WO2018236029A1 - 반사모드 비선형 초음파 진단 장치 - Google Patents

반사모드 비선형 초음파 진단 장치 Download PDF

Info

Publication number
WO2018236029A1
WO2018236029A1 PCT/KR2018/003646 KR2018003646W WO2018236029A1 WO 2018236029 A1 WO2018236029 A1 WO 2018236029A1 KR 2018003646 W KR2018003646 W KR 2018003646W WO 2018236029 A1 WO2018236029 A1 WO 2018236029A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reflected
transducers
reflection
time
Prior art date
Application number
PCT/KR2018/003646
Other languages
English (en)
French (fr)
Inventor
정현조
Original Assignee
원광대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단 filed Critical 원광대학교산학협력단
Publication of WO2018236029A1 publication Critical patent/WO2018236029A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/048Marking the faulty objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering

Definitions

  • the present invention relates to an ultrasonic nondestructive diagnosis apparatus for inspecting defects of an object by using ultrasonic waves.
  • ultrasound testing is a representative technique for detecting defects in industrial facilities and evaluating reliability.
  • nonlinear defects such as cracks are the most difficult defects to examine.
  • microcracks it is a common practice to identify the diffraction wave at the tip of the crack or the reflected wave at the crack surface to perform defect inspection.
  • the present invention is intended to provide an ultrasonic diagnostic apparatus capable of reliably acquiring a nonlinear parameter value necessary for grasping an abnormality of an object.
  • the ultrasonic diagnostic apparatus of the present invention comprises: a plurality of probes mounted on a first surface of a test subject and receiving a first reflected signal and a second reflected signal; And a processing unit for calculating a nonlinear parameter value of the subject using the second reflected signal, wherein the first reflected signal is a signal obtained by reflecting an ultrasonic wave propagated from the first surface to the second surface of the object to be inspected And the second reflection signal may be a signal in which a time inverse signal propagated from the first surface to the second surface is reflected.
  • the absolute value of the non-linear parameter of the damaging material can be measured using the longitudinal wave received in the reflection mode and the focused beam based on advanced signal processing techniques.
  • a practical nonlinear ultrasonic diagnostic technique of a new concept capable of accurately predicting the degree of damage of the material by the absolute value of the nonlinear parameter can be provided.
  • FIG. 1 is a schematic view showing an ultrasonic diagnostic apparatus of the present invention.
  • FIG. 2 is a schematic diagram illustrating an ultrasound beam focusing process according to the time reversing process of the present invention.
  • 3 is a frequency spectrum of a comparative example.
  • FIG. 4 is a schematic view showing the ultrasonic diagnostic method of the present invention.
  • FIG. 1 is a schematic view showing an ultrasonic diagnostic apparatus of the present invention.
  • Nonlinear ultrasound method for observing the second harmonic generated when a single-frequency ultrasound of a strong intensity is incident on a damage material (hereinafter referred to as the subject 10) such as plastic deformation, fatigue, and creep is an effective method for early detection of damage It is known.
  • Nonlinear sonography however, remains at the laboratory level, using the longitudinal wave and transmission methods, to find the correlation between the relative nonlinear parameter values and the degree of damage.
  • the ultrasonic diagnostic apparatus of the present invention accurately measures the degree of damage of the subject 10 by measuring the value of the nonlinear parameter of the subject (specimen) 10 using the longitudinal wave received in the reflection mode and the focusing beam based on the advanced signal processing technique And to a practical nonlinear ultrasonic diagnostic technique of a new concept that can be predicted.
  • the ultrasonic diagnostic apparatus of the present invention may be for calculating a nonlinear parameter value of the subject 10 by generating a second harmonic that can be detected regardless of noise.
  • the ultrasonic diagnostic apparatus of the present invention may include a probe 130 and a processing unit 150 to generate a second harmonic having robustness to noise, that is, a strong intensity.
  • the transducer 130 is mounted on the first surface 11 of the subject 10 and can receive the first reflected signal and the second reflected signal.
  • the first reflected signal may be a signal reflected from the first surface 11 to the second surface (bottom surface) 12 of the subject 10 and reflected by the ultrasonic waves.
  • the second reflected signal may be a signal in which the time reversed signal propagated from the first surface 11 to the second surface 12 is reflected. At this time, the time reversal signal may be generated using the first reflection signal.
  • One of the plurality of probes 130 can generate ultrasonic waves and emit toward the second surface 12.
  • the remaining transducers of the plurality of transducers 130 may be disposed at positions that are point symmetric with respect to the transducers that generate the ultrasonic waves. As a result, the transducers from which the ultrasonic waves are generated can be placed in the middle of the other transducers.
  • the first surface 11 and the second surface 12 may be on different sides and the first surface 11 is the upper surface of the subject 10 and the second surface 12 is the surface of the subject 10, Lt; / RTI >
  • the plurality of probes 130 disposed on the first surface 11 can receive the first reflected signal reflected by the second surface 12 of the ultrasonic waves.
  • the time reversal signal may be radiated from the plurality of probes 130 to propagate from the first surface 11 toward the second surface 12 and the second reflected signal may be received by the plurality of probes.
  • the time reversed signal emitted from the plurality of probes 130 can be focused at a specific position P. [ Since a plurality of beams radiated from the plurality of probes 130 are focused on the specific position P, the resolution of the second reflected signal corresponding to the beam reflected at the specific position P can be improved.
  • the transducer 130 may receive the second reflected signal whose time inverse signal of the first reflected signal is reflected on the second surface 12.
  • the processing unit 150 can calculate the nonlinear parameter value of the subject 10 using the second reflected signal.
  • the ultrasonic waves may be reflected at the P position on the second surface 12 of the inspection object 10. Since the second surface 12 is a portion bounded by another medium such as air or a supporting plate, the first or second reflected signal reflected on the second surface 12 may have a fine crack on the inside of the subject 10 A second harmonic component having a very large magnitude in comparison with the reflected signal may be included. The second harmonic component included in the signal reflected on the second surface 12 can be distinguished from the noise, so that it can be easily grasped even in the actual field where the noise is mixed.
  • a plurality of transducers 130 disposed on the first surface 11 of the test object 10 can generate a converging beam focused at the P position to obtain a second harmonic component more robust against noise.
  • a three-channel arrangement type transducer 130 can be brought into close contact with the first surface 11 of the test object 10, and the time reversing method can be applied for beam focusing.
  • the time reversal signal to which the time reversal method is applied can be accurately focused at the P position of the second surface 12.
  • the ultrasound beam can be accurately focused at the P position where the non-linear defect exists even though the prior information including the characteristics of the subject 10 is not known .
  • the transducer 130 or the processing unit 150 may be a nonlinear component signal caused by a boundary surface, a multimode of a Lamb wave or the like, or a nonlinear component signal caused by reflected waves of various modes in the flat plate- Mode signal and processes it in time reversal.
  • FIG. 2 is a schematic diagram illustrating an ultrasound beam focusing process according to the time reversing process of the present invention.
  • FIG. 1 shows the time reversal method for the array transducers in which the N probes 130 are arranged, the embodiment of the present invention is not limited to the array transducer. Can be implemented.
  • one of the N probes 130 provided in the array transducer is excited.
  • the excited incident wave propagates to the object 10.
  • each transducer 130 receives a scatter signal (first reflected signal) reflected at the P position of the second surface 12 corresponding to the interface of the subject 10.
  • the difference in the distance from the respective transducers 130 arranged on the first surface 11 to the second surface 12 depends on the medium characteristics of the subject 10, the surface geometry of the subject 10, A difference in the amount of time delay of the echo signal, and a waveform difference of each probe 130.
  • time reversal method of the present invention data on the difference in time delay amount and waveform difference is required, but knowledge of the prior information is not required at all.
  • the difference in time delay amount and waveform difference between the respective transducers 130 is determined by the surface geometry of the subject 10 and the distance from each transducer 130 to the P position Dictionary information such as difference is already included. Therefore, by calculating the amount of time delay from the signals radiated and obtained from the transducer 130 and using the time reversal processing, it becomes possible to detect the P position without knowing the prior information such as the surface geometry or the medium characteristics.
  • the prior information on the geometrical shape and the physical properties of the subject 10 can be restored by using the signals returned by propagating the inside of the subject 10 without knowing prior information of the array transducer or the subject 10 at all .
  • the time reversal method is based on the property that the propagation time of the ultrasonic waves is constant for the array transducer or the subject 10 even if no advance information is input to the array transducer or the subject.
  • a waveform (first reflected signal) acquired by the N transducers 130 is converted into a time reversal signal based on the difference in time delays between the transducers 130 without acquiring the prior information, .
  • Each transducer 130 causes a new waveform (time reversing signal) that has been time reversed to be incident on the subject 10.
  • the time reversed ultrasound beam (time reversal signal) is accurately focused at the P position.
  • the original signal received in the time reversal process of the received signal can be used as is, or the nonlinear signal of the particular mode of interest can be selectively extracted and the time reversal processed, and the P position can be analyzed accurately.
  • the ultrasound beam (time reversal signal) concentrated at the P position is again received (second reflected signal) at each probe 130.
  • the acquired waveform is a waveform with improved signal-to-noise ratio and contains accurate information (including coordinates, size) about the P position.
  • each transducer 130 when each transducer 130 is excited in a time-reversed state by reflecting the time delay calculated by the time reversal method, the excited ultrasonic waves are propagated to the P position.
  • the ultrasonic wave is focused at the P position, the signal-to-noise ratio is improved, so that a clean defect image can be obtained.
  • the signal reception time of the probe 130 is preferably longer than the signal transmission time. As the reception time of the first reflection signal becomes longer, the peak amplitude of the harmonic component increases, so that pure harmonic components can be extracted without noise.
  • the first reflected signal may be input to the processing unit 150.
  • the processing unit 150 can Fourier transform the first reflection signal of the received time domain and extract the harmonic spectrum using the window function in the frequency domain if the frequency spectrum is obtained.
  • the processing unit 150 can generate a time inverse signal by transforming the extracted harmonic spectrum into time domain after time inverse processing.
  • the processing unit 150 may amplify the time reversal signal and then provide the signal to the probe 130.
  • the transducer 130 can redirect the time reversal signal provided from the processing unit 150 toward the subject 10.
  • the first reflected signal contains information about nonlinear defects such as the interface. Therefore, the time reversed signal obtained by performing the time reversal processing on the first reflection signal can be accurately focused on the P position having the nonlinear characteristic according to the time reversal processing without knowing the prior information at all.
  • the time reversal signal propagated to the P position can be reflected at the P position again and can be obtained at each probe 130.
  • the processing unit 150 may process the first reflection signal or the second reflection signal received by each of the transducers 130.
  • the processing unit 150 may analyze the second reflected signal to extract the fundamental frequency component and the second harmonic component, and may calculate the nonlinear parameter value using the second harmonic component.
  • the processing unit 150 may multiply the fundamental frequency component or the second harmonic component by the transfer function of the probe 130 to convert the fundamental frequency component or the second harmonic component to an absolute displacement.
  • the processing unit 150 may calculate the nonlinear parameter value by synthesizing the second reflected signal by applying a time delay to the probe 130. [ The processing unit 150 can calculate the nonlinear parameter value by correcting the rotation or attenuation of the second reflected signal.
  • the processing unit 150 includes an oscilloscope 151, a processing module 153, a multi-channel function generator 155, a multi-channel amplifier 157, an impedance matching unit 159 matching may be provided.
  • the oscilloscope 151 may monitor and provide the first or second reflected signal received from the probe 130 to the processing module 153.
  • the processing module 153 may process the first reflected signal to provide it to the multi-channel frequency generator, or may calculate the nonlinear parameter value of the subject 10 using the second reflected signal.
  • the processing module 153 may be provided with a probe calibration module, a time reversing signal processing module, a received signal processing module, an absolute displacement calculation module, a nonlinear parameter value calculation module, and a diffraction and attenuation correction module.
  • the probe calibration module can calibrate the receiving frequency of the probe 130, etc. in order to grasp the absolute displacement of the second harmonic component.
  • the time reversal signal processing module may apply the time reversal method to the first reflected signal received by each transducer 130.
  • the received signal processing module may process the first reflected signal or the second reflected signal. For example, the received signal processing module may apply a time delay to a plurality of second reflected signals obtained from the plurality of transducers 130, and then synthesize the received signals.
  • the absolute displacement calculation module may calculate the absolute displacement of the second harmonic component or the like by multiplying the fundamental frequency component or the second harmonic component by the transfer function of the probe 130.
  • the nonlinear parameter value calculation module can calculate the nonlinear parameter value? As shown in Equation (1) using the calculated absolute displacement.
  • the diffraction and attenuation correction module can correct the diffraction and attenuation factors included in the second reflection signal and the like.
  • the multi-channel frequency generator may generate a time reversal signal assigned to a plurality of probes 130 installed on the first surface 11 using the result of processing the first reflected signal.
  • the multi-channel amplifier can amplify the time reversal signal assigned to each probe 130.
  • the impedance matcher is to prevent the time reversal signal from being reflected on the first surface 11 and returning to the processing unit 150.
  • 3 is a frequency spectrum of a comparative example.
  • the magnitude of the second harmonics is determined by the spectrum of the fundamental frequency).
  • the first reflected signal may include a second harmonic component having a very large magnitude since it is reflected on the second surface 12. Therefore, the second harmonic component can be separately processed in spite of the presence of various noises, so that it is possible to calculate the nonlinear parameter value even in the actual field.
  • the non-linear parameter value can be used for defect detection in the inspection object 10 in the future.
  • FIG. 4 is a schematic view showing the ultrasonic diagnostic method of the present invention.
  • ultrasonic waves can be radiated to the first surface 11 of the test object 10 by the excitation of the selected transducer 130.
  • Ultrasonic waves passing through the inside of the subject 10 can be received by a plurality of transducers 130 disposed on the first surface 11 by being reflected by the second surface 12 (first reflected signal).
  • the transducer receiving the first reflected signal may also include a transducer that generates ultrasonic waves.
  • a beam (time inverse signal) may be focused on the reflection position P of the second surface 12.
  • the second reflected signal which is the time reversal signal reflected at the position P, is received by each transducer 130, and after the signal processing, the fundamental frequency component and the second harmonic component can be obtained.
  • each transducer 130 It is possible to multiply the transmission function of each transducer 130 to convert it into an absolute displacement, and synthesize the reception wave by applying a time delay to the transducer 130.
  • the nonlinear parameter values before the diffraction / attenuation correction are obtained, and the final nonlinear parameter values can be obtained by correcting the diffraction and attenuation.
  • the ultrasonic diagnostic apparatus uses only one surface of the subject 10 through the application of the non-contact type excitation and reflection method, so that the applicability to the field is very high. It is not necessary to know the specification of the array transducer 130 or the geometrical shape and physical properties of the subject 10 in advance because the reflected signal is propagated through the inside of the subject 10 for beam focusing.
  • the absolute nonlinear parameter value of the subject 10 can be measured through calibration of the probe 130 and diffraction and attenuation correction can be applied to provide a more accurate nonlinear parameter value. Since the nonlinear ultrasonic diagnostic apparatus is constituted by using the array transducers 130 of at least three channels, productivity is high.
  • the ultrasonic diagnostic apparatus of the present invention can exclude a separate laser irradiation means.
  • the initial excitation can be achieved by using an incident signal generated from a centered transducer (including a plurality of single transducers) in contact with the top surface of the specimen.
  • the array transducer can receive the first reflected signal reflected from the bottom surface of the specimen.
  • Signal processing can simultaneously retransmit the first reflected signal received by the array transducer after time reversal (in this case, a high output voltage is applied to each transducer to generate nonlinear ultrasonic waves in the specimen for nonlinear generation at retransmission) .
  • the second reflected signal received from the bottom surface of the specimen is subjected to signal processing to extract the signal of the fundamental frequency and the second harmonic (nonlinear component), and the nonlinear parameter can be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

본 발명의 초음파 진단 장치는 피검사체의 제1 면에 장착되고 제1 반사 신호 및 제2 반사 신호를 수신하는 복수의 탐촉자; 상기 제2 반사 신호를 이용해서 상기 피검사체의 비선형 파라미터값을 산출하는 처리부;를 포함하고, 상기 제1 반사 신호는 상기 제1 면으로부터 상기 피검사체의 제2 면까지 전파된 초음파가 반사된 신호이며, 상기 제2 반사 신호는 상기 제1 면으로부터 상기 제2 면까지 전파된 시간 역전 신호가 반사된 신호일 수 있다.

Description

반사모드 비선형 초음파 진단 장치
본 발명은 초음파를 이용하여 피검사체의 결함을 검사하는 초음파 비파괴 진단 장치에 관한 것이다.
비파괴 검사 기법 중에서 산업 설비의 결함을 검출하고 신뢰성을 평가하기 위한 대표적인 기법이 초음파 탐상 시험이다. 초음파 탐상 시험시, 균열과 같은 비선형 결함은 가장 검사하기 어려운 결함이다. 미세 균열에 대하여는 균열 선단부의 회절파나 균열면의 반사파를 식별하여 결함 검사를 하는 것이 일반적인 방법이다.
그러나 닫힌 균열 또는 부분적으로 닫힌 균열의 경우 균열 선단부의 회절 신호가 아주 미약하거나 균열면의 반사 신호가 나타나지 않기 때문에 결함의 검출이 매우 어렵다.
결함에 빔을 집속하고 이에 따라 검출 신호를 강화하는 위상배열 초음파 검사가 개발되고 있지만 비선형 결함인 균열의 검출에는 개선 효과를 기대하기 힘들다.
또한, 강력한 입사파를 방사하고 상기 입사파에 의하여 균열면이 개폐될 때 발생하는 비선형 성분을 검출하는 방식을 생각해 볼 수 있지만, 닫힌 균열의 경우 강력한 입사파에 불구하고 균열면의 개폐에 의한 비선형 성분 출력이 워낙 미약하여 성공적인 검사가 수행되기 어렵다.
본 발명은 피검사체의 이상을 파악하는데 필요한 비선형 파라미터값을 확실하게 획득할 수 있는 초음파 진단 장치를 제공하기 위한 것이다.
본 발명의 초음파 진단 장치는 피검사체의 제1 면에 장착되고 제1 반사 신호 및 제2 반사 신호를 수신하는 복수의 탐촉자; 상기 제2 반사 신호를 이용해서 상기 피검사체의 비선형 파라미터값을 산출하는 처리부;를 포함하고, 상기 제1 반사 신호는 상기 제1 면으로부터 상기 피검사체의 제2 면까지 전파된 초음파가 반사된 신호이며, 상기 제2 반사 신호는 상기 제1 면으로부터 상기 제2 면까지 전파된 시간 역전 신호가 반사된 신호일 수 있다.
본 발명에 따르면 반사 모드에서 수신한 종파와 첨단 신호처리 기술에 기초한 집속빔을 이용하여 손상 재료의 비선형 파리미터 절대값을 측정할 수 있다.
비선형 파라미터 절대값에 의해 재료의 손상도를 정확하게 예측할 수 있는 새로운 개념의 실용적인 비선형 초음파 진단 기술이 제공될 수 있다.
도 1은 본 발명의 초음파 진단 장치를 나타낸 개략도이다.
도 2는 본 발명의 시간 역전 처리에 의한 초음파 빔 집속 과정을 설명하는 모식도이다.
도 3은 비교 실시예의 주파수 스펙트럼이다.
도 4는 본 발명의 초음파 진단 방법을 나타낸 개략도이다.
도 1은 본 발명의 초음파 진단 장치를 나타낸 개략도이다.
소성 변형, 피로, 크리프와 같은 손상 재료(이하, 피검사체(10))에 강력한 세기의 단일 주파수 초음파가 입사될 때 발생하는 제2 고조파를 관찰하는 비선형 초음파 검사법은 손상의 조기 탐지에 효과적인 방법으로 알려져 있다. 그러나, 비선형 초음파 검사법은 종파 및 투과법을 이용하고, 상대적 개념의 비선형 파라미터값과 손상도 사이의 상관 관계를 구하는 실험실 수준에 머무르고 있다.
본 발명의 초음파 진단 장치는 반사 모드에서 수신한 종파와 첨단 신호 처리 기술에 기초한 집속빔을 이용하여 피검사체(시편)(10)의 비선형 파리미터값을 측정하여 피검사체(10)의 손상도를 정확하게 예측할 수 있는 새로운 개념의 실용적인 비선형 초음파 진단 기술에 관한 것이다.
실제 현장에서 피검체의 손상 위치를 파악하는 등의 진단을 수행하기 위해서는, 피검체를 통과한 신호를 수신하는 수신 모듈의 교정을 통한 절대적 비선형 파리미터값의 측정이 요구된다. 수신 모듈의 교정 작업은 해당 신호에 포함된 제2 고조파 성분을 이용해서 이루어진다. 그러나, 이미 알려진 비선형 초음파 검사법의 경우 측정되는 제2 고조파 성분이 거의 0이 되는 치명적인 한계를 갖는다. 따라서, 기존의 비선형 초음파 검사법은 제2 고조파의 검출을 어렵게 하는 각종 노이즈가 산재하는 실제 현장에서는 사용되지 못하고, 노이즈의 배제가 가능한 실험실에서만 적용되고 있다.
본 발명의 초음파 진단 장치는 노이즈에 상관없이 감지가 가능한 제2 고조파를 생성함으로써 피검사체(10)의 비선형 파라미터값을 산출하기 위한 것일 수 있다.
노이즈에 강건한, 다시 말해 강한 세기를 갖는 제2 고조파를 생성하기 위해 본 발명의 초음파 진단 장치는 탐촉자(130) 및 처리부(150)를 포함할 수 있다.
탐촉자(130)는 피검사체(10)의 제1 면(11)에 장착되고 제1 반사 신호 및 제2 반사 신호를 수신할 수 있다.
제1 반사 신호는 제1 면(11)으로부터 피검사체(10)의 제2 면(저면)(12)까지 전파된 초음파가 반사된 신호일 수 있다.
제2 반사 신호는 제1 면(11)으로부터 제2 면(12)까지 전파된 시간 역전 신호가 반사된 신호일 수 있다. 이때, 시간 역전 신호는 제1 반사 신호를 이용해서 생성된 것일 수 있다.
복수의 탐촉자(130) 중 하나는 초음파를 생성해서 제2 면(12)을 향해 방사할 수 있다. 공간 분해능의 개선을 위해 복수의 탐촉자(130) 중 나머지 탐촉자는 초음파를 생성하는 탐촉자를 기준으로 점대칭되는 위치에 배치될 수 있다. 결과적으로, 초음파가 생성되는 탐촉자는 다른 탐촉자의 가운데에 배치될 수 있다.
제1 면(11)과 제2 면(12)은 서로 다른 면일 수 있으며, 일 예로 제1 면(11)은 피검사체(10)의 윗면이고, 제2 면(12)은 피검사체(10)의 아랫면일 수 있다.
제1 면(11)에 배치된 복수의 탐촉자(130)는 초음파가 제2 면(12)에서 반사된 제1 반사 신호를 수신할 수 있다.
시간 역전 신호는 복수의 탐촉자(130)로부터 방사되어 제1 면(11)으로부터 제2 면(12)을 향해 전파되고, 제2 반사 신호는 복수의 탐촉자에 수신될 수 있다.
제1 반사 신호가 제2 면(12) 상의 특정 위치 P로부터 반사된 것일 때, 복수의 탐촉자(130)로부터 방사된 시간 역전 신호는 특정 위치 P에 집속될 수 있다. 특정 위치 P에 복수의 탐촉자(130)로부터 방사된 복수의 빔이 집속되므로, 특정 위치 P에서 반사된 빔에 해당하는 제2 반사 신호의 분해능이 개선될 수 있다.
탐촉자(130)는 제1 반사 신호의 시간 역전 신호가 제2 면(12)에서 반사된 제2 반사 신호를 수신할 수 있다.
처리부(150)는 제2 반사 신호를 이용해서 피검사체(10)의 비선형 파라미터값을 산출할 수 있다.
초음파는 피검사체(10)의 제2 면(12) 상의 P 위치에서 반사될 수 있다. 제2 면(12)은 공기, 지지판 등의 다른 매질과 경계가 되는 부분이므로, 제2 면(12)에 반사된 제1 반사 신호 또는 제2 반사 신호에는 피검사체(10) 내부의 미세한 균열에 반사된 신호와 비교하여 매우 큰 크기(magnitude)를 갖는 제2 고조파 성분이 포함될 수 있다. 제2 면(12)에 반사된 신호에 포함된 제2 고조파 성분은 노이즈와 구분될 수 있으므로, 노이즈가 혼재하는 실제 현장에서도 용이하게 파악될 수 있다.
보다 더 노이즈에 강건한 제2 고조파 성분을 얻기 위해 피검사체(10)의 제1 면(11)에 배치된 복수의 탐촉자(130)는 P 위치에 집속되는 집속 빔을 생성할 수 있다.
확실한 빔 집속을 위해 3채널 이상의 배열형 탐촉자(130)가 피검사체(10)의 제1 면(11)에 밀착될 수 있으며, 빔 집속을 위해 시간 역전법이 적용될 수 있다. 시간 역전법이 적용된 시간 역전 신호는 제2 면(12)의 P 위치에 정확하게 집속될 수 있다.
각 탐촉자(130)로부터 피검사체(10)에 방사되는 신호는 시간 역전 처리된 것이므로 피검사체(10)의 특성을 포함한 사전 정보를 몰라도 비선형 결함이 존재하는 P 위치에 정확하게 초음파 빔이 집속될 수 있다.
탐촉자(130) 또는 처리부(150)는 경계면, Lamb파의 다중 모드 등으로 야기된 비선형 성분 신호나, 평판 형상의 피검사체(10)에서 다양한 모드의 반사파로 야기되는 비선형 성분 신호 중에서 관심을 두는 특정 모드의 신호를 추출하고 이를 시간 역전 처리한다.
도 2는 본 발명의 시간 역전 처리에 의한 초음파 빔 집속 과정을 설명하는 모식도이다. 도 1에서는 N개의 탐촉자(130)가 배열된 어레이 트랜스듀서에 대한 시간 역전법을 도시하고 있지만, 본 발명의 실시예는 어레이 트랜스듀서에 한정되지 않고 낱개로 설치되는 탐촉자(130)에 의하여도 얼마든지 구현할 수 있다.
도 1의 첫째 그림을 참조하면 어레이 트랜스듀서에 마련되는 N개의 탐촉자(130) 중에서 하나를 가진시킨다. 가진된 입사파는 피검사체(10)에 전파된다.
도 1의 둘째 그림을 참조하면 피검사체(10)의 경계면에 해당하는 제2 면(12)의 P 위치에 반사되는 산란 신호(제1 반사 신호)는 각 탐촉자(130)에 수신된다. 피검사체(10)의 매질 특성, 피검사체(10)의 표면 지오메트리, 제1 면(11)에 배치된 각 탐촉자(130)로부터 제2 면(12)까지의 거리 차이는 각 탐촉자(130)별 에코 신호의 시간 지연량 차이나 각 탐촉자(130)의 파형 차이와 같은 물리량으로 표현된다.
본 발명의 시간 역전법에 따르면 시간 지연량 차이나 파형 차이에 관한 데이터를 요구할 뿐 사전 정보에 대한 지식은 전혀 필요로 하지 않는다.
P 위치까지의 거리를 초음파의 속도로 나눈 것이 전파 시간이므로, 각 탐촉자(130)별 시간 지연량 차이나 파형 차이에는 피검사체(10)의 표면 지오메트리나, 각 탐촉자(130)로부터 P 위치까지의 거리 차이 등의 사전 정보가 이미 포함되어 있다. 따라서, 탐촉자(130)에서 방사 및 입수되는 신호로부터 시간 지연량을 계산하고 시간 역전 처리를 이용하면 표면 지오메트리나 매질 특성과 같은 사전 정보를 몰라도 P 위치의 검출이 가능해진다.
어레이 트랜스듀서나 피검사체(10)에 대한 사전 정보를 전혀 몰라도, 피검사체(10)의 내부를 전파하여 되돌아온 신호를 이용하기 때문에 피검사체(10)의 기하학적 형상과 물성에 관한 사전 정보가 되돌아온 신호에 그대로 반영되어 있다. 시간 역전법은, 어레이 트랜스듀서나 피검사체(10)에 대한 사전 정보가 전혀 입력되지 않아도 초음파의 전파 시간은 해당 어레이 트랜스듀서나 피검사체(10)에 대하여 불변인 특성에 기반을 두고 있다.
도 1의 셋째 그림을 참조하면, 사전 정보를 획득할 필요없이, N개의 탐촉자(130)에 입수된 파형(제1 반사 신호)을 각 탐촉자(130)별 시간 지연량 차이를 근거로 해서 시간 역전 처리한다. 각 탐촉자(130)는 시간 역전 처리된 새로운 파형(시간 역전 신호)을 피검사체(10)에 입사시킨다. 시간 역전 처리된 초음파 빔(시간 역전 신호)은 P 위치에 정확하게 집속된다.
수신 신호의 시간 역전 처리에서 수신된 원래의 신호를 그대로 사용하거나, 관심을 두는 특정 모드의 비선형 신호를 선별적으로 추출하고 이를 시간 역전 처리하며, P 위치의 정확한 분석이 가능하다.
도 1의 넷째 그림을 참조하면, P 위치에 집중된 초음파 빔(시간 역전 신호)은 각 탐촉자(130)에 다시 입수(제2 반사 신호)된다. 입수된 파형은 신호대 잡음비가 개선된 파형으로서, P 위치에 대한 정확한 정보(좌표, 크기 포함)를 담고 있다.
즉, 시간 역전법에 의하여 산출된 시간 지연량을 반영하여 시간 역전 처리한 상태에서 각 탐촉자(130)를 가진시키면, 가진된 초음파는 P 위치에 집속되게 전파된다. P 위치에 초음파가 집속되면 신호대 잡음비가 개선되므로 깨끗한 결함 영상을 얻을 수 있다.
비선형 결함의 검사 정확도 향상을 위하여 탐촉자(130)의 신호 수신 시간은 신호 송신 시간보다 더 긴 것이 바람직하다. 제1 반사 신호의 수신 시간이 길어질수록 고조파 성분의 피크 진폭이 증가되므로 노이즈 없이 순수한 고조파 성분이 추출될 수 있다.
제1 반사 신호는 처리부(150)에 입력될 수 있다. 처리부(150)는 수신된 시간 영역의 제1 반사 신호를 푸리에 변환하여 주파수 스펙트럼이 구해지면 주파수 영역에서 윈도우 함수를 이용하여 고조파 스펙트럼을 추출할 수 있다. 처리부(150)는 추출된 고조파 스펙트럼을 시간 역전 처리한 후 시간 영역으로 변환해서 시간 역전 신호를 생성할 수 있다. 처리부(150)는 시간 역전 신호를 증폭한 다음 탐촉자(130)로 제공할 수 있다.
탐촉자(130)는 처리부(150)로부터 제공된 시간 역전 신호를 피검사체(10)를 향하여 재방사할 수 있다.
제1 반사 신호는 경계면과 같은 비선형 결함에 대한 정보를 담고 있다. 따라서, 제1 반사 신호를 시간 역전 처리한 시간 역전 신호는 사전 정보를 전혀 몰라도 시간 역전 처리에 따라 비선형 특성을 갖는 P 위치에 정확하게 집속될 수 있다. P 위치까지 전파된 시간 역전 신호는 다시 P 위치에서 반사되어 각 탐촉자(130)로 입수될 수 있다.
처리부(150)는 각 탐촉자(130)로 입수된 제1 반사 신호 또는 제2 반사 신호를 처리할 수 있다. 처리부(150)는 제2 반사 신호를 분석해서 기본 주파수 성분과 제2 고조파 성분을 추출하고, 제2 고조파 성분을 이용해서 상기 비선형 파라미터값을 산출할 수 있다.
처리부(150)는 기본 주파수 성분 또는 제2 고조파 성분에 탐촉자(130)의 전달함수를 곱하여 절대 변위로 변환할 수 있다. 처리부(150)는 탐촉자(130)에 시간 지연을 적용해서 제2 반사 신호를 합성하여 비선형 파라미터값을 산출할 수 있다. 처리부(150)는 제2 반사 신호의 회전 또는 감쇠를 보정해서 비선형 파라미터값을 산출할 수 있다.
처리부(150)에는 오실로스코프(151), 처리 모듈(153), 멀티 채널 펑션 제너레이터(155)(multi channel function generator), 멀티 채널 증폭기(157)(multi channel amplifier), 임피던스 매칭기(159)(impedance matching)가 마련될 수 있다.
오실로스코프(151)는 탐촉자(130)로부터 수신된 제1 반사 신호 또는 제2 반사 신호를 모니터링하고, 처리 모듈(153)에 제공할 수 있다.
처리 모듈(153)은 제1 반사 신호를 처리해서 멀티 채널 평션 제너레이터로 제공하거나, 제2 반사 신호를 이용해서 피검사체(10)의 비선형 파라미터값을 산출할 수 있다.
처리 모듈(153)에는 탐촉자 교정 모듈, 시간 역전 신호 처리 모듈, 수신 신호 처리 모듈, 절대 변위 계산 모듈, 비선형 파라미터값 계산 모듈, 회절 및 감쇠 보정 모듈이 마련될 수 있다.
탐촉자 교정 모듈은 제2 고조파 성분의 절대 변위를 파악하기 위해 탐촉자(130)의 수신 주파수 등을 교정할 수 있다.
시간 역전 신호 처리 모듈은 각 탐촉자(130)에서 수신한 제1 반사 신호에 시간 역전법을 적용할 수 있다.
수신 신호 처리 모듈은 제1 반사 신호 또는 제2 반사 신호를 처리할 수 있다. 일 예로, 수신 신호 처리 모듈은 복수의 탐촉자(130)로부터 획득된 복수의 제2 반사 신호에 시간 지연을 적용한 후 합성할 수 있다.
절대 변위 계산 모듈은 기본 주파수 성분 또는 제2 고조파 성분에 탐촉자(130)의 전달함수를 곱하여 제2 고조파 성분 등의 절대 변위를 계산할 수 있다.
비선형 파라미터값 계산 모듈은 계산된 절대 변위를 이용해서 수학식 1과 같은 비선형 파라미터값 β를 산출할 수 있다.
Figure PCTKR2018003646-appb-M000001
회절 및 감쇠 보정 모듈은 제2 반사 신호 등에 포함된 회절 요소 및 감쇠 요소를 보정할 수 있다.
탐촉자 교정 모듈, 수신 신호 처리 모듈, 절대 변위 계산 모듈, 비선형 파라미터값 계산 모듈, 회절 및 감쇠 보정 모듈의 세부 동작 및 수학 모델은 논문 'Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals'(J Nondestruct Eval DOI 10.1007/s10921-014-0273-5)에 나타나 있다.
멀티 채널 평션 제너레이터는 제1 반사 신호가 처리된 결과를 이용해서 제1 면(11)에 설치된 복수의 탐촉자(130)에 할당되는 각 시간 역전 신호를 생성할 수 있다.
멀티 채널 증폭기는 각 탐촉자(130)에 할당된 시간 역전 신호를 증폭할 수 있다.
임피던스 매칭기는 시간 역전 신호가 제1 면(11)에서 반사되어 처리부(150)로 되돌아오는 것을 방지하는 것이다.
도 3은 비교 실시예의 주파수 스펙트럼이다.
제2 면(12)의 P 위치가 아니라 피검사체(10) 내부의 결함(20)에서 반사된 비교 신호의 경우, 제2 고조파 성분(Spectrum of 2nd harmonics)의 크기(magnitude)는 기본 성분(Spectrum of fundamental frequency)을 기준으로 거의 0에 수렴하는 값을 가질 수 있다.
따라서, 노이즈가 존재하는 실제 현장에서는 피검사체(10) 내부의 결함(20)을 대상으로 하는 비교 신호를 이용해서 비선형 파라미터값의 산출이 불가능하다.
본 발명에 따르면, 제1 반사 신호는 제2 면(12)에 반사되므로 매우 큰 magnitude를 갖는 제2 고조파 성분을 포함할 수 있다. 따라서, 각종 노이즈의 존재에도 불구하고, 제2 고조파 성분을 구분해서 처리할 수 있으므로, 실제 현장에서도 비선형 파라미터값을 산출할 수 있다. 비선형 파라미터값은 추후 피검사체(10) 내부의 결함 파악에 이용될 수 있다.
도 4는 본 발명의 초음파 진단 방법을 나타낸 개략도이다.
먼저, 선택된 탐촉자(130)의 가진에 의해 피검사체(10)의 제1 면(11)에 초음파가 방사될 수 있다.
피검사체(10)의 내부를 통과한 초음파는 제2 면(12)에서 반사되어(제1 반사 신호) 제1 면(11)에 배치된 복수의 탐촉자(130)에 수신될 수 있다. 제1 반사 신호가 수신되는 탐촉자에는 초음파를 생성한 탐촉자도 포함될 수 있다.
각 탐촉자(130)에서 수신한 제1 반사 신호를 시간 역전시킨 후 재송신하면 제2 면(12)의 반사 위치 P에 빔(시간 역전 신호)이 집속될 수 있다.
시간 역전 신호가 위치 P에서 반사된 제2 반사 신호를 각 탐촉자(130)에서 수신하고, 신호 처리한 후 기본 주파수 성분과 제2 고조파 성분을 구할 수 있다.
각 탐촉자(130)의 전달함수를 곱하여 절대 변위로 변환하고, 탐촉자(130)에 시간 지연을 적용해서 수신파를 합성할 수 있다.
회절/감쇠 보정전의 비선형 파라미터 값을 구하고, 회절 및 감쇠를 보정하여 최종적인 비선형 파라미터값을 구할 수 있다.
본 발명의 초음파 진단 장치는 비접촉식 가진과 반사법의 적용을 통해 피검사체(10)의 일면만 이용하므로 현장 적용성이 매우 높다. 빔 집속을 위해 피검사체(10)의 내부를 전파하여 되돌아온 신호를 이용하기 때문에 배열 탐촉자(130)의 제원이나 피검사체(10)의 기하학적 형상, 물성을 사전에 알 필요가 없다. 탐촉자(130)의 교정을 통해 피검사체(10)의 절대 비선형 파라미터값을 측정하며, 회절 및 감쇠 보정을 적용해서 보다 정확한 비선형 파라미터값을 제공할 수 있다. 최소 3채널의 배열 탐촉자(130)를 이용해서 비선형 초음파 진단 장치가 구성되므로, 생산성이 높은 장점이 있다.
본 발명의 초음파 진단 장치는 별도의 레이저 조사 수단이 배제될 수 있다. 최초 가진은 시편의 윗면에 접촉해 있는 배열 탐촉자(복수의 단일 탐촉자 포함) 중 중앙에 배치된 탐촉자로부터 생성된 입사 신호를 이용해서 이루어질 수 있다.
시편의 저면으로부터 반사된 제1 반사 신호를 배열 탐촉자가 수신할 수 있다.
신호 처리를 통해 배열 탐촉자에 수신된 제1 반사 신호를 시간 역전 후 동시에 재전송할 수 있다(이 경우, 재송신시에 비선형 발생을 위하여 고출력 전압을 각 탐촉자에 인가하여 시편 내부에 비선형 초음파를 발생시킴). 시편 저면으로부터 재수신된 제2 반사 신호를 신호 처리하여 기본 주파수와 제2 고조파(비선형 성분)의 신호를 추출하고, 비선형 파라미터를 측정할 수 있다.
시간 역전 후, 동시 재송신을 통하여 시편 저면의 특정 지점에 신호를 집속하는 것이 중요하다.

Claims (7)

  1. 피검사체의 제1 면에 장착되고 제1 반사 신호 및 제2 반사 신호를 수신하는 복수의 탐촉자;
    상기 제2 반사 신호를 이용해서 상기 피검사체의 비선형 파라미터값을 산출하는 처리부;를 포함하고,
    상기 제1 반사 신호는 상기 제1 면으로부터 상기 피검사체의 제2 면까지 전파된 초음파가 반사된 신호이며,
    상기 제2 반사 신호는 상기 제1 면으로부터 상기 제2 면까지 전파된 시간 역전 신호가 반사된 신호이고,
    상기 시간 역전 신호는 상기 제1 반사 신호를 이용해서 생성된 초음파 진단 장치.
  2. 제1항에 있어서,
    복수의 상기 탐촉자 중 하나는 상기 초음파를 생성해서 상기 제2 면을 향해 방사하는 초음파 진단 장치.
  3. 제2항에 있어서,
    복수의 상기 탐촉자 중 나머지 탐촉자는 상기 초음파를 생성하는 탐촉자를 기준으로 대칭되는 위치에 배치되는 초음파 진단 장치.
  4. 제1항에 있어서,
    상기 초음파는 복수의 상기 탐촉자 중 하나로부터 방사되고,
    상기 제1 반사 신호는 복수의 상기 탐촉자에 수신되며,
    상기 시간 역전 신호는 복수의 상기 탐촉자로부터 방사되며,
    상기 제2 반사 신호는 복수의 상기 탐촉자에 수신되고,
    상기 제1 반사 신호가 상기 제2 면 상의 특정 위치로부터 반사된 것일 때, 복수의 상기 탐촉자로부터 방사된 상기 시간 역전 신호는 상기 특정 위치에 집속되는 초음파 진단 장치.
  5. 제1항에 있어서,
    상기 처리부는 상기 제2 반사 신호를 분석해서 기본 주파수 성분과 제2 고조파 성분을 추출하고, 상기 제2 고조파 성분을 이용해서 상기 비선형 파라미터값을 산출하는 초음파 진단 장치.
  6. 제1항에 있어서,
    상기 처리부는 상기 제2 반사 신호를 분석해서 기본 주파수 성분과 제2 고조파 성분을 추출하고, 각 성분에 상기 탐촉자의 전달함수를 곱하여 절대 변위로 변환하며, 상기 탐촉자에 시간 지연을 적용해서 상기 제2 반사 신호를 합성하여 상기 비선형 파라미터값을 산출하는 초음파 진단 장치.
  7. 제6항에 있어서,
    상기 처리부는 상기 제2 반사 신호의 회절 또는 감쇠를 보정해서 상기 비선형 파라미터값을 산출하는 초음파 진단 장치.
PCT/KR2018/003646 2017-06-19 2018-03-28 반사모드 비선형 초음파 진단 장치 WO2018236029A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0077241 2017-06-19
KR1020170077241A KR101963820B1 (ko) 2017-06-19 2017-06-19 반사모드 비선형 초음파 진단 장치

Publications (1)

Publication Number Publication Date
WO2018236029A1 true WO2018236029A1 (ko) 2018-12-27

Family

ID=64737264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003646 WO2018236029A1 (ko) 2017-06-19 2018-03-28 반사모드 비선형 초음파 진단 장치

Country Status (2)

Country Link
KR (1) KR101963820B1 (ko)
WO (1) WO2018236029A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100586B1 (ko) * 2019-06-05 2020-04-13 한전케이피에스 주식회사 볼트 검사장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120117119A (ko) * 2011-04-14 2012-10-24 원광대학교산학협력단 비선형 파라미터 측정을 위한 전달부 교정 방법, 상기 교정 방법을 이용한 교정 장치, 및 상기 교정 방법을 이용한 비선형 파라미터 측정 방법 및 장치
KR20120117207A (ko) * 2011-04-14 2012-10-24 원광대학교산학협력단 자동 빔 집속 장치 및 이를 이용한 비파괴 검사 방법
KR101257203B1 (ko) * 2011-11-24 2013-04-22 한양대학교 산학협력단 비선형 레이저 표면파를 이용한 미소손상 진단 장치 및 방법
JP2015148602A (ja) * 2014-01-07 2015-08-20 株式会社神戸製鋼所 超音波探傷方法
KR101656377B1 (ko) * 2015-04-15 2016-09-22 한양대학교 산학협력단 초음파를 이용한 열화 평가 및 강도 추정 장치, 그리고 이를 이용한 열화 평가 및 강도 추정 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101414520B1 (ko) 2013-04-30 2014-07-04 한국과학기술원 비선형 초음파 모듈레이션 기법을 이용한 구조물의 무선 진단장치 및 그를 이용한 안전진단 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120117119A (ko) * 2011-04-14 2012-10-24 원광대학교산학협력단 비선형 파라미터 측정을 위한 전달부 교정 방법, 상기 교정 방법을 이용한 교정 장치, 및 상기 교정 방법을 이용한 비선형 파라미터 측정 방법 및 장치
KR20120117207A (ko) * 2011-04-14 2012-10-24 원광대학교산학협력단 자동 빔 집속 장치 및 이를 이용한 비파괴 검사 방법
KR101257203B1 (ko) * 2011-11-24 2013-04-22 한양대학교 산학협력단 비선형 레이저 표면파를 이용한 미소손상 진단 장치 및 방법
JP2015148602A (ja) * 2014-01-07 2015-08-20 株式会社神戸製鋼所 超音波探傷方法
KR101656377B1 (ko) * 2015-04-15 2016-09-22 한양대학교 산학협력단 초음파를 이용한 열화 평가 및 강도 추정 장치, 그리고 이를 이용한 열화 평가 및 강도 추정 방법

Also Published As

Publication number Publication date
KR101963820B1 (ko) 2019-03-29
KR20180137710A (ko) 2018-12-28

Similar Documents

Publication Publication Date Title
US4274288A (en) Method for measuring the depth of surface flaws
US6823736B1 (en) Nondestructive acoustic emission testing system using electromagnetic excitation and method for using same
Zhang et al. Effects of array transducer inconsistencies on total focusing method imaging performance
US20070186655A1 (en) Methods and apparatus for porosity measurement
WO2010077044A2 (ko) 음향초음파 전파 영상화 장치
KR101915281B1 (ko) 곡률배관용 위상배열 초음파 검사시스템 및 검사방법
KR101251204B1 (ko) 초음파 비파괴 검사 장치 및 초음파 비파괴 검사 방법
de Castro et al. Baseline-free damage imaging algorithm using spatial frequency domain virtual time reversal
CN113533504B (zh) 基于激光超声表面波频域参数的亚表面裂纹定量测量方法
WO2018236029A1 (ko) 반사모드 비선형 초음파 진단 장치
KR101964758B1 (ko) 비접촉식 가진에 의한 비선형 초음파 진단 장치
KR100542651B1 (ko) 비선형 음향반응을 이용한 비파괴 음향 탐사방법
KR102116051B1 (ko) 배열형 초음파 센서를 이용한 펄스 에코형 비선형 검사 장치
KR101191364B1 (ko) 비선형 평가 시스템 및 장치
JP4738243B2 (ja) 超音波探傷システム
KR102106940B1 (ko) 배음 진동자를 이용한 초음파 비파괴 검사 장치
JP2002139478A (ja) 構造材料のクリープ損傷検出方法及び装置
JP4761147B2 (ja) 超音波探傷方法及び装置
JP2018179751A (ja) 超音波検査方法及び超音波検査装置
JP2761928B2 (ja) 非破壊検査方法及び装置
KR101883987B1 (ko) 초음파의 비선형 특성을 이용한 영상화 장치 및 방법
Mares et al. Geometric approach to detecting and locating cracks in thin plates by Lamb wave reflection: case of moving transducer
KR20180027274A (ko) 유효탐지거리 계측 기능을 갖는 비파괴 검사 장치
JP2739972B2 (ja) 超音波探傷装置
SE1551214A1 (en) Method and system for inspecting plate-like structures using ultrasound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820164

Country of ref document: EP

Kind code of ref document: A1