WO2018235902A1 - Zinc-based alloy shot and method for producing same - Google Patents
Zinc-based alloy shot and method for producing same Download PDFInfo
- Publication number
- WO2018235902A1 WO2018235902A1 PCT/JP2018/023645 JP2018023645W WO2018235902A1 WO 2018235902 A1 WO2018235902 A1 WO 2018235902A1 JP 2018023645 W JP2018023645 W JP 2018023645W WO 2018235902 A1 WO2018235902 A1 WO 2018235902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc
- based alloy
- shot
- alloy shot
- wire
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C11/00—Selection of abrasive materials or additives for abrasive blasts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
Definitions
- the present invention relates to a zinc-based alloy shot used for blasting and a method of manufacturing the same.
- BACKGROUND ART Blasting which is called a shot and which causes particles to collide with a workpiece to perform surface treatment (deburring, rounding (Ring), surface roughness adjustment, textured finish, etc.) of a workpiece has been known for a long time.
- the material of the shot is selected in accordance with the material of the work and the processing purpose. For example, in the case of a blast process on a die-cast product composed of an aluminum alloy, a magnesium alloy or a zinc alloy, zinc shot is selected in consideration of the polishing ability and the dust explosion resistance.
- Patent Document 1 discloses a shot made of zinc. This shot has a Vickers hardness of 40 to 50 HV (as defined in JIS Z2244), and therefore has a low cleaning ability.
- Patent Document 2 discloses a zinc-based alloy shot made of Zn—Mn.
- Mn is a target of the PRTR system and is not preferable from the viewpoint of safety and environmental protection.
- the following zinc-based alloy shot and its manufacturing method are provided.
- Zinc-based alloy shot The zinc-based alloy shot is composed of Al and the balance of Zn and unavoidable impurities, The content of Al relative to the zinc-based alloy shot is 1.0 to 6.0 mass%, The zinc-based alloy shot, wherein the Vickers hardness of the zinc-based alloy shot is 50 to 100 HV.
- the zinc-based alloy shot is further added as a trace addition element, The zinc-based alloy shot according to Item 1 or 2, wherein the addition amount of the trace additive element is 0.0001 to 0.25 mass% with respect to the zinc-based alloy shot.
- the zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm, or (1: 0.8) ⁇ (diameter: length) ⁇ (1: 1.3)
- a zinc based alloy shot according to any one of the preceding claims which is a cylinder having a ratio of.
- the zinc-based alloy shot is a granular body, and when the length in the longitudinal direction of the shot obtained from the projection is a and the maximum diameter in the direction orthogonal to the longitudinal direction is b, 60% or more
- a method of producing a zinc-based alloy shot according to any one of 1 to 4 above Obtaining a lump having an alloy composition of raw material metals Zn, Al, and optionally Cu; Obtaining a wire of a predetermined diameter from the mass; Cutting the wire to a predetermined length; Including In the step of obtaining the wire, the step of rolling and applying stress to a lump is provided. [8] In the step of cutting the wire, the wire is cut such that (1: 0.8) ⁇ (diameter of wire: length of wire) ⁇ (1: 1.3). The manufacturing method of the zinc base alloy shot of description. [9] The method for producing a zinc-based alloy shot according to Item 7 or 8, wherein in the step of obtaining the wire, the lump is processed so that the diameter of the wire is ⁇ 0.4 to 2.0 mm.
- the present invention it is possible to provide a zinc-based alloy shot having a high cleaning ability and a long life.
- a zinc-based alloy shot which not only suppresses the occurrence of darkening of the work but also improves the cleaning ability, the life and the tensile strength.
- the zinc-based alloy shot consists of Al and the balance Zn and unavoidable impurities. And, the content of Al with respect to the zinc based alloy shot is 1.0 to 6.0 mass%. And, the Vickers hardness of the zinc based alloy shot is 50 to 90 HV.
- the zinc based alloy shot according to one aspect of the present invention is higher in hardness and higher in cleaning ability than zinc because Al is added.
- the impact resistance (toughness) is improved, the life is long.
- Al is relatively inexpensive, it is possible to inexpensively manufacture a zinc-based alloy shot having a high cleaning ability and a long life.
- Cu may be added as a trace additive element to the zinc-based alloy shot. Then, the addition amount of the trace additive element may be 0.0002 to 0.25 mass% with respect to the shot of the zinc-based alloy. By adding a very small amount of Cu, it is possible to suppress the occurrence of darkening when blasting is performed.
- the zinc-based alloy shot is composed of Al, Cu as a trace additive element, Zn as a balance, and unavoidable impurities.
- the content of Al relative to the zinc-based alloy shot is 1.0 to 6.0 mass%
- the content of Cu with respect to the zinc-based alloy shot is 0 to 0.25 mass%
- the zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm, or a ratio of (1: 0.8) ⁇ (diameter: length) ⁇ (1: 1.3) It is a cylinder that has In the zinc-based alloy shot, the Vickers hardness of the zinc-based alloy shot is 50 to 90 HV.
- One embodiment of the present invention is a method of making a zinc based alloy shot.
- This manufacturing method may include the following steps (1) to (6).
- the fluidity of the molten metal is improved. Therefore, the nozzle can be favorably dropped without being blocked by the molten metal.
- the diameter of the granular material is 0.2 to 2.0 mm, a granular material having a relatively uniform shape can be obtained.
- One embodiment of the present invention is a method of making a zinc based alloy shot.
- This manufacturing method may include the following steps (11) to (13).
- (11) A step of obtaining a lump having an alloy composition of raw material metals Zn, Al, and optionally Cu.
- (12) A step of obtaining a wire of a predetermined diameter from a lump.
- (13) Cutting the wire to a predetermined length.
- the process of obtaining a wire may include a process of rolling and applying stress to a lump.
- the toughness of the alloy is improved. As a result, when the lump is rolled and processed into a wire, it is not broken during the processing. Furthermore, the mechanical properties are improved by applying stress to the wire when rolling the mass.
- the mass in the step of obtaining the wire, is processed so that the diameter of the wire is ⁇ 0.4 to 2.0 mm, and in the step of cutting the wire, (1: 0.8) ⁇ (Wire diameter: wire length) ⁇ (1: 1.3), or (1: 0.8) ⁇ (wire diameter: wire length) ⁇ (1: 1.2)
- the wire may be cut to be If the diameter of the wire is ⁇ 0.4 mm or more, a wire having mechanical strength necessary for blasting can be obtained. Further, if the relatively soft work such as an aluminum die-cast product is subjected to a blast process if it is not more than ⁇ 2.0 mm, the work will not be damaged more than necessary. Then, by cutting the wire so that the ratio of the diameter and the length of the wire after cutting falls within this range, it is possible to carry out blasting with less variation in finished quality.
- the zinc-based alloy shot of one embodiment contains Al.
- Al has a synergistic effect with Zn and improves the Vickers hardness and impact resistance (toughness) of the zinc-based alloy. If the content of Al is too small, the added effect can not be obtained. When the amount is too large, the influence of the physical properties of Al becomes so strong that the impact resistance of the zinc-based alloy tends to decrease.
- the Al content (100% based on the total amount: the same applies hereinafter) is 1.0 to 6.0%, and may be 1.3 to 5.8%, or 2.9 to 5. It may be 6%.
- the additive amount of Cu (total amount 100% standard: the same applies hereinafter) is 0 to 0.25%, may be 0.0001 to 0.25%, or 0.0002 to 0.25. It may be 0.0002 to 0.05%.
- Cu also has the effect of improving the Vickers hardness and impact resistance of zinc-based alloy shots.
- the addition of a small amount of Cu not only imparts the effect of suppressing the occurrence of darkening to the above-described work, but also has the effect of further improving the cleaning ability and the life of the zinc-based alloy shot.
- Zinc-based alloy shots are also used for workpieces with relatively low hardness, such as die-cast products made of aluminum alloy, magnesium alloy or zinc alloy.
- the hardness of the zinc-based alloy shot is too low, the ability to clean the workpiece is insufficient, and when it is too hard, the design of the surface of the workpiece is affected.
- the Vickers hardness of the zinc-based alloy shot may be 50 to 100 HV, 50 to 90 HV, or 70 to 90 HV, and the hardness may be Al
- the content of Cu or the amount of addition of Cu may be adjusted.
- the zinc-based alloy shot of one embodiment is composed of Zn and Al, or Zn and Al and a slight amount of Cu, but may contain other unavoidable impurities.
- the content of unavoidable impurities increases, the impact resistance decreases, leading to a decrease in life. Therefore, it is desirable that the total content of unavoidable impurities be as small as possible.
- Al content is 1.0 to 6.0% with respect to zinc-based alloy shot,
- the content of Cu with respect to a shot of zinc based alloy is 0.0001 to 0.25 mass%,
- Particularly preferred is a zinc-based alloy shot having a Vickers hardness of 50 to 100 HV for the zinc-based alloy shot.
- the content of Al is 1.3 to 5.8% with respect to a zinc based alloy shot
- the content of Cu is 0.0002 to 0.05% by mass with respect to a zinc based alloy shot
- Zinc-based alloy shots with a Vickers hardness of 70 to 90 HV of the zinc-based alloy shot are furthermore particularly preferred.
- S01 Step of weighing the raw material
- the metal as the raw material is weighed.
- a raw material (metal) of Al aluminum metal special type 1 (99.90% or more) of JISH2102 or refined aluminum metal special (99.995% or more) of JISH2111 (or ICS 77.120.10) -To list 1 type (99.990% or more) ⁇ 2 types (99.95% or more), and as a Cu raw material (metal), mention the electric copper ingot (99.96% or more) of JIS H 2121. Can.
- S02 Dissolution step After the weighed metal is introduced into the crucible, the crucible is heated (eg, about 600 ° C.). The metal is melted by heating to form a molten metal having a composition of Zn-Al or Zn-Al-Cu.
- Molten metal transfer step Molten metal is introduced into the molten metal holding vessel.
- the molten metal holding vessel is provided with a heating means, and can hold the molten metal so as not to be cooled more than necessary at the time of manufacturing the zinc-based alloy shot.
- the molten metal holding temperature at this time varies depending on the alloy composition and the production scale, but may be appropriately set in the range of 500 to 600 ° C.
- a nozzle for dropping the molten metal is provided at the bottom of the molten metal holding vessel, and a cooling tank into which a cooling medium is charged is disposed below the nozzle.
- the cooling medium is a liquid, and may be water, oil or the like.
- S04 Granulating step
- the molten metal in the molten metal holding vessel is dropped from the nozzle. Before reaching the cooling medium from the nozzle, it is spheroidized under the influence of surface tension. The molten metal reaching and coming into contact with the cooling medium is rapidly cooled and solidified in a spherical shape.
- the temperature of the cooling medium is raised by the contact of the dropped molten metal, which causes the quenching of the molten metal to be prevented. Therefore, the cooling medium holds the cooling medium at the set temperature.
- the preset cooling temperature may be usually 60 ° C. or less, or 30 to 40 ° C.
- S05 Classification Step On the bottom of the cooling medium, particles of zinc alloy are deposited.
- the product is collected, dried by a drier, and classified by a classifier to obtain a zinc-based alloy shot.
- Classification is performed so as to obtain a predetermined particle size in accordance with the intended use of the zinc-based alloy shot.
- the shape of the molten metal droplets is not a perfect sphere, but is stretched in the falling direction to become a distorted sphere or an oval. For this reason, the shape of the particles obtained, that is, the particles of the shot, becomes slightly distorted spherical, spheroidal, or cylindrical with rounded corners.
- the a / b of the 60% or more shot is 1.0 to It is preferably in the range of 1.3, and also in the range of 1.0 to 1.2.
- Al content is 1.0 to 6.0% with respect to zinc-based alloy shot
- the content of Cu with respect to a shot of zinc based alloy is 0.0001 to 0.25 mass%
- Zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm
- the a / b of the 60% or more shot is in the range of 1.0 to 1.3
- a zinc-based alloy shot having a Vickers hardness of 50 to 100 HV for the zinc-based alloy shot.
- the content of Al is 1.3 to 5.8 mass% with respect to a zinc based alloy shot
- the content of Cu to zinc based alloy shot is 0.0002 to 0.05%
- Zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm
- the a / b of the 60% or more shot is in the range of 1.0 to 1.2
- Is within Zinc-based alloy shots with a Vickers hardness of 70 to 90 HV of the zinc-based alloy shot are furthermore particularly preferred.
- the method of producing the zinc-based alloy shot is not limited to the method described above. An example of another form of manufacturing method is described below with reference to FIG.
- Mass Production Step A mass having a composition of Zn—Al or Zn—Al—Cu is formed from the metal serving as the raw material.
- cylindrical lumps called billets may be produced by smelting from metal as a raw material.
- a wire is manufactured from a billet.
- a billet is inserted into a plurality of dies, and the billet is reduced in diameter by plastic deformation by drawing out the billet to manufacture a wire to a desired diameter. Since the billet of the present embodiment contains Al, the slip property with the die is good. Therefore, when manufacturing the wire, it is possible to prevent the wire from being cut or generating a micro crack in the middle.
- the addition of Cu as a trace additive element improves the tensile strength of the zinc-based alloy. As a result, during wire manufacturing, it is possible to prevent the wire from being cut or micro-cracked on the way.
- the mechanical properties can be adjusted by changing the billet pulling speed or the diameter and number of dies.
- the zinc-based alloy is given stress to improve the mechanical properties, but if it is made thinner than necessary, it is damaged by this processing.
- the diameter is too large, the stress is not sufficiently imparted, or if the workpiece having a relatively low hardness is subjected to blasting, the surface of the workpiece is damaged.
- the diameter of the wire may be ⁇ 0.4 mm to 2.0 mm.
- the obtained wire is cut in series so as to have a predetermined length to obtain particulate matter.
- the wire may be cut so that (1: 0.8) ⁇ (wire diameter: wire length) ⁇ (1: 1.3), (1: 0.8)
- the wire may be cut so that ⁇ (wire diameter: wire length) ⁇ (1: 1.2).
- Al content is 1.0 to 6.0% with respect to zinc-based alloy shot
- the content of Cu with respect to a shot of zinc based alloy is 0.0001 to 0.25%
- the zinc based alloy shot is a cylinder having a ratio of (1: 0.83) ⁇ (diameter: length) ⁇ (1: 1.25)
- the a / b of the 60% or more shot is in the range of 1.0 to 1.3
- a zinc-based alloy shot having a Vickers hardness of 50 to 100 HV for the zinc-based alloy shot.
- the content of Al is 1.3 to 5.8% with respect to a zinc based alloy shot,
- the content of Cu for zinc based alloy shot is 0.0002 to 0.25%
- the zinc based alloy shot is a cylinder having a ratio of (1: 0.83) ⁇ (diameter: length) ⁇ (1: 1.25),
- the a / b of the 60% or more shot is in the range of 1.0 to 1.2
- a zinc-based alloy shot having a Vickers hardness of 70 to 90 HV for the zinc-based alloy shot.
- a zinc-based alloy shot was prepared from Al and Cu weighed in proportions shown in Table 1 described later and Zn ingot according to steps S01 to S05 (type A) or steps S11 to S14 (type B) described above.
- Type A A zinc-based alloy manufactured according to steps S01 to S05 in the above-mentioned manufacturing method, and classified so that the average particle diameter is 0.8 mm and the a / b described above is 1.0 to 1.3.
- B type A zinc-based alloy shot manufactured according to steps S11 to S14 and having a wire diameter of 0.8 mm.
- the blasting time required for the burrs to be completely removed was measured and evaluated according to the following criteria. The removal of burrs was evaluated visually. :: The burr is removed in a blasting time of 30 seconds. ⁇ : The burrs are removed in a blasting time of 60 seconds. Fair: Burr is removed by blasting time of 90 seconds. X: The burr is not removed even by the blasting time of 90 seconds.
- ⁇ Evaluation of consumption amount> In any type of zinc-based alloy shot, Examples 1 to 10 in which the added amount of Al is in the range of 1.0 to 6.0% were evaluated as ⁇ or more under any condition. Furthermore, even when Cu was added in a small amount in the range of 0.0001 to 0.25%, the evaluation was ⁇ or more under any condition.
- ⁇ evaluation is a result that is inferior to ⁇ ⁇ evaluation but has no problem in practical use, and it is suggested that optimization of the projection conditions (such as the projection speed and the particle diameter) can result in more than ⁇ ⁇ evaluation. Therefore, in Examples 1 to 10, it is understood that the evaluation of the consumption amount is good.
- the evaluation of the consumed amount was equivalent or better. This is thought to be due to the mechanical properties of the zinc-based alloy shot being improved and the impact resistance being improved as a result of including the process of applying stress during the manufacturing process of the B-type zinc-based alloy shot. .
- Comparative Example 3 in which the added amount of Al is excessive and Comparative Example 4 in which the added amount of Cu is excessive were evaluated as x. In any case, it is considered that the impact resistance is deteriorated by adding Al and Cu in excess.
- ⁇ Deburring ability> In any of the types of zinc-based alloy shots, in Examples 1 to 10 in which the amount of added Al is in the range of 1.0 to 6.0%, the evaluation tends to decrease as the amount of added Al increases. However, the evaluation was ⁇ or more under any condition. Furthermore, even when Cu was added in a small amount in the range of 0.0001 to 0.25%, the evaluation was ⁇ or more under any condition.
- ⁇ evaluation is a result that is inferior to ⁇ ⁇ evaluation but has no problem in practical use, and it is suggested that optimization of the projection conditions (such as the projection speed and the particle diameter) can result in more than ⁇ ⁇ evaluation. Therefore, in Examples 1 to 10, it is understood that the evaluation of the consumption amount is good.
- the evaluation of the deburring ability is equivalent or better. This is considered to be due to the improvement of the mechanical properties of the zinc-based alloy shot because the process of applying stress is included in the manufacturing process of the B-type zinc-based alloy shot.
- Comparative Example 1 in which Al was not added and Comparative Example 2 in which the addition amount was too small were evaluated as x. This is considered to be due to the Vickers hardness being low relative to the work.
- the comparative examples 5 and 6 in which the diameter-length ratio was too small or too large were all evaluated as ⁇ . Since the collision of the shot of the zinc-based alloy with respect to the workpiece varies, it is considered that the deburring ability is lowered as a result.
- the zinc-based alloy shot includes removal of burrs and burrs of non-ferrous metal parts such as aluminum die cast products and aluminum cast products, sand removal of cast products, baking removal of molds and release agents, oxide film It can be suitably used for shot blasting for the purpose of removing hot water wrinkles, sealing treatment and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Conductive Materials (AREA)
- Contacts (AREA)
Abstract
Provided is a zinc-based alloy shot that comprises Al and a remainder of Zn and unavoidable impurities, in which the Al content is 1.0-6.0 mass% with respect to the zinc-based alloy shot, and in which the Vickers hardness is 50-100 HV. Cu may also be added to the zinc-based alloy shot as a trace additive element. The added amount of the trace additive element may be 0.0001-0.25 mass% with respect to the zinc-based alloy shot.
Description
本発明は、ブラスト加工に用いる亜鉛基合金ショット及びその製造方法に関する。
The present invention relates to a zinc-based alloy shot used for blasting and a method of manufacturing the same.
ショットと呼ばれる粒子を被加工物に衝突させてワークの表面処理(バリ除去、丸み付け(R付け)、面粗度調整、梨地加工、など)を行うブラスト加工は古くから知られている。ショットの材質は、ワークの材質や加工目的に合わせて選択される。例えば、アルミニウム合金やマグネシウム合金や亜鉛合金で構成されるダイカスト製品に対するブラスト加工の場合、研掃能力と耐粉塵爆発性を考慮して、亜鉛ショットが選択されている。
BACKGROUND ART Blasting which is called a shot and which causes particles to collide with a workpiece to perform surface treatment (deburring, rounding (Ring), surface roughness adjustment, textured finish, etc.) of a workpiece has been known for a long time. The material of the shot is selected in accordance with the material of the work and the processing purpose. For example, in the case of a blast process on a die-cast product composed of an aluminum alloy, a magnesium alloy or a zinc alloy, zinc shot is selected in consideration of the polishing ability and the dust explosion resistance.
特許文献1は亜鉛からなるショットが開示されている。このショットはビッカース硬度が40~50HV(JIS Z2244にて規定)であるので、研掃能力が低い。
Patent Document 1 discloses a shot made of zinc. This shot has a Vickers hardness of 40 to 50 HV (as defined in JIS Z2244), and therefore has a low cleaning ability.
その為、亜鉛合金からなるショットが開発されている。例えば、特許文献2ではZn-Mnからなる亜鉛基合金ショットが開示されている。しかし、MnはPRTR制度の対象であり、安全性や環境保全の観点から好ましくない。
Therefore, shots made of zinc alloy have been developed. For example, Patent Document 2 discloses a zinc-based alloy shot made of Zn—Mn. However, Mn is a target of the PRTR system and is not preferable from the viewpoint of safety and environmental protection.
以上を鑑み、本発明は研掃能力が高く、且つ寿命が長い新しい亜鉛基合金ショットとその製造方法を提供することを課題とする。
In view of the above, it is an object of the present invention to provide a new zinc-based alloy shot having a high cleaning capability and a long life, and a method of manufacturing the same.
本発明により、以下の亜鉛基合金ショット及びその製造方法を提供する。
〔1〕亜鉛基合金ショットであって、
前記亜鉛基合金ショットは、Alと残部がZn及び不可避不純物からなり、
前記亜鉛基合金ショットに対するAlの含有量が1.0~6.0質量%であり、
前記亜鉛基合金ショットのビッカース硬さが50~100HVである、亜鉛基合金ショット。
〔2〕前記亜鉛基合金ショットのビッカース硬さが50~90HVである、前記1項記載の亜鉛基合金ショット。
〔3〕前前記亜鉛基合金ショットは、更に微量添加元素としてCuが添加されており、
前記微量添加元素の添加量は前記亜鉛基合金ショットに対して0.0001~0.25質量%である、前記1又は2項に記載の亜鉛基合金ショット。
〔4〕前記亜鉛基合金ショットは、0.2~2.0mmの径を有する粒状体であるか、又は(1:0.8)≦(径:長さ)≦(1:1.3)の比率を有する円柱である、前記1~3のいずれか1項記載の亜鉛基合金ショット。
〔5〕前記亜鉛基合金ショットは粒状体であって、投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.3の範囲内にある、前記1~4項記載の亜鉛基合金ショット。
〔6〕前記1~5のいずれか1項に記載の亜鉛基合金ショットの製造方法であって、
原料金属であるZn、Al、及び必要に応じてCuを秤量する工程と、
前記原料金属を加熱して溶湯とする工程と、
前記溶湯を、底部にノズルが配置された溶湯保持容器に移送する工程と、
前記ノズルを介して、液体の冷却媒体中に前記溶湯を滴下する工程と、
前記冷却媒体中で前記溶湯を凝固させて粒状体を得る工程と、
前記粒状体を所定のサイズに分級する工程と、
を含み、
前記分級する工程では、前記凝固された溶湯金属の径を0.2~2.0mmに分級する、前記亜鉛基合金ショットの製造方法。
〔7〕前記1~4のいずれか1項に記載の亜鉛基合金ショットの製造方法であって、
原料金属であるZn、Al、及び必要に応じてCuの合金組成を有する塊状物を得る工程と、
前記塊状物より所定の径のワイヤを得る工程と、
前記ワイヤを所定の長さに切断する工程と、
を含み、
前記ワイヤを得る工程では、塊状物を圧延すると共に応力を付与する工程を含む、前記亜鉛基合金ショットの製造方法。
〔8〕前記ワイヤを切断する工程では、(1:0.8)≦(ワイヤの径:ワイヤの長さ)≦(1:1.3)となるようにワイヤを切断する、前記7項に記載の亜鉛基合金ショットの製造方法。
〔9〕前記ワイヤを得る工程では、ワイヤの径がφ0.4~2.0mmとなるように塊状物を加工する、前記7または8項に記載の亜鉛基合金ショットの製造方法。 According to the present invention, the following zinc-based alloy shot and its manufacturing method are provided.
[1] Zinc-based alloy shot,
The zinc-based alloy shot is composed of Al and the balance of Zn and unavoidable impurities,
The content of Al relative to the zinc-based alloy shot is 1.0 to 6.0 mass%,
The zinc-based alloy shot, wherein the Vickers hardness of the zinc-based alloy shot is 50 to 100 HV.
[2] The zinc-based alloy shot according to the above 1, wherein the Vickers hardness of the zinc-based alloy shot is 50 to 90 HV.
[3] In the above-mentioned zinc-based alloy shot, Cu is further added as a trace addition element,
The zinc-based alloy shot according to Item 1 or 2, wherein the addition amount of the trace additive element is 0.0001 to 0.25 mass% with respect to the zinc-based alloy shot.
[4] The zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm, or (1: 0.8) ≦ (diameter: length) ≦ (1: 1.3) A zinc based alloy shot according to any one of the preceding claims which is a cylinder having a ratio of.
[5] The zinc-based alloy shot is a granular body, and when the length in the longitudinal direction of the shot obtained from the projection is a and the maximum diameter in the direction orthogonal to the longitudinal direction is b, 60% or more The zinc-based alloy shot according to the above 1 to 4, wherein a / b of the shot is in the range of 1.0 to 1.3.
[6] A method of producing a zinc-based alloy shot according to any one of the above 1 to 5, which comprises
Weighing the source metals Zn, Al and, if necessary, Cu;
Heating the raw material metal into a molten metal;
Transferring the molten metal to a molten metal holding vessel having a nozzle disposed at the bottom thereof;
Dropping the molten metal into a liquid cooling medium through the nozzle;
Solidifying the molten metal in the cooling medium to obtain granules;
Classifying the particles into a predetermined size;
Including
In the step of classifying, the diameter of the solidified molten metal is classified to 0.2 to 2.0 mm.
[7] A method of producing a zinc-based alloy shot according to any one of 1 to 4 above,
Obtaining a lump having an alloy composition of raw material metals Zn, Al, and optionally Cu;
Obtaining a wire of a predetermined diameter from the mass;
Cutting the wire to a predetermined length;
Including
In the step of obtaining the wire, the step of rolling and applying stress to a lump is provided.
[8] In the step of cutting the wire, the wire is cut such that (1: 0.8) ≦ (diameter of wire: length of wire) ≦ (1: 1.3). The manufacturing method of the zinc base alloy shot of description.
[9] The method for producing a zinc-based alloy shot according to Item 7 or 8, wherein in the step of obtaining the wire, the lump is processed so that the diameter of the wire is φ0.4 to 2.0 mm.
〔1〕亜鉛基合金ショットであって、
前記亜鉛基合金ショットは、Alと残部がZn及び不可避不純物からなり、
前記亜鉛基合金ショットに対するAlの含有量が1.0~6.0質量%であり、
前記亜鉛基合金ショットのビッカース硬さが50~100HVである、亜鉛基合金ショット。
〔2〕前記亜鉛基合金ショットのビッカース硬さが50~90HVである、前記1項記載の亜鉛基合金ショット。
〔3〕前前記亜鉛基合金ショットは、更に微量添加元素としてCuが添加されており、
前記微量添加元素の添加量は前記亜鉛基合金ショットに対して0.0001~0.25質量%である、前記1又は2項に記載の亜鉛基合金ショット。
〔4〕前記亜鉛基合金ショットは、0.2~2.0mmの径を有する粒状体であるか、又は(1:0.8)≦(径:長さ)≦(1:1.3)の比率を有する円柱である、前記1~3のいずれか1項記載の亜鉛基合金ショット。
〔5〕前記亜鉛基合金ショットは粒状体であって、投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.3の範囲内にある、前記1~4項記載の亜鉛基合金ショット。
〔6〕前記1~5のいずれか1項に記載の亜鉛基合金ショットの製造方法であって、
原料金属であるZn、Al、及び必要に応じてCuを秤量する工程と、
前記原料金属を加熱して溶湯とする工程と、
前記溶湯を、底部にノズルが配置された溶湯保持容器に移送する工程と、
前記ノズルを介して、液体の冷却媒体中に前記溶湯を滴下する工程と、
前記冷却媒体中で前記溶湯を凝固させて粒状体を得る工程と、
前記粒状体を所定のサイズに分級する工程と、
を含み、
前記分級する工程では、前記凝固された溶湯金属の径を0.2~2.0mmに分級する、前記亜鉛基合金ショットの製造方法。
〔7〕前記1~4のいずれか1項に記載の亜鉛基合金ショットの製造方法であって、
原料金属であるZn、Al、及び必要に応じてCuの合金組成を有する塊状物を得る工程と、
前記塊状物より所定の径のワイヤを得る工程と、
前記ワイヤを所定の長さに切断する工程と、
を含み、
前記ワイヤを得る工程では、塊状物を圧延すると共に応力を付与する工程を含む、前記亜鉛基合金ショットの製造方法。
〔8〕前記ワイヤを切断する工程では、(1:0.8)≦(ワイヤの径:ワイヤの長さ)≦(1:1.3)となるようにワイヤを切断する、前記7項に記載の亜鉛基合金ショットの製造方法。
〔9〕前記ワイヤを得る工程では、ワイヤの径がφ0.4~2.0mmとなるように塊状物を加工する、前記7または8項に記載の亜鉛基合金ショットの製造方法。 According to the present invention, the following zinc-based alloy shot and its manufacturing method are provided.
[1] Zinc-based alloy shot,
The zinc-based alloy shot is composed of Al and the balance of Zn and unavoidable impurities,
The content of Al relative to the zinc-based alloy shot is 1.0 to 6.0 mass%,
The zinc-based alloy shot, wherein the Vickers hardness of the zinc-based alloy shot is 50 to 100 HV.
[2] The zinc-based alloy shot according to the above 1, wherein the Vickers hardness of the zinc-based alloy shot is 50 to 90 HV.
[3] In the above-mentioned zinc-based alloy shot, Cu is further added as a trace addition element,
The zinc-based alloy shot according to Item 1 or 2, wherein the addition amount of the trace additive element is 0.0001 to 0.25 mass% with respect to the zinc-based alloy shot.
[4] The zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm, or (1: 0.8) ≦ (diameter: length) ≦ (1: 1.3) A zinc based alloy shot according to any one of the preceding claims which is a cylinder having a ratio of.
[5] The zinc-based alloy shot is a granular body, and when the length in the longitudinal direction of the shot obtained from the projection is a and the maximum diameter in the direction orthogonal to the longitudinal direction is b, 60% or more The zinc-based alloy shot according to the above 1 to 4, wherein a / b of the shot is in the range of 1.0 to 1.3.
[6] A method of producing a zinc-based alloy shot according to any one of the above 1 to 5, which comprises
Weighing the source metals Zn, Al and, if necessary, Cu;
Heating the raw material metal into a molten metal;
Transferring the molten metal to a molten metal holding vessel having a nozzle disposed at the bottom thereof;
Dropping the molten metal into a liquid cooling medium through the nozzle;
Solidifying the molten metal in the cooling medium to obtain granules;
Classifying the particles into a predetermined size;
Including
In the step of classifying, the diameter of the solidified molten metal is classified to 0.2 to 2.0 mm.
[7] A method of producing a zinc-based alloy shot according to any one of 1 to 4 above,
Obtaining a lump having an alloy composition of raw material metals Zn, Al, and optionally Cu;
Obtaining a wire of a predetermined diameter from the mass;
Cutting the wire to a predetermined length;
Including
In the step of obtaining the wire, the step of rolling and applying stress to a lump is provided.
[8] In the step of cutting the wire, the wire is cut such that (1: 0.8) ≦ (diameter of wire: length of wire) ≦ (1: 1.3). The manufacturing method of the zinc base alloy shot of description.
[9] The method for producing a zinc-based alloy shot according to Item 7 or 8, wherein in the step of obtaining the wire, the lump is processed so that the diameter of the wire is φ0.4 to 2.0 mm.
本発明により、研掃能力が高く、且つ寿命の長い亜鉛基合金ショットを提供することができる。所定量のCuを含ませることにより、ワークの黒ずみの発生が抑制されるだけでなく、研掃能力、寿命及び引っ張り強度が向上した亜鉛基合金ショットを提供することができる。
According to the present invention, it is possible to provide a zinc-based alloy shot having a high cleaning ability and a long life. By including a predetermined amount of Cu, it is possible to provide a zinc-based alloy shot which not only suppresses the occurrence of darkening of the work but also improves the cleaning ability, the life and the tensile strength.
本発明の一側面は、亜鉛基合金ショットである。亜鉛基合金ショットは、Alと残部がZn及び不可避不純物からなる。そして、亜鉛基合金ショットに対するAlの含有量は1.0~6.0質量%である。そして、亜鉛基合金ショットのビッカース硬さは50~90HVである。
One aspect of the present invention is a zinc based alloy shot. The zinc-based alloy shot consists of Al and the balance Zn and unavoidable impurities. And, the content of Al with respect to the zinc based alloy shot is 1.0 to 6.0 mass%. And, the Vickers hardness of the zinc based alloy shot is 50 to 90 HV.
本発明の一側面の亜鉛基合金ショットはAlが添加されているので、亜鉛に比べて硬度が高く、研掃能力が高い。また耐衝撃性(靱性)が向上しているので、寿命が長い。そして、Alは比較的安価であるので、研掃能力が高く寿命が長い亜鉛基合金ショットを安価に製造することができる。
The zinc based alloy shot according to one aspect of the present invention is higher in hardness and higher in cleaning ability than zinc because Al is added. In addition, since the impact resistance (toughness) is improved, the life is long. And, since Al is relatively inexpensive, it is possible to inexpensively manufacture a zinc-based alloy shot having a high cleaning ability and a long life.
本発明の一実施形態は、亜鉛基合金ショットに更に微量添加元素としてCuが添加されていてもよい。そして、微量添加元素の添加量を亜鉛基合金ショットに対して0.0002~0.25質量%としてもよい。Cuを微量に添加することで、ブラスト加工を行った際に黒ずみが発生するのを抑制することができる。
In one embodiment of the present invention, Cu may be added as a trace additive element to the zinc-based alloy shot. Then, the addition amount of the trace additive element may be 0.0002 to 0.25 mass% with respect to the shot of the zinc-based alloy. By adding a very small amount of Cu, it is possible to suppress the occurrence of darkening when blasting is performed.
本発明の別の実施形態は、亜鉛基合金ショットであって、
前記亜鉛基合金ショットは、Alと、微量添加元素としてのCuと、残部としてのZn及び不可避不純物とからなり、
前記亜鉛基合金ショットに対するAlの含有量が1.0~6.0質量%であり、
前記亜鉛基合金ショットに対するCuの含有量が0~0.25質量%であり、
前記亜鉛基合金ショットが、0.2~2.0mmの径を有する粒状体であるか、又は(1:0.8)≦(径:長さ)≦(1:1.3)の比率を有する円柱であり、
前記亜鉛基合金ショットのビッカース硬さが50~90HVである、前記亜鉛基合金ショットである。 Another embodiment of the present invention is a zinc based alloy shot,
The zinc-based alloy shot is composed of Al, Cu as a trace additive element, Zn as a balance, and unavoidable impurities.
The content of Al relative to the zinc-based alloy shot is 1.0 to 6.0 mass%,
The content of Cu with respect to the zinc-based alloy shot is 0 to 0.25 mass%,
The zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm, or a ratio of (1: 0.8) ≦ (diameter: length) ≦ (1: 1.3) It is a cylinder that has
In the zinc-based alloy shot, the Vickers hardness of the zinc-based alloy shot is 50 to 90 HV.
前記亜鉛基合金ショットは、Alと、微量添加元素としてのCuと、残部としてのZn及び不可避不純物とからなり、
前記亜鉛基合金ショットに対するAlの含有量が1.0~6.0質量%であり、
前記亜鉛基合金ショットに対するCuの含有量が0~0.25質量%であり、
前記亜鉛基合金ショットが、0.2~2.0mmの径を有する粒状体であるか、又は(1:0.8)≦(径:長さ)≦(1:1.3)の比率を有する円柱であり、
前記亜鉛基合金ショットのビッカース硬さが50~90HVである、前記亜鉛基合金ショットである。 Another embodiment of the present invention is a zinc based alloy shot,
The zinc-based alloy shot is composed of Al, Cu as a trace additive element, Zn as a balance, and unavoidable impurities.
The content of Al relative to the zinc-based alloy shot is 1.0 to 6.0 mass%,
The content of Cu with respect to the zinc-based alloy shot is 0 to 0.25 mass%,
The zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm, or a ratio of (1: 0.8) ≦ (diameter: length) ≦ (1: 1.3) It is a cylinder that has
In the zinc-based alloy shot, the Vickers hardness of the zinc-based alloy shot is 50 to 90 HV.
本発明の一実施形態は、亜鉛基合金ショットの製造方法である。この製造方法は、以下の(1)~(6)の工程を含んでもよい。
(1)原料金属であるZn、Al、及び必要に応じてCuを秤量する工程。
(2)前記原料金属を加熱して溶湯とする工程。
(3)溶湯を、底部にノズルが配置された溶湯保持容器に移送する工程。
(4)ノズルを介して、液体の冷却媒体中に前記溶湯を滴下する工程。
(5)冷却媒体中で前記溶湯を凝固させて粒状体を得る工程。
(6)粒状体を所定のサイズに分級する工程。
そして、(6)の工程では、粒状体の径を0.2~2.0mmとなるように分級してもよい。なお、本明細書において、「径」は、直径を意味する。 One embodiment of the present invention is a method of making a zinc based alloy shot. This manufacturing method may include the following steps (1) to (6).
(1) A step of weighing the raw material metals Zn, Al and, if necessary, Cu.
(2) A step of heating the raw material metal to make it a molten metal.
(3) A step of transferring the molten metal to a molten metal holding vessel in which a nozzle is disposed at the bottom.
(4) A step of dropping the molten metal into a liquid cooling medium via a nozzle.
(5) A step of solidifying the molten metal in a cooling medium to obtain particulates.
(6) A step of classifying the granular material into a predetermined size.
In the step (6), the particles may be classified so as to have a diameter of 0.2 to 2.0 mm. In the present specification, "diameter" means diameter.
(1)原料金属であるZn、Al、及び必要に応じてCuを秤量する工程。
(2)前記原料金属を加熱して溶湯とする工程。
(3)溶湯を、底部にノズルが配置された溶湯保持容器に移送する工程。
(4)ノズルを介して、液体の冷却媒体中に前記溶湯を滴下する工程。
(5)冷却媒体中で前記溶湯を凝固させて粒状体を得る工程。
(6)粒状体を所定のサイズに分級する工程。
そして、(6)の工程では、粒状体の径を0.2~2.0mmとなるように分級してもよい。なお、本明細書において、「径」は、直径を意味する。 One embodiment of the present invention is a method of making a zinc based alloy shot. This manufacturing method may include the following steps (1) to (6).
(1) A step of weighing the raw material metals Zn, Al and, if necessary, Cu.
(2) A step of heating the raw material metal to make it a molten metal.
(3) A step of transferring the molten metal to a molten metal holding vessel in which a nozzle is disposed at the bottom.
(4) A step of dropping the molten metal into a liquid cooling medium via a nozzle.
(5) A step of solidifying the molten metal in a cooling medium to obtain particulates.
(6) A step of classifying the granular material into a predetermined size.
In the step (6), the particles may be classified so as to have a diameter of 0.2 to 2.0 mm. In the present specification, "diameter" means diameter.
Alを含有していることで、溶湯の流動性が向上する。その為、ノズルが溶湯で閉塞することなく、良好に滴下することができる。また、粒状体の径が0.2~2.0mmであれば、形状が比較的揃っている粒状体が得られる。
By containing Al, the fluidity of the molten metal is improved. Therefore, the nozzle can be favorably dropped without being blocked by the molten metal. In addition, when the diameter of the granular material is 0.2 to 2.0 mm, a granular material having a relatively uniform shape can be obtained.
本発明の一実施形態は、亜鉛基合金ショットの製造方法である。この製造方法は、以下の(11)~(13)の工程を含んでもよい。
(11)原料金属であるZn、Al、及び必要に応じてCuの合金組成を有する塊状物を得る工程。
(12)塊状物より所定の径のワイヤを得る工程。
(13)ワイヤを所定の長さに切断する工程。
そして、ワイヤを得る工程では、塊状物を圧延すると共に応力を付与する工程を含んでもよい。 One embodiment of the present invention is a method of making a zinc based alloy shot. This manufacturing method may include the following steps (11) to (13).
(11) A step of obtaining a lump having an alloy composition of raw material metals Zn, Al, and optionally Cu.
(12) A step of obtaining a wire of a predetermined diameter from a lump.
(13) Cutting the wire to a predetermined length.
And the process of obtaining a wire may include a process of rolling and applying stress to a lump.
(11)原料金属であるZn、Al、及び必要に応じてCuの合金組成を有する塊状物を得る工程。
(12)塊状物より所定の径のワイヤを得る工程。
(13)ワイヤを所定の長さに切断する工程。
そして、ワイヤを得る工程では、塊状物を圧延すると共に応力を付与する工程を含んでもよい。 One embodiment of the present invention is a method of making a zinc based alloy shot. This manufacturing method may include the following steps (11) to (13).
(11) A step of obtaining a lump having an alloy composition of raw material metals Zn, Al, and optionally Cu.
(12) A step of obtaining a wire of a predetermined diameter from a lump.
(13) Cutting the wire to a predetermined length.
And the process of obtaining a wire may include a process of rolling and applying stress to a lump.
Alを含有していることで、合金の靱性が向上する。その結果、塊状物を圧延してワイヤ状に加工する際、加工途中で破断されることがない。更に、塊状物を圧延する際にワイヤに応力を付与することで、機械的性質が向上する。
By containing Al, the toughness of the alloy is improved. As a result, when the lump is rolled and processed into a wire, it is not broken during the processing. Furthermore, the mechanical properties are improved by applying stress to the wire when rolling the mass.
本発明の一実施形態は、ワイヤを得る工程では、ワイヤの径がφ0.4~2.0mmとなるように塊状物を加工し、ワイヤを切断する工程では、(1:0.8)≦(ワイヤの径:ワイヤの長さ)≦(1:1.3)となるように、又は、(1:0.8)≦(ワイヤの径:ワイヤの長さ)≦(1:1.2)となるようにワイヤを切断してもよい。ワイヤの径がφ0.4mm以上であれば、ブラスト加工に必要な機械的強度を有するワイヤを得ることができる。また、φ2.0mm以下であれば例えばアルミダイカスト製品など比較的柔らかいワークに対してブラスト加工を行った場合でも、ワークを必要以上に傷つけることがない。そして、切断後のワイヤの径と長さとの比をこの範囲となるようにワイヤを切断することで、仕上がり品質にばらつきが少ないブラスト加工を行うことができる。
In one embodiment of the present invention, in the step of obtaining the wire, the mass is processed so that the diameter of the wire is φ0.4 to 2.0 mm, and in the step of cutting the wire, (1: 0.8) ≦ (Wire diameter: wire length) ≦ (1: 1.3), or (1: 0.8) ≦ (wire diameter: wire length) ≦ (1: 1.2) The wire may be cut to be If the diameter of the wire is φ0.4 mm or more, a wire having mechanical strength necessary for blasting can be obtained. Further, if the relatively soft work such as an aluminum die-cast product is subjected to a blast process if it is not more than φ2.0 mm, the work will not be damaged more than necessary. Then, by cutting the wire so that the ratio of the diameter and the length of the wire after cutting falls within this range, it is possible to carry out blasting with less variation in finished quality.
本発明の亜鉛基合金ショット及びその製造方法の一実施形態を、図を参照して説明する。なお、本発明は一実施形態に限定するものではなく、均等の範囲において適宜変更することができる。また、以下の説明において、合金組成を示す「%」は、特に断りのない限り「質量%」を示す。
One embodiment of the zinc-based alloy shot of the present invention and the method of manufacturing the same will be described with reference to the drawings. In addition, this invention is not limited to one Embodiment, In the equivalent range, it can change suitably. Moreover, in the following description, "%" which shows alloy composition shows "mass%" unless there is particular notice.
一実施形態の亜鉛基合金ショットには、Alが含有している。AlはZnとの相乗効果により亜鉛基合金のビッカース硬さや耐衝撃性(靱性)が向上している。Alの含有量が少なすぎると、添加した効果が得られない。多すぎると、Alの物性の影響が強くなりすぎて亜鉛基合金の耐衝撃性が低下する傾向を示す。一実施形態では、Alの含有量(全体量100%基準:以下同じ)は1.0~6.0%であり、1.3~5.8%としてもよく、又は2.9~5.6%としてもよい。
The zinc-based alloy shot of one embodiment contains Al. Al has a synergistic effect with Zn and improves the Vickers hardness and impact resistance (toughness) of the zinc-based alloy. If the content of Al is too small, the added effect can not be obtained. When the amount is too large, the influence of the physical properties of Al becomes so strong that the impact resistance of the zinc-based alloy tends to decrease. In one embodiment, the Al content (100% based on the total amount: the same applies hereinafter) is 1.0 to 6.0%, and may be 1.3 to 5.8%, or 2.9 to 5. It may be 6%.
Cuは、亜鉛基合金ショットの耐食性を向上させる為に必要に応じて添加される元素である。耐食性が向上した結果、この亜鉛基合金ショットを用いてブラスト加工を行う際に、ワークの表面に黒ずみが発生するのを抑制することができる。ただし、Cuを過剰に添加すると亜鉛基合金ショットの耐衝撃性が低下するので、添加量は微量であることが好ましい。一実施形態では、Cuの添加量(全体量100%基準:以下同じ)は0~0.25%であり、0.0001~0.25%としてもよく、又は0.0002~0.25としてもよく、0.0002~0.05%としてもよい。
Cu is an element added as needed to improve the corrosion resistance of the zinc based alloy shot. As a result of the improvement of the corrosion resistance, it is possible to suppress the occurrence of darkening on the surface of the work when blasting using this zinc-based alloy shot. However, since the impact resistance of the zinc-based alloy shot is reduced if Cu is added in excess, it is preferable that the amount added be a slight amount. In one embodiment, the additive amount of Cu (total amount 100% standard: the same applies hereinafter) is 0 to 0.25%, may be 0.0001 to 0.25%, or 0.0002 to 0.25. It may be 0.0002 to 0.05%.
Cuは、亜鉛基合金ショットのビッカース硬さや耐衝撃性を向上させる効果もある。Cuを微量に添加することは、前述のワークへの黒ずみの発生を抑制する効果の付与だけでなく、亜鉛基合金ショットの研掃能力及び寿命のさらなる向上の効果がある。
Cu also has the effect of improving the Vickers hardness and impact resistance of zinc-based alloy shots. The addition of a small amount of Cu not only imparts the effect of suppressing the occurrence of darkening to the above-described work, but also has the effect of further improving the cleaning ability and the life of the zinc-based alloy shot.
亜鉛基合金ショットは、アルミニウム合金やマグネシウム合金や亜鉛合金で構成されるダイカスト製品など、比較的硬度の低いワークに対しても使用される。亜鉛基合金ショットの硬さが低すぎるとワークに対する研掃能力が不足し、硬すぎるとワークの表面の意匠性に影響がでる。ワークの物性及び研掃目的を考慮して、亜鉛基合金ショットのビッカース硬さは50~100HVとしてもよく、50~90HVとしてもよく、又は70~90HVとしてもよく、その硬度となるようにAlの含有量またはCuの添加量を調整してもよい。
Zinc-based alloy shots are also used for workpieces with relatively low hardness, such as die-cast products made of aluminum alloy, magnesium alloy or zinc alloy. When the hardness of the zinc-based alloy shot is too low, the ability to clean the workpiece is insufficient, and when it is too hard, the design of the surface of the workpiece is affected. Considering the physical properties of the workpiece and the purpose of cleaning, the Vickers hardness of the zinc-based alloy shot may be 50 to 100 HV, 50 to 90 HV, or 70 to 90 HV, and the hardness may be Al The content of Cu or the amount of addition of Cu may be adjusted.
一実施形態の亜鉛基合金ショットは、ZnとAl、またはZnとAlと微量のCu、で構成されるが、その他不可避不純物が含まれていてもよい。ただし、不可避不純物の含有量が高くなると耐衝撃性が低くなり、寿命の低下につながる。その為、不可避不純物の合計含有量は、可及的に少ない方が望ましい。
The zinc-based alloy shot of one embodiment is composed of Zn and Al, or Zn and Al and a slight amount of Cu, but may contain other unavoidable impurities. However, when the content of unavoidable impurities increases, the impact resistance decreases, leading to a decrease in life. Therefore, it is desirable that the total content of unavoidable impurities be as small as possible.
亜鉛基合金ショットに対するAlの含有量が1.0~6.0%であり、
亜鉛基合金ショットに対するCuの含有量が0.0001~0.25質量%であり、
亜鉛基合金ショットのビッカース硬さが50~100HVである亜鉛基合金ショットが特に好ましい。 Al content is 1.0 to 6.0% with respect to zinc-based alloy shot,
The content of Cu with respect to a shot of zinc based alloy is 0.0001 to 0.25 mass%,
Particularly preferred is a zinc-based alloy shot having a Vickers hardness of 50 to 100 HV for the zinc-based alloy shot.
亜鉛基合金ショットに対するCuの含有量が0.0001~0.25質量%であり、
亜鉛基合金ショットのビッカース硬さが50~100HVである亜鉛基合金ショットが特に好ましい。 Al content is 1.0 to 6.0% with respect to zinc-based alloy shot,
The content of Cu with respect to a shot of zinc based alloy is 0.0001 to 0.25 mass%,
Particularly preferred is a zinc-based alloy shot having a Vickers hardness of 50 to 100 HV for the zinc-based alloy shot.
亜鉛基合金ショットに対するAlの含有量が1.3~5.8%であり、
亜鉛基合金ショットに対するCuの含有量が0.0002~0.05質量%であり、
亜鉛基合金ショットのビッカース硬さが70~90HVである亜鉛基合金ショットが更に特に好ましい。 The content of Al is 1.3 to 5.8% with respect to a zinc based alloy shot,
The content of Cu is 0.0002 to 0.05% by mass with respect to a zinc based alloy shot,
Zinc-based alloy shots with a Vickers hardness of 70 to 90 HV of the zinc-based alloy shot are furthermore particularly preferred.
亜鉛基合金ショットに対するCuの含有量が0.0002~0.05質量%であり、
亜鉛基合金ショットのビッカース硬さが70~90HVである亜鉛基合金ショットが更に特に好ましい。 The content of Al is 1.3 to 5.8% with respect to a zinc based alloy shot,
The content of Cu is 0.0002 to 0.05% by mass with respect to a zinc based alloy shot,
Zinc-based alloy shots with a Vickers hardness of 70 to 90 HV of the zinc-based alloy shot are furthermore particularly preferred.
次に、一実施形態の亜鉛基合金ショットの製造方法について図1を参照することにより以下に説明する。
Next, a method of manufacturing a zinc-based alloy shot according to an embodiment will be described below with reference to FIG.
S01:原料を秤量する工程
原料となる金属を秤量する。例えば、Alの原料(地金)としては、JISH2102のアルミニウム地金特1種(99.90%以上)やJISH2111(またはICS77.120.10)の精製アルミニウム地金特殊(99.995%以上)・1種(99.990%以上)・2種(99.95%以上)を、Cuの原料(地金)としては、JISH2121の電気銅地金(99.96%以上)を、それぞれ挙げることができる。 S01: Step of weighing the raw material The metal as the raw material is weighed. For example, as a raw material (metal) of Al, aluminum metal special type 1 (99.90% or more) of JISH2102 or refined aluminum metal special (99.995% or more) of JISH2111 (or ICS 77.120.10) -To list 1 type (99.990% or more) · 2 types (99.95% or more), and as a Cu raw material (metal), mention the electric copper ingot (99.96% or more) of JIS H 2121. Can.
原料となる金属を秤量する。例えば、Alの原料(地金)としては、JISH2102のアルミニウム地金特1種(99.90%以上)やJISH2111(またはICS77.120.10)の精製アルミニウム地金特殊(99.995%以上)・1種(99.990%以上)・2種(99.95%以上)を、Cuの原料(地金)としては、JISH2121の電気銅地金(99.96%以上)を、それぞれ挙げることができる。 S01: Step of weighing the raw material The metal as the raw material is weighed. For example, as a raw material (metal) of Al, aluminum metal special type 1 (99.90% or more) of JISH2102 or refined aluminum metal special (99.995% or more) of JISH2111 (or ICS 77.120.10) -To list 1 type (99.990% or more) · 2 types (99.95% or more), and as a Cu raw material (metal), mention the electric copper ingot (99.96% or more) of JIS H 2121. Can.
なお、基元素であるZnの原料(地金)としては、特に限定されず、JISH2107(またはISO725:1981)に規定されている各グレードのものを使用できる。ショットの品質安定性を考慮して、JISH2107の普通亜鉛地金(99.97%以上)、最純亜鉛地金(99.995%以上)、特種亜鉛地金(99.99%以上)等、高純度の亜鉛地金を使用してもよい。
In addition, it does not specifically limit as a raw material (base metal) of Zn which is a basic element, The thing of each grade prescribed | regulated to JISH2107 (or ISO725: 1981) can be used. In consideration of the quality stability of the shot, ordinary zinc ingot (99.97% or more), pure zinc ingot (99.995% or more), special zinc ingot (99.99% or more), etc. High purity zinc metal may be used.
S02:溶解工程
秤量した金属を坩堝に投入後、坩堝を加熱する(例えば、約600℃)。加熱によって金属が溶解し、Zn-AlもしくはZn-Al-Cuの組成を有する溶湯となる。 S02: Dissolution step After the weighed metal is introduced into the crucible, the crucible is heated (eg, about 600 ° C.). The metal is melted by heating to form a molten metal having a composition of Zn-Al or Zn-Al-Cu.
秤量した金属を坩堝に投入後、坩堝を加熱する(例えば、約600℃)。加熱によって金属が溶解し、Zn-AlもしくはZn-Al-Cuの組成を有する溶湯となる。 S02: Dissolution step After the weighed metal is introduced into the crucible, the crucible is heated (eg, about 600 ° C.). The metal is melted by heating to form a molten metal having a composition of Zn-Al or Zn-Al-Cu.
S03:溶湯移動工程
溶湯を溶湯保持容器に投入する。溶湯保持容器には加熱手段が備えられており、亜鉛基合金ショット製造時に、溶湯が必要以上に冷却されないように保持することができる。このときの溶湯保持温度は合金組成や生産規模により異なるが、500~600℃の範囲で適宜設定してもよい。 S03: Molten metal transfer step Molten metal is introduced into the molten metal holding vessel. The molten metal holding vessel is provided with a heating means, and can hold the molten metal so as not to be cooled more than necessary at the time of manufacturing the zinc-based alloy shot. The molten metal holding temperature at this time varies depending on the alloy composition and the production scale, but may be appropriately set in the range of 500 to 600 ° C.
溶湯を溶湯保持容器に投入する。溶湯保持容器には加熱手段が備えられており、亜鉛基合金ショット製造時に、溶湯が必要以上に冷却されないように保持することができる。このときの溶湯保持温度は合金組成や生産規模により異なるが、500~600℃の範囲で適宜設定してもよい。 S03: Molten metal transfer step Molten metal is introduced into the molten metal holding vessel. The molten metal holding vessel is provided with a heating means, and can hold the molten metal so as not to be cooled more than necessary at the time of manufacturing the zinc-based alloy shot. The molten metal holding temperature at this time varies depending on the alloy composition and the production scale, but may be appropriately set in the range of 500 to 600 ° C.
溶湯保持容器の底部には溶湯滴下用のノズルが設けられており、該ノズルの下方には、冷却媒体が投入された冷却槽が配置されている。なお、冷却媒体は液体であり、水や油等であってもよい。
A nozzle for dropping the molten metal is provided at the bottom of the molten metal holding vessel, and a cooling tank into which a cooling medium is charged is disposed below the nozzle. The cooling medium is a liquid, and may be water, oil or the like.
S04:造粒工程
溶湯保持容器内の溶湯は、ノズルから滴下される。ノズルから冷却媒体に到達するまでの間に、表面張力の影響を受け球状化する。冷却媒体に到達し、接触した溶湯は急激に冷却されて球形状のまま固化される。 S04: Granulating step The molten metal in the molten metal holding vessel is dropped from the nozzle. Before reaching the cooling medium from the nozzle, it is spheroidized under the influence of surface tension. The molten metal reaching and coming into contact with the cooling medium is rapidly cooled and solidified in a spherical shape.
溶湯保持容器内の溶湯は、ノズルから滴下される。ノズルから冷却媒体に到達するまでの間に、表面張力の影響を受け球状化する。冷却媒体に到達し、接触した溶湯は急激に冷却されて球形状のまま固化される。 S04: Granulating step The molten metal in the molten metal holding vessel is dropped from the nozzle. Before reaching the cooling medium from the nozzle, it is spheroidized under the influence of surface tension. The molten metal reaching and coming into contact with the cooling medium is rapidly cooled and solidified in a spherical shape.
なお、冷却媒体は滴下した溶湯が接触することにより温度が上昇し、該溶湯の急冷が妨げられる原因となる。このため、冷却手段により、冷却媒体を設定温度に保持する。この設定冷却温度は、例えば、水の場合、通常、60℃以下としてもよく、30~40℃としてもよい。
The temperature of the cooling medium is raised by the contact of the dropped molten metal, which causes the quenching of the molten metal to be prevented. Therefore, the cooling medium holds the cooling medium at the set temperature. In the case of water, for example, the preset cooling temperature may be usually 60 ° C. or less, or 30 to 40 ° C.
S05:分級工程
冷却媒体の底部には、亜鉛合金の粒状体が堆積される。これを回収して、乾燥機で乾燥後、分級機で分級して亜鉛基合金ショットを得る。なお、分級は亜鉛基合金ショットの使用目的に合わせて所定の粒径になるように行なう。 S05: Classification Step On the bottom of the cooling medium, particles of zinc alloy are deposited. The product is collected, dried by a drier, and classified by a classifier to obtain a zinc-based alloy shot. Classification is performed so as to obtain a predetermined particle size in accordance with the intended use of the zinc-based alloy shot.
冷却媒体の底部には、亜鉛合金の粒状体が堆積される。これを回収して、乾燥機で乾燥後、分級機で分級して亜鉛基合金ショットを得る。なお、分級は亜鉛基合金ショットの使用目的に合わせて所定の粒径になるように行なう。 S05: Classification Step On the bottom of the cooling medium, particles of zinc alloy are deposited. The product is collected, dried by a drier, and classified by a classifier to obtain a zinc-based alloy shot. Classification is performed so as to obtain a predetermined particle size in accordance with the intended use of the zinc-based alloy shot.
ここで、溶湯がノズルから滴下されるとき、溶湯の液滴の形状は完全な球ではなく、落下方向に引き伸ばされて歪んだ球ないし楕円状となる。このため、得られる粒状体、すなわちショットの粒子の形状は、やや歪んだ球状、回転楕円体状、あるいは角が丸い円柱状になる。このようなショットの投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.3の範囲内にあることが好ましく、1.0~1.2の範囲内にあることもまた好ましい。このようなショットは真球に近く、形状のバラツキが小さいので、より均一な研掃効果が得られる。粒状体の径が0.2~2.0mmでは、a/bの値が1.0~1.3又は1.0~1.2のショットの割合が多くなるので、粒子径がこの範囲となるように分級を行ってもよい。
Here, when the molten metal is dropped from the nozzle, the shape of the molten metal droplets is not a perfect sphere, but is stretched in the falling direction to become a distorted sphere or an oval. For this reason, the shape of the particles obtained, that is, the particles of the shot, becomes slightly distorted spherical, spheroidal, or cylindrical with rounded corners. Assuming that the length in the longitudinal direction of the shot obtained from the projection view of such a shot is a, and the maximum diameter in the direction orthogonal to the longitudinal direction is b, the a / b of the 60% or more shot is 1.0 to It is preferably in the range of 1.3, and also in the range of 1.0 to 1.2. Such a shot is close to a true sphere and the variation in shape is small, so that a more uniform cleaning effect can be obtained. When the diameter of the granular material is 0.2 to 2.0 mm, the ratio of shots with a / b values of 1.0 to 1.3 or 1.0 to 1.2 increases, so Classification may be performed to be
亜鉛基合金ショットに対するAlの含有量が1.0~6.0%であり、
亜鉛基合金ショットに対するCuの含有量が0.0001~0.25質量%であり、
亜鉛基合金ショットが、0.2~2.0mmの径を有する粒状体であり、
投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.3の範囲内にあり、
亜鉛基合金ショットのビッカース硬さが50~100HVである亜鉛基合金ショットが特に好ましい。 Al content is 1.0 to 6.0% with respect to zinc-based alloy shot,
The content of Cu with respect to a shot of zinc based alloy is 0.0001 to 0.25 mass%,
Zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm,
When a length in the longitudinal direction of the shot determined from the projection is a and a maximum diameter in the direction orthogonal to the longitudinal direction is b, the a / b of the 60% or more shot is in the range of 1.0 to 1.3 Is within
Particularly preferred is a zinc-based alloy shot having a Vickers hardness of 50 to 100 HV for the zinc-based alloy shot.
亜鉛基合金ショットに対するCuの含有量が0.0001~0.25質量%であり、
亜鉛基合金ショットが、0.2~2.0mmの径を有する粒状体であり、
投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.3の範囲内にあり、
亜鉛基合金ショットのビッカース硬さが50~100HVである亜鉛基合金ショットが特に好ましい。 Al content is 1.0 to 6.0% with respect to zinc-based alloy shot,
The content of Cu with respect to a shot of zinc based alloy is 0.0001 to 0.25 mass%,
Zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm,
When a length in the longitudinal direction of the shot determined from the projection is a and a maximum diameter in the direction orthogonal to the longitudinal direction is b, the a / b of the 60% or more shot is in the range of 1.0 to 1.3 Is within
Particularly preferred is a zinc-based alloy shot having a Vickers hardness of 50 to 100 HV for the zinc-based alloy shot.
亜鉛基合金ショットに対するAlの含有量が1.3~5.8質量%であり、
亜鉛基合金ショットに対するCuの含有量が0.0002~0.05%であり、
亜鉛基合金ショットが、0.2~2.0mmの径を有する粒状体であり、
投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.2の範囲内にあり、
亜鉛基合金ショットのビッカース硬さが70~90HVである亜鉛基合金ショットがさらに特に好ましい。 The content of Al is 1.3 to 5.8 mass% with respect to a zinc based alloy shot,
The content of Cu to zinc based alloy shot is 0.0002 to 0.05%,
Zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm,
Assuming that the length in the longitudinal direction of the shot determined from the projection is a and the maximum diameter in the direction orthogonal to the longitudinal direction is b, the a / b of the 60% or more shot is in the range of 1.0 to 1.2 Is within
Zinc-based alloy shots with a Vickers hardness of 70 to 90 HV of the zinc-based alloy shot are furthermore particularly preferred.
亜鉛基合金ショットに対するCuの含有量が0.0002~0.05%であり、
亜鉛基合金ショットが、0.2~2.0mmの径を有する粒状体であり、
投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.2の範囲内にあり、
亜鉛基合金ショットのビッカース硬さが70~90HVである亜鉛基合金ショットがさらに特に好ましい。 The content of Al is 1.3 to 5.8 mass% with respect to a zinc based alloy shot,
The content of Cu to zinc based alloy shot is 0.0002 to 0.05%,
Zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm,
Assuming that the length in the longitudinal direction of the shot determined from the projection is a and the maximum diameter in the direction orthogonal to the longitudinal direction is b, the a / b of the 60% or more shot is in the range of 1.0 to 1.2 Is within
Zinc-based alloy shots with a Vickers hardness of 70 to 90 HV of the zinc-based alloy shot are furthermore particularly preferred.
亜鉛基合金ショットの製造方法は、上記の方法に限らない。別の形態の製造方法の例を、図2を参照することにより以下に説明する。
The method of producing the zinc-based alloy shot is not limited to the method described above. An example of another form of manufacturing method is described below with reference to FIG.
S11:塊状物製造工程
原料となる金属より、Zn-AlもしくはZn-Al-Cuの組成を有する塊状物を生成する。例えば、原料となる金属より製錬によりビレットと呼ばれる円柱形状の塊状物を生成してもよい。 S11: Mass Production Step A mass having a composition of Zn—Al or Zn—Al—Cu is formed from the metal serving as the raw material. For example, cylindrical lumps called billets may be produced by smelting from metal as a raw material.
原料となる金属より、Zn-AlもしくはZn-Al-Cuの組成を有する塊状物を生成する。例えば、原料となる金属より製錬によりビレットと呼ばれる円柱形状の塊状物を生成してもよい。 S11: Mass Production Step A mass having a composition of Zn—Al or Zn—Al—Cu is formed from the metal serving as the raw material. For example, cylindrical lumps called billets may be produced by smelting from metal as a raw material.
S12:ワイヤ製造工程
本実施形態では、ビレットよりワイヤを製造する。複数個のダイスにビレットを挿入し、このビレットを引き抜くことでビレットを塑性変形により小径化して所望の径までワイヤを製造する。本実施形態のビレットはAlを含有しているので、ダイスとのすべり性が良好である。その為、ワイヤを製造する際に、その途中でワイヤが切断もしくはマイクロクラックが発生するのを防ぐことができる。 S12: Wire Manufacturing Process In this embodiment, a wire is manufactured from a billet. A billet is inserted into a plurality of dies, and the billet is reduced in diameter by plastic deformation by drawing out the billet to manufacture a wire to a desired diameter. Since the billet of the present embodiment contains Al, the slip property with the die is good. Therefore, when manufacturing the wire, it is possible to prevent the wire from being cut or generating a micro crack in the middle.
本実施形態では、ビレットよりワイヤを製造する。複数個のダイスにビレットを挿入し、このビレットを引き抜くことでビレットを塑性変形により小径化して所望の径までワイヤを製造する。本実施形態のビレットはAlを含有しているので、ダイスとのすべり性が良好である。その為、ワイヤを製造する際に、その途中でワイヤが切断もしくはマイクロクラックが発生するのを防ぐことができる。 S12: Wire Manufacturing Process In this embodiment, a wire is manufactured from a billet. A billet is inserted into a plurality of dies, and the billet is reduced in diameter by plastic deformation by drawing out the billet to manufacture a wire to a desired diameter. Since the billet of the present embodiment contains Al, the slip property with the die is good. Therefore, when manufacturing the wire, it is possible to prevent the wire from being cut or generating a micro crack in the middle.
また、微量添加元素としてCuが添加されていることで、亜鉛基合金の引っ張り強度が向上する。その結果、更にワイヤ製造の際に、その途中でワイヤが切断もしくはマイクロクラックが発生することを防ぐことができる。
In addition, the addition of Cu as a trace additive element improves the tensile strength of the zinc-based alloy. As a result, during wire manufacturing, it is possible to prevent the wire from being cut or micro-cracked on the way.
Al及びCuの添加により亜鉛基合金からなるビレットが良好にダイスを通過することができるので、亜鉛基合金は塑性変形及びダイスとの摩擦により応力を付与することができる。その結果、ショットに求められる機械的性質(例えば、靱性)を向上させることができる。例えば、ビレットの引っ張り速度やダイスの径と個数を変更することにより、機械的性質を調整することができる。
Since the addition of Al and Cu allows the billet made of the zinc-based alloy to pass through the die well, the zinc-based alloy can be stressed by plastic deformation and friction with the die. As a result, mechanical properties (for example, toughness) required for the shot can be improved. For example, the mechanical properties can be adjusted by changing the billet pulling speed or the diameter and number of dies.
ワイヤの径を細くすることで、亜鉛基合金は応力が付与されて機械的性質が向上するが、必要以上に細くするとこの加工によるダメージを受ける。また、径が太すぎると応力が十分に付与されない、若しくは比較的硬度の低いワークに対してブラスト加工を行った場合、ワークの表面がダメージを受ける。以上を踏まえ、ワイヤの径をφ0.4mm~2.0mmとしてもよい。
By reducing the diameter of the wire, the zinc-based alloy is given stress to improve the mechanical properties, but if it is made thinner than necessary, it is damaged by this processing. In addition, if the diameter is too large, the stress is not sufficiently imparted, or if the workpiece having a relatively low hardness is subjected to blasting, the surface of the workpiece is damaged. Based on the above, the diameter of the wire may be φ0.4 mm to 2.0 mm.
S13:切断工程
得られたワイヤを所定の長さとなるように直列的に切断し、粒状物を得る。この粒状物の長さは径との差が大きいと、ブラスト加工後のワークの仕上がり品質にばらつきが生じる。これを考慮し、(1:0.8)≦(ワイヤの径:ワイヤの長さ)≦(1:1.3)となるようにワイヤを切断してもよく、(1:0.8)≦(ワイヤの径:ワイヤの長さ)≦(1:1.2)となるようにワイヤを切断してもよい。 S13: Cutting Step The obtained wire is cut in series so as to have a predetermined length to obtain particulate matter. When the difference between the length of the granular material and the diameter is large, the finished quality of the workpiece after blasting may vary. Taking this into consideration, the wire may be cut so that (1: 0.8) ≦ (wire diameter: wire length) ≦ (1: 1.3), (1: 0.8) The wire may be cut so that ≦ (wire diameter: wire length) ≦ (1: 1.2).
得られたワイヤを所定の長さとなるように直列的に切断し、粒状物を得る。この粒状物の長さは径との差が大きいと、ブラスト加工後のワークの仕上がり品質にばらつきが生じる。これを考慮し、(1:0.8)≦(ワイヤの径:ワイヤの長さ)≦(1:1.3)となるようにワイヤを切断してもよく、(1:0.8)≦(ワイヤの径:ワイヤの長さ)≦(1:1.2)となるようにワイヤを切断してもよい。 S13: Cutting Step The obtained wire is cut in series so as to have a predetermined length to obtain particulate matter. When the difference between the length of the granular material and the diameter is large, the finished quality of the workpiece after blasting may vary. Taking this into consideration, the wire may be cut so that (1: 0.8) ≦ (wire diameter: wire length) ≦ (1: 1.3), (1: 0.8) The wire may be cut so that ≦ (wire diameter: wire length) ≦ (1: 1.2).
S14:丸め工程
得られた粒状物は円柱形状であるので、角部を有する。ブラスト加工時にこの角部によってワークが受傷する場合、予めこの粒状物を壁等に向けて投射することで角を丸めておいてもよい。なお、この工程はワークの物性やブラスト加工の目的に応じて省略してもよい。 S14: Rounding Step Since the obtained granular material has a cylindrical shape, it has corners. When a workpiece is damaged by this corner during blasting, the corner may be rounded in advance by projecting this granular material toward a wall or the like. Note that this process may be omitted depending on the physical properties of the work and the purpose of the blasting.
得られた粒状物は円柱形状であるので、角部を有する。ブラスト加工時にこの角部によってワークが受傷する場合、予めこの粒状物を壁等に向けて投射することで角を丸めておいてもよい。なお、この工程はワークの物性やブラスト加工の目的に応じて省略してもよい。 S14: Rounding Step Since the obtained granular material has a cylindrical shape, it has corners. When a workpiece is damaged by this corner during blasting, the corner may be rounded in advance by projecting this granular material toward a wall or the like. Note that this process may be omitted depending on the physical properties of the work and the purpose of the blasting.
亜鉛基合金ショットに対するAlの含有量が1.0~6.0%であり、
亜鉛基合金ショットに対するCuの含有量が0.0001~0.25%であり、
亜鉛基合金ショットが、(1:0.83)≦(径:長さ)≦(1:1.25)の比率を有する円柱であり、
投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.3の範囲内にあり、
亜鉛基合金ショットのビッカース硬さが50~100HVである亜鉛基合金ショットが特に好ましい。 Al content is 1.0 to 6.0% with respect to zinc-based alloy shot,
The content of Cu with respect to a shot of zinc based alloy is 0.0001 to 0.25%,
The zinc based alloy shot is a cylinder having a ratio of (1: 0.83) ≦ (diameter: length) ≦ (1: 1.25),
When a length in the longitudinal direction of the shot determined from the projection is a and a maximum diameter in the direction orthogonal to the longitudinal direction is b, the a / b of the 60% or more shot is in the range of 1.0 to 1.3 Is within
Particularly preferred is a zinc-based alloy shot having a Vickers hardness of 50 to 100 HV for the zinc-based alloy shot.
亜鉛基合金ショットに対するCuの含有量が0.0001~0.25%であり、
亜鉛基合金ショットが、(1:0.83)≦(径:長さ)≦(1:1.25)の比率を有する円柱であり、
投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.3の範囲内にあり、
亜鉛基合金ショットのビッカース硬さが50~100HVである亜鉛基合金ショットが特に好ましい。 Al content is 1.0 to 6.0% with respect to zinc-based alloy shot,
The content of Cu with respect to a shot of zinc based alloy is 0.0001 to 0.25%,
The zinc based alloy shot is a cylinder having a ratio of (1: 0.83) ≦ (diameter: length) ≦ (1: 1.25),
When a length in the longitudinal direction of the shot determined from the projection is a and a maximum diameter in the direction orthogonal to the longitudinal direction is b, the a / b of the 60% or more shot is in the range of 1.0 to 1.3 Is within
Particularly preferred is a zinc-based alloy shot having a Vickers hardness of 50 to 100 HV for the zinc-based alloy shot.
亜鉛基合金ショットに対するAlの含有量が1.3~5.8%であり、
亜鉛基合金ショットに対するCuの含有量が0.0002~0.25%であり、
亜鉛基合金ショットが、(1:0.83)≦(径:長さ)≦(1:1.25)の比率を有する円柱であり、
投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.2の範囲内にあり、
亜鉛基合金ショットのビッカース硬さが70~90HVである亜鉛基合金ショットが特に好ましい。 The content of Al is 1.3 to 5.8% with respect to a zinc based alloy shot,
The content of Cu for zinc based alloy shot is 0.0002 to 0.25%,
The zinc based alloy shot is a cylinder having a ratio of (1: 0.83) ≦ (diameter: length) ≦ (1: 1.25),
Assuming that the length in the longitudinal direction of the shot determined from the projection is a and the maximum diameter in the direction orthogonal to the longitudinal direction is b, the a / b of the 60% or more shot is in the range of 1.0 to 1.2 Is within
Particularly preferred is a zinc-based alloy shot having a Vickers hardness of 70 to 90 HV for the zinc-based alloy shot.
亜鉛基合金ショットに対するCuの含有量が0.0002~0.25%であり、
亜鉛基合金ショットが、(1:0.83)≦(径:長さ)≦(1:1.25)の比率を有する円柱であり、
投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.2の範囲内にあり、
亜鉛基合金ショットのビッカース硬さが70~90HVである亜鉛基合金ショットが特に好ましい。 The content of Al is 1.3 to 5.8% with respect to a zinc based alloy shot,
The content of Cu for zinc based alloy shot is 0.0002 to 0.25%,
The zinc based alloy shot is a cylinder having a ratio of (1: 0.83) ≦ (diameter: length) ≦ (1: 1.25),
Assuming that the length in the longitudinal direction of the shot determined from the projection is a and the maximum diameter in the direction orthogonal to the longitudinal direction is b, the a / b of the 60% or more shot is in the range of 1.0 to 1.2 Is within
Particularly preferred is a zinc-based alloy shot having a Vickers hardness of 70 to 90 HV for the zinc-based alloy shot.
次に、一実施形態の亜鉛基合金ショットを評価した結果について説明する。
Next, the result of having evaluated the zinc base alloy shot of one embodiment is explained.
後述の表1に示す割合になるように秤量したAl及びCuと、Zn地金とから、前述した工程S01~S05(Aタイプ)又は工程S11~S14(Bタイプ)によって、亜鉛基合金ショットを製造した。
Aタイプ:上述の製造方法における工程S01~S05によって製造し、平均粒子径が0.8mm且つ前述のa/bが1.0~1.3となるように分級した亜鉛基合金。
Bタイプ:工程S11~S14によって製造し、ワイヤの径を0.8mmとした亜鉛基合金ショット。 A zinc-based alloy shot was prepared from Al and Cu weighed in proportions shown in Table 1 described later and Zn ingot according to steps S01 to S05 (type A) or steps S11 to S14 (type B) described above. Manufactured.
Type A: A zinc-based alloy manufactured according to steps S01 to S05 in the above-mentioned manufacturing method, and classified so that the average particle diameter is 0.8 mm and the a / b described above is 1.0 to 1.3.
B type: A zinc-based alloy shot manufactured according to steps S11 to S14 and having a wire diameter of 0.8 mm.
Aタイプ:上述の製造方法における工程S01~S05によって製造し、平均粒子径が0.8mm且つ前述のa/bが1.0~1.3となるように分級した亜鉛基合金。
Bタイプ:工程S11~S14によって製造し、ワイヤの径を0.8mmとした亜鉛基合金ショット。 A zinc-based alloy shot was prepared from Al and Cu weighed in proportions shown in Table 1 described later and Zn ingot according to steps S01 to S05 (type A) or steps S11 to S14 (type B) described above. Manufactured.
Type A: A zinc-based alloy manufactured according to steps S01 to S05 in the above-mentioned manufacturing method, and classified so that the average particle diameter is 0.8 mm and the a / b described above is 1.0 to 1.3.
B type: A zinc-based alloy shot manufactured according to steps S11 to S14 and having a wire diameter of 0.8 mm.
これらの亜鉛基合金ショットについて、以下の評価試験を行った。
The following evaluation tests were performed on these zinc-based alloy shots.
亜鉛基合金ショット100kgをショットブラスト機(DZB型:新東工業株式会社製)に投入し、ワークとしてアルミニウム合金製ダイカスト部品(表面硬さ:100HV)に対してブラスト加工を行い、性能の評価を行なった。なお、亜鉛基合金ショットの投射速度は53m/sとした。
100 kg of zinc-based alloy shot is introduced into a shot blasting machine (DZB type: Shinto Kogyo Co., Ltd.), and blast processing is performed on aluminum alloy die cast parts (surface hardness: 100 HV) as a work to evaluate the performance I did. In addition, the projection speed of the zinc base alloy shot was 53 m / s.
評価項目は、「消耗量」、「バリ取り能力」および「仕上がり品質」について、下記の通り行なった。
The evaluation items were as follows for "consumption amount", "deburring ability" and "finish quality".
<消耗量>
寿命ないし靭性(耐衝撃性)に対応する評価である。亜鉛基合金ショットを用いて8時間、ショットブラストすることにより微粉となって損耗した量を「ショット消耗量」として下記基準で評価した。
◎:0.06kg/(h・HP)以下
○:0.06kg/(h・HP)~0.08kg/(h・HP)
△:0.08kg/(h・HP)~0.10kg/(h・HP)
×:0.10kg/(h・HP)以上 <Amount of consumption>
It is an evaluation corresponding to the life or toughness (impact resistance). The amount of wear and tear as fine powder by shot blasting using a zinc-based alloy shot for 8 hours was evaluated as the "shot consumption amount" according to the following criteria.
◎: 0.06 kg / (h · HP) or less ○: 0.06 kg / (h · HP) to 0.08 kg / (h · HP)
:: 0.08 kg / (h · HP) to 0.10 kg / (h · HP)
×: 0.10 kg / (h · HP) or more
寿命ないし靭性(耐衝撃性)に対応する評価である。亜鉛基合金ショットを用いて8時間、ショットブラストすることにより微粉となって損耗した量を「ショット消耗量」として下記基準で評価した。
◎:0.06kg/(h・HP)以下
○:0.06kg/(h・HP)~0.08kg/(h・HP)
△:0.08kg/(h・HP)~0.10kg/(h・HP)
×:0.10kg/(h・HP)以上 <Amount of consumption>
It is an evaluation corresponding to the life or toughness (impact resistance). The amount of wear and tear as fine powder by shot blasting using a zinc-based alloy shot for 8 hours was evaluated as the "shot consumption amount" according to the following criteria.
◎: 0.06 kg / (h · HP) or less ○: 0.06 kg / (h · HP) to 0.08 kg / (h · HP)
:: 0.08 kg / (h · HP) to 0.10 kg / (h · HP)
×: 0.10 kg / (h · HP) or more
<バリ取り能力>
研掃能力ないしブラスト能力に対応する評価である。バリが完全に除去できるまでに要するブラスト加工時間を測定し、以下の基準で評価した。なお、バリの除去は目視評価とした。
◎:30秒のブラスト加工時間でバリが除去される。
○:60秒のブラスト加工時間でバリが除去される。
△:90秒のブラスト加工時間でバリが除去される。
×:90秒のブラスト加工時間でもバリが除去されない。 <Deburring ability>
It is an evaluation corresponding to the cleaning ability or the blasting ability. The blasting time required for the burrs to be completely removed was measured and evaluated according to the following criteria. The removal of burrs was evaluated visually.
:: The burr is removed in a blasting time of 30 seconds.
○: The burrs are removed in a blasting time of 60 seconds.
Fair: Burr is removed by blasting time of 90 seconds.
X: The burr is not removed even by the blasting time of 90 seconds.
研掃能力ないしブラスト能力に対応する評価である。バリが完全に除去できるまでに要するブラスト加工時間を測定し、以下の基準で評価した。なお、バリの除去は目視評価とした。
◎:30秒のブラスト加工時間でバリが除去される。
○:60秒のブラスト加工時間でバリが除去される。
△:90秒のブラスト加工時間でバリが除去される。
×:90秒のブラスト加工時間でもバリが除去されない。 <Deburring ability>
It is an evaluation corresponding to the cleaning ability or the blasting ability. The blasting time required for the burrs to be completely removed was measured and evaluated according to the following criteria. The removal of burrs was evaluated visually.
:: The burr is removed in a blasting time of 30 seconds.
○: The burrs are removed in a blasting time of 60 seconds.
Fair: Burr is removed by blasting time of 90 seconds.
X: The burr is not removed even by the blasting time of 90 seconds.
<仕上がり品質>
ブラスト加工後のワーク表面を観察し、以下の基準で評価した(目視での評価)。
◎:銀白色に輝いている。
○:少し黒ずんでいる。
△:黒ずんでいる。 Finished quality
The workpiece surface after blasting was observed and evaluated according to the following criteria (visual evaluation).
◎: Shiny silver white.
○: A little dark.
:: It is dark.
ブラスト加工後のワーク表面を観察し、以下の基準で評価した(目視での評価)。
◎:銀白色に輝いている。
○:少し黒ずんでいる。
△:黒ずんでいる。 Finished quality
The workpiece surface after blasting was observed and evaluated according to the following criteria (visual evaluation).
◎: Shiny silver white.
○: A little dark.
:: It is dark.
それらの評価結果を表1に示す。なお、表中「径-長さ比」とは、Bタイプの亜鉛基合金ショットにおいて、切断後のワイヤの「ワイヤの径:ワイヤの長さ」を示す。
The evaluation results are shown in Table 1. In the table, “diameter-length ratio” indicates “wire diameter of wire after wire cutting: length of wire” in the B-type zinc-based alloy shot.
<消耗量の評価>
いずれのタイプの亜鉛基合金ショットにおいても、Alの添加量が1.0~6.0%の範囲である実施例1~10は、いずれの条件においても△以上の評価であった。さらに、Cuを0.0001~0.25%の範囲で微量に添加した場合であっても、いずれの条件においても△以上の評価であった。ここで、△評価は○評価より劣るものの実用上問題のない結果であり、投射条件(投射速度や粒子径等)を最適化することで○評価以上となりえることが示唆される。従って、実施例1~10においては、消耗量の評価は良好であることがわかる。 <Evaluation of consumption amount>
In any type of zinc-based alloy shot, Examples 1 to 10 in which the added amount of Al is in the range of 1.0 to 6.0% were evaluated as Δ or more under any condition. Furthermore, even when Cu was added in a small amount in the range of 0.0001 to 0.25%, the evaluation was Δ or more under any condition. Here, △ evaluation is a result that is inferior to 評 価 evaluation but has no problem in practical use, and it is suggested that optimization of the projection conditions (such as the projection speed and the particle diameter) can result in more than 評 価 evaluation. Therefore, in Examples 1 to 10, it is understood that the evaluation of the consumption amount is good.
いずれのタイプの亜鉛基合金ショットにおいても、Alの添加量が1.0~6.0%の範囲である実施例1~10は、いずれの条件においても△以上の評価であった。さらに、Cuを0.0001~0.25%の範囲で微量に添加した場合であっても、いずれの条件においても△以上の評価であった。ここで、△評価は○評価より劣るものの実用上問題のない結果であり、投射条件(投射速度や粒子径等)を最適化することで○評価以上となりえることが示唆される。従って、実施例1~10においては、消耗量の評価は良好であることがわかる。 <Evaluation of consumption amount>
In any type of zinc-based alloy shot, Examples 1 to 10 in which the added amount of Al is in the range of 1.0 to 6.0% were evaluated as Δ or more under any condition. Furthermore, even when Cu was added in a small amount in the range of 0.0001 to 0.25%, the evaluation was Δ or more under any condition. Here, △ evaluation is a result that is inferior to 評 価 evaluation but has no problem in practical use, and it is suggested that optimization of the projection conditions (such as the projection speed and the particle diameter) can result in more than 評 価 evaluation. Therefore, in Examples 1 to 10, it is understood that the evaluation of the consumption amount is good.
Bタイプの亜鉛基合金ショットにおいては、タイプAの亜鉛基合金ショットの組成と近い場合、消耗量の評価は同等もしくはさらに良好な評価となった。これは、Bタイプの亜鉛基合金ショットの製造過程で応力を付与する工程が含まれるので、亜鉛基合金ショットの機械的性質が向上し、その結果耐衝撃性が向上したことが要因と考えられる。
In the case of the B-type zinc-based alloy shot, when the composition of the type-A zinc-based alloy shot was close, the evaluation of the consumed amount was equivalent or better. This is thought to be due to the mechanical properties of the zinc-based alloy shot being improved and the impact resistance being improved as a result of including the process of applying stress during the manufacturing process of the B-type zinc-based alloy shot. .
Alの添加量が過剰である比較例3及びCuの添加量が過剰である比較例4は、×評価であった。いずれの場合もAl及びCuを過剰に添加することで、耐衝撃性が悪化したと考えられる。
Comparative Example 3 in which the added amount of Al is excessive and Comparative Example 4 in which the added amount of Cu is excessive were evaluated as x. In any case, it is considered that the impact resistance is deteriorated by adding Al and Cu in excess.
<バリ取り能力>
いずれのタイプの亜鉛基合金ショットにおいても、Alの添加量が1.0~6.0%の範囲である実施例1~10は、Alの添加量が多くなると評価が低下する傾向が見られるが、いずれの条件においても△以上の評価であった。さらに、Cuを0.0001~0.25%の範囲で微量に添加した場合であっても、いずれの条件においても△以上の評価であった。ここで、△評価は○評価より劣るものの実用上問題のない結果であり、投射条件(投射速度や粒子径等)を最適化することで○評価以上となりえることが示唆される。従って、実施例1~10においては、消耗量の評価は良好であることがわかる。 <Deburring ability>
In any of the types of zinc-based alloy shots, in Examples 1 to 10 in which the amount of added Al is in the range of 1.0 to 6.0%, the evaluation tends to decrease as the amount of added Al increases. However, the evaluation was Δ or more under any condition. Furthermore, even when Cu was added in a small amount in the range of 0.0001 to 0.25%, the evaluation was Δ or more under any condition. Here, △ evaluation is a result that is inferior to 評 価 evaluation but has no problem in practical use, and it is suggested that optimization of the projection conditions (such as the projection speed and the particle diameter) can result in more than 評 価 evaluation. Therefore, in Examples 1 to 10, it is understood that the evaluation of the consumption amount is good.
いずれのタイプの亜鉛基合金ショットにおいても、Alの添加量が1.0~6.0%の範囲である実施例1~10は、Alの添加量が多くなると評価が低下する傾向が見られるが、いずれの条件においても△以上の評価であった。さらに、Cuを0.0001~0.25%の範囲で微量に添加した場合であっても、いずれの条件においても△以上の評価であった。ここで、△評価は○評価より劣るものの実用上問題のない結果であり、投射条件(投射速度や粒子径等)を最適化することで○評価以上となりえることが示唆される。従って、実施例1~10においては、消耗量の評価は良好であることがわかる。 <Deburring ability>
In any of the types of zinc-based alloy shots, in Examples 1 to 10 in which the amount of added Al is in the range of 1.0 to 6.0%, the evaluation tends to decrease as the amount of added Al increases. However, the evaluation was Δ or more under any condition. Furthermore, even when Cu was added in a small amount in the range of 0.0001 to 0.25%, the evaluation was Δ or more under any condition. Here, △ evaluation is a result that is inferior to 評 価 evaluation but has no problem in practical use, and it is suggested that optimization of the projection conditions (such as the projection speed and the particle diameter) can result in more than 評 価 evaluation. Therefore, in Examples 1 to 10, it is understood that the evaluation of the consumption amount is good.
Bタイプの亜鉛基合金ショットにおいては、タイプAの亜鉛基合金ショットの組成と近い場合、バリ取り能力の評価は同等もしくはさらに良好な評価となった。これは、Bタイプの亜鉛基合金ショットの製造過程で応力を付与する工程が含まれるので、亜鉛基合金ショットの機械的性質が向上したことが要因と考えられる。
In the case of the B-type zinc-based alloy shot, when the composition of the type-A zinc-based alloy shot is close, the evaluation of the deburring ability is equivalent or better. This is considered to be due to the improvement of the mechanical properties of the zinc-based alloy shot because the process of applying stress is included in the manufacturing process of the B-type zinc-based alloy shot.
Alが添加されていない比較例1及び添加量が過小な比較例2は、×評価となった。これは、ビッカース硬度がワークに対して低いことに起因すると考えられる。
Comparative Example 1 in which Al was not added and Comparative Example 2 in which the addition amount was too small were evaluated as x. This is considered to be due to the Vickers hardness being low relative to the work.
径-長さ比が過小または過大の比較例5、6は、いずれも×評価となった。ワークに対して亜鉛基合金ショットの衝突にばらつきが生じるので、結果としてバリ取り能力が低下したと考えられる。
The comparative examples 5 and 6 in which the diameter-length ratio was too small or too large were all evaluated as ×. Since the collision of the shot of the zinc-based alloy with respect to the workpiece varies, it is considered that the deburring ability is lowered as a result.
<仕上がり品質>
いずれのタイプの亜鉛基合金ショットにおいても、Cuを0.0001~0.25%の範囲で微量に添加した実施例3、4、7、8、9、10は、いずれの条件においても◎評価であり、Cuを微量に添加することで仕上がり品質が向上することが示された。 Finished quality
In any type of zinc-based alloy shot, in Examples 3, 4, 7, 8, 9, and 10, in which Cu was added in a small amount in the range of 0.0001 to 0.25%, ◎ evaluation under any conditions. It was shown that the addition of a small amount of Cu improves the finished quality.
いずれのタイプの亜鉛基合金ショットにおいても、Cuを0.0001~0.25%の範囲で微量に添加した実施例3、4、7、8、9、10は、いずれの条件においても◎評価であり、Cuを微量に添加することで仕上がり品質が向上することが示された。 Finished quality
In any type of zinc-based alloy shot, in Examples 3, 4, 7, 8, 9, and 10, in which Cu was added in a small amount in the range of 0.0001 to 0.25%, ◎ evaluation under any conditions. It was shown that the addition of a small amount of Cu improves the finished quality.
また、Cuが添加されていない実施例1、2、5、6においては、△評価または○評価となり、比較例1の結果を加味すると、Alの添加によっても仕上がり品質の改善がみられた。これは、バリ取り能力が向上したことでブラスト加工が完了するまでの時間が短縮されたので、ワークが亜鉛基合金ショットの投射流にさらされる機会が減少したことに起因すると考えられる。
Moreover, in Examples 1, 2, 5 and 6 in which Cu was not added, the results were evaluated as ○ or 評 価, and when the results of Comparative Example 1 were taken into consideration, the improvement of the finish quality was also seen by the addition of Al. It is considered that this is because the time to complete the blasting is shortened due to the improvement of the deburring ability, so that the opportunity for the work to be exposed to the shot flow of the zinc-based alloy shot is reduced.
一実施形態の亜鉛基合金ショットは、アルミニウムダイカスト製品やアルミニウム鋳物製品などを例とする非鉄金属部品のバリおよびカエリの除去、鋳造品の砂落とし、塗型や離型剤の焼き付き除去、酸化膜や湯じわの除去、封孔処理、等を目的としたショットブラストに対して好適に用いることができる。
The zinc-based alloy shot according to one embodiment includes removal of burrs and burrs of non-ferrous metal parts such as aluminum die cast products and aluminum cast products, sand removal of cast products, baking removal of molds and release agents, oxide film It can be suitably used for shot blasting for the purpose of removing hot water wrinkles, sealing treatment and the like.
Claims (9)
- 亜鉛基合金ショットであって、
前記亜鉛基合金ショットは、Alと残部がZn及び不可避不純物からなり、
前記亜鉛基合金ショットに対するAlの含有量が1.0~6.0質量%であり、
前記亜鉛基合金ショットのビッカース硬さが50~100HVである、亜鉛基合金ショット。 Zinc-based alloy shot,
The zinc-based alloy shot is composed of Al and the balance of Zn and unavoidable impurities,
The content of Al relative to the zinc-based alloy shot is 1.0 to 6.0 mass%,
The zinc-based alloy shot, wherein the Vickers hardness of the zinc-based alloy shot is 50 to 100 HV. - 前記亜鉛基合金ショットのビッカース硬さが50~90HVである、請求項1記載の亜鉛基合金ショット。 The zinc-based alloy shot according to claim 1, wherein the Vickers hardness of the zinc-based alloy shot is 50 to 90 HV.
- 前記亜鉛基合金ショットは、更に微量添加元素としてCuが添加されており、
前記微量添加元素の添加量は前記亜鉛基合金ショットに対して0.0001~0.25質量%である、請求項1又は2に記載の亜鉛基合金ショット。 In the zinc based alloy shot, Cu is further added as a trace additive element,
The zinc-based alloy shot according to claim 1 or 2, wherein the addition amount of the trace additive element is 0.0001 to 0.25 mass% with respect to the zinc-based alloy shot. - 前記亜鉛基合金ショットは、0.2~2.0mmの径を有する粒状体であるか、又は(1:0.8)≦(径:長さ)≦(1:1.3)の比率を有する円柱である、請求項1~3のいずれか1項に記載の亜鉛基合金ショット。 The zinc-based alloy shot is a granular body having a diameter of 0.2 to 2.0 mm, or a ratio of (1: 0.8) ≦ (diameter: length) ≦ (1: 1.3) The zinc-based alloy shot according to any one of claims 1 to 3, wherein the shot is a cylindrical shape.
- 前記亜鉛基合金ショットが粒状体であって、投影図から求めたショットの長手方向の長さをa、長手方向に直交する方向における最大径をbとした場合に、60%以上のショットのa/bが1.0~1.3の範囲内にある、請求項1~4のいずれか1項記載の亜鉛基合金ショット。 When the zinc-based alloy shot is a granular body, and the length in the longitudinal direction of the shot obtained from the projection is a, and the maximum diameter in the direction orthogonal to the longitudinal direction is b, a of 60% or more of the shot The zinc-based alloy shot according to any one of claims 1 to 4, wherein / b is in the range of 1.0 to 1.3.
- 請求項1~5のいずれか1項に記載の亜鉛基合金ショットの製造方法であって、
原料金属であるZn、Al、及び必要に応じてCuを秤量する工程と、
前記原料金属を加熱して溶湯とする工程と、
前記溶湯を、底部にノズルが配置された溶湯保持容器に移送する工程と、
前記ノズルを介して、液体の冷却媒体中に前記溶湯を滴下する工程と、
前記冷却媒体中で前記溶湯を凝固させて粒状体を得る工程と、
前記粒状体を所定のサイズに分級する工程と、
を含み、
前記分級する工程では、前記凝固された溶湯金属の径を0.2~2.0mmに分級する、前記亜鉛基合金ショットの製造方法。 The method for producing a zinc-based alloy shot according to any one of claims 1 to 5, comprising:
Weighing the source metals Zn, Al and, if necessary, Cu;
Heating the raw material metal into a molten metal;
Transferring the molten metal to a molten metal holding vessel having a nozzle disposed at the bottom thereof;
Dropping the molten metal into a liquid cooling medium through the nozzle;
Solidifying the molten metal in the cooling medium to obtain granules;
Classifying the particles into a predetermined size;
Including
In the step of classifying, the diameter of the solidified molten metal is classified to 0.2 to 2.0 mm. - 請求項1~4のいずれか1項に記載の亜鉛基合金ショットの製造方法であって、
原料金属であるZn、Al、及び必要に応じてCuの合金組成を有する塊状物を得る工程と、
前記塊状物より所定の径のワイヤを得る工程と、
前記ワイヤを所定の長さに切断する工程と、
を含み、
前記ワイヤを得る工程では、塊状物を圧延すると共に応力を付与する工程を含む、前記亜鉛基合金ショットの製造方法。 A method of producing a zinc-based alloy shot according to any one of claims 1 to 4, comprising:
Obtaining a lump having an alloy composition of raw material metals Zn, Al, and optionally Cu;
Obtaining a wire of a predetermined diameter from the mass;
Cutting the wire to a predetermined length;
Including
In the step of obtaining the wire, the step of rolling and applying stress to a lump is provided. - 前記ワイヤを切断する工程では、(1:0.8)≦(ワイヤの径:ワイヤの長さ)≦(1:1.3)となるようにワイヤを切断する、請求項7に記載の亜鉛基合金ショットの製造方法。 The zinc according to claim 7, wherein in the step of cutting the wire, the wire is cut such that (1: 0.8) ((wire diameter: wire length)) (1: 1.3). Method of manufacturing base alloy shot.
- 前記ワイヤを得る工程では、ワイヤの径がφ0.4~2.0mmとなるように塊状物を加工する、請求項7または8に記載の亜鉛基合金ショットの製造方法。 9. The method for producing a zinc-based alloy shot according to claim 7, wherein in the step of obtaining the wire, the lump is processed so that the diameter of the wire is φ0.4 to 2.0 mm.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019525686A JP6965926B2 (en) | 2017-06-21 | 2018-06-21 | Zinc-based alloy shot and its manufacturing method |
CN201880041141.4A CN110769978B (en) | 2017-06-21 | 2018-06-21 | Zinc-based alloy pellet and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-121048 | 2017-06-21 | ||
JP2017121048 | 2017-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018235902A1 true WO2018235902A1 (en) | 2018-12-27 |
Family
ID=64735950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/023645 WO2018235902A1 (en) | 2017-06-21 | 2018-06-21 | Zinc-based alloy shot and method for producing same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6965926B2 (en) |
CN (1) | CN110769978B (en) |
TW (1) | TWI798231B (en) |
WO (1) | WO2018235902A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62278204A (en) * | 1986-05-26 | 1987-12-03 | Sumitomo Metal Ind Ltd | Material for blasting |
JPH04310372A (en) * | 1991-04-05 | 1992-11-02 | Nippon Steel Corp | Manufacture of wire for cut wire |
JP2001162538A (en) * | 1999-12-14 | 2001-06-19 | Toho Zinc Co Ltd | Zinc alloy shot |
JP2009226535A (en) * | 2008-03-21 | 2009-10-08 | Lianyungang Beautech Metal Abrasive Co Ltd | Zinc alloy shot |
WO2011052287A1 (en) * | 2009-10-30 | 2011-05-05 | 新東工業株式会社 | Zinc-based alloy shots |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1943992B (en) * | 2006-09-29 | 2010-05-12 | 连云港倍特金属磨料有限公司 | Zinc alloy shot pill |
CN101928860A (en) * | 2010-09-29 | 2010-12-29 | 株洲冶炼集团股份有限公司 | Zinc alloy for manufacturing die |
JP2012125900A (en) * | 2010-12-16 | 2012-07-05 | Sintokogio Ltd | Zinc-based alloy shot |
JP5787215B2 (en) * | 2011-06-14 | 2015-09-30 | 新東工業株式会社 | Zinc-based alloy shot |
-
2018
- 2018-06-21 CN CN201880041141.4A patent/CN110769978B/en active Active
- 2018-06-21 TW TW107121318A patent/TWI798231B/en active
- 2018-06-21 JP JP2019525686A patent/JP6965926B2/en active Active
- 2018-06-21 WO PCT/JP2018/023645 patent/WO2018235902A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62278204A (en) * | 1986-05-26 | 1987-12-03 | Sumitomo Metal Ind Ltd | Material for blasting |
JPH04310372A (en) * | 1991-04-05 | 1992-11-02 | Nippon Steel Corp | Manufacture of wire for cut wire |
JP2001162538A (en) * | 1999-12-14 | 2001-06-19 | Toho Zinc Co Ltd | Zinc alloy shot |
JP2009226535A (en) * | 2008-03-21 | 2009-10-08 | Lianyungang Beautech Metal Abrasive Co Ltd | Zinc alloy shot |
WO2011052287A1 (en) * | 2009-10-30 | 2011-05-05 | 新東工業株式会社 | Zinc-based alloy shots |
Also Published As
Publication number | Publication date |
---|---|
TWI798231B (en) | 2023-04-11 |
CN110769978B (en) | 2022-08-26 |
CN110769978A (en) | 2020-02-07 |
JP6965926B2 (en) | 2021-11-10 |
TW201907020A (en) | 2019-02-16 |
JPWO2018235902A1 (en) | 2020-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101237904B1 (en) | Zinc-based alloy shots | |
US10017841B2 (en) | Copper alloy casting and method of casting the same | |
AU2016433840B2 (en) | Aluminum alloy for impact extruded containers and method of making the same | |
KR20160120799A (en) | Impact extruded containers from recycled aluminum scrap | |
WO2012081276A1 (en) | Zinc-based alloy shot | |
JP4764094B2 (en) | Heat-resistant Al-based alloy | |
KR20160047541A (en) | Aluminum alloy products and methods for producing same | |
JP5787215B2 (en) | Zinc-based alloy shot | |
JP4165794B2 (en) | shot | |
WO2018235902A1 (en) | Zinc-based alloy shot and method for producing same | |
JP5939339B2 (en) | Zinc-based alloy shot | |
JP6965927B2 (en) | Zinc-based alloy shot and its manufacturing method | |
JP4774883B2 (en) | Zinc-based alloy shot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18821495 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019525686 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18821495 Country of ref document: EP Kind code of ref document: A1 |