JP4774883B2 - Zinc-based alloy shot - Google Patents

Zinc-based alloy shot Download PDF

Info

Publication number
JP4774883B2
JP4774883B2 JP2005273581A JP2005273581A JP4774883B2 JP 4774883 B2 JP4774883 B2 JP 4774883B2 JP 2005273581 A JP2005273581 A JP 2005273581A JP 2005273581 A JP2005273581 A JP 2005273581A JP 4774883 B2 JP4774883 B2 JP 4774883B2
Authority
JP
Japan
Prior art keywords
shot
zinc
based alloy
hardness
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005273581A
Other languages
Japanese (ja)
Other versions
JP2007084869A (en
Inventor
英二 山口
政行 石川
福徳 星野
勝一 辻本
達朗 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2005273581A priority Critical patent/JP4774883B2/en
Publication of JP2007084869A publication Critical patent/JP2007084869A/en
Application granted granted Critical
Publication of JP4774883B2 publication Critical patent/JP4774883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、亜鉛基合金からなる新規な亜鉛基合金ショットに関する。特に、アルミニウム鋳物など軽合金鋳物(鋳造品)の表面仕上げに好適な亜鉛基合金ショットに係る発明である。   The present invention relates to a novel zinc-based alloy shot made of a zinc-based alloy. In particular, the invention relates to a zinc-based alloy shot suitable for surface finishing of light alloy castings (castings) such as aluminum castings.

ここで、鋳物には、溶湯の重力を利用して鋳造する鋳物ばかりでなく、溶湯に圧力を加えて鋳造するダイカスト、鋳型を回転させながら遠心力で溶湯を鋳型に注湯する遠心鋳造等の特殊鋳物も含む。   Here, the casting includes not only a casting that uses the gravity of the molten metal, but also die casting that applies pressure to the molten metal, centrifugal casting that pours the molten metal into the mold by centrifugal force while rotating the mold, etc. Includes special castings.

なお、本明細書及び特許請求の範囲における濃度単位「%」は、通常の意味通り「質量百分率」を意味する。   In the present specification and claims, the concentration unit “%” means “mass percentage” as usual.

アルミニウム鋳物は、通常、離型後の表面処理を、その表面に金属球(ショット)を、空気圧力やインペラーブレードの回転力などにより衝突させて行っていた。離型後に鋳物に発生したバリ、カエリ等の除去や、スケール(鋳物砂)落としを行うためである。   Aluminum castings are usually subjected to surface treatment after mold release by colliding metal spheres (shots) on the surface with air pressure or the rotational force of impeller blades. This is to remove burrs and burrs generated in the casting after mold release and to remove scale (casting sand).

しかし、通常の鋼球ショットでは、硬さが高すぎて、被処理面を磨耗させたり変形させたりするおそれがある。このため、軟質金属で、粉塵爆発の危険性がほとんどない亜鉛基合金ショットが使用されている。亜鉛は爆発感度0.6と、アルミニウムのそれ7.5に比してきわめて低い。(特許文献1段落0003参照)
ところが、亜鉛基合金ショットは、アルミニウム鋳物等の被処理品における素材の色が損なわれて全体的に灰色状の黒ずんだ状態になりやすく、商品価値を損なう。
However, with a normal steel ball shot, the hardness is too high, and the surface to be treated may be worn or deformed. For this reason, a zinc-based alloy shot that is a soft metal and has almost no risk of dust explosion is used. Zinc has an explosion sensitivity of 0.6, which is very low compared to 7.5 of aluminum. (See Patent Document 1, paragraph 0003)
However, the zinc-based alloy shot tends to be in a grayish dark state as a whole because the color of the material in the article to be processed, such as an aluminum casting, is lost, and the commercial value is impaired.

そこで、亜鉛にCuを0.05〜2.0%(望ましくは、0.10〜1.0%)を含有させた亜鉛基合金でショットを形成する技術が特許文献1に提案されている。   Therefore, Patent Document 1 proposes a technique for forming a shot with a zinc-based alloy in which 0.05 to 2.0% (desirably, 0.10 to 1.0%) of Cu is contained in zinc.

他方、生産性を向上、すなわち、ブラスト時間の短縮及びショット寿命の延長の要請から、硬さが大きい(硬度が高い)ショットの出現が要望されている。   On the other hand, the appearance of shots with high hardness (high hardness) has been demanded in order to improve productivity, that is, to shorten blast time and extend shot life.

そこで、ショットの硬さを大きくするために、亜鉛にMnを0.3〜5.0質量%を含有させ、ビッカース硬さが60〜130HVである亜鉛基合金ショットを形成する技術が特許文献2に提案されている。   Therefore, in order to increase the hardness of the shot, a technique for forming a zinc-based alloy shot having a Vickers hardness of 60 to 130 HV by containing 0.3 to 5.0 mass% of Mn in zinc is disclosed in Patent Document 2. Has been proposed.

なお、亜鉛基合金ショットの硬さを増大させる関連参考文献として、特許文献3が存在する。   Note that Patent Document 3 exists as a related reference for increasing the hardness of a zinc-based alloy shot.

しかし、昨今、表面意匠性の更なる要求から、全く黒ずみが発生しない(変色しない)ことが要求され、さらには、生産性の要求から、硬さを増大させても、ブラスト後製品に微細・全体磨耗が発生せず、ほとんど面の荒れも生じないものが要求されるようになってきている。
特許2887228号公報 特開2001−162538号公報 特開平11−320416号公報
However, due to the recent demand for surface design, it is required that no blackening occurs (no discoloration). Furthermore, due to the demand for productivity, even if the hardness is increased, the product after blasting must be fine. There has been a demand for a material that does not cause overall wear and hardly causes surface roughness.
Japanese Patent No. 2887228 JP 2001-162538 A JP-A-11-320416

本発明は、上記にかんがみて、上記要望を満足させることができる亜鉛基合金ショットを提供することを目的とする。   In view of the above, it is an object of the present invention to provide a zinc-based alloy shot that can satisfy the above-mentioned demand.

本発明者らは、これらの課題を解決すべく鋭意研究を重ねた結果、銅(Cu)とマンガン(Mn)を併用し、CuをMnより多量に添加すれば、上記課題を解決できることを見出して、下記構成の本発明に想到した。   As a result of intensive studies to solve these problems, the present inventors have found that the above problem can be solved if copper (Cu) and manganese (Mn) are used in combination and Cu is added in a larger amount than Mn. Thus, the present invention having the following configuration has been conceived.

亜鉛基合金からなるショットにおいて、前記亜鉛基合金が、溶質金属としての銅(Cu)及びマンガン(Mn)が、Cu/Mn質量比>1の関係で、かつ、ビッカース硬さ(JIS Z 2244)55〜180HVを示すよう添加されてなることを特徴とする。   In a shot made of a zinc-based alloy, the zinc-based alloy is such that copper (Cu) and manganese (Mn) as solute metals have a Cu / Mn mass ratio> 1, and Vickers hardness (JIS Z 2244). It is added so that it may show 55-180HV.

銅及びマンガンを前者>後者の関係で添加すると、後述の実施例で示す如く、銅及びマンガンの合計添加量(Cu+Mn)を、それぞれ単独で添加した場合より大きな硬さのショットが得られ、かつ、ブラスト加工により被処理品に変色(黒ずみ)もほとんど発生しない(後述の実施例2と比較例3、実施例3群と比較例4)。銅又はマンガンのみの添加では、当然、本発明の硬さは得難く、それらを過剰に配合すると、脆くなる(特許文献1段落0009、特許文献2段落0015参照)。すなわち、銅又はマンガンで大きな硬さのショットを得ようとすると、銅又はマンガンを多量に配合する必要があり、亜鉛の有する靱性が低下してショット寿命が低下する(損耗しやすい)。他方、従来と同程度の硬さのショットを本発明の銅>マンガンの関係にあるときは、少量の銅及びマンガンの添加量ですみ、靱性の高いショットを得ることができる(ショットの損耗が少なくなりショット寿命の延長に寄与する。)。   When copper and manganese are added in the relationship of the former> the latter, as shown in the examples described later, a shot with a larger hardness than that obtained when each of the total addition amount of copper and manganese (Cu + Mn) is added alone is obtained, and As a result, almost no discoloration (darkening) occurs in the article to be processed by blasting (Example 2 and Comparative Example 3 described later, Example 3 group and Comparative Example 4). Naturally, it is difficult to obtain the hardness of the present invention by adding only copper or manganese, and if they are excessively blended, they become brittle (see Patent Document 1, paragraph 0009, Patent Document 2, paragraph 0015). That is, in order to obtain a shot with a high hardness using copper or manganese, it is necessary to add a large amount of copper or manganese, and the toughness of zinc is lowered, so that the shot life is reduced (easy to wear). On the other hand, when a shot having the same hardness as the conventional one has a relationship of copper> manganese of the present invention, a small amount of copper and manganese can be added, and a shot with high toughness can be obtained (shot wear is reduced). This contributes to the longer shot life.)

そして、Cu/Mn(質量)比は、Cu/Mn比≒1.5〜6、望ましくは、2〜3とする。当該Cu/Mn比は、絶対的なものではなく、本発明者らが行った試験例及び経験則から推測できる範囲を規定したもので「≒」は、その意味が含まれている。   The Cu / Mn (mass) ratio is set to Cu / Mn ratio≈1.5 to 6, preferably 2 to 3. The Cu / Mn ratio is not absolute, and defines a range that can be inferred from test examples and empirical rules conducted by the present inventors, and “≈” includes the meaning.

銅比が高すぎると、硬さを増大させるために、マンガンの絶対添加量を増やす必要があり、逆に、銅比が低すぎると、黒ずみをなくすために、銅の絶対添加量を増やす必要がある。したがって、両溶質合金元素の合計絶対量が増大して、相対的に安定した品質(硬さ等)のショットを得難くなる。(特許文献2段落0010第12〜13行参照)。   If the copper ratio is too high, it is necessary to increase the absolute addition amount of manganese in order to increase the hardness. Conversely, if the copper ratio is too low, it is necessary to increase the absolute addition amount of copper in order to eliminate darkening. There is. Therefore, the total absolute amount of both solute alloy elements increases, making it difficult to obtain a shot with relatively stable quality (hardness, etc.). (See Patent Document 2, paragraph 0010, lines 12-13).

上記構成において、前記銅及びマンガンは、ビッカース硬さ約60〜160HVとなるように添加することが望ましい。本硬さ範囲は、汎用のアルミダイカスト等をブラスト処理する場合により望ましい範囲を示すもので、被処理品の硬さ・要求仕上げにより、また、母材〈マトリックス)である亜鉛の種類(硬さ)等により変動するもので、絶対的なものではない。その意味が「約」に含まれている。   In the above configuration, the copper and manganese are preferably added so as to have a Vickers hardness of about 60 to 160 HV. This hardness range shows a more desirable range when blasting general-purpose aluminum die castings, etc., depending on the hardness and required finish of the product to be processed, and the type of zinc (hardness) that is the base material <matrix> ), Etc., and not absolute. The meaning is included in “about”.

ショット(亜鉛基合金)のビッカース硬さが約60HV未満では、バリ取り、スケール落としに時間がかかり、本発明の目的の一つであるブラスト時間の短縮を図り難い。他方、約160HV以上のものを得ようとして、銅及びマンガンを多量に添加すると、脆くなり(靱性が無くなり)、却ってショット寿命が短くなる(実施例4・5参照)。   When the Vickers hardness of the shot (zinc-based alloy) is less than about 60 HV, it takes time to deburr and scale off, and it is difficult to shorten the blast time which is one of the objects of the present invention. On the other hand, when a large amount of copper and manganese is added in order to obtain a product of about 160 HV or more, the material becomes brittle (no toughness), and on the contrary, the shot life is shortened (see Examples 4 and 5).

上記ショットの粒径は、ショット可能なものなら特に限定されないが、約0.05〜5mm、さらには、約0.3〜4mmとすることが望ましい。この範囲も、ショット及び被処理品の一方又は双方の硬さやブラスト条件により異なり、本発明者らが行った試験例および経験則から帰納したもので、絶対的なものではない。数値の前の「約」は、その意味が含まれている。   The particle diameter of the shot is not particularly limited as long as it can be shot, but is preferably about 0.05 to 5 mm, and more preferably about 0.3 to 4 mm. This range also varies depending on the hardness and blasting conditions of one or both of the shot and the product to be processed, and is derived from test examples and empirical rules conducted by the present inventors, and is not absolute. The “about” in front of the numerical value includes its meaning.

ショット粒径が小さすぎると、同様の硬さでも、ブラスト加工時間が嵩み、バリの取り残しが発生しやすい(実施例3−1参照)。他方、ショット粒径が大きすぎると、同様の硬さでも、被処理品に表面に微細磨耗及び全体磨耗・変形が発生し易い(実施例3−6参照)。   If the shot particle size is too small, even with the same hardness, blasting time is increased and burrs are easily left behind (see Example 3-1). On the other hand, if the shot particle size is too large, fine wear and overall wear / deformation are likely to occur on the surface of the article to be processed even with similar hardness (see Example 3-6).

そして、各溶質金属の添加量は、通常、銅を約0.8〜6%(望ましくは約1.5〜4.0%)、前記マンガンを約0.2〜5%(望ましくは約1.0〜3.0%)及び銅・マンガン合計量約1.0〜10.0%とする。この銅及びマンガンの添加量およびそれらの合計量も前述と同様、絶対的なものではなく、母材亜鉛の種類(グレード)、銅及びマンガンのグレードにより異なり、後述の試験例及び経験則から帰納したものであり、数値の前の「約」にその意味を含むものである。さらに、銅、マンガン以外の溶質金属(例えば、Fe、Ni等)を少量添加する場合は、変動する。なお、本亜鉛基合金の組成において、銅(Cu)及びマンガン(Mn)以外の元素の残部は、当然のことながら、亜鉛(Zn)及び不可避不純物からなる(実質的にZnのみからなる)。 The amount of each solute metal added is usually about 0.8 to 6% (preferably about 1.5 to 4.0%) for copper and about 0.2 to 5% (preferably about 1) for manganese. 0.0 to 3.0%) and the total amount of copper and manganese is about 1.0 to 10.0%. The addition amount of copper and manganese and the total amount thereof are not absolute, as described above, and differ depending on the type of zinc (grade) of the base metal and the grade of copper and manganese. The meaning is included in “about” before the numerical value. Furthermore, when adding a small amount of solute metals other than copper and manganese (for example, Fe, Ni, etc.), it fluctuates. In the composition of the present zinc-based alloy, the balance of elements other than copper (Cu) and manganese (Mn) is naturally composed of zinc (Zn) and inevitable impurities (substantially composed only of Zn).

銅の添加量が過少では、黒ずみ発生を確実になくすことが困難で、他方、マンガンの添加量が過少では、硬さの向上が望めず、また、銅及びマンガンの一方・双方又は合計添加量過多では、ショットの靱性が低下してショット損耗が増大し、ショット寿命が短くなる。   If the amount of copper added is too small, it is difficult to reliably eliminate blackening. On the other hand, if the amount of manganese added is too small, improvement in hardness cannot be expected, and one or both of copper and manganese, or the total amount added. If the amount is excessive, shot toughness decreases, shot wear increases, and the shot life is shortened.

なお、本発明のショットで使用する亜鉛、銅及びマンガンとしては、特に限定されず、市販されているものから適宜選定して使用可能である。   In addition, it does not specifically limit as zinc, copper, and manganese used by the shot of this invention, It can select and use suitably from what is marketed.

また、母材とする亜鉛は、通常、ビッカース硬さ40〜50HVの範囲のものが市販されていて、相対的に硬さの小さいものが、靱性を得易いが、逆に硬さが小さいと、バリ取りなどの研掃作業性が低下する。本発明の試験例において、銅やマンガンの添加量が同じでも、相対的にショット硬さが低いのは、本試験例では、母材である亜鉛として、硬さの低いグレードを使用していると共に、特許文献1で示す如く、銅とともに鉄を少量添加しているためである。   In addition, zinc as a base material is usually commercially available with a Vickers hardness in the range of 40 to 50 HV, and a relatively low hardness is easy to obtain toughness. , Deburring and other cleaning workability is reduced. In the test example of the present invention, even if the addition amount of copper or manganese is the same, the shot hardness is relatively low because in this test example, a grade with low hardness is used as the base material zinc. In addition, as shown in Patent Document 1, a small amount of iron is added together with copper.

そして、ショットの製造は、慣用の方法で行うことができる。以下に、特許文献1の段落0008、特許文献2の段落0009等から、適宜本発明に合わせて表現を変えて引用する。   The shot can be manufactured by a conventional method. In the following, from paragraph 0008 of Patent Document 1, paragraph 0009 of Patent Document 2, and the like, the expression is appropriately changed according to the present invention.

「亜鉛中に銅及びマンガンを所定量、所定比で添加して得られる混合物を、還元雰囲気下で加熱融解(溶湯温度450〜650℃)して、溶湯とする。そして、該溶湯を、水等の冷却媒体中へ流下させ、この冷却媒体中で、凝固・堆積させた球状の粒状体を得る。該粒状体を、回収、乾燥後、篩い分け等により分級・形選して、粒度別に区分してショットとする。」   “A mixture obtained by adding copper and manganese in zinc in a predetermined ratio and in a predetermined ratio is heated and melted (molten metal temperature: 450 to 650 ° C.) in a reducing atmosphere to form a molten metal. To obtain a spherical granular material solidified and deposited in this cooling medium, which is recovered, dried, classified and selected by sieving, etc. Divide into shots. "

表1に示す各亜鉛基合金組成の混合物を、底部に所定口径のノズルを有する不活性雰囲気において加熱して溶湯(溶湯温度を600〜620℃)を調製する。該溶湯を所定径流下穴を底部に有する黒鉛るつぼに入れ、溶湯上面から加圧して、水中に流下させて、得られた凝集球状化物を、回収・乾燥し分級して表示の粒径・ビッカース硬さの各実施例・比較例のショットを得た。   A mixture of each zinc-based alloy composition shown in Table 1 is heated in an inert atmosphere having a nozzle having a predetermined diameter at the bottom to prepare a molten metal (molten metal temperature of 600 to 620 ° C.). The molten metal is put in a graphite crucible having a flow hole with a predetermined diameter at the bottom, pressurized from the upper surface of the molten metal and allowed to flow into water, and the resulting agglomerated spheroids are collected, dried and classified to display the indicated particle size and Vickers. The shot of each Example and Comparative Example of hardness was obtained.

こうして得た各ショットを用いて、アルミホイール(ダイカスト品)(外径:43.2mm、平均肉厚10mm)を被加工物として、ブラスト装置(5HPの遠心投射型)によって、ブラスト加工(バリ取り、スケール落とし)を行った。   Using each shot obtained in this way, an aluminum wheel (die-cast product) (outer diameter: 43.2 mm, average wall thickness 10 mm) was used as a workpiece, and blasting (deburring with 5 HP) was performed using a blasting device (5HP centrifugal projection type). Scale down).

そのときの、加工条件は、ショット投射速度:45m/s、ショット投射量:50kgとした。   The processing conditions at that time were shot projection speed: 45 m / s and shot projection amount: 50 kg.

そして、下記各項目の評価を行った。   And the following each item was evaluated.

1)バリ取り:
目視により「バリ」が除去されたか否かを判断し、そのバリ取り完了時間による4段階評価を行った。
1) Deburring:
It was judged whether or not “burrs” were removed by visual inspection, and a four-step evaluation was performed based on the completion time of deburring.

30秒以内:◎、30秒超60秒以内:〇、60秒超90秒以内:△
90秒以上:×
2)加工後色調:
被加工物の加工後表面における色調を目視により判定して下記基準により4段階評価を行った。なお、ブラスト加工前の被加工物の表面は、色調が銀白色で、鋳物スケールが付着している状態である。
Within 30 seconds: ◎, over 30 seconds within 60 seconds: 〇, over 60 seconds within 90 seconds: △
90 seconds or more: ×
2) Color after processing:
The color tone on the processed surface of the work piece was visually judged and evaluated in four stages according to the following criteria. In addition, the surface of the workpiece before blasting is in a state where the color tone is silver white and the casting scale is attached.

全面が銀白色:◎、若干の銀白色:〇、若干の黒ずみ:△
全面が黒ずみ:×
3)表面状況:
加工後の被加工物の表面における研磨状況を総合的に判断するために、「スケール除去」、「面の荒れ」、「微細形状部の磨耗」及び「全体の磨耗・変形」を評価項目として、下記4段階評価を行った。
The whole surface is silver white: ◎, some silver white: 〇, some darkening: △
Fully blackened: ×
3) Surface condition:
In order to comprehensively judge the polishing situation on the surface of the work piece after processing, "scale removal", "rough surface", "abrasion of fine features" and "whole wear / deformation" are evaluated items. The following four grades were evaluated.

スケール除去(OK)、面の荒れ(無し)、微細形状部の磨耗(無し)、全体の磨耗・変形(無し)・・・◎
スケール除去(OK)、面の荒れ(若干有り)、微細形状部の磨耗(無し)、全体の磨耗・変形(無し)・・・〇
スケール除去(OK)、面の荒れ(有り)、微細形状部の磨耗(若干有り)、全体の磨耗・変形(無し)・・・△
スケール除去(OK)、面の荒れ(有り)、微細形状部の磨耗(有り)、全体の磨耗・変形(若干有り)・・・×
4)ショットの損耗:
ショットの投射時間を8hとし、ショットが損耗して微細化した量を測定して、下記基準のより4段階評価を行った。
Descaling (OK), surface roughness (none), wear of fine features (none), overall wear and deformation (none) ... ◎
Scale removal (OK), rough surface (slightly present), fine shape wear (none), overall wear / deformation (none) ··· Scale removal (OK), rough surface (present), fine shape Part wear (somewhat present), overall wear / deformation (none) ・ ・ ・ △
Scale removal (OK), surface roughness (existence), wear of fine shaped parts (existence), overall wear / deformation (exist slightly) ... ×
4) Shot wear:
The shot projection time was set to 8 h, the amount of the shot worn and refined was measured, and four-stage evaluation was performed according to the following criteria.

0.08kg/(h・HP)以下:◎、
0.08kg/(h・HP)超0.09kg/(h・HP)以下:〇、
0.09kg/(h・HP)超0.12kg/(h・HP)以下:△
0.12kg/(h・HP)超:×
5)総合評価:
上記1〜4の各評価項目を総合判断して、4段階評価とした。
0.08 kg / (h · HP) or less: ◎,
0.08 kg / (h · HP) over 0.09 kg / (h · HP) or less: Yes
0.09 kg / (h · HP) over 0.12 kg / (h · HP) or less: Δ
More than 0.12 kg / (h · HP): ×
5) Overall evaluation:
Each evaluation item of said 1-4 was comprehensively judged and it was set as 4 step | paragraph evaluation.

極めて良好:◎、良好:〇、やや不良:△、不良:×
それらの結果を示す表2から、下記のことが分かる。
Extremely good: ◎, good: ◯, slightly bad: △, bad: ×
From Table 2 showing the results, the following can be understood.

1)銅又はマンガン単独では(比較例1・2)、銅比の高いものは、銅/マンガン合計添加量が同じ場合(実施例2:Cu/Mn=4.0、Cu+Mn=2.5%)は勿論、合計添加量が少なくても(実施例1:Cu+Mn=1.5%)、それらより硬さの大きいショットが得られて、バリ取り性に優れて、かつ、色調変化もほとんどない。   1) When copper or manganese is used alone (Comparative Examples 1 and 2), those having a high copper ratio have the same total copper / manganese addition amount (Example 2: Cu / Mn = 4.0, Cu + Mn = 2.5%) Of course, even if the total amount added is small (Example 1: Cu + Mn = 1.5%), shots with higher hardness can be obtained, excellent deburring properties, and almost no change in color tone. .

なお、マンガン比が高い場合(比較例4:Cu/Mn=0.67)は、上記同様、合計添加量が同じ、銅比が高い場合に比して(実施例2:Cu/Mn=4.0)、硬さが大きいものを得難く、加工後表面に黒ずみが発生し易いことが分かる。また、銅比が高くてもマンガン添加量が過少の場合(比較例3:Cu/Mn=10.0、Mn=0.1%)、実用的な硬さのショットを得難く、所要のバリ取り性、良好な色調を得難い。   When the manganese ratio is high (Comparative Example 4: Cu / Mn = 0.67), the total addition amount is the same as in the above case, and the copper ratio is high (Example 2: Cu / Mn = 4). 0.0), it is difficult to obtain a material with high hardness, and it is understood that darkening is likely to occur on the surface after processing. Moreover, even if the copper ratio is high, if the amount of manganese added is too small (Comparative Example 3: Cu / Mn = 10.0, Mn = 0.1%), it is difficult to obtain a shot with practical hardness, and the required burrs. It is difficult to obtain a good color tone.

そして、同じ配合組成で、ショット硬さが同じ(110HV)でも、粒径が、従来と同様の適宜範囲(0.3〜4.0mm)の場合(実施例3−2〜3−5)、表面状況では◎では無いものの(〇)、他の項目は全て◎である。   And even when the shot hardness is the same (110 HV) with the same composition, when the particle size is in the appropriate range (0.3 to 4.0 mm) as in the past (Examples 3-2 to 3-5), Although it is not ◎ in the surface condition (◯), all other items are ◎.

なお、ショット粒径が過小(実施例3−1)の場合はバリ取り性において若干問題が発生するものの、被加工物によっては使用可能であると考えられる。逆に、ショット粒径が過大(実施例3−6)の場合は、加工後表面状況が良好でなく、ショット寿命も若干短いが、ブラスト条件(投射速度等)の変更及び被加工物の種類(硬さ)により実用使用可能と考えられる。   When the shot particle size is too small (Example 3-1), it may be possible to use depending on the workpiece, although a slight problem occurs in deburring properties. Conversely, when the shot particle size is excessive (Example 3-6), the surface condition after processing is not good and the shot life is slightly short, but the blasting conditions (projection speed, etc.) are changed and the type of workpiece (Hardness) is considered to be practically usable.

さらに、銅・マンガン合計添加量を増大して、ショット硬さが180HV近くの大きさとなると(実施例5)、ショット寿命が短くなる傾向になるが、上記同様、ブラスト条件、被加工物の種類の変更により、実用使用可能と考えられる。   Further, when the total amount of added copper and manganese is increased and the shot hardness becomes close to 180 HV (Example 5), the shot life tends to be shortened. It is thought that it can be used practically by changing

Figure 0004774883
Figure 0004774883

Figure 0004774883
Figure 0004774883

Claims (6)

亜鉛(Zn)基合金からなるショットにおいて、前記亜鉛基合金が、溶質金属としての銅(Cu)及びマンガン(Mn)を含有し、Cu=0.8〜6%、Mn=0.2〜5%、Cu+Mn=1.0〜10.0%、かつ、Cu/Mn質量比>1の関係を満たし、Zn=残部である組成であって、ビッカース硬さ(JIS Z 2244;以下同じ。)55〜180HVを示すものであることを特徴とする亜鉛基合金ショット。 In a shot made of a zinc (Zn) based alloy, the zinc based alloy contains copper (Cu) and manganese (Mn) as solute metals, Cu = 0.8-6%, Mn = 0.2-5 %, Cu + Mn = 1.0 to 10.0%, and a Cu / Mn mass ratio> 1 is satisfied, and Zn = remainder, Vickers hardness (JIS Z 2244; the same applies hereinafter) 55 zinc-based alloy shot, characterized in that shows the ~180HV. Cu1.5〜4.0%、Mn1.0〜3.0%であることを特徴とする請求項1記載の亜鉛基合金ショット。 Cu = 1.5 to 4.0%, zinc-based alloy shot according to claim 1, characterized in that a Mn = 1.0 to 3.0%. 前記Cu/Mn質量比1.5〜6であることを特徴とする請求項1又は2記載の亜鉛基合金ショット。 Zinc-based alloy shot of claim 1 or 2, wherein the said a Cu / Mn weight ratio = 1.5-6. 前記Cu/Mn質量比2〜3であることを特徴とする請求項3記載の亜鉛基合金ショット。 Zinc-based alloy shot of claim 3 wherein the Cu / Mn weight ratio = 2 to 3. 前記ビッカース硬さ60〜160HVを示すものであることを特徴とする請求項1〜4いずれかに記載の亜鉛基合金ショット。 Zinc-based alloy shot according to any of claims 1 to 4, characterized in that indicating the Vickers hardness 60 ~160HV. 粒径が0.05〜5.0mmであることを特徴とする請求項1〜5のいずれかに記載の亜鉛基合金ショット。 The zinc-based alloy shot according to any one of claims 1 to 5 , wherein a particle diameter is 0.05 to 5.0 mm.
JP2005273581A 2005-09-21 2005-09-21 Zinc-based alloy shot Active JP4774883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273581A JP4774883B2 (en) 2005-09-21 2005-09-21 Zinc-based alloy shot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273581A JP4774883B2 (en) 2005-09-21 2005-09-21 Zinc-based alloy shot

Publications (2)

Publication Number Publication Date
JP2007084869A JP2007084869A (en) 2007-04-05
JP4774883B2 true JP4774883B2 (en) 2011-09-14

Family

ID=37972151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273581A Active JP4774883B2 (en) 2005-09-21 2005-09-21 Zinc-based alloy shot

Country Status (1)

Country Link
JP (1) JP4774883B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125900A (en) 2010-12-16 2012-07-05 Sintokogio Ltd Zinc-based alloy shot
CA2918133C (en) * 2013-08-27 2021-05-04 Jarden Zinc Products, LLC Reduced conductivity and unique electromagnetic signature zinc alloy
CN106702212A (en) * 2015-11-16 2017-05-24 上海交通大学 Medical degradable Zn-Cu-X alloy material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2887228B2 (en) * 1995-09-05 1999-04-26 新東ブレーター株式会社 shot
JP4309004B2 (en) * 1999-12-14 2009-08-05 東邦亜鉛株式会社 Zinc alloy shot
JP4165794B2 (en) * 2001-01-30 2008-10-15 新東ブレーター株式会社 shot

Also Published As

Publication number Publication date
JP2007084869A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
KR101237904B1 (en) Zinc-based alloy shots
US10017841B2 (en) Copper alloy casting and method of casting the same
CN1943992B (en) Zinc alloy shot pill
US9707664B2 (en) Zinc-based alloy shot
JP4774883B2 (en) Zinc-based alloy shot
JP4165794B2 (en) shot
JP5787215B2 (en) Zinc-based alloy shot
JP5939339B2 (en) Zinc-based alloy shot
BE1008247A6 (en) HIGH CARBON STEELS, PROCESS FOR THEIR PRODUCTION AND THEIR USE FOR WEAR PARTS MADE OF THIS STEEL.
JP2009226535A (en) Zinc alloy shot
JP6965926B2 (en) Zinc-based alloy shot and its manufacturing method
JP6965927B2 (en) Zinc-based alloy shot and its manufacturing method
JP2887228B2 (en) shot
JPH0822504B2 (en) How to blast aluminum die cast products
JP2001162538A (en) Zinc alloy shot
JPH11320416A (en) Zinc alloy shot
JP2001240929A (en) Aluminum wheel and its production method
JPS60258443A (en) Zinc alloy and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4774883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250