,以检测穿过所述换热器后的气流的温度。
  12. 根据权利要求1-9任意一项所述的空调器,其特征在于,所述空调器还形成有位于所述进风口下游的风道,所述空调器还包括设置在所述风道内的离子发生器,所述离子发生器用于产生正离子和/或负离子。
  13. 根据权利要求12所述的空调器,其特征在于,所述离子发生器能够产生负离子,所述净化滤网带正电。
  14. 根据权利要求12所述的空调器,其特征在于,所述风道形成有出风口,空气从所述出风口流出所述风道,所述离子发生器设置在所述出风口处。
  15. 根据权利要求1-9任意一项所述的空调器,其特征在于,所述高流速区位于所述进风口的中间位置,所述低流速区位于所述高流速区的周缘。
  16. 根据权利要求15所述的空调器,其特征在于,所述进风口的横截面形状呈矩形,所述高流速区呈矩形且位于所述进风口的中间位置,所述低流速区位于所述高流速区的两侧。
  17. 根据权利要求15所述的空调器,其特征在于,所述进风口的横截面形状呈圆形, 所述高流速区呈圆形且与所述进风口同轴,所述低流速区围绕所述高流速区分布且呈环形。
  18. 根据权利要求1-8任意一项所述的空调器,其特征在于,所述空调器还包括设置在所述净化滤网的下游处的换热器和风机,所述风机用于建立气流,所述换热器用于对所述气流换热。
  19. 根据权利要求18所述的空调器,其特征在于,所述空调器包括壳体,所述进风口形成在所述壳体上,所述高流速区较所述低流速区靠近所述风机的中间位置,所述低流速区较所述高流速区靠近所述壳体。
  20. 根据权利要求1所述的空调器,其特征在于,所述净化滤网包括静电驻极滤网或有源静电吸尘滤网。
PCT/CN2017/104791 2017-06-27 2017-09-30 空调器 WO2019000691A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710498191.2 2017-06-27
CN201720761246.XU CN206959163U (zh) 2017-06-27 2017-06-27 空调器
CN201720761246.X 2017-06-27
CN201710498191.2A CN107101279A (zh) 2017-06-27 2017-06-27 空调器

Publications (1)

Publication Number Publication Date
WO2019000691A1 true WO2019000691A1 (zh) 2019-01-03

Family

ID=64742790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104791 WO2019000691A1 (zh) 2017-06-27 2017-09-30 空调器

Country Status (1)

Country Link
WO (1) WO2019000691A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000838A (ja) * 2004-06-18 2006-01-05 Shinwa Corp 空調用フィルタ
CN101165416A (zh) * 2006-10-20 2008-04-23 三星电子株式会社 换气装置
JP2012047351A (ja) * 2010-08-24 2012-03-08 Fujitsu General Ltd フィルタ及び同フィルタを備えた空気調和機
CN103953980A (zh) * 2014-04-23 2014-07-30 杨海基 一种空气净化装置
AU2015203885A1 (en) * 2014-07-17 2016-02-04 Kenneth Lindsay Pagden Multi-stage fire resistant filter panel for improved humidity control in evaporative air conditioners
CN106403250A (zh) * 2016-10-27 2017-02-15 青岛海尔空调器有限总公司 空调室内机的滤网及其设计方法
CN107101279A (zh) * 2017-06-27 2017-08-29 广东美的制冷设备有限公司 空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000838A (ja) * 2004-06-18 2006-01-05 Shinwa Corp 空調用フィルタ
CN101165416A (zh) * 2006-10-20 2008-04-23 三星电子株式会社 换气装置
JP2012047351A (ja) * 2010-08-24 2012-03-08 Fujitsu General Ltd フィルタ及び同フィルタを備えた空気調和機
CN103953980A (zh) * 2014-04-23 2014-07-30 杨海基 一种空气净化装置
AU2015203885A1 (en) * 2014-07-17 2016-02-04 Kenneth Lindsay Pagden Multi-stage fire resistant filter panel for improved humidity control in evaporative air conditioners
CN106403250A (zh) * 2016-10-27 2017-02-15 青岛海尔空调器有限总公司 空调室内机的滤网及其设计方法
CN107101279A (zh) * 2017-06-27 2017-08-29 广东美的制冷设备有限公司 空调器

Similar Documents

Publication Publication Date Title
US11433345B2 (en) Air-conditioning device having dust removing function
KR102199381B1 (ko) 공기조화기용 공기청정기구
WO2019000693A1 (zh) 控制方法、控制器、空调器和计算机可读存储介质
WO2015133602A1 (ja) 電気集塵装置並びにそれを利用した空気調和機
JP6012651B2 (ja) 電気集塵装置並びにそれを利用した空気調和機
JP4451740B2 (ja) 空気清浄器及び空気調和機
CN107101279A (zh) 空调器
JP4537202B2 (ja) ポイントイオン源を用いる空気濾過装置
CN206996856U (zh) 静电除尘模块和空气调节装置
CN107131563A (zh) 空调器
WO2011142580A2 (ko) 공기 청정 필터
WO2019000691A1 (zh) 空调器
WO2018148940A1 (zh) 静电除尘装置和空气处理设备
CN107131592B (zh) 空调器
CN206959163U (zh) 空调器
WO2019000696A1 (zh) 控制方法、控制器、空调器和计算机可读存储介质
JP2000218112A (ja) 集塵フィルターおよび空気調和機
JP2003042471A (ja) 空気調和機の空気清浄装置
JP6120981B2 (ja) 空気調和機
TW202120192A (zh) 電場裝置和氣體淨化裝置以及淨化方法
CN107246653B (zh) 空调器
CN207422355U (zh) 空调器
WO2019000684A1 (zh) 空调器
WO2019000685A1 (zh) 空调器
JP6012652B2 (ja) 電気集塵装置並びにそれを利用した空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17916207

Country of ref document: EP

Kind code of ref document: A1