WO2018148940A1 - 静电除尘装置和空气处理设备 - Google Patents

静电除尘装置和空气处理设备 Download PDF

Info

Publication number
WO2018148940A1
WO2018148940A1 PCT/CN2017/073963 CN2017073963W WO2018148940A1 WO 2018148940 A1 WO2018148940 A1 WO 2018148940A1 CN 2017073963 W CN2017073963 W CN 2017073963W WO 2018148940 A1 WO2018148940 A1 WO 2018148940A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
dust collecting
ozone
electrostatic precipitator
tube
Prior art date
Application number
PCT/CN2017/073963
Other languages
English (en)
French (fr)
Inventor
王文鹏
大森宏
岳宝
Original Assignee
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团股份有限公司 filed Critical 美的集团股份有限公司
Priority to PCT/CN2017/073963 priority Critical patent/WO2018148940A1/zh
Priority to CN201780000119.0A priority patent/CN108738315A/zh
Publication of WO2018148940A1 publication Critical patent/WO2018148940A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes

Definitions

  • the present invention relates to an air treatment apparatus, and more particularly to an electrostatic precipitator. Further, the present invention relates to an air treatment apparatus using an electrostatic precipitator.
  • Air pollution problems have become more and more prominent in today's society, seriously endangering people's health.
  • various air treatment equipments are widely used in homes, office buildings, hospitals, schools, etc. It is an air treatment equipment with wide application and strong practicability.
  • the products in the fresh air industry are mainly based on the central fresh air system.
  • wall-mounted, cabinet-type new fans and through-wall new fans are also used.
  • the central fresh air system includes a main unit installed at the top of the room, and an air inlet duct and an air outlet duct.
  • the indoor dirty air is discharged into the room through the air outlet duct, and the outdoor fresh air is purified into the indoor air through the air inlet duct and then sent into the room.
  • Fans and filters are generally installed inside the fresh air main engine.
  • the fan includes an induced draft fan and an exhaust fan to realize the two-way flow of the air flow. Some of them also include a total heat exchanger to exchange part of the indoor air and the outdoor air and adjust the air humidity.
  • Wall-mounted and cabinet-type new fans integrate the components such as fans and filters into a machine to form a mainframe.
  • the mainframe is generally installed indoors. It is connected to the outside through the inlet and outlet pipes.
  • the general pipes are short and hidden. Not visible inside the wall.
  • the fan is divided into an induced draft fan and a blower. During operation, the induced draft fan is introduced into the indoor dirty air through the air outlet around the main casing, and the blower introduces outdoor fresh air through the intake pipe through the filter assembly (generally a multi-stage filter) and then sends it indoors.
  • the high-profile wall-mounted and cabinet-type new fans are generally equipped with a total heat exchanger to achieve partial temperature exchange between indoor air and outdoor air and to adjust the air humidity.
  • a through-wall type new fan which is generally installed on a wall or glass.
  • the new fan is placed inside the wall or glass by perforating the wall or glass (generally 15 cm or more in diameter), and the outdoor air is introduced through the internal fan.
  • the filter assembly (filter) is sent into the room.
  • This type of through-wall new fan is generally a one-way flow of airflow.
  • the above-mentioned central fresh air system needs to install a large number of air inlet ducts and exhaust ducts, which destroys the home interior and greatly occupies the family space.
  • For wall-mounted and cabinet-type new fans although the ventilation ducts are saved to a certain extent, they occupy a large space, the machine is heavy, the power is large, the energy consumption is too high, and it is very uneconomical to use.
  • Through-wall type new fans are generally filtered through the filter screen. The efficiency of primary filtration is low, and it is difficult to meet the requirements of fresh air. Because of the need to be installed in the wall cavity as a whole, the diameter of the wall hole is too high, and the utility is reduced, which seriously affects consumption. The choice of the person.
  • the above-mentioned central fresh air system, wall-mounted and cabinet-type new air blowers use filter screens as air treatment equipment, and some of them also use electrostatic dust removal equipment as air treatment equipment, but these electrostatic dust removal equipment are limited to the inherent formation of electrostatic fields.
  • the mode uses a conventional parallel-spaced opposed plate to form an electrostatic field, which causes the volume of the new fan to be bulky, takes up too much space, and the air flow to be dusted passes straight through, often resulting in low air dust removal efficiency.
  • the quality of fresh air is often inferior, affecting human health, which leads to low acceptance of new fans using these electrostatic precipitators.
  • the new fans using electrostatic precipitator equipment also have some hidden hazards that affect human health and are difficult for people in the field to find for a long time, resulting in large safety hazards of these new fans.
  • the filter element causes the filter to be easily damaged and does not function well. Once the filter element is damaged, the filter element can not effectively limit the exit wind speed. The flow rates of the inlet and outlet air tend to be close.
  • the inspection confirms that it is easy to form an infinite loop of indoor air in a local area around the indoor host. That is, the internal circulation mode of the wall-mounted and cabinet-type new fans at this time is basically unable to effectively purify the indoor air, and is in an ineffective state.
  • the basic technical problem to be solved by the present invention is to provide a novel electrostatic precipitator device which can be arranged in the air duct and the air duct without occupying a separate arrangement space, and has a novel structure and outstanding dust removal effect.
  • the present invention firstly provides an electrostatic precipitator comprising a dust collecting tube having an annular cross section and a plurality of electrode lines spaced apart in a circumferential direction of a cross section of the dust collecting tube, the electrode line Extending along an axial direction of the dust collecting pipe, a plurality of the electrode wires are arranged in a concentric ring shape radially spaced from the dust collecting pipe, and one of the electrode wires and the dust collecting pipe is positively charged The other is negatively charged.
  • the number of the electrode wires is 3 to 6.
  • the electrode wire has a diameter ranging from 0.08 to 0.2 mm.
  • the axial length of the electrode line straightened in the axial direction is smaller than the length of the dust collecting tube, and both ends of the electrode line are fixed and the fixed positions of both ends are not beyond the two ends of the dust collecting tube. .
  • the electrode wire is disposed within the dust collecting tube.
  • the electrostatic precipitator further includes an air guiding tube, the air guiding tube and the dust collecting tube form a radially spaced nesting tube, and the annular tube between the air guiding tube and the dust collecting tube
  • the cavity is formed as a duct, and the electrode wires are arranged in the annular lumen.
  • the air guiding duct is an inner tube embedded in the dust collecting tube, and the windward end of the inner tube is closed.
  • a plurality of the electrode wires are arranged at equal intervals along a circumference of the inner tube, and a plurality of the electrode wires enclose a cylindrical diameter not larger than 80% of an inner diameter of the dust collecting pipe, and The radial distance of the electrode line from the dust collecting tube is not less than 1 cm.
  • a plurality of the electrode wires are arranged at equal intervals along a circumference of the inner tube, and a plurality of the electrode wires enclose a cylindrical diameter larger than an outer diameter of the inner tube, and not smaller than the set 40% of the inner diameter of the dust pipe.
  • the electrostatic precipitator comprises a high voltage generator, one of the electrode line and the dust collecting tube being electrically connected to the positive pole of the high voltage generator, and the other being electrically connected to the negative pole of the high voltage generator.
  • the inner tube is an insulating material tube, and the high voltage generator is disposed in the inner tube.
  • the high voltage generator has a discharge voltage of 5 to 9 kV.
  • a baffle is disposed in the annular lumen, the baffle extends in a spiral shape in the axial direction to form a spiral passage, and the electrode wire axially passes through each of the baffles.
  • the electrostatic precipitator further includes a guide sleeve that is mounted on the outer peripheral wall of the guide sleeve in a spiral blade shape, and the flow guide sleeve is disposed on the inner tube.
  • the dust collecting tube is a conductive metal tube
  • the guiding sleeve and the deflector are made of an insulating material.
  • the electrostatic precipitator further includes an insulated outer tube that is disposed outside the dust collecting tube.
  • the present invention further provides an air treatment apparatus including a duct and the above-described electrostatic precipitator, the electrostatic precipitator being embedded in the duct.
  • the air treatment device includes an indoor air body, and an ozone filter module is disposed in the indoor air body, and an air outlet end of the air duct provided with the electrostatic dust removal device is aligned with the ozone filter module.
  • the air treatment device includes an air suction device, an air outlet end of the air duct is located at one side of the ozone filtration module, and the air suction device is located at the other side of the ozone filtration module.
  • the air treatment device further comprises a housing surrounding the air suction device and the ozone filtration module.
  • the air suction device is an axial fan.
  • a surface coating for catalyzing the decomposition of ozone is formed on the ozone filtering module.
  • the ozone filtering module is a metal honeycomb structure having a plurality of honeycomb holes, and an end surface of the ozone filtering module can cover a pipe end end surface of the air pipe.
  • the air treatment apparatus includes a plurality of stages of the ozone filtering module disposed at an air outlet end of the air duct, and the plurality of stages of the ozone filtering modules are stacked at intervals.
  • the ozone filtering module includes an electric control module and an ozone sensor
  • the ozone sensor is disposed on an air outlet side of the ozone filtering module
  • the electronic control module is configured to compare an ozone concentration signal detected by the ozone sensor A warning signal is issued when the upper threshold of the ozone concentration is exceeded and the ozone concentration is exceeded.
  • the conventional opposite type inter-plate electrostatic dust removing structure is no longer used, but is applied to the ventilation duct, and the dust is directly removed in the ventilation duct, and the installation arrangement is novel.
  • the dust collecting tube and the electrode line arrangement structure in the tube are adopted, and the dust collecting tube can be embedded in the air duct, the structure is compact, the design is tiny, and a circular electrostatic field can be formed, so that the dust in the airflow passing through the dust collecting tube is It can be charged and collected effectively by the dust collecting tube, and the dust removal effect is better.
  • the electrostatic precipitator can be applied to the air duct of various air treatment equipments, and breaks through the conventional manner in which the electrostatic precipitator is usually arranged in the indoor unit, so that the whole equipment of the air treatment equipment is more compact, takes up less space, and is installed through the indoor unit.
  • the ozone filter module provides better and cleaner air purification.
  • FIG. 1 is a cross-sectional structural view of an air treatment apparatus according to an embodiment of the present invention, in which partial hatching is omitted for clarity of display;
  • FIG. 2 is a schematic view showing an air flow direction of an air-inducing operation mode and an inner-cycle working mode of the air-processing apparatus of the embodiment of FIG. 1;
  • FIG 3 is a perspective view of the air treatment apparatus of the embodiment shown in Figure 1;
  • Figure 4 is a left side view of Figure 3;
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4.
  • FIG. 6 is a schematic view of a drive control device and a gear transmission mechanism of the air treatment apparatus of the embodiment shown in FIG. 1, and components such as a dust collecting pipe and an inner pipe are omitted for clarity of display;
  • Figure 7 is a schematic view of the rotary drive assembly of the inner tube of the embodiment shown in Figure 1, with the components such as the flow guide sleeve omitted for clarity;
  • Figure 8 is a perspective view showing the inner structure of the inner tube of the embodiment shown in Figure 1;
  • Figure 9 is a perspective view showing the structure of the switching cover of the embodiment shown in Figure 1;
  • Figure 10 is a schematic view showing the combined structure of the switching sleeve and the guide sleeve of the embodiment shown in Figure 1;
  • Figure 11 is a schematic view showing the spiral flow direction of the air flow in the passage in the purified air pipe
  • Figure 12 is a schematic view showing the connection form of the electrode wire of the embodiment shown in Figure 1;
  • Figure 13 is a schematic view of the electrode connection structure as viewed from the end of the dust collecting tube;
  • Figure 14 is a perspective view showing the structure of the ozone filter module in the air dust removing device of the embodiment shown in Figure 1;
  • Figure 15 illustrates the application of the air dust removal device of the embodiment of Figure 1 in other conduits
  • Figure 16 is a schematic view showing an arrangement structure of a passage in a purge air pipe according to another embodiment of the present invention.
  • Figure 17 is a schematic view of the air treatment apparatus of the present invention, the components of the drive control device and the high voltage generator inside the air treatment apparatus are omitted for clarity of the picture;
  • Figure 18 is a comparison diagram of the comparison effect of the primary purification rate of the air treatment apparatus of the present invention at different wind speeds;
  • Figure 19 is a line drawing of the purification effect and time of the air treatment apparatus of the present invention in a high wind speed and a low wind speed mode;
  • Fig. 20 is a line diagram showing the test effect of the ozone accumulation amount of the air treatment apparatus of the present invention.
  • orientation words such as “up, down, top, and bottom” are generally used for the directions shown in the drawings or for vertical, vertical or gravity directions, unless otherwise stated.
  • the components are described in terms of their positional relationship.
  • “Inside and outside” is the inner and outer sides for the lumen, lumen or indoor and outdoor.
  • the present invention firstly provides an electrostatic precipitator comprising a dust collecting pipe 5 having a circular cross section and a plurality of electrode wires 21 spaced apart along the circumferential direction of the cross section of the dust collecting pipe 5,
  • the electrode wire 21 extends along the axial direction of the dust collecting tube 5,
  • the root electrode line 21 is arranged in a concentric ring shape radially spaced from the dust collecting tube 5, and one of the electrode line 21 and the dust collecting tube 5 is positively charged and the other is negatively charged.
  • the conventional conventional electrostatic precipitator structure is a plate type discharge plate, and a plurality of discharge plates and a plurality of dust collecting plates are arranged in a grid shape at intervals in a rectangular frame, and the entire electrostatic dust removing structure is disposed in an indoor body of the air processing device.
  • the utility model occupies a limited installation space in the indoor body and increases the weight of the indoor body, resulting in a large volume and weight, and is difficult to install, disassemble and maintain.
  • the electrostatic precipitator of the invention can be directly applied to the ventilation duct, and the dust is removed in the ventilation duct, and the installation arrangement is novel.
  • the dust collecting pipe 5 and the structure of the electrode wire 21 disposed inside or outside the pipe are adopted, and the dust collecting pipe 5 can be integrally embedded in the air duct, and the unit has a compact structure and a compact design, and can form a circumferential electrostatic field.
  • the dust in the airflow passing through the tube or outside the tube of the dust collecting tube 5 can be charged and effectively collected by the dust collecting tube, and the dust removing effect is better.
  • the electrostatic precipitator can be applied to various types of air ducts of various air treatment apparatuses, thereby effectively reducing the volume and weight of the indoor unit.
  • the dust particles in the airflow passing therethrough can be effectively charged and collected by the dust collecting tube 5.
  • the number of the electrode wires 21 is preferably 3 to 6, for example, four electrode wires 21 arranged at equal intervals in the circumferential direction.
  • the diameter of the electrode wire 21 should be within the range of 0.008 to 0.5 mm, and the electrode wire 21 has a better discharge effect, but the finer the electrode wire 21 is, the higher the cost, the more difficult to process, and the easier the tensile fracture. Therefore, in the present embodiment, the diameter of the electrode wire 21 is preferably 0.08 to 0.2 mm in terms of comprehensive balance processing, cost, and discharge effect.
  • the electrode wire 21 should be straightened in the axial direction to avoid electrical contact with other components.
  • the axial length of the electrode wire 21 is preferably smaller than the length of the dust collecting pipe 5, and both ends of the electrode wire 21 are fixed and the fixed positions of both ends are not beyond the both ends of the dust collecting pipe 5. In this way, it is helpful for the charged dust to be efficiently collected by the dust collecting pipe 5.
  • the dust collecting tube 5 can serve as an inner tube, and the electrode line 21 can be disposed outside the dust collecting tube 5, that is, the dust collecting tube 5 collects charged dust particles as an inner tube wall.
  • the electrode wire 21 is disposed in the dust collecting pipe 5, and the dust collecting pipe 5 serves as an outer pipe.
  • the entire pipe cavity of the dust collecting pipe 5 serves as a duct.
  • the partial pipe cavity (ie, the annular pipe cavity) in the dust collecting pipe 5 can be used as a duct, and the electrode line is directly arranged in the air duct in the dust collecting pipe 5.
  • the electrostatic precipitator of the present invention may further include an air guiding tube, the air guiding tube and the dust collecting tube 5 form a radially spaced nesting tube, and the annular duct 6 between the air guiding tube and the dust collecting tube 5 is formed as a air duct.
  • the electrode wire 21 is arranged in the annular lumen 6.
  • the air duct and the dust collecting tube 5 may be internal and external tubes, and the electrode line 21 is disposed in the annular lumen 6 as both of the air ducts.
  • the dust collecting pipe 5 is an outer pipe
  • the air guiding pipe is an inner pipe 1 embedded in the dust collecting pipe 5, and the windward end of the inner pipe 1 is closed, so that an annular air passage is formed, and the electrode wire 21 is formed. Arranged in the annular duct.
  • the plurality of electrode wires 21 are arranged at equal intervals along the circumferential direction of the inner tube 1.
  • the electrode wire 21 is generally disposed near the outer peripheral wall of the inner tube 1, and the diameter of the cylindrical shape surrounded by the plurality of electrode wires 21 is not more than 80% of the inner diameter of the dust collecting pipe 5, and the electrode wire 21 is away from the dust collecting pipe 5.
  • the radial distance is not less than 1 cm to prevent the discharge from being too close.
  • the diameter of the cylindrical shape surrounded by the plurality of electrode wires 21 should be larger than the outer diameter of the inner tube 1, and not less than 40% of the inner diameter of the dust collecting pipe 5. Otherwise, if the radial spacing of the formed circumferential electrostatic field is too large, the charged dust particles have a large radial movement distance and are not easily collected efficiently.
  • the electrostatic precipitator of the present invention further includes a high voltage generator 16, one of which is electrically connected to the positive electrode of the high voltage generator 16, and the other of which is electrically connected to the negative electrode of the high voltage generator 16.
  • a high voltage generator 16 one of which is electrically connected to the positive electrode of the high voltage generator 16, and the other of which is electrically connected to the negative electrode of the high voltage generator 16.
  • the discharge voltage of the high voltage generator 16 is preferably 5 to 9 kV, more preferably about 8 kV, by testing and comprehensive consideration, and both the purification efficiency and the ozone generation amount are acceptable at this time.
  • the high pressure generator 16 can be placed outside the lumen of the dust collecting tube 5 or placed therein. For example, when the inner tube 1 is an insulating material tube, the high voltage generator 16 can be built in the inner tube 1.
  • the annular lumen 6 is further provided with a baffle 4, which is spirally extended in the axial direction to form a spiral channel.
  • the electrode lines are axially passed through each. Baffle 4.
  • a spiral passage that is, a spiral air passage
  • the flow time of the airflow can be greatly extended, that is, Increase the cleaning time of electrostatic dust removal to obtain better dust removal effect.
  • the presence of the baffle 4 can also resist the impact of the airflow, reduce the burden on the fan of the indoor unit, and reduce the chatter of the whole machine.
  • the airflow flows in the spiral passage, the charged dust particles are centrifugally forced toward the dust collecting pipe 5 as the swirling flow flows, and are more easily collected.
  • the flow guiding sleeve 3 is introduced, and the baffle 4 is mounted on the outer peripheral wall of the guiding sleeve 3 in a spiral blade shape, and the guiding sleeve 3 can be conveniently sleeved therein.
  • the dust collecting tube 5 is preferably a conductive metal tube, and the guiding sleeve 3 and the deflector 4 are preferably made of an insulating material to avoid high voltage electric shock or electrical conduction hazard. For this reason, the dust collecting tube 5 can also be provided with an insulated outer tube, which is leakproof and easy to install, and will be specifically described below.
  • the above electrostatic precipitator capable of forming a circumferential electrostatic field can be applied to any air treatment device directly embedded in a duct (ie, a tracheal duct) installed in an air treatment device to obtain a dust removal effect, which is significantly different from existing static electricity.
  • a duct ie, a tracheal duct
  • the indoor arrangement of the dust removal device is significantly different from existing static electricity.
  • an ozone filter module 14 is provided in the indoor body, and the air outlet end of the air duct provided with the electrostatic precipitator is aligned with the ozone filter module 14, see FIGS. 1 and 5.
  • the air treatment apparatus includes an air suction device 15, the air outlet end of the air duct is located at one side of the ozone filtration module 14, and the air suction device 15 is located at the other side of the ozone filtration module 14.
  • the air suction device 15 located in the indoor body can provide suction power so that the air flow passes through the air passage in the air duct, and then passes through the ozone filter module 14 to perform secondary cleaning processing of the air flow.
  • the air treatment device also includes a housing 17 surrounding the air suction device 15 and the ozone filtration module 14.
  • the air suction device 15 is preferably an axial fan that draws air axially.
  • the surface of the ozone filtering module 14 may be formed with a surface coating for catalyzing the decomposition of ozone.
  • the ozone filtering module 14 is preferably a metal honeycomb structure having a plurality of honeycomb holes, and the ozone-containing air flow flows through the ozone filtering module along the plurality of honeycomb holes. 14, the resistance is small, so that the processing capacity of the air handling equipment is not reduced.
  • the surface area of the metal honeycomb structure having a plurality of honeycomb holes is sufficiently large.
  • the end face of the ozone filter module 14 should be sized to cover the end face of the end of the air pipe, so that the ozone-containing airflow flowing out of the air duct can pass through the ozone filter module 14 and is completely deodorized.
  • the air treatment device may comprise a multi-stage ozone filtration module 14 arranged at the outlet end of the duct, the multi-stage ozone filtration modules 14 being arranged in a spaced apart arrangement such that a specified ozone removal rate requirement is achieved.
  • the ozone filter module 14 includes an electronic control module 141 and an ozone sensor 142.
  • the ozone sensor 142 is disposed on the air outlet side of the ozone filter module 14 to detect the ozone concentration, and the electronic control module 141 is configured to compare the detected by the ozone sensor 142.
  • the ozone concentration signal and the upper threshold of the set ozone concentration are used to issue a reminder signal when the ozone concentration is exceeded. At this time, the new ozone filter module 14 can be replaced according to the reminder signal.
  • the electrostatic precipitator and the ozone filter module 14 of the present invention are applied to air ducts of various air treatment apparatuses, in particular, a double-circulation in-wall type air treatment apparatus and a system thereof, specifically,
  • the above electrostatic precipitator is applied to the wall-through pipe of the double-circulation in-wall type air treatment device, and thus the above various functions and advantages of the air duct of the present invention are more prominent and the effect is more obvious.
  • the present invention also provides a novel air processing device, especially a double-circulation in-wall air-conditioning device.
  • the air treatment device includes a duct and an indoor body exposed indoors, as shown in FIG.
  • the present invention forms an inner passage of a clean air duct through which outdoor air passes and an indoor air duct in which indoor air circulates in the air duct, so that there is no scattered air inlet duct, exhaust duct, etc., and the whole structure is simple and compact, such as Figure 3 to Figure 5.
  • the indoor unit is provided with a purifying air outlet, an indoor air inlet, and an air suction device 15.
  • the air duct may be a common air inlet duct of various air treatment apparatuses, but in the following description in conjunction with the drawings, the air duct is preferably a wall-through tube embedded in the wall hole.
  • the air treatment device further comprises a air passage switching device and an air purification device, wherein the air passage switching device is configured to selectively and selectively conduct the indoor air pipe inner passage or the purified air pipe inner passage, so that the air processing device switches and operates in the inner circulation accordingly.
  • Working mode or induced working mode that is:
  • the indoor air enters the indoor air pipe passage from the indoor air inlet under the action of the air suction device 15, and is purified by the air purifying device and discharged from the purified air outlet to the indoor;
  • the outdoor air enters the inner passage of the purified air pipe and passes through the air purifying device from the outer shaft end of the air duct (ie, the right end of the paper of FIG. 1, FIG. 2, the following similar) under the action of the air suction device 15. After purification, it is discharged from the purified air outlet to the room.
  • the flow path of the air flow is longer, and even under the strong suction of the air suction device 15, the air flow is also in the inner passage of the purified air tube or the indoor air tube in the air duct
  • the channel is well buffered, and the impact on the whole machine is small. Even if the impact is generated, it is mainly reflected in the air duct fixedly installed through the wall, and the impact vibration of the whole machine is small.
  • the air suction device 15 in the embodiment of FIG. 1 is preferably a single axial flow fan, and the purified air outlet of the air treatment device and the axial flow fan are axially aligned with the inner shaft end of the air duct, which is due to the inner passage of the purified air tube.
  • the indoor air pipe inner passage is integrated in the air duct, and the air flow outlet is at the inner shaft end of the air duct, so it is only necessary to arrange a single fan at the inner shaft end of the air duct instead of the double fan structure of the conventional double-cycle air processing equipment, in other words Fans can be shared, resulting in high structural integration.
  • the inner passage of the purge air pipe and the inner passage of the indoor air pipe are compactly arranged in the duct, the air flow path is long, and the air purifying device is also compactly arranged.
  • the in-wall cavity air treatment apparatus of the present invention employs a casing structure including an inner tube 1 and an outer tube, and an annular lumen between the inner tube lumen and the inner and outer tubes.
  • Either 6 is a channel for purifying the air tube, that is, outdoor air may enter the inner tube lumen or the annular lumen 6 from the outer shaft end of the duct and then flow out from the corresponding inner shaft end.
  • the other of the inner tube lumen and the annular lumen 6 constitutes an inner passage of the indoor air tube or at least forms part of the inner passage of the indoor air tube.
  • the inner air pipe inner passage needs to be closed.
  • the inner passage of the purified air pipe needs to be closed.
  • the indoor air tube inner passage may include an inner tube lumen and an annular lumen 6 of the inner tube 1, and the indoor air entering the indoor air inlet enters the air duct through the inner shaft end of one of the inner tube lumen and the annular lumen 6 Then, it can enter the cavity of the other from the outer shaft end, preferably from the inner shaft end of the other.
  • This not only has a longer process, but also whether it is an internal circulation or an induced draft In the mode, at least part of the passage in the air duct is a common flow between the indoor air and the outdoor air, thereby facilitating the compact arrangement of the air purification device, and only needs to be arranged in the common flow channel.
  • the air passage switching device should include two controllable switching valves, that is, a guide that can be opened at an appropriate time to introduce outdoor air.
  • the damper and a communication valve that can be opened in time to communicate the inner tube lumen with the annular lumen 6 (thus forming a complete internal air tube passage).
  • the air inlet valve should be disposed at the outer shaft end end surface of the inner passage of the purified air pipe, and at this time, the inner shaft end of the inner passage of the purified air pipe communicates with the air suction device 15 to provide power to draw in air.
  • the inner tube lumen communicates with the inner shaft end of the other of the annular lumens 6 and the communication valve is disposed between the outer shaft end of the inner tube lumen and the outer shaft end of the annular lumen 6.
  • the annular lumen 6 is selected to purge the inner passage of the air tube.
  • the inner tube 1 is an inner circulation intake pipe that communicates with the indoor air inlet.
  • the outdoor air inlet A flows into the annular duct 6 from the outside to the inside, and the indoor air inlet B enters from the inner shaft end of the inner tube lumen, and the outer shaft end of the inner tube lumen enters the annular lumen 6 Finally, it flows out from the inner shaft end of the annular lumen 6.
  • the present invention also provides a preferred configuration of the air duct switching device, which can realize the common functions of the above-mentioned air inlet valve and the communication valve by simple rotation control.
  • the air passage switching device includes an outer shaft end portion of the inner tube 1 and a switching sleeve 2 engaged therewith.
  • the outer tube end of the inner tube 1 in Fig. 8 is connected with an inner tube end plate, the central stopper portion 1b of the inner tube end plate blocks the outer shaft end surface of the inner tube 1, and the outer ring portion of the inner tube end plate
  • the outer end end face of the annular lumen 6 is covered and provided with an outdoor vent 1c communicating with the annular lumen 6, and the outer peripheral wall of the outer shaft end of the inner tube 1 is provided with an indoor vent 1d for communicating the annular lumen 6.
  • the switching collar 2 of FIG. 9 includes a sleeve portion 2a and a retaining sleeve end plate 2b connected to the outer end surface of the sleeve portion 2a, and the stopper end plate 2b is provided with a central through hole adapted for the inner tube 1 to pass through.
  • the outer peripheral edge portion of the stopper end plate 2b is provided with an outdoor air communication port 2c, and the outer peripheral wall of the sleeve portion 2a is provided with an indoor air communication port 2d.
  • the shifting sleeve 2 is fixedly sleeved on the outer shaft end of the inner tube 1, one of which is rotatable and the other relatively fixed.
  • the shifting sleeve 2 is fitted from the inner shaft end of the inner tube 1, and the end sleeve end plate 2b is in close contact with the inner side of the inner tube end plate.
  • the relative rotational cooperation of the end face disc 2b and the inner tube end plate constitutes the above-mentioned air inlet valve, and the relative rotation fit between the sleeve portion 2a of the shift sleeve 2 and the outer peripheral wall of the outer shaft end of the inner tube 1 is switched.
  • the above-described communication valve is constructed. Specifically, in the embodiment of FIG.
  • the inner tube 1 is rotated and the switching sleeve 2 is fixed.
  • the inner tube 1 rotates relative to the switching sleeve 2 and can be successively opened at the first rotation position and open communication of the air inlet valve.
  • the second rotation position of the valve in the first rotation position, the outdoor vent 1c is in alignment with the outdoor air communication port 2c, and the indoor vent 1d and the indoor air communication port 2d are mutually staggered and closed, and in the second rotation position, the indoor vent 1d is in alignment with the indoor air communication port 2d, and the outdoor vent 1c and the outdoor air communication port 2c are offset from each other and closed.
  • the outdoor vents 1 c and the indoor vents 1 d of the outer shaft end of the inner tube 1 are the same, and are arranged at equal intervals in the circumferential direction.
  • the one-to-one correspondence is set in the circumferential position, and the outdoor air communication port 2c and the indoor air communication port 2d on the switching cover 2 are the same number, are arranged at equal intervals in the circumferential direction, but are offset at a reasonable angle in the circumferential position. That is, the distribution ring of the outdoor air communication port 2c and the distribution ring of the indoor air communication port 2d are staggered in the circumferential position to realize the above-described rotation switching function.
  • the communication ports on the switching hood 2 it is also possible to align the communication ports on the switching hood 2, and the vents of the outer shaft ends of the inner tube 1 are staggered, and the same effect can be obtained. That is, the number of the outdoor air communication ports 2c and the indoor air communication ports 2d of the outer shaft end of the switching guard sleeve 2 are the same and are equally spaced in the circumferential direction, and the outdoor air communication port 2c and the indoor air communication port 2d are in the circumferential position one by one.
  • the outdoor vent 1c on the inner tube 1 and the indoor vent 1d are the same number and are arranged at equal intervals in the circumferential direction, and the outdoor vent 1c
  • the distribution ring and the distribution ring of the indoor vent 1d are staggered in the circumferential position.
  • the air passage switching device further includes a rotation driving assembly that connects the inner shaft end of the inner tube 1 to control the rotation of the inner tube 1.
  • the rotary drive assembly includes a drive control device 12 for sequentially controlling the transmission, a gear transmission mechanism 11 and a rotary joint member 10, and the rotary joint member 10 is connected to the inner shaft end of the inner tube 1, with a view to The accuracy of the gear drive structure is used to accurately control the rotational opening of the inner tube 1.
  • the drive control device 12 is preferably an electronic control device, such as a motor or the like.
  • the gear transmission mechanism 11 may include a worm gear mechanism 11a, a drive gear 11b, and a driven gear that are sequentially transmitted.
  • the driven gear may be a combined first slave.
  • the gear 11c and the second driven gear 11d, the output shaft of the driven gear is connected to the rotary joint 10, and the rotary joint 10 includes a rotary joint sleeve 7, and a shaft end of the rotary joint sleeve 7 is connected to the output shaft of the gear transmission mechanism 11,
  • the other shaft end is connected to the inner shaft end of the inner tube 1, preferably as shown in Fig. 7, by means of a snap connection 22 and a bayonet 22a of the inner shaft end of the inner tube 1 of Fig. 8 to form a detachable snap connection.
  • a snap connection 22 and a bayonet 22a of the inner shaft end of the inner tube 1 of Fig. 8 to form a detachable snap connection.
  • the indoor body includes a cover 17 connected to the air duct, and a mounting frame 13 is fixedly disposed in the outer cover 17, and the drive control device 12 and the gear transmission mechanism 11 are mounted on the mounting frame 13.
  • the indoor air intake passage 8 is connected to the indoor air inlet through the indoor air inlet.
  • the indoor air inlet passage 8 is independently isolated from the inner cavity of the indoor body and the annular duct 6.
  • the rotary connecting sleeve 7 is built in the indoor air inlet passage 8. In order to realize the communication between the indoor air inlet passage 8 and the inner tube cavity, one or more intake pipe air inlets 9 are penetrated through the outer peripheral wall of the rotary connecting sleeve 7, see FIG.
  • the inner peripheral wall of the inner passage of the purification air pipe is respectively provided with a plurality of first flow guiding flanges 25 and a second flow guiding line which are axially spaced and located on both sides in the radial direction.
  • the flange 26, each of the first flow guiding flange 25 and the second flow guiding flange 26 are sequentially displaced in the axial position to form a purge air baffle passage.
  • Such a flow guiding flange is preferably a circular arc plate such that outdoor air entering from the outer shaft end of the inner passage of the purified air pipe flows downwardly from the inner shaft end of the inner passage of the purified air pipe along the purified air baffle passage.
  • Figure 16 achieves an effective extension of the flow path in a baffled form.
  • the air treatment device is provided with a spiral vane-shaped baffle 4 shown in FIGS. 10 and 11 in the inner passage of the purified air pipe, and the baffle 4 is spirally axially Extending to form a purifying air spiral passage, the outdoor air entering from the outer shaft end of the inner passage of the purifying air duct flows out from the inner shaft end of the inner passage of the purifying air duct along the purifying air spiral passage.
  • the axial flow fan is at the optimal working point, that is, the system
  • the intersection of the resistance and the air volume by expanding the cross-sectional area of the annular lumen 6 to introduce more airflow to eliminate the influence of the resistance, and to obtain the balance between the resistance and the air volume, the ratio of the cross-sectional area of the annular lumen 6 to the lumen of the inner tube is approximately 2 to 4 are preferably 3 in the preferred embodiment of Figs. 1 and 2 .
  • the number of coils in the spiral baffle 4 in the passage in the purge air pipe is 3 turns, generally 2 to 5 turns.
  • the length of the flow channel is increased by about 4.5 times, and the extension effect is outstanding, which is favorable for air purification and improves purification efficiency.
  • the baffle 4 can be integrally processed, or can be processed in stages and assembled.
  • the air treatment device includes a guide sleeve 3, and the deflector 4 is mounted on the outer peripheral wall of the guide sleeve 3 in a spiral blade shape, and the guide sleeve 3 is sleeved on the inner tube 1 and switched The cover 2 is connected.
  • the guide sleeve 3 facilitates assembly of the fixed baffle 4, and facilitates the overall assembly of the air duct and the mounting arrangement of the switching sleeve 2, the subsequent electrode line 21, etc., which will be specifically discussed below.
  • Another compact design of the invention resides in the arrangement of the air purification device.
  • the outer tube comprises a dust collecting tube 5 capable of being charged
  • the air purifying device comprises an electrostatic precipitating structure arranged in the inner passage of the purifying air tube
  • the electrostatic precipitating structure comprises a high voltage generator 16, an electrode line 21 and a dust collecting tube 5, and the electrode line 21 Extending in the axial direction and passing through the respective baffles 4, one of the electrode wires 21 and the dust collecting pipe 5 is electrically connected to the positive electrode of the high voltage generator 16, and the other is electrically connected to the negative electrode of the high voltage generator 16.
  • the air dust particles in the passage in the purification air pipe are charged by the electrode wire 21, and when flowing in the longer spiral passage of the purified air, the air dust particles are adsorbed to the dust collecting pipe 5 sooner or later, thereby obtaining air purification. effect.
  • the electrode wire 21 is conveniently arranged, the space structure is compact, the air dust particles are easily charged and adsorbed, and the dust removing passage is long, the dust removing effect is more prominent, and the positive and negative electrodes of the high voltage generator can be replaced, that is, the electrode wire. 21 can be connected to the positive electrode or the negative electrode, and the dust collecting pipe 5 can be connected to the negative electrode or the positive electrode correspondingly.
  • the electrode wire 21 When the electrode wire 21 is connected to the negative electrode, it is called a negative electrode discharge, and the breakdown voltage is high, and it is not easily broken.
  • the positive electrode When it is connected to the positive electrode, it is called a positive electrode discharge, and ozone is generated to be less discharged than the negative electrode, and the breakdown voltage is low.
  • the embodiments of the present invention in conjunction with the drawings all employ a negative discharge.
  • the electrode wires 21 are preferably plural and arranged at equal intervals along the circumferential direction of the draft jacket 3.
  • Fig. 13 preferably four are used, and generally have a density distribution of 3 to 6.
  • the diameter of the cylindrical shape surrounded by the plurality of electrode wires 21 should be larger than the outer diameter of the inner pipe 1, and the electrode wire 21 should be closer to and close to the collector pipe 5.
  • the inner tube 1 is used to obtain a larger electric field.
  • the diameter of the cylindrical shape surrounded by the plurality of electrode wires 21 is generally not more than 80% of the inner diameter of the dust collecting pipe 5, and the radial distance of the electrode wire 21 from the dust collecting pipe 5 is not less than 1 cm. . Since the diameter of the cylindrical portion surrounded by the plurality of electrode wires 21 is larger than the outer diameter of the inner tube 1 due to being in the passage in the purified air tube, it is generally not less than 40% of the inner diameter of the dust collecting tube 5. In the embodiment of Fig. 13, the diameter of the enclosed cylindrical shape is preferably 60% of the inner diameter of the dust collecting pipe 5, and the electric field dust removing effect is outstanding.
  • the material of the electrode wire 21 may be made of a metal material, and the diameter is generally between 0.008 and 0.5 mm.
  • a tungsten wire of 0.2 mm diameter may be preferably used, which is easy to discharge at a high voltage.
  • the electrode wire 21 is straightened in the axial direction and the axial length is not more than the length of the dust collecting pipe 5, and preferably, the axial length of the electrode wire 21 can be 5-15 mm shorter than the length of the dust collecting pipe 5, ensuring being The ionized dust particles can be adsorbed to the inside of the dust collecting tube 5.
  • One end of the electrode wire 21 is fixedly connected to the insulated wire holder 2e, see FIGS. 9 and 12, and the other end can be electrically connected to the high voltage generator 16 through the wire contact 24.
  • the dust collecting pipe 5 can also be connected to one electrode terminal of the high voltage generator 16 through the dust collecting electrode point 23 of the inner shaft end.
  • the dust collecting pipe 5 is preferably a conductive metal pipe, such as an aluminum alloy pipe, which is easy to conduct, collect dust, and clean, and the deflector 3, the baffle 4, and the switching baffle 2 are all insulating materials to prevent short circuit.
  • the high voltage generator 16 may be disposed in the indoor body, such as the mounting frame 13, and connected to the electrode wire 21 and the dust collecting pipe 5 through wires.
  • the inner tube 1 is an insulating material tube, as shown in FIG. 15, the high voltage generator 16 may be disposed in the inner tube 1.
  • the above-mentioned sleeve structure with spiral passage and its electrostatic dust removal structure not only increase the flow, prolong the electrostatic dust removal time, obtain better dust removal effect, and the centrifugal force brought by the spiral flow can accelerate the adsorption of charged dust to the dust collection tube.
  • the sleeve structure with spiral passage and its electrostatic dust removal structure can be applied to the air duct of various air treatment equipment to achieve dust removal in a small space. As shown in Fig. 15, by replacing one of the pipes, the purpose of purifying the air inside the pipe is achieved, and the highest dust removal efficiency can reach more than 95%.
  • This electrostatic dust removal structure can also be removed and cleaned independently.
  • ozone Due to the high-pressure discharge dust removal, ozone is inevitably generated in the process, and the air purification device of the present invention is further purified. Also included is an ozone filtration module 14 that is disposed on the downstream side of the electrostatic precipitator structure. Therefore, the ozone filter module 14 is disposed in the indoor body of the room, and the axially outer side of the ozone filter module 14 is spaced apart from the inner shaft end of the air duct, and the air suction device 15 is disposed on the inner side in the axial direction.
  • the suction force of the air suction device 15 causes the preliminary purge air after the dust removal in the annular lumen 6 to pass through the ozone filter module 14, and is discharged from the exhaust port to the room by the air suction device 15 after the ozone is removed.
  • the ozone filter module 14 is a metal honeycomb structure formed with a honeycomb hole, preferably made of an aluminum material.
  • the metal honeycomb structure has a compact structure, a small installation space, a large surface area, and a surface that catalyzes the decomposition of ozone.
  • the coating reacts with the surface coating as it flows through the honeycomb pores, causing the ozone to be decomposed.
  • Such an ozone filter module 14 may be in the form of a single-plate single-stage, but may be provided as a multi-stage ozone filter module 14 stacked between the inner axial end of the duct and the air suction device 15, as needed.
  • the ozone filter module 14 may further include an electric control module 141 and an ozone sensor 142.
  • the ozone sensor 142 is disposed on the air outlet side of the ozone filter module 14, and the electronic control module 141 is configured to compare the ozone detected by the ozone sensor 142.
  • the electronic control module 141 can also be connected with a backup battery.
  • the outer cover 17 on the top of the indoor body is provided with a replacement valve 171 directly above the ozone filter module 14, as shown in FIG. 14, so that the ozone filter module 14 can be dismantled by opening the replacement valve. To load, just pull up.
  • the air suction device 15 is an axial flow fan, and the axial flow fan and the ozone filter module 14 are respectively mounted on both sides of the mounting bracket of the axial flow fan, and the two can be installed by screws, for example.
  • an independent fan module is formed on the bracket.
  • the mounting bracket is fixedly mounted in the indoor unit.
  • the outer casing 17 of the indoor unit is provided with a purifying air outlet, and the purifying air outlet is detachably mounted with a grille cover 172, as shown in FIGS. 3, 4, and 14.
  • the contours of the purge air outlet and grille cover 172 are sufficiently large that the air suction device 15 and the air purification device mounted within the outer cover 17 can be removed from the purge air outlet to facilitate replacement of the ozone filter module 14 or even the entire individual fan module.
  • the outer shaft end of the mounting sleeve 18 is also fitted with a primary baffle 20 and/or a primary screen 19.
  • the primary baffle 20 may be a sealing plate, which may be controlled to open at the right time, or may be a grid plate or the like.
  • the primary baffle 20 blocks insects, rain, and the like.
  • the primary filter 19 can filter large foreign objects, such as leaves and paper scraps, to ensure that there is no clogging inside the device and can work normally for a long time.
  • the present invention further provides an air treatment system including a installation wall 27 provided with a wall cavity, and a duct embedded in a double-circulation in-wall air treatment device. Installed in a wall hole, as shown in Figure 17.
  • the outer tube includes a mounting sleeve 18 that is disposed outside the dust collecting tube 5, and the gap between the two is about 1-2 mm.
  • the mounting sleeve 18 is first embedded in the wall hole in the mounting wall 27, and the sleeve 18 is installed.
  • the outer end penetrates the wall hole, and the inner end is formed with a peripheral flange which fits the inner wall surface of the mounting wall.
  • the indoor body includes a cover 17, and the outer cover 17 is fixedly connected with the peripheral flange of the mounting sleeve 18. This creates a plug-in installation of the air handling equipment.
  • the outer shaft end of the mounting sleeve 18 is provided with an outer shaft end stop structure 28, such as an annular rib that is convex on the inner wall.
  • an outer shaft end stop structure 28 such as an annular rib that is convex on the inner wall.
  • the air treatment device further includes an inner end positioning sleeve 29, after the respective tubes are fitted, the inner end positioning sleeve 29 is embedded in the inner shaft end of the installation sleeve 18, and the embedded tube segments of the inner end positioning sleeve 29 respectively abut the dust collection
  • the tube 5, the flow guide sleeve 3 and the inner tube 1 are positioned to achieve axial positioning of the inner ends of the tubes.
  • the mounting sleeve 18 is preferably installed obliquely, that is, the inner shaft end of the mounting sleeve 18 is slightly higher than the outer shaft end, and the horizontal elevation angle of the inner shaft end relative to the outer shaft end is usually 3 to 5°.
  • the wall thickness of the mounting wall 27 is not less than 25 cm, and the hole diameter of the wall hole is not more than 15 cm, for example, about 10 cm, to achieve a certain overall load-bearing through the air duct and the mounting wall 27 of a considerable thickness.
  • the inner and outer sleeves are used, and the annular lumen 6 is used as a passage for purifying the air tube, and the air passage switching device shown in FIG. 8 and FIG. 9 is arranged, and the spiral guide of FIG. 10 is arranged.
  • the flow board 4 and the electrostatic precipitator and ozone removal air purifying apparatus shown in Figs. 12 to 14 were subjected to the power-on test of the air treatment system of the present invention after being mounted to the mounting wall 27 as shown in Fig. 17 .
  • Figure 18 is a comparison diagram of the comparison effect of the primary purification rate of the air treatment system of the present invention at different wind speeds;
  • Figure 19 is a line diagram of the purification effect and time of the air treatment system of the present invention in the high wind speed and low wind speed modes; It is a line graph of the test effect of the ozone accumulation amount of the air treatment system of the present invention.
  • the primary treatment rate of the air treatment system of the present invention is at least 93%.
  • the PM2.5 concentration can be significantly reduced from 500 ppb to 100 ppb or less in one hour, regardless of high wind speed or low wind speed, until zero.
  • the accumulated ozone content in the indoor environment is substantially lower than the national standard value.
  • the air treatment device and the air treatment system of the present invention achieve at least the following objectives through a series of optimized designs: 1) Small volume: due to the modular design and the compact design in the above-mentioned duct, the device as a whole and a part They are relatively small in size and have little impact on the home interior, especially the renovated rooms. 2) Good mountability: Due to the compact design inside the wall pipe, the pipe diameter is small, so that only the hole of not more than 10cm is required to be installed on the wall. 3) High filtration efficiency: Due to the design of the spiral flow channel and the electrostatic precipitator inside the tube, the flow path is increased, the dust removal time is extended, and the centrifugal force enhances the dust capture.
  • the rotational driving assembly for driving the inner tube 1 and the switching sleeve 2 to rotate relative to each other is not limited to the gear transmission structure and mode, and can be simply modified, and the rotation control is performed by an alternative winding roller method, that is, the inner tube 1 is regarded as a roller.
  • the outer peripheral wall of the inner shaft end is wound around the control line, and the control line is stretched in the radial direction, and the accurate rotation angle of the inner tube 1 can be controlled according to the accurately characterized tensile amount.

Abstract

一种静电除尘装置和空气处理设备,静电除尘装置包括具有环形横截面的集尘管(5)和沿集尘管(5)的横截面圆周方向间隔分布的多根电极线(21),电极线(21)沿集尘管(5)的轴向延伸,多根电极线(21)布置成与集尘管(5)径向间隔的同心环形状,电极线(21)和集尘管(5)中的一者带正电,另一者带负电。该静电除尘装置应用于通风管道中,直接在通风管道内进行除尘,安装布置方式新颖,集尘管(5)可嵌设于风道内,结构紧凑,设计精巧,可形成圆周形静电场,使得通过集尘管(5)的气流中的灰尘都能够带电并被集尘管(5)有效收集,除尘效果较好。此静电除尘装置可应用于各式空气处理设备的风道中,使得整机设备更紧凑,占用空间小,可获得清洁的净化气体。

Description

静电除尘装置和空气处理设备 技术领域
本发明涉及空气处理设备,具体地,涉及静电除尘装置,此外,本发明还涉及采用了静电除尘装置的空气处理设备。
背景技术
大气污染问题在当今社会已经越来越凸显,严重危害人们的身体健康,为了应对日益恶化的大气污染问题,各类空气处理设备被广泛应用于家庭、办公楼、医院、学校等,其中新风装置是应用比较广泛、实用性较强的一种空气处理设备。目前新风行业内产品主要以中央新风系统为主,除此之外,挂壁式、柜式新风机、穿墙式新风机也应用较多。
中央新风系统包括安装于室内顶部的主机以及进风管和出风管,室内污浊空气经出风管排出室内,室外新鲜空气经进风管在新风主机内净化后送入室内。新风主机内部一般设置风机和过滤网,风机包括引风机和排风机以实现气流的双向流通,有些还包括全热交换器实现室内空气和室外空气的部分温度交换并调节空气湿度。
挂壁式和柜式新风机是将风机和滤网等组件集成于一台机器形成主机上,该主机一般安装在室内,其通过进、出管道与室外连通,一般管道均较短,隐藏在墙壁内不可见。风机分为引风机和送风机,工作时引风机通过主机壳体周围的风口引入室内污浊空气排出室外,送风机通过进气管道引入室外新鲜空气经过过滤组件(一般为多级滤网)后送入室内。此外,配置较高的挂壁式和柜式新风机一般加装全热交换器,以实现室内空气和室外空气的部分温度交换并调节空气湿度。
穿墙式新风机,其一般安装于墙体或玻璃上,通过在墙体或玻璃上打孔(一般直径15cm以上)使新风机放置于墙体或玻璃内部,其通过内部风机引入室外空气经过过滤组件(滤网)送入室内,这种穿墙式新风机一般为气流的单向流动,有些产品通过控制风扇的正反转实现一定程度的间歇式室内与室外空气的交换。
上述中央新风系统,需要安装大量进风管和排风管,破坏家庭内饰,极大地占用家庭空间。对于挂壁式和柜式新风机,虽然一定程度节省了通风管道,但是其占据空间较大,机器笨重,其功率也较大,耗能过高,使用起来十分不经济。穿墙式新风机普遍通过滤网进行过滤,一次过滤的效率低,难以满足新风的要求,并且由于需要整体安装在墙洞内,对于墙洞的直径要求过高,实用性降低,严重影响消费者的选择。
另外,上述中央新风系统、挂壁式和柜式新风机除了采用滤网作为空气处理设备之外,其中一些也采用静电除尘设备作为空气处理设备,但是这些静电除尘设备局限于静电场形成的固有模式,其采用传统的平行间隔对置式的板件形成静电场,导致这些新风机的体积庞大,占用空间过大,并且待除尘的空气流平直快速通过,常常导致空气除尘效率较低,引入的新风质量往往低劣,影响人体健康,这导致采用这些静电除尘设备的新风机在市场上接受度偏低。此外,采用静电除尘设备的新风机还存在一些影响人体健康、本领域人员长期难以发现的隐性危害因素,导致这些新风机存在较大的安全隐患。
更为严重的是,上述类型的新风机普遍存在功能单一的缺陷,仅具有空气外循环的功能,在外部空气严重雾霾的情况下,不仅加重了新风机过滤组件的工作负担,使其容易损坏,而且从外部抽吸并经过过滤的空气质量甚至不如室内本来的空气质量。有鉴于此,现有技术中也存在一些相对粗糙的具有内循环功能的新风机,例如,一些新风机为了形成内循环工作模式,采用两个风机各自相对独立地形成内循环模式和外循环模式,这不但未克服现有新风机上述既有的缺陷,而且导致新风机体积更加庞大,结构更加复杂,风道铺设更加繁杂。另外,还有一些挂壁式和柜式新风机在室内机体上直接开设一个室内进风口,通过机体内部的切换盖板选择性地遮挡室内进风口或连接外部进风管道的外部进风口,来实现外循环工作模式和内循环工作模式的切换,但是,这种结构形式并没有改变挂壁式和柜式新风机的本质,其固有的占据室内空间大、笨重,耗能过高的缺陷并没有改变,更为严重的是,这种在挂壁式和柜式新风机的室内机体上直接开设室内进风口的粗糙做法,会导致轰鸣、过滤件损坏、空气死循环等严重缺陷。具体地,由于挂壁式和柜式新风机的室内主机的进气腔一般较大,直接在室内主机上开设室内进风口,室内进风口距离风机距离较近,经风机抽吸的室内空气并不像外部进风能够经由外部进风管道缓冲,其直接高速进入室内主机的进气腔内,导致室内机体震颤、甚至发生轰鸣,同时由于室内空气经由风机的强劲抽吸不经缓冲的高速撞击过滤件,导致过滤件容易损坏,无法起到良好的过滤作用。一旦过滤件损坏,过滤件无法有效地起到限制出口风速的作用,进风和出风的流速趋于接近,检验证实,此时极易在室内主机周围的局部范围内形成室内空气的死循环,即此时挂壁式和柜式新风机的内循环工作模式基本无法有效地净化室内空气,处于无效状态。
新风机的上述缺陷,已经形成制约新风机进一步发展的技术瓶颈,一些危害因素本领域技术人员迄今未意识到存在严重隐患,尤其是如何使得新风机在兼具内、外循环工作模式的基础上,有效地节省室内空间,工作性能良好可靠,已经成为本领域的技术难题。
发明内容
本发明所要解决的基本技术问题是要提供一种新型静电除尘装置,该静电除尘装置能够布置于风管、风道中,不占用单独的布置空间,结构新颖且除尘效果突出。
为实现上述发明目的,本发明首先提供了一种静电除尘装置,包括具有环形横截面的集尘管和沿所述集尘管的横截面圆周方向间隔分布的多根电极线,所述电极线沿所述集尘管的轴向延伸,多根所述电极线布置成与所述集尘管径向间隔的同心环形状,所述电极线和所述集尘管中的一者带正电,另一者带负电。
优选地,所述电极线的根数为3~6根。
优选地,所述电极线的直径范围为0.08~0.2mm。
优选地,沿轴向拉直的所述电极线的轴向长度小于所述集尘管的长度,所述电极线的两端固定且两端固定位置均不超出所述集尘管的两端。
优选地,所述电极线布置在所述集尘管内。
优选地,所述静电除尘装置还包括导风管,所述导风管与所述集尘管形成径向间隔的嵌套管,所述导风管与所述集尘管之间的环形管腔形成为风道,所述电极线布置在所述环形管腔中。
优选地,所述导风管为内嵌于所述集尘管中的内管,所述内管的迎风端封闭。
优选地,多根所述电极线沿所述内管的周向等间隔布置,多根所述电极线所围成的圆柱形的直径不大于所述集尘管的内直径的80%,且所述电极线距离所述集尘管的径向距离不小于1cm。
优选地,多根所述电极线沿所述内管的周向等间隔布置,多根所述电极线所围成的圆柱形的直径大于所述内管的外径,且不小于所述集尘管的内管径的40%。
优选地,所述静电除尘装置包括高压发生器,所述电极线和所述集尘管中的一者电连接所述高压发生器的正极,另一者电连接所述高压发生器的负极。
优选地,所述内管为绝缘材质管,所述高压发生器设置于所述内管中。
优选地,所述高压发生器的放电电压为5~9KV。
优选地,所述环形管腔中设有导流板,所述导流板呈螺旋状沿轴向延伸以形成螺旋通道,所述电极线轴向穿过各个所述导流板。
优选地,所述静电除尘装置还包括导流套,所述导流板呈螺旋叶片状安装于所述导流套的外周壁上,所述导流套套设于所述内管上。
优选地,所述集尘管为导电金属管,所述导流套和导流板为绝缘材质。
优选地,所述静电除尘装置还包括套装于所述集尘管外的绝缘外管。
进一步地,本发明还要提供一种空气处理设备,所述空气处理设备包括风管和上述的静电除尘装置,所述静电除尘装置嵌入安装于所述风管中。
优选地,所述空气处理设备包括室内机体,所述室内机体中设有臭氧过滤模块,设有所述静电除尘装置的所述风管的出风端对齐所述臭氧过滤模块。
优选地,所述空气处理设备包括空气抽吸装置,所述风管的出风端位于所述臭氧过滤模块的一侧,所述空气抽吸装置位于所述臭氧过滤模块的另一侧。
优选地,所述空气处理设备还包括围绕所述空气抽吸装置和所述臭氧过滤模块的外罩。
优选地,所述空气抽吸装置为轴流风扇。
优选地,所述臭氧过滤模块上形成有用于催化臭氧分解的表面涂层。
优选地,所述臭氧过滤模块为具有多个蜂窝孔的金属蜂巢结构,所述臭氧过滤模块的端面能够覆盖所述气管管道的管端端面。
优选地,所述空气处理设备包括布置在所述风管的出风端的多级所述臭氧过滤模块,多级所述臭氧过滤模块相互间隔地层叠布置。
优选地,所述臭氧过滤模块包括电控模块和臭氧传感器,所述臭氧传感器设置在所述臭氧过滤模块的出风侧,所述电控模块配置为比较所述臭氧传感器所检测的臭氧浓度信号与臭氧浓度的上阈值并在判断臭氧浓度超标时发出提醒信号。
通过上述技术方案,在本发明的静电除尘装置中,不再采用常规的对置式的板间静电除尘结构,而是应用于通风管道中,直接在通风管道内进行除尘,安装布置方式新颖。而且,采用了集尘管及其管内的电极线布置结构,集尘管可嵌设于风道内,结构紧凑,设计精巧,可形成圆周形静电场,使得通过集尘管的气流中的灰尘都能够带电并被集尘管有效收集,除尘效果较好。此静电除尘装置可应用于各式空气处理设备的风道中,突破静电除尘装置通常布置于室内机的常规方式,使得空气处理设备的整机设备更紧凑,占用空间小,再通过室内机中安装的臭氧过滤模块,能够获得更好更清洁的净化空气。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为本发明一种具体实施方式的空气处理设备的剖视结构示意图,其中为了清楚显示而省略了部分剖面线;
图2为图1实施方式的空气处理设备的引风工作模式和内循环工作模式的空气流向示意图;
图3为图1所示实施方式的空气处理设备的立体图;
图4为图3的左视图;
图5为图4的A-A立体剖视图;
图6为图1所示实施方式的空气处理设备的驱动控制装置和齿轮传动机构的示意图,为了清楚显示而省略了集尘管、内管等部件;
图7是图1所示实施方式的内管的旋转驱动组件的示意图,为清楚显示省略了导流套等部件;
图8是图1所示实施方式的内管的立体结构示意图;
图9是图1所示实施方式的切换挡套的立体结构示意图;
图10是图1所示实施方式的切换挡套和导流套的组合结构示意图;
图11是显示空气流在净化空气管内通道中的螺旋流向的示意图;
图12是图1所示实施方式的电极丝的连接形式的示意图;
图13是从集尘管端部观察的电极连接结构的示意图;
图14是图1所示实施方式的空气除尘装置中的臭氧过滤模块的立体安装结构图;
图15图示了图1所示实施方式的空气除尘装置在其他管道中的应用;
图16是本发明另一种实施方式的净化空气管内通道的布置结构的示意图;
图17是本发明空气处理设备的示意图,为了图片清楚省略了空气处理设备内部的驱动控制装置和高压发生器等部件;
图18是本发明的空气处理设备在不同风速下的一次净化率的对比效果折线图;
图19是本发明的空气处理设备在高风速和低风速模式下的净化效果与时间的折线图;以及
图20是本发明的空气处理设备臭氧累计量的测试效果折线图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的或者是针对竖直、垂直或重力方向上而言的各部件相互位置关系描述用词。“内、外”是针对管腔、内腔或室内、室外而言的内外侧。
如图14、图15所示,本发明首先提供了一种静电除尘装置,包括具有环形横截面的集尘管5和沿集尘管5的横截面圆周方向间隔分布的多根电极线21,电极线21沿集尘管5的轴向延伸,多 根电极线21布置成与集尘管5径向间隔的同心环形状,电极线21和集尘管5中的一者带正电,另一者带负电。
现有的常规的静电除尘结构为板式放电板,多块放电板与多块集尘板呈格栅状依次间隔布置在长方形围框内,且整个静电除尘结构是布置在空气处理设备的室内机体中,占据室内机体内的有限安装空间,且增加室内机体的重量,造成体积、重量大,不易安装、拆卸维护。而本发明的静电除尘装置可直接应用于通风管道中,在通风管道内进行除尘,安装布置方式新颖。具体地,采用了集尘管5及其管内或管外布置的电极线21的结构,集尘管5可集成地嵌设于风道内,单元结构紧凑,设计精巧,可形成圆周形静电场,使得通过集尘管5的管内或管外的气流中的灰尘能够带电并被集尘管有效收集,除尘效果较好。另外,此静电除尘装置可应用于各式空气处理设备的各类型风道中,有效减轻室内机体的体积和重量。
为形成稳定可靠的圆周形静电场,使得穿过其中的气流中的尘埃粒子均能够有效带电,从而被集尘管5收集。在本实施方式中,电极线21的根数优选为3~6根,例如沿周向等间隔排布的4根电极线21。其中,电极线21的直径应在0.008~0.5mm内,电极线21越细则放电效果越好,但电极线21越细成本越高,不易加工且容易拉伸断裂。因此,在本实施方式中,综合平衡加工、成本和放电效果,电极线21的直径优选为0.08~0.2mm。电极线21应沿轴向拉直,以免电接触其它部件。电极线21的轴向长度优选为小于集尘管5的长度,电极线21的两端固定且两端固定位置均不超出集尘管5的两端。这样,有助于带电尘埃都能够被集尘管5有效收集。
存在外管的情况下,集尘管5可作为内管,电极线21可布置在集尘管5外,即集尘管5作为内管壁收集带电尘埃粒子。但优选地,电极线21布置在集尘管5内,集尘管5作为外管,集尘管5内不存在内管时,集尘管5的整个管腔作为风道。集尘管5内存在内管时,集尘管5内的局部管腔(即环形管腔)可作为风道,电极线直接布置在集尘管5内的风道中。
本发明的静电除尘装置还可包括导风管,导风管与集尘管5形成径向间隔的嵌套管,导风管与集尘管5之间的环形管腔6形成为风道,电极线21布置在环形管腔6中。此时,导风管与集尘管5可互为内外管,电极线21则布置在作为风道的二者的环形管腔6中。在本实施方式中,集尘管5作为外管,导风管为内嵌于集尘管5中的内管1,内管1的迎风端封闭,这样就形成了环形风道,电极线21布置在环形风道中。
其中,多根电极线21沿内管1的周向等间隔布置。电极线21通常靠近内管1的外周壁设置,多根电极线21所围成的圆柱形的直径应不大于集尘管5的内直径的80%,且电极线21距离集尘管5的径向距离不小于1cm,以防止距离过近而产生放电击穿。同时,多根电极线21所围成的圆柱形的直径应大于内管1的外径,且不小于集尘管5的内管径的40%。否则,所形成的圆周形静电场的径向间距过大,则带电尘埃粒子的径向移动距离大,不容易被有效收集。
本发明的静电除尘装置还包括高压发生器16,电极线21和集尘管5中的一者电连接高压发生器16的正极,另一者电连接高压发生器16的负极。高压发生器16的参数选择时,应考虑放电电压越高则气流净化效率越高,但也会生成更多的臭氧。通过测试及综合考虑,高压发生器16的放电电压优选为5~9KV,更优选为8KV左右,此时净化效率和臭氧生成量均可接受。高压发生器16可放置在集尘管5的管腔外,也可放置其中。例如,当内管1为绝缘材质管时,高压发生器16可内置于内管1中。
另外,如图5所示,环形管腔6中还特别地设有导流板4,导流板4呈螺旋状沿轴向延伸以形成螺旋通道,参见图10,电极线轴向穿过各个导流板4。如此,则在集尘管5内的环形管腔6的体积、长度限定的情况下,通过在环形管腔6中形成螺旋通道,即螺旋状风道,可大大延长气流的流经时间,即增加静电除尘的净化时间,获得更优的除尘效果。而且,导流板4的存在也可抵挡气流的冲击,减轻室内机的风机负担,减小整机震颤。尤其是,气流在螺旋通道中流动时,带电尘埃粒子将随着旋流的流动而被离心力甩向集尘管5,更容易被收集。
为便于导流板4和电极线21的安装固定,引入导流套3,导流板4呈螺旋叶片状安装于导流套3的外周壁上,导流套3可方便地套设于内管1上。其中,集尘管5优选为导电金属管,导流套3和导流板4优选为绝缘材质,以免发生高压触电或导电危险。为此,集尘管5外还可套装绝缘外管,防漏电且便于安装,以下还将具体述及。
可形成圆周形静电场的上述静电除尘装置可应用于任何空气处理设备中,直接嵌入安装于空气处理设备的风管(即气管管道)中,以获得除尘效果,这显著区别于现有的静电除尘装置的室内布置方式。
由于布置在风管中的静电除尘装置在高压放电除尘过程中,不可避免的会电离出臭氧,为此有必要在流经室内机体时得到有效清除。为此,室内机体中特别设有臭氧过滤模块14,设有静电除尘装置的风管的出风端对齐臭氧过滤模块14,参见图1和图5。同时,空气处理设备包括空气抽吸装置15,风管的出风端位于臭氧过滤模块14的一侧,空气抽吸装置15位于臭氧过滤模块14的另一侧。位于室内机体中的空气抽吸装置15可提供抽吸动力,使得气流穿过风管中的风道,进而穿过臭氧过滤模块14,进行气流的二次清洁处理。为封装室内机体并有助于空气抽吸装置15的抽吸,空气处理设备还包括围绕空气抽吸装置15和臭氧过滤模块14的外罩17。在图1所示的本发明实施方式中,空气抽吸装置15优选为轴流风扇,轴向抽吸空气。
为清除静电除尘后的气流中的臭氧成分,臭氧过滤模块14的表面可形成有用于催化臭氧分解的表面涂层。同时,为扩大具有表面涂层的表面面积而不对气流产生过大的阻力,臭氧过滤模块14优选为具有多个蜂窝孔的金属蜂巢结构,带臭氧成分的气流沿诸多蜂窝孔流经臭氧过滤模块14,阻力小,使得空气处理设备的处理能力不降低。同时,具有多个蜂窝孔的金属蜂巢结构的表面面积足够大。需要注意的是,臭氧过滤模块14的端面大小应能够覆盖气管管道的管端端面,使得从风管流出的带臭氧成分的气流均能通过臭氧过滤模块14,被完全除臭氧。为此,空气处理设备可包括布置在风管的出风端的多级臭氧过滤模块14,多级臭氧过滤模块14相互间隔地层叠布置,使得达到符合规定的除臭氧率要求。
在图14中,臭氧过滤模块14包括电控模块141和臭氧传感器142,臭氧传感器142设置在臭氧过滤模块14的出风侧以检测臭氧浓度,电控模块141配置为比较臭氧传感器142所检测的臭氧浓度信号与所设定的臭氧浓度的上阈值并在判断臭氧浓度超标时发出提醒信号。此时,可根据提醒信号更换新的臭氧过滤模块14。
以下作为优选实施方式,本发明上述的静电除尘装置及臭氧过滤模块14应用于各式空气处理设备的风道中,尤其是双循环内嵌墙洞式的空气处理设备及其系统中,具体地,上述的静电除尘装置应用于双循环内嵌墙洞式空气处理设备的穿墙管内,由此展开阐述,本发明的风道的上述各种作用、优点将更突出,效果更明显。
如前所述,为实现双工作模式,且整机结构紧凑,占用空间小,工作性能平稳可靠,本发明还提供了一种新型空气处理设备,尤其是双循环内嵌墙洞式空气处理设备,该空气处理设备包括风管和露于室内的室内机体,如图17所示。特别地,本发明在风管内形成有室外空气通过的净化空气管内通道和室内空气流通的室内空气管内通道,从而不存在散乱的进风管、排风管等,整机结构简单、紧凑,如图3至图5所示。此时,室内机体设有净化风出口、室内空气入口和空气抽吸装置15。其中,风管可以是各式空气处理设备的普通进风管,但在以下结合附图的说明中,风管优选为嵌装于墙洞中的穿墙管。
其中,空气处理设备还包括风道切换装置和空气净化装置,风道切换装置用于选择性地唯一导通室内空气管内通道或净化空气管内通道,从而使空气处理设备相应地切换工作于内循环工作模式或引风工作模式;即:
在内循环工作模式下,室内空气在空气抽吸装置15作用下从室内空气入口进入室内空气管内通道并经过空气净化装置净化后从净化风出口排出至室内;
在引风工作模式下,室外空气在空气抽吸装置15作用下从风管的外轴端(即图1、图2的纸面右端,以下类同)进入净化空气管内通道并经过空气净化装置净化后从净化风出口排出至室内。
在风管内形成净化空气管内通道和室内空气管内通道后,气流的流通路径更长,即使在空气抽吸装置15的强力抽吸作用下,气流也在风管内的净化空气管内通道或室内空气管内通道中获得良好缓冲,对整机的冲击小,即使产生冲击也主要体现在穿墙式固定安装的风管中,对整机的冲击震动小。
另外,图1的实施方式中的空气抽吸装置15优选为单个轴流风扇,空气处理设备的净化风出口和轴流风扇轴向对齐于风管的内轴端,这是由于净化空气管内通道和室内空气管内通道均集成在风管内,气流出口都在风管的内轴端,因而仅需在风管的内轴端布置单个风机,而非常规双循环空气处理设备的双风机结构,换言之,风机可共用,使得结构集成度高。此外,以下还将述及的,由于净化空气管内通道和室内空气管内通道紧凑布置在风管内,气流路径长,空气净化装置也得以紧凑布置。
为实现在风管内设计出结构紧凑、路径长且能够适时切换的净化空气管内通道和室内空气管内通道,本领域技术人员容易想到采用在风管中内置双平行管或更多管的形式,然而这势必要求风管的管径大,以能够满足风量需求。为做到结构紧凑且最大化增加进风量,本发明的内嵌墙洞式空气处理设备采用了包括内管1和外管的套管结构,内管管腔和内外管之间的环形管腔6中的任一者为净化空气管内通道,即室外空气可以从风管的外轴端进入内管管腔或环形管腔6,而后从相应的内轴端流出。
此时,内管管腔和环形管腔6中的另一者构成室内空气管内通道或至少构成室内空气管内通道的一部分。由于双工作模式下,净化空气管内通道连通以进入室外空气时,室内空气管内通道需要关闭,同理,室内空气管内通道连通时,净化空气管内通道需要关闭。此时,考虑到内循环模式下的室内空气入口设置在室内机体中,因而较为合理的风道布置方式是只能从风管的内轴段进入而后回绕至内轴端流出。因此,室内空气管内通道可包括内管1的内管管腔和环形管腔6,室内空气入口进入的室内空气经由内管管腔和环形管腔6中的一者的内轴端进入风管内,而后从外轴端可进入另一者的腔内,最好从该另一者的内轴端流出。这样不仅流程更长,而且无论是内循环或引风工 作模式下,风管内至少有部分通道是室内空气和室外空气共用的共同流经之处,从而也就方便了空气净化装置的紧凑化布置,只需布置在共用的流道中即可。
在此基础上,为实现室内空气管内通道和净化空气管内通道的适时切换,从功能原理上划分,风道切换装置应包括可控的两个切换阀,即能够适时打开以引入室外空气的引风阀和能够适时打开以连通内管管腔与环形管腔6(从而构成完整的室内空气管内通道)的连通阀。其中,引风阀应设置在净化空气管内通道的外轴端端面,此时净化空气管内通道的内轴端连通空气抽吸装置15,以提供动力抽吸空气进入。同时,内管管腔与环形管腔6中的另一者的内轴端连通室内空气入口,连通阀应设置在内管管腔的外轴端与环形管腔6的外轴端之间。
在图1所示的实施方式中,选择了环形管腔6为净化空气管内通道。在此情况下,内管1为连通室内空气入口的内循环进气管。参见图2,此时的室外进风A从外向内流入环形管腔6,室内进风B从内管管腔的内轴端进入,在内管管腔的外轴端拐入环形管腔6,最终从环形管腔6的内轴端流出。
参见图8、图9,本发明还提供了一种优选结构形式的风道切换装置,其通过简单旋转控制,即可实现上述的引风阀和连通阀的共同功能。具体地,该风道切换装置包括内管1的外轴端部分和与之配合的切换挡套2。
首先,图8中的内管1的外轴端连接有内管端面盘,内管端面盘的中心挡盘部1b封挡内管1的外轴端端面,内管端面盘的外环部封盖环形管腔6的外轴端端面并设有与环形管腔6连通的室外通风口1c,内管1的外轴端的管体外周壁上设有用于连通环形管腔6的室内通风口1d。
其次,图9中的切换挡套2包括套筒部2a和连接于套筒部2a外端面的挡套端面盘2b,挡套端面盘2b设有适于内管1穿过的中心通孔,挡套端面盘2b的外周缘部设有室外空气连通口2c,套筒部2a的外周壁上设有室内空气连通口2d。
最后,在装配时,切换挡套2固定套设于内管1的外轴端,二者中的一者可旋转,另一者相对固定。切换挡套2从内管1的内轴端套入,挡套端面盘2b紧贴于内管端面盘的内侧。这样,挡套端面盘2b与内管端面盘的相对旋转配合构成了上述的引风阀,切换挡套2的套筒部2a与内管1的外轴端的管体外周壁之间的相对旋转配合构成了上述的连通阀。具体地,以图1实施方式中内管1旋转而切换挡套2固定的情况为例,内管1相对于切换挡套2旋转并能够相继处于打开引风阀的第一旋转位和打开连通阀的第二旋转位,在第一旋转位,室外通风口1c与室外空气连通口2c对齐连通且室内通风口1d和室内空气连通口2d相互错开而封闭,在第二旋转位,室内通风口1d与室内空气连通口2d对齐连通且室外通风口1c和室外空气连通口2c相互错开而封闭。
为实现这种旋转切换,较为简单的方式就是如图8、图9所示的,内管1的外轴端的室外通风口1c、室内通风口1d的个数相同、沿周向等间隔布置且在周向位置上一一对应设置,而切换挡套2上的室外空气连通口2c和室内空气连通口2d则个数相同、沿周向等间隔布置但在周向位置上错开一定的合理角度,即室外空气连通口2c的分布圆环与室内空气连通口2d的分布圆环在周向位置上错开,以实现上述旋转切换功能。当然,也可将切换挡套2上连通口对齐,而内管1的外轴端的通风口错开设置,也可获得同样效果。即切换挡套2的外轴端的室外空气连通口2c和室内空气连通口2d的个数相同且沿周向等间隔布置,室外空气连通口2c和室内空气连通口2d在周向位置上一一对应设置;内管1上的室外通风口1c和室内通风口1d个数相同且沿周向等间隔布置,室外通风口1c 的分布圆环与室内通风口1d的分布圆环在周向位置上错开。
为实现内管1与切换挡套2之间的旋转切换控制,风道切换装置还包括旋转驱动组件,旋转驱动组件连接内管1的内轴端以控制内管1旋转。
参见图6、图7,作为一种优选示例,旋转驱动组件包括依次控制传动的驱动控制装置12、齿轮传动机构11和旋转连接件10,旋转连接件10连接内管1的内轴端,以期利用齿轮驱动结构的精确性来准确控制内管1的旋转开度。其中,驱动控制装置12优选为电控装置,例如电机等,齿轮传动机构11可包括依次传递的涡轮蜗杆机构11a、主动齿轮11b和从动齿轮,从动齿轮可以是组合式的第一从动齿轮11c和第二从动齿轮11d,从动齿轮的输出轴连接旋转连接件10,旋转连接件10包括旋转连接套7,旋转连接套7的一轴端与齿轮传动机构11的输出轴相连,另一个轴端连接内管1的内轴端,优选地如图7的利用卡扣连接结构22与图8的内管1的内轴端的卡口22a构成可拆卸的卡扣连接。当然,此处仅为举例,本领域技术人员能够想到更多的电控方式和电控结构,以获得相同、相近或更好的旋转控制效果,在此不再一一细述。
室内机体包括与风管相连的外罩17,外罩17内固定设置有安装架体13,驱动控制装置12和齿轮传动机构11可安装于安装架体13上。室内机体内还设有通过室内空气入口连通室内的室内进风通道8,室内进风通道8独立隔离于室内机体的内腔和环形管腔6,旋转连接套7内置于室内进风通道8中,为实现室内进风通道8与内管管腔的连通,旋转连接套7的外周壁上贯通有一个或多个的进气管空气入口9,参见图5。
本发明的另一重要改进在于风管内的空气流道的延长设计,以增加缓冲效果并便于除尘设计,增加除尘时间、增进效果。如图16所示,在一种实施方式中,净化空气管内通道的内周壁上分别设有沿轴向间隔布置且位于径向两侧的多个第一导流凸缘25和第二导流凸缘26,各个第一导流凸缘25和第二导流凸缘26沿轴向位置依次错开而形成净化空气折流通道。这种导流凸缘优选为圆弧板,这样从净化空气管内通道的外轴端进入的室外空气呈折流状沿净化空气折流通道从净化空气管内通道的内轴端流出。因此,图16以折流形式获得了流道的有效延长。
在图1所示的实施方式中,该空气处理设备则在净化空气管内通道内设置了图10、图11所示的螺旋叶片形状的导流板4,导流板4呈螺旋状沿轴向延伸以形成净化空气螺旋通道,从净化空气管内通道的外轴端进入的室外空气沿净化空气螺旋通道从净化空气管内通道的内轴端流出。由于环形管腔6内因设置导流板4而风阻增大,而内管管腔中的空气阻力小,因此在保障气流循环量的基础上,为使得轴流风机处于最佳工作点,即系统阻力与风量的交点,通过扩大环形管腔6的横截面积以引入更多气流来消除阻力影响,取得阻力与风量的平衡,环形管腔6与内管管腔的横截面面积之比大致为2~4,在图1、图2的优选实施方式中优选为3。在图10中,呈螺旋状的导流板4在净化空气管内通道内的盘绕圈数为3圈,一般为2~5圈。盘绕3圈时,流道长度大约增加了4.5倍,延长效果突出,有利于空气净化,提高净化效率。
其中,导流板4可一体加工,也可分段加工而后组装。在图10的实施方式中,空气处理设备包括导流套3,导流板4呈螺旋叶片状安装于导流套3的外周壁上,导流套3套设于内管1上并与切换挡套2相连。导流套3便于组装固定导流板4,而且便于风管的整体组装以及切换挡套2、后续的电极线21等的安装布置,以下还将具体谈及。
本发明的另一紧凑设计在于空气净化装置的布置。除尘方式有多种多样,从结构紧凑性、安 装空间和除尘效果等考虑,在图12、图13所示的实施方式中,优选地采用了静电除尘方式。其中,外管包括能够带电的集尘管5,空气净化装置包括布置在净化空气管内通道中的静电除尘结构,静电除尘结构包括高压发生器16、电极线21和集尘管5,电极线21沿轴向延伸并穿过各个导流板4,电极线21和集尘管5的一者电连接高压发生器16的正极,另一者电连接高压发生器16的负极。这样,净化空气管内通道中的空气尘埃粒子被电极线21带上电荷,在较长的净化空气螺旋通道中流动时,空气尘埃粒子或迟或早被吸附至集尘管5,从而获得空气净化效果。显然,这种静电除尘结构中,电极线21布置方便,空间结构紧凑,空气尘埃粒子容易带电被吸附,而且除尘通道长,除尘效果更突出,高压发生器的正负极可以替换,即电极线21可连于正极或负极,集尘管5可相应的连于负极或正极。电极线21连在负极时称为负极放电,击穿电压高,不易击穿;连于正极时称为正极放电,生成臭氧较负极放电少,击穿电压低。本发明中结合附图的实施例均采用负极放电。
为形成圆环形的均匀带电场,电极线21优选为多根并沿导流套3的周向等间隔布置。图13中优选为4根,一般为3~6根的密度分布。当净化空气管内通道为环形管腔6时,多根电极线21所围成的圆柱形的直径应大于内管1的外管径,并且电极线21应相对于集电管5更靠近、贴近内管1,以获得较大的电场。在本发明中,多根电极线21所围成的圆柱形的直径一般不大于集尘管5的内管径的80%,且电极线21距离集尘管5的径向距离应不小于1cm。由于处于净化空气管内通道中,多根电极线21所围成的圆柱形的直径当然大于内管1的外径,一般不小于集尘管5的内管径的40%。在图13的实施方式中,所围成的圆柱形的直径优选为集尘管5的内管径的60%,所形成的电场除尘效果突出。
电极线21的材质可选用金属材质,直径一般为0.008-0.5mm之间,例如,优选可以为0.2mm直径的钨丝,容易高压放电。电极线21越细放电效果越好,但是越细成本越高,不易加工且容易拉伸断裂,因而其直径优选为0.08-0.2mm。在长度上,电极线21沿轴向拉直且轴向长度不大于集尘管5的长度,优选地,电极线21的轴向长度可以比集尘管5的长度短5-15mm,确保被电离的尘粒都能吸附于集尘管5内侧。电极线21的一端固定连接绝缘的电极丝固定座2e,见图9、图12,另一端可通过电极丝触点24与高压发生器16电连接。在图13中,由于存在4根电极丝21,采用了两个一组,每组用一个电极片栓连两个电极丝触点24。同样,集尘管5也可通过内轴端的集尘管电极点23与高压发生器16的一个电极端子相连。
在材质上,集尘管5优选为导电金属管,例如铝合金管,易于导电、集尘、清洗,导流套3、导流板4和切换挡套2等均为绝缘材质,防止短路。高压发生器16可设置于室内机体中,例如安装架体13上,通过导线与电极丝21和集尘管5相连。或者,内管1为绝缘材质管时,如图15,高压发生器16也可设置于内管1中。高压发生器16的放电电压越高,净化效率越高,但也会生成更多的臭氧。因此优选为5~9KV,更优选为8KV左右,此时净化效率和臭氧生成量均可接受。
上述带螺旋通道的套管结构及其静电除尘结构,不仅增加了流程,延长了静电除尘时间,获得更好的除尘效果,而且螺旋流动带来的离心力,可加速带电尘埃被吸附于集尘管5的内周壁。这种带螺旋通道的套管结构及其静电除尘结构可应用至各类空气处理设备的风管中,以实现小空间内的除尘。如图15所示,通过置换其中的一段管道,达到净化管内空气的目的,最高除尘效率可达95%以上。这种静电除尘结构还可独立拆卸清洗。
由于高压放电除尘,过程中不可避免产生臭氧,为进一步净化空气,本发明的空气净化装置 还包括了臭氧过滤模块14,其设置在静电除尘结构的下游一侧。因此,臭氧过滤模块14设置在室内的室内机体中,臭氧过滤模块14的轴向外侧间隔对齐风管的内轴端,轴向内侧布置有空气抽吸装置15。空气抽吸装置15的抽吸力,使得环形管腔6中除尘后的初步净化空气穿过臭氧过滤模块14,除臭氧后方被空气抽吸装置15从排气口排出至室内。
在一种优选结构中,臭氧过滤模块14为形成有蜂窝孔的金属蜂巢结构,优选为铝材材质,金属蜂巢结构的结构紧凑度高,安装空间小且表面积较大,具有催化臭氧分解的表面涂层,空气流过蜂窝孔时与表面涂层反应,而使得臭氧被分解。这种臭氧过滤模块14可以是单板单级形式,但根据需要,也可设置为在风管的内轴端与空气抽吸装置15之间层叠的多级臭氧过滤模块14。
如图14所示,臭氧过滤模块14还可包括电控模块141和臭氧传感器142,臭氧传感器142设置在臭氧过滤模块14的出风侧,电控模块141配置为比较臭氧传感器142所检测的臭氧含量信号与臭氧含量的上阈值并在判断臭氧超标时发出提醒信号。这样,可根据臭氧的实时监测,反馈用户是否需要及时更换臭氧过滤模块14。为避免提醒失效,电控模块141还可连接有备用电池。
为便于更换臭氧过滤模块14,室内机体顶部的外罩17上设有位于臭氧过滤模块14正上方的更换阀门171,如图14所示,这样臭氧过滤模块14就能够通过打开的更换阀门而进行拆装,仅需向上提取即可。
在另一者更换方式中,空气抽吸装置15为轴流风扇,轴流风扇和臭氧过滤模块14分别安装于轴流风扇的安装托架的两侧,二者可通过例如螺钉等安装在安装托架上,构成一个独立风机模块。安装托架则固定安装于室内机体内。室内机体的外罩17上开设有净化风出口,该净化风出口可拆卸地安装有格栅罩172,如图3、图4、图14所示。净化风出口和格栅罩172的轮廓足够大,使得安装于外罩17内的空气抽吸装置15和空气净化装置能够从净化风出口取出,方便臭氧过滤模块14甚至整个独立风机模块的更换。
另外,为保护穿墙管的外露的外轴端,安装套管18的外轴端还安装有初级挡板20和/或初级滤网19。初级挡板20可以是密封板,适时控制打开,也可以是格栅板等。初级挡板20可阻挡虫子、雨水等。初级滤网19可过滤较大异物,如树叶、纸屑等,保障设备内部不产生堵塞,能够长期正常工作。
在上述的空气处理设备的基础上,本发明还相应提供了一种空气处理系统,该空气处理系统包括设有墙洞的安装壁27,双循环内嵌墙洞式空气处理设备的风管嵌装于墙洞中,如图17所示。
其中,外管包括套装于集尘管5外的安装套管18,二者大约1-2mm差的间隙配合,安装套管18率先嵌装于安装壁27中的墙洞中,安装套管18的外端穿出墙洞,内端形成有贴合安装壁的内壁面的周缘翻边,室内机体包括外罩17,外罩17与安装套管18的周缘翻边固定连接。这样就形成了空气处理设备的穿插式安装。
具体地,安装套管18的外轴端设有外轴端限位结构28,例如内壁凸起的环形凸棱。组装时,集尘管5、切换挡套2、导流板4、导流套3和内管1可依次嵌装于安装套管18内,各外端均抵接外轴端限位结构28,达到外端轴向定位。导流套3的外端可通过连接销与图9所示的切换挡套2的连接销座2f相连。此外,空气处理设备还包括内端定位套管29,各管嵌装后,内端定位套管29嵌入安装套管18的内轴端,内端定位套管29的嵌入管段分别抵接集尘管5、导流套3和内管1,以实现各管的内端轴向定位。
在安装时,为安装平稳牢靠,安装套管18优选为倾斜安装,即安装套管18的内轴端相对于外轴端略高,通常内轴端相对于外轴端的水平抬升角为3~5°。而且安装壁27的壁厚应不小于25cm,墙孔的孔径不大于15cm,例如约10cm,以通过风管与相当厚度的安装壁27实现一定的整机承重。
采用图1、图5所示的优选实施方式,采用内外套管形式,环形管腔6作为净化空气管内通道,且配置图8、图9所示的风道切换装置、图10的螺旋状导流板4、图12至图14所示的静电除尘和除臭氧的空气净化装置,在如图17所示的安装至安装壁27后,进行了本发明的空气处理系统的开机测试。
图18是本发明空气处理系统在不同风速下的一次净化率的对比效果折线图;图19是本发明的空气处理系统在高风速和低风速模式下的净化效果与时间的折线图;图20是本发明的空气处理系统臭氧累计量的测试效果折线图。图18可见,在引风工作模式下,即使室外空气PM2.5浓度大于500ppb,本发明的空气处理系统的一次净化率都达至少93%以上。图19可见,无论是高风速还是低风速,在一个小时内,PM2.5浓度都能够从500ppb显著下降至100ppb甚至更低,直至趋零。在图20中可见,本发明的空气处理系统在长时间工作后,室内环境累积的臭氧含量都大幅低于国标值。
综上,本发明的空气处理设备和空气处理系统通过一系列优化设计,至少实现了以下目的:1)、体积小:由于采用模块化设计和上述的风管内的紧凑设计,使得装置整体和局部的体积都相对小,对家庭内饰、尤其是已装修好的房间而言几乎无影响。2)、可安装性好:由于穿墙管内的紧凑设计,管径小,从而仅需在墙体上开不大于10cm的孔即可实现安装。3)、一次过滤效率高:由于螺旋流道及管内静电除尘装置的设计,使得流道增长,延长除尘时间,且离心力增强尘埃捕捉,通过这些独特的设计可有效促进空气中PM2.5等污染物的捕集,除尘率能达到95%以上。4)、无耗材过滤:由于装置采用整机和部件的模块化设计,拆装方便,过滤组件可方便取出和安装,例如臭氧过滤模块14就可以反复清洗、使用。5)、使用方式多样:可实现引入外部空气的引风工作模式和实现室内空气净化的内循环工作模式的两种工作方式。6)、功率小、耗电量低:由于采用低耗能的静电除尘等过滤组件和单风机,可实现小功率的低耗电运行。7)、安装维护方便:由于装置采用整机和各部件的模块化设计,内部核心组件互相独立,可分别拆下更换维护。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。例如,驱动内管1和切换挡套2相对旋转的旋转驱动组件并不限于齿轮传动结构和方式,也可简单变型,采用可替代的绕线滚筒方式进行旋转控制,即内管1视为滚筒,内轴端的外周壁缠绕控制线,沿径向拉伸控制线,根据精确表征的拉伸量即可控制内管1的准确旋转角度。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (25)

  1. 一种静电除尘装置,包括具有环形横截面的集尘管(5)和沿所述集尘管(5)的横截面圆周方向间隔分布的多根电极线(21),所述电极线(21)沿所述集尘管(5)的轴向延伸,多根所述电极线(21)布置成与所述集尘管(5)径向间隔的同心环形状,所述电极线(21)和所述集尘管(5)中的一者带正电,另一者带负电。
  2. 根据权利要求1所述的静电除尘装置,其中,所述电极线(21)的根数为3~6根。
  3. 根据权利要求1所述的静电除尘装置,其中,所述电极线(21)的直径范围为0.08~0.2mm。
  4. 根据权利要求1所述的静电除尘装置,其中,沿轴向拉直的所述电极线(21)的轴向长度小于所述集尘管(5)的长度,所述电极线(21)的两端固定且两端固定位置均不超出所述集尘管(5)的两端。
  5. 根据权利要求1所述的静电除尘装置,其中,所述电极线(21)布置在所述集尘管(5)内。
  6. 根据权利要求1所述的静电除尘装置,其中,所述静电除尘装置还包括导风管,所述导风管与所述集尘管(5)形成径向间隔的嵌套管,所述导风管与所述集尘管(5)之间的环形管腔(6)形成为风道,所述电极线(21)布置在所述环形管腔(6)中。
  7. 根据权利要求6所述的静电除尘装置,其中,所述导风管为内嵌于所述集尘管(5)中的内管(1),所述内管(1)的迎风端封闭。
  8. 根据权利要求7所述的静电除尘装置,其中,多根所述电极线(21)沿所述内管(1)的周向等间隔布置,多根所述电极线(21)所围成的圆柱形的直径不大于所述集尘管(5)的内直径的80%,且所述电极线(21)距离所述集尘管(5)的径向距离不小于1cm。
  9. 根据权利要求7所述的静电除尘装置,其中,多根所述电极线(21)沿所述内管(1)的周向等间隔布置,多根所述电极线(21)所围成的圆柱形的直径大于所述内管(1)的外径,且不小于所述集尘管(5)的内管径的40%。
  10. 根据权利要求7所述的静电除尘装置,其中,所述静电除尘装置包括高压发生器(16),所述电极线(21)和所述集尘管(5)中的一者电连接所述高压发生器(16)的正极,另一者电连接所述高压发生器(16)的负极。
  11. 根据权利要求10所述的静电除尘装置,其中,所述内管(1)为绝缘材质管,所述高压发 生器(16)设置于所述内管(1)中。
  12. 根据权利要求11所述的静电除尘装置,其中,所述高压发生器(16)的放电电压为5~9KV。
  13. 根据权利要求7所述的静电除尘装置,其中,所述环形管腔(6)中设有导流板(4),所述导流板(4)呈螺旋状沿轴向延伸以形成螺旋通道,所述电极线(21)轴向穿过各个所述导流板(4)。
  14. 根据权利要求13所述的静电除尘装置,其中,所述静电除尘装置还包括导流套(3),所述导流板(4)呈螺旋叶片状安装于所述导流套(3)的外周壁上,所述导流套(3)套设于所述内管(1)上。
  15. 根据权利要求14所述的静电除尘装置,其中,所述集尘管(5)为导电金属管,所述导流套(3)和导流板(4)为绝缘材质。
  16. 根据权利要求1所述的静电除尘装置,其中,所述静电除尘装置还包括套装于所述集尘管(5)外的绝缘外管。
  17. 一种空气处理设备,其中,所述空气处理设备包括风管和根据权利要求1~16中任意一项所述的静电除尘装置,所述静电除尘装置嵌入安装于所述风管中。
  18. 根据权利要求17所述的空气处理设备,其中,所述空气处理设备包括室内机体,所述室内机体中设有臭氧过滤模块(14),设有所述静电除尘装置的所述风管的出风端对齐所述臭氧过滤模块(14)。
  19. 根据权利要求18所述的空气处理设备,其中,所述空气处理设备包括空气抽吸装置(15),所述风管的出风端位于所述臭氧过滤模块(14)的一侧,所述空气抽吸装置(15)位于所述臭氧过滤模块(14)的另一侧。
  20. 根据权利要求19所述的空气处理设备,其中,所述空气处理设备还包括围绕所述空气抽吸装置(15)和所述臭氧过滤模块(14)的外罩(17)。
  21. 根据权利要求19所述的空气处理设备,其中,所述空气抽吸装置(15)为轴流风扇。
  22. 根据权利要求18所述的空气处理设备,其中,所述臭氧过滤模块(14)上形成有用于催化臭氧分解的表面涂层。
  23. 根据权利要求18所述的空气处理设备,其中,所述臭氧过滤模块(14)为具有多个蜂窝孔的金属蜂巢结构,所述臭氧过滤模块(14)的端面能够覆盖所述气管管道的管端端面。
  24. 根据权利要求18所述的空气处理设备,其中,所述空气处理设备包括布置在所述风管的出风端的多级所述臭氧过滤模块(14),多级所述臭氧过滤模块(14)相互间隔地层叠布置。
  25. 根据权利要求18所述的空气处理设备,其中,所述臭氧过滤模块(14)包括电控模块(141)和臭氧传感器(142),所述臭氧传感器(142)设置在所述臭氧过滤模块(14)的出风侧,所述电控模块(141)配置为比较所述臭氧传感器(142)所检测的臭氧浓度信号与臭氧浓度的上阈值并在判断臭氧浓度超标时发出提醒信号。
PCT/CN2017/073963 2017-02-17 2017-02-17 静电除尘装置和空气处理设备 WO2018148940A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/073963 WO2018148940A1 (zh) 2017-02-17 2017-02-17 静电除尘装置和空气处理设备
CN201780000119.0A CN108738315A (zh) 2017-02-17 2017-02-17 静电除尘装置和空气处理设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/073963 WO2018148940A1 (zh) 2017-02-17 2017-02-17 静电除尘装置和空气处理设备

Publications (1)

Publication Number Publication Date
WO2018148940A1 true WO2018148940A1 (zh) 2018-08-23

Family

ID=63169700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073963 WO2018148940A1 (zh) 2017-02-17 2017-02-17 静电除尘装置和空气处理设备

Country Status (2)

Country Link
CN (1) CN108738315A (zh)
WO (1) WO2018148940A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111495088A (zh) * 2020-04-27 2020-08-07 安徽顺达环保科技股份有限公司 一种脱硝塔湿电除尘用离心分离装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109731686A (zh) * 2019-01-31 2019-05-10 汉王科技股份有限公司 一种空气净化装置
KR102087561B1 (ko) * 2019-11-23 2020-03-10 박진은 공기정화장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968330A (en) * 1989-09-01 1990-11-06 Fmc Corporation Apparatus for separating particulates in an electrostatic precipitator
CN1057409A (zh) * 1990-06-20 1992-01-01 李育春 电离式空气烟尘净化装置
CN1313791A (zh) * 1998-08-20 2001-09-19 巴尔蒂克金属技术股份有限公司 静电式空气净化器
CN105457753A (zh) * 2015-12-29 2016-04-06 上海克莱德贝尔格曼机械有限公司 一种管式电极除雾除尘装置
CN106040431A (zh) * 2016-07-27 2016-10-26 谢红卫 圆管型等离子静电空气净化装置
CN205851108U (zh) * 2016-07-27 2017-01-04 谢红卫 圆管型等离子静电空气净化装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784767A (en) * 1986-03-20 1988-11-15 Director General, Agency Of Industrial Science And Technology Magnetic separator for fluids
CN2125456U (zh) * 1992-06-18 1992-12-23 浙江省金华市环保设备厂 旋风分离式组合高压静电除尘设备
KR20070069778A (ko) * 2005-12-28 2007-07-03 삼성전자주식회사 사이클론 공기청정기
CN101586846A (zh) * 2008-05-19 2009-11-25 北京恩湾科技有限公司 一种新型分体式空调装置
GB2520009A (en) * 2013-11-05 2015-05-13 Edwards Ltd Gas treatment apparatus
CN203886668U (zh) * 2014-06-18 2014-10-22 上海龙净环保科技工程有限公司 一种湿式电除尘器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968330A (en) * 1989-09-01 1990-11-06 Fmc Corporation Apparatus for separating particulates in an electrostatic precipitator
CN1057409A (zh) * 1990-06-20 1992-01-01 李育春 电离式空气烟尘净化装置
CN1313791A (zh) * 1998-08-20 2001-09-19 巴尔蒂克金属技术股份有限公司 静电式空气净化器
CN105457753A (zh) * 2015-12-29 2016-04-06 上海克莱德贝尔格曼机械有限公司 一种管式电极除雾除尘装置
CN106040431A (zh) * 2016-07-27 2016-10-26 谢红卫 圆管型等离子静电空气净化装置
CN205851108U (zh) * 2016-07-27 2017-01-04 谢红卫 圆管型等离子静电空气净化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111495088A (zh) * 2020-04-27 2020-08-07 安徽顺达环保科技股份有限公司 一种脱硝塔湿电除尘用离心分离装置及方法

Also Published As

Publication number Publication date
CN108738315A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2018148941A1 (zh) 风道和空气处理设备
US20160279556A1 (en) Air purification apparatus and method
CN108692389B (zh) 空气处理设备及空气处理系统
CN210425346U (zh) 空气净化器
WO2018148940A1 (zh) 静电除尘装置和空气处理设备
CN106196405B (zh) 新风净化机
CN107327889B (zh) 两用式循环净化机
CN107687696A (zh) 一种空气过滤器室内机
CN107435962B (zh) 一种开放式厨房空气环境的控制系统及其控制方法
CN106123164A (zh) 具有离子净化功能的中央新风系统
KR102258030B1 (ko) 집진 기류 유인팬
CN108458425B (zh) 空气处理设备
CN204513689U (zh) 新风换气机
CN108458130B (zh) 用于流体管道中的流道切换装置和空气处理设备
CN205747215U (zh) 一种新型空气净化自动新风系统
WO2013163957A1 (zh) 电子网空气过滤装置
CN112747380A (zh) 空调器、空气净化装置及其控制方法
CN210832276U (zh) 空气净化装置及空调器
CN112484221A (zh) 一种可清除甲醛的室内废气治理装置
CN101264403B (zh) 油烟净化装置
CN203501395U (zh) 一种新风机进出风管道
CN107435959B (zh) 一种室内空气净化系统
CN205957335U (zh) 自循环吊顶式电子空气净化机
CN104801140A (zh) 一种空气微纳颗粒过滤净化设备
CN204629744U (zh) 一种改进的新风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897127

Country of ref document: EP

Kind code of ref document: A1