WO2019000641A1 - A method for preparing a perovskite solar cell module by roll-to-roll printing - Google Patents

A method for preparing a perovskite solar cell module by roll-to-roll printing Download PDF

Info

Publication number
WO2019000641A1
WO2019000641A1 PCT/CN2017/100916 CN2017100916W WO2019000641A1 WO 2019000641 A1 WO2019000641 A1 WO 2019000641A1 CN 2017100916 W CN2017100916 W CN 2017100916W WO 2019000641 A1 WO2019000641 A1 WO 2019000641A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
perovskite
layer
roll
transport layer
Prior art date
Application number
PCT/CN2017/100916
Other languages
French (fr)
Inventor
Baomin Xu
Jishu GAO
Hang HU
Chang Liu
Deng WANG
Jiabang CHEN
Luozheng ZHANG
Original Assignee
South University Of Science And Technology Of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South University Of Science And Technology Of China filed Critical South University Of Science And Technology Of China
Publication of WO2019000641A1 publication Critical patent/WO2019000641A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure belongs to the field related to the energy material technology, and relates to a method for preparing a perovskite solar cell modules, especially to a method for preparing a perovskite solar cell module by roll-to-roll printing.
  • Perovskite solar cells are a novel solar cell which has arisen since 2009, and it is highly anticipated as it can be prepared by a solution method at low temperature with high efficiency. Its principle is that the perovskite layer first absorbs photons to produce electron-hole pairs when accepting irradiation from sunlight. Due to the difference in the exciton binding energy of the perovskite material, these carriers either become free carriers or form excitons; then these uncomposited electrons and holes are collected separately by the electron transport layer and the hole transport layer, i.e., the electrons are transported from the perovskite layer to the electron transport layer and finally collected by the conductive substrate; and the holes are transported from the perovskite layer to the hole transport layer and finally collected by the metal electrode.
  • Perovskite solar cell comprises from bottom to top a glass conductive substrate (FTO) , an electron transport layer (ETM) , a perovskite light absorption layer (including a porous support) , a hole transport layer (HTM) and a back electrode, respectively.
  • FTO glass conductive substrate
  • ETM electron transport layer
  • HTM hole transport layer
  • spin-coating method is still dominated at present.
  • the spin coating method There are many problems with the current spin coating method. Firstly, a part of the raw materials will be thrown out due to the high-speed rotation process during the spin coating, which will cause a huge waste. Secondly, the spin coating method cannot achieve continuous printing, which will limit the production rate. Thirdly, the spin coating method is not suitable for large-area component production, which is an unavoidable limitation for the industrialization of perovskite. Although the blade coating method has the advantages of saving raw materials, rapid preparation, and the like with respect to the spin coating method, it can only print in sheets continuously and cannot form a specific stripe, which restricts the further development of the process.
  • the substrate used is still mainly the glass substrate, which has a high relative repeatability, mature preparation process, however, it cannot adapt to the future application prospect of the perovskite solar cell as the glass substrate cannot be bent and continuously processed.
  • the present disclosure aims at providing a method for preparing a perovskite solar cell modules by roll-to-roll printing, realizing the efficient and rapid preparation of perovskite solar cells to form perovskite solar cells module, meanwhile it can control the increase in production costs and the introduction of unfavorable factors.
  • a method for preparing a perovskite solar cell module by roll-to-roll printing comprising:
  • a perovskite solar cell functional layer and a back electrode on a substrate by use of a roll-to-roll process with a solar cell production equipment to obtain a perovskite solar cell slice, i.e., a solar cell component, wherein the functional layer comprises a hole transport layer, a perovskite layer and an electron transport layer;
  • the solar cell production equipment comprises a near infrared heating system and an air heating system (not shown) , wherein the near infrared heating system and the air heating system are included in the drying system II to heat synergistically when the perovskite layer is being prepared, achieving rapid annealing of the perovskite layer to improve the film-forming quality of the perovskite layer, making the film-forming more uniform and shortening the preparation time of the perovskite layer to shorten the entire duration.
  • Figure 1 is a schematic diagram of the structure of a heating device when a perovskite layer is being prepared, wherein A1 represents an air heating system, A2 represents an infrared heating system, A represents a perovskite heating system, and B represents a hot plate.
  • the air heating system may be a hot plate for heating the air.
  • the infrared heating system may be an infrared heating tube for infrared heating to rapidly crystallize the perovskite.
  • FIG. 2 A schematic diagram of the perovskite solar cell component of the present disclosure is shown in Figure 2, wherein C represents an effective area of the cell and D represents a blank area.
  • the solar cell production equipment includes a cropping system (not shown) , which is used to crop the perovskite solar cell slice, this process can be automatically realized, i.e., automatic slicing can be realized after the completion of roll-to-roll, and the size of the solar cell can be changed to meet diversified demands.
  • the solar cell production equipment includes an optical detection system (not shown) , which is used to detect the thickness and quality of perovskite solar cells.
  • the cropping system is used in conjunction with the optical detection system, the uniformity degree of the film is detected by the optical instrument, and the cropping is performed according to the uniformity degree, thereby improving the uniformity and stability of different devices.
  • Figure 3 is a flow chart of using a cropping system in conjunction with an optical detection system, wherein the final functional layer may be, for example, a hole layer. Moreover, after the cropping, a step of assembling to form the solar cell array may also be performed.
  • the method of the present disclosure can realize the continuous and large-scale production of the functional layer and the back electrode, to form a large-area module, and the method for preparing the functional layer and the back electrode is any one or a combination of both of coating and printing, and is preferably any one or a combination of both of continuous coating and continuous printing.
  • the solar cell production equipment comprises a slit printing system, a screen printing system and a gravure printing system. These systems are independent of each other, and can realize the coating or printing of the functional layer (the hole transport layer, the perovskite layer and the electron transport layer) and the back electrode, which can be selected by one skilled in the art as required.
  • the functional layer the hole transport layer, the perovskite layer and the electron transport layer
  • the back electrode which can be selected by one skilled in the art as required.
  • the specific pattern of the solar cell can be changed by the slit printing.
  • the solar cell production equipment comprises a composite system to composite a packaging film, so as to obtain a perovskite solar cell slice with the packaging film.
  • the method used for compositing the packaging film is roll forming.
  • the preferred technical solution is based on the modern polymer technology, which can realize the compositing and the packaging.
  • the obtained perovskite solar cell comprises two parts, i.e. a cell slice and a packaging film, wherein the cell slice can be prepared by a process such as slit printing, etc., and the packaging film can be prepared by roll forming.
  • the substrate is a flexible substrate to replace the traditional glass substrate for the subsequent processes such as printing, and the like.
  • the substrate is cleaned prior to use.
  • the perovskite precursor used to prepare the perovskite layer is doped with a chlorine source, which is preferably lead chloride and/or ammonium chloride, more preferably lead chloride.
  • a chlorine source which is preferably lead chloride and/or ammonium chloride, more preferably lead chloride.
  • the chlorine source accounts for 3%-8%of the total mass of the perovskite precursor, for example 3%, 3.5%, 4%, 4.5%, 5%, 6%, 6.5%, 7%or 8%, etc.
  • the perovskite precursor used to prepare the perovskite layer is doped with thiocyanate ions and the thiocyanate ion-containing material accounts for 3%-5%of the total mass of the perovskite precursor, for example 3%, 3.5%, 4%, 4.5%, 4.8%or 5%, etc.
  • the stability of the perovskite layer in the air can be improved.
  • the solute of the electron transport layer precursor used to prepare the electron transport layer includes tin dioxide and/or titanium dioxide to achieve both good effect and low cost, and preferably tin dioxide.
  • the solvent of the electron transport layer precursor used to prepare the electron transport layer is chloroalkane or a mixture of chloroalkane and alcohol, preferably a mixture of chloroalkane and alcohol.
  • the present disclosure utilizes chloralkane or a mixture of chloralkane or alcohol as a solvent to replace the conventional chlorobenzene solvent so as to achieve green production.
  • the method comprises preparing a perovskite solar cell slice with a packaging layer by use of a roll-to-roll process with a solar cell production equipment, wherein the solar cell production equipment comprises a near infrared heating system and an air heating system to heat synergistically when the perovskite layer is being prepared;
  • the substrate pretreatment is preferably cleaning of the substrate.
  • the substrate is first pretreated, subsequently the perovskite functional layer is continuously coated using slit or gravure or screen printing method by pulling the substrate with a roller.
  • the back electrode is obtained by a printing method, and the cell slice is packaged with a packaging material by roll forming technology, then automatically sliced to complete the assembling of the entire cell slice.
  • the perovskite solar cell slices are arranged in series and in parallel to form a perovskite solar cell array.
  • series and in parallel processes are the circuit design processes through which the perovskite cell component can form an array for continuous working.
  • the size of the array can be different, the composed component modules are connected through back electrodes or conducting wires.
  • the present disclosure is based on a flexible substrate, and a continuous production is realized by a basic processes such as slit printing, screen printing and gravure printing, etc., such that a roll-to-roll preparation of the perovskite solar cell component can be achieved.
  • the process flow can realize automatic, continuous and large-scale production.
  • the area, size and shape of the perovskite component of the present disclosure can be flexibly controlled as required, so as to save raw materials and adapt to the market requirements, which is a key step for the industrialization of the perovskite solar cell.
  • Figure 1 is a schematic diagram of the structure of a heating device when a perovskite layer is being prepared, wherein A1 represents an air heating system, A2 represents an infrared heating system, A represents a perovskite heating system, and B represents a hot plate.
  • Figure 2 is the schematic diagram of the perovskite solar cell component of the present disclosure.
  • Figure 3 is a flow chart of using a cropping system in conjunction with an optical detection system.
  • FIG. 4 is a schematic diagram of the structure of a solar cell production equipment according to Example 1, wherein 1 represents a slit system, 2 represents a screen printing system, 3 represents a gravure printing system, 4 represents an unwinding system, 5 represents a corona system, 6 represents a cleaning unit, 7 represents a cleaning unit, 8 represents a cleaning unit, 9 represents an air knife, 10 represents a drying system I, 11 represents a drying system II, 12 represents a composite system, 13 represents a rewinding system, and 14 represents an unwinding system; wherein the drying system II contains a near infrared heating system and an air heating system.
  • Figure 5 is a schematic diagram of the structure of a perovskite solar cell component according to Example 2.
  • Figure 6 is a cross-section diagram of the perovskite solar cell array according to Example 2, wherein a represents a flexible substrate, b represents a transparent binder, c represents a metal negative line, d represents a perovskite solar cell slice, and e represents an ordinary interconnection line.
  • a method for preparing a perovskite solar cell component by roll-to-roll printing comprising: preparing a perovskite solar cell slice with a packaging layer (i.e., a solar cell component) by use of a roll-to-roll process with a solar cell production equipment (see Figure 4 for its structural schematic diagram) , wherein the solar cell production equipment comprised a slit printing system 1, a screen printing system 2, a gravure printing system 3, a composite system 12, a cropping system (not shown) , a near infrared heating system and an air heating system (not shown) , wherein the near infrared heating system and the air heating system were included in the drying system II 11 to heat synergistically when the perovskite layer was being prepared;
  • a method for preparing a perovskite solar cell component by roll-to-roll printing comprising: preparing a perovskite solar cell slice with a packaging layer (i.e., a solar cell component) by use of a roll-to-roll process with a solar cell production equipment, wherein the solar cell production equipment comprised a slit printing system 1, a screen printing system 2, a gravure printing system 3, a composite system 12, a cropping system (not shown) , a near infrared heating system and an air heating system (not shown) , wherein the near infrared heating system and the air heating system were included in the drying system II 11 to heat synergistically when the perovskite layer was being prepared;
  • Figure 5 is a schematic diagram of the structure of a perovskite solar cell component according to the present example.
  • the perovskite solar cell slices (i.e., the solar cell component) of the present example were arranged in series and in parallel to form a perovskite solar cell array.
  • a represents a flexible substrate
  • b represents a transparent binder
  • c represents a metal negative line
  • d represents a perovskite solar cell slice
  • e represents an ordinary interconnection line such as a conducting wire.
  • a layer of transparent film i.e., a packaging film
  • the binder would not influence the structure of the perovskite cell, meanwhile achieving the flexible components of the perovskite cell.
  • a method for preparing a perovskite solar cell component by roll-to-roll printing comprising: preparing a perovskite solar cell slice with a packaging layer (i.e., a solar cell component) by use of a roll-to-roll process with a solar cell production equipment, wherein the solar cell production equipment comprised a slit printing system 1, a screen printing system 2, a gravure printing system 3, a composite system 12, a cropping system (not shown) , a near infrared heating system and an air heating system (not shown) , wherein the near infrared heating system and the air heating system were included in the drying system II 11 to heat synergistically when the perovskite layer was being prepared;
  • a method for preparing a perovskite solar cell component by roll-to-roll printing comprising: preparing a perovskite solar cell slice with a packaging layer (i.e., a solar cell component) by use of a roll-to-roll process with a solar cell production equipment, wherein the solar cell production equipment comprised a slit printing system 1, a screen printing system 2, a gravure printing system 3, a composite system 12, a cropping system (not shown) , a near infrared heating system and an air heating system (not shown) , wherein the near infrared heating system and the air heating system were included in the drying system II 11 to heat synergistically when the perovskite layer was being prepared;

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method for preparing a perovskite solar cell module by roll-to-roll printing compri-sing preparing a perovskite solar cell functional layer and a back electrode on a subs-trate by use of a roll-to-roll process with a solar cell production equipment to obtain a perovskite solar cell slice, i.e., a solar cell module. The functional layer comprises a hole transport layer, a perovskite layer and an electron transport layer; wherein th-e solar cell production equipment comprises a near infrared heating system and an a-ir heating system to heat synergistically when the perovskite layer is being prepared. The method can realize automatic, continuous and large-scale production, and can re-alize the efficient and rapid preparation of the perovskite solar cell. The area, size an-d shape of the resulting perovskite modules can be flexibly controlled as required, s-uch that a perovskite solar cell modules can be formed with the benefit of saving raw materials and adapting to the market requirements.

Description

A METHOD FOR PREPARING A PEROVSKITE SOLAR CELL MODULE BY ROLL-TO-ROLL PRINTING FIELD
The present disclosure belongs to the field related to the energy material technology, and relates to a method for preparing a perovskite solar cell modules, especially to a method for preparing a perovskite solar cell module by roll-to-roll printing.
BACKGROUND
Perovskite solar cells are a novel solar cell which has arisen since 2009, and it is highly anticipated as it can be prepared by a solution method at low temperature with high efficiency. Its principle is that the perovskite layer first absorbs photons to produce electron-hole pairs when accepting irradiation from sunlight. Due to the difference in the exciton binding energy of the perovskite material, these carriers either become free carriers or form excitons; then these uncomposited electrons and holes are collected separately by the electron transport layer and the hole transport layer, i.e., the electrons are transported from the perovskite layer to the electron transport layer and finally collected by the conductive substrate; and the holes are transported from the perovskite layer to the hole transport layer and finally collected by the metal electrode. Perovskite solar cell comprises from bottom to top a glass conductive substrate (FTO) , an electron transport layer (ETM) , a perovskite light absorption layer (including a porous support) , a hole transport layer (HTM) and a back electrode, respectively. In the development process of perovskite, there has been proposed many preparation methods including “one-step method” , “two-step method” , “dual-source vapor deposition” , “Ilash vaporization” , and the like, however, spin-coating method is still dominated at present.
There are many problems with the current spin coating method. Firstly, a part of the raw materials will be thrown out due to the high-speed rotation process during the spin coating, which will cause a huge waste. Secondly, the spin coating method cannot achieve continuous printing, which will limit the production rate. Thirdly, the spin coating method is not suitable for large-area component production, which is an unavoidable limitation for the industrialization of perovskite. Although the blade coating method has the advantages of saving raw materials, rapid preparation, and the like with respect to the spin coating method, it can only print in sheets continuously and cannot form a specific stripe, which restricts the further development of the process.
In the current large-area printing of perovskite, the substrate used is still mainly the glass substrate, which has a high relative repeatability, mature preparation process, however, it cannot adapt to the future application prospect of the perovskite solar cell as the glass substrate cannot be bent and continuously processed.
SUMMARY
In view of the above-mentioned problems existing in the related technics, the present disclosure aims at providing a method for preparing a perovskite solar cell modules by roll-to-roll printing, realizing the efficient and rapid preparation of perovskite solar cells to form perovskite solar cells module, meanwhile it can control the increase in production costs and the introduction of unfavorable factors.
To achieve the above object, the present disclosure adopts the following technical solution:
a method for preparing a perovskite solar cell module by roll-to-roll printing, wherein the method comprises:
preparing a perovskite solar cell functional layer and a back electrode on a substrate by use of a roll-to-roll process with a solar cell production equipment to obtain a perovskite solar cell slice, i.e., a solar cell component, wherein the functional layer comprises a hole transport layer, a perovskite layer and an electron transport layer;
the solar cell production equipment comprises a near infrared heating system and an air heating system (not shown) , wherein the near infrared heating system and the air heating system are included in the drying system II to heat synergistically when the perovskite layer is being prepared, achieving rapid annealing of the perovskite layer to improve the film-forming quality of the perovskite layer, making the film-forming more uniform and shortening the preparation time of the perovskite layer to shorten the entire duration.
Figure 1 is a schematic diagram of the structure of a heating device when a perovskite layer is being prepared, wherein A1 represents an air heating system, A2 represents an infrared heating system, A represents a perovskite heating system, and B represents a hot plate.
The air heating system may be a hot plate for heating the air.
The infrared heating system may be an infrared heating tube for infrared heating to rapidly crystallize the perovskite.
A schematic diagram of the perovskite solar cell component of the present disclosure is shown in Figure 2, wherein C represents an effective area of the cell and D represents a blank area.
As a preferred technical solution of the method according to the present disclosure, the solar cell production equipment includes a cropping system (not shown) , which is used to crop the perovskite solar cell slice, this process can be automatically realized, i.e., automatic slicing can be realized after the completion of roll-to-roll, and the size of the solar cell can be changed to meet diversified demands.
Preferably, the solar cell production equipment includes an optical detection system (not shown) , which is used to detect the thickness and quality of perovskite solar cells.
In the present disclosure, the cropping system is used in conjunction with the optical detection  system, the uniformity degree of the film is detected by the optical instrument, and the cropping is performed according to the uniformity degree, thereby improving the uniformity and stability of different devices.
Figure 3 is a flow chart of using a cropping system in conjunction with an optical detection system, wherein the final functional layer may be, for example, a hole layer. Moreover, after the cropping, a step of assembling to form the solar cell array may also be performed.
The method of the present disclosure can realize the continuous and large-scale production of the functional layer and the back electrode, to form a large-area module, and the method for preparing the functional layer and the back electrode is any one or a combination of both of coating and printing, and is preferably any one or a combination of both of continuous coating and continuous printing.
Preferably, the solar cell production equipment comprises a slit printing system, a screen printing system and a gravure printing system. These systems are independent of each other, and can realize the coating or printing of the functional layer (the hole transport layer, the perovskite layer and the electron transport layer) and the back electrode, which can be selected by one skilled in the art as required.
In the present disclosure, the specific pattern of the solar cell can be changed by the slit printing.
As a preferred technical solution of the method according to the present disclosure, the solar cell production equipment comprises a composite system to composite a packaging film, so as to obtain a perovskite solar cell slice with the packaging film.
Preferably, the method used for compositing the packaging film is roll forming.
The preferred technical solution is based on the modern polymer technology, which can realize the compositing and the packaging. The obtained perovskite solar cell comprises two parts, i.e. a cell slice and a packaging film, wherein the cell slice can be prepared by a process such as slit printing, etc., and the packaging film can be prepared by roll forming.
As a preferred technical solution of the method according to the present disclosure, the substrate is a flexible substrate to replace the traditional glass substrate for the subsequent processes such as printing, and the like.
Preferably, the substrate is cleaned prior to use.
Preferably, the perovskite precursor used to prepare the perovskite layer is doped with a chlorine source, which is preferably lead chloride and/or ammonium chloride, more preferably lead chloride. Through the introduction of chlorine element, the uniformity and stability in film-forming of the perovskite layer in the air can be improved.
Preferably, the chlorine source accounts for 3%-8%of the total mass of the perovskite precursor, for example 3%, 3.5%, 4%, 4.5%, 5%, 6%, 6.5%, 7%or 8%, etc.
Preferably, the perovskite precursor used to prepare the perovskite layer is doped with thiocyanate ions and the thiocyanate ion-containing material accounts for 3%-5%of the total mass of the perovskite precursor, for example 3%, 3.5%, 4%, 4.5%, 4.8%or 5%, etc. Through the introduction of thiocyanate ions, the stability of the perovskite layer in the air can be improved.
Preferably, the solute of the electron transport layer precursor used to prepare the electron transport layer includes tin dioxide and/or titanium dioxide to achieve both good effect and low cost, and preferably tin dioxide.
Preferably, the solvent of the electron transport layer precursor used to prepare the electron transport layer is chloroalkane or a mixture of chloroalkane and alcohol, preferably a mixture of chloroalkane and alcohol.
The present disclosure utilizes chloralkane or a mixture of chloralkane or alcohol as a solvent to replace the conventional chlorobenzene solvent so as to achieve green production.
As a more further preferred technical solution of the method according to the present disclosure, the method comprises preparing a perovskite solar cell slice with a packaging layer by use of a roll-to-roll process with a solar cell production equipment, wherein the solar cell production equipment comprises a near infrared heating system and an air heating system to heat synergistically when the perovskite layer is being prepared;
specifically, the following steps are sequentially performed:
(1) pretreating a substrate;
(2) unwinding;
(3) preparing a hole transport layer, a perovskite layer, an electron transport layer and a back electrode sequentially on a flexible substrate;
(4) compositing to prepare a packaging film on the surface of the back electrode;
(5) rewinding;
(6) slicing;
alternatively, specifically, the following steps are sequentially performed:
(1) pretreating a substrate;
(2) unwinding;
(3) preparing an electron transport layer, a perovskite layer, a hole transport layer and a back electrode sequentially on the flexible substrate;
(4) compositing to prepare a packaging film on the surface of the back electrode;
(5) rewinding;
(6) slicing.
In the present disclosure, the substrate pretreatment is preferably cleaning of the substrate.
In the present disclosure, the substrate is first pretreated, subsequently the perovskite functional layer is continuously coated using slit or gravure or screen printing method by pulling the substrate with a roller. The back electrode is obtained by a printing method, and the cell slice is packaged with a packaging material by roll forming technology, then automatically sliced to complete the assembling of the entire cell slice.
As a preferred technical solution of the method according to the present disclosure, the perovskite solar cell slices are arranged in series and in parallel to form a perovskite solar cell array. In series and in parallel processes are the circuit design processes through which the perovskite cell component can form an array for continuous working. The size of the array can be different, the composed component modules are connected through back electrodes or conducting wires.
Compared with the related technics, the present disclosure has the following beneficial effects: The present disclosure is based on a flexible substrate, and a continuous production is realized by a basic processes such as slit printing, screen printing and gravure printing, etc., such that a roll-to-roll preparation of the perovskite solar cell component can be achieved. Compared with other related technics, the process flow can realize automatic, continuous and large-scale production. The area, size and shape of the perovskite component of the present disclosure can be flexibly controlled as required, so as to save raw materials and adapt to the market requirements, which is a key step for the industrialization of the perovskite solar cell.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic diagram of the structure of a heating device when a perovskite layer is being prepared, wherein A1 represents an air heating system, A2 represents an infrared heating system, A represents a perovskite heating system, and B represents a hot plate.
Figure 2 is the schematic diagram of the perovskite solar cell component of the present disclosure.
Figure 3 is a flow chart of using a cropping system in conjunction with an optical detection system.
Figure 4 is a schematic diagram of the structure of a solar cell production equipment according to Example 1, wherein 1 represents a slit system, 2 represents a screen printing system, 3 represents a gravure printing system, 4 represents an unwinding system, 5 represents a corona system, 6 represents a cleaning unit, 7 represents a cleaning unit, 8 represents a cleaning unit, 9 represents an air knife, 10 represents a drying system I, 11 represents a drying system II, 12  represents a composite system, 13 represents a rewinding system, and 14 represents an unwinding system; wherein the drying system II contains a near infrared heating system and an air heating system.
Figure 5 is a schematic diagram of the structure of a perovskite solar cell component according to Example 2.
Figure 6 is a cross-section diagram of the perovskite solar cell array according to Example 2, wherein a represents a flexible substrate, b represents a transparent binder, c represents a metal negative line, d represents a perovskite solar cell slice, and e represents an ordinary interconnection line.
DETAILED DESCRIPTION
The technical solution of the present disclosure will be further described below by way of specific embodiments in combination with accompanying drawings.
Example 1
A method for preparing a perovskite solar cell component by roll-to-roll printing comprising: preparing a perovskite solar cell slice with a packaging layer (i.e., a solar cell component) by use of a roll-to-roll process with a solar cell production equipment (see Figure 4 for its structural schematic diagram) , wherein the solar cell production equipment comprised a slit printing system 1, a screen printing system 2, a gravure printing system 3, a composite system 12, a cropping system (not shown) , a near infrared heating system and an air heating system (not shown) , wherein the near infrared heating system and the air heating system were included in the drying system II 11 to heat synergistically when the perovskite layer was being prepared;
specifically, the following steps were sequentially performed:
substrate cleaning→unwinding→printing hole transport layer→printing perovskite layer→printing electron transport layer→printing back electrode→compositing (packaging) → rewinding →slicing.
Example 2
A method for preparing a perovskite solar cell component by roll-to-roll printing comprising: preparing a perovskite solar cell slice with a packaging layer (i.e., a solar cell component) by use of a roll-to-roll process with a solar cell production equipment, wherein the solar cell production equipment comprised a slit printing system 1, a screen printing system 2, a gravure printing system 3, a composite system 12, a cropping system (not shown) , a near infrared heating system and an air heating system (not shown) , wherein the near infrared heating system and the air heating system were included in the drying system II 11 to heat synergistically when the perovskite layer was being prepared;
specifically, the following steps were sequentially performed:
substrate cleaning→unwinding→printing electron transport layer→printing a perovskite layer →printing hole transport layer→printing back electrode→compositing (packaging) → rewinding →slicing.
Figure 5 is a schematic diagram of the structure of a perovskite solar cell component according to the present example.
The perovskite solar cell slices (i.e., the solar cell component) of the present example were arranged in series and in parallel to form a perovskite solar cell array. Referring to Figure 6 for the cross-section diagram of the perovskite solar cell array, wherein a represents a flexible substrate, b represents a transparent binder, c represents a metal negative line, d represents a perovskite solar cell slice, and e represents an ordinary interconnection line such as a conducting wire. In the previous production of the cell slice, a layer of transparent film (i.e., a packaging film) had been composited, thus the binder would not influence the structure of the perovskite cell, meanwhile achieving the flexible components of the perovskite cell.
Example 3
A method for preparing a perovskite solar cell component by roll-to-roll printing comprising: preparing a perovskite solar cell slice with a packaging layer (i.e., a solar cell component) by use of a roll-to-roll process with a solar cell production equipment, wherein the solar cell production equipment comprised a slit printing system 1, a screen printing system 2, a gravure printing system 3, a composite system 12, a cropping system (not shown) , a near infrared heating system and an air heating system (not shown) , wherein the near infrared heating system and the air heating system were included in the drying system II 11 to heat synergistically when the perovskite layer was being prepared;
specifically, the following steps were sequentially performed:
substrate cleaning→unwinding→spraying electron transport layer→printing a perovskite layer→spraying hole transport layer→printing back electrode→compositing (packaging) →rewinding→slicing.
Example 4
A method for preparing a perovskite solar cell component by roll-to-roll printing comprising: preparing a perovskite solar cell slice with a packaging layer (i.e., a solar cell component) by use of a roll-to-roll process with a solar cell production equipment, wherein the solar cell production equipment comprised a slit printing system 1, a screen printing system 2, a gravure printing system 3, a composite system 12, a cropping system (not shown) , a near infrared heating system and an air heating system (not shown) , wherein the near infrared heating system and the air heating system  were included in the drying system II 11 to heat synergistically when the perovskite layer was being prepared;
specifically, the following steps were sequentially performed:
substrate cleaning→unwinding→spraying electron transport layer→spraying perovskite layer →spraying hole transport layer→printing back electrode→compositing (packaging) →rewinding→slicing.
Applicant has stated that although the detailed methods of the present disclosure have been described by the above examples in the present disclosure, the present disclosure is not limited thereto, that is to say, it is not meant that the present disclosure has to be implemented depending on the above detailed methods. It will be apparent to those skilled in the art that any improvements made to the present disclosure, equivalent replacements to the raw materials of the products of the present disclosure and addition of adjuvant ingredients, and selections of the specific implementations, etc., all fall within the protection scope and the disclosure scope of the present disclosure.

Claims (10)

  1. A method for preparing a perovskite solar cell modules by roll-to-roll printing, wherein the method comprises:
    preparing a perovskite solar cell functional layer and a back electrode on a substrate by use of a roll-to-roll process with a solar cell production equipment to obtain a perovskite solar cell slice, i.e., a solar cell component, wherein the functional layer comprises a hole transport layer, a perovskite layer and an electron transport layer;
    the solar cell production equipment comprises a near infrared heating system and an air heating system to heat synergistically when the perovskite layer is being prepared.
  2. The method according to claim 1, wherein the solar cell production equipment includes a cropping system, which is used to crop the perovskite solar cell slice.
  3. The method according to claim 1 or 2, wherein the solar cell production equipment includes an optical detection system, which is used to detect the perovskite solar cell slice.
  4. The method according to any one of claims 1-3, wherein the method for preparing the functional layer and the back electrode is any one or a combination of both of coating and printing, and is preferably any one or a combination of both of continuous coating and continuous printing.
  5. The method according to any one of claims 1-4, wherein the solar cell production equipment comprises a slit printing system, a screen printing system and a gravure printing system.
  6. The method according to any one of claims 1-5, wherein the solar cell production equipment comprises a composite system to composite a packaging film, so as to obtain a perovskite solar cell slice with the packaging film;
    preferably, the method used for compositing the packaging film is roll forming.
  7. The method according to any one of claims 1-6, wherein the substrate is a flexible substrate;
    preferably, the substrate is cleaned prior to use;
    preferably, the perovskite precursor used to prepare the perovskite layer is doped with a chlorine source, which is preferably lead chloride and/or ammonium chloride, more preferably lead chloride;
    preferably, the chlorine source accounts for 3%-8%of the total mass of the perovskite precursor;
    preferably, the perovskite precursor used to prepare the perovskite layer is doped with thiocyanate ions and the thiocyanate ion-containing material accounts for 3%-5%of the total mass of the perovskite precursor.
  8. The method according to any one of claims 1-7, wherein the solute of the electron transport layer precursor used to prepare the electron transport layer includes tin dioxide and/or titanium dioxide, preferably tin dioxide;
    preferably, the solvent of the electron transport layer precursor used to prepare the electron  transport layer is chloroalkane or a mixture of chloroalkane and alcohol, preferably a mixture of chloroalkane and alcohol.
  9. The method according to any one of claims 1-8, wherein the method comprises preparing a perovskite solar cell slice with a packaging layer by use of a roll-to-roll process with a solar cell production equipment, wherein the solar cell production equipment comprises a near infrared heating system and an air heating system to heat synergistically when a perovskite layer is being prepared;
    specifically, the following steps are sequentially performed:
    (1) pretreating a substrate;
    (2) unwinding;
    (3) preparing a hole transport layer, a perovskite layer, an electron transport layer and a back electrode sequentially on the flexible substrate;
    (4) compositing to prepare a packaging film on the surface of the back electrode;
    (5) rewinding;
    (6) slicing;
    alternatively, specifically, the following steps are sequentially performed:
    (1) pretreating a substrate;
    (2) unwinding;
    (3) preparing an electron transport layer, a perovskite layer, a hole transport layer and a back electrode sequentially on a flexible substrate;
    (4) compositing to prepare a packaging film on the surface of the back electrode;
    (5) rewinding;
    (6) slicing.
  10. The method according to any one of claims 1-9, wherein the perovskite solar cell slices are arranged in series and in parallel to form a perovskite solar cell array.
PCT/CN2017/100916 2017-06-28 2017-09-07 A method for preparing a perovskite solar cell module by roll-to-roll printing WO2019000641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710506289.8A CN107275495A (en) 2017-06-28 2017-06-28 Method for preparing perovskite solar cell module through roll-to-roll printing
CN201710506289.8 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019000641A1 true WO2019000641A1 (en) 2019-01-03

Family

ID=60071267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100916 WO2019000641A1 (en) 2017-06-28 2017-09-07 A method for preparing a perovskite solar cell module by roll-to-roll printing

Country Status (2)

Country Link
CN (1) CN107275495A (en)
WO (1) WO2019000641A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883658A (en) * 2020-07-31 2020-11-03 中国科学院合肥物质科学研究院 Perovskite solar cell module and preparation method thereof
CN115957947A (en) * 2022-11-29 2023-04-14 北京大学长三角光电科学研究院 Coating printing method and apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321297A (en) * 2018-02-05 2018-07-24 湖南纳昇印刷电子科技有限公司 A kind of flexible perovskite photodetector and preparation method of printing
CN110690348B (en) * 2018-07-06 2023-04-18 张家港康得新光电材料有限公司 Method for roll-to-roll production of perovskite layer, perovskite layer obtained by method, and perovskite-type battery
CN109830609A (en) * 2019-02-13 2019-05-31 南方科技大学 Large-area flexible perovskite solar cell and printing preparation method
CN109888111A (en) * 2019-02-13 2019-06-14 南方科技大学 Perovskite solar cell prepared by full-blade coating printing under air condition and method
CN111076849B (en) * 2019-12-23 2021-11-12 山东大学 PVDF flexible pressure sensor and preparation method and system thereof
CN111312903A (en) * 2020-03-04 2020-06-19 江苏集萃分子工程研究院有限公司 Continuous preparation device and process for preparing perovskite thin film in two-step roll-to-roll mode
CN111435692A (en) * 2020-04-01 2020-07-21 杭州纤纳光电科技有限公司 Roll-to-roll device and method for preparing flexible solar cell by using same
CN111584717B (en) * 2020-05-15 2022-05-10 浙江大学 Method for improving efficiency of hybrid perovskite solar cell by aid of photo-thermal combined external field
CN111584716B (en) * 2020-05-15 2022-05-10 浙江大学 Method for repairing two-dimensional hybrid perovskite solar cell by thermal activation assisted light
CN113571648B (en) * 2021-07-02 2023-08-22 常州大学 Device and method for preparing flexible perovskite and full perovskite laminated solar cell from reel to reel
CN115101628A (en) * 2022-06-28 2022-09-23 苏州方昇光电股份有限公司 Roll-to-roll solar cell preparation method
CN115573034A (en) * 2022-11-04 2023-01-06 山东大学 Hydrogen chloride-assisted growth perovskite single crystal film and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140295179A1 (en) * 2013-04-01 2014-10-02 Kabushiki Kaisha Toshiba Transparent conductive film and electric device
CN104377273A (en) * 2014-11-14 2015-02-25 厦门惟华光能有限公司 Roll-to-roll production equipment and method for perovskite thin film solar cell assembly
CN104934539A (en) * 2015-07-01 2015-09-23 中国华能集团清洁能源技术研究院有限公司 Solar cell adopting metal transparent electrode and preparation of solar cell
CN105261423A (en) * 2015-10-30 2016-01-20 中山大学 Roll-to-roll preparation device and method for high-performance flexible transparent conductive film
CN105374942A (en) * 2015-11-04 2016-03-02 中国科学院上海应用物理研究所 Perovskite based solar cell and preparation method thereof
CN106410032A (en) * 2016-08-25 2017-02-15 中国科学院重庆绿色智能技术研究院 Flexible perovskite solar cell with metal grid graphene composite electrode and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140295179A1 (en) * 2013-04-01 2014-10-02 Kabushiki Kaisha Toshiba Transparent conductive film and electric device
CN104377273A (en) * 2014-11-14 2015-02-25 厦门惟华光能有限公司 Roll-to-roll production equipment and method for perovskite thin film solar cell assembly
CN104934539A (en) * 2015-07-01 2015-09-23 中国华能集团清洁能源技术研究院有限公司 Solar cell adopting metal transparent electrode and preparation of solar cell
CN105261423A (en) * 2015-10-30 2016-01-20 中山大学 Roll-to-roll preparation device and method for high-performance flexible transparent conductive film
CN105374942A (en) * 2015-11-04 2016-03-02 中国科学院上海应用物理研究所 Perovskite based solar cell and preparation method thereof
CN106410032A (en) * 2016-08-25 2017-02-15 中国科学院重庆绿色智能技术研究院 Flexible perovskite solar cell with metal grid graphene composite electrode and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883658A (en) * 2020-07-31 2020-11-03 中国科学院合肥物质科学研究院 Perovskite solar cell module and preparation method thereof
CN111883658B (en) * 2020-07-31 2023-10-20 中国科学院合肥物质科学研究院 Perovskite solar cell module and preparation method thereof
CN115957947A (en) * 2022-11-29 2023-04-14 北京大学长三角光电科学研究院 Coating printing method and apparatus
CN115957947B (en) * 2022-11-29 2023-08-29 北京大学长三角光电科学研究院 Coating printing method and apparatus

Also Published As

Publication number Publication date
CN107275495A (en) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2019000641A1 (en) A method for preparing a perovskite solar cell module by roll-to-roll printing
CN108365102B (en) Stable and efficient two-dimensional layered perovskite solar cell and preparation method thereof
CN107275494B (en) Blade coating preparation method of flexible perovskite solar cell
CN103474485B (en) A kind of flexible thin-film solar cell and preparation method thereof
WO2019148326A1 (en) Method for preparing perovskite thin film and application thereof
US11849626B2 (en) Method for preparing bendable nanopaper-based flexible solar cells by 3D aerogel jet printing
KR20130013245A (en) Method for manufacturing light-absorption layer for solar cell, method for manufacturing thin film solar cell using the same and thin film solar cell using the same
CN102983222A (en) Preparation method for absorption layer with gradient band gap distribution
CN103866239A (en) Linear evaporation source device
CN113314672A (en) Perovskite solar cell and preparation method thereof
CN111403547B (en) Perovskite solar cell and preparation method thereof
CN209963073U (en) Novel high-efficiency double-sided incident light CdTe perovskite laminated photovoltaic cell
CN103928576B (en) SnS/ZnS overlapping thin film solar battery preparation method
CN109638161B (en) Preparation method of efficient perovskite solar cell and perovskite solar cell
CN108574049B (en) Perovskite solar cell module and preparation method thereof
CN114335348A (en) PN heterojunction antimony selenide/perovskite solar cell and preparation method thereof
CN106409934A (en) Preparation method of CIGS solar cell absorption layer
CN202968676U (en) Linear evaporation source device
CN115835741A (en) Perovskite solar cell and preparation method thereof
CN110767810B (en) Large-area perovskite solar cell and preparation method thereof
CN107749432A (en) A kind of CdTe thin film solar cell and preparation method thereof
CN113078224A (en) Transparent conductive glass copper indium selenium thin-film solar cell device and preparation method and application thereof
CN102709378A (en) Preparation method of selective emitting electrode crystalline silicon solar battery
CN112599681A (en) Perovskite solar cell with improved metal electrode and preparation method thereof
CN111162180A (en) Large-area perovskite solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915364

Country of ref document: EP

Kind code of ref document: A1